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PROBING MOTION OF FAST RADIO BURST SOURCES BY TIMING STRONGLY LENSED REPEATERS

Liang Daia

School of Natural Sciences, Institute for Advanced Study

1 Einstein Drive

Princeton, NJ 08540, USA

Wenbin Lu

Department of Astronomy, The University of Texas at Austin

2515 Speedway, Stop C1400

Austin, TX 78712, USA

ABSTRACT

Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their

high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible

with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved

with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform

motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs

and their surrounding environments, constraining scenarios including orbital motion around a stellar

companion if FRBs require a compact star in a special system, and jet-medium interactions for which

the location of the emission spot may randomly vary. The high timing precision possible for FRBs

(∼ ms) compared to the typical time delays between images in galaxy lensing (& 10 days) enables the

measurement of tiny fractional changes in the delays (∼ 10−9), and hence the detection of time-delay

variations induced by relative motions between the source, the lens, and the Earth. We show that

uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from

the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source

motion. For a timing accuracy of ∼ 1 ms and a repetition rate (of detected bursts) ∼ 0.05 per day of

a single FRB source, non-uniform displacement & 0.1 − 1 AU of the emission spot perpendicular to

the line of sight is detectable if repetitions are seen over a period of hundreds of days.

Keywords: radio transient, gravitational lensing

1. INTRODUCTION

Fast radio bursts (FRBs) are bright transients discovered at ∼ GHz frequencies with millisecond durations (Lorimer

et al. 2007; Thornton et al. 2013). Their dispersion measures (DMs), which measure the free electron column density

along the line of sight toward the source DM =
∫
ne dl, exceed the contribution from the Galactic interstellar medium

(ISM) by typically an order of magnitude. If intergalactic medium (IGM) accounts for most of the DM excess, these

bursts must have travelled across cosmological distances. Recently, the astrophysical nature of these radio transients

has become one of the most intriguing mysteries in astronomy.

A major breakthrough was the serendipitous observation that one of the known bursts, FRB 121102, is sporadically

repeating (Spitler et al. 2016). Very recently, this repeater has been successfully localized to sub-arcsecond resolution

thanks to the Jansky Very Large Array and the European VLBI Network (Chatterjee et al. 2017; Marcote et al. 2017).

It was found to be in association with a dwarf star-forming host galaxy at redshift z = 0.19 (Tendulkar et al. 2017),

thus confirming its cosmological origin. FRB 121102 was the first and is to date the only FRB discovered by the

Arecibo Observatory (Spitler et al. 2014). Despite dedicated follow-up monitoring (e.g. Ravi et al. 2015; Petroff et al.

2015), none of the other known FRBs (mostly found by the Parkes telescope) has been observed to repeat. This

a NASA Einstein Fellow.
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may suggest two physically distinct classes: non-repeating scenarios invoking cataclysmic processes (e.g. Hansen &

Lyutikov (2001); Piro (2012); Totani (2013); Kashiyama et al. (2013); Falcke & Rezzolla (2014); Fuller & Ott (2015);

Zhang (2014)); repeating mechanisms in which the source can last for long (e.g. Kulkarni et al. (2014); Lyubarsky

(2014); Cordes & Wasserman (2016); Katz (2016); Dai et al. (2016); Connor et al. (2016); Lyutikov et al. (2016); Zhang

(2017); Kumar et al. (2017)). On the other hand, this may also be an observational bias due to the lower sensitivity

and the coarser localization of Parkes relative to Arecibo1. Indeed, observations so far are statistically consistent with

all FRBs being repeaters with a repetition frequency and a peak flux distribution similar to those of FRB 121102 (Lu

& Kumar 2016).

The estimation for the all-sky FRB rate above ∼ 2 Jy ms is high ∼ 103−104 day−1 (Thornton et al. 2013; Champion

et al. 2016). Since FRBs can be visible out to cosmological distances z ∼ 1, about ∼ few×10−4 of them (Hilbert et al.

2008) are expected to be gravitationally lensed by intervening galaxies (Li & Li 2014; Dai et al. 2017). In fact, the

observed strong lensing fraction should be higher than the prior probability due to magnification bias. Dominated by

lens mass scales & 1010M�, this creates image multiplets separated by arcseconds, with mutual time delays typically

on the order of weeks to months. In particular, a repeating source, if lensed, will result in a set of multiple bursts

for each repetition. With the prospect that forthcoming large-scale radio surveys, including UTMOST (Caleb et al.

2017a), HIRAX (Newburgh et al. 2016), CHIME (Bandura et al. 2014), and later on SKA1 (Macquart et al. 2015),

will have the capacity to find ∼ 102 − 104 FRBs per year, the interesting situation of a strongly lensed FRB repeater

becomes worthy of consideration.

Since survey telescopes will be efficient at detecting a large number of sources, one realistic way to find strongly

lensed events is to look up the catalog for special ones. Although typical survey telescopes are not able to spatially

resolve multiple images, it is still possible to distinguish a lensed repeater from unlensed ones. Image multiplets should

have coincidental locations on the sky up to localization error, and are expected to have similar but not identical DMs.

Depending on what frequencies to observe, lensed bursts may be significantly scatter-broadened compared to ordinary

ones, due to ISM in the lens galaxy. Furthermore, a series of image multiplets from the same source will exhibit a

fixed pattern in their mutual time delays, appearing over and over again as we detect its repetitions one after another.

Recognizing such a temporal pattern along a certain line of sight will uncover a strongly lensed repeater.

The discovery of strongly lensed repeaters should justify the use of more expensive observational resources in order

to study them in greater detail. It will then be desirable to capture more repetitions in deep VLBI observations

on sub-arcsecond angular scales, which will resolve multiple images and identify the host and the lens. Compared

to other variable sources subject to strong lensing at cosmological distances, such as supernovae (SNe) and quasars,

FRBs are unique because timing accuracy on the order of milliseconds is achievable, owing to their extremely narrow

(de-dispersed) widths. This leads to the question of what astrophysics can we potentially learn by exploiting this high

level of precision? Previously, it has been suggested that microlensing time delay can probe compact mass clumps

along the line of sight (Muñoz et al. 2016). In this work, we explore the possibility that galaxy-lensing time delays

can probe non-uniform motion of the source on ∼AU scales, and hence constrain its astrophysical nature and its

surrounding environment.

From one repetition to the next, the lensing delay time between a pair of images varies due to the motion of the

source (Yonehara 1999; Goicoechea 2002), the lens, and the observer. Velocities that are quasi-constant over the

observational time span (∼ yrs) can induce a linear drift in the delay. Those include cosmological peculiar velocities

of the host galaxy, the lens galaxy, and the Milky Way, as well as the source’s large-scale motion within its host, and

the Solar System’s motion within the Milky Way. Numerically large, those are not predictable for individual cases,

but their statistics can be used to measure cosmological parameters and structure formation (Kochanek et al. 1996).

For this work, we will account for their effects but assume they are not of main interest here.

By contrast, motions that are non-uniform over the observational timescale leave non-trivial signatures in the time

delay on top of linear drifts. The Earth’s orbital motion generates a sinusoidal perturbation . 103 s to the delay time,

whose amplitude and phase provide information to indirectly localize the source to ∼ 10′′, which may then facilitate

interferometric follow-ups. Furthermore, as we will show, if multiple images are well resolved with VLBI and the host

and lens redshifts are obtained, then the effect of the Earth’s orbital motion can be subtracted down to millisecond

accuracy. Any additional non-trivial variation in the delay time probes non-uniform source motion transverse to the

line of sight. As we will show, this method has the advantage that it does not require lens modeling.

This powerful method, if realized, will constrain the astrophysical nature of repeating FRBs. If spots of coherent

1 If FRB 121102 had a location error similar to those of the typical FRBs found by Parkes and it were to be followed up by Parkes, the
true location may fall onto the low-sensitivity gaps between beams and perhaps none of the subsequent bursts could have been detected.
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radio emission wander around across a transverse region of size & 1AU, stochastic variations will be imprinted in

the delay time. This may occur when mini-jets, produced through dissipation of magnetic energy inside a larger but

slow jet (Giannios et al. 2009), collide with clouds in the ambient medium (Romero et al. 2016). In such scenario,

radiation comes from slightly different locations from one burst to another. Non-detection of such behavior constrains

the compactness of the source system, narrowing down possible astrophysical scenarios.

