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ABSTRACT

This is the third of a three volume sequence as follows:
Vol. I - Design, Construction, Instrumentation and Loading; Vol. II -
Reduction, Analysis and Interpretation of Results; and Vol. III - De-
tailed Tables of Experimental and Analytical Results. In the present
volume detailed tables of experimental and analytical results obtained
in testing a large scale, horizontally curved, two span, four cell,
reinforced concrete box girder bridge model are presented. Results in
terms of reactions, deflections, strains and moments are given. The
responses of the bridge to point loads, conditioning Toads and truck
Toadings all at working stress levels are tabulated. In addition, tabu-
lated results are given for conditioning loads at overstress levels and

for point loads after conditioning overloads.

KEYWORDS

Curved box girder bridge; continuous box girder; reinforced concrete
model; large scale model; experimental results; theoretical results;

reactions, deflections; strains; moments; live loads; overloads,
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1. INTRODUCTION

1.1 Objective
The present volume is the third of a three volume sequence on
the "Structural Behavior of a Curved Two Span Reinforced Concrete Box

Girder Bridge Model". The material included in each volume is as follows:

Vol. I - Design, Construction, Instrumentation and Loading.
Vol. II - Reduction, Analysis and Interpretation of Results.

Vol. III - Detailed Tables of Experimental and Analytical Results.

These volumes deal with the complete experimental and analyti-
cal study of a 1:2.82 scale box girder bridge model (Fig. 1.1) built and
tested in the Structural Engineering Materials Laboratory (S.E.M.L.) of
the University of California, Berkeley. The model was 72 ft. long along
the longitudinal centerline, 12 ft. wide and 1 ft. 8 9/16 in. in depth.

It had a radius of curvature in the horizontal plane of 100 ft.

Bridge model dimensions; location and amounts of reinforcing steel; in-
strumentation and loading used for the model have been described in de-
tail in Vol. I. 1In Vol. II, the methods of analysis and computer programs
used in obtaining theoretical results and in reducing experimental data
are described; experimental and theoretical results are compared and dis-
cussed in detail; and conclusions and recommendations for implementation
are presented. For easy reference in the present volume, Figs. 1.2 and
1.3 depict the general dimensions of the model and the designation of
transverse sections and longitudinal girder Tines which are of pertinent

interest.



7300N 390149 ¥3Iay¥ID X089 A3AYNI NO 1S3L AVOT WNI4 T'T ‘Dl




SANIT ¥3QYI19D TVYNIGNLIONOT GNYV SNOILIIS ISHIASNVYL 40
SNOILYJ0T HLIM T300N 390148 43QYI9 X089 40 SNOISN3WIO Z'T “9Id

2/1€-01=.84.9-2 1V S30VdS b

SN ol __Jw
001=Y IQvy 43ayd / °

\ NVd

|
| |
o T

WOvHHdVIQ
NVdSAIW ON, '

NVdSaIN

_ g 4O 1S3IM
I | X
20 2 m__ a0
ao A op  NOUVAINI gy X vo 3
— T
. ! _ ' SNOISN3WIQ
T & —1— & —1— 8 S—T— 86— & —— 6 3INITYILNID
%&vﬁ? _ _ _- DN ISDONIINDNLNINN
. H _ W
§17139 Qvoi s | 9NIL004- \_c . =tV $7132 avolg  S7130 QYOS
NANT00 ——~ || _——SWOVHHAVIQ—_ _ { |
: el I .
_ T 1 ! L oves-|
S pl—] T - __m-_v_|v_
| _ | _
a O z 8 v M

I NVvdS I NvdS




1300/ 390149 ¥3QuI9 X08 40 NOILI3S TVIIHAL €71 "9l

| nlv___
| T | __ ]
Hi H]
I il
1 | L
[l 1
] 1l
K X
9NILOO4 DS 9-,t — “ _ “ “ 8-l
L i | o0
MM | | A | nY Ty
L T 1
I X
11 I
(| (mam]
b/l w-u 001 =¥ sniavy “
HLHON | i/l _ | . zzDJo%.o_z:om HLNOS
dAl |
Y 91/6 8 L91/€1'2 _ ¥3aYI19
: _ . M | | 8/G ¢
| | | |
N 1 1 |
sl © r__g . ® & 0
/10l 2/1/€-01 = ,8/L9-2 10 ¢ /0
— ,0-21




1.2 Scope of Volume III

The present volume contains the detailed tables of experimen-
tal and analytical results, many of which have been utilized in Volume II
in comparing and interpreting results under various loadings. The tables
form a permanent and complete record of the basic results obtained dur-
ing the research investigation. The responses of the bridge in terms of

reactions, deflections, strains and moments are given.

