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Divergent evolution of protein conformational dynamics in 
dihydrofolate reductase

Gira Bhabha1,3, Damian C. Ekiert1,3, Madeleine Jennewein1, Christian M. Zmasek2, Lisa M. 
Tuttle1, Gerard Kroon1, H. Jane Dyson1, Adam Godzik2, Ian A. Wilson1, and Peter E. 
Wright1

1Department of Integrative Structural and Computational Biology and Skaggs Institute for 
Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.

2Program in Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, 
La Jolla, California, USA.

Abstract

Molecular evolution is driven by mutations, which may affect the fitness of an organism and are 

then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary 

structures has yielded valuable insights into the evolution of protein function, but little is known 

about evolution of functional mechanisms, protein dynamics and conformational plasticity 

essential for activity. We characterized the atomic-level motions across divergent members of the 

dihydrofolate reductase (DHFR) family. Despite structural similarity, E. coli and human DHFRs 

use different dynamic mechanisms to perform the same function, and human DHFR cannot 

complement DHFR-deficient E. coli cells. Identification of the primary sequence determinants of 

flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution 

of functionally important DHFR dynamics, following a pattern of divergent evolution that is tuned 

by the cellular environment.

INTRODUCTION

Diversification of gene families and their resulting protein products through mutation, 

random genetic drift, and natural selection has resulted in the wide spectrum of enzymes, 

signal transducers, cellular scaffolds, and other molecular machines that are found in the 

diverse species represented in all kingdoms of life. The effects of such diversification on 
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three-dimensional protein structures are addressed in many studies that provide fundamental 

insights into evolutionary pressures that drive diversification of protein folds1–3. However, 

motions and flexibility are also essential for the function of proteins and macromolecular 

machines and, just as protein structures are subject to natural selection, evolutionary 

pressures might also be expected to tune protein dynamics to adapt proteins to new 

environments and facilitate the emergence of novel functionalities. Indeed, comparisons 

between thermophilic and mesophilic enzymes reveal that their dynamics and activity are 

adapted to the thermal environment of the organism4,5. In principle, the adaptation of 

enzymes to different environments or to specialized functions may involve a radical 

reconfiguration of the dynamic landscape. Understanding how new dynamic modes arise 

would provide fundamental insight into the evolution of novel functionality, and is 

addressed here in the context of the enzyme dihydrofolate reductase (DHFR).

DHFR catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to 

tetrahydrofolate (THF), an essential precursor for thymidylate synthesis in cells6. The 

evolution of DHFR is of great interest, both in the context of understanding how the enzyme 

has adapted to different cellular environments, as well as in predicting its evolution in drug-

resistant pathogens7. E. coli DHFR (ecDHFR, ecE) has long served as a paradigm for 

understanding enzyme mechanisms8–12. Although human DHFR (hDHFR, hE) is 

structurally similar to ecDHFR (Fig. 1a), their primary sequences are highly divergent, 

which is reflected in subtle changes in the catalytic cycle9,10,13 with different kinetics and 

different rate-limiting step under physiological concentrations of ligands (Fig. 1b). We 

hypothesized that ecDHFR and hDHFR may have evolved different dynamic mechanisms 

within the constraints of the same fold and the same key catalytic residues. To address this 

hypothesis we used an integrated approach including structural biology, mutagenesis, 

bioinformatic analyses and cell biology, which allowed us to uncover evolutionary aspects 

of the motions present in the dihydrofolate reductase (DHFR) enzyme family.

RESULTS

Active site loop motions in human DHFR

Given the well-established role that dynamics plays in ecDHFR function14–16, we 

hypothesized that altered dynamics in hDHFR might account for its unique catalytic 

properties. ecDHFR undergoes conformational changes, involving rearrangement of its 

active site loops17–21, as it proceeds through five observable intermediates in the catalytic 

cycle (Fig. 1b). To investigate and characterize key intermediates in the catalytic cycle of 

hDHFR, we determined crystal structures (Supplementary Figs. 1,2 and Table 1) of hDHFR 

in complex with NADP+ and folic acid (hE–NADP+–FOL, 1.4 Å resolution) and in complex 

with NADP+ and 5,10-dideazatetrahydrofolate (hE–NADP+–ddTHF, 1.7 Å resolution), 

which model the Michaelis complex and product ternary complex, respectively. In contrast 

to ecDHFR, in which the Met20 loop moves from the closed conformation in the E–NADPH 

and E–NADP+–FOL complexes to the occluded conformation in the three product 

complexes (Fig. 1c)18, thereby facilitating ligand flux14,21–23, hDHFR remains in the closed 

conformation in both ligand-bound states, without any apparent structural change in the 

active site loops (Fig. 1d). Thus, in hDHFR, the Met20 loop appears to be locked in place 
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and unable to undergo this conformation change. Consistent with our findings, the active site 

loops adopt the closed conformation in all available crystal structures of vertebrate DHFRs, 

including complexes of hDHFR with small molecule inhibitors and a substrate (folate)24. 

Importantly, the closed to occluded conformational transition in ecDHFR can also be 

visualized directly in solution by comparing the 15N HSQC spectra of the ecE–NADP+–

FOL and ecE–NADP+–THF complexes, which differ due to the conformational change in 

the Met20 loop (Fig. 1e)14,18,20. In marked contrast to ecDHFR, the 15N HSQC spectra of 

the hE–NADP+–FOL and hE–NADP+–THF complexes are almost identical (Fig. 1f), 

showing that in solution, as well as in the crystal structures, no backbone conformational 

changes are observed for the human enzyme.

Active site packing and preorganization in hDHFR

The hDHFR active site cleft in the model Michaelis complex, E–NADP+–FOL, is more 

tightly packed than that of ecDHFR bound to the same ligands (Fig. 2a, b) and likely plays 

an important role in optimal positioning of the donor and acceptor atoms for catalysis, 

thereby contributing to its increased rate of hydride transfer8,10. However, the tight packing 

of the hDHFR active site, coupled with the apparent lack of active site loop motions to 

facilitate ligand flux, raises a critical question: how do the ligands get into and out of the 

hDHFR active site?

Differences in dynamics between ecDHFR and hDHFR

In ecDHFR, millisecond timescale fluctuations in the active site contribute to efficient 

ligand flux and catalysis; mutations that perturb the dynamic equilibrium between the closed 

and occluded conformations of the Met20 loop notably alter substrate and cofactor 

flux14,23,25,26. Although the crystal structures and 15N HSQC spectra of hE–NADP+–FOL 

and hE–NADP+–THF (or hE–NADP+–ddTHF) suggest that the active site loops of hDHFR 

are predominantly closed, we used Carr-Purcell-Meiboom-Gill (CPMG)–based 15N R2 

relaxation dispersion NMR experiments to assess whether transient loop fluctuations might 

facilitate ligand flux. In stark contrast to ecDHFR, fluctuations on the millisecond time scale 

are not observed in the hE–NADP+–FOL, hE–NADP+–THF, hE–FOL, E–THF, or hE–

NADPH complexes, suggesting that the human enzyme utilizes a different mechanism or 

different motions to mediate ligand flux. Indeed, 15N R1ρ relaxation dispersion experiments 

revealed pervasive motions on a faster, microsecond time scale in the hE–NADP+–FOL 

complex (Supplementary Fig. 3a–c). These rapid conformational fluctuations (at rates 

ranging from ~15,000–30,000 s−1) occur in many regions of the enzyme, including regions 

that line one edge of the active site, and may play a role in ligand binding and release. 

Remarkably, despite the structural similarity between human and E. coli DHFRs, both the 

nature and time scale of the ground-state conformational fluctuations have diverged 

considerably, bolstering the hypothesis that the dynamic mechanisms of ecDHFR and 

hDHFR are fundamentally different.

