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1 Introduction

Since the pioneering work of Stigler (1961, 1962) and McCall (1965), search theory has
played an important role in microeconomic and macroeconomic modeling.! Most frame-
works that use the simple sequential search model or one of its many variants assume
that the searchers have complete knowledge about the distribution from which they are
searching. This assumption, in most contexts, is unreasonable and represents an unjusti-
fied simplification. We investigate the sequential search problem without the assumption
that the searcher knows the distribution he faces. Both search with recall and without
recall are examined. Sufficient conditions for the existence of optimal stopping rules with
the reservation property are provided. Comparative static results with respect to stochastic

dominance (appropriately defined) are obtained.

The sequential search problem from a known distribution is as follows. Consider a buyer
who wishes to purchase a good which is offered for sale by many different sellers. The price
offered by each seller is an independent draw from a distribution which is known to the
buyer. The buyer can elicit price quotations from a seller by paying a fee c. After each price
quotation the buyer decides whether to stop and buy the good at the current price (or, if
permitted, at the lowest price offered in the past) or to elicit one more price quotation from
another seller after paying the fee, c. The buyer seeks to minimize his total costs, that is

the price paid for the good plus the search costs.

If the variance of the distribution of price offers is finite then there exists an optimal
stopping rule for the above problem (see DeGroot (1970)). (This is true even if the distri-
bution is not known.) Moreover, there exists an optimal stopping rule for search, with or
without recall, in an infinite horizon setting from a known distribution, which is myopic.
That is, at each stage it is optimal to act as if exactly one more observation is allowed.
When recall is allowed, the option is never exercised in this optimal stopping rule. Thus
the optimal stopping rule for search with recall is feasible, and therefore also optimal, when
recall is not allowed. Hence the minimum expected cost is the same for search with and
without recall. Also, it turns out that the optimal stopping rule for search from a known
distribution is a reservation price rule. That is, it is optimal to stop the first time one
observes a price less than or equal to some cut-off price. Thus the optimal stopping rule for
search from a known distribution is simple. More importantly, in markets where searchers
follow reservation price strategies the demand for a seller’s product is well-behaved in that
if a seller increases price his expected sales will decrease. Hence it is of interest to know the

structure of optimal policies because, besides determining the nature of the demand curve,



prior distribution or in the cost of each sample (see Mortensen (1986), Kiefer and Neu-
mann (1989)). We investigate comparative static results with respect to parameters related
to the search environment when the distribution is random. First consider the case of a
known distribution F. It is well-known (see Robbins (1970)) that the reservation price, r,
of the optimal stopping rule is given by the equation

c= /0 "(r — 2)dF(z) = /o " F(z)de (1)

Moreover, the total expected cost from F when following the optimal rule is equal to
the reservation price r. Thus if F dominates another known distribution G by first-order
stochastic dominance, i.e., F(z) < G(z), Vz, then the expected cost under G is lower.
As shown in Kohn and Shavell (1974), a similar result holds when F and G can be com-
pared by second-order stochastic dominance. If F dominates G by second-order stochastic
dominance, i.e., [{° zdF(z) = [§° 2dG(z) and [ F(z)dz < [§ G(z)dz, Yy, the expected
cost under G is lower. Essentially if the distribution places more weight in the tails, the
probability of getting a low price increases.

In our setting, where the true underlying distribution of prices is not known and the
searcher has a prior on the set of possible distributions, it is not clear how to define stochas-
tic dominance. Let F and G be prior distributions on the set of all possible distributions.
That is, F and G are distributions on distributions. Let E[F| and E[G] denote the distri-
butions obtained by multiplying probabilities in F and G, respectively. Since E[F], E[G]
are distributions on R, one possible definition is to say that F dominates G by first-
order (second-order) stochastic dominance if E[F| dominates E[G] by ordinary first-order
(second-order) stochastic dominance. However, these definitions are inadequate for our
purpose as the following examples show.

Example 1 Let Fy, G, and G; be uniform distributions on [0,1], [0, %] , and [-;-, 1] respec-
tively, and let G be the degenerate distribution which gives the outcome 0 with probability
one. The per period cost of search c is 1. From (1) it is clear that when searching from
the distribution Fy, the reservation price and the ezpected cost of the optimal stopping rule
is 0.7071. Similarly, when searching from Gy, the reservation price and ezpected cost 18
1, and when searching from G.it is 1. The cost under Go is 1. Let F = (F,1) ond
G = (Go,0.02; G1,0.49;G32,0.49) be distributions on distributions. That is, F is degenerate
at Fy, and under G, Gq is chosen with probability 0.02, and G, and G; are each chosen
with probabslity 0.49. Clearly, the minimum ezpected cost under F 13 0.7071. After one ob-
servation from G the buyer knows with probabslity one whether he is sampling from Go, G,
or G3. Further it is optimal to take ezactly one observation from G and then stop and
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the topology of weak convergence) as a posterior.

The rest of this paper is organized as follows. The next section contains some prelimi-
naries and definitions. Section 3 deals with search with recall and Section 4 covers search
without recall.