In order that the tables may be easily interpreted and under-
stood within the present volume by itself, Chapter 2 gives a description
of the contents of the tables and the loadings considered in each case.

A compact summary of the tables is presented in Section 2.6 for easy ref-

erence.



2. DESCRIPTION OF TABLES

2.1 Generéf Remarks

The experimental results presented in the tables have been ob-
tained by using a specially developed set of computer programs described
in Chapter 3 of Volume II to convert the raw eXperimenta] data to the
desired resu]ts; The theoretical results presented in the tables in all
cases have been obtained by using a finite element computer program,
CELL, to analyze the bridge as an uncracked homogeneous structure. De-

tails of the analysis by CELL are given in Chapter 2 of Volume II.

In most cases the theoretical and experimental results present-
ed in the tables have been normalized for purposes of comparison to loads
of 100 kips per span. The only exceptions to this are the tables for
truck loadings and construction vehicle loadings, in all of which, actual
values rather than normalized values are given for the results. In most
of the tables computations have been carried out and tabulated with a
maximum of three significant figures. It should be recognized, however,

that in some cases the number of significant figures should be even less.

For each loading case, described in the succeeding sections of
this chapter, a set of 10 tables (A, B, C, D, E, F, G, H, I, J,) are
given in the Appendix. A brief description of the contents of each of

these tables is given below.

A. Summary of Reactions

The individual reactions at each support point at the east (E),

center (F), and west (W) supports is given. Applied Toads at Section X



(PX), Section Y (PY) and total 1qad (SUMP) are indicated. These may be
compared with total reactions at the east (RE), center (RF), and west
(RW) supports (obtained by summing individual reactions) as well as the
overall total reaction (SUMR). The ratio (SUMR/SUMP) gives a measure of

the vertical static check.

In addition to the vertical reactions, the torsional moment
reactions at the two end supports (TE and TW) and the longitudinal and
torsional moment reactions under the center footing (MF and TF) are tabu-
lated. Experimental values of these quantities are computed from the
statical contributions of the individually measured vertical reactions.
Theoretical values of TE and TW are computed in a similar manner, how-
ever, the total reactions under the center footing (RF, MF, TF,) are out-
put by the CELL program directly. These latter theoretical quantities
are then used to calculate the four statically equivalent individual
theoretical reactions under the center footing; Also, the total actual
experimental load applied at Section X (ACTUAL PX) and at Section Y
(ACTUAL PY) is given in this table as well as all other tables.

B. Summary of Deflections

Deflections under each girder web are presented for midspan
Sections X and Y and quarterspan Sections QB and QC near the center bent,
and at Section Z for girders 1, 2, 4 and 5. The ratio of experimental
to theoretical deflections (E/T) gives a measure of the effect of crack-
ing in the actual structure which is not taken into account in the theo-

retical analysis by CELL.

C. Summary of Strains at SectidnvA




D. Summary of Strains at Section B

E. Summary of Strains at Section C

F. Summary of Strains at Section D

Theoretical strains are computed as described in Section 2.8 of
Volume II. Measured experimental strains are values obtained directly
from the test. Adjusted experimental strains are computed as described
in Section 3.5 of Volume II. Normalized and actual values of the applied
Toads at Sections X and Y (PX and PY), are shown at the bottom of the
page. Thus actual strains, if desired, can be obtained by multiplying
the normalized strain values tabulated, by the ratio of actual P divided

by normalized P.

G. Distribution of Moments to Each Girder (Moments about Compression

Flange Mid-depth)

H. Distribution of Moments to Each Girder (Moments about Tension Flange

Steel)

I. Distribution of Moments to Each Girder (Moments about Gross Section

Neutral Axis)

J. Distribution of Moments to Each Girder (Moments about Girder Experi-

mental Neutral Axis)

In each of these tables, the internal moments taken by each of
the five girders and the total internal moment equal to the sum of these
is tabulated for sections A, B, C, and D. Computation of these moments
and the percentages of total moment at a section taken by each girder are

automatically calculated by the computer program CELL for theoretical



values and by MOMENT for experimental values (see Sections 3.6 and 3.9
of Volume II for details).