Exaggerated hinge movements in hDHFR

To gain further insights into how hDHFR exchanges substrate in the absence of flexible 

active site loops, we determined the crystal structure of the hE–NADPH binary complex at 
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1.2 Å resolution. Notably, the active site cleft in the hE–NADPH structure is more open than 

that in the hE–NADP+–FOL complex (Fig. 2c,e,g). Opening of the active site is 

accomplished not by the motion of flexible loops, as in ecDHFR, but by a rigid body, 

twisting-hinge motion that rotates the adenosine-binding subdomain (defined as Thr40-

Gly129) ~10° away from the loop subdomain (Gly2-Thr39 and His130-Asp186). These 

subdomains are connected by two hinges: hinge 1 (Thr39-Leu49) and hinge 2 (Gly129-

Leu131). In the hE–NADPH complex, the hinges stabilize the active site cleft in an open 

(hinge-open) conformation that likely facilitates substrate entry (Fig. 2e). Upon binding of 

substrate (folate), the adenosine-binding subdomain rotates inward to tightly close the active 

site (Fig. 2g, Supplementary Fig. 2a–c and Supplementary Table 1). Changes in chemical 

shifts between the NMR spectra of the hE–NADPH and hE–NADP+–FOL complexes 

(Supplementary Fig. 3d,e) suggest that this hinge movement also occurs in solution. In both 

hinge-open and hinge-closed conformations, an extensive hydrogen bonding network 

stabilizes the hinge 1 structure and anchors it to the adenosine-binding subdomain and to the 

C-terminal end of the αB helix (Supplementary Note, Supplementary Fig. 2d,e and 

Supplementary Table 2). Hinge 1 moves as a rigid body to accommodate the subdomain 

rotation and hinge 2 allows the sliding motion of helix αF that opens and closes the active 

site cleft27.

Interestingly, subtle hinge movements have also been reported for ecDHFR18. However, 

unlike the human enzyme, the subdomain rotation in ecDHFR displays a much smaller 

range of motion of the active site cleft, (Fig. 2d,f,h). At the widest point, the hDHFR active 

site cleft opens by ~3 Å (comparing hE–NADPH and hE–NADP+–FOL; Fig. 2e,g), while 

ecDHFR opens ~0.5 Å (comparing 1RX118 and 1RX218; Fig. 2f,h). We further quantified 

the difference between binary and ternary structures for hDHFR and ecDHFR by calculating 

the distance difference matrix (Fig. 2i,j), which shows clearly that the extent of motion in 

the human enzyme is greater at this step of the catalytic cycle than observed for the E. coli 

enzyme. The length of the hinges is seemingly a key factor in determining the magnitude of 

the hinge bending motions. The ecDHFR hinge 1 and 2 regions are tightly packed and may 

not be long enough to provide the structural framework for the larger rigid-body motion 

observed in hDHFR (Fig. 3). In particular, hinge 1 in ecDHFR is “embedded” in a tight 

groove where any large movement would be highly constrained by clashes with both the 

adenosine-binding and loop subdomains. The observation that a subtle subdomain rotation is 

possible in the E. coli enzyme18 provides a framework for understanding how alternative 

dynamic mechanisms may arise and change during the course of evolution. Just as new 

functionalities are most frequently derived from existing protein folds, new dynamic 

mechanisms likely derive from existing modes of protein motions. The subtle hinge motion 

in ecDHFR may represent an ancestral motion that has been accentuated in hDHFR through 

the course of evolution, increasing the amplitude of domain movement to permit ligand flux 

and thus eliminating the need for the closed-occluded transition of the Met20 loop that is 

utilized by ecDHFR.

Sequence determinants and evolution of dynamic mechanisms

To further explore the evolution of dynamics in the DHFR family, we conducted a 

comprehensive comparative analysis of all available DHFR sequences (~1800 sequences), 
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including eukaryotic DHFRs from all available fully sequenced genomes (172 sequences) 

(Supplementary Table 3). In particular, we focused on three regions that we hypothesized 

would best account for the mechanistic differences between ecDHFR and hDHFR: Region 

A, at the end of the Met20 loop, and Regions B and C, which contain the hinges implicated 

in subdomain rotation (Fig. 3). The analysis reveals a clear pattern in sequence and length of 

Regions A, B, and C that we link to flexibility, allowing us to propose that these regions of 

the DHFR sequence determine, at least in part, the protein motions that mediate the flux of 

substrate, product, and cofactor at various stages of the catalytic cycle.

Region A loop length influences conformational flexibility

Region A contains 7 residues in ecDHFR and 8 residues in hDHFR. This region became 

proline-rich in recent evolutionary times28. Incorporation of the PWPP motif from Region A 

of the human enzyme into ecDHFR, through the mutation N23PP (which 

changes 21PWNL24 to 21PWPPL24) alters the motions in the Met20 loop and active site14. 

To determine whether this polyproline motif in Region A affects flexibility in ecDHFR, or 

whether the loop length itself contributes to differences in conformational sampling, we 

characterized an ecDHFR mutant with an alanine insertion (21PWNAL24). 15N HSQC 

spectra of the pre- and post-hydride transfer complexes (modeled by E–NADP+–FOL, and 

E–NADP+–THF) show that insertion of a single residue (Ala) is sufficient to prevent the 

transition to the occluded conformation (Fig. 4a–c) and severely dampens millisecond 

timescale motions in the active site (Supplementary Fig. 4). Thus, it is primarily the length 

of Region A and not its proline content that influences the conformational flexibility of the 

Met20 loop.

The majority of prokaryotic DHFRs have 7 residues in Region A and we hypothesized that 

they would have conformational flexibility similar to that of ecDHFR. Region A in 

eukaryotic DHFRs is more heterogeneous, with sequences containing 7 residues (E. coli-

like), 8 residues (human-like), and >8 residues (Fig. 5). We chose representative DHFRs 

from several species (Supplementary Fig. 5a–d), in which Region A contains 7, 8 or 10 

residues, and investigated their flexibility using NMR spectroscopy to obtain insights into 

ligand-dependent conformational sampling. We compared 15N HSQC spectra of the DHFRs 

from these species bound either to NADP+ and FOL (model Michaelis complex) or to 

NADP+ and THF (product ternary complex) to identify conformational changes across the 

hydride transfer step. For four DHFRs which contain 7 residues in Region A, i.e. Bacillus 

anthracis (baDHFR), Staphylococcus aureus (saDHFR), Streptococcus pneumoniae 

(spDHFR) and Vibrio cholerae (vcDHFR) (34% to 51% identity with ecDHFR), the 15N 

HSQC spectra reveal conformational changes between the model Michaelis complex and the 

product ternary complex (Fig. 4 and Supplementary Fig. 6a–d).

HSQC spectra were also acquired for the NADP+–FOL and NADP+–THF complexes of 

several vertebrate DHFRs that vary in length and sequence of Region A. For Sus scrofa 

(pig) and Bos taurus (cow) DHFR, Region A is identical to human and the NMR 

experiments confirm that no conformational changes occur across the hydride transfer step 

(Supplementary Fig. 5e–i). Rattus norvegicus (rat) DHFR (rDHFR) also contains 8 residues, 

but Pro26 of hDHFR is replaced by Leu. Danio rerio (zebrafish) DHFR (zDHFR) contains a 
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two-residue insertion in Region A, making it 10 residues in length, with His in place of 

Pro25 of hDHFR (Supplementary Fig. 5). Again, the almost-identical 15N HSQC spectra of 

pre- and post-hydride transfer complexes of rDHFR and zDHFR confirm that the enzymes 

do not undergo conformational changes across the chemical step (Fig. 4f and Supplementary 

Fig. 6e–i). We therefore conclude that proline at position 25 or 26 (hDHFR numbering) is 

not essential for stabilization of the closed conformation and that the length of loop A is the 

primary determinant of conformational change in the active site loops between pre- and 

post-hydride transfer complexes.

The Caenorhabditis elegans DHFR (ceDHFR) sequence is an example of a eukaryotic 

DHFR in which Region A is 7 residues (as in bacterial enzymes), but the hinges have similar 

lengths to hDHFR. Several chemical shift differences were observed between pre- and post-

hydride transfer complexes of ceDHFR in the 15N HSQC spectra, indicating similar 

conformational flexibility to bacterial DHFRs (Fig. 4e). ceDHFR is prototypical of a large 

subset of eukaryotic DHFRs, in which the Region A length resembles ecDHFR, while 

Regions B and C are similar to hDHFR.

