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Understanding the neural code of stress to 
control anhedonia

Frances Xia1,9, Valeria Fascianelli2,3,9, Nina Vishwakarma1,4, Frances Grace Ghinger1, 
Andrew Kwon1, Mark M. Gergues1,4,5, Lahin K. Lalani1,4,5, Stefano Fusi2,3,6,7 & 
Mazen A. Kheirbek1,4,5,8 ✉

Anhedonia, the diminished drive to seek, value, and learn about rewards, is a core 
feature of major depressive disorder1–3. The neural underpinnings of anhedonia  
and how this emotional state drives behaviour remain unclear. Here we investigated 
the neural code of anhedonia by taking advantage of the fact that when mice are 
exposed to traumatic social stress, susceptible animals become socially withdrawn 
and anhedonic, whereas others remain resilient. By performing high-density 
electrophysiology to record neural activity patterns in the basolateral amygdala (BLA) 
and ventral CA1 (vCA1), we identified neural signatures of susceptibility and resilience. 
When mice actively sought rewards, BLA activity in resilient mice showed robust 
discrimination between reward choices. By contrast, susceptible mice exhibited a 
rumination-like signature, in which BLA neurons encoded the intention to switch or 
stay on a previously chosen reward. Manipulation of vCA1 inputs to the BLA in 
susceptible mice rescued dysfunctional neural dynamics, amplified dynamics 
associated with resilience, and reversed anhedonic behaviour. Finally, when animals 
were at rest, the spontaneous BLA activity of susceptible mice showed a greater 
number of distinct neural population states. This spontaneous activity allowed us to 
decode group identity and to infer whether a mouse had a history of stress better than 
behavioural outcomes alone. This work reveals population-level neural dynamics that 
explain individual differences in responses to traumatic stress, and suggests that 
modulating vCA1–BLA inputs can enhance resilience by regulating these dynamics.

A reduced ability to experience pleasure, termed anhedonia, is a core 
feature of depression. Besides blunting positive emotional responses 
to what should be pleasurable experiences, anhedonia also profoundly 
affects behaviour, diminishing the drive to seek rewards and causing 
deficits in reward learning and valuation1–3. This can be modelled in 
rodents using chronic stress: whereas some animals show resilience 
to prolonged stress, susceptible mice socially withdraw and become 
anhedonic, with less motivation to attain high-value rewards3–5.

The neural dynamics that account for the behavioural differences in 
resilient and susceptible individuals remain unclear, and determining 
them may provide crucial insights into how this debilitating aspect of 
depression might be treated. In the extended brain network respon-
sible for generating emotional and motivated behaviour, the recipro-
cally connected amygdala and ventral hippocampus are two crucial 
nodes6–26. In addition to its role in threat detection and anxiety-related 
behaviour, the BLA guides decision-making by generating outcome- 
specific representations of rewards27–30. vCA1 has been shown to encode 
stimuli that predict rewards and to drive reward-related approach 
behaviours31–33. However, how these reward-related functions of vCA1 
and BLA are affected by changes in emotional state remain unclear.

Stimulus-evoked responses of individual neurons in the BLA and vCA1 
have been well studied. However, substantially less is known about how 
animals’ reward-related internal states are represented at the popula-
tion level in the BLA and vCA1 and how these representations shape 
reward choice-related behaviour. It is also unclear how spontaneous 
activity patterns in the absence of task stimuli in the BLA or vCA1 may 
differ in mice susceptible or resilient to chronic stress, and whether 
targeted interventions in this circuit might reduce susceptibility to 
stress. As internal states can be detected and studied only by character-
izing the correlated activity of multiple neurons, it is essential to record 
simultaneously from large numbers of neurons, and to analyse their 
activity at the population level. This approach can reveal dynamics of 
internal state more accurately than single-cell recordings. Therefore, 
we conducted high-density Neuropixels recordings34 in vCA1 and BLA 
and used population decoders to analyse the reward-related and spon-
taneous dynamics of populations of neurons to identify distinctive 
neural signatures of susceptibility and resilience to chronic stress. 
Then we developed a new circuit-specific modulation approach to 
rescue aberrant BLA population dynamics and associated anhedonic 
behaviour in stress-susceptible mice.
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Behavioural classification following stress
To search for neural correlates of differential emotional and behav-
ioural responses to traumatic social stress, we performed high-density 
single-unit electrophysiology using Neuropixels probes acutely 
inserted in the BLA and vCA1 of control mice and of mice subjected to 
chronic social defeat stress (CSDS; Fig. 1a–e). Activity was recorded 
during both a task- and stimulus-free condition and while mice per-
formed a new head-fixed sucrose preference test (SPT). In this test, mice 
could freely choose to access either water or sucrose rewards by lick-
ing at the respective spout to trigger reward delivery. CSDS produced 
mice with varying degrees of sucrose preference and social interaction 
scores, which were highly correlated in both males and females (Fig. 1f 
and Extended Data Fig. 1a,b). These behavioural profiles allowed us 
to classify mice as stress resilient or susceptible (Fig. 1g). The suscep-
tible mice identified using this classification showed lower lick rates 
during sucrose consumption, as well as markedly reduced lick rate 
discrimination between sucrose and water rewards—two behavioural 
subcomponents that suggest avoidance of higher value reward that 
is reflective of anhedonia3,35,36 (Fig. 1h,i and Extended Data Fig. 1c–e).

Reward discrimination in resilience
As we observed robust sucrose-seeking behaviours in resilient mice 
compared to susceptible mice, we looked for specific features of how 
rewards and reward-seeking behaviour were represented across the 
recorded BLA and vCA1 neuronal populations. We performed record-
ings as mice freely chose water or sucrose and indicated their choice 

by licking a spout to trigger reward delivery (Fig. 2a). To assess neural 
activity patterns both before the mice behaviourally made their choices 
and after they consumed the reward, we defined a trial (sucrose or 
water) using the 8 s time window (4 s pre- to 4 s post-reward) around 
reward delivery.

First we quantified the proportion of reward-choice-selective neu-
rons in the BLA and vCA1, defined as those that showed differential 
firing during water versus sucrose trials. In the BLA, during both the 
seconds before reward delivery (pre-reward) and the reward consump-
tion period (post-reward), resilient mice had the greatest proportion 
of reward-choice-selective neurons compared with control or suscep-
tible mice (Fig. 2b,c). In vCA1, we found that stress exposure increased 
the proportion of reward-choice-selective neurons in all previously 
stressed mice (that is, resilient and susceptible groups) in comparison 
to controls.

As the single-neuron analysis takes into account only a small subset 
of selective neurons, and the entire population is likely to contain rel-
evant task-related information37, we next investigated the differences 
in reward-choice coding between groups at the population level. We 
trained linear classifiers to discriminate trial types (water or sucrose 
choice), balancing the number of current and past rewards for each trial 
type (Methods and Fig. 2d). When analysing activity during pre-reward 
time bins, we again found distinctive signatures of stress resilience. 
In resilient mice, the upcoming choice of sucrose or water could be 
decoded from neural activity in BLA better than chance and better than 
from neurons in control or susceptible mice (Fig. 2e,f).

After reward consumption (post-reward), reward choice could be 
decoded from BLA activity better in all mice, but decoding was still 
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correlation). g, Unsupervised K-means clustering revealed two distinct 
subgroups of CSDS mice (n = 45). h, Susceptible mice (n = 12) showed reduced 
sucrose lick rate during post-reward period compared to resilient mice (n = 33, 
repeated measures analysis of variance (ANOVA), group × time interaction: 
F2,57 = 5.63, P = 0.0059). i, Susceptible mice (n = 12) showed reduced lick rate 
discrimination index (DI) compared to control (n = 15) and resilient (n = 33) 
mice (two-way repeated measures ANOVA, group × time interaction: F2,57 = 
48.47, P < 0.0001). Inset shows averaged lick rate DI during pre- and post-reward. 
Data are mean ± s.e.m. **P < 0.01.
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strongest in resilient mice. The enhanced reward choice decoding in 
resilient mice was not driven by differences in direction coding (lick 
left versus lick right; Methods and Extended Data Fig. 2a–c) or lick 
rates (Methods and Extended Data Fig. 2d,e). A similar, although less 
pronounced, reward choice decoding pattern was observed in vCA1. 
These results indicate that neurons in the BLA, and to a lesser extent 
in vCA1, of resilient mice showed enhanced discrimination of reward 
choices both before and during reward consumption.

Intention states in susceptibility
We next examined the nature of anhedonic behaviour in susceptible 
mice by analysing the sequence of reward choices that led them to less 
frequently choose sucrose rewards, and compared this to the sequences 
in control and resilient mice. We found that current and previous reward 
choices were not independent of each other, as the sequence could be 
described using a Markov model in which the probability of choosing 
water or sucrose depended on the choice made in the previous trial. 
The Markov models of control and resilient mice were similar: both 
switched from water to sucrose and repeated a sucrose choice more 
often than susceptible mice did (Fig. 3a,b and Extended Data Fig. 3a–d). 
By contrast, susceptible mice switched more from sucrose to water 
rewards and made more consecutive water choices.

Given these patterns, we examined whether we could use the four 
possible sequences of consecutive reward choices (water–water; 

water–sucrose; sucrose–water; sucrose–sucrose) as the basis for iden-
tifying unique neural signatures of the intention to switch or stay on the 
same reward choice as the previous trial. To control for the potential 
confound of reward value differences between trial types, we balanced 
both previous and current reward types when analysing switch or stay 
trials (Fig. 3a and Methods).

Single-neuron analysis revealed that neurons that were differentially 
modulated on the basis of the intention to switch rewards or to stay 
on the same one as the previous trial were present only in the BLA of 
susceptible mice (Fig. 3c,d). In addition, a population decoder could 
successfully distinguish stay trials from switch trials using neural data 
from the seconds before reward delivery in the BLA of susceptible mice 
but not in the other groups (Fig. 3e,f). Decoding accuracy for switch ver-
sus stay was better than chance for both CSDS groups in vCA1 although 
accuracy was lower than that in the BLA (Extended Data Fig. 3e).

This led us to reason that specific population activity patterns existed 
in the BLA of susceptible mice in the seconds preceding the decision 
to switch or stay. We identified population hidden states in the 4 s 
pre-reward period using hidden Markov models38–40 (HMMs; Fig. 3g,h 
and Extended Data Fig. 3f). Each hidden state is defined by the ensemble 
activity of simultaneously recorded neurons and reflects distinct popu-
lation dynamics during pre-reward. The model then assigns each time 
interval (1-s bins) the most likely hidden state. We validated that a linear 
decoder, trained on these ensemble activities, could most strongly 
distinguish between stay versus switch trials in the BLA of susceptible 
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population decoding of current and future reward choices. Linear support 
vector machine (SVM) classifier was trained to distinguish between water 
versus sucrose trials. e, In BLA, resilient mice showed higher decoding accuracy 
than chance during pre-reward, and the highest decoding accuracy among all 
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reward (Kruskal–Wallis, P = 0.0011). Inset shows averaged decoding accuracy 
during pre- and post-reward. Data are mean ± s.e.m. #Significantly different 
from chance; *P < 0.05; **P < 0.01.
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mice (and both vCA1 CSDS groups; Extended Data Fig. 3g,h). Accord-
ingly, the population representations of stay versus switch trials were 
linearly separable in the BLA of susceptible mice (Fig. 3i,j).

Next we identified hidden states that uniquely characterized tri-
als in which mice intended to either stay or switch, which we termed 
intention-selective states (Fig. 3k–l, Methods and Extended Data Fig. 3I). 
We found that the BLA of susceptible mice had a significantly higher 
fraction of these intention-selective states during the 4-s pre-reward 
period than that of controls (Fig. 3l). Removing trials that contained 
these states reduced decoding accuracy of stay versus switch trials to 
chance levels (Fig. 3m) and altered the geometry of population represen-
tations of switch versus stay trials (Fig. 3n). Considering only trials with 
intention-selective states improved the switch versus stay decoding 

accuracy, whereas removal of random states did not affect decoding 
accuracy (Fig. 3m,n). The intention-selective states in susceptible mice 
were not due to action sequence coding, as they were not present when 
the two spouts delivered the same reward (Extended Data Fig. 3j–l), or 
lick rate differences (Extended Data Fig. 3m). Furthermore, we found 
that vCA1–BLA correlations in susceptible mice were enhanced during 
intention-selective states, in comparison to non-intention-selective 
states, raising the possibility that intention-related information may be 
transmitted between structures (Extended Data Fig. 3n). Finally, using 
these task-related neural features of susceptibility (intention-specific 
states) and resilience (reward choice discrimination) allowed us to 
decode group identity (Extended Data Fig. 3o). Altogether, our results 
indicate that BLA neurons in susceptible mice evaluate future decisions 
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with respect to their past choices (by representing switch and stay 
states), which may contribute to behavioural strategies that result in 
a reduced number of sucrose rewards.

vCA1–BLA activity and anhedonia
Having established that the BLA exhibits distinct activity patterns asso-
ciated with susceptibility to stress, we examined whether we could 
rescue the neurophysiological responses to stress in susceptible mice 
and whether rescuing the neural phenotype reversed the maladaptive 
behaviour of these animals.

The strategy we chose was to manipulate inputs to BLA from vCA1. 
We targeted this pathway because: vCA1 provides dense input to BLA9; 
our data here show that CSDS produces changes in representations 
of reward choice and intended task strategies in vCA1 of all stressed 
mice, which may communicate the information to the BLA to help 
further shape its reward value coding (Fig. 2e,f and Extended Data 
Fig. 3e,g); resilience was positively correlated with the strength of 
communication between vCA1 and BLA for sucrose versus water 
choices during the pre-reward period (Fig. 4a,b); and vCA1–BLA cor-
relation was enhanced in intention-selective states in susceptible 
mice (Extended Data Fig. 3n).

