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Anhedonia, the diminished drive to seek, value, and learn about rewards, is a core
feature of major depressive disorder' . The neural underpinnings of anhedonia
and how this emotional state drives behaviour remain unclear. Here we investigated

the neural code of anhedonia by taking advantage of the fact that when mice are
exposed to traumatic social stress, susceptible animals become socially withdrawn
and anhedonic, whereas others remainresilient. By performing high-density
electrophysiology to record neural activity patterns in the basolateral amygdala (BLA)
and ventral CA1(vCAl), we identified neural signatures of susceptibility and resilience.
When mice actively sought rewards, BLA activity in resilient mice showed robust
discrimination between reward choices. By contrast, susceptible mice exhibited a
rumination-like signature, in which BLA neurons encoded the intention to switch or
stay ona previously chosen reward. Manipulation of vCAlinputs to the BLA in
susceptible mice rescued dysfunctional neural dynamics, amplified dynamics
associated withresilience, and reversed anhedonic behaviour. Finally, when animals
were at rest, the spontaneous BLA activity of susceptible mice showed a greater
number of distinct neural population states. This spontaneous activity allowed us to
decode groupidentity and to infer whether amouse had a history of stress better than
behavioural outcomes alone. This work reveals population-level neural dynamics that
explainindividual differences in responses to traumatic stress, and suggests that
modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.

Areduced ability to experience pleasure, termed anhedonia, is a core
feature of depression. Besides blunting positive emotional responses
towhatshould be pleasurable experiences, anhedonia also profoundly
affects behaviour, diminishing the drive to seek rewards and causing
deficits in reward learning and valuation'>. This can be modelled in
rodents using chronic stress: whereas some animals show resilience
to prolonged stress, susceptible mice socially withdraw and become
anhedonic, with less motivation to attain high-value rewards®>.

The neural dynamics that account for the behavioural differences in
resilient and susceptibleindividuals remain unclear, and determining
them may provide crucial insights into how this debilitating aspect of
depression might be treated. In the extended brain network respon-
sible for generating emotional and motivated behaviour, the recipro-
cally connected amygdala and ventral hippocampus are two crucial
nodes®?.Inadditiontoitsroleinthreat detection and anxiety-related
behaviour, the BLA guides decision-making by generating outcome-
specific representations of rewards” °. vCAl has been shown to encode
stimuli that predict rewards and to drive reward-related approach
behaviours® 3, However, how these reward-related functions of vCA1
and BLA are affected by changes in emotional state remain unclear.

Stimulus-evoked responses of individual neuronsinthe BLA and vCAl
have beenwell studied. However, substantially less is known about how
animals’reward-related internal states are represented at the popula-
tion level in the BLA and vCAl and how these representations shape
reward choice-related behaviour. It is also unclear how spontaneous
activity patterns in the absence of task stimuliin the BLA or vCA1 may
differ in mice susceptible or resilient to chronic stress, and whether
targeted interventions in this circuit might reduce susceptibility to
stress. Asinternal states can be detected and studied only by character-
izingthe correlated activity of multiple neurons, it is essential to record
simultaneously from large numbers of neurons, and to analyse their
activity at the population level. This approach can reveal dynamics of
internal state more accurately than single-cell recordings. Therefore,
we conducted high-density Neuropixels recordings® invCAland BLA
and used population decoders to analyse the reward-related and spon-
taneous dynamics of populations of neurons to identify distinctive
neural signatures of susceptibility and resilience to chronic stress.
Then we developed a new circuit-specific modulation approach to
rescue aberrant BLA population dynamics and associated anhedonic
behaviour in stress-susceptible mice.
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Fig.1|Distinct behavioural signatures of resilient and susceptible mice
following CSDS. a, Schematic of SPT and Neuropixels recording protocol
following CSDS. b, Schematic of SPT protocol. Example lick rasters are from
two example mice with different sucrose preferences. Top, fromastress-
resilient mouse with high sucrose preference. Bottom, fromasusceptible
mouse with low preference. ITl, inter-trial interval; SI, social interactionscore.
c,Neuropixels probes weretargeted toBLAand vCAl.d, Example BLAand vCAl
spikerastersduringtask.Rew.del., reward delivery. e, Example peristimulus
time histogram of BLA and vCAlneurons around the time of reward delivery
(time 0).f, CSDS (n =45), but not control (n=15), mice showed a significant

Behavioural classification following stress

To search for neural correlates of differential emotional and behav-
ioural responses to traumatic social stress, we performed high-density
single-unit electrophysiology using Neuropixels probes acutely
inserted inthe BLA and vCAl of control mice and of mice subjected to
chronic social defeat stress (CSDS; Fig. 1a-e). Activity was recorded
during both a task- and stimulus-free condition and while mice per-
formed anew head-fixed sucrose preference test (SPT). In this test, mice
could freely choose to access either water or sucrose rewards by lick-
ing attherespective spoutto trigger reward delivery. CSDS produced
mice withvarying degrees of sucrose preference and social interaction
scores, which were highly correlated in both males and females (Fig. 1f
and Extended Data Fig. 1a,b). These behavioural profiles allowed us
to classify mice as stress resilient or susceptible (Fig. 1g). The suscep-
tible mice identified using this classification showed lower lick rates
during sucrose consumption, as well as markedly reduced lick rate
discrimination between sucrose and water rewards—two behavioural
subcomponents that suggest avoidance of higher value reward that
is reflective of anhedonia®>***¢ (Fig. 1h,i and Extended Data Fig. 1c-e).

Reward discriminationinresilience

As we observed robust sucrose-seeking behaviours in resilient mice
compared to susceptible mice, we looked for specific features of how
rewards and reward-seeking behaviour were represented across the
recorded BLA and vCAlneuronal populations. We performed record-
ings as mice freely chose water or sucrose and indicated their choice

correlation between sucrose preference and social interaction scores (Pearson
correlation). g, Unsupervised K-means clustering revealed two distinct
subgroups of CSDS mice (n =45). h, Susceptible mice (n =12) showed reduced
sucrose lick rate during post-reward period compared to resilient mice (n =33,
repeated measures analysis of variance (ANOVA), group x time interaction:
F,5;=5.63,P=0.0059).1i, Susceptible mice (n =12) showed reduced lick rate
discrimination index (DI) compared to control (n =15) and resilient (n = 33)
mice (two-way repeated measures ANOVA, group x time interaction: F, s, =
48.47,P<0.0001). Inset shows averaged lick rate DI during pre- and post-reward.
Dataaremean +s.e.m.*P<0.01.

by licking aspout to trigger reward delivery (Fig. 2a). To assess neural
activity patterns both before the mice behaviourally made their choices
and after they consumed the reward, we defined a trial (sucrose or
water) using the 8 s time window (4 s pre- to 4 s post-reward) around
reward delivery.

First we quantified the proportion of reward-choice-selective neu-
rons inthe BLA and vCAl, defined as those that showed differential
firing during water versus sucrose trials. In the BLA, during both the
seconds before reward delivery (pre-reward) and the reward consump-
tion period (post-reward), resilient mice had the greatest proportion
of reward-choice-selective neurons compared with control or suscep-
tible mice (Fig. 2b,c). InvCAl, we found that stress exposure increased
the proportion of reward-choice-selective neurons in all previously
stressed mice (thatis, resilient and susceptible groups) in comparison
to controls.

Asthesingle-neuron analysis takes into account only asmall subset
of selective neurons, and the entire population is likely to contain rel-
evanttask-related information®, we next investigated the differences
inreward-choice coding between groups at the population level. We
trained linear classifiers to discriminate trial types (water or sucrose
choice), balancing the number of current and past rewards for each trial
type (Methods and Fig. 2d). When analysing activity during pre-reward
time bins, we again found distinctive signatures of stress resilience.
In resilient mice, the upcoming choice of sucrose or water could be
decoded from neural activity in BLA better than chance and better than
from neurons in control or susceptible mice (Fig. 2e,f).

After reward consumption (post-reward), reward choice could be
decoded from BLA activity better in all mice, but decoding was still
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Fig.2|Enhancedrepresentations of reward choiceinstressresilient mice.
a, Schematic of SPT. b, Trial-averaged firing rates in sucrose and water trials
fromexample (Ex.) BLA cells, withrespective areaunder thereceiver-operating-
characteristic (QuROC) curve during pre-reward (grey, -4 to -3 s) and post-
reward (black, 0 to1s).Scale bars, 1spike s'and1sunless otherwise stated.

¢, InBLA, resilient group showed the highest fraction of selective neurons
duringboth pre-reward (control (Co.) n=132 neurons, susceptible (Sus.) n=68
neurons, resilient (Res.) n = 69 neurons, Fisher’s exact tests, resilient versus
control, P<0.0001, chi-squared, resilient versus susceptible, P=0.057) and
post-reward (chi-squared, resilient versus control, P=0.0073, resilient versus
susceptible, P=0.042).InvCAl, bothsusceptible (n = 283 total neurons) and
resilient (n =528 total neurons) groups showed higher fraction of selective
neurons than controls (n =143 total neurons) during pre- (chi-squared,
P<0.0001) and post-reward (chi-squared, P< 0.0001). d, Schematic of

strongest in resilient mice. The enhanced reward choice decoding in
resilient mice was not driven by differences in direction coding (lick
left versus lick right; Methods and Extended Data Fig. 2a—c) or lick
rates (Methods and Extended Data Fig. 2d,e). A similar, although less
pronounced, reward choice decoding pattern was observed in vCAL.
These results indicate that neurons in the BLA, and to a lesser extent
in vCAl, of resilient mice showed enhanced discrimination of reward
choices both before and during reward consumption.

Intention states in susceptibility

We next examined the nature of anhedonic behaviour in susceptible
mice by analysing the sequence of reward choices thatled themto less
frequently choose sucrose rewards, and compared this to the sequences
incontroland resilient mice. We found that currentand previous reward
choices werenotindependent of each other, as the sequence could be
described using a Markov model in which the probability of choosing
water or sucrose depended on the choice made in the previous trial.
The Markov models of control and resilient mice were similar: both
switched from water to sucrose and repeated a sucrose choice more
oftenthan susceptible mice did (Fig.3a,b and Extended DataFig. 3a-d).
By contrast, susceptible mice switched more from sucrose to water
rewards and made more consecutive water choices.

Given these patterns, we examined whether we could use the four
possible sequences of consecutive reward choices (water-water;
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population decoding of current and future reward choices. Linear support
vector machine (SVM) classifier was trained to distinguish between water
versussucrosetrials. e, InBLA, resilient mice showed higher decodingaccuracy
thanchance during pre-reward, and the highest decoding accuracy amongall
groups during post-reward (coloured lines indicate mean of subsampling
(n=10 0of 60 neurons, with100 cross-validations, Kruskal-Wallis, P< 0.0001)).
Inset shows averaged decoding accuracy during pre-and post-reward.f, In
vCAL resilient mice showed higher decoding accuracy thansusceptible mice
during pre-reward (coloured lines indicate mean of subsampling (n =10 of 60
neurons, with100 cross-validations, Mann-Whitney, P= 0.045) and post-
reward (Kruskal-Wallis, P=0.0011). Inset shows averaged decoding accuracy
during pre- and post-reward. Dataare mean + s.e.m.*Significantly different
fromchance;*P<0.05;**P<0.01.

water—-sucrose; sucrose-water; sucrose-sucrose) as the basis foriden-
tifying unique neural signatures of the intention to switch or stay onthe
same reward choice as the previous trial. To control for the potential
confound of reward value differences between trial types, we balanced
both previous and current reward types when analysing switch or stay
trials (Fig. 3aand Methods).

Single-neuron analysis revealed that neurons that were differentially
modulated on the basis of the intention to switch rewards or to stay
on the same one as the previous trial were present only in the BLA of
susceptible mice (Fig. 3¢,d). In addition, a population decoder could
successfully distinguish stay trials from switch trials using neural data
fromthe seconds before reward delivery in the BLA of susceptible mice
butnotintheother groups (Fig.3e,f). Decoding accuracy for switch ver-
susstay was better than chance for both CSDS groupsinvCAlalthough
accuracy was lower than that in the BLA (Extended Data Fig. 3e).

Thisled us to reason that specific population activity patterns existed
inthe BLA of susceptible mice in the seconds preceding the decision
to switch or stay. We identified population hidden statesin the 4 s
pre-reward period using hidden Markov models®**° (HMMs; Fig. 3g,h
and Extended DataFig. 3f). Each hidden stateis defined by the ensemble
activity of simultaneously recorded neurons and reflects distinct popu-
lation dynamics during pre-reward. The model then assigns each time
interval (1-sbins) the most likely hidden state. We validated that alinear
decoder, trained on these ensemble activities, could most strongly
distinguish between stay versus switch trialsin the BLA of susceptible
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Fig.3|Intention-specificstatesin BLA as aunique susceptibility signature.
a, Schematic of switch and stay trials. b, Susceptible mice (n=12) had more
water-water (WW) and sucrose-water (SW) trials than control (n =15) and
resilient mice (n =33, one-way ANOVA, group effects, sucrose-sucrose (SS),
F,5;=14.84,P<0.0001; water-water F, 5;=11.71, P< 0.0001; water-sucrose
(WS) F, 5;=14.84,P<0.0001; sucrose-water, F, s;=11.71, P < 0.0001). ¢, Switch
and stay trial-averaged firing rates from example cells. Scale bars, 1 spike s and
1sunlessotherwisestated.d, Susceptible mice had moreintention-selective
neurons (n =68 neurons, Fisher’s exacttest, P<0.0001) in comparison to
control (n=132) andresilient (n=69) groups. e, Schematic of switch versus stay
decoding (raw firing rates). f, Susceptible group showed greater-than-chance
decodingaccuracy (mean of subsamplings, n=10 of 60 neurons, 100 cross-
validations). g, Schematic of switch versus stay decoding (hidden states).

h, Exampleraster and hidden states. Neuronsinred rectangles showed

mice (and both vCA1 CSDS groups; Extended Data Fig. 3g,h). Accord-
ingly, the population representations of stay versus switch trials were
linearly separable in the BLA of susceptible mice (Fig. 3i,j).