Properties of the hinges

Hinge 1 is located in Region B. Bacterial DHFR sequences predominantly contain short 

Region B sequences, as in ecDHFR (12 residues), while in eukaryotic DHFRs, with very 

few exceptions found in unicellular species (e.g. some amoebozoans and stramenopiles), 

Region B is ≥19 residues (Fig. 5 and Supplementary Fig. 5). In hDHFR, Asn48 hydrogen 

bonds to the backbone of Thr38 and Thr40 in the hinge and to Met111 in the adenosine-

binding domain, maintaining the hinge structure during subdomain rotation (Supplementary 

Fig. 2d and Supplementary Table 2). Interestingly, this Asn is invariant in all eukaryotic 19-

residue Region B sequences (Supplementary Table 4) and is likely a key mediator of the 

hinge motion.

Hinge 2, within Region C, is formed by His127-Leu131 for hDHFR and Pro105-Ala107 for 

ecDHFR. Region C contains 14 residues in E. coli DHFR and 16 residues in hDHFR (Fig. 

3). In hDHFR, helix αF slides 2.5 Å towards the active site in the hinge-open conformation, 

which is stabilized by hydrogen bonds between NADP and Ser119 at the N-terminus of 

helix αF that are not formed in the hinge-closed conformation. In ecDHFR, the shorter hinge 

forms hydrogen bonds that involve exclusively backbone atoms, which limit flexibility and 

restrict αF movement.

Although the detailed molecular mechanism is not yet fully understood, the long hinges in 

hDHFR appear to provide flexibility that allows the adenosine-binding and loop subdomains 

to rotate away from each other in the hE–NADPH complex, thereby opening the active site 

cleft and facilitating substrate access. Subdomain rotation is limited in DHFRs with shorter 

hinges, such as ecDHFR, where ligand flux is facilitated by flexible active-site loops. 

Mutations that perturb the conformational fluctuations of the active site loops in ecDHFR 

result in altered ligand flux, suggesting that either flexible loops or long hinges are required 

for optimal function14. Consistent with this finding, the sequence patterns in Regions A, B 

and C indicate that, while some DHFRs contain both flexible loops (7 residues in Region A) 

and long hinges, a few archaeal enzymes contain both a rigidified active site (8 residues in 
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Region A) and short hinges (Fig. 5); these enzymes are predicted to exchange ligands 

inefficiently.

Enzymes with intermediate dynamic mechanisms

Although bacterial and human DHFRs have similar three-dimensional structures, their 

intrinsic dynamic properties are quite different and are associated with important differences 

in their catalytic mechanisms. We can only speculate as to the mechanism of an ancestral 

DHFR, but it is natural to expect that enzymes with intermediate mechanisms existed at 

some point in the evolution of the DHFR family, either as the ancestral enzyme or as 

intermediates between the ancestral enzyme and the other extant DHFR. DHFRs with 7 

residues in region A (E. coli-like) and long, human DHFR-like hinges are found in various 

invertebrate animals, fungi, and members of the flagellate unicellular eukaryotes euglenozoa 

(Fig. 5), and potentially represent enzymes with such intermediate dynamic and mechanistic 

characteristics. For example C. elegans DHFR displays dynamic characteristics that are a 

mix of hDHFR and ecDHFR. Like E. coli DHFR, the C. elegans protein samples different 

ground state conformations across the hydride transfer step (Fig. 4), but 15N relaxation 

dispersion experiments show that millisecond timescale motions are absent, as for hDHFR. 

Unfortunately, ceDHFR structures are not available; however, the NADPH complex of 

Candida albicans DHFR (caDHFR, PDB code: 1AI929), with similar sequence features to 

ceDHFR with respect to regions A, B and C, adopts a conformation equivalent to the hinge-

open state of hDHFR (Supplementary Fig. 2f). We conclude that this class of enzymes can, 

in fact, support the hinge-open conformation. The combined data from ceDHFR and 

caDHFR then provide insights into the mosaic of dynamic features present in these 

enzymes. Further studies will undoubtedly reveal the finer features of dynamic tuning in the 

DHFR family.

DHFRs may be tuned to cellular ligand concentrations

Why have DHFRs evolved different dynamics? We hypothesized that the divergent 

dynamics of ecDHFR and hDHFR may represent important functional adaptations to the 

disparate intracellular conditions in bacterial versus mammalian cells10. To test this 

hypothesis, we assessed the ability of hDHFR to complement a folA null allele in the wild-

type E. coli strain MG1655 (Online methods). We replaced the folA open reading frame with 

that of hDHFR, and found that expression of soluble hDHFR failed to support cell 

proliferation. Growth of the resulting ΔfolA::hDHFR strain was strictly dependent upon the 

addition of exogenous thymidine to the culture medium, similar to a complete DHFR 

knockout (ΔfolA) (Fig. 6a,b). Further, culture of the ΔfolA::hDHFR strain in the absence of 

supplemental thymidine resulted in the arrest of cytokinesis and rapid filamentation (Fig. 

6a), reminiscent of “thymineless death” in thymidylate synthase (thyA) mutants30. One 

possible explanation is that the highly divergent hDHFR (28% sequence identity with 

ecDHFR) is unable to make essential interactions with other E. coli proteins. However, S. 

aureus DHFR (only 35% identity with ecDHFR) fully complements the ecDHFR knockout 

(ΔfolA::saDHFR) (Fig. 6a,b), suggesting that differences intrinsic to hDHFR limit its 

efficiency in a bacterial cell, even though its hydride transfer rate is faster than that of 

ecDHFR10.

Bhabha et al. Page 7

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vertebrate DHFRs function at much lower cellular concentrations of NADP+ (~20 µM vs ~2 

mM) and THF (~0.3 µM vs ~13 µM) than the E. coli enzyme10,31–33 and the ratio of 

NADPH to NADP+ differs greatly between mammalian (~100:1) and E. coli (~1:1) cells. 

Consequently, the E. coli enzyme may have evolved a dynamic mechanism that allows it to 

avoid end product inhibition due to the high concentrations of NADP+ in bacterial cells. In 

contrast, hDHFR was not subjected to the same evolutionary pressure, as the large excess of 

NADPH over NADP+ in mammalian cells favors efficient exchange of NADPH for 

NADP+. To assess whether the human and E. coli enzymes are differentially susceptible to 

end product inhibition by NADP+, we monitored the effect of increasing concentrations of 

NADP+ on the initial catalytic rate for both ecDHFR and hDHFR. As predicted, hDHFR is 

~10 times more sensitive to inhibition by NADP+ (IC50 ~620 µM for hDHFR versus ~5 mM 

for ecDHFR) (Fig. 6c). Thus, at concentrations of NADP+ and NADPH similar to those 

found in E. coli, ecDHFR retains near maximal activity, while hDHFR is strongly inhibited. 

Additionally, the N23PP S148A mutant in which the M20 loop is stabilized in the closed 

conformation shows increased NADP+ inhibition compared to ecDHFR, almost to the same 

extent as hDHFR (Fig. 6c). This confirms that the increased product inhibition of hDHFR 

and N23PP S148A ecDHFR can be largely attributed to the altered dynamics of the M20 

loop, which remains in the closed position.

DISCUSSION

With new insights in hand, we are poised to begin addressing why hDHFR cannot 

complement DHFR-deficient E. coli cells. We propose that differences in the dynamic 

mechanisms of the two enzymes are responsible, at least in part, for the inability of hDHFR 

to function efficiently in the environment of an E. coli cell. In ecDHFR, formation of 

product is accompanied by a shift in the ground state conformation from closed to occluded, 

with concomitant expulsion of the nicotinamide ring from the active site18. This process is 

dynamic, with conformational fluctuations between the occluded and closed states and 

exchange of nicotinamide out of and into the active site occurring at a rate of 1300 s−1 (refs. 