2 Preliminaries

We assume that the support of the random distribution of prices is contained in R, .
Let 8 be the o—algebra of Borel subsets of R;. Define 7 to be the set of countably additive
probability measures on (R, 8) which have finite variance. 7 is endowed with the topology
of weak convergence. Let A be the o—algebra of Borel subsets of 7, and P be a probability
distribution on (¥, 4). P denotes a random probability measure chosen according to 7,
and Xi, X3, ..., Xn denotes a random sample chosen according to P. Sometimes, it will be
useful to think of P as a stochastic process indexed by the subsets B € B. One can define
a random probability distribution, F, corresponding to P

F(t) = P[0,

Let E[] denote the expectation operator with respect to P. It is easy to show that E[P]is
a countably additive probability measure on (R, 8). Let E[F] be the distribution function
corresponding to E[P]. If h() is any function defined on R, then

Elb(x)] = [~ A(OME(FE)

We will use the terms random probability distribution, and distribution on distributions
interchangeably. Sometimes we shall refer to F' as a random probability distribution on
R,. This means that, with probability one, F selects a distribution function with support
in R;. When we say that F has finite variance we mean that E[F| has finite variance. The
posterior distribution of F after observing X; = z1,..., Xn = Zn i8 denoted by F|zy,...,Zn.

Define Xo = oo and let M, represent the smallest available price at each stage n. For
search with recall M,, = min(Xp, X1, ..., Xn), and for search without recall M,, = X,. The
problem of finding a price from the random distribution function F at the least total cost
is the same as finding an optimal stopping rule which minimizes

E[My + N¢j

In the interesting case, the search cost, c, is small enough so that it is not always optimal
to stop after one price sample.



the reservation price at each stage is always greater than the reservation price for search
from a known distribution equal to the expectation of the random distribution at that
stage. The reservation prices do not depend on past observations and can be computed at
the beginning of the search. In addition, we obtain conditions on the random distribution
under which the optimal rule is bounded, that is, it always stops after a finite number of
observations.

We assume throughout that the random probability distribution F has finite variance.

In addition, consider the following assumptions.?

Assumption 1
For all zy,...,2pn

E[F|zy,...,2p)(t) < E[F|21, ..., Zn-1](t) < .... < E[F|(t), ¥t < min(zy,...,Zn)

Assumption 2
For all z1,...,Zn, y1,...,¥n

E[F|zy,...,24)(t) = E[F|y1, -, yn|(t), Vt < min(z1,...,Zn,y1,--,Yn)

Consider an individual with a prior (random) distribution, F. Suppose that he observes
n— 1 prices, all of which are greater than ¢t. Then, the individual can calculate the probabil-
ity that the next observed price is less than t. Assumption 1 states that if the nth observed
price is also greater than t, then the probability that the next observed price is less than
t will decrease. This, in a sense, formalizes the notion that the posterior probability of
observing a low price, given that all the previous observations are high, decreases with the
number of observations. Assumption 2 states that the poeterior probability of observing a
price less than ¢, given that all the previous obeervations are greater than ¢, depends only
on the number of previous observations. Assumption 2 seems to be more stringent than
Assumption 1. .

It is useful to relate Assumptions 1 and 2 to the assumption that the posterior distribu-
tion of F is a convex combination of the prior and the empirical distribution. The empirical
distribution function, Hy,,... s, (t), after obeerving (z1,...,Zs) is given by

Hoprooa®) = 23 10 )



contains a; balls marked y;, a; balls marked y3, and so on. Each time a ball marked y;,
j=1lor 2or ..m,is drawn from this urn, two balls marked y; are returned to it. It is
readily confirmed that the multinomial-Dirichlet distribution satisfies Assumption 3 with

Cn = 43

The Dirichlet process is a generalization of the multinomial-Dirichlet distribution to
the infinite case, that is the price observed can be from an infinite (possibly uncountably
infinite) set. Essentially, after an observation z from a Dirichlet process, the posterior
probability of any two sets B;, ¢+ = 1,2, such that z & B;, decreases and the relative
probability of By and B; remains unchanged. The definition of Dirichlet process and some
related results are provided in Appendix I. It turns out that the Dirichlet process satisfies
Assumption 3 with a,, increasing (see (41), in Appendix I). Thus, under Bayesian learning,
the Dirichlet process is a random probability distribution which satisfies Assumptions 1
and 2.

Recall that 7, the space of probability distributions on (R4, 8), is endowed with the
topology of weak convergence and A is the o —algebra of Borel subsets of 7. Ferguson (1973)
has shown that the support of a Dirichlet process is large in the sense that there exists a
Dirichlet process with support 7 (see also Appendix I, Fact 2). Thus the following is
true, and Assumptions 1 and 2 place no restriction on the set of permissible underlying
distributions.

Lemma 2 There exists a random probability distribution, F, on (7,4), which satisfies
Assumptions 1 and 2 and has support 7.

There exists a class of random probability distributions called neutral to the right
distributions which satisfy Assumptions 1 and 2. In Appendix II we give a definition and
summary of some well-known results on neutral to the right distributions. Essentially, after
an observation z from a neutral to the right distribution, the posterior probability of any
two sets B;, ¢ = 1,2 such that B; C [0,z) decreases and the relative probability of B,
and B; remains unchanged. Thus the Dirichlet process is neutral to the right. The class
of neutral to the right distributions is strictly larger than the class of Dirichlet processes.
(See Fact 6 and Remark 1 in Appendix II.) Both Dirichlet processes and the neutral to
the right family of distributions are characterized by infinite dimensional parameters (see
Remark 2 in Appendix II). In Appendix III, Lemma 13 we show that Assumptions 1 and 2
are satisfied by neutral to the right distributions.