To test whether manipulation of vCA1–BLA inputs would modulate 
signatures of susceptibility in the BLA and/or influence anhedonic 
behaviour, we increased the excitability of vCA1–BLA projection neu-
rons by expressing the excitatory chemogenetic actuator hM3Dq in 
these cells41 (Fig. 4c,d). We then subjected mice to CSDS and recorded 
BLA and vCA1 activity and behaviour in susceptible mice before and 
after injection of the hM3Dq activator clozapine-n-oxide (CNO).

CNO increased vCA1 firing rates (Extended Data Fig. 4a,b,k) and modi-
fied population activity patterns in vCA1 (Extended Data Fig. 4c–j). Dur-
ing the sucrose preference task, this manipulation enhanced vCA1–BLA 
correlations for sucrose versus water choices during the pre-reward 
period (Fig. 4e). In addition, we found that activating the vCA1–BLA 
pathway increased our ability to decode reward choice post-reward in 
both BLA and vCA1 (Fig. 4f,g and Extended Data Fig. 4l,m), a signature 
of enhanced reward choice representation in naturally resilient mice 
(Fig. 2e,f).

We next examined whether this manipulation of the vCA1–BLA path-
way would reduce the occurrence of the unique intention-specific states 
we had observed in the BLA of susceptible mice. Replicating our previ-
ous results, we found that during the saline period, we could decode 
stay versus switch trials in susceptible mice (Fig. 4h–j and Extended 
Data Fig. 4n,o). However, activation of vCA1–BLA brought decoding 
accuracies to chance levels, changed the geometry of representations 
in the BLA such that switch and stay trials could no longer be linearly 
separated (Fig. 4j), and decreased the fraction of intention-specific 
states (Fig. 4k). In other words, activation of the vCA1–BLA pathway 
reversed this population-level signature of stress susceptibility in the 
BLA. In addition, a decoder trained to differentiate susceptible versus 
resilient mice generalizes well to differentiating between saline- versus 
CNO-treated susceptible mice (Extended Data Fig. 4p–r), further sug-
gesting that activation of the vCA1–BLA pathway reversed the suscepti-
bility phenotype to be more similar to the naturally resilient phenotype.

Finally, we found that vCA1–BLA activation rescued behavioural 
indices of anhedonia. Administering CNO increased sucrose prefer-
ence (Fig. 4l), increased the lick rate discrimination index (Extended 
Data Fig. 4s), enhanced the proportion of sucrose stay trials (Extended 
Data Fig. 4t–v), and increased social interaction times (Extended Data 
Fig. 4w,x). No behavioural or neural differences were observed between 
saline and CNO periods in mice infused with the control mCherry virus 
(Extended Data Fig. 5).

In summary, these results show that activating the vCA1–BLA path-
way rescued both aberrant population dynamics in the BLA of suscepti-
ble mice and associated behavioural hallmarks of anhedonia (Fig. 4m).

Spontaneous activity following CSDS
Finally, we examined whether distinct patterns of population activ-
ity could be detected in the BLA of susceptible or resilient mice, in 
the absence of any overt stimuli or task demands. Clinical studies 
have revealed altered resting-state functional connectivity between  
the amygdala and hippocampus in individuals with depression, but 
the underlying neural mechanisms remain unknown42.

To mimic a mildly stressful experience in human imaging stud-
ies, mice were head-fixed without task-relevant stimuli provided. In 
line with human studies, we found altered functional connectivity 
between BLA and vCA1 in CSDS mice, specifically a reduction in the 
dominant frequency of interaction between the two regions, suggest-
ing a change in communication between the two regions43,44 (Extended 
Data Fig. 6a,b). We then examined whether the geometry of spontane-
ous neural activity patterns differed between groups in each region. 
As the lack of behavioural time stamps made it difficult to align and 
directly compare neural representations across animals, we focused 
on the embedding dimensionality using principal component analysis 
(PCA), which can estimate population geometry without alignment to 
overt behaviour45,46.

This analysis revealed a trend towards higher dimensionality 
in the BLA population activity of susceptible mice compared to 
controls (Extended Data Fig. 6c–g), suggesting a larger number 
of neural population states, with each state spanning a different 
dimension. Indeed, when we quantified the states using HMM and 
performed agglomerative clustering of states to identify those that 
were unique, we found that in the BLA, but not vCA1, susceptible 
mice showed a greater number of distinct neural states (Fig. 5a–c 
and Extended Data Fig. 6h–n). Consistent with this, average cor-
related BLA population activity across time was lower, and thus 
more variable, in susceptible mice (Extended Data Fig. 6o,p). The 
greater number of distinct states in susceptible mice could not be 
attributed to an increased firing rate, which was lower in the BLA 
of susceptible mice compared to controls (Extended Data Fig. 6q). 
Furthermore, across all mice, the number of distinct states was sig-
nificantly correlated with behaviours used to assess susceptibility 
(Fig. 5d), with greater numbers of clusters strongly predicting social 
avoidance and anhedonic behaviour. This suggests that structures of 
population hidden states in the BLA may reflect anhedonia-related  
behaviour.

We next tested whether we could decode the group identity of 
individual animals from this resting-state activity by training a clas-
sifier using neural features including firing rates (mean and standard 
deviation), PCA cumulative variance, and the fraction of clustered 
neural states. Each feature alone allowed us to distinguish between 
control and susceptible mice to some extent (Extended Data Fig. 6r). 
However, using all of the feature sets in BLA, but not vCA1, we could 
significantly decode between all pairs of group identities (Fig. 5e 
and Extended Data Fig. 6s,t). Notably, cross-validated decoding of 
susceptible versus control mice was 100% accurate. When we visu-
alized the geometry of the representations in individual mice, we 
found the greatest distance between control and susceptible mice 
in the BLA (Fig. 5f). In addition, the neural feature differences we 
observed were unlikely to be due to differences in movements of 
the face or the limbs of the head-fixed mice. Specifically, although 
minor differences in some facial and limb movements were found 
(Extended Data Fig. 7a–g), decoding accuracy for group identity 
using face and limb movements as input features was much lower 
than that of a decoder trained on neural features (Extended Data 
Fig. 7h–k), and face and limb movements could not explain BLA activ-
ity differences (Methods). Applying the same dimensionality and 
hidden state analysis to neural recordings from the task period could 
also differentiate between control and susceptible mice (Extended  
Data Fig. 8).
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Finally, we found that a decoder using these neural features 
during the stimulus-free pre-task period in BLA better predicted 
whether an animal was exposed to stress than a decoder using only 
behavioural measures of anhedonia and anxiety-related behaviour 
(Fig. 5g). This suggests that neural activity features in the BLA in 
the absence of any stimuli or task demands may be a more power-
ful biomarker for identifying a history of chronic stress than classic 
behavioural indices such as social avoidance and anhedonia-related  
behaviours.

 
Discussion
Our study reveals distinct neural signatures of stress resilience and 
susceptibility in BLA population activity. Using Neuropixels recordings 
while mice were either at rest or engaged in a free-reward-choice task 
and leveraging complementary analytic approaches, we identified new 
population dynamics that underlie distinct features of stress-induced 
anhedonic state. Critically, when we successfully reversed these neural 
signatures of anhedonia through targeted modulation of the vCA1–BLA 
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circuit, the behavioural consequences of this maladaptive state were 
also rescued.

By analysing population dynamics during the SPT, we discovered a 
resilience signature characterized by heightened reward choice rep-
resentations in the BLA before and during reward consumption. This 
enhanced reward choice perception or sensitivity may play a crucial 
role in reinforcing the behavioural processes that lead animals to seek 
more rewarding options (that is, choosing the sucrose reward)47. That 
is, it may serve as a mechanism for adapting to, or coping with, the 
experience of CSDS, thereby maintaining a robust behavioural prefer-
ence for sucrose.

By contrast, the BLA of susceptible mice exhibited reduced repre-
sentations of current and future reward choices, which may result 
in decreased reinforcement of behaviours associated with the more 
rewarding outcome, ultimately contributing to a reduced prefer-
ence for high-value rewards48. Moreover, the BLA of susceptible mice 
also exhibited unique representations that reflected their intention 
to switch or stay on the previously chosen reward. This heightened 
evaluation of future choices with respect to the past is reminiscent of 
rumination-like states commonly observed in individuals with depres-
sion, such as repetitive thinking about past choices and upcoming 
decisions49,50.

Furthermore, stress-susceptible mice showed reduced vCA1–BLA 
correlations during higher value sucrose reward choice trials, poten-
tially driving anhedonic behaviour. When we used chemogenetics to 
activate BLA-projecting vCA1 neurons in susceptible mice, this led to 
distinct changes in neural features of resilience and susceptibility. 
Specifically, whereas the manipulation increased inter-regional com-
munication between these regions and increased representations of 
current reward choice in both BLA and vCA1, activating vCA1–BLA pro-
jection reduced the rumination-like over-representation of the inten-
tion to stay or switch in the BLA. Critically, the activation decreased 
anhedonia-related behaviour.

Finally, by analysing the neural activity patterns in the absence of 
any task or stimuli, we also found an enhanced exploration of distinct 
neural states in the BLA of stress-susceptible mice. This may be related 
to the emergence of intention-selective states that we observed in sus-
ceptible mice during the task period, and akin to the intrusive thought 
patterns observed in patients with depression51,52. We speculate that 
under normal conditions, such as in control mice, the BLA plays a crucial 
role in evaluating reward values, which subsequently influences the 
decision to switch or stay. The decision probably occurs downstream of 
the BLA, because we could not decode the intention to switch or stay in 
the BLA of control mice. However, in susceptible mice, the BLA’s ability 

b

f
C

on
tr

ol
H

M
M

 s
ta

te
s

S
us

ce
p

tib
le

H
M

M
 s

ta
te

s

1 
– 
ρ

0.6

0.4

0.2

0

0.6

0.4

0.2

0

1 
– 
ρ

HMM states
Pearson 

correlation ( ρ)

10

HMM states

Susceptible

Control

Resilient

MDS1 MDS2

M
D

S
3

c

60

40

20

100

80

C
lu

st
er

 r
et

ai
ne

d
 (%

)
0

CSDS + 
social interaction test

Post-defeat SPT 
+ recording

Pre-task

150 trials10 min

Task

a

Control
Susceptible
Resilient

*
*

e

D
ec

od
in

g 
ac

cu
ra

cy
 

Control versus susceptible

B
LA

1.0

0.8

0.6

0.4 C
ha

nc
e

FR PCA HMM

All 1 2 3 4 51

M
ea

n

s.
d

. 2 3

FR PCA HMM

All 1 2 3 541

M
ea

n

s.
d

. 2 3

FR PCA HMM

All 1 2 3 541

M
ea

n

s.
d

. 2 3

# # # # # # # # # # #

Control versus resilient
1.0

0.8

0.6

0.4

# # # # # # # # ##

Resilient versus susceptible
1.0

0.8

0.6

0.4

# # # #

Decode group identity using neural features

Mahalanobis
decoder

PCA cumulative variance (3)
Firing rate mean, s.d.

HMM percentage clusters retained (5)Fe
at

ur
es

1 – ρ threshold
0 0.5 1.0

1 2 3 4

5 6 7

8 9

ρ(S1,S2)

HMM states

H
M

M
 s

ta
te

s

S1

S
2

0
S1 S2 S3 S4 S5

4 clusters

3 clusters

2 clusters

1

Identi�cation of unique hidden states

Pearson 
correlation ( ρ)

10

1 
– 
ρ 

th
re

sh
ol

d

HMM states

Pearson correlation Agglomerative clustering

Firing rate neuron 1

Fi
rin

g 
ra

te
 n

eu
ro

n 
2

S1
S2

S3

S4
S5

1

2 3

4

5

6

7

8

9

0 1 2

0

0.1

0.2

0.3

0.4

SPT × social
interaction ratio

Fr
ac

tio
n 

of
 c

lu
st

er
s 

re
ta

in
ed

P = 0.0031
r = –0.72

d

D
ec

od
in

g 
ac

cu
ra

cy
 

D
ec

od
in

g 
ac

cu
ra

cy
B

LA
B

LA 0.4

1.0

0.6

0.2

0.8

D
ec

od
in

g 
ac

cu
ra

cy
 

Behavioural Neural

g

#

C
ha

nc
e

#

**

Fig. 5 | Distinct neural signatures of CSDS mice in the absence of task.  
a, Schematic of analysis in pre-task. HMM was used to identify hidden states (S) 
and states similarity was assessed using agglomerative clustering. b, Example 
state correlation heat maps from BLA of a control (n = 19 hidden states) and a 
susceptible mouse (n = 17 hidden states) and respective agglomerative clustering 
(dendrograms on right). c, Susceptible mice had more distant hidden states  
in BLA (Mann–Whitney, control (n = 5 mice) versus susceptible (n = 5 mice) 
P < 0.05 for all correlation thresholds except at 0, specifically in ascending 
order of thresholds P = (0.01, 0.01, 0.03, 0.03, 0.02, 0.02, 0.04, 0.02, 0.02, 0.04); 
resilient (n = 5 mice) versus susceptible P < 0.05 for all thresholds except at  
0.4–0.6, specifically P = (1, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.1) for thresholds =  
(0, 0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1)). d, Fraction of clusters (at 1 − ρ threshold = 0.5) 

was correlated with animals’ behaviour (n = 15 mice, Spearman’s correlation).  
e, Mahalanobis decoder trained on all neural features (All) could decode group 
identity better than chance in BLA (n = 1,000 cross-validations; chance: n = 100 
shuffles). Feature importance in decoding was examined by systematic removal 
of each feature (subsequent columns). FR, firing rate. f, Multi-dimensional 
scaling (MDS) of neural features in BLA showed that controls were most distinct 
from susceptible mice. g, Mahalanobis decoder trained on neural features  
was better at distinguishing control versus CSDS mice than one trained on 
behavioural features (n = 1,000 cross-validations; chance: n = 100 shuffles; 
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to evaluate reward values may be disrupted by the emergence of these 
intrusive, intention-selective states, which we could decode clearly 
in these mice. These intrusive states may interfere with downstream 
activity, biasing the decision to switch or stay towards the lower value 
reward. Notably, these intrusive states are not merely noise, as we could 
decode the signal as the intention to switch or stay. The ultimate effects 
on decision-making are probably probabilistic, with the downstream 
region reading out all states (both normal and intrusive) from the BLA. 
In susceptible mice, these intrusive states may sometimes increase the 
probability of staying, whereas in other instances, they may increase 
the probability of switching. Consequently, susceptible mice exhibit 
an aberrant reward decision-making process, resulting in anhedonia. 
A similar process might govern the pre-task period in the absence of 
reward stimuli, where the higher dimensionality reflects additional 
intrusive states in susceptible mice.