16,25). The transition to the occluded ground state conformation in the E–NADP+–THF 

product complex of ecDHFR is intimately linked to NADP dissociation, and mutations that 

perturb the flexibility of the Met20 loop, or alter the closed to occluded equilibrium perturb 

the NADP flux14,26,34. In particular, mutations such as N23PP that “lock” ecDHFR in the 

closed conformation and alter millisecond time scale fluctuations of the Met20 loop greatly 

decrease the rate of NADP+ dissociation14. Since vertebrate DHFRs function at much lower 

cellular concentrations of NADP+ and THF10,31–33, they have evolved to bind cofactor more 

tightly and release it more slowly, primarily by eliminating coordinated conformational 

fluctuations on the millisecond time scale and stabilizing the active site loops in the closed 

conformation. The permanently closed conformation comes at the expense of slower on or 

off rates for substrates and products, and suggests that the exaggerated domain twisting 

might compensate for reduced ligand accessibility to the active site. While hDHFR has 

higher activity10, it is unable to rescue an E. coli cell when expressed under the endogenous 

promoter because the concentrations of NADP+ and THF in E. coli are inhibitory. Thus, our 

data strongly suggest that protein dynamics in DHFR play a major role in tuning the 
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catalytic mechanism and ligand flux, and have evolved to allow optimal enzyme function in 

a given cellular environment.

ONLINE METHODS

Cloning, expression and purification of DHFR

Wild-type human DHFR (hDHFR) was cloned into a pET21a vector and transformed into E. 

coli BL21 (DE3) (DNAY) cells for expression. Cells were grown in M9 minimal media 

containing 2 mM folic acid, 0.5 g/L 15N ammonium sulfate, 0.5 g/L 15N ammonium 

chloride, 3g/L 13C glucose or deuterium oxide for uniform labeling. 13C15N or 2H13C15N 

uniformly labeled samples were used for triple resonance experiments. Cells were harvested 

after ~24 hours by centrifugation at 3000 g at 4 °C for 15 minutes and frozen at −20 °C. 

Frozen cell pellets can be stored for several weeks at −20 °C. hDHFR was purified and the 

desired complex was prepared by refolding as previously described37.

Wild type reference sequences (as listed in the NCBI database) were synthesized by the 

company Mr. Gene for DHFR from the following species: Bacillus anthracis, 

Staphylococcus aureus, Streptococcus pneumoniae, Vibrio cholerae, Sus scrofa, Bos taurus, 

Danio rerio, Caenorhabditis elegans, and Rattus norvegicus. Constructs were codon-

optimized for expression in E. coli, and contained an N-terminal His6 tag. Constructs were 

cloned into the pET15b vector and expressed in the host E. coli BL21 (DE3) (DNAY). Cells 

were grown at 37°C in M9 minimal medium containing 15N ammonium sulfate and 15N 

ammonium chloride, induced with 1mM IPTG at an OD600 of ~0.9 at 15 °C, and harvested 

after ~24 hours by centrifugation at 3000x g and 4°C for 15 minutes. Cell pellets were 

frozen at −20°C and can be stored up to several weeks.

Cell pellets from 2 L of cell culture were resuspended in 80 mL lysis buffer containing 50 

mM Tris pH 8.0, 200 mM NaCl, 1mM folic acid, 10 mM imidazole and one EDTA-free 

protease inhibitor cocktail tablet (Roche) and lysed by two passes through an EmulsiFlex 

C-3 cell disrupter (Avestin). Affinity purification was carried out using NiNTA resin 

(Qiagen), and protein was eluted with 50 mM Tris pH 8.0, 200 mM NaCl, 1mM folic acid, 

250 mM imidazole. Fractions containing DHFR were further purified by reversed-phase 

HPLC, and refolded previously described37. DHFR from each species was divided into two 

aliquots; one was refolded with NADP+ and FOL, while the other was refolded with NADP+ 

and THF.

21PWNAL24 ecDHFR was expressed and purified by anion exchange and gel filtration as 

previously described37.

Preparation of NMR samples

NADP+, NADPH and folic acid were purchased from Sigma. (6S)-THF was purchased from 

Schircks Laboratories. Folic acid is light sensitive, and THF and NADPH are both light and 

oxygen sensitive, and need to be treated accordingly. Buffer was extensively degassed using 

freeze-pump-thaw cycles on a vacuum line, after which 1 mM DTT was added. Protein was 

exchanged into the degassed NMR buffer (50 mM potassium phosphate, pH 6.5 or pH 8.0, 

50 mM KCl, 1mM EDTA, 1 mM DTT, 0.02% NaN3) in an inert environment in a glove box 
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using a NAP-5 column, and fresh ligands were added in 10-fold excess. All spectra were 

recorded at pH 6.5 except for the hE–NADPH complex, for which data were acquired at pH 

8.0. The samples were placed in amber NMR tubes with a vacuum line adapter, subjected to 

gentle vacuum, overlaid with argon, and flame-sealed to prevent oxidation of ligands.

NMR experiments

The hE–NADP+–FOL and hE–NADP+–THF complexes are stable, and could be 

concentrated to ~1 mM for NMR experiments. Due to the low yield after refolding and 

instability of the complexes, hE–NADPH and hE–FOL or hE–THF were concentrated to 

~300 µM and 500 µM respectively for NMR experiments. Standard 3D HNCA, HNCOCA, 

HNCACB and HNCOCACB triple resonance experiments were used to assign the spectra of 

all complexes formed with either uniformly 2H13C15N labeled protein or 13C15N uniformly 

labeled protein. All NMR spectra were processed using NMRPipe and analyzed with 

NMRView.

15N R2 relaxation dispersion for the 21PWNAL24 mutant of ecDHFR bound to NADP+ and 

FOL was measured at 500 MHz and 750 MHz using constant-time CPMG experiments, as 

described previously38. Dispersion measurements for hDHFR were made at 800 MHz and 

599 MHz, and at 800 MHz for C. elegans DHFR. All data were collected at 300K with a 

total relaxation period (Tcpmg) of 40 ms. Data were fitted as previously described16,39, using 

an in-house fitting program, GLOVE40.

Off-resonance 15N R1ρ relaxation dispersion experiments for the E-NADP+-FOL complex of 

hDHFR were carried out at 280 K using 900 MHz and 750 MHz spectrometers. A TROSY 

version of the pulse sequence described in ‘Scheme 2’ of Massi et al. was used41. R1ρ 

relaxation rate constants for each residue were determined by acquiring a series of 2-

dimensional spectra with different relaxation delays, from 6 to 160 ms. Intensities of cross 

peaks were fitted using a 2-parameter exponential decay function to give relaxation rate 

constants. Spectra were processed and analyzed using NMRPipe, NMRView and Curvefit. 

Ten different effective fields were obtained using a spin lock field of 1000 Hz and different 

resonance offsets. On average, for each residue a maximum effective field (ωe
2) of between 

4 and 6 was obtained. R1 and R2 values were measured at 280 K using established inversion 

recovery and CPMG experiments42. Maximum relaxation delays of 2000 ms and 240 ms 

were used for R1 and R2 respectively. Heteronuclear NOE measurements were made in 

triplicate, using established methods43,44. R2 values were calculated and used instead of 

using R1ρ values directly according to the following relationship:

R1ρ = R1 cos2 θ + R2 sin2 θ

where θ is the tilt angle between the static magnetic field and the effective field in the 

rotating frame. Dispersion curve fitting was carried out as described by Massi et al.44, using 

the fitting program, GLOVE40.

Crystallography

Purified hDHFR was concentrated to ~12 mg/mL, exchanged into buffer containing 

potassium phosphate (50 mM, pH 7.5), and DTT (1 mM) and ~3-fold excess of the desired 
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ligand (NADP+, NADPH, FOL and/or ddTHF) was added. Initial crystallization trials were 

performed using the automated Rigaku Crystalmation robotic system at the Joint Center for 

Structural Genomics (JCSG, www.jcsg.org). Crystals were optimized in sitting drops by 

setting up a fine screen around the conditions of the original hit, using 0.5 µL protein + 0.5 

µL precipitant per drop, and varying pH and precipitant concentrations. For the E–NADP+–

FOL complex, no optimization was necessary, and data were collected on a crystal obtained 

directly from the robotic screen. Crystals were cryoprotected in the reservoir solution 

supplemented with ~30% glycerol, then flash cooled and stored in liquid nitrogen until data 

collection. All diffraction data were collected at the Advanced Photon Source (APS) General 

Medical Sciences and National Cancer Institutes Collaborative Access Team (GM/CA-

CAT) beamlines 23ID-B or 23ID-D.

hE–NADP+–FOL was crystallized in 2 M ammonium sulfate and 100 mM phosphate-citrate 

pH 4.2 at 4 °C. The 1.4 Å resolution dataset was indexed and integrated in spacegroup 

P6322. The hE–NADPH complex was crystallized in 24% PEG 6000 and 100 mM Tris pH 

9.5 at 4 °C, and data were collected to 1.2 Å resolution and indexed and integrated in 

spacegroup C2221. The hE–NADP+–ddTHF complex was crystallized in 2.2 M ammonium 

sulfate and 100 mM sodium citrate pH 4.0 at 4 °C. A 1.7 Å resolution dataset was indexed 

and integrated in spacegroup P6322. Initial data processing was done using HKL2000 (HKL 

Research) and merged with Xprep (Bruker). Data collection statistics for all structures are 

summarized in Table 1.