We now show that if F satisfies Assumption 1 then the problem of search with recall
from F is monotone in the sense of Chow, Robbins, and Siegmund (1971), and thus has
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which is equivalent to

M
/0 (Ma — t)dE[F|z1, 22, ... za)(t) < € (8)

Thus to show that the sequence Mp,1 + ¢, Mp42 + 2¢, ... is a submartingale it is enough to
show that (8) implies

Mn+l
[ (Mass - 4B (Plzs, 22,2 m]) S €, Vomin (9)
Since Mp41 < M, (8) implies that
Mn+l ’
/O (Mass — )dE[Flz1, 23, ..., 2a] () < (10)
Let H,, Hn4) be probability distributions on [0, Mp41] defined by

Hn(Mny1) = 1- Ha(Myy,)

and

H,H.l(t) = E[Flzl, T2, ...y Tn, z,.+1](t), Vt < Mp41
Hpt1(Mp41) = 1- Hnnr(Mg,,y)

where H(M,,,) = limyn,,, H(t). Assumption 1 implies that Hny1(t) < Ha(t), Vt €
[0, Mn+1] and therefore

Mn.ﬂ, MMH
/0 (Mpy1 — t)dE[F|zy, 23, ..., 2n](t) = /0 (Mny1 — t)dHa(t)
' Mu+l
> /o (Mas1 = t)dHnsa(t)

M1
= /o (Mas1 — )dE[F|21, 23, .., Zn Tns1](2)

which, combined with (10), implies (9).
Finally, we need to establish (7). Since E{X,] < oo, and for any r € A, P{r > k} — 0,

as k — co, we have
liminf / X, =0
] {r>4&)
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Ma(y)
/o (Ma(2) ~ t)dE[F|21, ... Tne1,2](2)

+ /:::)(M..(z) — t)dE[F|z1, ..., Za-1,2](t)

> /;M"(")(M,.(y) - t)dE[F|zy, ..., Zn-1,%](t)

Ma(y)
/0 (Ma(y) — t)dE[F|21, ... Za-1,4](2)
= Jn(!l)

i

The main result of this section is!’

Theorem 1 If F is a random probability distribution which satisfies Assumptions 1 and 2

then the following hold for search with recall:

(i) There exists an optimal stopping rule which is myopic and has the reservation price
property.

() The reservation price functions, rn, n 2 1, corresponding to this optimal stopping rule
do not depend on the prices observed.

(i5) Let ro be the optimal reservation price when searching from a known distribution equal
to the ezpected prior distribution, E[F]. Thenro <r < ....ra < ...

Proof: (i) Follows directly from Lemmas 3 and 4.
(i) From (i) and (11) we know that it is optimal to stop after observing price samples
z1, ..., Zn if and only if

My
/0 (M — )dE[F|z1, ..., za](t)

o
v

Man
= /o E[F|z1, .., za)(t)dt (12)

where the equality follows from integration by parts.
For all r in the support of E[F] define

Qu(r)=c- /0 E[F|r|(t)dt (13)
By Assumption 2, for any z > r in the support of E[F],

Qu(r) = ¢ - /0 " E[F|z)(t)dt (14)
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where Mp(z) = min(z, Ma-1). The inequality follows from Assumption 2 and the fact
that if z > r, then M,(z) > r,, and the equality from Assumption 2 and (16). Thus
(12) implies that it is optimal to continue if X > rn. Therefore, when Mn_1 > rp, rs is
an optimal reservation price. A similar proof establishes that even when M,_, = r, the
optimal reservation price is r,.

If instead M,.1 < rn < 00 then

nM, _s

My, P %
¢ > [ B Mas, Mo, -, Mo ()

Ma(z)
/0 E[F|zy,...,Zn-1,2|(t)dt, Vz

where the first inequality follows from (16) and the second from Assumption 2, and the
fact that Mn(z) < Mn—1 < rn, Vz. Thus if Ma—3 < r, then regardless of the value of X,
it is optimal to stop after observiing Xn. Since My(Xn) < M,y < rp, 7s is an optimal
reservation price.

If r, = co then (12) is always satisfied regardless of the observations z,, ..., z,, and thus
rn is an optimal reservation price. This completes the proof of (ii).

(iii) Assumption 1 implies that

nrs n-1r's
E[F|7,r,7F|(t) < E[F|Fr, o f)(t), VeE<r, ¥n2>1

Therefore Qn(r) > Qn-1(r). Since Qn(r) is decreasing in r for all n, the definition of
ri, $=0,1,2,..,nimpliesrp, > rp_1 > ...2r5. |

The sequence of optimal reservation prices is increasing.!! Essentially, a higher price
realization from a random distribution makes the searcher more pessimistic about finding
a low price in the future. This intuition also explains the fact that the reservation price at
each stage is always greater than the reservation price for search from a known distribution
equal to the expectation of the random distribution at that stage. Theorem 1 implies that
the optimal reservation prices can be determined before beginning the search. Also, if in
period n the lowest available price, M,, is such that rni 31 > M, > rp4: for some k,
then at most k additional observations will be taken. Since the optimal reservation prices,
r;, § > 1 are greater than the optimal reservation price when searching from a known
distribution equal to the expected prior distribution, the expected number of samples is
lower when sampling from the random distribution F. In Example 8, Appendix III, we
provide a neutral to the right distribution and its optimal reservation price policy.
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3.2 Comparative Statics

We turn to some comparative static results for sampling with recall. Our main result
is Theorem 2. We show that if, after any set of observations, the posterior distribution
of F dominates the posterior distribution of G by first-order stochastic dominance, and a
mild assumption is satisfied, then the minimum expected search cost is lower under G. In
Theorem 2 it is not assumed that an optimal reservation price policy exists. In Lemma 7
we show that when each of two random distributions F and G has an optimal reservation
policy, and the hypotheses of Theorem 2 are satisfied, then the reservation price under
F is greater than the reservation price under G. The analogous result for second-order
stochastic dominance seems to be less generally true. The comparative static result with
respect to the cost of search generalizes easily.

