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WGS of intrauterine E. coli from cows with early postpartum 
uterine infection reveals a non-uterine specific genotype and 
virulence factors
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ABSTRACT Escherichia coli has been attributed to playing a major role in a cascade of 
events that affect the prevalence and severity of uterine disease in cattle. The objectives 
of this project were to (i) define the association between the prevalence of specific 
antimicrobial resistance and virulence factor genes in E. coli with the clinical status 
related to uterine infection, (ii) identify the genetic relationship between E. coli isolates 
from cows with diarrhea, with mastitis, and with and without metritis, and (iii) deter­
mine the association between the phenotypic and genotypic antimicrobial resistance 
identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were 
obtained from a larger cross-sectional study. Cows were categorized into one of three 
clinical groups before enrollment: metritis, cows with purulent discharge, and control 
cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, 
mastitis, and metritis were included in a genome-wide association study, to evaluate 
differences between the drug classes or the virulence factor category among clinical 
groups. A distinct E. coli genotype associated with metritis could not be identified. 
Instead, a high genetic diversity among the isolates from uterine sources was present. A 
virulence factor previously associated with metritis (fimH) using PCR was not associated 
with metritis. There was moderate accuracy for whole-genome sequencing to predict 
phenotypic resistance, which varied depending on the antimicrobial tested. Findings 
from this study contradict the traditional pathotype classification and the unique 
intrauterine E. coli genotype associated with metritis in dairy cows.

IMPORTANCE Metritis is a common infectious disease in dairy cattle and the second 
most common reason for treating a cow with antimicrobials. The pathophysiology of the 
disease is complex and is not completely understood. Specific endometrial pathogenic 
Escherichia coli have been reported to be adapted to the endometrium and sometimes 
lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-
adapted isolates have not been investigated using enough genomes to represent the 
genomic diversity of this organism to identify specific virulence genes that are consis­
tently associated with disease development and severity. Results from this study provide 
key microbial ecological advances by elucidating and challenging accepted concepts 
for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the 
existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, 
which was not found in our study.

KEYWORDS whole-genome sequencing, cattle, mutation, antibiotic resistance, uterine 
infection
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M etritis is a common infectious disease in dairy cattle and the second most common 
reason for treating a cow with antibiotics (1). Metritis typically occurs within 21 

days postpartum, characterized by an enlarged uterus and fetid, watery red-brown 
uterine discharge with systemic signs of illness (2). Metritis also has an important effect 
on herd profitability (3). The cost of a metritis case in cows treated with ampicillin and 
with ceftiofur has been estimated to average $344 and $410, respectively (4). However, 
the clinical and reproductive beneficial influence of antibiotic treatment has yielded 
inconsistent results (5). The variability in treatment success may be explained in part 
by the lack of a gold standard for disease diagnosis, the self-cure rate associated with 
the disease, and the variability of including control groups that hinder the comparison 
among studies.

The pathophysiology of the disease is complex with limited studies that generate 
information to allow causal inferences about the disease (6). Part of this challenge 
includes a lack of consensus on the criteria and terminology used for clinical disease 
diagnosis in research studies, as recently demonstrated in a scoping review (ScR) (7). 
Although inconsistencies in the clinical definition of metritis exist, the aforementioned 
ScR identified that most studies defined metritis as a fetid, red-brown watery discharge 
with or without systemic signs of disease based on the work of Sheldon et al. (2).

The reproductive tract in cows harbors a diverse microbiome (8–10), and recent 
advancements in next-generation sequencing have demonstrated that the uterus has 
an established microbiome even before parturition and does not exclusively result from 
microbial exposure during calving (11–13). Several bacteria have been isolated from 
metritic cows and are suspected as causal agents of metritis, including Escherichia coli, 
Trueperella pyogenes, Fusobacterium necrophorum, and Prevotella spp. (14, 15). Descrip­
tive studies using 16S rRNA sequencing revealed a higher abundance of Bacteroides, 
Porphyromonas, and Fusobacterium species in cows with metritis when compared with 
healthy cows, while Escherichia coli bacteria were found to be more abundant in healthy 
animals (11, 16, 17). In vivo models of uterine infections have been successfully devel­
oped using pathogenic T. pyogenes alone (18), in combination with E. coli (19) or as 
a pathogenic cocktail of T. pyogenes, E. coli, and F. necrophorum (20), yet the disease 
causality has not been demonstrated with other bacterial species.

Based on current data for Escherichia coli in metritic cows, these bacteria have 
been proposed to play a major role in a cascade of events that affect the prevalence, 
severity, and persistence of uterine disease in cattle (6). Specific endometrial pathogenic 
Escherichia coli (EnPEC) have been described as adapted to the endometrium, allowing 
them to colonize this environment and develop uterine disease (21), as well as increasing 
the susceptibility of the endometrium to infection with T. pyogenes (22).