The actual box girder bridge is first divided into five indi-
vidual girders consisting of a web and top and bottom flanges. The
flanges for the interior girders are taken equal in width to the distance
between the midpoint of the cells on adjacent sides of the web. For the
exterior girders, on the exterior side of the web the top flange consists
of the cantiliver overhang and no bottom flange exists on the exterior
side of the web.

The girder moment at any section taken by an individual girder
is found by integrating the internal longitudinal stresses over the pro-
per slab and web areas to obtain forces and then multiplying these forces
by their respective lever arms to the defined horizontal reference axis.
As discussed in Section 3.9 of Volume II, it was observed in reducing
the experimental data for the various load cases, that the Tongitudinal
compressive and tensile forces at a section as obtained from the MOMENT
program did not balance as statics would require. This indicated that
the moduli of elasticity of the concrete and steel used in converting
strains to stresses and thence to forces were not representative of the
true stiffnesses needed for these conversions.

In order to see if the experimental data was consistent, the
unmodified internal forces at Sections A, B, C, and D were calculated
from the internal strains and the control specimen moduli of elasticity
given for the concrete and steel in Tables 6.4 and 6.6 of Volume I res-
pectively. These experimental forces in the tension and compression
flanges are given in Cols. (3) to (10) of Tables 2.1, 2.2 and 2.3 for all

conditioning loads and for point load cases 1X, 1Y, 1X + 1Y, 3X, 3Y,
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3X + 3Y, 5X, 5Y, 5X + 5Y applied after the 24, 30, 40, 50 and 60 ksi
conditioning loads. Al11 values have been normalized to a 100 kip load
in the loaded span. A study of these values indicates a general consis-
tency of the experimental data for all load cases and load levels. It
can be seen that at Sections A and D, the compression force is consis-
tently higher than the tension force, while at Sections B and C the two
forces are much closer. It can also be observed that there is a general
increase in the magnitude of the forces at or after increasing
conditioning load levels. The differences described above can be attri-
buted to the participation of the concrete between cracks carrying some
of the tensile force as well as the steel and the changing position of
the neutral axis and moment lever arm under different loadings. See
Section 3.9 of Volume II for further discussion of these reasons.
Because of the difference in the experimental tensile and com-
pressive forces at a Section, it was decided to modify these forces to
ensure as much as possible that equilibrium was satisfied at the instru-
mented Sections A, B, C and D. Using the measured reactions and the
applied loads and their respective lever arms, an experimental external
gross moment at Section A, B, C and D was computed for each load case.
Taking the internal moment arm equal to 1.539 ft., the distance between
the top and bottom flanges, an equilibrating force (tension equal to
compression) was computed by dividing this external moment by 1.539 ft.
Results of these calculations for all Toad cases are given in Cols. (11)
to (14) of Tables 2.1, 2.2 and 2.3. Consistency of these experimental
results for any load case is a measure of the consistency of the experi-
mental reactions at or after successively higher conditioning Toad Tev-

els. A study of this indicates a greater consistency for these values,
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Cols. (11) to (14), than for the internal forces, Cols. (3) to (10). It
should be noted here that the external negative moments at Sections B and
C are much more sensitive to small changes in the end reactions than are
the external positive moments at Sections A and D.

Using the values given in Tables 2.1, 2.2 and 2.3 a set of
"modification factors" was computed by dividing the section forces found
from the external moment, Cols. (11) to (14), by the internal section
forces found from the strains, Cols. (3) to (10). The results of these
calculations are summarized in Tables 2.4, 2.5 and 2.6. Ideally these
factors for the tensile or the compressive forces at a particular sec-
tion for all load cases and load Tevels would be the same if the effect-
ive stiffness for converting the strains to stresses and thence to forces
was a constant for each section force. After studying these results, it
was decided that for the 24, 30, 40, 50 and 60 ksi conditioning loads,
the modification factors shown for each case would be used to modify the
experimental internal forces at the sections indicated, thus satisfying
equilibrium for these load cases. For all other load cases, with excep-
tion of dead Toad, which is treated separately in Chapter 4 of Vol. II,
the modification factors obtained from the 30 ksi conditioning load were
used. These other load cases (totalling to 134 cases) which hawe been
described in Table 5.1 of Vol. I, included the point load combinations,
designed to produce 24 to 30 ksi total stresses in the reinforcement,
which were applied after each conditioning load, as well as the truck
Toad combinations and the moving fork 1ift loads applied after the 30 ksi
conditioning load. A1l results for experimental internal forces and mo-
ments at a section presented in Table G, H, I and J of this Volume have

therefore been modified by these factors. However, the experimental re-
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actions, deflections, and strains presented in Tables A to F, of course,
remain unchanged.