For the rest of this section we do not assume that F satisfies Assumptions 1, 2 or 3, unless
otherwise stated. Before proceeding, it is useful to consider a truncated problem in which
the buyer is allowed to observe at most T price samples from F. As mentioned in Section 2,
an optimal stopping rule exists in the untruncated problem. Optimal stopping rules in the
truncated problem are obtained by backward induction (see DeGroot (1970), section 12.4).
Let V(F,m) and V (F, m) be the minimum expected cost in the truncated and untruncated
problems respectively, where m is the minimum price available from previous observations,

if any. Thus
Vi(F,m) = min{m, /o * min(m, t)dE(F)(t) + ¢},

Vp(F,m) = min{m, /:oVr_l(Flt,min(m,t))dE[F](t)+c}, VT>2  (20)

The following lemma, which is based on results in DeGroot (1970), shows that Vr(F,m)
converges to V (F,m). Thus results which are true for the truncated problem can be ex-
tended to the untruncated problem.

Lemma 8 If F is a random probability distribution with finite variance then
lim Vr(F,m) = V(F,m).
T—o0
Proof: Theorem 12.10.1 in DeGroot (1970) gives sufficient conditions for Vr(F,m) —

V(F,m) as T — co. As shown in Christensen (1983), these sufficient conditions are satisfied
if F has finite variance. 1§
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The induction hypothesis is: if F > ; G then Vr_y(F,m) > Vr_y(G,m). This implies
Vp(F,m) = min{m, /0 % Vp—1(F|t, min(m, £))dE[F|(£) + ¢}
> mhi{m, /o % Vp—1(F|t, min(m, £))dE[G](t) + ¢}
> min{m, /o * Vr-1(Clt, min(m, ))dE[G](¢) + ¢}
= Vr(G,m)

Since F is increasing the induction hypothesis implies that Vr_;(F|t,m) and therefore the
integrand are increasing in t. Thus the fact that E[F| dominates E[G] by ordinary first-
order stochastic dominance implies the first inequality. The second inequality follows since
Fit =7 G|t. Therefore, V1(F,m) > Vr(G,m), VT.

By Lemma 8,

J = lim V > lim V =V
V(F,m) Th_l.x; Vr(F,m) > 1!11.1; Vr(G,m) =V (G,m)
If, instead, G is increasing the proof is symmetric. 1

From the proof of Theorem 2 it is clear that if F' >, G then V(F,m) > V(G,m). The
following lemma obtains a comparative static result for the optimal policy when it is a
reservation price rule.

Lemma 7 Let F and G be random probability distributions on Ry such that F >~; G and
either F or G 1s increasing. Suppose that F and G have an optimal stopping policy which
is reservation price. Then after any history whenever it is optimal to stop under G, it 1s
optimal to stop under F.

Proof: Let F' = F|z),73,...,zn and G' = G|2z4,23,...,Zn be the posterior distributions
of F and G, respectively, after z,,z3,...,zn have been observed. Then it is clear from
Definitions 1 and 2 that >, G'. Thus Theorem 2 implies that V(F',m) > V(G',m).
Let rr and rg be the optimal reservation prices of F! and G' respectively, and let m =
(21, 23, ..., Zn) be the minimum available price.

Suppose that rg < m. Then the definition of rp and rg implies that

rg = V((G'r¢), min(m,rg)) + ¢
< V((F'|rg), min(m,rg)) +¢

Since r < V((#'|r), min(m,r)) + ¢, Vr < rp we have rp > rg.

19



Thus the expected prior distribution of the prices is
a t . a+1
= —_ o<t
E[F|(2) (a+l) = if0< ( : )wo
1
= 1, ift> (%—) wo

Suppose that price samples 3,23, ...,Zn are observed. Let wy = max(wo, 21,23, ...2n). The
posterior distribution of w given samples 21,23, ...,zn 18 @ Pareto distribution with param-
eters wn, a +n (see DeGroot (1970), pg. 178). The ezpected posterior distribution is

a+n t . a+n+l
E[F|31,33,---a3n](t) = (a+n+l) E’ if 0<t<( a+n )w,.

= 1, ifgz(‘_’_ﬂ_ﬂ)wn
a+n

Since max(wp,z) > max(wn,y) for z > y it follows that
E[F|z1, 23, ..., Zn, 7| (t) < E[F|21,23,...,Zn, y|(t)

Thus F is increasing.

Consider another random distribution G where the prices are uniformly distributed on [0, w)
and w has a Pareto distribution with parameters iy, &, which satisfy Wo < wo, 4 2 a. It 18
casily verified that F >; G and thus that V(F,m) > V(G,m).