Next we identified hidden states that uniquely characterized tri-
als in which mice intended to either stay or switch, which we termed
intention-selective states (Fig. 3k-1, Methods and Extended Data Fig. 31).
We found that the BLA of susceptible mice had a significantly higher
fraction of these intention-selective states during the 4-s pre-reward
period than that of controls (Fig. 31). Removing trials that contained
these states reduced decoding accuracy of stay versus switch trials to
chancelevels (Fig.3m) and altered the geometry of populationrepresen-
tations of switch versus stay trials (Fig. 3n). Considering only trials with
intention-selective states improved the switch versus stay decoding

preferential firing during switch versus stay trials (Methods). i, Switch versus
stay could be decoded usinginferred firing ratesin susceptible mice (n=5,
10 subsampling of 60 neurons, 100 cross-validations). j, Switch versus stay
representations canbelinearly separatedin susceptible mice (example
multi-dimensional scaling (MDS); Methods). k, Intention-selective states are
defined as those that occur only in switch or stay trials. I, Susceptible group
had moreintention-selective states (across 4 thresholds (0.1to 0.4): control
n=>35,susceptiblen =5, resilient n =3 mice, Kruskal-Wallis, P= 0.045).

m, Bidirectional modulation of trials containing intention-selective states
bidirectionally changed decoding accuracyin susceptible mice (n =100
cross-validations). n, Switch versus stay representations before and after
removal of intention-selective states (example MDS). Dataare mean + s.e.m.
Chance n =100 shuffles. *Significantly different from chance; *P < 0.05;
**P<0.01.

accuracy, whereas removal of random states did not affect decoding
accuracy (Fig.3m,n). The intention-selective states in susceptible mice
were not dueto action sequence coding, asthey were not present when
thetwo spouts delivered the same reward (Extended DataFig. 3j-1), or
lick rate differences (Extended Data Fig. 3m). Furthermore, we found
that vCA1-BLA correlationsinsusceptible mice were enhanced during
intention-selective states, in comparison to non-intention-selective
states, raising the possibility thatintention-related information may be
transmitted between structures (Extended Data Fig. 3n). Finally, using
these task-related neural features of susceptibility (intention-specific
states) and resilience (reward choice discrimination) allowed us to
decode groupidentity (Extended DataFig.30). Altogether, our results
indicate that BLA neuronsinsusceptible mice evaluate future decisions
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with respect to their past choices (by representing switch and stay
states), which may contribute to behavioural strategies that result in
areduced number of sucrose rewards.

vCA1-BLA activity and anhedonia

Having established that the BLA exhibits distinct activity patterns asso-
ciated with susceptibility to stress, we examined whether we could
rescue the neurophysiological responsesto stressin susceptible mice
and whether rescuing the neural phenotype reversed the maladaptive
behaviour of these animals.

The strategy we chose was to manipulate inputs to BLA from vCAL.
Wetargeted this pathway because: vCAl provides denseinput to BLA?;
our data here show that CSDS produces changes in representations
of reward choice and intended task strategies in vCAl of all stressed
mice, which may communicate the information to the BLA to help
further shape its reward value coding (Fig. 2e,f and Extended Data
Fig. 3e,g); resilience was positively correlated with the strength of
communication between vCAl and BLA for sucrose versus water
choices during the pre-reward period (Fig.4a,b); and vCA1-BLA cor-
relation was enhanced in intention-selective states in susceptible
mice (Extended Data Fig. 3n).

To test whether manipulation of vCA1-BLA inputs would modulate
signatures of susceptibility in the BLA and/or influence anhedonic
behaviour, we increased the excitability of vCA1-BLA projection neu-
rons by expressing the excitatory chemogenetic actuator hM3Dq in
these cells* (Fig. 4c,d). We then subjected mice to CSDS and recorded
BLA and vCAl activity and behaviour in susceptible mice before and
after injection of the hM3Dq activator clozapine-n-oxide (CNO).

CNOincreased vCAl firing rates (Extended DataFig.4a,b,k) and modi-
fied populationactivity patternsin vCAl (Extended Data Fig. 4c-j). Dur-
ingthe sucrose preferencetask, this manipulation enhanced vCA1-BLA
correlations for sucrose versus water choices during the pre-reward
period (Fig. 4e). In addition, we found that activating the vCA1-BLA
pathwayincreased our ability to decode reward choice post-reward in
both BLA and vCA1 (Fig. 4f,g and Extended Data Fig. 41,m), asignature
of enhanced reward choice representation in naturally resilient mice
(Fig. 2e,f).

We next examined whether this manipulation of the vCA1-BLA path-
way would reduce the occurrence of the unique intention-specific states
we had observed inthe BLA of susceptible mice. Replicating our previ-
ous results, we found that during the saline period, we could decode
stay versus switch trials in susceptible mice (Fig. 4h-j and Extended
DataFig. 4n,0). However, activation of vCA1-BLA brought decoding
accuraciesto chancelevels, changed the geometry of representations
inthe BLA such that switch and stay trials could no longer be linearly
separated (Fig. 4j), and decreased the fraction of intention-specific
states (Fig. 4k). In other words, activation of the vCA1-BLA pathway
reversed this population-level signature of stress susceptibility in the
BLA.Inaddition,adecodertrained to differentiate susceptible versus
resilient mice generalizes well to differentiating between saline- versus
CNO-treated susceptible mice (Extended Data Fig. 4p-r), further sug-
gesting thatactivation of the vCA1-BLA pathway reversed the suscepti-
bility phenotype to be more similar to the naturally resilient phenotype.

Finally, we found that vCA1-BLA activation rescued behavioural
indices of anhedonia. Administering CNO increased sucrose prefer-
ence (Fig. 41), increased the lick rate discrimination index (Extended
DataFig.4s), enhanced the proportion of sucrose stay trials (Extended
DataFig.4t-v), and increased social interaction times (Extended Data
Fig.4w,x).No behavioural or neural differences were observed between
saline and CNO periods inmice infused with the control mCherry virus
(Extended DataFig.5).

In summary, these results show that activating the vCA1-BLA path-
way rescued both aberrant population dynamics in the BLA of suscepti-
ble mice and associated behavioural hallmarks of anhedonia (Fig.4m).
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Spontaneous activity following CSDS

Finally, we examined whether distinct patterns of population activ-
ity could be detected in the BLA of susceptible or resilient mice, in
the absence of any overt stimuli or task demands. Clinical studies
have revealed altered resting-state functional connectivity between
the amygdala and hippocampus in individuals with depression, but
the underlying neural mechanisms remain unknown*2.

To mimic a mildly stressful experience in human imaging stud-
ies, mice were head-fixed without task-relevant stimuli provided. In
line with human studies, we found altered functional connectivity
between BLA and vCAlin CSDS mice, specifically a reduction in the
dominant frequency of interaction between the two regions, suggest-
ing achange in communication between the two regions**** (Extended
DataFig. 6a,b). We then examined whether the geometry of spontane-
ous neural activity patterns differed between groups in each region.
As the lack of behavioural time stamps made it difficult to align and
directly compare neural representations across animals, we focused
onthe embedding dimensionality using principal component analysis
(PCA), which canestimate population geometry without alignment to
overt behaviour**#,

This analysis revealed a trend towards higher dimensionality
in the BLA population activity of susceptible mice compared to
controls (Extended Data Fig. 6¢c-g), suggesting a larger number
of neural population states, with each state spanning a different
dimension. Indeed, when we quantified the states using HMM and
performed agglomerative clustering of states to identify those that
were unique, we found that in the BLA, but not vCAl, susceptible
mice showed a greater number of distinct neural states (Fig. 5a-c
and Extended Data Fig. 6h-n). Consistent with this, average cor-
related BLA population activity across time was lower, and thus
more variable, in susceptible mice (Extended Data Fig. 60,p). The
greater number of distinct states in susceptible mice could not be
attributed to an increased firing rate, which was lower in the BLA
of susceptible mice compared to controls (Extended Data Fig. 6q).
Furthermore, across all mice, the number of distinct states was sig-
nificantly correlated with behaviours used to assess susceptibility
(Fig.5d), with greater numbers of clusters strongly predicting social
avoidance and anhedonic behaviour. This suggests that structures of
population hidden states in the BLA may reflect anhedonia-related
behaviour.

We next tested whether we could decode the group identity of
individual animals from this resting-state activity by training a clas-
sifier using neural features including firing rates (mean and standard
deviation), PCA cumulative variance, and the fraction of clustered
neural states. Each feature alone allowed us to distinguish between
control and susceptible mice to some extent (Extended Data Fig. 6r).
However, using all of the feature sets in BLA, but not vCAl, we could
significantly decode between all pairs of group identities (Fig. Se
and Extended Data Fig. 6s,t). Notably, cross-validated decoding of
susceptible versus control mice was 100% accurate. When we visu-
alized the geometry of the representations in individual mice, we
found the greatest distance between control and susceptible mice
in the BLA (Fig. 5f). In addition, the neural feature differences we
observed were unlikely to be due to differences in movements of
the face or the limbs of the head-fixed mice. Specifically, although
minor differences in some facial and limb movements were found
(Extended Data Fig. 7a-g), decoding accuracy for group identity
using face and limb movements as input features was much lower
than that of a decoder trained on neural features (Extended Data
Fig.7h-k), and face and limb movements could not explain BLA activ-
ity differences (Methods). Applying the same dimensionality and
hidden state analysis to neural recordings from the task period could
also differentiate between control and susceptible mice (Extended
Data Fig. 8).
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Fig.4|Rescue of dysfunctional vCA1-BLA activity and signatures of
anhedoniaby circuit-specific manipulations. a, Schematic for analysing
vCAl-BLAinteractions.b, A(vCA1-BLA) correlation pre-reward was significantly
correlated with animals’ behaviour (n =11 mice, Fisher’s z). ¢, Schematic for
chemogenetic activation of BLA-projecting vCAl neurons. d, Representative
image of BLA-projecting vCAl neurons transfected withhM3Dgq-mCherry
(observedinall 25 mice). Scale bar,100 pm. e, A(vCA1-BLA) correlation was
enhancedin CNO versus saline (n = 5simultaneously recorded sessions, paired
t-test, t,=4.22,P=0.014).f,g, CNOincreased decoding accuracy of current
reward choice compared to saline (Mann-Whitney, P< 0.0001) in BLA (f)

Finally, we found that a decoder using these neural features
during the stimulus-free pre-task period in BLA better predicted
whether an animal was exposed to stress than a decoder using only
behavioural measures of anhedonia and anxiety-related behaviour
(Fig. 5g). This suggests that neural activity features in the BLA in
the absence of any stimuli or task demands may be a more power-
ful biomarker for identifying a history of chronic stress than classic
behavioural indices such as social avoidance and anhedonia-related
behaviours.

and vCA1(g; Mann-Whitney, P< 0.0001). Insets show averaged decoding
accuracy during pre-reward. Coloured lines indicate mean of subsampling
(n=10subsamplings, 60 neurons, 100 cross-validations). h,i, CNO reduced
decodingaccuracy of switch versus stay trials to chance level in BLA (h) and
vCA1(i; n =100 cross-validations, 100 shuffles).j, CNO altered the geometry

of switch versus stay representations such that they cannolonger be linearly
distinguished. k, CNO reduced the fraction of intention-selective states in BLA
(Mann-Whitney, P=0.043).1,CNOincreased sucrose preference (n =23 mice,
paired t-test, t,,=2.91, P= 0.0081). m, Summary schematic on the main findings.
Dataare mean +s.e.m. *Significantly different from chance; *P < 0.05; **P < 0.01.

Discussion

Our study reveals distinct neural signatures of stress resilience and
susceptibility in BLA population activity. Using Neuropixels recordings
while mice were either at rest or engaged in a free-reward-choice task
and leveraging complementary analytic approaches, weidentified new
population dynamics that underlie distinct features of stress-induced
anhedonic state. Critically, when we successfully reversed these neural
signatures of anhedonia through targeted modulation of the vCA1-BLA
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Fig.5|Distinct neural signatures of CSDS micein the absence of task.

a, Schematic of analysis in pre-task. HMM was used to identify hidden states (S)
and states similarity was assessed using agglomerative clustering. b, Example
state correlation heat maps from BLA of a control (n =19 hidden states) and a
susceptiblemouse (n =17 hidden states) and respective agglomerative clustering
(dendrograms onright). ¢, Susceptible mice had more distant hidden states

in BLA (Mann-Whitney, control (n = 5 mice) versus susceptible (n = Smice)
P<0.05forallcorrelation thresholds except at O, specificallyin ascending
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circuit, the behavioural consequences of this maladaptive state were
alsorescued.