Notably, we found that features of neural activity in the BLA during 
task-free periods were more effective than classic behavioural readouts 
or spontaneous facial and limb movements in distinguishing between 
control mice and those with a history of CSDS. This suggests the pos-
sibility that resting-state neural activity patterns in the BLA may hold 
substantial potential as a new biomarker for identifying individuals who 
have experienced stressful life events. Although we did not observe any 
significant contribution of spontaneous facial or limb movements to 
BLA activity, it may be possible that other spontaneous behavioural 
features not captured here may contribute to BLA activity, and it may 
also be possible that the small differences in some behavioural features 
we observed could be encoded elsewhere in the brain53,54.

Our data suggest that while both reward choice and intention infor-
mation are present in vCA1 of stressed mice, the differences between 
susceptible and resilient groups become more pronounced in the BLA, 
suggesting that vCA1 probably relays stress information to the BLA to 
further shape distinct resilient and susceptible outcomes. In the BLA, 
estimation of reward values versus intention to switch or stay may rep-
resent two distinct modes during reward decision-making: the former 
is dominant in control and resilient mice, and the latter is dominant in 
susceptible mice. We reason that these intention-selective states are 
intrusive and disrupt normal decision-making in susceptible mice to 
promote anhedonic responding, as they are not present in control 
and resilient mice. Chemogenetic stimulation of BLA-projecting vCA1 
neurons in susceptible mice disrupted the encoding of the intention 
to switch versus stay in BLA and vCA1, allowing for better reward value 
coding and reward-related information transfer between BLA and vCA1. 
In addition, it may also be possible that when reward values are more 
distinctly represented, mice may rely less on intention and more on 
reward value for decision-making.

While dysfunction in dopaminergic systems has been implicated 
in motivational changes in depression and chronic stress2,55–59, this 
work provides crucial evidence for a role of the vCA1–BLA circuit in 
modulating stress-induced behavioural phenotypes. By demonstrat-
ing that boosting vCA1-to-BLA communication can normalize neural 
dynamics associated with susceptibility and promote those associated 
with resilience in the BLA, our findings shed light on how dysfunction 
in this circuit may contribute to stress-induced maladaptive states. 
Moreover, these results highlight the vCA1–BLA circuit as a promis-
ing target for neuromodulation in mood disorder treatments and 
open new avenues for potential therapies to more effectively address 
stress-induced pathologies.
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Methods

Mice
All procedures were conducted in accordance with the National 
Institutes of Health’s Guide for the Care and Use of Laboratory Ani-
mals and the institutional guidelines of the University of California, 
San Francisco's Institutional Animal Care and Use Committee. Adult  
(8–12 weeks old) male and female C57BL/6J mice were supplied by The 
Jackson Laboratory. Adult (5–6 months old) CD1 retired male breeder 
mice were supplied by Charles River. All mice were kept on a 12-h light/
dark cycle, and all experiments were conducted during the light phase. 
We performed recordings in 60 mice for the original dataset, includ-
ing 45 CSDS mice (30 males, 15 females) and 15 control mice (10 males,  
5 females). The results shown are combined data using both males and 
females, as we did not observe significant differences between males 
and females. Mice were randomly assigned to control or CSDS groups 
before CSDS exposure. A separate cohort of 41 CSDS mice underwent 
chemogenetic manipulation experiments. Twenty-three of the mice 
received AAV-DIO-hM3Dq viral micro-infusion and 18 mice received 
AAV-DIO-mCherry infusion. Mice were randomly assigned to hM3Dq or 
mCherry groups at the time of surgery. From the hM3Dq and mCherry 
groups, we performed recordings in seven of the susceptible mice 
in each group. Experimenters were blind to the condition and group 
assignments of mice.

Surgery
Head bar and craniotomy surgery. One week before lick training, head 
bar surgeries were conducted on all mice (8–9 weeks old). According to 
a previously described protocol31, mice were anaesthetized with 1.5% 
isoflurane with an O2 flow rate of 1 l min−1, and head-fixed in a stereotaxic 
frame. A custom-made titanium head bar was then attached to the skull 
using Metabond adhesive cement (Parkell). Possible recording sites (see 
the section entitled Neuropixels recording and data preprocessing) 
were stereotaxically marked using a permanent marker on the skull 
surface, and the skull was covered using silicon (Smooth-On). At 3 days 
before Neuropixels recording, craniotomy surgery was performed, in 
which, under anaesthesia, craniotomies were made at the previously 
marked coordinates. The skull surface was covered with Kwik-Sil (World 
Precision Instruments).

Viral micro-infusion surgery. For mice that underwent chemoge-
netic manipulations, adult mice (8–9 weeks old) received viral micro- 
infusion in the same surgery as head bar attachment, as in a previously 
described protocol31. Specifically, AAV8-hSyn-DIO-hM3D(Gq)-mCherry 
(Addgene, 44361-AAV8, 2.9 × 1013 viral genomes (vg) per millilitre) or 
AAV8-hSyn-DIO-mCherry (Addgene, 50459-AAV8, 1.0 × 1013 vg ml−1) was 
micro-infused into vCA1 bilaterally (500 nl per hemisphere, −3.52 mm 
anterior–posterior (AP), ±3.1 medial–lateral (ML), −4.2 (150 nl), −4.1 
(200 nl) and −4.0 (150 nl) dorsal–ventral (DV), from bregma according 
to ref. 60), and AAV2retro-CAG-Cre (UNC Vector Core, Ed Boyden’s 
stock, 4.1 × 1012 vg ml−1) was micro-infused into the BLA bilaterally 
(500 nl per hemisphere, −1.80 mm AP, ±3.1 ML, −5.0 (150 nl), −4.8 
(200 nl) and −4.6 (150 nl) DV). Viral vectors were delivered using  
Nanoject 3 (Drummond Scientific). The needle was held in place for 
>5 min after infusion at each DV site, and for 10 min after the last DV 
site. Following viral micro-infusion, a head bar was attached to the 
skull as described above.

Behaviour
CSDS. The CSDS procedure was conducted according to a previously 
established protocol4. Briefly, CD1 male mice were singly housed fol-
lowing arrival for >1 week and were then pre-screened for aggression 
over 3 consecutive days. Each day, a CD1 mouse was placed in a cage 
with a new screener BL/6 mouse for 3 min. An aggressive CD1 mouse 
is defined as one that attacked the BL/6 mouse within the first minute 

over a minimum of 2 consecutive days. Only aggressive CD1 mice were 
used in defeats and social interaction tests. Defeats occurred over  
10 days, for which, each day, a BL/6 mouse was introduced to a new 
CD1 mouse’s cage for 10 min. Defeats were terminated early if severe 
injuries on BL/6 mice were observed. After 10 min, a clear plastic divider 
with perforations was placed in the middle of the defeat cage for 24 h, 
to physically separate the BL/6 and CD1 mice while allowing visual and 
odour cues to transmit and reinforce the defeat experience during 
co-housing. After the tenth day of defeat, BL/6 mice were singly housed 
in new cages (without CD1 mice) for 24 h before the social interaction 
test. For female defeats, female BL/6 mice were first coated with urine 
from other aggressive CD1 male mice (not used in defeats) before being  
introduced to the defeat CD1 mouse cage61, to minimize mounting 
behaviour and maximize defeats. Female defeats were terminated 
early if mounting was observed. For the control group, a BL/6 mouse 
was co-housed across from another conspecific across a divider for  
10 days without any physical interaction or defeats. On each day, a new 
BL/6 mouse pairing was introduced.

Social interaction test. The social interaction test took place 1 day 
after termination of CSDS (or the control procedure). BL/6 mice were 
habituated to the social interaction test room for 1 h before the test. The 
test was performed under red light (10 lx) in a test arena (custom made, 
42 cm (w) × 42 cm (d) × 42 cm (h)) in a sound attenuation chamber. Dur-
ing the first phase of the test, the BL/6 mouse was introduced to the test 
arena with an empty enclosure (10 cm (w) × 6.5 cm (d) × 42 cm (h)) at one 
end for 2.5 min, and its activity patterns were tracked using Ethovision 
(Noldus Information Technology). At the end of 2.5 min, the mouse was 
placed back in its home cage, and the empty enclosure was replaced with 
a second enclosure containing a new aggressive CD1 that had not been 
used in defeats. The BL/6 mouse was put back in the test arena for another 
2.5 min. The social interaction score, as a measure for social avoidance, 
was calculated as the time spent in the interaction zone (14 cm × 24 cm) 
with the aggressor present versus absent. The lower the social interac-
tion ratio, the more socially avoidant the animal was. The same test 
protocol was used for all experiments, except for when chemogenetic 
manipulations were performed during the social interaction test.

For chemogenetic manipulation during the social interaction test, 
the same surgery and social defeat procedures were used as before, and 
then we performed 2 days of social interaction tests. On day 1, mice were 
injected with saline (intraperitoneally (i.p.)) 20 min before the social 
interaction test. On day 2, mice were injected with CNO (i.p.) 20 min 
before the social interaction test. We performed the social interaction 
tests on two separate days to prevent habituation to the social interac-
tion test chamber.

Elevated plus maze. The elevated plus maze assay was performed an 
hour after the end of the social interaction test using an established 
protocol11. Briefly, mice were placed in a standard maze (height from 
the floor, 13.5 in; length of each arm type, 25 in; arm width, 2 in; closed 
arm height, 7 inches; height and width of ledges on the open arms, 
0.5 in; light over the open arms, 650 lx). Mice were positioned in the 
central region of the maze and allowed to explore for 15 min. Their 
behaviour was tracked and analysed using Ethovision (Noldus Infor-
mation Technology). Open arm time, as a measure for anxiety-related 
behaviour, was calculated as the percentage of time spent in the open 
arms of the maze.

Head-fixed SPT. Following recovery from head bar surgery, mice 
were habituated to the experimenter and the head-fixed set-up for 
15 min a day for a week. After habituation, mice were water-restricted 
to about 85–90% their ad lib body weight and were trained for 3 days 
to lick on the custom-designed dual-spout head-fixed reward delivery  
apparatus. On day 1, mice were introduced to 1 lick spout, from which 
sucrose rewards (10% sucrose, about 3.5 ml each) were intermittently 
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delivered following licking (that is, rewards were lick contingent) with 
8 s ITI, with a maximum of 150 rewards per session. Sucrose rewards 
were delivered using a solenoid-gated gravity feed. Licks were detected 
using a piezo element (SparkFun). Stimulus delivery and sensor reading 
were controlled using a custom Arduino MEGA board and recorded 
using CoolTerm software. On days 2 and 3, mice were introduced to 
2 lick spouts, one on each side of the mouse, separated by about 50°. 
Sucrose rewards were delivered in both spouts following licking with 
8 s ITI. The goal was to teach mice that rewards were delivered from 
both spouts. Thus, if a mouse showed preference for the spout on one 
side, that spout was temporarily removed so the mouse could learn to 
lick from the other spout. Once the animal showed similar preference 
for both spouts, lick training was completed and pre-defeat SPT was 
initiated on the following day. SPT occurred over the course of 2 con-
secutive days, during which one spout delivered water and the other 
delivered sucrose. Rewards were delivered following licking with 8 s 
ITI and a maximum of 150 rewards in total per day. The spout designa-
tion was randomized across mice on day 1 and counterbalanced on 
day 2. Sucrose preference was calculated as the averaged percentage 
of sucrose rewards obtained across 2 days. On completion of day 2 of 
pre-defeat SPT, mice were taken off water restriction and housed in a 
social defeat room for 3 days before CSDS began. Post-defeat SPT was 
performed using the same protocol, with the addition of Neuropixels 
recording. Post-defeat SPT was used for all analysis shown.

To control for the possibility that reward choice and intention 
signals were driven by differences in direction or action sequence 
(left versus right) coding, a separate cohort of mice were recorded 
using the same-reward SPT, in which, instead of delivering water or 
sucrose in the two lick spouts (different-reward SPT), both spouts 
delivered sucrose rewards. The rest of the experiments were the same 
as described above.

For chemogenetic manipulation during the SPT, 3 weeks after viral 
micro-infusion (see the section entitled Viral micro-infusion surgery), 
CSDS and control mice went through the same CSDS or control proce-
dure and social interaction test. On SPT days, saline (i.p.) was injected 
20 min before the first half of the SPT (maximum 75 trials). Then, CNO 
(i.p.) was injected 20 min before the second half of the SPT (maximum 
75 trials). The design allowed for within-animal within-session com-
parisons of behaviour and neural activity patterns before and after 
CNO injection.