Example 8 The underlying set of distributions is ezponential with unknown parameter
X. The prior distribution of A is a gamma distribution with parameters a, b. Thus the

conditional density of the prices given A 1o

f(tA) = rexp™, ift>0

= 0, otherwise
and the prior density of A i
AMa)) = ——a*lexp™ ifA>0
(Ma,b) @ P
= 0, otherwise

Thus the expected prior distribution of the prices s

E[F}(t)=1- (5-:_7)., ift>0
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Vr-1((G|t),m) = Vr_1((G|t),m), Vt>t'>m (27)
Vr_i((Flt),t) 2 Vr-1((FIt), ), vex¢ (28)

We first show that the induction. hypothesis is true for T = 1.
Since E[F|(t) < E[G](t), Vt < m,

Vi(F,m) = min{m, /0 * min(m, t)dE[F](t) + ¢}
> min{m, /o * min(m, t)dE(G]() + ¢}
= Vi(G,m)
Since F satisfies Assumption 2, if ¢ > ¢! > m then
Vi((Flt),m) = min{m, /o * min(m, )dE[F|t)(s) + ¢}
= min{m, [ " sdB(F|t|(s) + m(1 - EIFle)(m)) +c}
= min{m, " sdB(F|¢)(s) + m(1 - E[FIf](m)) + c)
— min{m, /o * min(m, s)dE[F|t')(s) + ¢}
= Vi((FIt),m) (29)
Similarly V;((Glt),m) = V1((G|t'), m), ¥t > t' > m. Also if ¢ > ¢' then
%((FI),8) = mint, /0 * min(t, )dE[F|t](s) + c}
> min(t, /o * min(t', s)dE[Fit)(s) + ¢}

= Vi((Flt),?)
= Vi((FIt),t) (30)

where the last equality follows from (29). Thus the induction hypothesis is satisfied for
T = 1. Now suppose that the induction hypothesis is satisfied for T — 1. Let F and G
satisfy Assumption 2, (i), (23) and (24). Then

Vi(F,m) = min{m, /o"‘frr_l((mt),:)ww](t)Jr /m°°frr_1((r|t),m)w[r](t)+c}
= min{m, [ Vr_1((FIt), )ELF)()+ Vr-1((Flm),m)(1 = E(F](m)) + ¢}

> min{m, [ Ve-a((FI6),)4EIGI(8) + Ve-1((Flm), m)(1 - EG](m)) + o)
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points of discontinuity. Let N{ and N{ be the Lévy measures corresponding to F and G
respectively. Suppose that

N{(z2) = ()N

Ni{(z) = ~(t)N(z) (33)
where N(z) is a measure such that [° %;dN(z) < oo and ~i(t), t = [, 9 are nondecreasing,
absolutely continuous functions with 4;(0) = 0, and lim¢—. 7%(t) = oo. Then, if

vs(t) = (), Ve (34)

then F and G satisfy (ii) of Theorem 3. To see this, let 2/ and 2! denote the inde-
pendent increments processes corresponding to the posterior distributions F|zy,...,z» and
G|z1, ..., Zn respectively. From (33), (34), and from (44), (45) of Appendix II we see that
Vt < min(zy, ..., Zn)

log Mz{(—l) = ~/(@t) /;oo(exp" —1)exp ™ dN(z2)
> 29(t) [~ (exp™ ~1) exp™™ dNN ()
= logM 3:(—1)

It is readily confirmed that (56) of Appendix II implies (ii) of Theorem 3. Hence the neutral
to the right random distribution functions F and G satisfy the assumptions of Theorem 3.

We now turn to comparative statics with respect to second-order stochastic dominance.
The following is analogous to Definition 1.

Definition 3 Let F and G be random probability distributions. Then F dominates G by
second-order stochastic dominance under learning, denoted by F >, G, ifVz1,23,...,Zn

/; ™ tdE[Flz1, 72, . za](¢) /o * tdE(G|z1, 71, .. Znl (1)
/‘ E[F|z1,23,...,Zn)(8)ds < /‘ E[G|z1,23,...,Zn](s)ds, V¢
0 0

Let F and G be Dirichlet processes, F € D(a) and G € D(B) with a(Ry) = B(Ry). I
E[F) dominates E[G] by second-order stochastic dominance then F >, G. More generally,
we have the following lemma. The proof is straighforward and is omitted.

Lemma 8 Suppose that F and G are random probability distrsbutions which satisfy As-
sumption 3, and that for all x® = (21,23,...,za), E[F|x"] and E[G|x™] attach the same
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— min{min(m, x*), /o * min(m, <", t)dE[F|x|(¢) + ¢}

= min{min(m, "), (1 - on) [ min(m,«®, 4E{F|(8)) + an min(m,x") +c}
> min{min(m,x%), (1 - an) /o * min(m, x, t)dE[G](£)) + an min(m,x") + c}
= Vi((G[x"), min(m,x"))

where the inequality follows from the fact that min(m,x",t) is an increasing, concave func-
tion of t, and E[F| dominates E[G] by second-order stochastic dominance. Next suppose
that Vp_y ((F|x?), min(m,x*)) > Vr-1((G|x"), min(m,x")). A similar argument shows that

VT((F|xn)’min(m’xn))
= min{min(m, ), [~ Ve-a(Flx" 1), min(m,x", ))dE{FIx"}(8) + <}
=  min{min(m,x"), (1 - an) /o * Ve_1((FIx®, t), min(m, x*,t))dE[F](t)

4803 Vo (P, ), min(m, ) + <)

=1

v

 min{min(m,x*), (1 - an) /o ® Vr-1((G|x™, 1), min(m, x®, £))dE(G](t)

4803 V(61" 20), min(m, ) + )
=1

= VT((G|Xn), mln(ma xn))

Thus Vr((F|x*), min(m,x®)) > Vr((G|x"),min(m,x")), VT. Taking limits as T — oo
establishes that V ((F|x*), min(m,x*)) > V ((G|x"), min(m,x")), ¥x".