Most of the data for intrauterine E. coli from cows with metritis are either based on 
culture-based methods or using PCR, which has a limited screening to a few preselected 
known virulence genes, found specific virulence factors and antimicrobial resistance 
genes associated to uterine disease occurrence (23–26). Previous genomic comparisons 
of intrauterine E. coli from metritic cows from whole-genome sequencing (WGS) used 
low-depth sequencing from very few isolates that do not represent the genomic diversity 
of the organism (27). The high genetic diversity and genomic plasticity of E. coli are well 
recognized (28) and must be considered with examining genomic features for causality 
in disease. Therefore, genome-wide association studies including genomes from control 
animals and different infection sources and at a sufficient genome scale are required to 
identify specific adaptive traits in multi-factorial diseases in vivo.

Extended-spectrum beta-lactamase (ESBL) confers resistance to a wide range of 
beta-lactam antimicrobials, including third-generation cephalosporins, such as ceftiofur, 
the most used antimicrobial for metritis treatment. Livestock have been recognized as 
reservoirs for ESBL-producing E. coli and therefore have been assumed to represent a 
source for disseminating and spreading this important AMR genetic element to human 
populations (29, 30). Molecular approaches to characterize ESBL genes in dairy cattle 
and compare the prevalence between infectious diseases that most frequently received 
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antimicrobial treatment (1, 31) could guide future efforts for treatment success and AMR 
surveillance programs.

We hypothesized that E. coli isolated from postpartum dairy cows would have 
unique distinctive genomic characteristics, including virulence genes when compared 
with isolates from cows without metritis. To test this hypothesis three objectives were 
undertaken: (i) identify the prevalence of VF and AMR genes in E. coli isolated from 
postpartum dairy cattle from 25 commercial dairy farms in California, (ii) determine 
the specific genes associated with clinical disease via population comparative microbial 
genomics, and (iii) determine the association between the antimicrobial phenotypic 
resistance and the antimicrobial resistance genes identified on the E. coli isolated from 
postpartum cattle.

RESULTS

An isolate set from this study of 148 E. coli WGS was used for population comparisons. 
Out of the 148 genomes, 54 were retrieved from cows categorized based on the vaginal 
discharge (VD) as cows with metritis (MET), 45 from cows with purulent discharge (PUS), 
and 49 from cows with normal discharge (CTL) (Table 1). The genomes ranged from 
4,526,522 to 6,358,509 bp assembled per genome. An additional 130 genomes were 
retrieved from NCBI, but 8 were excluded due to poor quality, and 2 genomes were 
excluded due to contamination, resulting in a total of 120 additional genomes being 
included in the population analysis. The genomes ranged from 4,580,125 to 5,481,723 bp 
assembled per genome (in Tables S1 and S2).

Comparative population genomics

The pan-genome from the 148 genomes isolated in this study was examined (Fig. S1) to 
find that the pan-genome was open. From this initial result, additional public WGS were 
used to determine the population pan-genome of 268 E. coli (148 from our study and 
120 from NCBI). We found that this pan-genome was also open and contained 36,627 
orthologous genes with 2,635 core genes and 33,992 accessory genes (softcore = 440, 
shell = 2,419, and cloud = 31,133) that represented the 7.2% and 92.8%, respectively (Fig. 
1).

The population genome comparison of the genome distance among the 268 genome 
assemblies revealed two distinct groups with isolates from mastitis sources, two distinct 
groups with isolates from diarrhea sources, and a fifth distinct group with isolates from 
all clinical groups (Fig. 1C). Unexpectedly, isolates from uterine sources (metritis and no 
metritis) did not form an independent genomic cluster. These observations suggest that 
there are no specific genes in E. coli and, therefore, a specific E. coli pathotype that would 
increase an individual strain to more effectively result in infection of the uterus resulting 
in metritis in cattle.

The pan-genome analysis showed that the E. coli genomes from the uterus of cows 
with or without metritis were highly diverse and different from each other, again leaving 
the adaptation of E. coli to the uterus using genomic characterization unsupported. The 
Pan-GWAS analysis did not uncover any significant association between these genomes 
and virulence factors or antimicrobial resistance genes that allow the identification 
of specific or more virulent E. coli associated with metritis. The microbial pan-GWAS 
analysis determined several genomic features from the pan-genome associated with the 

TABLE 1 Descriptive information for 148 postpartum dairy cows from which E. coli uterine isolates were 
retrieved in California dairy farms

Variable Metritis Pus Control

n of cows 54 45 49
DIMa 8 (3–21) 10 (3–21) 9.5 (3–21)
Lactation 2 (1–10) 3 (1–6) 2 (1–6)
Farms sampled 23 21 21
aDIM: days in milk.
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clinical groups of diarrhea and mastitis (Table S3). Collectively, the genome diversity 
and pan-genome investigation did not support the theory that metritic E. coli are tissue 
adapted. With this assumption in mind, our findings do not exclude that generic E. 
coli can cause metritis in dairy cattle but instead that there is not a specific genomic 
marker associated with E. coli that was identified in cases of metritis in cattle. The 
large genomic diversity suggests that the disease complexity and progression are not 
associated with a single E. coli gene or genotype but instead with other factors, such 
as the host immune defense and uterine environmental factors or bacterial metabolic 
adaptation and physiological changes to stress response.