Since a common set of modification factors was used for a
large number of cases, perfect equilibrium could not be expected for all
these cases. By comparing the modification factors for various load cases
in Tables 2.4, 2.5 and 2.6 with the 30 ksi conditioning load factors,
the degree to which equilibrium is satisfied can be ascertained. In gen-
eral, agreement in the loaded span is better than in the unloaded span
for point load cases. For the latter, this is due to the fact that at
the midspan sections the force reverses sign, indicating for example a
closing of the crack in a previous tension zone. These effects can pro-
duce changes in the effective stiffness. The modification factor pro-
cedure adopted was a compromise, which it was felt gave a more realistic
set of effective stiffnesses to be used in converting strains to inter-
nal section forces. |

For the experimenta] results, four different horizontal refer-
ence axes were considered in calculating moments at a section, These re-
sults are given in Tables G, H, I and J. An axis at the compression
flange mid-depth (G) puts a greater weight on the experimental stresses
measured in the tension steel while an axis at the tension flange steel
(H) does just the opposite and emphasizes the experimental stresses mea-
sured in the concrete. Axes at the gross-section neutral axis (I) and
the individual girder experimental neutral axes (J) tend to weight both
the measured steel and concrete stresses more equally. If no experimen-
tal discrepancies existed, values for all four reference axes should be
relatively close. The differences would be due to the fact that each

individual girder could have an axial force existing, thus giving dif-
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ferent values for the girder moment depending upon the axis about which
moments are calculated. The total internal moment at the section should
remain unchanged, however, since the total axial force on the section,
which is equal to the sum of the individual girder axial forces, should
be zero.

For the theoretical values, the tabulated moments in all cases
(G, H, I, J) were obtained from CELL using the entire gross section neu-
tral axis. Also in Volume II, all of the experimental and theoretical
values used for purposes of comparison and discussion are taken from

tables using this reference axis.

2.2 Point Loads on Girder Webs at Midspan (Working Stress)

As described in Volume I the loading program was divided into
several phases in which initial conditioning loads were applied to create
total maximum tensile stresses in the reinforcement of 24, 30, 40, 50 and
60 ksi. Each of these initial conditioning loads was then followed by a
detailed sequence of point loads on the bridge.

One of the prime objectives of the test program was to deter-
mine the bridge response at working stress levels. The loading phase
involving the initial application of conditioning loads to produce a
maximum tensile stress of 30 ksi was chosen to be representative of res-
ponse at working stress from the point of view of assessing actual box
girder bridge behavior for design purposes. An advantage of using the
30 ksi stress level instead of the 24 ksi stress level was that 50%
higher values of live load stresses could be registered for a total in-
crease in the bridge model tensile stresses of only 6 ksi. All subse-

quent point loads in this phase, however, were chosen to produce maxi-
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mum stresses, where applied, of the order of the working stresses,

i.e. 24 to 30 ksi total maximum tensile stress in the reinforcement.

Because the 30 ksi stress level was chosen to be representative
of the box girder bridge behavior for design purposes, a total of 19 point
Toad combinations, 10 basic plus 9 additional point load combinations,
were applied after the 30 ksi conditioning loads. However, only the 10
basic point load combinations were used after each of the 24, 40, 50 and
60 ksi conditioning loads. The 10 basic and 9 additional point load
combinations are summarized for easy reference in Fig. 2.1.

As described in detail in Volume I, most of the experimental
program was carried out for the bridge model with what will hereafter
be termed normal support restraints. These consisted of simply support-
ed end abutments and the center bent geing supported by a single central
column as shown in Figs. 1.1 and 1.2. However, in order to investigate
the effect of torsional restraint at the center bent and longitudinal
restraint at the two end diaphragms, the 10 basic point load cases were
repeated for the 30 ksi working stress phase for each of these two sup-
port conditions.