(ii) By Lemma 1, F [ G ] satisfies Assumptions 1 and 2. Therefore Theorem 1 implies
that there exists an optimal stopping rule which is reservation price. Let ra(F) [ a(G) |
be the reservation price at stage n when searching from F [ G |. The fact that for all x",
E[F|x"] dominates E[G|x"] by second-order stochastic dominance implies that

. nrs ’ nr's
/‘)E[Flr,f,...,r](t)dtS/; E[C|7,r, ... 7|(t)dt, Vr

The definition of the reservation price in the proof of Theorem 1 implies that ra(F) 2 ra(G).
1

Finally, we show that V(F,m) increases as the cost of sampling, c, increases. In the
following lemma we use the notation Vr(F,m,c) and V(F,m,c) instead of Vr(F,m) and
V (F,m) to indicate explicitly the dependencs oa c.
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Lemma 10 If F is a random probability distribution with finite variance then

TIL'&VT(F) =V(F).
The main result of this section is

Theorem 5 Let F be a random probability distribution on R, which satisfics Assump-
tion 3. The problem of search without recall from F has an optimal stopping rule with the
reservation price property.

Proof: Let x® = (21,23, ...,Zn). We need to show for all x®
V(FIx,») - V(FIx", ;) < -y V2w (36)

To see that (36) implies the reservation price property note that it is optimal to stop after
observing (x®,y1) if and only if

V(FIx",p)+c2n (37)

The above inequality, together with (36), implies that V(F|x®,y3) + ¢ > ya forall y2 < w1
Let ky = (y,¥,...,y) denote a k-vector of y’s. First we establish that for all T', for all
x® and k, Vr(F|x®, ky,) - Vr(Fix®,kys) < 11 — v, Y1 2 va. For T =1 we have

¢n+b

VA(F|x" kyy) — Va(F|x", ky,) —n-w

< V1 - v:
Suppose that for all x*, for all k, for all y1 2 y3, Vr-1(F|x®,ky,)—Vr-1(F|x", kys) < y1—-v2.
Then
Vr(F|x* ky,) - Vr(F|x®,ky;)
- -]
= (1- a......)/ {min(t, Vr-1(F|x", ky;,t) + ¢) — min(t, Vr-1(F|x", kys, t) + ¢) }dE[F|(t)
+ Z{m(%VT—l(len kyy, 2:) + ¢) — min(zs, V-1 (FIx® ky, ) + ¢}
i=1

+k a'H'b {mln(z')VT—l(le » ky1, Vl) + c) xmn(z.,Vr._ (len’ kys, W) + c)}

" k) (v1 - v2)

IA

(1- %ﬂ)(!h - ¢2) + On+k (m
= (n-wn)
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 to the empirical distribution, and E[F] dominates E[G) by ordinary second-order stochastic
domsinance. Then
() V(F) 2 V(G);
(%) after any history the optimal reservation price under F 1is greater than that
under G.

Christensen (1983) generalizes a result in Rothschild (1974) to show that if F and G
are Dirichlet processes F € D(a), G € D(8), o(R) = A(R) and E[F) dominates E[G] by
second-order stochastic dominance, then V(F) > V(G). Thus Theorem 7is a generalization
of these results.

Finally, we state the following lemma, the proof of which is easy.

Lemma 12 Let F be a random probability distribution on Ry. If ey 2 3 then V(F,c1) 2
V(F s c;).

5 Concluding Remarks

We examine the sequential search model under learning. We adopt a non-parametric
approach in the sense that we do not assume that the true underlying distribution belongs
to any finite dimensional parametric family. Sufficient conditions are obtained under which
the optimal policy, for search with and without recall, has the reservation property. These
conditions do not place any restrictions on the space of permissible prior or posterior
distributions but imply that learning is “local”

For search with recall it is shown that under local learning the optimal policy is myopic
and has the reservation property. The sequence of reservation prices is increasing and can
be computed before beginning search. The local learning assumption is satisfied by well-
known classes of random distributions with large support in the space of distributions on
(R4, B) (eg., Dirichlet processes and neutral-to-the-right random distributions.)

It appears that the sufficient conditions for obtaining optimal reservation policies are
stronger for search without recall than for search with recall. It is shown that if the posterior
distribution is a convex combination of the (expected) prior distribution and the empirical
distribution, then for search without recall a (history dependent) reservation rule is optimal.
Since the Dirichlet process satisfies this condition our result generalizes Rothschild (1974)
and Christensen (1983). Also, comparative static results with respect to first-order and
second-order stochastic dominance for random distributions are provided.!*
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Appendix I
The Dirichlet Process

The Dirichlet process is analyzed in Ferguson (1973). In this appendix results of Fergu-
son (1973) that are relevant for our paper are summarized. Ferguson (1974) is an excellent
survey of distributions on distributions.