Many FRB models are based on young neutron stars (NSs, see Katz 2016, for a brief review), in which case highly

beamed (Lyubarsky 2014) or near-surface radio emission (Kumar et al. 2017) is not expected to cause detectable

variations in the delay time. On the other hand, a NS with a stellar companion will imprint an effect due to its orbital

motion. Core-collapse SNe in a binary system are more likely to give birth to isolated NSs because the sudden mass

loss and NS natal kick tend to unbind the system. However, when the kick velocity is small (. 100 km/s) and the NS

is kicked in the opposite direction of the pre-supernova orbital motion, the binary system may survive (and roughly a

few percent of them do survive, Hills 1983). In this case, the eccentric orbit of a young system can have a semi-major

axis large enough to produce noticeable signatures. For example, the binary pulsar PSR B1820-11, a relatively young

neutron star at an age ∼ 3 Myr, has an eccentric orbit with e ' 0.8 (Lyne & McKenna 1989) and a large semi-major

axis ∼ 1.3 AU 2. Many known binary pulsars with main-sequence companions are found to have e & 0.6 and orbital

semi-major axes & 0.1 AU, while binary pulsars with white-dwarf companions have low eccentricities (e� 0.1) and a

significant fraction of them have wide orbits on AU scales (see e.g. Tauris et al. (2012)). If the birth rate for repeaters

is much lower than that for core-collapse SNe, it may be that FRBs require special conditions for the source system

(Lu & Kumar 2016), which provides further motivation to probe possible source motion. Moreover, other FRB models

that predict the progenitor to have non-uniform motion could be testable with lensing time delay. For instance, the

repeater FRB 121102 has been attributed to a NS traveling through an asteroid belt of another star (Dai et al. 2016),

or it is subject to plasma lensing by density inhomogeneities in the host galaxy (Cordes et al. 2017). In both cases,

the source position may have large non-uniform transverse motion & 1 AU (either physical or apparent) detectable

with the method we propose here. Given our limited understanding of FRBs to date, it is worthwhile to explore the

scientific potential of this novel observational method.

We organize this paper as follows. In Section 2, we first carry out order-of-magnitude estimates on motion-induced

variations in lensing time delays, offering useful intuition on the relevant physical scales of the problem. Rigorous

derivations then follow in Section 3. Then, in Section 4, we construct a hypothetical strong-lensing event and describe

the procedure of simulating mock time-delay measurements. This will serve as a realistic example in later sections for

numerically assessing the accuracy of time-delay measurement and for verifying the back-of-the-envelope estimates in

Section 2. In Section 5, we study indirect source localization using time delay variation between spatially unresolved

multiple images. In Section 6, we study how non-uniform source motion can be measured if multiple images are resolved

with very-long-baseline interferometry (VLBI). In Section 7, we discuss how microlensing and scattering might broaden

the pulse and affect timing accuracy. Final remarks will be made in Section 8.

2. ORDER-OF-MAGNITUDE ESTIMATE

Before delving into detailed calculations, we first seek intuition by estimating the order of magnitude for the relevant

physics scales. For simplicity, redshift factors are neglected. They will be easily recovered later. Since we mainly

consider galactic-scale halos Mh ≈ 1012 − 1013M� as the most probable intervening lenses, with typical gravitational

radii much longer than the radio wavelength, the language of ray optics is suitable.

Imagine an FRB source located at a typical cosmological distance D ∼ 1 Gpc away from the Earth, for which the

optical depth to strong lensing by intervening galaxies is small but non-negligible. Assume a lens galaxy between the

source and the observer. Typically, the source-lens distance and the lens-observer distance are both of order D.

Strong lensing splits each burst from the source into several images. They have typical angular separations ∆θ ∼ 1′′,

which is not resolvable by single-dish telescopes or short-baseline arrays, but is within the reach of VLBI. They have

mutual delays in the time of arrival on the order of ∆T ∼ 0.01 − 1 yr. For FRBs, the typical (de-dispersed) burst

width is remarkably short even after scatter broadening, which enables time of arrival to be measured to an accuracy

of δT ∼ ms� ∆T .

If a lensed source sporadically repeats, each repetition produces a set of multiple images. The time delay between

a given pair of images, at zeroth order, is the same for all repetitions. However, the agreement is imperfect due to

relative motions between the source, the lens, and the Earth, both perpendicular to the line of sight and parallel to

2 Australia Telescope National Facility Pulsar Group, 2004, “ATNF Pulsar Catalogue”, http://www.atnf.csiro.au/research/pulsar/
psrcat/

http://www.atnf.csiro.au/research/pulsar/psrcat/
http://www.atnf.csiro.au/research/pulsar/psrcat/
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the line of sight. Those alter the length of the optical path each burst has to travel before reaching the telescope .

2.1. Motion of the Earth

It is convenient to derive various kinematic effects in the rest frame of the Solar-System barycenter. This can be

treated as an inertial frame to good approximation, since the acceleration of the Solar System within the Milky Way is

negligible over the observational time span. The orbital motion of the Earth in this frame is known to high precision,

and hence perturbation to the time delay induced by Earth’s motion is predictable.

Due to the line-of-sight component of the Earth’s orbital motion, for each burst from the source, multiple images

reach the Earth at different times. If the Earth recedes from the source at a velocity v⊕‖, to linear order radio wave of

a later image travels an additional distance v⊕‖∆T relative to that of an earlier image, and therefore the mutual time

delay changes by ∼ (v⊕‖/c) ∆T compared to the case without line-of-sight motion. This causes a measurable imprint

between repetitions because v⊕‖ varies with time. Indeed, a constant v⊕‖ would not be distinguishable from the delay

caused by stationary lensing. The time delay varies annually by an amount

30 km s−1 ×∆T/c ≈ 300 s

(
∆T

0.1 yr

)
, (1)

up to factors dependent on the orientation of the line of sight with respect to the Earth’s orbital plane, and the

maximum time-delay variation is 2 AU/c ≈ 1000 s. This is much larger than the timing resolution δT ∼ ms.

The Earth’s orbital motion perpendicular to the direction of wave propagation (which is slightly different between

images; see text below) has no effect on the travel time, since the wavefront is nearly planar far from the source. In

fact, the curvature of the spherical wavefront only perturbs the travel time by

(v⊥ Tobs)
2

2 cD
≈10−3 ms

(
v⊥

1000 km s−1

)2 (
Tobs

5 yr

)2 (
1 Gpc

D

)
, (2)

which is entirely negligible even for transverse velocity v⊥ as large as the typical cosmic peculiar velocity. However,

lensing deflection causes individual images to deviate from the unlensed source direction. This offset generates ad-

ditional arrival-time perturbation from the Earth’s transverse motion3. Since the size of the Earth’s orbit is much

smaller than the typical transverse length scale on the lens plane ∼ D∆θ ≈ 5 kpc, this perturbs the time delay by

an amount that can be estimated by linear variation. This induces a sinusoidal perturbation to the time delay, whose

amplitude is

2 AU ∆θ

c
≈ 5 ms

(
∆θ

1′′

)
, (3)

up to an order-unity factor dependent on the orientation of the line of sight with respect to the Earth’s orbit. In-

terestingly, this is potentially measurable given the short FRB width ∼ ms. However, this effect is degenerate with

the effect from the line-of-sight projection of the Earth’s orbital motion, Eq. (1), which is sinusoidal with exactly the

same period but has an amplitude ∼ 105 times greater! As we will discuss, measurement of time delay perturbation

by the Earth’s transverse orbital motion would require precise knowledge of the Earth’s orbit to an accuracy better

than ∼ 10−5, as well as image localization to . 10−5 rad ≈ 2′′. Throughout this work, we assume that the former is

the case, while the latter is achievable with VLBI observations.

For a ground-based telescope, the Earth’s rotation induces a diurnal variation in the time delay in a similar fashion.

While the effect from the transverse velocity component coupled to image separation is much smaller than 1 ms, the

line-of-sight velocity component creates a signature as large as 2R⊕/c ≈ 40 ms. Realistic data analysis will have to

account for the Earth’s rotation in a similar way to how the Earth’s orbital motion is dealt with, but in this work we

will neglect this effect for simplicity.

2.2. Motions of the source/lens

The source and the lens galaxy typically have cosmic peculiar velocities ∼ O(1000) km s−1 with respect to the Solar

System, with velocity components both along and perpendicular to the line of sight. Over the observational time span,

those can be treated as constant velocities.

Line-of-sight motion of the source and that of the lens change the radial distances of the source-lens-observer

configuration. However, the accumulative change over the typical observation timescale Tobs is minuscule compared

3 That is to say, the decomposition into line-of-sight motion and transverse motion differs slightly from one image to another, whose
effect on the pulse travel time must be accounted for.
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to D. Taking the source’s motion as an example, a line-of-sight velocity component Vs‖ induces a change in the time

delay

∆T
Vs‖ Tobs

D
≈ 0.02 ms

(
∆T

0.1 yr

) (
Vs‖

1000 km s−1

) (
Tobs

5 yr

) (
1 Gpc

D

)
, (4)

through the dependence of lensing time delay on the line-of-sight distances. This is negligible compared to FRB burst

widths ∼ ms. Even if resolvable, this contributes to the linear drift in ∆T , distinct from the other non-uniform relative

motions we will focus on in this paper. The same conclusion can be drawn for the line-of-sight motion of the lens

galaxy.

On the other hand, motion of the source and of the lens perpendicular to the line of sight affect the time delay

through a change in the lensing impact parameter. Dominated by the cosmic peculiar velocity, the source’s motion

induces a linear drift in the time delay

Tobs vs⊥
D∆θ

∆T ≈ 3 s

(
Tobs

5 yr

) (
vs⊥

1000 km s−1

) (
1 Gpc

D

) (
1′′

∆θ

) (
∆T

0.1 yr

)
, (5)

and a similar effect for the lens. These will be measurable as they are much larger than the typical burst width.

Eq. (5) is estimated from linear variation; the correction at quadratic order will be further suppressed by a factor

(Tobs vs⊥)/(D∆θ) ∼ 10−6, which is negligible.