FIG 1 Pan-genome analyses of E. coli isolates. (A) Pie chart showing the proportion of repertoire genes in the core, soft-core, shell, and cloud of the pan-genome 

of the isolates (n = 268). (B) Pan-genome rarefaction curves showing the open pan-genome. (C) Whole-genome distance matrix depicting an all-against-all 

comparison of genome diversity for all isolates associated with disease phenotype. Disease phenotypes were labeled as number (1: mastitis, 2: diarrhea, 3: 

control metritis, and 4: metritis) (D) Gene presence-absence matrix of the gene distribution in each genome (orange: present, purple: absent), along with the 

metadata indicating the isolation source [metritis, metritis–purulent discharge (MET_PUS), control–metritis (MET_CT), mastitis, and diarrhea] and the geographic 

location (blue: United States, pink: Germany, orange: France, and yellow: Canada) of each genome.
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Virulence factors and antimicrobial resistance gene analysis

There was a significantly higher gene abundance of the categories of iron uptake (%, P 
= 0.001), fimbrial adhesins (P < 0.001), and Type II secretion system (P = 0.001) in the 
genomes from diarrhea compared with the other clinical groups and a significantly lower 
gene abundance of Type III secretion system and non-fimbrial adhesins (P = 0.001). The 
genomes from mastitis had a significantly higher gene abundance of genes encoding 
for fimbrial (P = 0.01) and non-fimbrial adhesins (P = 0.01) compared with genomes 
from cows with or without metritis (Fig. 2). A gene previously believed to be associated 
with metritis (fimH) (25, 26) was identified in every genome in our study as well as in all 
genomes from the public domain, independently of the isolation source and, therefore, 

FIG 2 Virulence factor gene abundance as per health group and virulence factor category of 268 E. coli genomes from dairy cows classified in five different 

clinical groups.
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not associated with the clinical group (Tables S4 and S5). Three different fimH alleles were 
detected, without any statistical association among the allelic variation of the gene and 
any of the health groups. There was a significantly higher gene abundance for the drug 
classes of aminoglycosides (P < 0.001), sulfonamides (P = 0.001), and tetracyclines (P = 
0.001) on the genomes from diarrhea when compared with the other clinical groups (Fig. 
3A). The complete results from the permutational multivariate ANOVA (PERMANOVA) 
analysis are shown in Table S4.

Twenty unique ESBL genes and gene variants were identified in the genomes. The 
prevalence of genomes carrying ESBL genes was 24.2% (n = 60), with a median of three 
(range: 1–5) unique genes detected in a single genome (Fig. 3B). The genomes with a 
higher abundance of ESBL genes belonged to diarrhea and metritis clinical groups. At 
the univariate analysis, diarrhea genomes had higher odds of carrying TEM-105 (OR: 6, 
CI: 3–14, P < 0.001), TEM-1B_1 (OR: 15.1, CI: 5.7–54, P < 0.001), and TEM-1 (OR: 3.5, CI: 
1.9–6.8, P < 0.001), while metritis genomes had a higher odds of carrying CTX-M-124 
(OR: 18.9, CI: 2.3–623, P < 0.001) when compared with the other clinical groups. When 
comparing the 148 isolates from this study, no significant difference in the prevalence of 
antimicrobial resistance or virulence factor genes between the clinical groups and drug 
classes or virulence factor categories was observed. The genotypic profile of the 148 
E. coli genomes from postpartum cows showed the presence of 504 unique virulence 
genes and 117 antimicrobial resistance genes as per drug class and resistance mecha­
nism (Tables S5 and S6). Additionally, 116 unique serotypes were identified (Table S7). 
The most abundant resistance genes found at the drug class level were aminocoumarin 
(23.3%), followed by beta-lactams (12.3%) and fluoroquinolones (10.6%). A total of 33.8% 
of isolates were multidrug resistant. The most abundant virulence genes belong to the 
adherence class (55%), followed by the effector delivery system class (27%) (Fig. 4).

Genotype–henotype agreement

The genotype-phenotype agreement found a variable accuracy in predicting the 
phenotype of the isolates having the genetic information (Table 2). Accuracy varied 
from 0.7% to 100%, with the lowest value being for enrofloxacin and gentamicin and the 
highest accuracy value for ampicillin. For most of the drugs, the high prevalence of false 
positives led to a low specificity for detecting genes corresponding to drugs for which 
they were phenotypically susceptible based on standard antimicrobial susceptibility 
testing methods (32).