Neuropixels recording and data preprocessing
Recording. Mice were head-fixed to the SPT apparatus without lick 
spouts present. Kwik-Sil was removed from the skull surface. Before 
insertion, Neuropixels 1.0 probes (IMEC) were first coated with DiI, DiO 
or DiD dyes (ThermoFisher Scientific) and allowed to dry. Probes were 
inserted at about 1 mm min−1 to the target coordinate using Sensapex 
manipulators. Probe targets and their coordinates are as follows: amyg-
dala (−1.71 mm AP, −0.28 mm ML, −6.5 mm DV, at 31.3° ML) and ventral 
hippocampus (−3.9 mm AP, −2 mm ML, −4.5 mm DV, at 25.8° ML). One 
or two probes were inserted per session per mouse. Simultaneously 
recorded probes were coated in the same colour of dye but spaced 
at least several hundred micrometres apart to allow for unambigu-
ous identification. Different colours of dyes were used across days to 
help differentiate probe tracks. After a probe reached the targeted DV 
site, it was left in place for 10 min before the start of recording, which 
includes 10 min of pre-task (no task stimulus) and SPT. Neuropixels 
action potential signals were recorded using Neuropixels acquisition 
system and SpikeGLX software (https://billkarsh.github.io/SpikeGLX/), 
at 30,000 Hz with gain of 500. Behavioural signals were recorded using 
a separate data acquisition board (National Instruments), along with a 
synchronization signal that was also recorded by Neuropixels to help 
synchronize clocks between different data streams. After each session 
of SPT, probes were slowly removed from the brain and the skull was 
covered with Kwik-Sil. Probes were cleaned using Tergazyme solution 

(1%, Alconox) overnight and rinsed using deionized water before reus-
ing or storage.

Histology and probe track registration. At the end of the experi-
ments, mice were transcardially perfused with 1× PBS followed by 4% 
paraformaldehyde solution. Brains were fixed overnight at 4 °C, and 
then transferred to 30% sucrose solution for 48 h. Brains were sectioned 
coronally using a microtome (Leica SM2000) at 50 μm thickness and 
mounted on glass slides with Fluoromount G with DAPI (Southern  
Biotech). Images were obtained using a confocal microscope (Nikon 
Ti2-E Crest LFOV Spinning Disk/C2 Confocal) with a 20× objective. 
Probe tracks were traced using the AllenCCF toolbox (https://github.
com/cortex-lab/allenCCF).

Spike-sorting. Neuropixels action potential signals were preprocessed 
and spike-sorted offline using Kilosort 2 (ref. 62) or Kilosort 4 (ref. 63), 
and after sorting, the clusters were manually validated using Phy64. 
Only well-isolated clusters (putative single units that are classified as 
‘Good’ using Phy) were analysed. All other clusters, including multi-unit 
activity and noise, were not analysed.

Data analysis
Animals were allowed to freely choose reward types after 8 s ITI had 
passed between trials, by licking at the spout of their choice. Reward 
deliveries were lick contingent. Trial types were defined as a ±4 s time 
window around the time of reward delivery. For all analyses, only ses-
sions with at least five neurons in the region of interest were used. For 
analysis during the pre-task period, we used min 2–8 of the 10 min 
pre-task recording period. For analysis during the task period, we used 
time windows specified in each figure. All data analysis were performed 
using custom codes in MATLAB and Python.

Behavioural data analysis
Behavioural classification of mice. The relationship between sucrose 
preference and social interaction ratio was assessed using a Pearson 
correlation. To classify CSDS mice into subtypes, we applied unsu-
pervised K-means clustering using both behavioural metrics, sucrose 
preference and social interaction ratio. The optimal number of clusters 
was determined by evaluating cluster numbers from 2 to 10 and maxi-
mizing the silhouette score.

Lick analysis. Lick rasters were generated by binning licks using 0.02-s 
bin size. Lick rates were calculated using 0.1-s bin size and averaged 
across trials per mouse for each trial type as specified in the figures. 
As mice tend to sample from both lick spouts in a trial (with them ulti
mately choosing and obtaining a reward from one), we computed 
the lick rate DI to assess their preference for licking at each spout. We 
first quantified the difference between lick rates on sucrose versus  
water lick spouts for sucrose choice trials (lick rate sucrose spout − lick 
rate water spout), and separately, the difference between lick rates on  
sucrose versus water lick spouts for water choice trials. The two values 
were then averaged to obtain the DI for that session. A DI value greater 
than 0 suggests a greater lick rate on the sucrose spout in comparison 
to the water spout, and vice versa for a DI value less than 0.

To take into account reward history and assess how it affects cur-
rent behaviour, we further divided sucrose and water trials into 
sucrose–sucrose (SS), water–sucrose (WS), water–water (WW) and 
sucrose–water (SW) trials (previous–current reward). The first trial of 
each session was discarded as it had no prior trial. To assess the prob-
ability of each trial type irrespective of the animal’s overall sucrose 
preference, we normalized the number of trials to the total number 
of previous trials of a specific type. For example, we defined the 
overall transition probability from a water trial to a sucrose trial as 
P(WS) = P(WS)/(P(WW) + P(WS)), and from a sucrose trial to a sucrose 
trial as P(SS) = P(SS)/(P(SW) + P(SS)), in which P(XY) is the transition 
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probability from reward X to reward Y. We normalized the transition 
probabilities such that P(WW) + P(WS) = 1, and P(SS) + P(SW) = 1. Using 
this normalization, if P(SW) is not significantly different from P(WW), 
this would suggest that the current water reward choice is independent 
of the previous reward, because of the probability of switching from 
sucrose or staying on water is the same; otherwise, the current reward 
choice is dependent on the previous reward (that is, reward choices 
could be modelled as a first-order Markovian process).

We also computed the proportion of each of the four trial types 
normalized to the total number of trials per session, to assess how 
much each trial type contributes to the overall session. In this case, 
the percentages of trials of each of the four trial types were computed 
per session and averaged across sessions for each mouse. As the number 
of trials may be influenced by each animal’s innate preference for differ-
ent rewards, we computed the chance probability of the occurrence of 
each trial type by calculating the joint probability of the previous and 
current trial. For example, chance P(SW) = P(S) × P(W). The number of 
trials was then subtracted by the chance level in each mouse (‘number of 
trials chance removed’). Sucrose–sucrose and water–water trials were 
combined when analysing stay trials, and sucrose–water and water–
sucrose trials were combined when analysing switch trials. The prefer-
ence between stay versus switch trials in each mouse was calculated as: 
percentage of stay trials − percentage of switch trials. To quantify the 
number of consecutive trials, we first obtained the average number of 
consecutive trials per trial type (sucrose or water) per session and then 
averaged across sessions for each mouse.

Decoding group identity using behavioural features. To examine 
whether group identity could be decoded using behavioural data, 
we defined a Mahalanobis-like binary decoder. Specifically, for each 
mouse, we considered four behavioural features: lick rate DI dur-
ing pre-reward and post-reward, elevated plus maze open arm time 
(CSDS mice showed increased anxiety-like behaviour5; Extended Data 
Fig. 1c), sucrose preference, and social interaction ratio. Considering 
two groups at a time, we defined and constructed a Mahalanobis binary 
decoder to assign a single testing mouse to one of the two groups in the 
behavioural feature space. The input to the binary classifier consisted 
of an N × F training matrix and a 1 × F testing matrix, in which N repre-
sents the total number of training mice between the two classes, and 
F = 4 represents the total number of features. In each cross-validation, 
we first balanced the number of mice in each group by randomly sub-
sampling the minimum number of mice between the groups. Next, 
we randomly selected one mouse as the testing sample and used the 
remaining mice as the training set, for a total of 1,000 cross-validations. 
We defined a Mahalanobis-like distance in the feature space as the 
Euclidean distance between the testing mouse and the centroid of the 
training groups, divided by the variance along the distance direction. 
The testing sample was assigned to the group identity with the mini-
mum Mahalanobis-like distance. The performance of the decoder was 
evaluated by calculating the fraction of correct classifications out of the 
total 1,000 cross-validations, and the entire procedure was repeated 
for all possible pairs of the three groups (that is, control, susceptible 
and resilient mice).

Pre-task spontaneous facial and limb feature analysis. For a subset 
of mice, we recorded spontaneous facial and limb movements during 
the pre-task period using the Alvium 1800 U-158 camera (Allied Vision) 
with the 16 mm C VIS-NIR Fixed Focal Length Lens (Edmund Optics), at 
frame rate of 114 frames per second, using the MATLAB Image Acqui-
sition Toolbox. We tracked 12 keypoints using DeepLabCut65. These 
include eye top, eye bottom, eye front, eye back, snout top, snout tip, 
snout bottom, whisker 1, whisker 2, mouth, left hand and right hand.

To quantify facial and limb movements, we calculated the following 
features from keypoints66: eye opening ratio, snout angle, mouth posi-
tion, whisker position, left limb X and Y coordinates. Eye opening ratio 

is defined as the ratio between the vertical and horizontal Euclidean 
distance of the eye (that is, (eye top − eye bottom)/(eye front − eye 
back)). An eye opening ratio of 1 represents a perfectly spherical opened 
eye. Snout angle is calculated as the angle formed by the vector of snout 
tip to snout top, and the vector of snout tip to snout bottom. A smaller 
angle represents a more pointed snout. The mouth position is calcu-
lated as the Euclidean distance between the mouth and the eye front. 
The whisker position is calculated as the Euclidean distance between 
whisker 1 and the eye front.

Analysis of embedding dimensionality of face and limb features. 
We used PCA to assess the embedding dimensionality of facial and limb 
features over time for each mouse. We examined the facial and limb 
features in a 250-ms bin during the 6-min window (min 2–8) within 
the 10 min pre-task recording period. We define the feature space as 
a six-dimensional space in which each axis is the value of one facial 
and limb feature. The PCA analysis allowed us to identify how much 
variance of these features in the feature space is accounted for by each 
principal component (PC). We applied PCA to the K × T matrix, for which 
K = 6 is the number of facial and limb features, and T is the number of 
bins, and we determined the cumulative curve of the variance explained 
by each PC. We subsequently used the cumulative variance values for 
the first three PCs as features to decode the group identity.

HMM for face and limb features. We fitted HMMs to facial and limb 
features recorded in a 250-ms bin during 6 min (min 2–8) of pre-task 
recording. The HMM identifies patterns of behaviour along time, with 
each pattern corresponding to a specific behavioural state, defined by 
the combination of the six facial and limb features, that is not directly 
measurable. We fitted an HMM separately for each mouse using the 
same software framework developed by the Linderman Lab (https://
github.com/lindermanlab/ssm) we used to analyse neural data. The 
input data for the HMM consisted of a K × T matrix, for which K = 6 rep-
resents the total number of facial and limb features in the session, and 
T represents the total number of time bins, and we assumed a Gaussian 
model as the observation model. For each time series, we fitted 5 models 
with a maximum of 100 iterations for each value of the total number of 
states ranging from 2 up to 100, using randomized initial conditions. 
The model with the smallest Akaike information criterion score was 
retained as the best model for further analyses.

Agglomerative clustering analysis for HMM behavioural states. 
To better characterize the spatial structure of the HMM states in the 
facial and limb features space, we examined the pairwise correlation 
between the states. For state 1 defined by X = (x1, x2,…, xK), in which xi is 
the value of the feature i, and state 2 defined by Y = (y1, y2,…, yK), we com-
puted the Pearson correlation coefficient ρ(X,Y) to assess the distance 
between the states in the facial and limb feature space. We calculated 
the correlation coefficients for all pairs of total N states and stored 
them in an N × N correlation matrix J. Subsequently, we performed 
agglomerative clustering on the correlation matrix. Specifically, we 
defined a new distance matrix D as 1 − J, in which 1 is an N × N matrix of 
ones. This matrix served as the input to the agglomerative clustering 
algorithm, which iteratively combines states to define new clusters 
according to the pairwise distance. The algorithm initialized each state 
as a separate cluster with minimum distance (maximum correlation) 
and iteratively merged two clusters v and u with the smallest distance 
into a new cluster. The new distance d assigned to the agglomerated 
clusters was defined as d(u,v) = max(dist(u[p], v[q])), in which p and q 
represent all of the points in the merged clusters u and v, also known as 
the farthest point algorithm (sklearn.cluster.AgglomerativeClustering, 
built-in class in scikit-learn in Python67). Agglomerative clustering has 
the advantage of producing a hierarchical structure of clusters, and this 
hierarchical representation allowed us to examine the relationships and  
similarities between states, specifically how behavioural states may be 
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nested differently within large clusters in different groups (for cluster-
ing analysis on neural data, see also the section entitled Agglomera-
tive clustering analysis). Agglomerative clustering does not require 
any assumption regarding the total number of clusters. It iteratively 
merges the closest states and clusters until all states are merged into 
one final cluster. We performed the clustering analysis separately for 
each mouse. After examining the clusters, we counted the total num-
ber of clusters at different levels of distance, or thresholds, for which 
the higher the levels of distance, the lower the number of clusters, 
until reaching only one cluster at the highest distance. We assessed the 
number of total clusters and the proportion of total clusters retained 
relative to the total number of states as a function of thresholds. A 
higher number of states at the same threshold value indicates a greater 
degree of dissimilarity among the inferred hidden states. We retained 
the proportion of total clusters along these curves from a threshold of 
0.01 up to 0.05, because of the high facial and limb feature correlation 
values between inferred states, resulting in a total of five features that 
were subsequently used in the decoding of group identity.

Decoding group identity using facial and limb features. This analy-
sis aimed to decode the group identity (that is, control, susceptible 
or resilient) on a single-mouse basis by analysing the facial and limb 
features recorded during 6 min of the pre-task period. For each mouse, 
we assessed the embedding dimensionality using PCA (see the sec-
tion entitled Analysis of embedding dimensionality of face and limb 
features), and we considered the cumulative variance explained by the 
first three PCs as features for decoding. Following the inference of hid-
den states and the clustering analysis, we calculated the proportion of 
clusters retained at different thresholds and extracted the values at five 
distinct thresholds (see the section entitled Agglomerative clustering 
analysis for HMM behavioural states). Additionally, we computed the 
mean and standard deviation of the facial and limb features as the last 
two features. Overall, we assessed a total of F = 10 features for each 
mouse. We used the Mahalanobis binary decoder procedure, in which 
the input to the binary classifier consisted of an N × F training matrix and 
a 1 × F testing matrix, in which N represents the total number of training 
mice between the two classes, and F = 10 represents the total number 
of features (see the section entitled Decoding group identity using 
behavioural features). The decoder was trained and tested for 1,000 
iterations, with a new random testing subject selected and removed 
from the training set for each of them.