The linear drift due to constant transverse velocities is guaranteed to exist, but in individual lensing case it offers

limited insight because cosmic peculiar velocities are only statistically predictable. By contrast, any non-uniform

transverse motion would be of greater interest.

It is unclear whether the source of an FRB has significantly non-uniform motion within its host. If the source has

an orbital motion because of proximity to, e.g. a stellar companion or a massive black hole, a non-linear perturbation

to the time delay is possible4. If the source’s orbital period is comparable or shorter than the observation time Tobs,

one may search for oscillation in the time delay on the order of

as
D∆θ

∆T ≈ 3 ms
( as

1 AU

) ( ∆T

0.1 yr

) (
1 Gpc

D

) (
1′′

∆θ

)
, (6)

where as is the semi-major axis of the source’s orbit. If the orbital period is much longer than Tobs, acceleration may

still leave a non-trivial imprint in the time delay, distinct from that of a constant motion.

Another possibility is that FRBs are emitted from numerous compact regions within an extended volume of space.

In this case, different repetitions might originate from different regions, whose transverse separations translate into

differences in the time delay

ds
D∆θ

∆T ≈ 3 ms

(
ds

1 AU

) (
∆T

0.1 yr

) (
1 Gpc

D

) (
1′′

∆θ

)
, (7)

where ds is the typical transverse separation between emission regions. Thus, separations as small as a fraction of

1 AU can be detectable, which by far exceeds the resolution of radio interferometry. Again, Eq. (6) and Eq. (7) are

based on linear variation of the lensing impact parameter; quadratic corrections are negligibly small.

The above back-of-the-envelope estimates suggest that repeating FRBs, if strongly lensed into multiple images, may

provide us with unique opportunities to measure time delay perturbations induced by the motions of the source and

the Earth, thanks to their narrow burst widths. With information on the source’s motion, much may be learned about

its physical properties and its surrounding environment. In the following, we derive rigorous equations.

3. TIME DELAY PERTURBATIONS

In this section, we rigorously derive the aforementioned kinematic effects on the lensing time delay. We first assume

an observer at rest with respect to the barycenter of the Solar System. In the end we discuss how to convert observables

into the Earth’s rest frame.

Consider the strong lensing geometry as in Figure 1(a): a repeating FRB is located at redshift zS with an angular-

diameter distance DS to the Earth. An intervening galaxy lens is located at redshift zL < zS with an angular-diameter

distance DL to the Earth. The angular-diameter distance to the source as viewed from the lens is DLS .

4 A somewhat related application is to measure the proper motion of pulsars perpendicular to the line of sight from the scintillation rate
(Lyne & Smith 1982), and furthermore measure the orbital motion of binary pulsars through sinusoidal modulations in the scintillation
rate (Lyne 1984).
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DS

DLS DL

image b

image a

lens

source

solar
system

z = 0

zLzS

V l

(at rest)

V s

(a)

eP

eRιs

ϕs

2 as

optical axissource

(b)

φs optical axis : n⋆

ι⋆

φ⋆

perihelion

Sun

Earth

φ⊕

2 a⊕

to image b : nb

to imagea : na

(c)

e⊕P

e⊕R

Figure 1. Geometrical configuration of lensing discussed in this work. (a) Alignment of the FRB source, the lens galaxy, and
the solar system along the optical axis. The source and the lens have quasi-uniform peculiar motions with respect to the Solar
System. (b) The possible scenario of a source in a Keplerian orbit. (c) The orbital motion of the Earth around the Sun in the
rest frame of the Solar System. The angular difference between different lensing images is exaggerated.

Let y be the true (angular) position of the source, and x be the image (angular) position on the lens plane, and z

be the (angular) position of the lens galaxy. These are measured relative to a reference line of sight, which we call the

optical axis. We first allow z 6= 0 for the convenience of considering lens motion; after calculations are done, we are

free to set z = 0. For a stationary lensing configuration, the Fermat potential is given by (Schneider et al. 1992)

F (x; y, z) = (1 + zL)
DLDS

cDLS

[
1

2
(x− y)

2 − ψ (x− z)

]
, (8)

where ψ(x) is the usual lensing potential if the lens’s center is right on the optical axis. This is defined relative to the

geometrical travel time from the source to the Earth along a direct straight line.

Images are located at the extremal points of the Fermat potential, which we label by I = a, b, c, · · · . Their positions

xI are roots of the lens equation,

x− y −α (x− z) = 0. (9)

Here, the deflection angle α(x − z) equals the gradient of the lensing potential α(x − z) = ∂ψ(x − z)/∂x, where

ψ(x − z) is linearly proportional to the Shapiro time delay due to the gravitational field of the lens. The observed

time delay of the J th image relative to the Ith image is given by

∆TIJ,0 = ∆TJ,0 −∆TI,0,

∆TI,0 = (1 + zL)
DLDS

cDLS

[
1

2
(xI − y)

2 − ψ (xI − z)

]
, (10)

and similarly for ∆TJ,0. We have introduced a subscript 0 to remind ourselves that this assumes no relative motion

between the source, the lens, and the Earth.

Assume that the source gives off successive bursts, labeled by k = 1, 2, 3, · · · . For each burst, the same set of multiple

images is generated.

3.1. Earth’s orbital motion
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First, we study the effect of the Earth’s orbital motion around the Sun. As in Figure 1(c), suppose that relative to

the normal of the Earth’s orbital plane, the true position of the source on the sky (as seen in the inertial frame of the

barycenter of the Solar System) has an inclination angle ι, and it has an azimuthal angle φ relative to the direction of

perihelion. In the same coordinate system, the optical axis has inclination ι? and azimuthal angle φ?. Note that (ι, φ)

and (ι?, φ?) are not identical. They differ by a small angular displacement y.

Since the radio wave coming from each image has a (nearly) planar wavefront when reaching the Solar System, the

correction to time delay, for the kth burst, is given by

δT
(k)
I,⊕ = −1

c
nI · r⊕(t

(k)
I ), δT

(k)
IJ,⊕ = δT

(k)
J,⊕(t

(k)
J )− δT (k)

I,⊕(t
(k)
I ). (11)

Here nI is the unit vector to the Ith image on the sky. And we have used t
(k)
I to denote the time of arrival for the Ith

image of the kth burst.

The vector r⊕(t) is the Earth’s displacement in three-dimensional space at given time t. It can be written as

r⊕(t) =
p⊕

1 + e⊕ cosφ⊕(t)
[e⊕P cosφ⊕(t) + e⊕R sinφ⊕(t)] . (12)

Here e⊕ = 0.0167 is the orbital eccentricity, a⊕ = 1.496 × 108 km is the semi-major axis, p⊕ = a⊕(1 − e2
⊕) is the

semi-latus rectum, and φ⊕(t) gives the azimuthal position of the Earth relative to the perihelion at a given time t.

We also define e⊕P to be a unit vector pointing from the Sun to the perihelion, and e⊕R is another unit vector in

the orbital plane orthogonal to e⊕P . Since the orbital eccentricity is small, φ⊕(t) ≈ Ω⊕ t, where Ω⊕ is the angular

frequency of the Earth’s orbital motion.

It is convenient to decompose r⊕(t) into a component parallel to the optical axis d⊕(t) and a component perpen-

dicular to it,

r⊕(t) = d⊕(t) + l⊕(t)n?, l⊕(t) = r⊕(t) · n?, d⊕(t) = r⊕(t)− [r⊕(t) · n?] n?, (13)

using a unit vector n? pointing along the optical axis5. Since nI = n?+xI , Eq. (11) can be decomposed into an effect

due to line-of-sight motion, and an effect due to transverse motion,

δT
(k)
I,⊕= δT

(k)
I,⊕‖ + δT

(k)
I,⊕⊥,

δT
(k)
I,⊕‖=−1

c
l⊕(t

(k)
I ),

δT
(k)
I,⊕⊥=−1

c
xI · d⊕(t

(k)
I ), (14)

where we have ignored terms quadratic in the small angles xI ’s (which generate minuscule fractional corrections

∼ (∆θ)2 ∼ 10−12). The effect due to line-of-sight motion therefore reads

δT
(k)
IJ,⊕‖ = δT

(k)
J,⊕‖ − δT

(k)
I,⊕‖ =

p⊕ sin ι?
c

cos
(
φ? − φ⊕(t

(k)
J )
)

1 + e⊕ cosφ⊕(t
(k)
J )
−

cos
(
φ? − φ⊕(t

(k)
I )
)

1 + e⊕ cosφ⊕(t
(k)
I )

 . (15)

On the other hand, the effect due to transverse motion is given by

δT
(k)
IJ,⊕⊥ = δT

(k)
J,⊕⊥ − δT

(k)
I,⊕⊥ =

1

c

[
xI · d⊕(t

(k)
I )− xJ · d⊕(t

(k)
J )
]
, (16)

which only depends on image positions xI but not on details of the lens.

3.2. Motion of the lens

As in Figure 1(a), the lens galaxy has a constant peculiar velocity V l relative to the Solar System. According to

Section 2, only the velocity component transverse to the optical axis induces a sizable perturbation to the time delay.