DISCUSSION

This study describes the first population-scale (n = 148) genomic comparison of E. coli 
genomes collected from postpartum dairy cows from multiple farms and generated data 

FIG 3 (A) Antimicrobial resistance gene abundance as per drug class between health groups of 268 E. coli genomes from dairy cows. (B) Prevalence of ESBL 

genes between health groups (n = 60).
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that do not support previously recognized concepts of tissue adaptation and specific 
gene virulence factors in E. coli isolated from cows with metritis having unique virulence 
factors when compared with cows without metritis. This observation aligns with that of 
other organisms that have complex disease progress such as Helicobacter pylori where 
the genotype evolves during the disease (33). Furthermore, sequencing population WGS 
revealed that the pan-genome of uterine E. coli did not differentiate among the clinical 
groups and that there was no evidence of a specific genotype associated with metritis or 
uterine isolation source; therefore, the traditional EnPEC (34) pathotype was not evident 

FIG 4 Presence or absence matrix of antimicrobial resistance genes by drug class and their corresponding health group (control: green, pus: orange, and 

metritis: purple) for 148 E. coli isolates from uterus of postpartum dairy cows.
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in the isolates from this study and it did not emerge with additional public WGS to 
increase the analytical power of the analysis. An explanation for these findings is that 
the well-recognized plasticity and genetic diversity of E. coli contribute to its ability to 
adapt to different ecological niches (28, 35, 36). A broader comparison of our metritis 
genomes to those from other metritis studies and isolated from animals with diarrhea 
and mastitis further supported the hypothesis of a non-unique genotype in the metritis 
isolates, revealing instead that multiple genotypes comprise the pathotype previously 
referred to as EnPEC (Fig. 2). Unlike other ruminant pathogens, such as Campylobacter 
jejuni which causes abortion in goats and sheep, where a single gene allele of porA 
was found to be selected over 35 years and six geographic locations to induce disease 
(37), we did not find any evidence of the selection or adaptation to the uterus. Our 
findings highlight the discriminatory power of WGS, which has been similarly used 
under other disease conditions to outline incongruencies when compared with more 
typical serotyping classification methods on genomes from avian pathogenic E. coli, as 
an example (38).

Our study found significant differences in the prevalence of virulence genes in E. 
coli from the mastitis and diarrhea groups, but not on the genomes of uterine ori­
gin. Previously conducted studies have evaluated E. coli virulence factors from ute­
rine samples on postpartum dairy cows yielding contradictory results regarding their 
association with metritis. Most of these studies have used PCR as the detection method 
limiting the results to the preselected genes to be screened. Silva et al. (39) characterized 
the genomic profiles of E. coli recovered from postpartum dairy cows; in their study, 
72 isolates from healthy (n = 35) and metritic (n = 37) cows within the first 42 days 
in milk (DIM) were screened for virulence genes using PCR, and from the 15 screened 
virulence genes, only 6 were identified in the samples and none of them were associated 
with uterine health status (39). Similarly, Sheldon et al. (34) did not find an association 
between uterine disease and 17 different virulence genes screened in 114 E. coli isolates 
recovered from cows that were up to 4 weeks postpartum; all isolates evaluated in 

TABLE 2 Comparison of phenotypic antimicrobial susceptibility testing and genome-derived resistance prediction for E. coli isolates (n = 148)

Antibiotic AMR genes Susceptible phenotype Resistant phenotype Accuracy Sensitivity Specificity

Resistant 

genotype

Susceptible 

genotype

Resistant 

genotype

Susceptible 

genotype

(TP + TN)/

total

TP/(TP + 

FN)

TN/(TN + 

FP)

FP TN TP FN

Ampicillin ampC1 (n = 143), ampC2 (n = 148), ampH (n = 148), 

CMY-111 (n = 5), CMY-2 (n = 5), CMY-59(n = 5), 

PBP2 (n = 148), PBP4B (n = 143), CTX-M-15 (n = 2), 

CTX-M-27 (n = 1), TEM-1 (n = 14), TEM-105 (n = 6), 

TEM-150 (n = 7), TEM-206 (n = 1)

0 0 148 0 1.00 1.00 0

Ceftiofur ampC1 (n = 143), ampC2 (n = 148), ampH (n = 148), 

CTX-M-15 (n = 2), CTX-M-27 (n = 1), CTX-M-32 (n = 

1), CTX-M-55 (n = 2), CTX-M-65 (n = 1), EC-13 (n = 4), 

EC-15 (n = 12), EC-18 (n = 106), EC-19 (n = 1), EC-5 

(n = 3), EC-8 (n = 7), TEM-1 (n = 14), TEM-105 (n = 6), 

TEM-150 (n = 7), TEM-206 (n = 1)

130 0 18 0 0.12 1.00 0

Gentamicin aac(3)-Iid (n = 1), aac(6′)-Iaa (n = 1), aac(6′)-Iy (n = 

1), aadA2 (n = 1), aadA5 (n = 1), ant(3′′)-Ia (n = 3), 

ant(3′′)-IIa (n = 7), aph(3′′)-Ia (n = 3), aph(3′)-Ib (n = 

21), kdpE (n = 147), acrD (n = 148)

147 0 1 0 0.007 1.00 0

Florfenicol catA1 (n = 1), catI (n = 1), cmlA1 (n = 1), floR (n = 8) 2 132 7 7 0.93 0.50 0.98

Chlortetracycline tetA (n = 22), tetB (n = 18), tetC (n = 7), tetD (n = 14), 

tetM (n = 1), tetR (n = 22)