The structures were solved by molecular replacement using Phaser with 1DLS45 (hE–

NADPH–MTX, L22Y variant) as a search model for hE–NADP+–FOL, and with the hE–

NADP+–FOL structure as a search model for the other two structures. Ligands and waters 

were removed from all the search models prior to molecular replacement. One copy of the 

DHFR complex was found in the asymmetric unit for all structures. Rigid body, restrained 

refinement and simulated annealing were carried out in Phenix46. After manual adjustment 

of the model in Coot47, including ligand placement, and the addition of waters, two TLS 

groups were defined for hE–NADP+–FOL and hE–NADP+–ddTHF restrained TLS 

refinement of the structure was completed using Phenix version 1.7. Anisotropic ADP 

refinement was carried out for the hE–NADPH structure at 1.2 Å resolution. The structures 

were validated using the Quality Control Check v2.7 developed by the JCSG, which 

included Molprobity48 (publically available at http://smb.slac.stanford.edu/jcsg/QC/). Final 

refinement statistics are shown in Table 1. The wavelength of data collection was 0.980 for 

hE–NADPH, and 1.033 for hE–NADP+–FOL and hE–NADP+–ddTHF. Ramachandran 

statistics are 98.5% favored, 0.0% disallowed for hE–NADPH and hE–NADP+–FOL, and 

98.9% favored, 0.0% disallowed for hE–NADP+–ddTHF.

Model Building

Strong, clear electron density was observed for all ligands in each structure (Supplementary 

Fig. 1), with the exception of NADP+ in the hE–NADP+–ddTHF structure (Supplementary 

Fig. 1f). The hE–NADP+–FOL and hE–NADP+–ddTHF complexes crystallized under 

similar conditions and in the same space group (P6322), and diffracted to similar resolutions. 

However, whereas the electron density for NADP+ is clear and well-defined in the hE–
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NADP+–FOL structure (Supplementary Fig. 1c), it is weaker and discontinuous in the hE–

NADP+–ddTHF structure, indicating disorder or low occupancy of the ligand. For the 

comparable ecDHFR structure (PDB code 1RX418), the electron density for the cofactor is 

well defined except for the nicotinamide ring, which resides outside the active site and for 

which no electron density is observed. Electron density that would place NADP+ outside the 

active site (as in ecE–NADP+–ddTHF) was not observed in the hE–NADP+–ddTHF 

electron density map. In both the hE–NADP+–ddTHF and hE–NADP+–FOL structures, 3-

fold excess NADP+ was added to the sample. Electron density is observed in the NADP 

binding site in hE–NADP+–ddTHF; however, in the 2Fo-Fc map contoured at σ = 1, the 

electron density is broken in the region of the adenosyl ribose, despite clear density for the 

phosphates on either side (Supplementary Fig. 1f). In order to assess whether the observed 

electron density represents NADP+ or molecules of free buffer components, we modeled in 

NADP+ and, in parallel, carried out refinement of the structure in which we modeled in 2 

phosphates, 2 glycerol molecules and waters to fit the electron density as best as possible in 

the absence of NADP+. The density is satisfied better with NADP+ modeled in to the active 

site, with the occupancy refined to ~0.8 (Supplementary Fig. 1g,h). Given the strong density 

for the phosphate groups, we conclude that NADP+ is bound, but is disordered in several 

regions. The B-values of the NADP+ ligand vary greatly, ranging from 24 Å2 for the more 

ordered phosphate to 61 Å2 in the adenosyl ribose. The lower B-values of the NADP+ are 

comparable to those in the surrounding regions of the protein, consistent with the notion that 

the ligand is present, but not well ordered. These structures suggest that at low pH (4–4.5), 

NADP+ is well ordered in the ternary Michaelis model complex, hE–NADP+–FOL, but is 

disordered in the product ternary complex, hE–NADP+–ddTHF, for which the next step is 

co-factor or product release. hDHFR was co-crystallized with 5,10-dideazatetrahydrofolate. 

While the configuration of the C6 stereocenter was unknown in the starting material 

(potentially 6R, 6S, or a racemic mixture), the electron density in the hDHFR folate binding 

site indicates that the 6S enantiomer is the predominant form bound in the crystal structure 

(Supplementary Fig. 1i,j). As our hE–NADPH crystal structure is in a different space group 

from the other structures and at a different pH, we supplemented the crystal structure 

analysis with solution NMR data (Supplementary Fig. 3d,e and Supplementary Note) in 

order to elucidate the conformational changes in the human enzyme as it progresses through 

the catalytic cycle. The two subdomains in hDHFR were identified and defined using 

Dyndom49.

Bioinformatic analysis

~1800 DHFR sequences deposited in the UniProt database50 were aligned using 

MUSCLE51. In all of our analyses, DHFR-thymidylate synthase (DHFR-TS) enzymes were 

excluded, as these enzymes represent a distinct evolutionary lineage and the dynamics of 

these bifunctional enzymes have not been extensively characterized. In addition, a separate 

analysis was carried out in which eukaryotic DHFR sequences from 172 completely 

sequenced genomes were analyzed by aligning their DHFR domains (as defined by the Pfam 

HMM model of the DHFR family, PF00186) using MAFFT52 followed by phylogenetic 

inference with the minimal evolution approach implemented in FastME53. The details of the 

analysis are as follows. Protein predictions for 172 completely sequenced eukaryotic 

genomes were obtained from a variety of sources, for details see Supplementary Table 3. 
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The domain repertoire for each genome was determined by hmmscan (with default options, 

except for an E-value cutoff of 2.0 and 'nobias') from the HMMER 3.0 package (http://

hmmer.org/) using hidden Markov models from the Pfam database. In a second step, the 

hmmscan results were filtered by the domain-specific 'gathering' (GA) cutoff scores 

provided by Pfam. From this set of analyzed proteins, we selected those that contained 

DHFR domains for phylogenetic analysis. The extent of the DHFR domain for the purpose 

of multiple alignments was defined by the Pfam 25.0 model of the DHFR domain. Multiple 

sequence alignments were then produced by MAFFT 6.240 (localpair, maxiterate 1000)52. 

Multiple sequence alignment columns with a gap in more than 50% of sequences were 

deleted and not used in further analysis. Phylogenetic trees were then calculated using 

FastME 1.153. All sequence, alignment, and phylogeny files are available upon request.

Complementation assays

A ΔfolA MG1655 strain was generated using recombineering, essentially as previously 

described54. The folA region was replaced with a Kanamycin resistance cassette. In other 

strains, the folA gene was replaced with genes expressing wild type E. coli DHFR (folA, 

control), human DHFR, or S. aureus DHFR. Wild type MG1655 E. coli cells and ΔfolA, 

ΔfolA::ecDHFR, ΔfolA::hDHFR or ΔfolA::saDHFR strains were grown in media 

supplemented with 100 µg/mL thymidine, gently pelleted, resuspended in LB media without 

thymidine, and plated either on plates containing LB+100 µg/mL thymidine or LB only. 

Plates were incubated at 37 °C overnight, and colonies were counted the following morning 

to determine plating efficiency. Each experiment was performed in triplicate. Note that for 

ΔfolA::hDHFR and ΔfolA strains, zero colonies grew in the absence of thymidine; therefore, 

errors could not be determined for these samples.