By analysing population dynamics during the SPT, we discovered a
resilience signature characterized by heightened reward choice rep-
resentations in the BLA before and during reward consumption. This
enhanced reward choice perception or sensitivity may play a crucial
roleinreinforcing the behavioural processes that lead animals to seek
morerewarding options (that is, choosing the sucrose reward)*. That
is, it may serve as a mechanism for adapting to, or coping with, the
experience of CSDS, thereby maintaining a robust behavioural prefer-
ence for sucrose.

By contrast, the BLA of susceptible mice exhibited reduced repre-
sentations of current and future reward choices, which may result
in decreased reinforcement of behaviours associated with the more
rewarding outcome, ultimately contributing to a reduced prefer-
ence for high-value rewards*s. Moreover, the BLA of susceptible mice
also exhibited unique representations that reflected their intention
to switch or stay on the previously chosen reward. This heightened
evaluation of future choices with respect to the past is reminiscent of
rumination-like states commonly observed inindividuals with depres-
sion, such as repetitive thinking about past choices and upcoming
decisions***°.
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was correlated with animals’behaviour (n =15 mice, Spearman’s correlation).

e, Mahalanobis decoder trained on all neural features (All) could decode group
identity better than chancein BLA (n=1,000 cross-validations; chance:n=100
shuffles). Featureimportance in decoding was examined by systematic removal
of eachfeature (subsequent columns). FR, firing rate. f, Multi-dimensional
scaling (MDS) of neural features in BLA showed that controls were most distinct
fromsusceptible mice. g, Mahalanobis decoder trained on neural features
wasbetter at distinguishing control versus CSDS mice than one trained on
behavioural features (n=1,000 cross-validations; chance: n =100 shuffles;
Mann-Whitney P< 0.0001). Dataare mean +s.e.m. Chance distributions are
2s.d.aroundtheoretical chance level. *Significantly different from chance;
*P<0.05;,**P<0.01.

Furthermore, stress-susceptible mice showed reduced vCA1-BLA
correlations during higher value sucrose reward choice trials, poten-
tially driving anhedonic behaviour. When we used chemogenetics to
activate BLA-projecting vCAl neurons in susceptible mice, this led to
distinct changes in neural features of resilience and susceptibility.
Specifically, whereas the manipulationincreased inter-regional com-
munication between these regions and increased representations of
currentreward choiceinboth BLA and vCAl, activating vVCA1-BLA pro-
jectionreduced the rumination-like over-representation of the inten-
tion to stay or switch in the BLA. Critically, the activation decreased
anhedonia-related behaviour.

Finally, by analysing the neural activity patterns in the absence of
any task or stimuli, we also found an enhanced exploration of distinct
neural statesinthe BLA of stress-susceptible mice. This may be related
tothe emergence of intention-selective states that we observed in sus-
ceptible mice during the task period, and akin to theintrusive thought
patterns observed in patients with depression®*2, We speculate that
under normal conditions, suchasin control mice, the BLA plays a crucial
role in evaluating reward values, which subsequently influences the
decision to switch or stay. The decision probably occurs downstream of
the BLA, because we could not decode the intention to switch or stay in
the BLA of control mice. However, in susceptible mice, the BLA’s ability



to evaluate reward values may be disrupted by the emergence of these
intrusive, intention-selective states, which we could decode clearly
in these mice. These intrusive states may interfere with downstream
activity, biasing the decision to switch or stay towards the lower value
reward. Notably, these intrusive states are not merely noise, as we could
decodethesignal asthe intention to switch or stay. The ultimate effects
on decision-making are probably probabilistic, with the downstream
regionreading out all states (both normal and intrusive) from the BLA.
Insusceptible mice, these intrusive states may sometimes increase the
probability of staying, whereas in other instances, they may increase
the probability of switching. Consequently, susceptible mice exhibit
anaberrant reward decision-making process, resulting in anhedonia.
A similar process might govern the pre-task period in the absence of
reward stimuli, where the higher dimensionality reflects additional
intrusive states in susceptible mice.

Notably, we found that features of neural activity in the BLA during
task-free periods were more effective than classic behavioural readouts
or spontaneous facial and limb movements in distinguishing between
control mice and those with a history of CSDS. This suggests the pos-
sibility that resting-state neural activity patterns in the BLA may hold
substantial potential as anew biomarker for identifying individuals who
have experienced stressful life events. Although we did not observe any
significant contribution of spontaneous facial or imb movements to
BLA activity, it may be possible that other spontaneous behavioural
features not captured here may contribute to BLA activity, and it may
also be possible that the small differencesin some behavioural features
we observed could be encoded elsewhere in the brain®*,

Our datasuggest that while both reward choice and intention infor-
mation are present in vCAl of stressed mice, the differences between
susceptible and resilient groups become more pronouncedin the BLA,
suggesting that vCAl probably relays stressinformationto the BLAto
further shape distinct resilient and susceptible outcomes. Inthe BLA,
estimation of reward values versus intention to switch or stay may rep-
resent two distinct modes during reward decision-making: the former
isdominantin control and resilient mice, and the latter isdominantin
susceptible mice. We reason that these intention-selective states are
intrusive and disrupt normal decision-making in susceptible mice to
promote anhedonic responding, as they are not present in control
andresilient mice. Chemogenetic stimulation of BLA-projecting vCAl
neurons in susceptible mice disrupted the encoding of the intention
toswitch versusstay inBLA and vCAl, allowing for better reward value
coding and reward-related information transfer between BLA and vCAl.
In addition, it may also be possible that when reward values are more
distinctly represented, mice may rely less on intention and more on
reward value for decision-making.

While dysfunction in dopaminergic systems has been implicated
in motivational changes in depression and chronic stress**5™?, this
work provides crucial evidence for a role of the vCA1-BLA circuitin
modulating stress-induced behavioural phenotypes. By demonstrat-
ing that boosting vCAl-to-BLA communication can normalize neural
dynamics associated with susceptibility and promote those associated
withresilienceinthe BLA, our findings shed light on how dysfunction
in this circuit may contribute to stress-induced maladaptive states.
Moreover, these results highlight the vCA1-BLA circuit as a promis-
ing target for neuromodulation in mood disorder treatments and
open new avenues for potential therapies to more effectively address
stress-induced pathologies.
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Methods

Mice

All procedures were conducted in accordance with the National
Institutes of Health’s Guide for the Care and Use of Laboratory Ani-
mals and the institutional guidelines of the University of California,
San Francisco's Institutional Animal Care and Use Committee. Adult
(8-12 weeks old) male and female C57BL/6) mice were supplied by The
Jackson Laboratory. Adult (5-6 months old) CD1retired male breeder
mice were supplied by Charles River. Allmice were keptonal2-hlight/
darkcycle, and all experiments were conducted during the light phase.
We performed recordings in 60 mice for the original dataset, includ-
ing 45 CSDS mice (30 males, 15 females) and 15 control mice (10 males,
5females). The results shown are combined data using both males and
females, as we did not observe significant differences between males
and females. Mice were randomly assigned to control or CSDS groups
before CSDS exposure. A separate cohort of 41 CSDS mice underwent
chemogenetic manipulation experiments. Twenty-three of the mice
received AAV-DIO-hM3Dq viral micro-infusion and 18 mice received
AAV-DIO-mCherry infusion. Mice were randomly assigned tohM3Dq or
mCherry groups at the time of surgery. From the hM3Dq and mCherry
groups, we performed recordings in seven of the susceptible mice
in each group. Experimenters were blind to the condition and group
assignments of mice.

Surgery

Head bar and craniotomy surgery. One week before lick training, head
barsurgeries were conducted onall mice (8-9 weeks old). According to
a previously described protocol®, mice were anaesthetized with 1.5%
isoflurane with an O, flow rate of 11 min™, and head-fixed in a stereotaxic
frame. A custom-made titanium head bar was then attached to the skull
using Metabond adhesive cement (Parkell). Possible recordingsites (see
the section entitled Neuropixels recording and data preprocessing)
were stereotaxically marked using a permanent marker on the skull
surface, and the skull was covered using silicon (Smooth-On). At 3 days
before Neuropixels recording, craniotomy surgery was performed, in
which, under anaesthesia, craniotomies were made at the previously
marked coordinates. The skull surface was covered with Kwik-Sil (World
Precision Instruments).

Viral micro-infusion surgery. For mice that underwent chemoge-
netic manipulations, adult mice (8-9 weeks old) received viral micro-
infusioninthe same surgery as head bar attachment, asinapreviously
described protocol®. Specifically, AAV8-hSyn-DIO-hM3D(Gq)-mCherry
(Addgene, 44361-AAVS, 2.9 x 10" viral genomes (vg) per millilitre) or
AAVS-hSyn-DIO-mCherry (Addgene, 50459-AAVS, 1.0 x 10" vg ml™) was
micro-infusedinto vCAlbilaterally (500 nl per hemisphere, -3.52 mm
anterior—posterior (AP), £3.1 medial-lateral (ML), -4.2 (150 nl), —4.1
(200 nl) and -4.0 (150 nl) dorsal-ventral (DV), from bregmaaccording
toref. 60), and AAV2retro-CAG-Cre (UNC Vector Core, Ed Boyden’s
stock, 4.1 x 10" vg mI™) was micro-infused into the BLA bilaterally
(500 nl per hemisphere, -1.80 mm AP, +3.1 ML, -5.0 (150 nl), —4.8
(200 nl) and —4.6 (150 nl) DV). Viral vectors were delivered using
Nanoject 3 (Drummond Scientific). The needle was held in place for
>5 min after infusion at each DV site, and for 10 min after the last DV
site. Following viral micro-infusion, a head bar was attached to the
skull as described above.

Behaviour

CSDS. The CSDS procedure was conducted according to a previously
established protocol*. Briefly, CD1 male mice were singly housed fol-
lowing arrival for >1 week and were then pre-screened for aggression
over 3 consecutive days. Each day, a CD1 mouse was placed in a cage
with a new screener BL/6 mouse for 3 min. An aggressive CD1 mouse
is defined as one that attacked the BL/6 mouse within the first minute

over a minimum of 2 consecutive days. Only aggressive CD1 mice were
used in defeats and social interaction tests. Defeats occurred over
10 days, for which, each day, a BL/6 mouse was introduced to a new
CD1mouse’s cage for 10 min. Defeats were terminated early if severe
injuries on BL/6 mice were observed. After 10 min, aclear plastic divider
with perforations was placed in the middle of the defeat cage for 24 h,
to physically separate the BL/6 and CD1 mice while allowing visual and
odour cues to transmit and reinforce the defeat experience during
co-housing. After the tenth day of defeat, BL/6 mice were singly housed
innew cages (without CD1 mice) for 24 h before the social interaction
test. For female defeats, female BL/6 mice were first coated with urine
from other aggressive CD1 male mice (not used in defeats) before being
introduced to the defeat CD1 mouse cage®, to minimize mounting
behaviour and maximize defeats. Female defeats were terminated
early if mounting was observed. For the control group, a BL/6 mouse
was co-housed across from another conspecific across a divider for
10 days without any physical interaction or defeats. Oneach day, anew
BL/6 mouse pairing was introduced.

Social interaction test. The social interaction test took place 1 day
after termination of CSDS (or the control procedure). BL/6 mice were
habituated to thesocial interactiontest roomfor1hbefore thetest. The
test was performed under red light (10 Ix) inatest arena (custom made,
42 cm (w) x 42 cm (d) x 42 cm (h)) inasound attenuation chamber. Dur-
ing the first phase of the test, the BL/6 mouse was introduced to the test
arenawithanempty enclosure (10 cm(w) x 6.5cm (d) x 42 cm(h)) atone
end for 2.5 min, and its activity patterns were tracked using Ethovision
(NoldusInformation Technology). At the end of 2.5 min, the mouse was
placed backinits home cage, and the empty enclosure was replaced with
asecond enclosure containing a new aggressive CD1 that had not been
used in defeats. The BL/6 mouse was put backinthe test arenafor another
2.5min. Thesocialinteraction score, asameasure for social avoidance,
was calculated asthe time spentin the interaction zone (14 cm x 24 cm)
with the aggressor present versus absent. The lower the social interac-
tion ratio, the more socially avoidant the animal was. The same test
protocol was used for all experiments, except for when chemogenetic
manipulations were performed during the social interaction test.

For chemogenetic manipulation during the social interaction test,
the same surgery and social defeat procedures were used as before, and
then we performed 2 days of socialinteraction tests. On day 1, mice were
injected with saline (intraperitoneally (i.p.)) 20 min before the social
interaction test. On day 2, mice were injected with CNO (i.p.) 20 min
before the socialinteraction test. We performed the social interaction
tests ontwo separate days to prevent habituation to the social interac-
tion test chamber.