Neural feature decoding when facial and limb feature decoding 
is at chance. We compared neural to facial and limb feature decod-
ing accuracy during only the time bins when facial and limb decoding 
accuracy is at chance to assess how well a decoder using neural fea-
tures (see the section entitled Decoding group identity using neural 
features) performs even when facial and limb feature decoding is at 
chance level. Specifically, we trained an SVM with a linear kernel on 
the six facial and limb features to differentiate between control versus 
susceptible mice in a subset of 10 randomly selected 1-s bins of training 
mice and tested on the pre-task time window of 6 min (min 2–8, 360 
time bins total) of one held-out testing mouse. We then selected the 
test time bins when facial and limb decoding accuracy is within 1 or 
2 s.d. of the chance level (0.5), obtained from the distribution accura-
cies of 100 null models after shuffling the labels. In these same time 
bins for which the classification based on facial and limb features is at 
chance, we performed decoding of control versus susceptible mice 
using neural activity of BLA.

Contribution of facial and limb movements to neural activity in 
the BLA. We investigated whether the facial and limb features con-
tributed to BLA neural activity during the pre-task period. We fitted  
facial and limb features to neural activity (firing rate) using linear regres
sion in each mouse separately. We binned neural and facial and limb 

feature data using a 1 s time window (total of T = 360 bins) and defined 
our model as Y = AXT + β, in which Y is an N × T matrix with the firing rate 
of N recorded neurons, A is an N × K matrix with the regression coeffi-
cients of K = 6 facial and limb features, and X is a T × K matrix with the 
K facial and limb features values. β is the intercept (a constant). Before 
fitting, the data were centred to zero. We used the linear least square 
error as a loss function and added an L2-norm regularization term to 
prevent overfitting. We tried a range of values for the L2-norm regulari-
zation term, ranging from 0 (equivalent to ordinary least squares) to 
103, with no significant difference in the final coefficient of determina-
tion (R2) estimate.

We did not find a positive R2 from any of the linear models, sug-
gesting that using facial and limb features that we recorded, we could 
not predict BLA neural activity better than chance. In other words, 
these facial and limb features are unlikely to contribute significantly 
to BLA neural activity, and consequently, any group differences that 
we observed.

Single-neuron analysis
Firing rate. For task period, spike trains were aligned at the time of  
reward delivery (time 0) and neurons within the same region were 
pooled across animals of the same group to construct pseudo- 
populations. Only neurons with at least ten trials per trial type (sucrose 
and water) were included. For peristimulus time histograms, spikes 
were binned at 10-ms resolution, z-scored to pre-reward (−1 to 0 s), 
and smoothed with a 50-ms moving average filter. For analysis of raw 
firing rates, spikes were binned at 500-ms resolution.

Reward-choice-selective neurons. Analysis was performed using 
pseudo-population and only neurons with at least ten trials per trial type 
(sucrose and water) were included. Mice with fewer than five neurons in 
regions of interest were excluded. Reward-choice-selective cells were 
identified68,69, and the magnitude of the selectivity was quantified, 
using the auROC method, which compares single-neuron firing rates 
between trial types, across levels of response thresholds for each time 
bin. Spikes were binned at 500-ms resolution. Shuffled distributions 
were computed for each time bin by randomly shuffling trial type ten 
times per neuron. A neuron is deemed reward choice selective if its au-
ROC is >2 s.d. of the shuffled distribution for that neuron. The fraction 
of selective neurons in a region was calculated as: number of selective 
neurons/total number of neurons. Differences in the fraction of selec-
tive neurons across groups were assessed using Fisher’s exact tests.

Intention-modulated neurons. Analysis was performed using 
pseudo-population and only neurons with at least ten trials per trial 
type (switch and stay) were included. Intention-modulated neurons 
were identified using a similar method as reward-modulated neurons. 
Mice with fewer than five neurons in regions of interest were excluded. 
In this case, a cell is deemed intention-modulated if the distribution of 
firing rates during the 4 s pre-reward period (−4 to 0 s) in switch trials 
is significantly different from stay trials, as identified using Wilcoxon 
rank-sum test followed by false discovery rate correction across all 
neurons in that group (P < 0.05). As the fraction of neurons was small 
and did not meet the criteria for using Chi-squared test, Fisher’s exact 
tests were used to perform statistical comparisons between percent-
ages of intention-modulated neurons across groups.

Population analysis
Analysis of embedding dimensionality. PCA was used to evaluate the 
embedding dimensionality of population activity of simultaneously 
recorded neurons over time. The method aims to identify how much 
variance of the population representation in the firing rate space is 
accounted for by each PC. We chose this method because the pre-task 
period lacks behavioural labels. PCA has the advantage of allowing 
us to compare neural data between animals because the method is 



invariant for rotations and global stretching, transformations normally 
needed to align a neural representation of one subject into another. 
We examined the activity of each neuron in 1-s bins during the 6 min 
time window (min 2–8) within the 10 min pre-task recording period, 
resulting in 360 bins. The ensemble activity across these bins can be 
represented as a geometrical object in the firing space, with each axis 
representing the firing rate of a neuron and each point representing the 
ensemble’s activity in a time bin. We calculated the embedding dimen-
sionality of this geometrical object for each mouse. We included only 
mice with at least five simultaneously recorded neurons in the region 
of interest during the pre-task recording. We randomly selected five 
neurons for each mouse and calculated the z-scored firing rate matrix 
N × T, in which N is the number of neurons, and T is the number of time 
bins. We applied PCA to this matrix and determined the cumulative 
curve of the variance explained by each PC. We repeated this procedure 
1,000 times and averaged the results across the subsamples for each 
mouse. Our goal was to compare cumulative variance curves across 
groups and determine whether a group had a higher cumulative value 
at M PCs (M ≤ 5), indicating a lower dimensionality of the geometrical 
object. We subsequently used the cumulative variance values for the 
first three PCs as features to decode the group identity.

We also assessed the participation ratio (PR), which is a normalized 
measure of dimensionality based on the full distribution of PCA eigen-
values (that is, how much variance is explained by each PC), and it is 
defined as:
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in which λi are the eigenvalues of the covariance matrix of the neural 
activity, and N = 5. If only one eigenvalue explains all of the variance (λi ≠ 0 
for i = 1 and λi = 0 for all i ≥ 2), then PR = 1. On the other hand, if all eigen-
values are equal, the dimensionality is maximum, PR = N (refs. 70,71).

During the task period, the same analysis was repeated during the 
1 s of pre-reward and post-reward periods, using a z-scored firing rate 
with 0.2-s bins (5 bins for each period).

HMM. We used HMMs to identify patterns of population activity in the 
time series, with each pattern corresponding to a specific neural state 
that is not directly measurable38,40,72. We fitted an HMM separately for 
each mouse for the pre-task and task period. For the DREADD dataset, 
HMMs were fitted for saline and CNO periods of each mouse separately. 
To perform model fitting, we used the software framework developed 
by the Linderman Lab (https://github.com/lindermanlab/ssm).

To prepare the data for the HMM analysis, we binned the 6-min 
pre-task recordings of each session into 1-s bins, resulting in 360 bins. 
We computed the spike count of each neuron in each bin. The input 
data for the HMM consisted of an N × T matrix, in which N represents 
the total number of simultaneously recorded neurons in the session, 
and T represents the total number of time bins.

For the analysis during the task in the pre-reward and post-reward 
periods, we computed the spike count in 0.2-s time bins. We fitted 
separate HMMs for the pre-reward and post-reward periods for sucrose 
and water trials. To accomplish this, we concatenated the M trials within 
a single session and arranged the input data in an N × T × M matrix, for 
which T = 5. We chose the bin size of 0.2 s, because this bin size balanced 
the inference of maximum possible transition states and total spike 
count used to fit HMMs.

For decoding of switch versus stay using HMM states, we focused on 
the 4 s pre-reward period. Spike counts were binned using a 1-s bin size, 
and concatenated across the 4-s window of all trial types. This resulted 
in an N × T × M input matrix, for which T = 4, and M represents the total 
number of recorded trials in the session. Consistent with previous 
analyses, in our analysis, we retained only sessions with at least five 
simultaneously recorded neurons.

Given the recorded (observed) spike count over time, we modelled 
the neuronal activity as a Poisson process, with the mean value depend-
ent on the current neural state. We represented the probability of 
observing the spike count vector n(t) of N neurons at time bin t, given 
the hidden neural state St = j, as being distributed as a multivariate Pois-
son process: P (nt | St = j) ~ Poisson(Λ; nt), where ∼ denotes ‘distributed 
as’. Here, Λ = {λ1, λ2, … λN}, and λi represents the estimated mean activity 
for the ith neuron in state j. The vector Λ corresponds to the column of 
the N × K ‘emission matrix’ E, which provides the firing rates or activa-
tion probabilities of observing a specific neuronal pattern when the 
population activity is in a particular state.

We assumed the dynamics of the neural states to evolve according to 
a first-order Markovian process, for which the probability of transition-
ing from one state to another depends only on the current state. This 
process is summarized by the K × K ‘transition probability’ matrix T. 
Additionally, we incorporated an initialization vector A, which provides 
the probability of starting in each state. The HMM was fully described by 
the set of parameters {E, T, A}, which were inferred by fitting the model 
to the recorded neuronal spike counts73. We used the Baum–Welch 
expectation-maximization algorithm to update the model parameters 
and maximize the likelihood of the observed data. For each time series, 
we fitted 5 models with a maximum of 100 iterations for each value of 
the total number of states ranging from 2 up to 50, using randomized 
initial conditions. The model with the smallest Akaike information 
criterion score was retained as the best model for further analyses38. 
Subsequently, we used the Viterbi algorithm to estimate the most likely 
sequence of states over time.

Agglomerative clustering analysis. To better characterize the spatial 
structure of the hidden states, we examined the pairwise correlation 
between the inferred activity of the states. For state 1 with an activity 
vector X = (x1, x2, …, xN), in which xi represents the activity of neuron i, 
and state 2 with an activity vector Y = (y1, y2,…, yN), we computed the 
Pearson correlation coefficient ρ(X,Y) to assess the distance between 
the states in the neuronal activity space. We calculated the correlation 
coefficients for all pairs of states and stored them in an N × N correla-
tion matrix K. Subsequently, we performed agglomerative clustering 
on the correlation matrix.

Specifically, we defined a new distance matrix D as 1 − K, in which 1 is 
an N × N matrix of ones. This matrix served as the input to the agglom-
erative clustering algorithm, which iteratively combines states to define 
new clusters according to the pairwise distance. The algorithm initial-
ized each state as a separate cluster with minimum distance (maxi-
mum correlation) and iteratively merged two clusters v and u with the 
smallest distance into a new cluster. The new distance d assigned to the 
agglomerated clusters was defined as d(u,v) = max(dist(u[p], v[q])), in 
which p and q represent all of the points in the merged clusters u and v, 
also known as the farthest point algorithm. Agglomerative clustering 
has the advantage of producing a hierarchical structure of clusters, 
which we represented as a dendrogram. This hierarchical representa-
tion allowed us to examine the relationships and similarities between 
states, specifically how neural states may be nested differently within 
large clusters in different groups. Agglomerative clustering does not 
require any assumption regarding the total number of clusters. It itera-
tively merges the closest states and clusters until all states are merged 
into one final cluster. We performed the clustering analysis separately 
for each mouse, visualizing the results with a dendrogram that sum-
marizes the merging of clusters at different levels of distance, ranging 
from 0 (original states) to 1 (a single cluster).

After examining the clusters, we counted the total number of clusters 
at different levels of distance, or thresholds, for which the higher the 
levels of distance, the lower the number of clusters, until reaching only 
one cluster at the highest distance. We assessed the curves of the num-
ber of total clusters and the proportion of total clusters retained relative 
to the total number of states as a function of thresholds. Comparing 
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these curves between two groups, a higher number of states at the 
same threshold value indicates a greater degree of dissimilarity among 
the inferred states. We retained the proportion of total clusters along 
these curves from a threshold of 0.1 up to 0.5, resulting in a total of five 
features that were subsequently used in the decoding of group identity.

We applied the clustering analysis to the pre-task activity using the 
previously inferred states described in the section entitled HMM, as 
well as to the pre-reward and post-reward task periods for water and 
sucrose trials separately.

Correlation of population activity across time. To examine how vari-
able population activity was across time during the pre-task period, 
we performed Pearson correlation on population vectors of neuron 
firing rates across all time bins (1-s bins). The correlation values were 
then averaged to assess differences between groups.

Decoding group identity using neural features (dimensionality, 
hidden states, firing rates). This analysis aimed to decode the group 
identity (that is, control, susceptible or resilient groups, or saline versus 
CNO groups for the DREADD experiment) on a single-mouse basis by 
analysing the pre-task activity, for which no behavioural labels were 
available. As described in the section entitled Analysis of embedding 
dimensionality, the pre-task activity can be represented as a geometri-
cal object in the firing space, with each axis representing the firing rate 
of a neuron and each point in the space representing the activity of the 
neuronal ensemble in each time bin. We sought features that character-
ized the representational object and were invariant to rotations and 
scaling transformations, or a subset of these transformations, ensuring 
shape invariance of the object.