To derive this effect, consider differentiation of F (x;y, z) with respect to z,

d∆TI
dtl

=
V il⊥
DL

∂F (xI ; y, z)

∂zi
, (17)

5 The decomposition of a three-dimensional vector into parallel and transverse components artificially depends on the choice of a reference
“line-of-sight” direction. Here n? pointing along the optical axis is chosen. Once such a choice is made, following calculations should be
done consistently.
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where tl is the lens-frame time (measured relative to a chosen reference moment tl = 0) satisfying dt = (1 + zL) dtl
due to cosmic time dilation. When computing the derivative, we fix y but x is regarded dependent on z via the lens

equation Eq. (9),

∂

∂zi
ψ (x− z) = αj (x− z)

(
∂xj

∂zi
− δji

)
. (18)

Combining these results with the lens equation, integrating over tl, we obtain (and set z = 0 eventually)

δT
(k)
I,l⊥= (1 + zL)

DS

cDLS
αI · dl(t(k)

lJ ), (19)

δT
(k)
IJ,l⊥= δT

(k)
J,l⊥ − δT

(k)
I,l⊥ = (1 + zL)

DS

cDLS

[
αJ · dl(t(k)

lJ )−αI · dl(t(k)
lI )
]
. (20)

Here dl(tl) is the linear displacement of the lens transverse to the line of sight at given lens-frame time tl. The

deflection αI = xI − y is not directly measurable without knowing the true source position y. The lens-frame time

t
(k)
lI when the Ith image of the kth radio burst passes the lens may be chosen to be

t
(k)
lI =

t
(k)
0

1 + zL
+

(1 + zL)

2 (1 + zS) c

D2
L

DLS
(xI − y)

2 − DLDS

2 cDLS
ψ(xI). (21)

The definition of t
(k)
lI is arbitrary within the light-crossing time of the lens galaxy. The bottom line, however, is that

the effect of the lens’s motion is to high precision merely a linear drift in the burst time of arrival in the observer’s

frame, if we assume that V l is constant.

3.3. Motion of the source

The source also has a velocity V s relative to the Solar System. As explained in Section 2, only the velocity component

transverse to the optical axis is relevant. For the source, we first set z = 0, and then compute the linear variation of

F (x; y, z = 0) with respect to y,

d∆Ts
dts

=
V is⊥
DS

∂F (xI ; y)

∂yi
, (22)

where ts is the source-frame time (measured relative to a chosen reference moment ts = 0) satisfying dt = (1 + zS) dts.

When computing the derivative, we treat x as dependent on y via the lens equation Eq. (9), and find

∂ ψ(x)

∂yi
=
∂ ψ(x)

∂ xj
∂ xj

∂ yi
= αj(x)

∂ xj

∂ yi
. (23)

Combining these results with the lens equation, integrating over ts, we derive the perturbation in time delay (Yonehara
1999)

δT
(k)
I,s⊥=−(1 + zL)

DL

cDLS
αI · ds(t(k)

s ), (24)

δT
(k)
IJ,s⊥= δT

(k)
J,s⊥ − δT

(k)
I,s⊥ = −(1 + zL)

DL

cDLS
(xJ − xI) · ds(t(k)

s ). (25)

where ds(ts) is the transverse displacement of the source at a given source-frame time ts, and t
(k)
s is the moment in

the source frame when the kth burst is emitted, which is the same for all images. The vector ds(ts) can be obtained

by projecting the three-dimensional displacement of the source rs(ts) onto the plane perpendicular to the line of sight,

namely ds(ts) = rs(ts)− [rs(ts) ·n?]n?. Note that this result depends on xI ’s, which are direct observables, but not

on the lens model.

The displacement of the source rs(ts) is expected to be dominated by a constant cosmic peculiar velocity V s

relative to the lens. If in addition the source has Keplerian motion orbiting a massive object (Figure 1(b)), described

by an orbital eccentricity es, the semi-latus rectum of the orbit ps, which is related to the semi-major axis as through

ps = as (1−e2
s), and the instantaneous azimuthal position in the orbital plane φs(ts) (for simplicity, we neglect possible

orbital precession), we can then write

rs(ts) = V s ts +
ps

1 + es cosφs(ts)
[eP cosφs(ts) + eR sinφs(ts)] . (26)
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Here eP is a unit vector pointing from the binary center of mass to the periapsis, and eR is another unit vector in the

orbital plane orthogonal to eP . Analogous to the case of the Earth’s motion, after Eq. (26) is inserted into Eq. (24),

the first term generates a linear drift in the time delay, while the second term induces an oscillatory perturbation.

In summary, the mutual time delay between a given pair of images belonging to the kth burst is given by the zeroth-

order delay ∆TIJ,0 computed for a stationary lensing configuration, further corrected by various velocity effects,

∆T
(k)
IJ = ∆TIJ,0 + δT

(k)
IJ,⊕‖ + δT

(k)
IJ,⊕⊥ + δT

(k)
IJ,l⊥ + δT

(k)
IJ,s⊥. (27)

Among them, the effect of the Earth’s motion results from the finite light travel time across the Earth’s orbit. By

comparison, the effects of transverse motions for the lens and for the source depend on image separations and can be

understood on the basis of a change in the lensing impact parameter.

3.4. Observing in the Earth’s rest frame

We have performed calculations in the rest frame of the Solar System barycenter, while radio telescopes co-move

with the Earth, which defines a non-inertial frame. Moreover, a few relativistic effects may need to be accounted for

if high precision is desired.

Bursts are timed by a clock co-moving with the Earth, which is slightly slower than a clock in the inertial frame of

the Solar System, due to both kinetic and gravitational time dilation. However, dilation rescales all time intervals in

the same way, so that it produces no drift or oscillation.

Localization using telescopes on the Earth are subject to relativistic aberration. The apparent position of an image

annually traces an ellipse on the sky, whose semi-major axis is ∼ 20′′ and whose semi-minor axis depends on the Ecliptic

latitude. This affects the image coordinates for different repetitions at different times of the year. Aberration may

be unimportant if sky localization is poor (and hence far from sufficient to resolve images), but needs to be corrected

for with VLBI resolution. Annual aberration modulates the absolute, apparent position in the Ecliptic coordinates,

but (nearly) preserves the angular separations between the images, the source, and the lens. In the following, we will

assume that aberration due to the Earth’s orbital motion is always corrected for. The same can be done for diurnal

aberration due to the Earth’s rotation.

4. SIMULATING MOCK DATA

To demonstrate how well the source’s motion can be inferred from the aforementioned effects on the time delay,

we construct a hypothetical strong-lensing event and simulate mock measurements. This example will be adopted

throughout.

We hypothesize a repeater at zS = 1.0, which is strongly lensed by an intervening galaxy at zL = 0.5. Assuming

the Planck best-fit cosmological parameters (Ade et al. 2016), we obtain angular diameter distances DS = 1635 Mpc,

DL = 1251 Mpc, and DLS = 697 Mpc. As a concrete example, the lens galaxy is assumed to be a singular isothermal

ellipsoid (SIE) (Kormann et al. 1994) with a velocity dispersion σv = 250 km s−1 and an axis ratio f = 0.4. For

simplicity, we ignore the possibility of an external shear.

Without lensing deflection, we assume that the line of sight to the source has an inclination ι = 0.5 with respect to

the normal of the Ecliptic plane, and an azimuthal position φ = 0.7 relative to the Earth’s perihelion.

On the sky, we set up a Cartesian coordinate system centered at the geometrical center of the lens, whose first

coordinate axis is parallel to the Ecliptic plane. Its major axis on the sky makes an angle ϕL = 0.7 relative to

the direction parallel to the Ecliptic plane. Under this coordinate system, we assume a source at angular location

y = (0.223, −0.123), in units of the characteristic angular scale ξ0 = 4π (σv/c)
2DLS/DS = 0.770′′. If the source-lens-

observer configuration is stationary, four images are produced in geometrical optics (Figure 2), whose angular locations

and mutual time delays are presented in Table 1. Among them, a precedes b, c and d by about 40 days, while the

latter three images have mutual time delays on the order of a few days.

We assume that the source has a constant velocity relative to the Solar System, with a component transverse to

the optical axis V s⊥ = (cosϑs, sinϑs)× 1200 km s−1 with ϑs = 0.8, and that the lens galaxy also moves at a constant

velocity relative to the Solar System, with a component transverse to the optical axis, V l⊥ = (cosϑl, sinϑl)×800 km s−1

with ϑl = 2.5. As has been explained in Section 2, the line-of-sight components are not relevant.

Timing of bursts is then simulated according to the following procedure:

1. For simplicity, a series of repetition times t
(k)
0 for k = 1, 2, · · · are generated according to a random Poisson

process with a constant repetition rate (albeit in reality the repeater FRB121102 (Spitler et al. 2016) shows

remarkable non-Poissonian behavior (Wang & Yu 2016; Opperman & Pen 2017)). These t
(k)
0 ’s serve as reference
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Image xI [′′] α(xI) [′′] ∆TaI,0 [day] µI

a ( 0.831, -0.604 ) (0.659, -0.509) — 1.91

b ( -0.373, 0.526 ) (-0.546, 0.621) 39.392 4.46

c ( 0.167, 0.596 ) (-0.005, 0.690) 41.453 2.33

d ( -0.472, -0.276 ) (-0.644, -0.182) 46.601 1.31

Table 1. Angular positions xI of the image quad, their time delays relative to the first image, and the associated magnification
factors µI .