Elevated plus maze. The elevated plus maze assay was performed an
hour after the end of the social interaction test using an established
protocol™. Briefly, mice were placed in a standard maze (height from
thefloor,13.5in;length of each armtype, 25 in; arm width, 2 in; closed
arm height, 7 inches; height and width of ledges on the open arms,
0.5in; light over the open arms, 650 1x). Mice were positioned in the
central region of the maze and allowed to explore for 15 min. Their
behaviour was tracked and analysed using Ethovision (Noldus Infor-
mation Technology). Openarmtime, as ameasure for anxiety-related
behaviour, was calculated as the percentage of time spentin the open
arms of the maze.

Head-fixed SPT. Following recovery from head bar surgery, mice
were habituated to the experimenter and the head-fixed set-up for
15 min a day for aweek. After habituation, mice were water-restricted
to about 85-90% their ad lib body weight and were trained for 3 days
tolick onthe custom-designed dual-spout head-fixed reward delivery
apparatus. Onday 1, mice were introduced to 1lick spout, from which
sucrose rewards (10% sucrose, about 3.5 ml each) were intermittently
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delivered following licking (that is, rewards were lick contingent) with
8 s ITI, with a maximum of 150 rewards per session. Sucrose rewards
were delivered using asolenoid-gated gravity feed. Licks were detected
using a piezo element (SparkFun). Stimulus delivery and sensor reading
were controlled using a custom Arduino MEGA board and recorded
using CoolTerm software. On days 2 and 3, mice were introduced to
2 lick spouts, one on each side of the mouse, separated by about 50°.
Sucrose rewards were delivered in both spouts following licking with
8 sITI. The goal was to teach mice that rewards were delivered from
bothspouts. Thus, if amouse showed preference for the spout onone
side, that spout was temporarily removed so the mouse could learn to
lick fromthe other spout. Once the animal showed similar preference
for both spouts, lick training was completed and pre-defeat SPT was
initiated on the following day. SPT occurred over the course of 2 con-
secutive days, during which one spout delivered water and the other
delivered sucrose. Rewards were delivered following licking with 8 s
ITIand amaximum of 150 rewards in total per day. The spout designa-
tion was randomized across mice on day 1 and counterbalanced on
day 2. Sucrose preference was calculated as the averaged percentage
of sucrose rewards obtained across 2 days. On completion of day 2 of
pre-defeat SPT, mice were taken off water restriction and housed in a
social defeat room for 3 days before CSDS began. Post-defeat SPT was
performed using the same protocol, with the addition of Neuropixels
recording. Post-defeat SPT was used for all analysis shown.

To control for the possibility that reward choice and intention
signals were driven by differences in direction or action sequence
(left versus right) coding, a separate cohort of mice were recorded
using the same-reward SPT, in which, instead of delivering water or
sucrose in the two lick spouts (different-reward SPT), both spouts
delivered sucrose rewards. The rest of the experiments were the same
asdescribed above.

For chemogenetic manipulation during the SPT, 3 weeks after viral
micro-infusion (see the section entitled Viral micro-infusion surgery),
CSDS and control mice went through the same CSDS or control proce-
dureandsocial interaction test. On SPT days, saline (i.p.) was injected
20 minbefore the first half of the SPT (maximum 75 trials). Then, CNO
(i.p.) wasinjected 20 min before the second half of the SPT (maximum
75 trials). The design allowed for within-animal within-session com-
parisons of behaviour and neural activity patterns before and after
CNOiinjection.

Neuropixels recording and data preprocessing

Recording. Mice were head-fixed to the SPT apparatus without lick
spouts present. Kwik-Sil was removed from the skull surface. Before
insertion, Neuropixels 1.0 probes (IMEC) were first coated with Dil, DiO
or DiD dyes (ThermoFisher Scientific) and allowed to dry. Probes were
inserted at about 1 mm min to the target coordinate using Sensapex
manipulators. Probe targets and their coordinates are as follows: amyg-
dala(-1.71mmAP,-0.28 mm ML, -6.5 mm DV, at 31.3° ML) and ventral
hippocampus (-3.9 mm AP, -2 mm ML, —4.5 mm DV, at 25.8° ML). One
or two probes were inserted per session per mouse. Simultaneously
recorded probes were coated in the same colour of dye but spaced
at least several hundred micrometres apart to allow for unambigu-
ous identification. Different colours of dyes were used across days to
help differentiate probe tracks. After a probe reached the targeted DV
site, it was left in place for 10 min before the start of recording, which
includes 10 min of pre-task (no task stimulus) and SPT. Neuropixels
action potential signals were recorded using Neuropixels acquisition
system and SpikeGLX software (https://billkarsh.github.io/SpikeGLX/),
at30,000 Hzwith gain of 500. Behavioural signals were recorded using
aseparate dataacquisition board (National Instruments), along witha
synchronization signal that was also recorded by Neuropixels to help
synchronize clocks between different data streams. After each session
of SPT, probes were slowly removed from the brain and the skull was
covered with Kwik-Sil. Probes were cleaned using Tergazyme solution

(1%, Alconox) overnight and rinsed using deionized water before reus-
ing or storage.

Histology and probe track registration. At the end of the experi-
ments, mice were transcardially perfused with 1x PBS followed by 4%
paraformaldehyde solution. Brains were fixed overnight at 4 °C, and
thentransferred to30% sucrose solution for 48 h. Brains were sectioned
coronally using a microtome (Leica SM2000) at 50 pm thickness and
mounted on glass slides with Fluoromount G with DAPI (Southern
Biotech). Images were obtained using a confocal microscope (Nikon
Ti2-E Crest LFOV Spinning Disk/C2 Confocal) with a 20x objective.
Probe tracks were traced using the AllenCCF toolbox (https://github.
com/cortex-lab/allenCCF).

Spike-sorting. Neuropixels action potential signals were preprocessed
and spike-sorted offline using Kilosort 2 (ref. 62) or Kilosort 4 (ref. 63),
and after sorting, the clusters were manually validated using Phy®*.
Only well-isolated clusters (putative single units that are classified as
‘Good’ using Phy) were analysed. All other clusters, including multi-unit
activity and noise, were not analysed.

Data analysis

Animals were allowed to freely choose reward types after 8 s ITI had
passed between trials, by licking at the spout of their choice. Reward
deliveries were lick contingent. Trial types were defined as a +4 stime
window around the time of reward delivery. For all analyses, only ses-
sions with at least five neuronsin the region of interest were used. For
analysis during the pre-task period, we used min 2-8 of the 10 min
pre-task recording period. For analysis during the task period, we used
time windows specified in each figure. All dataanalysis were performed
using custom codes in MATLAB and Python.

Behavioural data analysis

Behavioural classification of mice. The relationship between sucrose
preference and social interaction ratio was assessed using a Pearson
correlation. To classify CSDS mice into subtypes, we applied unsu-
pervised K-means clustering using both behavioural metrics, sucrose
preference and socialinteraction ratio. The optimal number of clusters
was determined by evaluating cluster numbers from 2 to 10 and maxi-
mizing the silhouette score.

Lick analysis. Lick rasters were generated by binning licks using 0.02-s
bin size. Lick rates were calculated using 0.1-s bin size and averaged
across trials per mouse for each trial type as specified in the figures.
As mice tend to sample from both lick spouts in a trial (with them ulti-
mately choosing and obtaining a reward from one), we computed
thelick rate DIto assess their preference for licking at each spout. We
first quantified the difference between lick rates on sucrose versus
water lick spouts for sucrose choice trials (lick rate sucrose spout - lick
rate water spout), and separately, the difference between lick rates on
sucrose versus water lick spouts for water choice trials. The two values
werethen averaged to obtain the DIfor that session. A Dl value greater
than O suggestsagreater lick rate on the sucrose spoutin comparison
to the water spout, and vice versa for a Dl value less than O.

To take into account reward history and assess how it affects cur-
rent behaviour, we further divided sucrose and water trials into
sucrose-sucrose (SS), water-sucrose (WS), water-water (WW) and
sucrose-water (SW) trials (previous-current reward). The first trial of
each session was discarded as it had no prior trial. To assess the prob-
ability of each trial type irrespective of the animal’s overall sucrose
preference, we normalized the number of trials to the total number
of previous trials of a specific type. For example, we defined the
overall transition probability from a water trial to a sucrose trial as
P(WS) = P(WS)/(P(WW) + P(WS)), and from a sucrose trial to a sucrose
trial as P(SS) = P(SS)/(P(SW) + P(SS)), in which P(XY) is the transition
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probability from reward X to reward Y. We normalized the transition
probabilities such that P(WW) + P(WS) =1, and P(SS) + P(SW) =1. Using
this normalization, if P(SW) is not significantly different from P(WW),
this would suggest that the current water reward choiceisindependent
of the previous reward, because of the probability of switching from
sucrose or staying on water is the same; otherwise, the current reward
choice is dependent on the previous reward (that is, reward choices
could be modelled as a first-order Markovian process).

We also computed the proportion of each of the four trial types
normalized to the total number of trials per session, to assess how
much each trial type contributes to the overall session. In this case,
the percentages of trials of each of the four trial types were computed
persessionand averaged across sessions for each mouse. As the number
of trials may be influenced by each animal’sinnate preference for differ-
entrewards, we computed the chance probability of the occurrence of
each trial type by calculating the joint probability of the previous and
current trial. For example, chance P(SW) = P(S) x P(W). The number of
trials was then subtracted by the chance level in each mouse (‘number of
trials chance removed’). Sucrose-sucrose and water-water trials were
combined when analysing stay trials, and sucrose-water and water—
sucrose trials were combined when analysing switch trials. The prefer-
ence between stay versus switch trialsin each mouse was calculated as:
percentage of stay trials — percentage of switch trials. To quantify the
number of consecutive trials, we first obtained the average number of
consecutive trials per trial type (sucrose or water) per session and then
averaged across sessions for each mouse.

Decoding group identity using behavioural features. To examine
whether group identity could be decoded using behavioural data,
we defined a Mahalanobis-like binary decoder. Specifically, for each
mouse, we considered four behavioural features: lick rate DI dur-
ing pre-reward and post-reward, elevated plus maze open arm time
(CSDS mice showed increased anxiety-like behaviour®; Extended Data
Fig.1c), sucrose preference, and social interaction ratio. Considering
two groups atatime, we defined and constructed aMahalanobis binary
decoder to assignasingle testing mouse to one of the two groupsinthe
behaviouralfeature space. Theinputto the binary classifier consisted
of an N x Ftraining matrix and a 1 x F testing matrix, in which Nrepre-
sents the total number of training mice between the two classes, and
F=4represents the total number of features. In each cross-validation,
we first balanced the number of mice in each group by randomly sub-
sampling the minimum number of mice between the groups. Next,
we randomly selected one mouse as the testing sample and used the
remaining mice as the training set, for a total of 1,000 cross-validations.
We defined a Mahalanobis-like distance in the feature space as the
Euclidean distance between the testing mouse and the centroid of the
training groups, divided by the variance along the distance direction.
The testing sample was assigned to the group identity with the mini-
mum Mahalanobis-like distance. The performance of the decoder was
evaluated by calculating the fraction of correct classifications out of the
total 1,000 cross-validations, and the entire procedure was repeated
for all possible pairs of the three groups (that is, control, susceptible
and resilient mice).

Pre-task spontaneous facial and limb feature analysis. For asubset
of mice, werecorded spontaneous facial and limb movements during
the pre-task period using the Alvium 1800 U-158 camera (Allied Vision)
with the 16 mm CVIS-NIR Fixed Focal Length Lens (Edmund Optics), at
frame rate of 114 frames per second, using the MATLAB Image Acqui-
sition Toolbox. We tracked 12 keypoints using DeepLabCut®. These
include eye top, eye bottom, eye front, eye back, snout top, snout tip,
snout bottom, whisker 1, whisker 2, mouth, left hand and right hand.
To quantify facial and limb movements, we calculated the following
features from keypoints®: eye opening ratio, snout angle, mouth posi-
tion, whisker position, left limb Xand Y coordinates. Eye opening ratio

is defined as the ratio between the vertical and horizontal Euclidean
distance of the eye (that is, (eye top — eye bottom)/(eye front — eye
back)). Aneye openingratio of 1represents a perfectly spherical opened
eye.Snout angleis calculated as the angle formed by the vector of snout
tip tosnout top, and the vector of snout tip to snout bottom. Asmaller
angle represents a more pointed snout. The mouth position is calcu-
lated as the Euclidean distance between the mouth and the eye front.
The whisker position is calculated as the Euclidean distance between
whisker 1and the eye front.

Analysis of embedding dimensionality of face and limb features.
We used PCA to assess the embedding dimensionality of facial and limb
features over time for each mouse. We examined the facial and limb
featuresin a 250-ms bin during the 6-min window (min 2-8) within
the 10 min pre-task recording period. We define the feature space as
asix-dimensional space in which each axis is the value of one facial
and limb feature. The PCA analysis allowed us to identify how much
variance of these featuresin the feature spaceis accounted for by each
principal component (PC). We applied PCA to the K x Tmatrix, for which
K= 6is the number of facial and limb features, and T is the number of
bins, and we determined the cumulative curve of the variance explained
by each PC. We subsequently used the cumulative variance values for
thefirst three PCs as features to decode the group identity.