We included only mice with at least five neurons simultaneously 
recorded during the pre-task period. For each mouse, we computed 
the cumulative variance explained across the PCs (for more details, 
see the section entitled Analysis of embedding dimensionality). We 
considered the cumulative values of the first three PCs as features for 
decoding. Following the inference of hidden states and the clustering 
analysis, we calculated the proportion of clusters retained at different 
thresholds and extracted the values at five distinct thresholds (see the 
section entitled Agglomerative clustering analysis). Additionally, we 
computed the mean and standard deviation of the spike count as the 
last two features. All of the neural features were computed using 1-s 
bins to optimize the final decoding performance. Overall, we assessed 
a total of 10 neural features for each mouse.

We used the same Mahalanobis binary decoder procedure as previ-
ously described in the section entitled Decoding group identity using 
behavioural features. Specifically in this case, the input to the binary 
classifier consisted of an N × F training matrix and a 1 × F testing matrix, 
in which N represents the total number of training mice between the two 
classes, and F = 10 represents the total number of features. Before run-
ning the classification algorithm, we preprocessed the input matrices 
by applying a minimum–maximum scaler to the mean and standard 
deviation of the spike count, ensuring that all features were scaled 
between 0 and 1 (because the PC cumulative variance and fraction 
of HMM clusters are defined between 0 and 1 by construction). The 
decoder was trained and tested for 1,000 iterations, with a new ran-
dom testing subject selected and removed from the training set for 
each of them.

The same decoder procedure was also applied during the pre-reward 
and post-reward periods of the task. For the decoding using vCA1 activ-
ity, the training set was defined as 20% of the total number of mice 
owing to the initial larger sample size.

Neural population decoding. As in a previously described method31, 
a linear SVM classifier was trained to classify patterns of activity into 
two discrete categories. Results are reported as the generalized per-
formance of the decoder using cross-validation with a 80:20 training/

testing split. Patterns of activity are defined as the mean firing rate 
during 0.5-s non-overlapping time bins. Pseudo-population record-
ings were generated by combining all neurons within the same region 
and the same group. As it is well known that neural activity in previ-
ous trials could strongly influence activity in current trials74, for all 
pseudo-population decoding analyses, we balanced the number of 
trials of each trial type by taking into account both the previous and cur-
rent trial types. In other words, we have equal numbers of water–water, 
sucrose–sucrose, water–sucrose and sucrose–water trials (previous–
current trials, respectively). Only neurons with at least eight trials per 
each of the four trial types were included.

To decode current reward, we combined equal numbers of water–
water and sucrose–water trials for water trials, and similarly, equal 
numbers of sucrose–sucrose and water–sucrose trials for sucrose 
trials. To decode previous reward, we combined equal numbers of 
water–water and water–sucrose trials for water trials, and similarly, 
equal numbers of sucrose–water and sucrose–sucrose trials for sucrose 
trials. To decode intention (stay versus switch), we combined equal 
numbers of sucrose–sucrose and water–water trials for stay trials, 
and similarly, equal numbers of sucrose–water and water–sucrose 
trials for switch trials. We balanced the previous and current reward 
values when defining switch and stay trials to rule out the confound 
of reward choices on intention. In other words, the intention signal 
that we define here is an intention to switch away or stay on the same 
reward as the previous trial, irrespective of the specific reward value.

To control for the possibility that differences in direction or action 
sequence (left versus right) coding contributed to reward choice or 
intention coding, we performed decoding in mice that were given the 
same value reward in the two lick spouts (same-reward SPT; for more 
details, see the section entitled Head-fixed SPT). All decoding proce-
dures are the same.

As each group may have different number of cells and trials, we used 
subsampling procedures to randomly subsample cells (60 neurons 
for both BLA and vCA1), and within those cells, randomly subsample 
trials equal to the group with the smallest number of trials. The result-
ing dataset was used to train SVM and obtain cross-validated decod-
ing accuracies. For each set of subsampled cells, decoding accuracies 
across random subsampling of trials (repeated ten times) were averaged 
to obtain a single sample of decoding accuracy. We repeated the whole 
procedure ten times to obtain statistical comparisons across groups 
and against shuffled distribution.

For within-time-bin decoding, SVMs were trained using data from 
one time bin and tested using held-out data from the same time bin. 
For cross-time-bin decoding, SVMs were trained using data from one 
time bin and tested using data from the other time bins.

To control for the possibility that differences in lick rates contributed 
to differences in decoding accuracy for reward choice, we performed 
additional analysis in which we equalized the lick rates by using only 
trials with the same lick rates between groups for decoding. Specifically, 
for susceptible and resilient mice, we analysed only those trials with lick 
rates within 3–14 Hz in both groups, whereas for saline and CNO mice, 
we analysed those trials with lick rates within 3–10 Hz in both groups.

For statistical comparisons, decoding accuracy during pre-reward 
(−4 to −3 s) and post-reward (0 to 1 s) periods was averaged. If the mean 
decoding accuracy in a group was significantly higher than 2 s.d. of its 
respective mean shuffled distribution, we then performed additional 
between-group comparisons (two-way comparison: Mann–Whitney 
test; three-way comparison: Kruskal–Wallis test followed by Dunn’s 
multiple comparisons test).

Decoding switch versus stay using HMM states. In addition to using 
recorded firing rates during the 4 s pre-reward window to decode switch 
versus stay, we also trained separate decoders using the smoothed activ
ity of the hidden states inferred by the HMMs. This approach uniquely 
allowed us to identify population hidden states within this time window, 



and specifically those states that may be intention selective, which can 
then be artificially manipulated to assess their necessity in decoding. 
It is important to note that the training of the HMM was performed on 
concatenated trials, which includes the four 1-s bins pre-reward across 
all trial types. We then rearranged the sequence of hidden states in each 
trial type a posteriori.

Once the parameters of the HMMs were inferred, the models could 
smooth the observed data by computing the mean observed activity 
under the posterior distribution of hidden states39. For instance, given 
the observed activity vector X during a time bin of a trial pre-reward, 
the HMM inferred a 0.2 probability of being in state S = 1 and a 0.8 prob-
ability of staying in state S = 2. More precisely, P(S = 1 | X) = 0.2, and 
P(S = 2 | X) = 0.8. The smoothed observations used to train and test the 
linear decoder were calculated as Y = 0.2μ1 + 0.8μ2, in which μj represents 
the inferred mean for the observations in state j. Figure 3h is an example 
spike raster of 15 simultaneously recorded neurons in two switch and 
two stay trials during 4 s pre-reward from one representative mouse. 
The different colour-shaded areas are different HMM hidden states, 
with coloured lines showing the posterior probability for each state.

To ensure robustness, we randomly sampled 60 neurons from each 
mouse for 10 neuronal subsamples. We generated 1,000 pseudo-trials 
for each of the 4 trial types, resulting in a total of 4,000 pseudo-trials 
for the training and testing sets, separately. The input data to train and 
test the decoder consisted of the smoothed activity assigned to each 
time bin. We trained and tested a SVM classifier with a linear kernel, 
similar to the approach used in the population decoding using original 
firing rates, to decode switch versus stay. In each cross-validation itera-
tion, we randomly selected 100 pseudo-trials as the training set and 20 
pseudo-trials as the testing set, for a total of 100 cross-validations. The 
final decoder accuracy was computed as the average across neuronal 
subsamples and cross-validations.

To assess the significance of the decoding signal, we compared it 
to a chance level, defined as 2 s.d. around the theoretical mean of the 
distribution of accuracies obtained after 100 shuffles of the labels.

Defining intention-selective states. We conducted a detailed analy-
sis of the distribution of hidden states across trial types to identify 
intention-selective states. For each mouse, we computed the fraction 
of occurrence of each hidden state within the 4-s bins pre-reward across 
all trials. This distribution was then normalized to the total number of 
trials multiplied by the number of bins. We assessed this normalized 
distribution separately for each trial type.

Consistent with the decoding results, we observed that certain 
states appeared exclusively in either the stay or switch trials, with no 
occurrences in the other trial types. To quantify the amount of infor-
mation each state held for the intention value (that is, stay or switch), 
we computed the Shannon entropy75. Specifically, for a given state, 
we normalized its occurrence frequency in each trial type to the total 
number of trials. The entropy of each state for the intention value was 
calculated using the following formula:

H P P P P= − [ × log( ) + × log( )]state switch switch stay stay

in which Pswitch is the occurrence frequency of the state in switch trials 
(water–sucrose, sucrose–water) and Pstay = 1 − Pswitch. An entropy value 
of 0 indicates that the state provides highly informative signals for the 
intention to switch or stay. Therefore, we defined an intention-selective 
state as one with an entropy value of 0 for the intention value.

To decode the intention of switch/stay using hidden states, we first 
examined the distribution of the fraction of intention-selective states at 
different clustering thresholds for each mouse, and selected a threshold 
that yielded the highest number of intention-selective states. We then 
used the inferred firing rates from these identified intention-selective 
states to train a linear decoder for classifying the intention of mice to 
switch or stay.

To compare the fraction of intention-selective states across groups, 
we calculated the fraction of the intention-selective states out of the 
total number of hidden states using the first four clustering thresholds 
(ranging from 0.1 up to 0.4, stepped by 0.1), and compared the result-
ing distribution.

To examine the necessity and sufficiency of intention-selective states, 
we first excluded trials that contained intention-selective states in at 
least three time bins pre-reward. In the opposite approach, we enhanced 
the presence of intention-selective states in the decoding procedure by 
considering only those trials that included intention states in at least 
three time bins before the reward delivery.

Generalization of susceptible versus resilient decoder to saline 
versus CNO. We trained an SVM with a linear kernel to classify whether 
an animal is susceptible or resilient in the feature space defined by the 
three behavioural features (sucrose preference, and lick rate DI in the 
pre- and post-reward) and the four neural features (reward decoding 
accuracy in the pre- and post-reward, the intention decoding accuracy 
pre-reward using raw firing rates, and the intention accuracy pre-reward 
using HMM states). We used one held-out mouse as a testing sample, 
and the remaining ones as the training set, after balancing the number 
of training samples per each class. We repeated this procedure for a 
total of 1,000 cross-validations. We subsequently tested the gener-
alization performance of the decoder in classifying new susceptible 
mice, not used for training, before and after the treatment of CNO. We 
assessed the significance of the average decoding performance across 
the 1,000 cross-validations with respect to a chance interval defined 
as 2 s.d. around the chance level of 0.5 of the distribution accuracies 
obtained from 100 shuffles of the labels.

Decoding group identity of susceptible versus resilient mice using  
behavioural and neural features. We trained an SVM with a linear 
kernel to classify the group identity (control, susceptible and resilient) 
using neural signatures of the task phase, specifically reward choice 
decoding performance during the pre- and post-reward period, and the 
fraction of intention-selective states (see the section entitled Defining 
intention-selective states). We used one held-out mouse as a testing 
sample, and the remaining ones as the training set, after balancing the 
number of training samples per group. We repeated this procedure for 
1,000 cross-validations. We compared the average decoding perfor-
mance across the 1,000 cross-validations to a chance interval defined 
as 2 s.d. around the chance level of 0.5 of the distribution accuracies 
obtained from 100 shuffles of the labels.

MDS. To visualize the geometric structure of the data, we used 
multi-dimensional scaling (MDS) transformation to obtain a 
low-dimensional representation of the data. For pre-task data, we 
started with the N × F matrix used for the Mahalanobis decoder, in 
which N represents the total number of subjects across all three groups, 
and F denotes the number of features used for decoding the group 
identity. Before the dimensionality reduction analysis, we normalized 
each group’s data by its variance to reduce noise and enhance the clarity 
of the final visualization. Next, we performed a diagonalization of the 
dissimilarity matrix N × N, which contained the Euclidean distances 
between each pair of subjects in the feature space. We used the same 
procedure for the task period. In these cases, the input matrix was a 
T × N matrix, in which T represents the total number of pseudo-trials, 
and N denotes the number of neurons. In the example MDS plots, each 
point is the average firing rate across neurons during the specified time 
window for the specified trial type, with n = 1 subsampling, 60 neurons, 
1,000 pseudo-trials per condition.
Inter-regional connectivity. vCA1–BLA connectivity during pre-task 
period. We computed the firing rates of each recorded neuron in 1-s 
bins within the same region (BLA and vCA1) during a 6-min window 
(min 2–8) of pre-task recording. We set a minimum of five neurons 
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simultaneously recorded in both BLA and vCA1. Given the matrix N × T, 
in which N denotes the number of neurons, and T denotes the number of 
time bins, we computed the PCs of this matrix for each area, separately. 
We subsequently aligned the neural dynamics of the first PC between 
the two simultaneously recorded signals by using canonical correlation 
analysis (CCA). CCA is a linear transformation used to find common 
patterns between two signals defined in two different spaces, with 
the goal of maximizing their correlation. Given two matrices X∈ℝNxT 
and Y∈ℝMxT, in which N and M are the numbers of variables and T is the 
number of time bins, CCA finds linear combinations U and V of the 
features in X and Y such that,