Torsional restraint at the center bent was provided by adding
vertical supports under girders 1 and 5 at center Section Z. Longitudi-
nal restraint at the end diaphragms was prdyided by adding three hori-
zontal reaction supports at each end in line with girders 1, 3, 5. De-
tails of these support conditions are given in Figs. 5.2 and 5.3 of Vol-
ume I.

Detailed tabulations of theoretical and experimental results

related to reactions, deflections, strains and moments for each of the
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19 point load combinations with normal support restraints are given in
Tables 1 to 7 inclusive on the Appendix. A1l theoretical and experimen-
tal values have been normalized for purposes of comparison to loads of
100 kips per span.

Detailed tabulations of only experimental results for point
Toad cases for the torsional and Tongitudinal restraint cases are given
in Table 8 to 15 inclusive in the Appendix. A1l values have been nor-

malized to loads of 100 kips per span.

2.3 Truck and Construction Vehicle Loads

As described in Volume I, the model was loaded by scaled down
versions of the standard AASHO HS 20-44 truck (total load = 72 kips) and
a proposed overload construction vehicle class II (total load = 330 kips).
A1l linear dimensions were reduced by the scale factor 1:2.82 and details
of wheel positions in the model vehicles can be found in Volume I. Simi-
litude required that the loads be reduced by a factor of 1:8 to produce
the same stresses in the model as in the prototype. Thus for the model,
the total load for each truck was 9.0 kips and for each construction ve-
hicle was 41.25 kips. Using these loads, a study could be made of the
bridge response due to actual design truck live loads placed at various
positions on the bridge.

Fig. 2.2 shows the positions and directions of the truck and
construction vehicle Toads on the bridge. As described in Volume I, a
total of 11 combinations of two lane truck loadings, 3 combinations of
three lane truck Toadings, and 8 combinations of construction vehicle
lToading were used. Because each vehicle had six wheels and the front

wheels had smaller loads than the rear wheels, exact symmetry of loading
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(c) CONSTRUCTION VEHICLE LOADING (EACH TRUCK= 41.25 KIPS NOMINAL)

FIG. 2.2 POSITIONS AND DIRECTIONS OF TRUCK (3.0K) AND CONSTRUCTION
VEHICLE (41.25K) LOADS ON THE BRIDGE
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about the bridge longitudinal and transverse centerlines was not main-
tained, Fig. 2.2.

Detailed tabulations of all experimental results and some the-
oretical results related to reactions, deflections, strains and moments

for these loadings are given in Tables 16 to 23 inclusive in the Appendix.

2.4 Conditioning Loads

As described in Volume I each loading phase was begun by ap-
plying initial conditioning loads to create a total maximum nominal ten-
sile stress in the steel reinforcement of 24, 30, 40, 50 and 60 ksi.
Each of these was then followed by a detailed sequence of 19 or 10 point
lToad combinations having magnitudes chosen to produce total maximum
stresses of the order of 24 to 30 ksi in the reinforcement.

Conditioning loads were obtained by applying equal loads over
each of the five girders at both midspan Sections X and Y. Detailed
tabulations of theoretical and experimental results related to reactions,
deflections, strains and moments for each of the conditioning loads to
bring the stress Tevel up to 24, 30, 40, 50 and 60 ksi are given in Ta-
bles 24 and 25 in the Appendix. A1l theoretical values have been nor-

malized for purposes of comparison to total loads of 100 kips per span.

2.5 Point Loads After Conditioning Overloads

Detailed tabulations of theoretical and experimental results
related to reactions, deflections, strains and moments are given in Ta-
bles 30 to 41 for working stress nominal point loads of 19.3 kips de-
signed to give a total maximum stress of 30 ksi in the reinforcement in
each case, subsequent to the application of the conditioning overloads

which brought the maximum stress Tevel to 40, 50 and 60 ksi. A1l theo-
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retical and experimental values have been normalized for purposes of
comparison to total loads of 100 kips per span. For completeness, re-
actions, deflections, strains and moments are also given in Tables 26 to
29 for normalized nominal point Toads of 12.7 kips applied after the

24 ksi conditioning Toad.

2.6 Summary of Tables

As a convenient reference, a compact summary of all the tables
included in the Appendix is given in Tables 2.7, 2.8 and 2.9 which follow
this section. Pages in the Appendix are numbered to correspond directly

to the Table number, i.e., 1A, 1B, 1C, etc. for easy reference.
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