HMM for face and limb features. We fitted HMMs to facial and limb
features recorded in a 250-ms bin during 6 min (min 2-8) of pre-task
recording. The HMM identifies patterns of behaviour along time, with
each pattern correspondingto a specific behavioural state, defined by
the combination of the six facial and limb features, thatis not directly
measurable. We fitted an HMM separately for each mouse using the
same software framework developed by the Linderman Lab (https://
github.com/lindermanlab/ssm) we used to analyse neural data. The
input dataforthe HMM consisted of a K x Tmatrix, for which K= 6rep-
resents the total number of facial and limb features in the session, and
Trepresents the total number of time bins, and we assumed a Gaussian
modelasthe observation model. For each time series, we fitted Smodels
with amaximum of 100 iterations for each value of the total number of
states ranging from 2 up to 100, using randomized initial conditions.
The model with the smallest Akaike information criterion score was
retained as the best model for further analyses.

Agglomerative clustering analysis for HMM behavioural states.
To better characterize the spatial structure of the HMM states in the
facial and limb features space, we examined the pairwise correlation
between the states. For state 1defined by X = (x;, x,,...,Xx), in which.x;is
thevalue of the feature i, and state 2defined by Y = (,,)5,..., Yx), we com-
puted the Pearson correlation coefficient p(X,Y) to assess the distance
between the states in the facial and limb feature space. We calculated
the correlation coefficients for all pairs of total N states and stored
theminan N x N correlation matrix /. Subsequently, we performed
agglomerative clustering on the correlation matrix. Specifically, we
defined anewdistance matrix Das1—-/,inwhich1lisan N x Nmatrix of
ones. This matrix served as the input to the agglomerative clustering
algorithm, which iteratively combines states to define new clusters
according to the pairwise distance. The algorithm initialized each state
as a separate cluster with minimum distance (maximum correlation)
and iteratively merged two clusters vand u with the smallest distance
into a new cluster. The new distance d assigned to the agglomerated
clusters was defined as d(u,v) = max(dist(u[p], vigl)),inwhichpand g
represent all ofthe pointsin the merged clustersuand v, also known as
thefarthest point algorithm (sklearn.cluster.AgglomerativeClustering,
built-in classinscikit-learnin Python®). Agglomerative clustering has
the advantage of producing a hierarchical structure of clusters, and this
hierarchical representation allowed us to examine the relationships and
similarities between states, specifically how behavioural states may be
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nested differently within large clustersin different groups (for cluster-
ing analysis on neural data, see also the section entitled Agglomera-
tive clustering analysis). Agglomerative clustering does not require
any assumption regarding the total number of clusters. It iteratively
merges the closest states and clusters until all states are merged into
one final cluster. We performed the clustering analysis separately for
each mouse. After examining the clusters, we counted the total num-
ber of clusters at different levels of distance, or thresholds, for which
the higher the levels of distance, the lower the number of clusters,
until reaching only one cluster at the highest distance. We assessed the
number of total clusters and the proportion of total clusters retained
relative to the total number of states as a function of thresholds. A
higher number of states at the same threshold value indicates agreater
degree of dissimilarity among the inferred hidden states. We retained
the proportion of total clusters along these curves from a threshold of
0.01upto 0.05, because of the high facial and limb feature correlation
values between inferred states, resulting ina total of five features that
were subsequently used in the decoding of group identity.

Decoding group identity using facial and limb features. This analy-
sis aimed to decode the group identity (that is, control, susceptible
or resilient) on a single-mouse basis by analysing the facial and limb
featuresrecorded during 6 min of the pre-task period. For each mouse,
we assessed the embedding dimensionality using PCA (see the sec-
tion entitled Analysis of embedding dimensionality of face and limb
features), and we considered the cumulative variance explained by the
firstthree PCs as features for decoding. Following the inference of hid-
denstates and the clustering analysis, we calculated the proportion of
clustersretained at different thresholds and extracted the values at five
distinct thresholds (see the section entitled Agglomerative clustering
analysis for HMM behavioural states). Additionally, we computed the
meanand standard deviation of the facial and limb features as the last
two features. Overall, we assessed a total of F=10 features for each
mouse. We used the Mahalanobis binary decoder procedure, in which
theinputtothebinary classifier consisted of an N x Ftraining matrix and
alx Ftesting matrix, inwhich Nrepresents the total number of training
mice between the two classes, and F=10 represents the total number
of features (see the section entitled Decoding group identity using
behavioural features). The decoder was trained and tested for 1,000
iterations, with a new random testing subject selected and removed
fromthe training set for each of them.

Neural feature decoding when facial and limb feature decoding
is at chance. We compared neural to facial and limb feature decod-
ingaccuracy during only the time bins when facial and limb decoding
accuracy is at chance to assess how well a decoder using neural fea-
tures (see the section entitled Decoding group identity using neural
features) performs even when facial and limb feature decoding is at
chance level. Specifically, we trained an SVM with a linear kernel on
thessix facialand limb features to differentiate between control versus
susceptible miceinasubset of 10 randomly selected 1-s bins of training
mice and tested on the pre-task time window of 6 min (min 2-8, 360
time bins total) of one held-out testing mouse. We then selected the
test time bins when facial and limb decoding accuracy is within 1 or
2s.d. of the chance level (0.5), obtained from the distribution accura-
cies of 100 null models after shuffling the labels. In these same time
bins for which the classification based on facial and limb featuresis at
chance, we performed decoding of control versus susceptible mice
using neural activity of BLA.

Contribution of facial and limb movements to neural activity in
the BLA. We investigated whether the facial and limb features con-
tributed to BLA neural activity during the pre-task period. We fitted
facialand limb features to neural activity (firing rate) using linear regres-
sion in each mouse separately. We binned neural and facial and limb

feature datausingalstimewindow (total of T =360 bins) and defined
ourmodelasY=AX"+ B, inwhich Yisan N x Tmatrix with the firing rate
of Nrecorded neurons, Ais an N x K matrix with the regression coeffi-
cients of K= 6 facial and limb features, and Xis a T x K matrix with the
Kfacialandlimb features values. Sis the intercept (a constant). Before
fitting, the data were centred to zero. We used the linear least square
error as aloss function and added an L2-norm regularization term to
preventoverfitting. We tried arange of values for the L2-norm regulari-
zation term, ranging from O (equivalent to ordinary least squares) to
10°, with no significant difference in the final coefficient of determina-
tion (R?) estimate.

We did not find a positive R? from any of the linear models, sug-
gesting that using facial and limb features that we recorded, we could
not predict BLA neural activity better than chance. In other words,
these facial and limb features are unlikely to contribute significantly
to BLA neural activity, and consequently, any group differences that
we observed.

Single-neuron analysis

Firing rate. For task period, spike trains were aligned at the time of
reward delivery (time 0) and neurons within the same region were
pooled across animals of the same group to construct pseudo-
populations. Only neurons with at least ten trials per trial type (sucrose
and water) were included. For peristimulus time histograms, spikes
were binned at 10-ms resolution, z-scored to pre-reward (-1to O s),
and smoothed with a 50-ms moving average filter. For analysis of raw
firing rates, spikes were binned at 500-ms resolution.

Reward-choice-selective neurons. Analysis was performed using
pseudo-populationand only neurons with at least ten trials per trial type
(sucrose and water) were included. Mice with fewer than five neurons in
regions of interest were excluded. Reward-choice-selective cells were
identified®®*’, and the magnitude of the selectivity was quantified,
using the auROC method, which compares single-neuron firing rates
between trial types, across levels of response thresholds for each time
bin. Spikes were binned at 500-ms resolution. Shuffled distributions
were computed for each time bin by randomly shuffling trial type ten
times per neuron. A neuronis deemed reward choice selective ifits au-
ROCis>2s.d. of the shuffled distribution for that neuron. The fraction
of selective neuronsinaregionwas calculated as: number of selective
neurons/total number of neurons. Differencesin the fraction of selec-
tive neurons across groups were assessed using Fisher’s exact tests.

Intention-modulated neurons. Analysis was performed using
pseudo-population and only neurons with at least ten trials per trial
type (switch and stay) were included. Intention-modulated neurons
wereidentified using a similar method as reward-modulated neurons.
Mice with fewer than five neuronsinregions of interest were excluded.
Inthis case, a cellis deemed intention-modulated if the distribution of
firing rates during the 4 s pre-reward period (-4 to O s) in switch trials
is significantly different from stay trials, as identified using Wilcoxon
rank-sum test followed by false discovery rate correction across all
neuronsinthat group (P < 0.05). As the fraction of neurons was small
and did not meet the criteria for using Chi-squared test, Fisher’s exact
tests were used to perform statistical comparisons between percent-
ages of intention-modulated neurons across groups.

Population analysis

Analysis of embedding dimensionality. PCA was used to evaluate the
embedding dimensionality of population activity of simultaneously
recorded neurons over time. The method aims to identify how much
variance of the population representation in the firing rate space is
accounted for by each PC. We chose this method because the pre-task
period lacks behavioural labels. PCA has the advantage of allowing
us to compare neural data between animals because the method is



invariant for rotations and global stretching, transformations normally
needed to align a neural representation of one subject into another.
We examined the activity of each neuron in 1-s bins during the 6 min
time window (min 2-8) within the 10 min pre-task recording period,
resulting in 360 bins. The ensemble activity across these bins can be
represented as ageometrical object in the firing space, with each axis
representing the firing rate of aneuronand each point representing the
ensemble’s activity in atime bin. We calculated the embedding dimen-
sionality of this geometrical object for each mouse. We included only
mice with atleast five simultaneously recorded neurons in the region
of interest during the pre-task recording. We randomly selected five
neurons for eachmouse and calculated the z-scored firing rate matrix
Nx T,inwhichNis the number of neurons, and Tis the number of time
bins. We applied PCA to this matrix and determined the cumulative
curve of the variance explained by each PC. We repeated this procedure
1,000 times and averaged the results across the subsamples for each
mouse. Our goal was to compare cumulative variance curves across
groups and determine whether agroup had a higher cumulative value
at MPCs (M <5), indicating alower dimensionality of the geometrical
object. We subsequently used the cumulative variance values for the
first three PCs as features to decode the group identity.

We also assessed the participation ratio (PR), whichis anormalized
measure of dimensionality based on the full distribution of PCA eigen-
values (that is, how much variance is explained by each PC), and it is
defined as:

R (T
it (%)

inwhich A; are the eigenvalues of the covariance matrix of the neural
activity,and N = 5.If only one eigenvalue explains all of the variance (1;# 0
fori=1andA,=0foralli>2),thenPR=1.0ntheother hand, ifall eigen-
values are equal, the dimensionality is maximum, PR = N (refs. 70,71).

During the task period, the same analysis was repeated during the
1sof pre-reward and post-reward periods, using a z-scored firing rate
with 0.2-s bins (5 bins for each period).

HMM. We used HMM s to identify patterns of population activity in the
time series, with each pattern corresponding to aspecific neural state
thatis not directly measurable®®#%72, We fitted an HMM separately for
eachmouse for the pre-task and task period. For the DREADD dataset,
HMMs were fitted for saline and CNO periods of each mouse separately.
To performmodel fitting, we used the software framework developed
by the Linderman Lab (https://github.com/lindermanlab/ssm).

To prepare the data for the HMM analysis, we binned the 6-min
pre-task recordings of each sessioninto1-s bins, resultingin 360 bins.
We computed the spike count of each neuron in each bin. The input
data for the HMM consisted of an N x T matrix, in which Nrepresents
the total number of simultaneously recorded neurons in the session,
and Trepresents the total number of time bins.

For the analysis during the task in the pre-reward and post-reward
periods, we computed the spike count in 0.2-s time bins. We fitted
separate HMMs for the pre-reward and post-reward periods for sucrose
and water trials. Toaccomplish this, we concatenated the Mtrials within
asingle session and arranged the input datainan N x T x M matrix, for
which T=5.We chose the bin size of 0.2 s, because this bin size balanced
the inference of maximum possible transition states and total spike
count used to fit HMMs.

For decoding of switch versus stay using HMM states, we focused on
the4 spre-reward period. Spike counts were binned using a1-sbinsize,
and concatenated across the 4-swindow of all trial types. This resulted
inan N x Tx Minput matrix, for which T=4, and Mrepresents the total
number of recorded trials in the session. Consistent with previous
analyses, in our analysis, we retained only sessions with at least five
simultaneously recorded neurons.

Given therecorded (observed) spike count over time, we modelled
the neuronal activity asaPoisson process, with the mean value depend-
ent on the current neural state. We represented the probability of
observing the spike count vector n(t) of Nneurons at time bin ¢, given
the hidden neuralstate S, =, asbeing distributed as amultivariate Pois-
son process: P(n,| S,=j) - Poisson(4; n,), where ~ denotes ‘distributed
as’.Here,A={1,,1,,...A\},and A;represents the estimated mean activity
fortheithneuroninstatej. The vector A corresponds to the column of
the N x K ‘emission matrix’ E, which provides the firing rates or activa-
tion probabilities of observing a specific neuronal pattern when the
population activity is in a particular state.