U a X= ,T

V b Y= ,T

for which the coefficients a∈ℝNx1 and b∈ℝMx1 are chosen to maximize 
the correlation between U and V. We refer to U and V as canonical com-
ponents for BLA and vCA1, respectively. We subsequently analysed the 
cross-correlogram between the first canonical component of BLA and 
vCA1 with time lags from (−50, +50) s and its corresponding power spec-
tral density. We computed the power spectral density from the squared 
magnitude of the fast Fourier transform coefficients76 divided by the 
length of the input signal. We used the frequency at which the power 
spectral density peaked as an estimate of the dominant frequency of 
the oscillations between BLA and vCA1. The highest frequency we could 
access is determined by the Nyquist frequency f = fs/2 = 0.5 Hz, in which 
fs is the sampling frequency that in our case is 1 Hz. We tested smaller 
time bin sizes and chose 1-s bins (hence 1 Hz sampling frequency) owing 
to low firing rates during the pre-task period, which would otherwise 
result in many bins with 0 spikes per second.
vCA1–BLA correlation during pre-reward period. Given the shorter 
time window during the task period, we could not use the same CCA 
analysis. Therefore, to analyse the vCA1–BLA interaction before reward, 
we computed the correlation of regional average firing rates between 
simultaneously recorded neurons in the two regions. Specifically, firing 
rates (10-ms bins) were averaged across all simultaneously recorded 
neurons in each mouse within the same region (BLA and vCA1). Then 
Pearson correlation was computed across simultaneously recorded 
regions within each 1-s time window. The correlation was performed 
for each trial type (sucrose, water, switch, stay) separately, and Pear-
son correlation r was transformed to Fisher z to make it normally dis-
tributed. To assess how different the inter-regional correlation is in 
sucrose versus water trials for each animal, we calculated the change 
in correlation (corrsucrose − corrwater).
vCA1–BLA correlation during intention-selective states. We sub-
sequently studied the functional connectivity between BLA and vCA1 
in susceptible mice during the presence of intention states in the 4 s 
before reward delivery. We started by selecting time bins (1 s) for which 
the intention states were detected in BLA (‘intention-selective’) (see the 
section entitled Defining intention-selective states), and those bins 
without intention states (‘non-intention-selective’). We then analysed 
the neural activity of simultaneously recorded BLA and vCA1 neurons 
during these inferred states, comparing the correlation between the 
two regions during intention-selective versus non-intention-selective 
states. We randomly sampled five neurons from each state in BLA and 
vCA1 and defined the activity matrices X(area)∈ℝNxK and Y(area)∈ℝNxL, for 
which N = 5 is the number of simultaneously recorded neurons, area is 
BLA or vCA1, and K and L are the number of intention and no-intention 
bins, respectively, for a total of four activity matrices. We computed 
the PCs of each of the four matrices as a denoising procedure and sub-
sequently assessed the Pearson correlation between BLA and vCA1 in 
each of the first five PCs for each mouse, for intention-selective and 
non-intention-selective bins separately. We repeated the above pro-
cedure 1,000 times, each iteration with different neuron sampling 

from each brain area, and we computed the average correlation across 
different sampling.

Statistical analysis
No statistical tests were used to predetermine sample size, but the 
sample sizes used are similar to those generally used within the field5. 
All tests were two-tailed. Data were analysed using parametric one- 
or two-way repeated measures ANOVA, or paired t-test. In cases in 
which it was appropriate, ANOVA was followed by post hoc pairwise 
comparisons with corrections for multiple comparisons. If data 
were significantly non-normal (with α = 0.05), non-parametric tests 
were used, including the Kruskal–Wallis test or the Mann–Whitney 
test (between-group comparisons) and Wilcoxon signed-rank test 
(within-group comparisons), and if appropriate, followed by post hoc 
comparisons with corrections for multiple comparisons. Categorical 
data were assessed using chi-squared, or Fisher’s exact test if sample 
size was <5. When comparing to chance, data were considered signifi-
cant if they were outside 2 s.d. of chance distribution centred around 
the theoretical chance level (marked by hash symbols on figures). 
Statistical comparisons between groups were performed for groups 
that were significantly different from respective chance distribution. 
Statistical analyses were performed using Graphpad Prism V10.

Statistics and reproducibility
All experiments were repeated across a minimum of two independent 
cohorts and showed similar results.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All source data are provided with this paper. The raw electrophysiol-
ogy data will be provided upon request to the corresponding author.

Code availability
All analysis code is provided at https://github.com/mkheirbek.
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Extended Data Fig. 1 | Decoding of group identity using behavioral features. 
A,B, Male CSDS (n = 30) (A) and female CSDS (n = 15) (B) mice showed a 
significant correlation between sucrose preference and social interaction 
scores (Pearson correlation). This effect was not observed in controls (male 
n = 10, female n = 5). C, Both susceptible (n = 10) and resilient (n = 14) mice 
showed reduced open arm time in elevated plus maze, in comparison to 
controls (n = 5, ANOVA, group x time interaction: F2,26 = 7.26, P = 0.0031).  
D, Schematic of the Mahalanobis decoder trained on behavioural features to 
decode group identity. E, As further verification that behavioural features 

between groups classified using K-means clustering were different, group 
identity can be successfully decoded using Mahalanobis decoder trained on 
behavioral features including lick rate discrimination index (DI) during pre-  
and post-reward, elevated plus maze open arm time, sucrose preference, and 
social interaction ratio (control n = 5 mice, susceptible n = 10 mice, resilient 
n = 14 mice, 100 cross-validations). Bar plots data are mean ± s.e.m. Chance 
distributions are ± 2 x s.d. around theoretical chance level. #Significantly 
different from chance; ** P < 0.01.



Chance

BLA
Susceptible
Resilient

-4 -3 -2 -1 0 1 2 3 4
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

ec
od

in
g 

ac
cu

ra
cy

0.2

0.6

1

D
ec

od
in

g
Ac

cu
ra

cy

Pre Post

#

0

# #
**

0.4

0.6

0.8

1.0

D
ec

od
in

g
ac

cu
ra

cy -4 -2 0 2 4
Time (s)

0.4

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

Chance

0.4

0.6

0.8

1.0

D
ec

od
in

g
ac

cu
ra

cy -4 -2 0 2 4
Time (s)

0.4

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

Chance

0.4

0.6

0.8

1.0

D
ec

od
in

g
ac

cu
ra

cy -4 -2 0 2 4
Time (s)

0.4

0.8

1

D
ec

od
in

g 
ac

cu
ra

cy

Chance
** ** **

**

C
hance

Pre Post Pre Post Pre Post

Different reward
Same reward

Different reward
Same reward

Different reward
Same reward

C
hance

C
hance

Control Susceptible Resilient

-4 0 4
Time from reward delivery (s)

-3 1

Pre-reward Post-reward

CBA

D

Sucrose

Lick rate equalized

Water Sucrose

SVM

5

10

15

0

5

10

15

Li
ck

 ra
te

 (/
s)

0

Sucrose Water

Sus. Res. Sus. Res.

E

Extended Data Fig. 2 | Reward choice decoding was not driven by direction 
coding. A-C, Mice were given two lick spouts with both delivering the same 
value reward (sucrose versus sucrose, Same reward) to assess direction (left 
versus right) coding. Decoding accuracy of BLA neurons in Different reward 
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left versus right) task in (A) control (n = 10 subsamplings of 21 neurons per 
subsampling, 21 total neurons, 100 cross-validations, Post-Reward, Same 
reward versus chance, P < 0.05, Different reward versus Same reward, Mann- 
Whitney, P < 0.0001), (B) susceptible (n = 10 subsamplings of 21 neurons per 
subsampling, 123 total neurons, 100 cross-validations, Post-Reward, Same 
reward versus chance, P > 0.05, Different reward versus Same reward, Mann- 
Whitney, P < 0.0001), and (C) resilient mice (n = 10 subsamplings of 21 neurons 
per subsampling, 97 total neurons, 100 cross-validations, Pre-Reward, Different 
reward versus Same reward, Mann-Whitney, P < 0.001; Post-Reward, Same 
reward versus chance, P < 0.05, Different reward versus Same reward, Mann- 
Whitney, P < 0.0001). In Pre-reward, resilient group showed greater decoding 
accuracy of reward choice in Different reward in comparison to Same reward.  

In Post-reward, all groups showed greater decoding accuracy of reward choice 
in Different reward in comparison to Same reward. D, To control for the 
possibility that differences in Post-reward lick rates between resilient and 
susceptible groups contributed to differences in reward choice decoding, a 
subset of trials with similar lick rates between the two groups were chosen for 
SVM decoding (lick rate of 3-14 Hz during Post-reward, box extends from 25th  
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maxima). These trials did not differ in lick rates for sucrose (susceptible, n = 315 
trials, resilient, n = 2372 trials) or water trials (susceptible, n = 311 trials, resilient, 
n = 603 trials). E, A linear SVM decoder was trained to decode reward choice 
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mean of subsampling. Bar plots data are mean ± s.e.m. Chance distributions are 
± 2 x s.d. around theoretical chance level. #Significantly different from chance; 
** P < 0.01.
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Extended Data Fig. 3 | Intention selectivity in BLA as a unique susceptibility 
signature. A, Susceptible mice (n = 12) showed fewer consecutive sucrose 
trials (ANOVA, effect of group: F2,57 = 7.60, P = 0.0012), and greater number of 
consecutive water trials in comparison to control (n = 15) and resilient mice 
(n = 33, ANOVA, effect of group: F2,57 = 25.09, P < 0.0001). B, Sucrose and water 
trials were further divided into sucrose–sucrose (SS), water–sucrose (WS), 
water–water (WW), and sucrose–water (SW) trials after taking into account the 
previous trial. Comparison of the proportion of trials in each of the 4 trial types 
revealed that controls showed greater proportion of switch trials (WS, SW). 
Resilient mice (n = 33) showed greatest proportion of SS trials, while susceptible 
mice (n = 12) showed greatest proportion of WW trials (RM-ANOVA, trial type x 
group interaction: F6,171 = 39.99, P < 0.0001). C,D, Lick rates of susceptible 
(n = 12), resilient (n = 33), and control (n = 15) mice for each of the 4 trial types 
during (C) Pre-reward (RM-ANOVA, trial type x group interaction: F6,171 = 2.38, 
P = 0.031) and (D) Post-reward period (RM-ANOVA, trial type x group interaction: 
F6,171 = 9.80, P < 0.0001). E, In vCA1, decoding accuracy of switch versus stay 
intention using raw firing rates in susceptible and resilient mice was above 
chance. Coloured lines indicate mean of subsampling (n = 10 of n = 60 neurons, 
with n = 100 cross-validations. F, Schematic of HMM to obtain population 
hidden states. G, Similarly, in vCA1, decoding accuracy of switch versus stay 
intention using inferred firing rates from HMM in the 4 s preceding reward 
delivery in susceptible and resilient mice was above chance (n = 100 cross-
validation; chance: n = 100 shuffles). H, MDS visualization of inferred firing 
rates showed that population representations of switch versus stay trials can 
be linearly separated in vCA1 neurons in susceptible and resilient mice than in 
controls (MDS example of n = 1 subsampling, 1000 pseudo trials/condition). 
I, Average distribution of the of fraction of intention-states across mice at 

different entropy values (states correlation thresholds of 1-ρ = (0.1, 0.4): control 
n = 5 mice, susceptible n = 5 mice, resilient n = 3 mice). For each mouse, the state 
entropy was computed at fixed threshold on the clustering dendrogram (see 
Methods). Data are mean ± s.d. J, In Same reward task with both lick spouts 
delivering sucrose reward, decoding of intention to switch or stay during the 
Pre-reward period in the BLA was at chance, suggesting there was no encoding 
of action sequence of left versus right. Coloured lines in line plots indicate 
mean of subsampling (n = 10 subsamplings of 60 neurons, 100 cross-validations). 
K, In the Same reward task, decoding accuracy of switch versus stay intention 
using inferred firing rates from HMM in the 4 s preceding reward delivery was at 
chance in all groups (n = 100 cross-validation; chance: n = 100 shuffles). L, In the 
Same reward task, there were no intention-selective states in any group (states 
across 4 correlation thresholds of 1-ρ = (0.1, 0.4): control n = 5 mice, susceptible 
n = 5 mice, resilient n = 3 mice). M, No lick rate differences in switch versus stay 
trials during the 4 s Pre-reward period were observed across groups (control 
n = 15 mice, susceptible n = 12 mice, resilient n = 15 mice). N, vCA1–BLA correlation 
in susceptible mice was higher in intention-selective states, in comparison to 
non-intention-selective states (n = 3 susceptible mice, 5 PCs each, see Methods). 
O, Group identity can be successfully decoded between control versus 
susceptible, and resilient versus susceptible, but not control versus resilient, 
using Mahalanobis decoder trained on task neural features including reward 
choice decoding during Pre-reward, Post-reward, and fraction of intention-
selective states (control n = 5 mice, susceptible n = 5 mice, resilient n = 3 mice). 
Data are mean ± s.e.m. unless otherwise stated. Chance distributions are ± 2 x 
s.d. around theoretical chance level. #Significantly different from chance;  
* P < 0.05, ** P < 0.01.
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Extended Data Fig. 4 | Rescue of dysfunctional vCA1-BLA activity and 
anhedonia by circuit-specific manipulations. A, Number of neurons used in 
BLA and vCA1 in each mouse during saline and CNO period for analysis (BLA 
n = 11 mice per group, vCA1 n = 12 mice per group). Same neurons were recorded 
during both periods. B, Mean vCA1 firing rates during Pre-task period was 
increased following CNO (BLA n = 11 mice per group, vCA1 n = 12 mice per 
group, Mann-Whitney, P = 0.008). Data are mean ± s.d. C, Cumulative variance 
of PCs did not differ between saline and CNO periods in BLA or vCA1. D, Mean  
of the cumulative variance of the first 3 PCs in BLA and vCA1 (BLA n = 11 mice  
per group, vCA1 n = 12 mice per group). Data are median ± s.d. E, Participation 
ratio of BLA and vCA1 (BLA n = 11 mice per group, vCA1 n = 12 mice per group). 
F, Proportion of HMM clusters across different thresholds in BLA and vCA1. 
G, The number of HMM clusters across different thresholds in BLA and vCA1. 
H, The number of HMM clusters of individual mice across different thresholds 
in BLA and vCA1 (BLA n = 11 mice per group, vCA1 n = 12 mice per group). Data 
are mean ± s.d. I, Mean of the proportion of clusters in the first 5 thresholds 
(BLA n = 11 mice per group, vCA1 n = 12 mice per group). Data are mean ± s.d. 
J, Despite no statistical difference in each of the FR, PCA, and HMM features, 
the decoder trained using all features could successfully decode between 
saline versus CNO periods in vCA1 better than chance (±2 x s.d., n = 100 cross-
validations; chance: n = 100 shuffles). K, Firing rates of pseudo-population of 
BLA (n = 76) and vCA1 (n = 274) neurons during task showed that vCA1 neurons 
had elevated firing rates after CNO during both Pre-reward (RM-ANOVA,  
effect of CNO: F1,1092 = 7.60, P = 0.0060) and Post-reward periods (RM-ANOVA, 
effect of CNO: F1,1092 = 9.57, P = 0.0020). L, To control for the possibility that 
differences in Post-reward lick rates between saline and CNO periods contributed 
to differences in reward choice decoding, a subset of trials with similar lick 
rates between the two groups were chosen for SVM decoding (lick rate of 
3–10 Hz during Post-reward). These trials did not differ in lick rates for sucrose 
(saline, n = 89 trials, CNO, n = 228 trials) or water trials (saline, n = 158 trials, 
CNO, n = 121 trials, box extends from 25th to 75th percentiles, with median in the 
middle, whiskers extend from minima to maxima). M, A linear SVM decoder  
was trained to decode reward choice (sucrose versus water) using only trials  
of similar lick rates between the two groups. CNO increased decoding accuracy 
in BLA neurons in comparison to saline period (n = 10 subsamplings of 60 