••

••

•• ••

••

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 2. Location of the hypothetical source (orange disk) and of its four images (blue disks). Circles have their areas
proportional to the geometrical magnification factor. Critical curve (solid) and caustic (dashed) are also shown. The coordinate
origin is chosen to be the geometrical center of the hypothetical lens. A linear scale on the lens plane is also shown for reference.

times of arrival in observer’s frame for individual repetitions, corresponding to the case if strong lensing did not

happen and if the source, the lens, and the Earth were not moving, i.e. radio waves travel directly along straight

lines.

2. Forcing emission at the source and reception at the Earth in general leads to an implicit equation, which we solve

in the following iterative way to obtain sufficiently accurate arrival times. For the Ith image of the kth burst, a

trial time of arrival is first computed according to

t̃
(k)
I = t

(k)
0 + ∆TI,0 +

p⊕ sin ι?
c

cos
(
φ? − φ⊕

(
t
(k)
0 + ∆TI,0

))
1 + e⊕ cosφ⊕

(
t
(k)
0 + ∆TI,0

) − 1

c
xI · d⊕

(
t
(k)
0 + ∆TI,0

)
−(1 + zL)

DL

cDLS
xI · ds

(
t(k)
s

)
+ (1 + zL)

DS

cDLS
αI · dl

(
t
(k)
lI

)
. (28)

Here t
(k)
s = t

(k)
0 /(1+zS) is the time of emission of the kth burst in the source frame, and t

(k)
lI is given by Eq. (21).

We then find t
(k)
I by re-calculating the right hand side of Eq. (28) and replacing the combination t

(k)
0 + ∆TI,0

with the trial t̃
(k)
I whenever the Earth’s instantaneous position needs to be computed, i.e.

t
(k)
I = t

(k)
0 + ∆TI,0 +

p⊕ sin ι?
c

cos
(
φ? − φ⊕

(
t̃
(k)
I

))
1 + e⊕ cosφ⊕

(
t̃
(k)
I

) − 1

c
xI · d⊕

(
t̃
(k)
I

)
−(1 + zL)

DL

cDLS
xI · ds

(
t(k)
s

)
+ (1 + zL)

DS

cDLS
αI · dl

(
t
(k)
lI

)
. (29)
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In this way, we perturbatively ensure that the answer for t
(k)
I is consistent with propagation along a null ray and

is accurate to a level better than ∼ 1 ms.

3. The time delay of the J th image relative to the Ith image for the kth burst is readily found by ∆T
(k)
IJ = t

(k)
J − t

(k)
I .

4. Finally, timing noise drawn from a normal distribution with zero mean and a standard deviation σw is added to

the mock times of arrival. This is to account for the limitation of finite burst width on the (de-dispersed) timing

accuracy.

5. LOCALIZATION WITHOUT RESOLVING IMAGES

Single-dish telescopes or short-baseline arrays used for radio transient surveys are typically incapable of resolving

lensed multiple images. Large interferometric arrays or VLBI technique are therefore needed to pin down the host-lens

system and separate images on sub-arcsecond angular scales. However, the coarse localization of survey telescopes is

adverse for efficient VLBI follow-ups. We now discuss, in the case of a multiply-imaged repeater, how information on

the time-delay perturbation might help improve localization and facilitate deep follow-ups.

As estimated in Section 2, line-of-sight projection of the Earth’s orbital motion induces the largest non-trivial

perturbation to the time delay δT
(k)
IJ,⊕‖ . 103 s. Since e⊕ � 1, this has a nearly sinusoidal temporal variation. Assume

that the Earth’s orbital motion is known to high accuracy, according to Eq. (15), the inclination ι and azimuthal angle

φ of the source’s sky position in the Ecliptic coordinates can be deduced from the amplitude and the phase of this

variation.

We now study how precisely one can localize the source in this way. Suppose a total number of N bursts are

detected, each of which has multiple images. Since we seek variation on the order of hundreds of seconds, we may

neglect non-uniform transverse velocities in δT
(k)
IJ,⊕⊥ and δT

(k)
IJ,s⊥. For the Ith image and the J th image, we use the

following model for the mutual delay

∆T
(k)
IJ ≡ t

(k)
J − t

(k)
I = ∆TIJ,0 +

(
KJ t

(k)
J −KI t

(k)
I

)
+
p⊕ sin ι

c

 cos
(
φ− φ⊕(t

(k)
J )
)

1 + e⊕ cosφ⊕(t
(k)
J )
−

cos
(
φ− φ⊕(t

(k)
I )
)

1 + e⊕ cosφ⊕(t
(k)
I )

 , (30)

which has five free parameters (ι, φ, ∆TIJ,0, KI , KJ). Among them, we mainly aim to measure the sky localization

ι and φ averaged over all images; Eq. (30) does not account for image separations, since this method cannot achieve

sufficient angular resolution to resolve individual images anyway. The other three are nuisance parameters: ∆TIJ,0
describes a constant time delay due to stationary lensing; KI and KJ account for linear drifts in the time delay induced

by constant (but unknown) velocities. Assuming that one has perfect knowledge of the Earth’s orbital parameters,

and that timing of all bursts have a gaussian random uncertainty σw due to finite burst widths, we can find the best-fit

parameters by maximizing the log likelihood,

lnL = − 1

4σ2
w

N∑
k=1

{
t
(k)
J − t

(k)
I −∆TIJ,0 −

(
KJ t

(k)
J −KI t

(k)
I

)

−p⊕ sin ι

c

[
cos
(
φ− φ⊕(t

(k)
J )
)

1 + e⊕ cosφ⊕(t
(k)
J )
−

cos
(
φ− φ⊕(t

(k)
I )
)

1 + e⊕ cosφ⊕(t
(k)
I )

]}2

. (31)

The factor of four in front of σ2
w comes from the fact that the difference between two independent timing measurements

has a variance 2σ2
w. Similar factors arise in equations presented later. It is worthy to note that this method does not

require redshift information of the lens or the source.

The left panel of Figure 3 gives an example of how the delay between Image a and Image b might exhibit nearly

sinusoidal variation among ∼ 30 repetitions throughout 500 days of observation, which can be well fit by the five-

parameter model Eq. (30).

To numerically assess the uncertainty in the sky localization, we simulate a large number of mock observations. For

each of them, we generate random source repetitions, compute predicted times of arrival, and then measure (ι, φ) using

Eq. (30). Marginalizing over the nuisance parameters (∆TIJ,0,KI ,KJ), we infer the precision of localization from the

amount of scatter in the best-fit values for (ι, φ) around their true values. This is shown in the right panel of Figure 3.

Our results indicate that with the detection of ∼ 5 (∼ 25) repetitions, using time delays for a single pair of images

(a, b), the inclination ι can be localized to ∼ 5′′ (∼ 0.5′′) at 2σ. The uncertainty in φ of similar size. Using an

image pair with a shorter time delay (e.g. (b, d) ) leads to worse error-bars. The error-bar can further shrink if delay
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Figure 3. Left: An example showing simulated time delays between Image a and Image b versus the arrival time of Image a.
Mock data include a total of 30 repetitions, which are then fit to the five-parameter model of Eq. (30) neglecting any non-uniform
motion transverse to the line of sight. Right: 1σ and 2σ spread of the maximum-likelihood solution for (ι, φ), from 1000 sets
of randomly generated mock data. We consider different choices for the image pair, (a, b), (b, d) and (a, d), and different mean
repetition rates. The black cross indicates the true source location.
measurements from several pairs are combined. Since this level of localization is insufficient to resolve images, we have

simply assumed the same (ι, φ) for all images.

At a repetition rate of ∼ 0.05 day−16 with a total of ∼ 30 repetitions detected, the statistical uncertainty can be

reduced to . 1′′. However, as shown in Figure 3 (right panel) localization will be systematically biased, in a way that

depends on which image pair is being used. The reason for this bias is that the simple five-parameter model Eq. (30)

does not capture the (nearly) sinusoidal time-delay perturbation caused by the transverse projection of the Earth’s

orbital motion through Eq. (16), which cannot be predicted without knowing image separations. As the time delay

between the image pair decreases, the effect of the Earth’s orbital motion parallel to the line of sight also decreases

(Eq. (15)). By contrast, the effect from the transverse motion does not vanish, as it is determined by the image

separation. Therefore, using an image pair of shorter time delay would lead to a larger bias.

Taking that into account, we may conclude that trustworthy source localization to about 2 − 10′′ is achievable,

given a pulse timing precision of a few milliseconds. This agrees with the anticipation in Section 2 that neglecting

the Earth’s transverse orbital motion restricts the accuracy of angular localization to about 10−5 radian. For many

survey telescopes, this level of localization would still help narrowing down the area on the sky VLBI follow-ups have

to search for (Eftekhari & Berger 2017).