7 97 40 4 0.92 0.90 0.93

Oxytetracycline 3 93 44 8 0.92 0.84 0.96

Enrofloxacin emrA (n = 148), emrB (n = 146), emrD (n = 148), emrE 

(n = 65), emrK (n = 143), emrR (n = 148), emrY (n = 

142), qnrS1 (n = 2)

147 0 1 0 0.007 1.00 0

Danofloxacin 141 0 7 0 0.04 1.00 0

Research Article mBio

June 2024  Volume 15  Issue 6 10.1128/mbio.01027-24 8

https://doi.org/10.1128/mbio.01027-24


their study did not possess any of the 16 examined virulence genes, and only a gene 
associated with iron uptake (fyuA) was identified in isolates from cows with uterine 
infection while the gene was not identified in any of the isolates retrieved from healthy 
cows (34). In contrast to these studies, Bicalho et al. (26) evaluated virulence factors 
from E. coli isolated from 125 dairy cows within 3 to 7 DIM using PCR; for their study, 
E. coli isolates were screened for 32 different VF, and a significant association between 
six VF (fimH, astA, cdt, kpsMIII, ibeA, and hlyA) in E. coli and metritis was observed when 
compared with culture-negative cows (26). A limitation of this study arises from the 
study design and data analysis, where the risk of specific VFs (e.g., FimH) for causing 
metritis was compared with that of cows with a negative intrauterine E. coli culture 
swab result (cows with no E. coli isolated from the sample), instead of a culture-positive 
sample (cows with E. coli without the specific VF isolated). Under these circumstances, 
the presence or not of E. coli is the only factor that can be compared when evaluating the 
risk for metritis. To evaluate the effect of specific VF, an appropriate reference group with 
an E. coli culture positive and VF negative is needed to compare an E. coli culture-positive 
VF present and the risk of metritis when comparing both groups, as has been done in our 
study.

A similar study conducted in 2012 by the same research group (25) extracted DNA 
directly from intrauterine swabs to evaluate the association between E. coli carrying only 
the virulence gene fimH and metritis using PCR. They found E. coli isolates carrying fimH 
during all sampling points through the study (1–3, 8–10, and 36–36 DIM) with a higher 
percentage during day 8, when compared with cows with PCR-negative test results for 
E. coli isolates carrying the fimH gene. The study also found an increased odds ratio (OR 
4.7, P < 0.01) for metritis in cows when E. coli carrying fimH was isolated within the 1–3 
DIM. A limitation of the Bicalho et al. study (25) was similar to the one outlined above 
for their 2010 study, where a lack of an appropriate control group (E. coli positive by PCR 
but not carrying fimH or other VF of interest) limits any conclusions for the association of 
fimH as the causative risk factor for metritis, and the result probably should be restricted 
to present or not of E. coli with positive test results as determined by PCR, with not 
conclusion alluding an association of specific VF with metritis.

A recent study by Kassé et al. (24) evaluated 371 cows within 3–20 DIM, for 40 
different virulence genes using PCR (24), and identified 32 virulence genes among the 
isolates, with two genes being associated with metritis (hra1 and kpsMTII). In contrast 
with the study by Bicalho et al. (26), the Kassé et al. (24) study found that fimH was the 
most abundant gene found (89%) in both metritis and healthy animals, and therefore, 
it was not considered a factor associated with uterine disease (24). Like the Kassé study 
(24), our study found fimH was not associated with metritis; likewise, our results go 
further evaluating 504 VF genes, without any specific VF associated with metritis.

FimH encodes an adhesive subunit protein of type 1 fimbriae responsible for 
D-mannose-sensitive adhesion, an important determinant for adhesion and subsequent 
colonization of mucosal surfaces (40–42). More than 85% of E. coli (commensal and 
pathogenic) expresses type 1 fimbriae (43–45). However, FimH has been recognized as 
an important VF for invasion of the urinary epithelium in urinary tract infections, as well 
as of intestinal epithelial in colitis (46) and IBD, and associated with adherence, invasion, 
and inflammatory response in Crohn’s disease (47). Together, our findings indicate that 
fimH is a core gene that will be found in all E. coli isolates associated with cattle, rather 
than a VF that is causal to the development of metritis in dairy cows. These observa­
tions highlight the need to use appropriate control groups and population genomics to 
understand gene distribution in highly mutable pathogens.

Multiple factors could have influenced the difference in results between the three 
studies outlined above using PCR for gene detection, including study design and 
inclusion of control groups as previously mentioned. A more in-depth evaluation of 
the inconsistency of detection for important virulence genes of bacteria such as Shiga 
toxin-producing E. coli has been addressed before (48–50). Furthermore, WGS evaluation 
provides a much more robust method with greater comprehensive and discriminatory 
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power when compared with primer-dependent methods such as PCR, which has various 
limitations that can be overcome by new sequencing technologies (51). Allele variations 
in a gene can result in a gene not being detected using PCR approaches, whereas WGS 
would not have this limitation. Because of these advantages, WGS is considered a more 
effective and reliable testing approach when compared with PCR approaches (51, 52). 
Our study represented one of the first studies using a deep-sequencing approach from 
a broad source of intrauterine E. coli to evaluate factors associated with postpartum 
metritis in dairy cattle (27, 53).