We assumed the dynamics of the neural states to evolve according to
afirst-order Markovian process, for which the probability of transition-
ing from one state to another depends only on the current state. This
process is summarized by the K x K ‘transition probability’ matrix T.
Additionally, we incorporated aninitialization vector A, which provides
the probability of starting in each state. The HMM was fully described by
the set of parameters {E, T, A}, which were inferred by fitting the model
to the recorded neuronal spike counts”. We used the Baum-Welch
expectation-maximization algorithm to update the model parameters
and maximize the likelihood of the observed data. For each time series,
we fitted 5 models with a maximum of 100 iterations for each value of
the total number of states ranging from 2 up to 50, using randomized
initial conditions. The model with the smallest Akaike information
criterion score was retained as the best model for further analyses?®.
Subsequently, we used the Viterbi algorithm to estimate the most likely
sequence of states over time.

Agglomerative clustering analysis. To better characterize the spatial
structure of the hidden states, we examined the pairwise correlation
between the inferred activity of the states. For state 1 with an activity
vector X = (X}, X,, ..., Xy), in which x; represents the activity of neuron i,
and state 2 with an activity vector Y= (y,,¥,,..., Yx), we computed the
Pearson correlation coefficient p(X,Y) to assess the distance between
the statesinthe neuronal activity space. We calculated the correlation
coefficients for all pairs of states and stored themin an N x N correla-
tion matrix K. Subsequently, we performed agglomerative clustering
on the correlation matrix.

Specifically, we defined anew distance matrix Das1- K, inwhich1is
an N x Nmatrix of ones. This matrix served as the input to the agglom-
erative clustering algorithm, whichiteratively combines states to define
new clusters according to the pairwise distance. The algorithm initial-
ized each state as a separate cluster with minimum distance (maxi-
mum correlation) anditeratively merged two clustersvand u with the
smallest distance into anew cluster. The new distance d assigned to the
agglomerated clusters was defined as d(u,v) = max(dist(u[p], vlg])), in
which pand grepresent all of the points inthe merged clustersuand v,
alsoknown as the farthest point algorithm. Agglomerative clustering
has the advantage of producing a hierarchical structure of clusters,
which werepresented as adendrogram. This hierarchical representa-
tion allowed us to examine the relationships and similarities between
states, specifically how neural states may be nested differently within
large clusters in different groups. Agglomerative clustering does not
require any assumption regarding the total number of clusters. Ititera-
tively merges the closest states and clusters until all states are merged
into one final cluster. We performed the clustering analysis separately
for each mouse, visualizing the results with a dendrogram that sum-
marizes the merging of clusters at different levels of distance, ranging
from O (original states) to 1 (a single cluster).

After examining the clusters, we counted the total number of clusters
at different levels of distance, or thresholds, for which the higher the
levels of distance, the lower the number of clusters, until reaching only
one cluster atthe highest distance. We assessed the curves of the num-
ber oftotal clusters and the proportion of total clusters retained relative
to the total number of states as a function of thresholds. Comparing
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these curves between two groups, a higher number of states at the
same threshold valueindicates agreater degree of dissimilarity among
theinferred states. We retained the proportion of total clusters along
these curvesfromathreshold of 0.1up to 0.5, resulting in atotal of five
features that were subsequently used in the decoding of group identity.

We applied the clustering analysis to the pre-task activity using the
previously inferred states described in the section entitled HMM, as
well as to the pre-reward and post-reward task periods for water and
sucrose trials separately.

Correlation of population activity across time. To examine how vari-
able population activity was across time during the pre-task period,
we performed Pearson correlation on population vectors of neuron
firing rates across all time bins (1-s bins). The correlation values were
then averaged to assess differences between groups.

Decoding group identity using neural features (dimensionality,
hidden states, firing rates). This analysis aimed to decode the group
identity (thatis, control, susceptible or resilient groups, or saline versus
CNO groups for the DREADD experiment) on a single-mouse basis by
analysing the pre-task activity, for which no behavioural labels were
available. As described in the section entitled Analysis of embedding
dimensionality, the pre-task activity can be represented as ageometri-
calobjectinthefiring space, with each axis representing the firing rate
ofaneuronand each pointinthe spacerepresenting the activity of the
neuronal ensemblein each time bin. We sought features that character-
ized the representational object and were invariant to rotations and
scaling transformations, or asubset of these transformations, ensuring
shapeinvariance of the object.

We included only mice with at least five neurons simultaneously
recorded during the pre-task period. For each mouse, we computed
the cumulative variance explained across the PCs (for more details,
see the section entitled Analysis of embedding dimensionality). We
considered the cumulative values of the first three PCs as features for
decoding. Following the inference of hidden states and the clustering
analysis, we calculated the proportion of clusters retained at different
thresholds and extracted the values at five distinct thresholds (see the
section entitled Agglomerative clustering analysis). Additionally, we
computed the mean and standard deviation of the spike count as the
last two features. All of the neural features were computed using 1-s
binsto optimize the final decoding performance. Overall, we assessed
atotal of 10 neural features for each mouse.

We used the same Mahalanobis binary decoder procedure as previ-
ously described in the section entitled Decoding group identity using
behavioural features. Specifically in this case, the input to the binary
classifier consisted of an N x Ftraining matrixand a1 x Ftesting matrix,
inwhich Nrepresents the total number of training mice between the two
classes, and F =10 represents the total number of features. Before run-
ning the classification algorithm, we preprocessed the input matrices
by applying a minimum-maximum scaler to the mean and standard
deviation of the spike count, ensuring that all features were scaled
between O and 1 (because the PC cumulative variance and fraction
of HMM clusters are defined between 0 and 1 by construction). The
decoder was trained and tested for 1,000 iterations, with a new ran-
dom testing subject selected and removed from the training set for
each of them.

The same decoder procedure was also applied during the pre-reward
and post-reward periods of the task. For the decoding using vCAl activ-
ity, the training set was defined as 20% of the total number of mice
owing to the initial larger sample size.

Neural population decoding. Asinapreviously described method®,
alinear SVM classifier was trained to classify patterns of activity into
two discrete categories. Results are reported as the generalized per-
formance of the decoder using cross-validation witha 80:20 training/

testing split. Patterns of activity are defined as the mean firing rate
during 0.5-s non-overlapping time bins. Pseudo-population record-
ings were generated by combining all neurons within the same region
and the same group. As it is well known that neural activity in previ-
ous trials could strongly influence activity in current trials™, for all
pseudo-population decoding analyses, we balanced the number of
trials of eachtrial type by taking into account both the previous and cur-
renttrialtypes. Inother words, we have equal numbers of water-water,
sucrose-sucrose, water-sucrose and sucrose-water trials (previous-
currenttrials, respectively). Only neurons with atleast eight trials per
each of the four trial types were included.

To decode current reward, we combined equal numbers of water—
water and sucrose-water trials for water trials, and similarly, equal
numbers of sucrose-sucrose and water-sucrose trials for sucrose
trials. To decode previous reward, we combined equal numbers of
water-water and water-sucrose trials for water trials, and similarly,
equal numbers of sucrose-water and sucrose-sucrose trials for sucrose
trials. To decode intention (stay versus switch), we combined equal
numbers of sucrose-sucrose and water-water trials for stay trials,
and similarly, equal numbers of sucrose-water and water-sucrose
trials for switch trials. We balanced the previous and current reward
values when defining switch and stay trials to rule out the confound
of reward choices on intention. In other words, the intention signal
that we define here is an intention to switch away or stay on the same
reward as the previous trial, irrespective of the specific reward value.

To control for the possibility that differences in direction or action
sequence (left versus right) coding contributed to reward choice or
intention coding, we performed decoding inmice that were given the
same value reward in the two lick spouts (same-reward SPT; for more
details, see the section entitled Head-fixed SPT). All decoding proce-
dures are the same.

As eachgroup may have different number of cells and trials, we used
subsampling procedures to randomly subsample cells (60 neurons
for both BLA and vCAl), and within those cells, randomly subsample
trials equal to the group with the smallest number of trials. The result-
ing dataset was used to train SVM and obtain cross-validated decod-
ingaccuracies. For each set of subsampled cells, decoding accuracies
across randomsubsampling of trials (repeated tentimes) were averaged
to obtain asingle sample of decoding accuracy. We repeated the whole
procedure ten times to obtain statistical comparisons across groups
and against shuffled distribution.

For within-time-bin decoding, SVMs were trained using data from
one time bin and tested using held-out data from the same time bin.
For cross-time-bin decoding, SVMs were trained using data from one
time bin and tested using data from the other time bins.

To control for the possibility that differences in lick rates contributed
to differencesin decodingaccuracy for reward choice, we performed
additional analysis in which we equalized the lick rates by using only
trialswith the same lick rates between groups for decoding. Specifically,
for susceptible and resilient mice, we analysed only those trials with lick
rates within 3-14 Hzin both groups, whereas for salineand CNO mice,
we analysed those trials with lick rates within 3-10 Hz in both groups.

For statistical comparisons, decoding accuracy during pre-reward
(-4to-3s)and post-reward (0 to1s) periods was averaged. If the mean
decodingaccuracyinagroup was significantly higher than 2 s.d. of its
respective mean shuffled distribution, we then performed additional
between-group comparisons (two-way comparison: Mann-Whitney
test; three-way comparison: Kruskal-Wallis test followed by Dunn’s
multiple comparisons test).

Decoding switch versus stay using HMM states. In addition to using
recorded firing rates during the 4 s pre-reward window to decode switch
versus stay, we also trained separate decoders using the smoothed activ-
ity of the hidden states inferred by the HMMs. This approach uniquely
allowed ustoidentify population hiddenstates within this time window,



and specifically those states that may be intention selective, which can
then be artificially manipulated to assess their necessity in decoding.
Itisimportant to note that the training of the HMM was performed on
concatenated trials, whichincludes the four1-s bins pre-reward across
alltrial types. We then rearranged the sequence of hidden statesin each
trial type a posteriori.

Once the parameters of the HMMs were inferred, the models could
smooth the observed data by computing the mean observed activity
under the posterior distribution of hidden states®. For instance, given
the observed activity vector X during a time bin of a trial pre-reward,
the HMM inferred a 0.2 probability of being in state S=1and a 0.8 prob-
ability of staying in state S = 2. More precisely, P(S=1|X) =0.2, and
P(S=2]X)=0.8.Thesmoothed observationsused to trainand test the
linear decoder were calculated as Y= 0.2, + 0.8y, inwhich y;represents
theinferred mean for the observationsinstate;j. Figure 3his anexample
spike raster of 15 simultaneously recorded neurons in two switch and
two stay trials during 4 s pre-reward from one representative mouse.
The different colour-shaded areas are different HMM hidden states,
with coloured lines showing the posterior probability for each state.

Toensurerobustness, we randomly sampled 60 neurons fromeach
mouse for 10 neuronal subsamples. We generated 1,000 pseudo-trials
for each of the 4 trial types, resulting in a total of 4,000 pseudo-trials
for the training and testing sets, separately. Theinput datato trainand
test the decoder consisted of the smoothed activity assigned to each
time bin. We trained and tested a SVM classifier with a linear kernel,
similar to the approach usedin the population decoding using original
firing rates, to decode switch versus stay. In each cross-validationitera-
tion, werandomly selected100 pseudo-trials asthe training set and 20
pseudo-trials as the testing set, for atotal of 100 cross-validations. The
final decoder accuracy was computed as the average across neuronal
subsamples and cross-validations.

To assess the significance of the decoding signal, we compared it
to achancelevel, defined as 2 s.d. around the theoretical mean of the
distribution of accuracies obtained after 100 shuffles of the labels.

Defining intention-selective states. We conducted a detailed analy-
sis of the distribution of hidden states across trial types to identify
intention-selective states. For each mouse, we computed the fraction
of occurrence of each hidden state within the 4-s bins pre-reward across
alltrials. This distribution was then normalized to the total number of
trials multiplied by the number of bins. We assessed this normalized
distribution separately for each trial type.

Consistent with the decoding results, we observed that certain
states appeared exclusively in either the stay or switch trials, with no
occurrences in the other trial types. To quantify the amount of infor-
mation each state held for the intention value (that is, stay or switch),
we computed the Shannon entropy”. Specifically, for a given state,
we normalized its occurrence frequency in each trial type to the total
number of trials. The entropy of each state for the intention value was
calculated using the following formula:

Hytare =~ [Pswitch X IOg(Pswitch) + Pstay X lOg(Pstay)]

inwhich P, is the occurrence frequency of the state in switch trials
(water-sucrose, sucrose-water) and Py, =1 - Pg,;.,. An entropy value
of Oindicates that the state provides highly informative signals for the
intention toswitch or stay. Therefore, we defined anintention-selective
state as one with an entropy value of O for the intention value.

To decode the intention of switch/stay using hidden states, we first
examined thedistribution of the fraction of intention-selective states at
different clustering thresholds for each mouse, and selected athreshold
thatyielded the highest number of intention-selective states. We then
used theinferred firing rates from theseidentified intention-selective
states to trainalinear decoder for classifying the intention of mice to
switch or stay.

To compare the fraction of intention-selective states across groups,
we calculated the fraction of the intention-selective states out of the
total number of hidden states using the first four clustering thresholds
(ranging from 0.1up to 0.4, stepped by 0.1), and compared the result-
ing distribution.