We add one caveat that millisecond timing precision might be prohibited by severe scattering broadening due to the

lens galaxy (see estimates in Section 7.2). This is especially problematic at low frequencies . 1 GHz where many survey

instruments will be operating, and for images close to the center of the lens. Scattering broadening is significantly

mitigated when observing at higher frequencies & 2 GHz (e.g. SKA1-MID (Macquart et al. 2015)), but then indirect

localization to 10′′ using time delay may not be superior than the instrument’s intrinsic resolution. In any case, VLBI

follow-ups of a lensed repeater may or may not benefit from this indirect method. Once successfully done, it will help

to identify both the host galaxy and the lens.

6. PROBING SOURCE MOTION WITH VLBI LOCALIZATION

Localization of a lensed repeater with VLBI, if eventually done, would enable precise angular resolution (e.g. at

5 GHz ∼ 5 mas for EVN7 and ∼ 1 mas for VLBA8). This should be sufficient to resolve multiple images and measure

6 This rate is much lower than the intrinsic rate inferred for FRB121102 (Opperman & Pen 2017). However, the observed rate is reduced
compared to the intrinisic rate, due to limitations from telescope sensitivity and observational cadence. The repetition rate we use in mock
simulations always refers to the observed rate.

7 http://www.evlbi.org/user_guide/res.html

8 http://www.vlba.nrao.edu/astro/obstatus/2012-01-06/node24.html

http://www.evlbi.org/user_guide/res.html
http://www.vlba.nrao.edu/astro/obstatus/2012-01-06/node24.html
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xI ’s (although the true source position y is still unknown without lens modeling). This high level of angular resolution

would make it feasible to identify the lens galaxy as well as the lensed source galaxy in the background, following

which their redshifts zS and zL can be separately determined from optical follow-ups.

Given the high promise of the VLBI technique, we furthermore explore the possibility of probing observable effect

of any non-uniform transverse motion of the source, δT
(k)
IJ,s⊥ (Eq. (24)), by accurately subtracting the effect of the

Earth’s orbital motion δT
(k)
IJ,⊕‖ (Eq. (15)) and δT

(k)
IJ,⊕⊥ (Eq. (16)). Owing to superb VLBI resolution, the latter can be

predicted to high precision. The residuals thus carry valuable information about the source.

6.1. Random emission spots

It might be that compact emission spots of radio bursts are hosted by an extended clump of material. Each time

one spot within this clump has the right condition for coherent radio emission, a burst is emitted from that spot. As a

toy model, let us assume that these emission spots are uniformly distributed and randomly switch on and off within a

spherical volume of radius R, then for R & 1 AU detectable time-delay perturbation is induced as the spot of emission

switches from one to another. This is only meant to demonstrate what level of displacement in the emission spot can

produce detectable signatures. In reality, the geometry of the extended clump and the statistics of emission spots

might be completely different.

If we are ignorant of this effect, we may simply use the following model to fit the time-delay data:

∆T
(k)
IJ = ∆TIJ,0 +

(
KJ t

(k)
J −KI t

(k)
I

)
+
p⊕
c

sin ι?

cos
(
φ? − φ⊕(t

(k)
J )
)

1 + e⊕ cosφ⊕(t
(k)
J )
−

cos
(
φ? − φ⊕(t

(k)
I )
)

1 + e⊕ cosφ⊕(t
(k)
I )


+

1

c

[
xI · d⊕(t

(k)
I )− xJ · d⊕(t

(k)
J )
]
, (32)

Note that the location of the optical axis (ι?, φ?) is known (it is artificially chosen) while the true source position y is

not. We would like to maximize the log likelihood,

lnL=− 1

2σ2
θ

N∑
k=1

[(
x

(k)
I − xI

)2

+
(
x

(k)
J − xJ

)2
]
− 1

4σ2
w

N∑
k=1

{
t
(k)
J − t

(k)
I −∆TIJ,0 −

(
KJ t

(k)
J −KI t

(k)
I

)

−p⊕
c

sin ι?

cos
(
φ? − φ⊕(t

(k)
J )
)

1 + e⊕ cosφ⊕(t
(k)
J )
−

cos
(
φ? − φ⊕(t

(k)
I )
)

1 + e⊕ cosφ⊕(t
(k)
I )

− 1

c

[
xI · d⊕(t

(k)
I )− xJ · d⊕(t

(k)
J )
]}2

, (33)

with respect to seven free parameters (xI ,xJ ,∆TIJ,0,KI ,KJ). Here x
(k)
I is the measured angular position of the

Ith image in the kth repetition. We assume that with VLBI x
(k)
I ’s are measured with a standard deviation σθ. The

nuisance parameters (∆TIJ,0,KI ,KJ) are introduced to account for the constant and the linearly-drifting part of the

time delay.

In the left panel of Figure 4, we show examples of residuals after fitting the mock time-delay measurement for the

image pair (a, b). We assume a repetition rate 0.05 day−1 and an angular resolution σθ = 5 mas. We consider different

radii for the extended clump R = 0.1 AU, 1 AU, 3 AU. For small radii R � 1 AU, Eq. (32) provides a good fit to the

noisy data, giving a χ2 per degree of freedom close to unity. For larger radii R ∼ 3 AU, Eq. (32) gives a χ2 per degree

of freedom that is way too high, suggesting that time-delay perturbations caused by randomized emission spots are

resolved. To see which regions in the R − σw parameter space can be probed by timing measurements, we show in

the right panel of Figure 4 the typical χ2 per degree of freedom as a function of both R and σw. Since the smooth

model Eq. (32) does not produce stochastic fluctuations in the time delay, the conclusion will be robust even for poor

resolution σθ = 100 mas. Again, the significance of the measurement can be further improved by jointly fitting the

time delays for several image pairs.

6.2. Orbital motion

Another possibility is that the compact source orbits around another mass. Orbital motion projected onto the plane

of the sky perturbs the lensing time delay via Eq. (25). For a simple but concrete example, consider a circular orbit

for the source9, whose normal is at an angle ιs (0 ≤ ιs < π) to the optical axis and its projection onto the plane of the

9 The method can be easily generalized to the case of an eccentric orbit, which might be relevant for a young neutron star in a binary
system.
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Figure 4. Left: Simulated time-delay residuals after fitting to Eq. (32). Error-bars are derived from a constant timing error
σw = 1 ms. We consider different radii of scatter R. The number in the parenthesis indicates the χ2/d.o.f. for the model
Eq. (32). Right: χ2/d.o.f. as a function of R and σw, with each pixel computed by averaging over 50 independent mock
simulations. Contours of χ2/d.o.f. = 2, 3, 5 are drawn. In both panels, we assume a repetition rate 0.05 day−1 and σθ = 5 mas.

sky has a major axis at an angle φs (0 ≤ φs < π) to the first coordinate axis.

The oscillatory part of the source’s transverse displacement vector (barring constant motion), in its components, is

given by

ds(ts) = as

(
cos ιs cosφs cos (Ωs ts − ϕs) + sinφs sin (Ωs ts − ϕs) ,

cos ιs sinφs cos (Ωs ts − ϕs)− cosφs sin (Ωs ts − ϕs)
)
, (34)

where as > 0 is the orbital radius, Ωs > 0 is the source-frame orbital (angular) frequency, and ϕs (0 ≤ ϕs < 2π) is the

orbital phase. For a single pair of images, we propose the following timing model

∆T
(k)
IJ = ∆TIJ,0 +

(
KJ t

(k)
J −KI t

(k)
I

)
+
p⊕
c

sin ι?

cos
(
φ? − φ⊕(t

(k)
J )
)

1 + e⊕ cosφ⊕(t
(k)
J )
−

cos
(
φ? − φ⊕(t

(k)
I )
)

1 + e⊕ cosφ⊕(t
(k)
I )


+

1

c

[
xI · d⊕(t

(k)
I )− xJ · d⊕(t

(k)
J )
]

+ (1 + zL)
DL

cDLS

[
AIJ cos

(
Ωs t

(k)
s

)
+BIJ sin

(
Ωs t

(k)
s

)]
, (35)

where we define the source-frame time ts using t
(k)
s = t

(k)
I /(1+zS). The last two terms describe a sinusoidal perturbation

to the time delay due to the source’s orbital motion, parametrized by a source-frame frequency Ωs. If zS is not known,

then only the redshifted orbital frequency Ωs/(1 + zS) is measurable. The two coefficients AIJ and BIJ are dependent

on the image separation as well as the orbital parameters, AIJ = as [(xI1 − xJ1) (cos ιs cosφs cosϕs − sinφs sinϕs) + (xI2 − xJ2) (cos ιs sinφs cosϕs + cosφs sinϕs)] ,

BIJ = as [(xI1 − xJ1) (cos ιs cosφs sinϕs + sinφs cosϕs) + (xI2 − xJ2) (cos ιs sinφs sinϕs − cosφs cosϕs)] .
(36)

A single pair of images is sufficient to infer Ωs (assume redshifts are known). However, at least two pairs with linearly

independent image separation vectors are required to separately determine the other orbital parameters as, ιs, φs and

ϕs. For three images forming two pairs (I, J) and (I,K), whose image separation vectors are in general not collinear,

we can use a timing model containing 11 nuisance parameters plus 5 parameters that are related to source motion,

(xI , xJ , xK , ∆TIJ,0, ∆TIK,0, KI , KJ , KK ; Ωs, AIJ , BIJ , AIK , BIK) . (37)

From the last 4 parameters (AIJ , BIJ , AIK , BIK) we can solve for (as, ιs, φs, ϕs). The corresponding likelihood
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Figure 5. . Two examples of mock time-delay residuals due to the source’s orbital motion and the corresponding best fits using
the two-image-pair model Eqs. (38)–(39). Two image pairs (a, b) and (a, d) are used. Error-bars are derived from a constant
timing error σw = 1 ms and a constant localization error σθ = 5 mas. A repetition rate 0.05 day−1 is assumed for an observation
spanning 500 days. For the panel on the left, maximum-likelihood estimation gives as = 0.31 AU, Ps = (2π)/Ωs = 0.20 yr,
ιs = 0.78 and φs = 0.15; for the panel on the right, maximum-likelihood estimation gives as = 1.1 AU, Ps = (2π)/Ωs = 0.86 yr,
ιs = 0.76 and φs = 0.32.

reads

lnL=− 1

2σ2
θ

N∑
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[(
x

(k)
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+
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 , (38)

where the residual for a given image pair (I, J) is given by
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. (39)

Since the fitted value for ϕs artificially depends on the choice of zero-point for ts, it is of limited physical interest and

is essentially another nuisance parameter.