Regarding antimicrobial resistance genes, our study found that the most abundant 
genes were found to confer resistance to aminoglycosides, tetracycline, and beta-lac­
tams. Similarly, Jeamsripong et al. (54) also found the highest prevalence of resistance 
in fecal E. coli from dairy cattle was to tetracycline (27.5%), sulphonamide (22.5%), and 
aminoglycoside (20.0%). A multicentric study in Europe evaluated the genomic profile 
of 150 fecal E. coli isolates from veal calves and found that the most common AMR by 
drug class were against tetracycline (67%), aminoglycoside (61%), sulphonamide (58%), 
and beta-lactam (49%). Likewise, the most prevalent genes associated with resistance 
were tetA (56%), aph(6)-Id (43%), sul2 (40%), aadA1 (39%), and TEM-1B (30%) (55). Broad 
similarities found between our metritis genomes when compared with fecal samples 
reflect the findings also observed when comparing the abundance of antimicrobial 
resistance genes between intrauterine E. coli from our study and those from mastitis and 
diarrhea cases.

To our knowledge, only one previous study aimed to characterize the AMR genotype 
of E. coli from postpartum dairy cattle (27). This study found 71 different AMR genes in 
13 CTX-M-positive isolates and 1 non-ESBL isolate from 4 cows with metritis. However, a 
small sample size, a low threshold for gene identification (>70% similarity), and a lack of 
a control group comparing E. coli from cows without metritis limit the generalization of 
their findings. Our study overcame this limitation by including E. coli from control animals 
and not utilizing a selective media only to characterize ESBL-positive strains, therefore 
representing a broader outlook of intrauterine E. coli from dairy cows.

The emergence and dissemination of ESBL genes have become a major concern 
in public health (29, 30). Although there is a knowledge gap about the directionality 
in the dissemination of AMR bacteria and their resistant determinants between food 
animals and humans (56), ESBL represents a challenge for the successful treatment of 
infectious diseases (57, 58). Our results showed that TEM-1, TEM-105, and CTX-M-124 were 
the most abundant ESBL genes and were associated with diarrhea (TEM-1 and 105) or 
metritis (CTX-M-124). TEM-1 is one of the most widely studied ESBL genes and has been 
found in E. coli distributed globally (59). TEM enzymes represent an important concern to 
veterinary medicine, for their effect on penicillins and early-generation cephalosporins, 
which are commonly used in lactating cattle (31). CTX-M-124, a CTX-M-2 variant (60), was 
first reported in wild birds (61) and has also been described in corvids (62) and dogs 
and cats admitted to a veterinary teaching hospital (63). CTX-M enzyme family confers 
resistance to cefotaxime (64), a third-generation cephalosporin closely related to the 
primary antimicrobial use for metritis treatment (ceftiofur) (1, 65). Further research is 
needed to understand the role of this resistance gene and the implication of treatment 
success.

Our findings demonstrated a moderate overall accuracy for whole-genome 
sequencing to predict phenotypic resistance, which considerably varied depending 
on the specific antimicrobial tested. Previous studies have evaluated the correlation 
between WGS AMR genes and antimicrobial susceptibility, and the accuracy of 
predicting antimicrobial susceptibility of isolates has also reported a highly variable 
correlation dependent on the antimicrobial drug (66–69). A study evaluating the AMR 
profile of 150 fecal E. coli isolates from beef cattle reported a positive genotype and 
phenotype correlation (r ≥ 0.85; P < 0.05) of the isolates. The study also found that 
most of the discordant results came from isolates harboring genes responsible for 
aminoglycoside and sulfonamide resistance (70). Similarly, reference 54 described the 
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antimicrobial resistance profiles of 40 fecal E. coli from dairy cattle at different produc­
tion stages on a commercial farm. Results from this study found a high agreement 
(85.71%–97.50%) between the resistance phenotype and the presence of resistance 
genes. However, kappa statistics varied greatly between antimicrobials, showing a 
weak level of agreement between aminoglycoside resistance genes and streptomycin 
(39.5%) and trimethoprim and trimethoprim–sulfamethoxazole (48.9%) resistance and a 
moderate agreement for beta-lactamases ampicillin (78.7%) and tetracyclines (60.8%). 
Genotype–phenotype correlation variation among studies might be influenced by 
several factors such as small sample size, databases included for AMR gene identification, 
thresholds used for gene identity and coverage, and MIC values used for susceptibility 
classification of isolates. Results of genotypes in the current work and phenotypes in our 
previous work (32) on the same bacterial isolates allowed us to better understand the 
resistance of uterine E. coli on dairy farms.