For filamentation assays, strains were grown in LB media supplemented with 100 µg/mL 

thymidine (Sigma) until an OD600 of ~0.6 was reached. Cells were gently pelleted (~2000 

rpm, 5 min), and washed twice in LB media to remove traces of thymidine. Cells were 

diluted to an OD600 ~0.1, and grown at 37 °C, 250 rpm for 4 hours. Cell were fixed directly 

in the culture medium by the addition of paraformaldehyde to a final concentration of 4% 

and incubated at room temperature for 30 minutes. 10 µL of each cell suspension was 

spotted on poly-lysine coated coverslip and mounted in 80% glycerol. Samples were imaged 

on an inverted fluorescence microscope (Olympus model IX71) using a PlanApo N 60X 

(NA 1.42; Olympus) objective, equipped with a Hamamatsu Photonics ORCA-ER camera 

(model C4742-80-12AG). The open source microscopy software µManager36 was used to 

control image acquisition.

To assess the solubility of human DHFR, we used western blotting. Endogenous DHFR is 

expressed at very low levels, and hDHFR expression is nearly undetectable in human cell 

lysates unless the cells are transfected with a hDHFR expressing plasmid (Manufacturer's 

product information, Abnova, Catalog#: H00001719-M01). Consequently, prior to Western 

blotting using an α-hDHFR antibody (kindly supplied by X.Zhang), soluble fractions of 

MG1655 ΔfolA::hDHFR and MG1655 ΔfolA lysates were enriched in His-tagged proteins by 

binding to NiNTA resin (Qiagen). After elution, the Ni-enriched soluble fractions were 

subjected to Western blotting using standard methods.
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Activity Assays

All kinetic measurements were made at pH 7.0 in buffer containing 50 mM potassium 

phosphate, 100 mM NaCl and 2mM DTT at room temperature. The enzyme at 400 nM was 

pre-equilibrated with 500 µM NADPH in a 100 µL reaction volume for 3 min in a 96-well 

plate. The reaction was initiated by adding DHF to a final concentration of 200 µM. Initial 

rates were calculated from the change in absorbance at 340 nm, which was monitored 

immediately after addition of DHFR for 120 s with a cycle time of 10 s. Reaction rates were 

measured in the presence of 0, 5, 50, 500, 5000 and 50,000 µM NADP+ to assess product 

inhibition. All experiments were done in duplicate, and were interleaved to minimize the 

effect of potential degradation of the unstable ligands, which were incubated on ice for the 

duration of the experiment. Control experiments were carried out in which each protein or 

ligand was omitted from the reaction, and resulted in rates of ~0. Data were fit using Matlab.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We gratefully acknowledge M. Yamout for assistance with design and preparation of DHFR expression constructs, 
G. Johnson for assistance with figure preparation, X. Zhang (The Scripps Research Institute) for providing α-
hDHFR antibody, D. Boger (The Scripps Research Institute) for kindly providing ddTHF, X. Dai for assistance 
with crystallography data collection, M. Mettlen for assistance with microscopy, and J. James and E. Jonsson for 
assistance with analysis of kinetic data. This work was supported by the National Institutes of Health (NIH) grant 
GM75995 and the Skaggs Institute of Chemical Biology (P.E.W). G.B. is the Merck Fellow of the Damon Runyon 
Cancer Research Foundation (DRG-2136-12). D.C.E is a Damon Runyon Fellow supported by the Damon Runyon 
Cancer Research Foundation (DRG-2140-12). D.C.E. was supported by a predoctoral fellowship from the 
Achievement Rewards for College Scientists Foundation, grant GM080209 from the NIH Molecular Evolution 
Training Program. The Joint Center for Structural Genomics is supported by NIH National Institute of General 
Medical Sciences (NIGMS) (U54 GM094586). C.M.Z. was supported by National Institutes of Health (NIH) grant 
GM087218. The GM/CA CAT 23-ID-D has been funded in whole or in part with federal funds from National 
Cancer Institute (Y1-CO-1020) and NIGMS (Y1-GM-1104). Use of the Advanced Photon Source (APS) was 
supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract DE-
AC02-06CH11357.

References

1. Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-
dimensional structure. Cell. 2009; 138:774–786. [PubMed: 19703402] 

2. Alexander PA, He Y, Chen Y, Orban J, Bryan PN. A minimal sequence code for switching protein 
structure and function. Proc. Natl. Acad. Sci. USA. 2009; 106:21149–21154. [PubMed: 19923431] 

3. Thompson J, Baker D. Incorporation of evolutionary information into Rosetta comparative 
modeling. Proteins. 2011; 79:2380–2388. [PubMed: 21638331] 

4. Kohen A, Klinman JP. Protein flexibility correlates with degree of hydrogen tunneling in 
thermophilic and mesophilic alcohol dehydrogenases. J. Am Chem. Soc. 2000; 122:10738–10739.

5. Wolf-Watz M, et al. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme 
pair. Nat. Struct. Mol. Biol. 2004; 11:945–949. [PubMed: 15334070] 

6. Schnell JR, Dyson HJ, Wright PE. Structure, dynamics and catalytic function of dihydrofolate 
reductase. Ann. Rev. Biophys. Biomol. Struct. 2004; 33:119–140. [PubMed: 15139807] 

7. Brown KM, et al. Compensatory mutations restore fitness during the evolution of dihydrofolate 
reductase. Mol. Biol. Evol. 2010; 27:2682–2690. [PubMed: 20576759] 

Bhabha et al. Page 14

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Fierke CA, Johnson KA, Benkovic SJ. Construction and evaluation of the kinetic scheme associated 
with dihydrofolate reductase from Escherichia coli. Biochemistry. 1987; 26:4085–4092. [PubMed: 
3307916] 

9. Appleman JR, et al. Unusual transient- and steady-state kinetic behavior is predicted by the kinetic 
scheme operational for recombinant human dihydrofolate reductase. J. Biol. Chem. 1990; 
265:2740–2748. [PubMed: 2303423] 

10. Appleman JR, et al. Atypical transient state kinetics of recombinant human dihydrofolate reductase 
produced by hysteretic behavior. Comparison with dihydrofolate reductases from other sources. J. 
Biol. Chem. 1989; 264:2625–2633. [PubMed: 2492521] 

11. Beard WA, Appleman JR, Delcamp TJ, Freisheim JH, Blakley RL. Hydride transfer by 
dihydrofolate reductase. Causes and consequences of the wide range of rates exhibited by bacterial 
and vertebrate enzymes. J. Biol. Chem. 1989; 264:9391–9399. [PubMed: 2498330] 

12. Matthews DA, et al. Dihydrofolate reductase: X-ray structure of the binary complex with 
methotrexate. Science. 1977; 197:452–455. [PubMed: 17920] 

13. Beard WA, et al. Role of the conserved active site residue tryptophan-24 of human dihydrofolate 
reductase as revealed by mutagenesis. Biochemistry. 1991; 30:1432–1440. [PubMed: 1991124] 

14. Bhabha G, et al. A dynamic knockout reveals that conformational fluctuations influence the 
chemical step of enzyme catalysis. Science. 2011; 332:234–238. [PubMed: 21474759] 

15. Hammes GG, Benkovic SJ, Hammes-Schiffer S. Flexibility, diversity, and cooperativity: pillars of 
enzyme catalysis. Biochemistry. 2011; 50:10422–10430. [PubMed: 22029278] 

16. Boehr DD, McElheny D, Dyson HJ, Wright PE. The dynamic energy landscape of dihydrofolate 
reductase catalysis. Science. 2006; 313:1638–1642. [PubMed: 16973882] 

17. Bystroff C, Kraut J. Crystal structure of unliganded Escherichia coli dihydrofolate reductase. 
Ligand-induced conformational changes and cooperativity in binding. Biochemistry. 1991; 
30:2227–2239. [PubMed: 1998681] 

18. Sawaya MR, Kraut J. Loop and subdomain movements in the mechanism of Escherichia coli 
dihydrofolate reductase: crystallographic evidence. Biochemistry. 1997; 36:586–603. [PubMed: 
9012674] 

19. Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE. Backbone dynamics in dihydrofolate 
reductase complexes: Role of loop flexibility in the catalytic mechanism. Biochemistry. 2001; 
40:9846–9859. [PubMed: 11502178] 