neurons, 100 cross-validations, Mann-Whitney, P < 0.0001). Coloured lines  
in line plots indicate mean of subsampling. Bar plot data are mean ± s.e.m. 
N, Removal of trials containing intention-selective states (-Intention-selective 
states) during the saline period reduced decoding accuracy of switch versus 
stay trials to chance, whereas keeping only trials containing intention-selective 
states (+Intention-selective states) allowed successful decoding of stay versus 
switch trials. Removal of trials with random states had little effect on decoding 
accuracy (n = 6). Chance distributions are ± 2 x s.d. around theoretical chance 
level. O, MDS visualization showed that keeping only intention-selective states 
allowed the representations of switch trials to be linearly distinguished from 
stay trials, whereas removal of intention-selective states prevents the 
representations of the two trial types from being linearly separated. P, An SVM 
decoder was trained using the listed features to differentiate between 
susceptible and resilient groups and tested on held-out susceptible versus 
resilient data, or saline versus CNO. Q, The decoder generalizes well to saline 
versus CNO dataset (susceptible n = 3, resilient n = 3, saline n = 6, CNO n = 6). 
R, MDS visualization showed that susceptible mice clustered together with 
susceptible mice given saline, while resilient mice clustered together whether 
susceptible mice treated with CNO. S, CNO increased lick rate discrimination 
index during Post-reward period in comparison to saline (n = 7 mice, RM-
ANOVA, treatment x time interaction: F1,12 = 10.80, P = 0.0065). T, CNO increased 
the proportion of SS trials (n = 7 mice, RM-ANOVA with Bonferroni’s multiple 
comparisons test, trial type x treatment interaction: F3,36 = 6.23, P = 0.0016). 
U, CNO altered the proportion of stay (water-water and sucrose-sucrose) trials 
(n = 7 mice, RM-ANOVA with Holm-Sidak’s multiple comparisons test, effect of 
group: F1,12 = 5.61, P = 0.036). V, CNO altered the proportion of switch (water-
sucrose and sucrose-water) trials (n = 7 mice, RM-ANOVA, effect of group: 
F1,12 = 5.61, P = 0.036). W,X, (W) CSDS mice were tested in 2 sessions of social 
interaction (SI) tests, with saline (i.p.) on day 1 and CNO (i.p.) on day 2. (X) CNO 
modestly increased the amount of social interaction time in the present of  
the aggressor mouse (+CD1, n = 6 mice, Saline versus CNO, Fisher’s LSD test, 
P = 0.044). Data are mean ± s.e.m. unless otherwise stated. Chance distributions 
are ± 2 x s.d. around theoretical chance level. #Significantly different from 
chance; * P < 0.05, ** P < 0.01.
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Extended Data Fig. 5 | CNO had no effect on behaviour or neural activity 
patterns in mCherry-infused mice. A, Mice microinfused with the control 
virus (AAV-DIO-mCherry) and given saline and CNO during the sucrose 
preference task (n = 7 mice). B, CNO had no effect on sucrose preference  
(n = 7 mice). C,D, CNO (n = 7 mice) had no effect on lick rates in (C) sucrose or (D) 
water trials. E, CNO and saline groups showed similar lick rate discrimination 
index (n = 7 mice). F, CNO had no effect on the number of trials for each of the  
4 trial types (n = 7 mice). G, CNO had no effect on the decoding accuracy of 

current reward choice during Post-reward period (n = 10 subsamplings of 108 
neurons per subsampling, 108 total neurons, 100 cross-validations). H, CNO 
had no effect on the decoding accuracy of switch/stay intention using HMM 
hidden states during the 4 s Pre-reward period (n = 10 subsamplings of 108 
neurons per subsampling, 108 total neurons, 100 cross-validations). Bar and 
line plots data are mean ± s.e.m. Chance distributions are ± 2 x s.d. around 
theoretical chance level.
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Extended Data Fig. 6 | Distinct neural signatures of CSDS mice in the 
absence of task. A, Cross-correlogram (top) between BLA and vCA1 activity 
with time lags from [−50, +50] s and its corresponding power spectral density 
(PSD, bottom) for an example mouse from each group. The vertical red line in 
PSD plot indicates the frequency with the highest PSD value. B, Susceptible and 
resilient groups showed lower dominant frequency of vCA1–BLA interaction 
during Pre-task period (control n = 3, resilient n = 4, susceptible n = 5, Kruskal-
Wallis, P = 0.028). C, Number of neurons used in BLA and vCA1 in each mouse 
for analysis (BLA n = 5 mice per group, vCA1 control n = 12, susceptible n = 14, 
resilient n = 31 mice). D, Schematic of dimensionality reduction using principal 
component analysis (PCA). The embedding dimensionality was quantified 
using participation ratio. E, There were no statistically significant differences 
in cumulative variance explained by principal components (PCs) in BLA and 
vCA1 between groups (n = 1000 subsampling, n = 5 neurons). Data are 
mean ± s.e.m. F, Mean of the cumulative variance of the first 3 principal 
components in BLA and vCA1 (BLA n = 5 mice per group, vCA1 control n = 12, 
susceptible n = 14, resilient n = 31 mice). G, Participation ratio of BLA and vCA1 
(BLA n = 5 mice per group, vCA1 control n = 12, susceptible n = 14, resilient  
n = 31 mice). H, Akaike information criteria (AIC) from one example mouse in 
each group. HMM with the lowest AIC was selected as the best model (n = 5 
models/#state). I, Example of spike raster of 35 neurons simultaneously 
recorded in the Pre-task period from one representative mouse. The different 
coloured shaded areas indicate the different HMM hidden states. The colored 
lines indicate the posterior probability for each state. J, Two examples of HMM 
states correlation matrices for one control (n = 20 hidden states) and one 
susceptible (n = 20 hidden states) mouse, with respective dendrograms of 
agglomerative clustering in vCA1. K, There was no difference in the proportion 
of distant hidden states in vCA1 between groups. L, The number of clusters 

across thresholds did not differ between groups in BLA and vCA1. Data are 
mean ± s.e.m. M, The number of clusters of individual mice (BLA n = 5 mice per 
group, vCA1 control n = 12, susceptible n = 14, resilient n = 31 mice). N, Mean  
of the proportion of clusters in the first 5 thresholds showed that susceptible 
mice in BLA had greater proportion of unique hidden states in comparison to 
controls (BLA n = 5 mice per group, vCA1 control n = 12, susceptible n = 14, 
resilient n = 31 mice, Kruskal-Wallis, P = 0.0018). No group difference was found 
in vCA1. O, Two example heatmaps of population activity correlation in BLA 
over time, showing that population activity patterns were much more correlated 
in the control (top) than the susceptible (bottom) mouse. P, Average correlation 
of population activity across time in the BLA showed a trend towards lower 
correlated activity in the susceptible mice (n = 5 mice per group). Q, In BLA, 
susceptible mice showed reduced firing rates mean (Kruskal-Wallis, P = 0.020) 
and s.d. (Kruskal-Wallis, P = 0.0077) in comparison to controls (BLA n = 5 mice 
per group, vCA1 control n = 12, susceptible n = 14, resilient n = 31 mice). R, Firing 
rate (FR), PCA, and HMM features each alone could successfully decode control 
versus susceptible mice in BLA (control n = 5 mice, susceptible n = 5 mice). 
S, Different time bin sizes were tested and the one that allowed the highest 
decoding accuracy between groups was chosen as the optimal bin size (n = 100 
cross-validations; chance: n = 100 shuffles, BLA n = 5 mice per group, vCA1 
control n = 12, susceptible n = 14, resilient n = 31 mice). T, Group identity could 
not be decoded using Mahalanobis decoder trained on neural features in vCA1. 
The importance of each neural feature in decoding was examined by systematic 
removal of each of the features (subsequent columns) (control n = 12 mice, 
susceptible n = 14 mice, resilient n = 31 mice). Data are mean ± s.d., unless 
otherwise stated. Chance distributions are ± 2 x s.d. around theoretical chance 
level. #Significantly different from chance; * P < 0.05; ** P < 0.01.
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Extended Data Fig. 7 | Spontaneous face and limb movements during 
Pre-task did not decode group identity as well as neural features.  
A, Schematic of 12 keypoints tracked using DeepLabCut. B, Susceptible mice 
showed smaller eye opening ratio than resilient mice (control n = 3 mice, 
susceptible n = 6 mice, resilient n = 8 mice, Kruskal-Wallis, P = 0.014). C–E, Mice 
(control n = 3 mice, susceptible n = 6 mice, resilient n = 8 mice) showed similar 
(C) snout angle, (D) mouth position, and (E) whisker position across groups. 
F,G, Susceptible mice showed a smaller magnitude of limb movement in 
horizontal (X, control n = 3 mice, susceptible n = 6 mice, resilient n = 8 mice, 
Kruskal-Wallis, P = 0.003) but not (G) vertical (Y) direction (control n = 3 mice, 
susceptible n = 6 mice, resilient n = 8 mice). H, Mahalanobis decoders were 
trained on either facial and limb features or neural features to decode group 

identity. I, Decoding accuracy using facial and limb features showed above 
chance decoding for control versus susceptible, and resilient versus 
susceptible groups (n = 1000 cross-validations). J, Neural feature decoding for 
control versus CSDS group identities outperformed facial and limb features 
(n = 1000 cross-validations). K, Decoding using neural features was performed 
using only time bins when facial and limb feature decoding was within 1 or 2 
s.d. of chance, as a further comparison of neural versus facial and limb feature 
decoding. Decoding accuracy of control versus susceptible group identities 
using neural features outperformed facial and limb features (n = 1000 cross- 
validations). Data are mean ± s.e.m. Chance distributions are ± 2 x s.d.around 
theoretical chance level. #Significantly different from chance * P < 0.05;  
** P < 0.01.
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Extended Data Fig. 8 | Dysfunctional single cell and population-level 
correlates for reward choice in mice susceptible to chronic stress.  
A, Cumulative variance of PCs in BLA and vCA1 during Pre-reward and Post- 
reward periods revealed no difference between groups (n = 1000 subsampling, 
n = 5 neurons). B, Participation ratio of BLA and vCA1 during Pre-reward and 
Post-reward periods showed no difference between groups (BLA n = 5 mice per 
group, vCA1 control n = 12, susceptible n = 14, resilient n = 31 mice). Data are 
mean ± s.d. C, The proportion and number of HMM clusters across different 
thresholds showed no statistical difference between groups, but BLA neurons 

in susceptible mice showed a trend towards higher proportion of unique 
clusters. D, Trial-averaged firing rates of pseudo-populations of BLA and vCA1 
neurons across groups. Number of neurons are labelled in corresponding 
group colours. E, Group identity could be decoded better than chance during 
specific time windows and trial types (n = 100 cross-validations; chance: 
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different from chance.



1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Kheirbek

Last updated by author(s): Sep 25, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
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Software and code
Policy information about availability of computer code

Data collection Neuropixels data were collected using SpikeGLX (v20220101-phase30). Behavioral data were collected using Arduino and CoolTerm 1.9. Facial 
and limb movement videos were recorded using the MATLAB Image Acquisition Toolbox.

Data analysis Data were analyzed using custom codes in MATLAB and Python, including the use of the following: scikit-learn, Kilosort 2, Kilosort 4, Phy2, 
DeepLabCut, SSM toolbox  (https://github.com/lindermanlab/ssm), and Allen CCF (https://github.com/cortex-lab/allenCCF).  Code available on 
https://github.com/mkheirbek.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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N/A

Population characteristics N/A
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size  Sample sizes for animals were based on previous studies using the techniques described (e.g. Krishnan et al., Cell, 2007). No further sample 
size calculations were used. 

Data exclusions For DREADD experiments, animals with off-target expressions of viruses were excluded, in order to specifically analyze the effects of 
manipulating only the region of interest.

Replication All recording and behavioral data were acquired from a minimum of 2 independently performed experimental cohorts. Data were randomly 
subdivided during analysis to ensure reproducibility across subsets.

Randomization Mice were randomly assigned to control vs. CSDS groups before CSDS training. For DREADD experiments, mice were randomly assigned to 
mCherry vs. hM3Di groups at time of surgery.

Blinding Experimenters were blind to the condition and group assignments of mice. The same analysis pipeline was applied to all animals.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Adult (8-12 weeks old) male and female C57BL/6J mice, and adult (5-6 months old) CD1 retired male breeder mice were used.

Wild animals No wild animals were used in the study.

Reporting on sex Both male and female mice were used.

Field-collected samples No field-collected samples were used in the study.

Ethics oversight All procedures were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals and institutional 
guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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