Different factors involving the host genetics and immune response, the epithelial 
barrier disruption at calving, and the uterine microbiome warrant further research to 
better understand the pathogenesis of the disease. Changes in microbiota after calving 
and the reduced diversity have been described before in metritic cows compared with 
healthy cows (11, 16, 17). Microbiome studies have found that the dynamics of uterine 
microbiota differs between cows with metritis and control cows and have attributed 
the disease as a consequence of uterine dysbiosis (71–73). This dysbiosis favored the 
overgrowth of facultative anaerobic bacteria such as Fusobacterium spp. and E. coli, 
which could explain the higher prevalence of E. coli isolated from cows with metritis than 
from control cows or cows with purulent vaginal discharge found in the present study.

E. coli has been identified as the causal agent of metritis using culture-based 
methods, and the disease has been successfully replicated in in vivo models using E. 
coli or in combination with other bacteria such as T. pyogenes (19, 20, 74). Microbiome 
studies have found a variable association between E. coli and metritis when compared 
with control cows (72, 73). Differences in disease development among these groups may 
benefit from a better understanding of the evolution of pathogenic E. coli. The high 
genetic plasticity along with the horizontal gene transfer of pathogenicity islands favor 
the rapid adaptation of E. coli to new ecological niches (75, 76), allowing commensal 
strains to have pathogenic potential or act as genetic reservoirs for virulence factors and 
AMR genes (75). Finally, understanding the host factors relevant to the development of 
the disease such as the metabolic status of the cows at calving and the negative effect 
on their immune system, as well as the interaction of the host immune response with 
pathogenic bacteria, may help understand the differences in prevalence and disease 
severity among animals. The role of E. coli has been discussed in human diseases in 
which pathology is not completely understood yet either, like in ulcerative colitis, and 
the bacteria’s ability to cause disease depends on the host immune status, the intestinal 
microbiota, and the intestinal immune response (77). A better understanding of the 
interaction of E. coli in the uterine immune response in postpartum cows may help 
elucidate the differences in disease development when the bacteria is present.

Conclusion

An E. coli-specific genotype was not found to be associated with metritis in this study. 
This undermines the concept that E. coli are tissue adapted as was found with other dairy 
cattle E. coli-related diseases. In contrast, a high genetic diversity among the isolates 
from uterine sources (metritis, PUS, and control) is in conflict with the current classifica-
tion for uterine-specific E. coli niche adaptation theory. A virulence factor previously 
associated with E. coli in metritis (fimH) was equally prevalent between all isolation 
sources and found to be a core gene in the population pan-genome comparison 
and was not specifically associated with the development of metritis. Although three 
different fimH alleles were identified across the E. coli genomes, there was not any 
association between allele variation and metritis. ESBL genes were more abundant in 
genomes from diarrhea and metritis clinical groups. Genomes from the metritis clinical 
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group had higher odds of carrying the CTX-M-124 ESBL gene, while genomes from the 
diarrhea group had higher odds of carrying TEM-105, TEM-1B_1, and TEM-1 ESBL genes. 
Our findings generated novel data that provide significant advancement to the field, 
for redefining the traditional definition of uterine-specific E. coli and highlighting the 
need for continuous revision of previous concepts of metritis pathogenesis using new 
deep-sequencing technologies. Further research that investigates the uterine micro­
biome in cows with and without metritis, as well as the role of the host immune response 
in disease development and postpartum involution, may help better understand metritis 
pathophysiology and tailor interventions for disease diagnosis and successful treatment.

MATERIALS AND METHODS

Sampling and study design

All procedures were approved by The University of California Institutional Animal Care 
and Use Committee (no. 20620). The study was conducted between September 2018 and 
November 2019.

Bacterial isolates (n = 163) were collected as part of a larger cross-sectional study 
that collected uterine swabs from postpartum cows between 3 and 21 days in milk 
using a convenience sample of 25 commercial dairy farms from the Sacramento and 
San Joaquin Valleys in California (32). Three clinical groups were defined based on VD 
characteristics as metritis discharge: watery, reddish, or brownish, and fetid, purulent 
discharge: non-fetid purulent or mucopurulent vaginal discharge, and normal discharge: 
clear lochia, clear mucus, or no vaginal discharge (Fig. 5).

DNA extraction, library preparation, and whole-genome sequencing

Frozen bacterial stocks were used to inoculate a CHROMagar- E. coli selective plate 
(CHROMagar Microbiology, Paris, France) and were incubated aerobically at 37°C for 24 
hours. A single, well-isolated colony was subcultured in 1.5 mL of sterile Luria–Bertani 
broth (Difco; Becton, Dickinson, and Company, Sparks, MD, USA) at 37°C for 24 hours. 
Culture tubes were centrifuged at 10,000 × g for 3 min at room temperature (15°C–25°C), 
and the pellet was then resuspended in 180 µL Buffer ATL.

DNA was extracted using DNeasy Blood & Tissue (QIAGEN, Hilden, Germany), 
following the manufacturer’s instructions, and DNA concentration was measured at 
260 nm using a NanoDrop Onec Microvolume UV-VIS spectrophotometer (Thermo Fisher 
Scientific Inc., Waltham, MA, USA). Additionally, for samples with a concentration < 
50 ng/µL or A260/260 < 2.0, DNA was purified using Genomic DNA Clean & Concentra­
tor-25 (Zymo Research Corp., Irvine, CA, USA).