20. Osborne MJ, Venkitakrishnan RP, Dyson HJ, Wright PE. Diagnostic chemical shift markers for 
loop conformation and cofactor binding in dihydrofolate reductase complexes. Protein Sci. 2003; 
12:2230–2238. [PubMed: 14500880] 

21. Venkitakrishnan RP, et al. Conformational changes in the active site loops of dihydrofolate 
reductase during the catalytic cycle. Biochemistry. 2004; 43:16046–16055. [PubMed: 15609999] 

22. Miller GP, Benkovic SJ. Stretching exercises--flexibility in dihydrofolate reductase catalysis. 
Chem. Biol. 1998; 5:R105–R113. [PubMed: 9578637] 

23. Miller GP, Wahnon DC, Benkovic SJ. Interloop contacts modulate ligand cycling during catalysis 
by Escherichia coli dihydrofolate reductase. Biochemistry. 2001; 40:867–875. [PubMed: 
11170407] 

24. Davies JF II, et al. Crystal structures of recombinant human dihydrofolate reductase complexed 
with folate and 5-deazafolate. Biochemistry. 1990; 29:9467–9479. [PubMed: 2248959] 

25. Boehr DD, McElheny D, Dyson HJ, Wright PE. Millisecond timescale fluctuations in 
dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proc. Natl. Acad. Sci. USA. 
2010; 107:1373–1378. [PubMed: 20080605] 

26. Miller GP, Benkovic SJ. Strength of an interloop hydrogen bond determines the kinetic pathway in 
catalysis by Escherichia coli dihydrofolate reductase. Biochemistry. 1998; 37:6336–6342. 
[PubMed: 9572848] 

27. Cody V, Pace J, Rosowsky A. Structural analysis of a holoenzyme complex of mouse 
dihydrofolate reductase with NADPH and a ternary complex with the potent and selective 
inhibitor 2,4-diamino-6-(2'-hydroxydibenz[b,f]azepin-5-yl)methylpteridine. Acta Crystallogr. D. 
Biol. Crystallogr. 2008; 64:977–984. [PubMed: 18703847] 

Bhabha et al. Page 15

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Liu CT, et al. Functional significance of evolving protein sequence in dihydrofolate reductase from 
bacteria to humans. Proc. Natl. Acad. Sci. USA. 2013; 110:10159–10164. [PubMed: 23733948] 

29. Whitlow M, et al. X-ray crystallographic studies of Candida albicans dihydrofolate reductase. J. 
Biol. Chem. 1997; 272:30289–30298. [PubMed: 9374515] 

30. Ahmad SI, Kirk SH, Eisenstark A. Thymine metabolism and thymineless death in prokaryotes and 
eukaryotes. Annu. Rev. Microbiol. 1998; 52:591–625. [PubMed: 9891809] 

31. Fierke CA, Kuchta RD, Johnson KA, Benkovic SJ. Implications for enzymic catalysis from free-
energy reaction coordinate profiles. Cold Spring Harb. Symp. Quant. Biol. 1987; 52:631–638. 
[PubMed: 3331348] 

32. Allegra CJ, Fine RL, Drake JC, Chabner BA. The effect of methotrexate on intracellular folate 
pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis. J. 
Biol. Chem. 1986; 261:6478–6485. [PubMed: 3700401] 

33. Greenbaum AL, Gumaa KA, Mclean P. The distribution of hepatic metabolites and the control of 
the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. 
Arch. Biochem. Biophys. 1971; 143:617–663. [PubMed: 4397678] 

34. Cameron CE, Benkovic SJ. Evidence for a functional role of the dynamics of glycine-121 of 
Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. 
Biochemistry. 1997; 36:15792–15800. [PubMed: 9398309] 

35. Johnson GT, Autin L, Goodsell DS, Sanner MF, Olson AJ. ePMV embeds molecular modeling 
into professional animation software environments. Structure. 2011; 19:293–303. [PubMed: 
21397181] 

36. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of microscopes using 
microManager. Curr. Protoc. Mol. Biol. 2010; Chapter 14(Unit14)

Methods-Only References

37. Bhabha G, Tuttle L, Martinez-Yamout MA, Wright PE. Identification of endogenous ligands 
bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. FEBS 
Letters. 2011; 585:3528–3532. [PubMed: 22024482] 

38. Loria JP, Rance M, Palmer AG III. A relaxation-compensated Carr-Purcell-Meiboom-Gill 
sequence for characterizing chemical exchange by NMR spectroscopy. J. Am Chem. Soc. 1999; 
121:2331–2332.

39. McElheny D, Schnell JR, Lansing JC, Dyson HJ, Wright PE. Defining the role of active-site loop 
fluctuations in dihydrofolate reductase catalysis. Proc. Natl. Acad. Sci. USA. 2005; 102:5032–
5037. [PubMed: 15795383] 

40. Sugase K, Konuma T, Lansing JC, Wright PE. Fast and accurate fitting of relaxation dispersion 
data using the flexible software package GLOVE. J. Biomol. NMR. 2013; 56:275–283. [PubMed: 
23754491] 

41. Massi F, Johnson E, Wang C, Rance M, Palmer AG III. NMR R1ρ rotating-frame relaxation with 
weak radio frequency fields. J. Am Chem. Soc. 2004; 126:2247–2256. [PubMed: 14971961] 

42. Farrow NA, et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 
domain studied by 15N NMR relaxation. Biochemistry. 1994; 33:5984–6003. [PubMed: 7514039] 

43. Farrow NA, Zhang O, Forman-Kay JD, Kay LE. A heteronuclear correlation experiment for 
simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in 
slow equilibrium. J. Biomol. NMR. 1994; 4:727–734. [PubMed: 7919956] 

44. Massi F, Grey MJ, Palmer AG III. Microsecond timescale backbone conformational dynamics in 
ubiquitin studied with NMR R1ρ relaxation experiments. Protein Sci. 2005; 14:735–742. 
[PubMed: 15722448] 

45. Lewis WS, et al. Methotrexate-resistant variants of human dihydrofolate reductase with 
substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J. Biol. 
Chem. 1995; 270:5057–5064. [PubMed: 7890613] 

46. Adams PD, et al. PHENIX: building new software for automated crystallographic structure 
determination. Acta Crystallogr. D. Biol Crystallogr. 2002; 58:1948–1954. [PubMed: 12393927] 

Bhabha et al. Page 16

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol 
Crystallogr. 2004; 60:2126–2132. [PubMed: 15572765] 

48. Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. 
Acta Crystallogr. D. Biol. Crystallogr. 2010; 66:12–21. [PubMed: 20057044] 

49. Hayward S, Berendsen HJ. Systematic analysis of domain motions in proteins from conformational 
change: new results on citrate synthase and T4 lysozyme. Proteins. 1998; 30:144–154. [PubMed: 
9489922] 

50. Punta M, et al. The Pfam protein families database. Nucleic Acids Res. 2012; 40:D290–D301. 
[PubMed: 22127870] 

51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Res. 2004; 32:1792–1797. [PubMed: 15034147] 

52. Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. 
Bioinformatics. 2010; 26:1899–1900. [PubMed: 20427515] 

53. Desper R, Gascuel O. Fast and accurate phylogeny reconstruction algorithms based on the 
minimum-evolution principle. J. Comput. Biol. 2002; 9:687–705. [PubMed: 12487758] 

54. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 
using PCR products. Proc. Natl. Acad. Sci. USA. 2000; 97:6640–6645. [PubMed: 10829079] 

Bhabha et al. Page 17

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Human and E. coli DHFRs are structurally conserved, but have different active site 
loop movements
(a) Superposition of hDHFR (orange) and ecDHFR (purple), bound to NADP+ and FOL. 