In Figure 5, we give examples of how the time-delay residuals between two pairs of images would look if the source

has an orbital motion on the timescale of . 1 yr with a radius ∼ 0.3−1 AU, which is typical for a stellar companion. A

repetition rate 0.05 day−1 is assumed throughout a 500-day observation. It can be seen that Eq. (35) provides a good

fit to the mock data, with source parameters solved using Eq. (36). We found that for timing accuracy σw = 1 ms

the orbital radius as and the orbital period Ps = (2π)/Ωs can be recovered with good accuracy, while the orientation

angles ιs and φs are subject to large uncertainty. However, as and Ps are of major astrophysical interest here as they

imply the mass of the companion.

In Figure 6, we demonstrate how well source parameters can be typically measured from time-delay residuals, by

simulating a large number of mock observations. In particular, we focus on three parameters of foremost astrophysical

interest: the orbital frequency Ωs, the radius as, and the inclination ιs. The orbital frequency Ωs in general can be

recovered with fairly good accuracy. An observational span of 500 days is sensitive to probe orbital period on the order

of 0.1 − 1 yr. An even longer observational span would significantly improve the measurement for the case of longer

orbital period Ps = (2π)/Ωs & 1 yr. Typically, with a timing accuracy σw ∼ 1 ms, the orbital radius is measurable
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if as & 0.1 AU. Smaller orbital amplitudes produce time-delay perturbations that are too small to be recognizable.

However, as shown in Figure 6, it is more difficult to determine the orbital inclination ιs accurately.

In summary, source binary motion with separation on the order of & 0.1 − 1 AU is detectable under reasonable

assumptions about the quality of VLBI observation of a lensed repeater. Generally speaking, three factors can improve

the measurement of the orbital motion: (1) better timing accuracy for individual bursts; (2) longer observational span;

(3) detection of more repetitions.

For another plausible situation, if the source closely orbits a massive black hole, acceleration transverse to the line

of sight will induce a quadratic deviation from simple linear drift in the lensing time delay, which should be detectable

if acceleration generates additional transverse displacement that accumulates to & 0.1 AU over the observational time

span. For an order-of-magnitude estimate, the additional displacement is given by

GMBH

R2

(
Tobs

1 + zS

)2

≈ 0.6 AU

(
106M�
MBH

) (
0.1 pc

R

)2 (
Tobs

5 yr

)2 (
2

1 + zS

)2

, (40)

where MBH is the black hole mass and R is the typical distance to the black hole. In this case, the orbital period is

roughly

2π

(
R3

GMBH

)1/2

≈ 3000 yr

(
R

0.1 pc

)3/2 (
106M�
MBH

)1/2

, (41)

much longer than the observational time span.

7. DISCUSSION

Our method is based on the assumption that time of arrival can be measured to an accuracy ∼ 1 ms. However,

a received (de-dispersed) pulse could still be broadened, due to either gravitational microlensing by stars in the lens

galaxy, or scattering by the inhomogeneous ISM in the lens galaxy.

To address these issues, in Section 7.1, we first discuss the monochromatic effect of microlensing on pulse broadening

and show that it is most likely unimportant. Then in Section 7.2, we estimate scattering broadening by the ISM of

the lens galaxy, which may adversely affect detection and timing at low frequencies. Then in Section 7.3, we discuss

angular broadening of the source due to scattering in the host galaxy.

7.1. Broadening due to microlensing

Taking the same example (zL = 0.5 and zS = 1) as in Section 4, the critical surface mass density is given by

Σcrit = c2DS/(4πGDLDLS) ' 3000M� pc−2. We define the optical depth for microlensing as σ∗ = Σ∗/Σcrit, where

Σ∗ is the surface mass density of stars (including stars of all evolution stages and compact objects). If the image is

behind the outskirts of the lens galaxy, we have σ∗ � 1 and at most one star may cause microlensing. Then the

delayed time between the two micro-images is given by

∆tML,thin '
2 r2

E

DLc
' 7× 10−3 ms (42)

where

rE =

(
4GM∗
c2

DLDLS

DS

)1/2

' 2× 1016 cm (43)

is the Einstein radius and we have taken an average stellar mass M∗ = 0.4M�. On the other hand, if radio waves

pass within the central few kpc of the lens galaxy, microlensing optical depth may reach order unity. Then multiple

microlenses may be strongly coupled and 90% of the flux from numerous micro-images spread out to a typical angular

scale of (Katz et al. 1986)

∆θML,± = 3
rE
DL

σ
1/2
∗

|1− σ∗ ± γ|
, (44)

where γ is the local macrolensing shear and “±” correspond to the two principal directions that diagonalize the

macrolensing distortion matrix ∂y/∂x. The surface brightness beyond this angular scale decreases rapidly as distance

to the fourth power. The temporal broadening of the FRB is given by the maximum time delay between the micro-

images

∆tML,thick ' 3 [max(∆θML,+,∆θML,−)]2DL/c ' 10σ∗max

[
1

(1− σ∗ + γ)2
,

1

(1− σ∗ − γ)2

]
×∆tML,thin. (45)
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Figure 6. 1σ and 2σ joint spread in the maximum-likelihood estimation for the source’s orbital frequency Ωs, semi-major axis
as and inclination ιs, derived by simulating 500 independent observations. Taking the strong lensing configuration of Figure 2,
we use time delays between two image pairs (a, b) and (a, d) simultaneously. We assume a repetition rate 0.05 day−1, timing
accuracy σw = 1 ms, and image localization accuracy σθ = 5 mas. Two different lengths of observation are in comparison:
500 days (orange) and 1000 days (blue). The upper panels are for the case Ps = 0.2 yr and as = 0.3 AU, and the lower panels
are for the case Ps = 0.8 yr and as = 1.0 AU. In all cases we fix ιs = 0.3, φs = 0.7 and ϕs = 0.9. In each panel, a black cross
marks the correct values for the source orbital parameters.

According to Eq. (45), only near caustics σ∗ + γ or σ∗ − γ may become close to 1 and then the macro-image can be

broadened by more than ∼ms. Therefore, significant microlensing broadening is expected to occur only rarely.

7.2. Scattering broadening by the lens galaxy

Next, we consider scattering broadening due to the ISM of the lens galaxy. The observed wavefront of a point

source at cosmological distances is subject to phase fluctuations on the lens plane due to turbulent electron density

fluctuations, the power spectrum of which follows a power-law between some inner length-scale l0 . 100 km (Spangler

& Gwinn 1990; Armstrong et al. 1995) and some outer length-scale L0 & 100 pc (Armstrong et al. 1995). If we assume

a Kolmogorov spectrum (power-law index β = 11/3) and a spiral galaxy like the Milky Way, the amplitude of the
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turbulence per unit length is given by (Armstrong et al. 1995)

C2
N =

(β − 3)n2
rmsL

3−β
0

2(2π)4−β ' (8.5× 10−5 m−20/3)n2
rms,−1.5L

−2/3
0,2 , (46)

where nrms = nrms,−1.5 10−1.5cm−3 ≡ 〈δn2
e〉1/2 is the root-mean-square (rms) electron density and L0 = L0,2 100 pc is

the outer scale. The scattering measure (SM; strength of scattering) is given by the turbulence amplitude C2
N multiplied

by the path length through the lens galaxy Lgal = Lgal,kpc kpc, i.e. SM ' (8.5×10−5 kpc m−20/3)n2
rms,−1.5 L

−2/3
0,2 Lgal,kpc.

Note that typical lines of sight perpendicular to the Milky Way disk in the solar neighborhood have SM ∼
10−4 kpc m−20/3 and the mean number density (pulsars’ DMs divided by their distances) n̄e ∼ 10−1.5 cm−3 (Cordes

& Lazio 2003). In fact, the lens galaxy is more likely a giant elliptical with little star formation but significant gas

content dominated by hot ionized medium (T ∼ 1 keV). Compared to the Milky Way, the gas density of a giant

elliptical is typically lower ne ∼ 10−2 cm−3 but the path length is longer Lgal & 10 kpc (Mathews & Brighenti 2003).