DNA library preparation was conducted in the laboratory of Dr. Bart Weimer (UC 
Davis). DNA was analyzed on the Agilent 2200 TapeStation System using the Genomic 
DNA ScreenTape assay for the integrity of gDNA. Libraries were constructed using the 
KAPA HyperPlus Library Preparation Kit (Roche, Indianapolis, IN, USA), as previously 
described (78, 79). Whole genome sequencing was done using the Illumina HiSeq X 
platform with PE150 (Illumina Inc., San Diego, CA, USA) (80).

Sequence assembly, annotation, and pan-genome analyses

The genome sequences were assessed for sequencing depth (>20× estimate), checked 
for quality using FastQC (v0.11.9) (81), and trimmed using Trimmomatic (v0.39) (82). 
Sequences were assembled using Shovil (v1.0.4) (83), checked for quality, size (4.5–
6.5Mbp genome), completeness (>95% estimate), and contamination (<10% estimate) 
using CheckM (84), and assessed for approximate genera and species and further identity 
test for possible contamination using Kraken (85–90). Sixteen sequences that did not 
meet quality criteria were removed from downstream analysis.

The comparative WGS analyses were extended to include 130 public genomes of 
Escherichia coli of clinical importance from cows with diarrhea (n = 50, BioProject: 
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PRJEB32666), cows with clinical mastitis (n = 50, BioProject: PRJNA612640), and cows 
with metritis (n = 30, BioProject: PRJNA298331); these genomes were combined with the 
148 E. coli from our study to examine their genome relatedness, following the same 
procedures described above. Genome distance metrics were determined using all-by-all 
whole genome comparisons using Sourmash (v3.2.3). The genome distance metric was 
calculated using genome-wide k-mer signatures, using a k-mer size of 31 with sketch 
sizes scaled to 100,000/megabase. Pairwise comparisons were visualized as an all-
against-all heatmap (91).

Core and accessory genes were annotated using Prokka (version v.1.14.6) (92). 
Pan-genome comparisons, identifying gene clusters and the core genes, were conduc­
ted using Roary (3.12.0) using 95% amino acid sequence identity (93) and visualized 
using Phandango (94) with the associated metadata. Gene associations, metadata, and 
phenotypes were associated using Scoary 1.6.12 (95). Finally, variant calling was done 
with the reference sequence E. coli ECC-1470 with Snippy (version v. 4.6.0) with default 
settings (96).

Genomic assessment of virulence factors and antibiotic resistance genes

Virulence factors and antimicrobial resistance genes were analyzed in every genome 
using ABRicate (version 1.0.0) (97). Virulence factor genes were screened against 
the virulence factor database (VFDB), and ecoli_VF. Antibiotic resistance genes were 
screened against the Comprehensive Antibiotic Resistance Database (CARD), the 
Antibiotic Resistance Gene-Annotation (ARG-ANNOT), MEGARes, ResFinder, and the 

FIG 5 Graphical summary depicting the study design and methodology used to isolate and sequence intrauterine E. coli (n = 163) from cows with and without 

metritis.
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National Database of Antibiotic-Resistant Organisms (NDARO). The AMR genes were 
classified according to resistance mechanisms and drug class using the CARD database 
and manual curation (98). The VF genes were classified according to the classification 
scheme proposed by the VFDB (99). Both AMR and VF determinants were retained for 
analysis if they fit the minimum criteria of 90% identity and coverage. Serotyping was 
done using the ECOH database (100).

Genotype–phenotype correlation for antimicrobial resistance

Genotype–phenotype correlation (GPC) analysis was performed using broth microdilu­
tion antimicrobial susceptibility test results (32) in combination with the WGS-informed 
AMR analysis. These assays were compared with the occurrence of known AMR 
genes with resistance to the respective drug. False-positive, false-negative, sensitivity, 
specificity, and accuracy of the GPC were calculated as previously described (66).

Statistical analysis

Data analysis was conducted using RStudio (version 4.1.2). Microbial pan-GWAS analysis 
to identify significant gene associations was conducted using Scoary, and P values were 
adjusted using Bonferroni correction (95). Descriptive statistics were used to examine the 
distribution of AMR and VF genes in E. coli between the clinical groups. To investigate 
differences between the drug classes or the virulence factor category among the clinical 
groups (control, pus, metritis, diarrhea, and mastitis), PERMANOVA was conducted using 
the vegan package (101). Post hoc pairwise comparisons with Bonferroni correction 
were calculated for the categories with significant differences. Univariate analyses were 
conducted to evaluate the association between the prevalence of ESBL genes and the 
clinical group. Finally, to assess the agreement between E. coli isolates having a specific 
genotype and the corresponding resistant phenotype, the accuracy, sensitivity, and 
specificity were calculated. Statistical significance was set for all tests at P ≤ 0.05.
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