To examine the necessity and sufficiency of intention-selective states,
we first excluded trials that contained intention-selective states in at
least three time bins pre-reward. Inthe opposite approach, we enhanced
the presence of intention-selective states in the decoding procedure by
considering only those trials that included intention states in at least
three time bins before the reward delivery.

Generalization of susceptible versus resilient decoder to saline
versus CNO. We trained an SVM with alinear kernel to classify whether
ananimalissusceptible orresilientin the feature space defined by the
three behavioural features (sucrose preference, and lick rate Dlin the
pre- and post-reward) and the four neural features (reward decoding
accuracyinthe pre-and post-reward, the intention decoding accuracy
pre-reward using raw firing rates, and the intention accuracy pre-reward
using HMM states). We used one held-out mouse as a testing sample,
and theremaining ones as the training set, after balancing the number
of training samples per each class. We repeated this procedure for a
total of 1,000 cross-validations. We subsequently tested the gener-
alization performance of the decoder in classifying new susceptible
mice, not used for training, before and after the treatment of CNO. We
assessed the significance of the average decoding performance across
the 1,000 cross-validations with respect to a chance interval defined
as 2 s.d. around the chance level of 0.5 of the distribution accuracies
obtained from 100 shuffles of the labels.

Decoding group identity of susceptible versus resilient mice using
behavioural and neural features. We trained an SVM with a linear
kernelto classify the group identity (control, susceptible and resilient)
using neural signatures of the task phase, specifically reward choice
decoding performance during the pre-and post-reward period, and the
fraction of intention-selective states (see the section entitled Defining
intention-selective states). We used one held-out mouse as a testing
sample, and the remaining ones as the training set, after balancing the
number of training samples per group. We repeated this procedure for
1,000 cross-validations. We compared the average decoding perfor-
mance across the1,000 cross-validations to achanceinterval defined
as 2s.d. around the chance level of 0.5 of the distribution accuracies
obtained from 100 shuffles of the labels.

MDS. To visualize the geometric structure of the data, we used
multi-dimensional scaling (MDS) transformation to obtain a
low-dimensional representation of the data. For pre-task data, we
started with the N x F matrix used for the Mahalanobis decoder, in
which Nrepresents the total number of subjects across all three groups,
and F denotes the number of features used for decoding the group
identity. Before the dimensionality reduction analysis, we normalized
eachgroup’s databy its variance to reduce noise and enhance the clarity
of the final visualization. Next, we performed a diagonalization of the
dissimilarity matrix N x N, which contained the Euclidean distances
between each pair of subjects in the feature space. We used the same
procedure for the task period. In these cases, the input matrix was a
T x Nmatrix, in which Trepresents the total number of pseudo-trials,
and Ndenotes the number of neurons. In the example MDS plots, each
pointisthe average firing rate across neurons during the specified time
window for the specified trial type, with n =1subsampling, 60 neurons,
1,000 pseudo-trials per condition.

Inter-regional connectivity. vCA1-BLA connectivity during pre-task
period. We computed the firing rates of each recorded neuronin1-s
bins within the same region (BLA and vCA1l) during a 6-min window
(min 2-8) of pre-task recording. We set a minimum of five neurons
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simultaneously recorded inboth BLA and vCAL. Given the matrix N x T,
inwhich Ndenotes the number of neurons, and T denotes the number of
time bins, we computed the PCs of this matrix for each area, separately.
We subsequently aligned the neural dynamics of the first PC between
the two simultaneously recorded signals by using canonical correlation
analysis (CCA). CCAis a linear transformation used to find common
patterns between two signals defined in two different spaces, with
the goal of maximizing their correlation. Given two matrices XeR™"
and YeR"™7 inwhich Nand M are the numbers of variables and Tis the
number of time bins, CCA finds linear combinations U and V of the
featuresin Xand Ysuch that,

Uu=dyx,

v=b"yY,

for which the coefficients acR* and beR"" are chosen to maximize
the correlation between Uand V. We refer to Uand Vas canonical com-
ponents for BLA and vCAl, respectively. We subsequently analysed the
cross-correlogram between the first canonical component of BLA and
vCAlwithtimelags from (=50, +50) s and its corresponding power spec-
tral density. We computed the power spectral density from the squared
magnitude of the fast Fourier transform coefficients” divided by the
length of the input signal. We used the frequency at which the power
spectral density peaked as an estimate of the dominant frequency of
the oscillations between BLA and vCALl. The highest frequency we could
accessis determined by the Nyquist frequency f=£,/2 = 0.5 Hz, inwhich
f.isthe sampling frequency that in our case is1 Hz. We tested smaller
timebin sizesand chose 1-s bins (hence1 Hz sampling frequency) owing
to low firing rates during the pre-task period, which would otherwise
result in many bins with O spikes per second.

vCA1-BLA correlation during pre-reward period. Given the shorter
time window during the task period, we could not use the same CCA
analysis. Therefore, to analyse the vCA1-BLAinteraction before reward,
we computed the correlation of regional average firing rates between
simultaneously recorded neuronsin the two regions. Specifically, firing
rates (10-ms bins) were averaged across all simultaneously recorded
neurons in each mouse within the same region (BLA and vCAl). Then
Pearson correlation was computed across simultaneously recorded
regions within each 1-s time window. The correlation was performed
for each trial type (sucrose, water, switch, stay) separately, and Pear-
son correlation r was transformed to Fisher z to make it normally dis-
tributed. To assess how different the inter-regional correlation isin
sucrose versus water trials for each animal, we calculated the change
in correlation (COITg,crose = COITyaer)-

vCA1-BLA correlation during intention-selective states. We sub-
sequently studied the functional connectivity between BLA and vCAl
in susceptible mice during the presence of intention states in the 4 s
before reward delivery. We started by selecting time bins (1 s) for which
theintention states were detected in BLA (‘intention-selective’) (see the
section entitled Defining intention-selective states), and those bins
withoutintention states (‘non-intention-selective’). We then analysed
the neural activity of simultaneously recorded BLA and vCAl neurons
during these inferred states, comparing the correlation between the
tworegions during intention-selective versus non-intention-selective
states. We randomly sampled five neurons from each statein BLA and
vCAl and defined the activity matrices X ,e, €R" and ¥,,.,,cR", for
which N=5isthe number of simultaneously recorded neurons, areais
BLA orvCAl, and Kand L are the number of intention and no-intention
bins, respectively, for a total of four activity matrices. We computed
the PCsof each of the four matrices as adenoising procedure and sub-
sequently assessed the Pearson correlation between BLA and vCAlin
each of the first five PCs for each mouse, for intention-selective and
non-intention-selective bins separately. We repeated the above pro-
cedure 1,000 times, each iteration with different neuron sampling

fromeachbrainarea, and we computed the average correlation across
different sampling.

Statistical analysis

No statistical tests were used to predetermine sample size, but the
sample sizes used are similar to those generally used within the field®.
All tests were two-tailed. Data were analysed using parametric one-
or two-way repeated measures ANOVA, or paired ¢-test. In cases in
which it was appropriate, ANOVA was followed by post hoc pairwise
comparisons with corrections for multiple comparisons. If data
were significantly non-normal (with a = 0.05), non-parametric tests
were used, including the Kruskal-Wallis test or the Mann-Whitney
test (between-group comparisons) and Wilcoxon signed-rank test
(within-group comparisons), andif appropriate, followed by post hoc
comparisons with corrections for multiple comparisons. Categorical
data were assessed using chi-squared, or Fisher’s exact test if sample
size was <5. When comparingto chance, data were considered signifi-
cantifthey were outside 2 s.d. of chance distribution centred around
the theoretical chance level (marked by hash symbols on figures).
Statistical comparisons between groups were performed for groups
that were significantly different from respective chance distribution.
Statistical analyses were performed using Graphpad Prism V10.

Statistics and reproducibility
Allexperiments were repeated across aminimum of two independent
cohorts and showed similar results.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All source data are provided with this paper. The raw electrophysiol-
ogy data will be provided upon request to the corresponding author.

Code availability
All analysis code is provided at https://github.com/mkheirbek.
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Extended DataFig.1|Decodingof groupidentity using behavioral features.
A,B,Male CSDS (n=30) (A) and female CSDS (n =15) (B) mice showed a
significant correlation between sucrose preference and social interaction
scores (Pearson correlation). This effect was not observed in controls (male
n=10,femalen=5).C,Bothsusceptible (n =10) and resilient (n = 14) mice
showed reduced openarmtimeinelevated plus maze, incomparisonto
controls (n=5,ANOVA, group x time interaction: F, ,,=7.26, P=0.0031).

D, Schematic of the Mahalanobis decoder trained on behavioural features to
decodegroupidentity. E, As further verification that behavioural features

between groups classified using K-means clustering were different, group
identity can be successfully decoded using Mahalanobis decoder trained on
behavioral features includinglick rate discrimination index (DI) during pre-
and post-reward, elevated plus maze open arm time, sucrose preference, and
socialinteractionratio (control n = Smice, susceptible n =10 mice, resilient
n=14mice,100 cross-validations). Bar plots dataare mean + s.e.m. Chance
distributions are +2xs.d. around theoretical chance level. *Significantly
differentfrom chance;**P<0.01.
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Extended DataFig.2|Reward choice decoding was notdrivenby direction
coding. A-C,Mice weregiventwo lick spouts with both delivering the same
value reward (sucrose versus sucrose, Same reward) to assess direction (left
versusright) coding. Decoding accuracy of BLA neurons in Different reward
(sucrose versus water) versus Same reward (sucrose versus sucrose, i.e.,

left versusright) task in (A) control (n =10 subsamplings of 21 neurons per
subsampling, 21total neurons, 100 cross-validations, Post-Reward, Same
reward versus chance, P<0.05, Different reward versus Same reward, Mann-
Whitney, P<0.0001), (B) susceptible (n =10 subsamplings of 21 neurons per
subsampling,123 total neurons, 100 cross-validations, Post-Reward, Same
reward versus chance, P> 0.05, Different reward versus Same reward, Mann-
Whitney, P<0.0001), and (C) resilient mice (n =10 subsamplings of 21 neurons
persubsampling, 97 total neurons, 100 cross-validations, Pre-Reward, Different
reward versus Same reward, Mann-Whitney, P < 0.001; Post-Reward, Same
reward versus chance, P<0.05, Different reward versus Same reward, Mann-
Whitney, P<0.0001). In Pre-reward, resilient group showed greater decoding
accuracy of reward choicein Different reward in comparison to Same reward.

0
Time (s)

In Post-reward, all groups showed greater decoding accuracy of reward choice
in Different reward in comparisonto Same reward. D, To control for the
possibility that differences in Post-reward lick rates betweenresilientand
susceptible groups contributed to differencesin reward choice decoding, a
subset of trials with similar lick rates between the two groups were chosen for
SVM decoding (lick rate of 3-14 Hz during Post-reward, box extends from 25"

to 75" percentiles, with median in the middle, whiskers extend from minimato
maxima). These trials did not differ inlick rates for sucrose (susceptible, n =315
trials, resilient, n=2372 trials) or water trials (susceptible, n = 311trials, resilient,
n=603trials).E, Alinear SYM decoder was trained to decode reward choice
(sucrose versus water) using only trials of similar lick rates between the two
groups. BLA neuronsintheresilient mice showed significantly higher decoding
accuracy thansusceptible mice (n =10 subsamplings of 60 neurons, 100 cross-
validations, Mann-Whitney, P < 0.0001). Colouredlinesinline plotsindicate
mean of subsampling. Bar plots dataare mean + s.e.m. Chance distributions are
+2xs.d.around theoretical chance level. *Significantly different from chance;
**P<0.01.
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Extended DataFig.3|Intentionselectivity in BLA as aunique susceptibility
signature. A, Susceptible mice (n =12) showed fewer consecutive sucrose
trials (ANOVA, effect of group: F, ;;=7.60, P=0.0012), and greater number of
consecutive water trials in comparison to control (n =15) and resilient mice
(n=33,ANOVA, effect of group: F, 5,=25.09, P < 0.0001). B, Sucrose and water
trials were further divided into sucrose-sucrose (SS), water-sucrose (WS),
water-water (WW), and sucrose-water (SW) trials after taking into account the
previoustrial. Comparison of the proportion of trialsin each of the 4 trial types
revealed that controls showed greater proportion of switch trials (WS, SW).
Resilient mice (n =33) showed greatest proportion of SS trials, while susceptible
mice (n=12) showed greatest proportion of WW trials (RM-ANOVA, trial type x
groupinteraction: F, ,;;=39.99,P<0.0001). C,D, Lick rates of susceptible
(n=12), resilient (n =33), and control (n = 15) mice for each of the 4 trial types
during (C) Pre-reward (RM-ANOVA, trial type x group interaction: F,;,; =2.38,
P=0.031) and (D) Post-reward period (RM-ANOVA, trial type x group interaction:
F¢171=9.80,P<0.0001).E, InvCAl, decoding accuracy of switch versus stay
intention using raw firing rates in susceptible and resilient mice was above
chance. Colouredlinesindicate mean of subsampling (n=10 of n= 60 neurons,
withn =100 cross-validations. F, Schematic of HMM to obtain population
hidden sstates. G, Similarly, in vCAl, decoding accuracy of switch versus stay
intentionusinginferred firing rates from HMMinthe 4 s preceding reward
deliveryinsusceptible and resilient mice was above chance (n =100 cross-
validation; chance: n =100 shuffles). H, MDS visualization of inferred firing
rates showed that population representations of switch versus stay trials can
belinearly separatedinvCAlneuronsinsusceptible andresilient mice thanin
controls (MDS example of n=1subsampling, 1000 pseudo trials/condition).