There have been observational evidences for angular broadening of strongly lensed extragalactic radio sources due to

scattering in the lens (Jones et al. 1996; Marlow et al. 1999; Biggs et al. 2004; Winn et al. 2003b), although in many

cases the lens galaxy is confirmed or suspected to be of late-type. In fact, we know very little about the turbulent

density fluctuations 〈δn2
e〉1/2/〈ne〉 in giant elliptical galaxies (or in general any galaxies other than our own), so it is

unclear whether the scattering measure is larger or smaller than the estimate provided here. To be conservative, in

the following we take SM = 10−3 kpc m−20/3 as our fiducial value.

In our case, the diffractive length rdiff over which the rms phase variation due to scattering equals to one radian is

greater10 than the inner scale l0, so we have (Narayan 1992; Macquart & Koay 2013)

rdiff '
(
3.2× 109 cm

)
(1 + zL)

6/5
ν

6/5
9

(
SM

10−3 kpc m−20/3

)−3/5

(47)

Incoming radio waves are scattered into an angle θscat ' λ/[2π rdiff (1 + zL)], and the temporal broadening is given by

τ ' (1 + zL)Deff θ
2
scat

c
, (48)

where Deff = DLDLS/DS . Taking zL = 0.5 and zS = 1.0 for the example in Section 4, we have Deff = 533 Mpc and

the temporal broadening is

τ ' (31 ms) ν−4.4
9

(
SM

10−3 kpc m−20/3

)6/5 (
1 + zL

1.5

)−4.4

. (49)

The angular broadening is given by (DLS/DS) θscat ' (0.17 mas) ν−2.2
9 (1 + zL)

−2.2
(SM/10−3 kpc m−20/3)3/5, which

may be resolved by VLBI at sufficiently low frequencies.

The above analysis suggests that scattering broadening by the lens galaxy is enhanced by the cosmological distance

leverage. It may strongly limit the accuracy of delay-time measurement, and more importantly, some of the images

may have a fluence too temporally spread out to be detectable at all. However, as can be seen in Eq. (49), scattering

broadening is rapidly suppressed toward higher frequencies. For instance, observing at 3 GHz instead of 1 GHz reduces

temporal broadening by a factor of 3−4.4 ' 8×10−3 for Kolmogorov turbulence β = 11/3, bringing down the temporal

broadening to τ ' 0.25 ms. Thus, the method described in this paper will still be useful at a few GHz, which is

accessible at SKA1 and at many of the VLBI instruments. In fact, going to higher frequencies decreases not only

scattering broadening but also intraband dispersion, so pulse time of arrival may be measured to an accuracy better

than ∼ 1 ms.

Even though accurate timing may not be achievable for survey telescopes at low frequencies . 1 GHz (such as

CHIME and UTMOST), they may still be able to detect lensed bursts (albeit severely broadened). Note that the

signal-to-noise ratio depends on both the fluence F and de-dispersed pulse width τ as S/N ∝ F τ−1/2. Given the fact

that many bursts with duration ∼ 10 ms have been detected (e.g. Champion et al. 2016; Caleb et al. 2017b), further

broadening by a factor of ∼ 10 (to 102 ms) will decrease S/N by a factor of ∼ 3 (the fluence is unchanged). Future

telescopes may be a factor of a few more sensitive than current ones. Moreover, strongly lensed images typically have

magnification factors of a few. Therefore, it is entirely possible to at least detect strongly lensed (and temporally

10 In case SM� 10−3 kpc m−20/3 (e.g. when the light ray happens to pass through some dense HII regions or a spiral arm, Jones et al.
1996; Winn et al. 2003a), we may have rdif < l0, and then the dependence on frequency will be rdiff ∝ ν, which leads to angular broadening
θscat ∝ ν−2 and temporal broadening τ ∝ ν−4, and our results on temporal broadening will differ by a factor of a few.
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broadened) FRBs at . 1 GHz. On the other hand, we strongly encourage carrying out blind FRBs surveys at higher

frequencies (& 3 GHz) and increasing the maximum pulse width within which FRBs are being searched for. Turning

the argument around, abnormally large burst width may be a hint for an intervening lens galaxy.

7.3. Scattering in the host galaxy

The assumption of a point source for the computation of galaxy lensing could be invalidated by significant scattering

in the host galaxy. A large fraction (∼ 1/2) of known FRBs show frequency-dependent asymmetric pulse broadening,

with scattering times at ∼ 1 – 10 ms at 1 GHz (Cordes et al. 2016). The scattering is inconsistent with being due

to the Milky Way along the observed lines of sight or due to the IGM (Luan & Goldreich 2014; Masui et al. 2015;

Cordes et al. 2016; Xu & Zhang 2016). In the strong scattering regime, scattering in the host galaxy by an effective

thin screen at a distance Dh from the source with typical scattering angle θsca,h gives rise to temporal broadening

τh '
Dh θ

2
sca,h

c
(50)

and a larger source size

`S ' Dh θsca,h '
√
Dhτhc '

(
1× 1013 cm

)
D

1/2
h,pc τ

1/2
h,ms, (51)

where Dh,pc = Dh/pc and τh,ms = τh/ms. For a lensed image with a deflection angle α ∼ 1′′, the additional temporal

broadening due to lensing is (c.f. Eq. (24))

τ` ∼
α `S
c
' (1.6 ms)

( α
1′′

)
D

1/2
h,pc τ

1/2
h,ms. (52)

Since τh ∝ ν−4, the temporal broadening due to lensing scales as τ` ∝ ν−2, which can potentially be used to probe

the location of the scattering screen (e.g. either near the progenitor Dh ∼ pc, or far in the ISM Dh ∼ kpc). At

sufficiently high frequencies (& 3 GHz), both τh and τ` become negligible compared to the intrinsic width, and the

method proposed in earlier sections is still applicable.

Dense ISM in the host galaxy might cause large but coherent refraction, which deflect the propagation of radio waves.

Due to relative peculiar motions between the source, the lens, and the Earth, the light ray samples the inhomogeneous

distribution of free electrons. As a result, from the perspective of the lens, the apparent location of the emission

spot can have random shifts transverse to the line of sight. Sufficiently large apparent shifts may imprint stochastic

perturbations in the time delay, in a way similar to the scenario of Section 6.1.

8. CONCLUSION

With good prospects for detecting a large number of FRBs at cosmological redshifts using forthcoming radio tele-

scopes, finding strongly lensed sources is not unthinkable. Moreover, it is possible that repetition is a generic feature

for FRBs. In that case, a multiply-imaged repeater, if uncovered from the burst catalogue, would enable measurement

of time delay to millisecond accuracy.

In this paper, we have worked out how the motions of the Earth, of the lens galaxy, and of the source generate

perturbations to the time delay for a generic lensing configuration. The orbital motion of the Earth induces a large

sinusoidal modulation to the delay time ∼ 103 s, which may be used to narrow down source position in the case of

poor sky localization. More interestingly, if VLBI follow-ups resolve multiple images, time-delay perturbations can

be used to probe non-uniform source motion, hence providing valuable information about the astrophysical details of

the source. For that purpose, the effects of unknown cosmic peculiar motions for the source and the lens are modeled

as linear drift in the delay, and then the effect of the Earth’s orbital motion is accurately subtracted. Our proposed

method relies entirely on direct observables and does not require modeling of the lens.

Using mock observations, we have demonstrated that source orbital motion with a size & 0.1− 1 AU on a timescale

∼ 1 yr is measurable, assuming a timing accuracy of∼ 1 ms. This is based on a conservative repetition rate∼ 0.05 day−1

and only require monitoring repetitions for 1− 2 years. Key orbital parameters such as orbital period and semi-major

axis can be recovered. This will reveal the possible existence of a stellar companion if FRBs require a compact star in a

special environment. For other FRB mechanisms, source regions may vary across a distance & 1 AU. Those scenarios

will also be constrained by time-delay perturbations. Moreover, refraction by dense materials in the host system may

cause apparent shifts in the source location as viewed from the lens, which may also leave noticeable imprints in the

lensing delay time.

At low frequencies . 1 GHz, scattering broadening to & 30 ms by the lens galaxy could degrade timing accuracy. The

effect is significantly larger than scattering in the host galaxy and in the Milky Way. If this does not completely prevent



20

detection, large scattering broadening should hint at intervening objects and hence strong lensing event. Therefore,

extending burst search to larger burst widths can be useful for finding lensed FRBs. As long as a lensed source is

found, scattering broadening should not pose an issue at high frequencies & 3 GHz.

Finally, we note that, even with scattering broadening, timing accuracy for FRBs much better than ∼ 1 ms may be

possible through the technique of de-scattering the voltage timestream (i.e. the voltage signal as a function of time

at the receiver) using bright bursts (Pen & Yang 2015; Main et al. 2017), if bursts are intrinsically very narrow. In

that case, non-trivial source motion on scales smaller than 0.1− 1 AU may be probed. At such a high degree of timing

accuracy, further study is needed to see if the time delay models introduced here are sufficient.
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