Let S = {(y1,¥2,-->¥m) : % 2 O, 2T % = 1} be the (m — 1)-dimensional simplex.
Suppose that (Y1,Y3, ..., Ym) has Dirichlet distribution with parameter (a3, a3, ...,am), @ >
0 and 1. a; > 0. Then the density of ("1,Y3,...,Ym) is

Moy + a3+ ...+ am) T (ax-1)

d(y1, ¥3, - Ym|a1, Q34 ..y = N s(y1, 935009
(1, 92, - Ymlar1, @3, ..., ) T(a).T(om) l:Iv,. 51,92, 1 ¥m)

where T'(-) denotes the gamma function and 1s (y1,¥2,--- Ym) represents the indicator

function of the simplex S. If (Y1,Y3,...,Y;n) has Dirichlet distribution with parameter
(a1, @2, ..., tm), then the marginal distribution of Y; is beta with parameters (o, 2, @;)-

The Dirichlet process is a generalization of the Dirichlet distribution to a stochastic process.

Definition 4 Let a(-) be a finite non-null measure on (R4, B) and let P(-) be a stochastic
process indezed by elements of B. P is a Dirichlet process with parameter a if for every
finite measurable partition {I1, Iz, ..., Im} of R+, the random vector (P(11), P(I3), ..., P(Im))
has a Dirichlet distribution with parameter (a(lh), a(l3), -..,a(Im))-

When the parameter of the Dirichlet process a has finite support, {y1,¥2,.-,Ym}, we
obtain a Dirichlet distribution. This is the case considered by Rothschild (1974), where it is
assumed that the price can take one of m values, y1, y2, ..., Ym. The prior distribution of the
prices is multinomial with parameters a({y1}), a({ya}), - a({ym}). After observing a price
y;, the posterior distribution is multinomial with parameters a({y1}), a({y2}),-...a({y;})+
1,...,a({ym}). This follows from the rule for updating a Dirichlet process specified below
in Fact 1.

Let F be the random distribution function corresponding to P. We write P € D(a) (or
F € D(a)) if P is a Dirichlet process with parameter a. Since the one-dimensional marginal
distributions of the Dirichlet are beta, if P € D(a) then for every B € B, P(B) has a beta
distribution with parameters (a(B),a(R;) — a(B)). Also F(t) has a beta distribution with
parameters (a(t),a(Ry) — a(t)), where a(t) = a([0,t]), for all t € Ry. Thus

E[F(t) = a(t)/«(R4) (39)
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Appendix I1
Neutral Random Probability

In this appendix we give the main properties of neutral to the right random probabilities.
This is a large class of distributions which includes the Dirichlet process. Our interest
in them follows from the fact that random probability distributions in this class satisfy
Assumptions 1 and 2 of Section 3.1. The concept of neutrality to the right was introduced
by Doksum (1974). Here we summarize results from that paper and from Ferguson (1974).
In Appendix III we show that neutral to the right distributions satisfy the assumptions
made in Section 3.1.

Definition 5 F, P and P are said to be neutral to the right if for every k > 1 and t; <
ta < ... < t; there ezist independent random variables V1,V3,...,V; such that (1 - F(t),1-
F(ts),...,1 — F(t})) has the same distribution as (V1,iVa,..., T{VA).

The definition implies that (1 — F(t;))/(1 — F(t-1)) has the same distribution as V;.
Thus F is neutral to the right means that

1= F(t1),(1 - F(t2))/(1 = F(t1)), ... (1 = F(ta))/(1 = F(te-1))

are independent for all 0 < ¢; < t3 < ... < {3 < co. Because of the possibility of dividing
by zero, Definiton 5 is preferred. Neutral to the right distribution functions are completely
characterized as follows.

Fact 3 [Doksum (1974)] A random distribution function, F, is neutral to the right if and
only if it has the same probability distribution as

1 - exp[-Yy]

for some a.s. nondecreasing, a.s. right-continuous, independent increment stochastic pro-
cess Y with limg.oY; =0 a.0. and limy_.o0 Y: = 00 a.s.

It is easy to see why Fact 3 is true. If F is neutral to the right then Y; = —log(1 - F(t))
is as in Fact 3. And if Y; is as in Fact 3, then F(t) = 1 — exp[~Y;] is neutral to the right,
since (1 — F(t;))/(1 = F(ti-1)) = exp[~(Y: — Yi-1)]. A Dirichlet process is neutral to the
right.1® Therefore, Fact 4 follows from Fact 2.

Fact 4 [Ferguson (1978), Doksum (1974)] There exists a random probability on (7,4)
which is neutral to the right and has support 7.
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where ¢; is a normalizing constant. If z is a prior fixed discontinuity, that is z = t; for
some k, then the posterior density of the jump at z =, is

91, (8]z = ta) = ca(1 — exp™*)ge, (9) (47)

If z is not a prior fixed discontinuity then it becomes one in the posterior distribution of Y;.
For the general case the expression for the posterior density of the jump at z is complicated,
but it can be simplified if we make the following assumption:

Ni(z) = ()N (2) (48)

where N(z) is a measure such that f§° ;2;dN(z) < co and 7(t) is a nondecreasing, contin-
uous function with 4(0) = 0, lim¢—c0 7(t) = co. If (48) holds then the distribution of the
jump at z is given by

_ J3(1—exp~*)dN(2)
Galele) = fo T exp )N () (“9)

Note that g;(s|z) is independent of z. In Appendix III, we do not require the posterior
density of the jump at z. Therefore, we will not assume (48).