1, Average distribution of the of fraction of intention-states across mice at

differententropy values (states correlation thresholds of 1-p = (0.1, 0.4): control
n=5mice, susceptible n=5mice, resilient n =3 mice). For each mouse, the state
entropy was computed at fixed threshold on the clustering dendrogram (see
Methods). Dataaremean +s.d.J, InSame reward task with both lick spouts
delivering sucrose reward, decoding of intention to switch or stay during the
Pre-reward periodinthe BLAwas at chance, suggesting there was no encoding
ofactionsequence of left versus right. Colouredlinesinline plotsindicate
mean of subsampling (n =10 subsamplings of 60 neurons, 100 cross-validations).
K, Inthe Same reward task, decoding accuracy of switch versus stay intention
usinginferredfiring ratesfromHMMinthe 4 s preceding reward delivery was at
chanceinallgroups (n =100 cross-validation; chance: n =100 shuffles).L, Inthe
Same reward task, there were no intention-selective statesinany group (states
across 4 correlation thresholds of 1-p = (0.1, 0.4): control n = Smice, susceptible
n=>5mice, resilient n =3 mice). M, No lick rate differences in switch versus stay
trialsduring the 4 s Pre-reward period were observed across groups (control
n=15mice, susceptiblen=12mice, resilientn=15mice).N, vCA1-BLA correlation
insusceptible mice was higher inintention-selective states, in comparison to
non-intention-selective states (n = 3 susceptible mice, 5PCs each, see Methods).
0, Group identity can be successfully decoded between control versus
susceptible, andresilient versus susceptible, but not control versus resilient,
using Mahalanobis decoder trained on task neural features including reward
choice decoding during Pre-reward, Post-reward, and fraction of intention-
selective states (control n=5mice, susceptible n=5mice, resilient n = 3 mice).
Dataaremean ts.e.m. unless otherwise stated. Chance distributionsare +2x
s.d.around theoretical chance level. *Significantly different from chance;
*P<0.05,**P<0.01.
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Extended DataFig. 4 |Rescue of dysfunctional vCA1-BLA activity and
anhedoniaby circuit-specific manipulations. A, Number of neuronsusedin
BLAand vCAlineach mouseduringsaline and CNO period for analysis (BLA
n=11micepergroup,vCAln=12mice per group). Same neurons wererecorded
duringboth periods. B, Mean vCA1firing rates during Pre-task period was
increased following CNO (BLA n =11 mice per group, vCAln=12mice per
group, Mann-Whitney, P=0.008). Dataare mean * s.d. C, Cumulative variance
of PCs did not differ between salineand CNO periodsin BLA or vCAl.D, Mean
ofthe cumulative variance of the first 3PCsin BLAand vCA1(BLAn=11mice
pergroup,vCAln=12mice per group). Dataare median +s.d. E, Participation
ratioof BLAand vCA1 (BLA n=11mice per group, vCAln =12 mice per group).
F, Proportion of HMM clusters across different thresholdsin BLA and vCAL.

G, The number of HMM clusters across different thresholds in BLAand vCA1.
H, The number of HMM clusters of individual mice across different thresholds
inBLAand vCA1(BLA n=11mice pergroup,vCAln=12mice per group). Data
aremean ts.d.I,Mean of the proportion of clustersin the first 5 thresholds
(BLAn=11mice pergroup,vCAln=12mice per group). Dataare mean +s.d.

J, Despite no statistical differencein each of the FR, PCA, and HMM features,
thedecoder trained using all features could successfully decode between
saline versus CNO periodsinvCAlbetter than chance (+2xs.d.,n=100 cross-
validations; chance: n =100 shuffles). K, Firing rates of pseudo-population of
BLA (n=76)and vCAl(n=274) neurons during task showed that vCAl neurons
had elevated firing rates after CNO during both Pre-reward (RM-ANOVA,
effect of CNO: Fi 199, =7.60,P=0.0060) and Post-reward periods (RM-ANOVA,
effect of CNO: F 09, =9.57,P=0.0020). L, To control for the possibility that
differencesin Post-reward lick rates between saline and CNO periods contributed
todifferencesinreward choice decoding, asubset of trials with similar lick
rates between the two groups were chosen for SVWM decoding (lick rate of
3-10 Hz during Post-reward). These trials did not differ inlick rates for sucrose
(saline, n=89trials, CNO, n =228 trials) or water trials (saline, n =158 trials,
CNO, n=121trials, box extends from 25" to 75" percentiles, with median in the
middle, whiskers extend from minima to maxima).M, Alinear SVM decoder
wastrained to decode reward choice (sucrose versus water) using only trials
of similarlick rates between the two groups. CNO increased decoding accuracy
inBLA neuronsincomparison to saline period (n =10 subsamplings of 60

neurons, 100 cross-validations, Mann-Whitney, P < 0.0001). Coloured lines
inline plotsindicate mean of subsampling. Bar plot dataare mean +s.e.m.

N, Removal of trials containing intention-selective states (-Intention-selective
states) during the saline period reduced decoding accuracy of switch versus
stay trials to chance, whereas keeping only trials containing intention-selective
states (+Intention-selective states) allowed successful decoding of stay versus
switch trials. Removal of trials withrandom states had little effect ondecoding
accuracy (n=6).Chancedistributions are+2xs.d. around theoretical chance
level. 0, MDS visualization showed that keeping only intention-selective states
allowed therepresentations of switch trials to belinearly distinguished from
stay trials, whereas removal of intention-selective states prevents the
representations of the two trial types from being linearly separated. P, AnSVM
decoder was trained using the listed features to differentiate between
susceptible and resilient groups and tested on held-out susceptible versus
resilient data, or saline versus CNO. Q, The decoder generalizes well to saline
versus CNO dataset (susceptible n =3, resilientn =3, salinen=6,CNOn==6).

R, MDS visualization showed that susceptible mice clustered together with
susceptible mice givensaline, while resilient mice clustered together whether
susceptible mice treated with CNO. S, CNOincreased lick rate discrimination
index during Post-reward period in comparison to saline (n =7 mice, RM-
ANOVA, treatment x time interaction: F,;,=10.80,P=0.0065). T, CNO increased
the proportion of SS trials (n = 7 mice, RM-ANOVA with Bonferroni’s multiple
comparisonstest, trial type x treatmentinteraction: F; ;.= 6.23,P=0.0016).
U,CNO altered the proportion of stay (water-water and sucrose-sucrose) trials
(n=7 mice, RM-ANOVA with Holm-Sidak’s multiple comparisons test, effect of
group: F,;,=5.61,P=0.036).V,CNO altered the proportion of switch (water-
sucrose and sucrose-water) trials (n =7 mice, RM-ANOVA, effect of group:
F,1,=5.61,P=0.036). W, X, (W) CSDS mice were tested in 2 sessions of social
interaction (SI) tests, with saline (i.p.) onday 1and CNO (i.p.) onday 2. (X) CNO
modestly increased the amount of social interaction time in the present of
theaggressor mouse (+CD1, n = 6 mice, Saline versus CNO, Fisher’sLSD test,
P=0.044).Dataare mean = s.e.m. unless otherwise stated. Chance distributions
are+2xs.d.around theoretical chance level. *Significantly different from
chance;*P<0.05,**P<0.01.
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Extended DataFig. 6 | Distinct neural signatures of CSDS micein the
absence oftask. A, Cross-correlogram (top) between BLA and vCAlactivity
withtimelags from[-50, +50] sand its corresponding power spectral density
(PSD, bottom) for an example mouse fromeach group. The vertical red linein
PSD plotindicates the frequency with the highest PSD value. B, Susceptible and
resilient groups showed lower dominant frequency of vCA1-BLA interaction
duringPre-task period (controln =3, resilientn =4, susceptible n =5, Kruskal-
Wallis, P=0.028).C, Number of neurons used in BLAand vCAlin each mouse
foranalysis (BLAn=5mice per group, vCAlcontroln=12,susceptiblen=14,
resilient n=31mice). D, Schematic of dimensionality reduction using principal
component analysis (PCA). The embedding dimensionality was quantified
using participationratio. E, There were no statistically significant differences
in cumulative variance explained by principal components (PCs) in BLA and
vCAlbetween groups (n=1000 subsampling, n =5 neurons). Dataare

mean ts.e.m.F, Mean of the cumulative variance of the first 3 principal
componentsinBLA and vCA1(BLA n=5mice pergroup,vCAlcontroln=12,
susceptible n =14, resilient n=31mice). G, Participationratio of BLAand vCAl
(BLAn=5micepergroup,vCAlcontroln=12,susceptible n =14, resilient
n=31mice).H, Akaike information criteria (AIC) from one example mousein
eachgroup. HMM with the lowest AIC was selected as the best model (n =5
models/#state). 1, Example of spike raster of 35 neurons simultaneously
recordedinthe Pre-task period from one representative mouse. The different
coloured shaded areasindicate the different HMM hidden states. The colored
linesindicate the posterior probability for each state.J, Two examples of HMM
states correlation matrices for one control (n =20 hidden states) and one
susceptible (n =20 hidden states) mouse, with respective dendrograms of
agglomerative clusteringin vCA1.K, There was no differencein the proportion
of distanthiddenstatesin vCAlbetweengroups.L, The number of clusters

acrossthresholds did not differ betweengroupsinBLA and vCAl. Dataare
mean +s.e.m.M, The number of clusters of individual mice (BLA n=5mice per
group, vCAlcontroln=12,susceptible n =14, resilient n=31mice). N, Mean
ofthe proportion of clustersin the first 5 thresholds showed that susceptible
micein BLA had greater proportion of unique hidden states in comparison to
controls (BLAn=5mice pergroup, vCAlcontroln=12,susceptiblen =14,
resilient n =31 mice, Kruskal-Wallis, P=0.0018). No group difference was found
invCALl. O, Two example heatmaps of population activity correlationin BLA
over time, showing that population activity patterns were much more correlated
inthe control (top) than the susceptible (bottom) mouse. P, Average correlation
of populationactivity across timein the BLA showed a trend towards lower
correlated activity in the susceptible mice (n =5 mice pergroup).Q, InBLA,
susceptible mice showed reduced firing rates mean (Kruskal-Wallis, P= 0.020)
and s.d. (Kruskal-Wallis, P=0.0077) in comparison to controls (BLAn=5mice
pergroup, vCAlcontroln=12,susceptible n =14, resilient n =31 mice). R, Firing
rate (FR), PCA,and HMM features each alone could successfully decode control
versus susceptible micein BLA (control n=5mice, susceptible n=5mice).

S, Different time bin sizes were tested and the one that allowed the highest
decodingaccuracy between groups was chosen as the optimal binsize (n =100
cross-validations; chance: n =100 shuffles, BLAn=5mice per group, vCAl
controln=12, susceptible n =14, resilient n =31 mice). T, Group identity could
notbe decoded using Mahalanobis decoder trained on neural features in vCAl.
Theimportance of each neural feature in decoding was examined by systematic
removal of each of the features (subsequent columns) (control n =12 mice,
susceptible n =14 mice, resilient n =31 mice). Dataare mean ts.d., unless
otherwise stated. Chance distributions are +2xs.d. around theoretical chance
level. *Significantly different from chance;* P< 0.05;**P<0.01.
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Extended DataFig.7|Spontaneousface and limb movements during
Pre-task did not decode group identity as well as neural features.

A, Schematic of 12 keypoints tracked using DeepLabCut. B, Susceptible mice
showed smaller eye openingratio thanresilient mice (control n =3 mice,
susceptible n =6 mice, resilient n = 8 mice, Kruskal-Wallis, P= 0.014). C-E, Mice
(controln=3mice, susceptible n = 6 mice, resilient n = 8 mice) showed similar
(C) snoutangle, (D) mouth position, and (E) whisker position across groups.
F,G, Susceptible mice showed a smaller magnitude of limb movementin
horizontal (X, control n=3 mice, susceptible n = 6 mice, resilient n =8 mice,
Kruskal-Wallis, P=0.003) but not (G) vertical (Y) direction (control n=3 mice,
susceptible n =6 mice, resilient n = 8 mice). H, Mahalanobis decoders were
trained on either facial and limb features or neural features to decode group

identity.I, Decodingaccuracy using facial and limb features showed above
chance decoding for control versus susceptible, and resilient versus
susceptible groups (n=1000 cross-validations).J, Neural feature decoding for
control versus CSDS group identities outperformed facialand limb features
(n=1000 cross-validations). K, Decoding using neural features was performed
using only time bins when facial and limb feature decoding was within1or2
s.d.of chance, as afurther comparison of neural versus facial and limb feature
decoding. Decoding accuracy of control versus susceptible group identities
using neural features outperformed facial and limb features (n =1000 cross-
validations). Dataare mean + s.e.m. Chance distributionsare +2 xs.d.around
theoretical chance level. *Significantly different from chance * P < 0.05;
**P<0.01.
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