From (45) and (46) it is clear that the distribution of increments Y; — Yi—¢fort <z
and ¢ > O are changed by multiplying the density by exp~* and renormalizing, while the
distribution of increments Y;, — Y; for t > z and € > 0 remain unchanged. Consequently,

F(t+¢)— F(t) _ Flz(t+¢) - Flz(t)
1-F(t) 1 - F|z(t)
where F|z is the random posterior distribution given X = z. Also, (45) and (46) imply
that

as., Vi>z

F|z(t) = F|y(t), a.s. Vt < min(z,y) (50)

This property is similar to Assumption 2 of Section 3.1.
The following is an example of a neutral to the right random probability distribution.

Example 7 In this ezample, the independent sncrements process Y;: corresponding to the
prior distribution, F, is @ Poisson process with perameter A. Since the distribution of Yy 18
Poisson with parameter At, the moment genersting function of Y ts

My, (u) = Eexp*™ = exp[At(exp® 1)
and sts Lévy formula is

log Eexp*!* = /; “(exp"' ~1)dNy(2)
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random variables F(t,), m’ﬁ%‘)&ﬂl,m, E-Qg-(_‘-%(m are independent. Thus F is neutral

to the left if and only if it has the same probability distribution as exp[Y;] for some a.s.
nondecreasing, a.s. right-continuous, independent increment stochastic process Y; with
lim¢—oY: = —00 a.s. and lim¢_,oo Y =0 a.s.

Fact 6 [Doksum (1974)] The Dirichlet process is both neutral to the left and neutral to the
right.

Let F be a neutral to the right distribution and ¥; = Z¢ + 3_; Sj1}s;,00)(t) the cor-
responding independent increment process. Let M r(u) represent the moment generating
function of a random variable R, i.e.,

Mg(u) = Efexp"®] (54)

Then
E[F)(t) =1- Elexp{-Y:}]
=1 - Elexp{~2Z: - T¢;<: Si}] (55)
=1- Mz, (1)< Ms;(-1)
If F*, i = 1,2 are two neutral to the right distributions, then from (55) it follows that
E[F'|(t) < E[F*|(t) iff log Mz (-1)+ > log Ms’;(—l) > log Mz3(-1)+ > log Msf(—l)

t,‘.st t,’._<_t
(56)

We shall use these results in Appendix III.
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Lemma 14 Suppose that F is neutral to the right with support [0, K], K < oo, and that
its independent increments process, Z;, has no prior fized points of discontinuity. Then

a K's

Jim E[F|K,K,.. ,K](t)=0, Vt<K

n K's
Proof: Define F*(t) = E[F| K, K, ..., K|(t)]. Since F(t) =1~ exp~%* and Z; has no prior
fixed points of discontinuity, the Lévy formula for Z;, as specified in (44) is

log Mz,(u) = /ooo(exp"' —1)dN(z)

Let Z* be the independent increments process corresponding to F"(t). From the posterior
distribution specified in Appendix II it is clear that Z* has no fixed discontinuities for
t < K and that .

log Mzn(-1) = /0 (exp™* —1) exp~"* dNy(2) (59)

Since lim,(exp™* —1)exp™* = 0, and 0 2 (exp™* —1)exp™™* > —1, the dominated con-
vergence theorem implies that log Mz»(—1) — 0 as n — oo. Therefore, (55) implies that
lim, F*(t)=0, Vi< K. 1

We end the appendix by computing the optimal stopping rule for search with recall for
the neutral to the right distribution of Example 7 of Appendix II.

Example 8 Consider a neutral to the right random distribution, F(t), generated by a Pots-
son process Y; with rate A. That is, F(t)=1- exp(~Y:). The Lévy formula of Y; is

o0
log Eexp*Yt = / (exp™* —1)dN¢(2)
0
where the Lévy measure Ny(z) = tN(z) with

N(z) =0, ifz<1
) = A, fz21

Thus the moment generating function of Y; s
My,(u) = Eexp*?* = exp[At(exp" -1)]

and
E[F)(t)=1- My(-1)=1- exp[-At(1 - exp™ )]
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Footnotes

1 See Lippman and McCall (1976, 1981), McMillan and Rothschild (1989), Mortensen (1986),
Sargent (1987), and Stokey, Lucas and Prescott (1989), and references cited therein.

2 When the distribution is not known, the probability mass assigned to any interval [—co, z)
is a random variable.

3 The Dirichlet process was first studied by Ferguson (1973). It is often used for deriving
Bayesian decision rules in a variety of nonparametric problems. We provide a summary of
its properties in Appendix I.

4 Burdett and Vishwanath (1988) show that in a job search model with learning, under
certain conditions, if the optimal strategy has the reservation property then the reservation
wages are declining.

5 Neutral to the right distributions are analyzed in Doksum (1974). We provide an intro-
duction to such processes in Appendix II.

6 It is assumed that z;, 3, ..., Z» are in the support of E[F| and E[G].

7 See Bikhchandani, Segal, and Sharma (1989) for necessary and sufficient conditions for
first-order stochastic dominance under Bayesian learning.

8 This differs from the definition of the reservation property in Kohn and Shavell (1974)
where the reservation price function in any stage n may depend on (z1, 22, ey T )

9 Clearly if F satisfies Assumptions 1 and 2, then so does Fly for all y.

10 It is too much to ask that every optimal stopping rule be a reservation price rule. Suppose
that when searching from some known distribution, it is always optimal to stop if and only
if the price observed is less than 10. Then, as long as the probability of observing 5 is zero
(that is, the distribution does not have an atom at 5), then the rule which stops if and only
if the price observed is less than 10 but not equal to 5, is also optimal.