Ligands are shown as sticks. (b) Catalytic cycles of ecDHFR and hDHFR. Both enzymes 

share a similar catalytic cycle, involving five observable intermediates (purple). In addition, 

the human enzyme also traverses a second catalytic cycle (orange), with E–NADP+–THF 

being the branch point. Approximately 65% of the flux proceeds through the same catalytic 

cycle as ecDHFR (purple), while 35% proceeds through the upper cycle (orange)10. Units 
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are in s−1 for first order rates and M−1s−1 for bimolecular rates. (c) Crystal structures of 

ecDHFR bound to NADP+ and FOL (1RX218, Met20 loop shown in black) or NADP+ and 

ddTHF (1RX418, Met20 loop shown in red). The ecDHFR Met20 loop shifts from the closed 

(black) to occluded (red) conformations depending on the ligand bound. (d) Crystal 

structures of hDHFR bound to NADP+ and FOL (Met20 loop shown in black) or NADP+ 

and THF (Met20 loop shown in red). (e) 15N HSQC spectra of ecDHFR bound to NADP+ 

and FOL (black) or NADP+ and THF (red), showing chemical shift changes between the 

closed Michaelis model complex and the occluded product ternary complex. (f) 15N HSQC 

of hDHFR bound to NADP+ and FOL (black) or NADP+ and THF (red). The active site 

loops of hDHFR remain in the closed position across the hydride transfer step.

Bhabha et al. Page 19

Nat Struct Mol Biol. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Active site packing and hinge motions in hDHFR
a,b Surface rendition of hDHFR–NADP+–FOL (a) and ecDHFR:NADP+–FOL (b) 

generated using only ambient occlusion, a 3D light attenuation calculation where deep 

pockets render dark and exposed surfaces render light35. c,d Superposition of crystal 

structures, aligned on the loop subdomain (gray), of hE–NADPH and hE–NADP+–FOL (c) 
and ecE–NADPH (PDB code: 1RX118) and ecE–NADP+–FOL (PDB code: 1RX218) (d). 
The adenosine-binding subdomain is colored green for hE–NADPH and pink for hE–

NADP+–FOL. Ligands are shown as sticks, with NADPH in green, NADP+ in magenta and 
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FOL in yellow. The adenosine-binding subdomain is colored purple for ecE–NADPH and 

yellow for ecE–NADP+–FOL, with NADPH in purple, NADP+ in orange and folate in 

yellow. e,f,g,h Surface representations of hE–NADPH (e), ecE–NADPH (f), hE–NADP+–

FOL (g) and ecE–NADP+–FOL (h). Residues highlighting the opening and closing of the 

active site cleft are colored in red. i,j Difference distance matrix for hE–NADPH and hE–

NADP+–FOL (i) and ecE–NADPH and ecE–NADP+–FOL (j), showing the magnitude and 

character of the conformational changes associated with the hinge motions.
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Figure 3. Primary sequence features related to flexibility and conformational change in E. coli 
and human DHFR
(a) Sequence alignment of ecDHFR and hDHFR showing three regions of the sequence 

related to dynamic mechanism. The anchor residues for sequence alignment are shown in 

red. (b) Structure of regions highlighted in a, with anchor residues shown as spheres. 

ecDHFR is shown in purple, and hDHFR in orange. Regions A, B and C correspond to the 

“Met20” loop, hinge 1 and hinge 2, respectively. The following anchor residues were chosen 

for sequence alignments (E. coli numbering): P21 and D27 for Region A, F31 and M42 for 

Region B, and Y100 and T113 for Region C.
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Figure 4. Conformational changes between reactant and product complexes
Cropped regions of 15N-HSQC spectra of DHFRs: (a) wild-type (WT) E. coli; (b) PWPPL 

E. coli; (c) PWNAL E. coli; (d) S. aureus; (e) C. elegans; (f) D. rerio. Each panel shows a 

superposition of E– NADP+–FOL (model Michaelis complex, black) and E–NADP+– THF 

(product ternary complex, red). A blue arrow marks the change in the position of the G121 

cross peak for wild type E. coli DHFR (a). There is no change in the chemical shift of G121 

upon formation of the product complexes of the 21PWPPL24 and 21PWNAL24 mutants (b 
and c). Full 15N HSQC spectra for DHFR from different species are shown in 

Supplementary Fig. 6.
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Figure 5. Overview of patterns in length of Met20 loop and hinges
A, B and C refer to Regions A (Met20 loop), B (hinge 1), and C (hinge 2) of the DHFR 

primary sequence as described in the text and Fig. 3. For A, open squares indicate 7 residues 

and filled squares indicate 8 or 10 residues in Region A. Enzymes with 7 residues in Region 

A undergo conformational changes across the hydride transfer step. An increase in the 

length of Region A (to 8 or 10 residues) is associated with limited flexibility in the active 

site loops and the absence of conformational change upon formation of product. For B, open 

squares indicate a short hinge (<15 residues in Region B) and filled squares indicate a long 
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hinge (≥15 residues in Region B). For C, open squares indicate a short hinge (12 residues in 

Region C) and filled squares indicate a long hinge (≥14 residues in Region C). Long hinges 

facilitate the exaggerated hinge-twisting motion observed in hDHFR. While in some groups 

(e.g. fungi) more than one combination of features can be found, their distributions within 

the group do not follow any well-established phylogenetic divisions.
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Figure 6. Human DHFR cannot complement DHFR-knockout E. coli cells, and is more sensitive 
to product inhibition than E. coli DHFR
(a) DIC micrographs of MG1655 ΔfolA and DHFR knock-in strains temporarily grown with 

or without thymidine, after initial growth in media supplemented with thymidine. The 

morphology of MG1655 ΔfolA cells expressing ecDHFR or saDHFR are similar with or 

without thymidine (short rods). In contrast, MG1655 ΔfolA cells expressing hDHFR 

filament extensively when grown in the absence of thymidine, similar to the DFHR 

knockout cell line, MG1655 ΔfolA. The scale bar corresponds to 10 µm. Images were 

obtained using the open-source microscopy software, µManager36. (b) Relative plating 

efficiency of MG1655 ΔfolA and DHFR knock-in strains on LB medium with or without 

100 µg/mL thymidine. Plating efficiency for each strain on LB with thymidine is normalized 

to 1. While both ecDHFR and saDHFR restore the ability to grow in the absence of 

thymidine, hDHFR fails to complement and resembles the folA null mutant, both of which 

are not viable in the absence of thymidine. The mean plating efficiency (n=3) is reported 

here, with error bars indicating the standard deviation. c. Initial kinetic rates for ecDHFR 

(black), hDHFR (red) and E. coli N23PP S148A mutant (blue) enzyme activity plotted as a 

function of increasing NADP+ concentrations. The IC50 for human DHFR is 948 µM, for 

ecDHFR, 6518 µM, and for the mutant N23PP S148A ecDHFR 1274 µM, closer to that of 
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hDHFR. The experiment was carried out in duplicate, and values for the mean initial rates 

are plotted in the figure, with error bars indicating the range of values measured.
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Table 1

Data collection and refinement statistics for crystal structures of hDHFR complexes.

hE–NADPH hE–NADP+–FOL hE–NADP+–ddTHF

Data collection

Space group C2221 P6322 P6322

Cell dimensions

  a, b, c (Å) 39.0, 65.5, 152.3 68.2, 68.2, 160.2 67.8, 67.8, 160.4

  α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 120.0 90.0, 90.0, 120.0

Resolution (Å) 50-1.20 (1.23-1.20)* 50-1.40 (1.42-1.40) 50-1.70 (1.73-1.70)

Rsym 0.11 (0.54) 0.08 (0.79) 0.13 (0.85)

I / σI 14.0 (2.0) 24.4 (2.1) 25.4 (2.2)

Completeness (%) 96.8 (76.9) 99.6 (92.3) 99.9 (99.3)

Redundancy 6.5 (2.9) 19.3 (8.7) 18.3 (8.4)

Refinement

Resolution (Å) 50-1.20 50-1.40 50-1.70

No. reflections 59,264 44,348 24,628

Rwork / Rfree 16.3 / 18.5 14.5 / 18.4 19.2 / 24.0

No. atoms

  Protein 1,639 1,635 1,547

  Ligand/ion 48 86 93

  Water 196 206 143

B-factors

  Protein 24.0 20.2 34.4

  Ligand/ion 20.8 19.4 43.0

  Water 38.8 32.7 40.4

R.m.s. deviations

  Bond lengths (Å) 0.009 0.009 0.007

  Bond angles (°) 1.48 1.41 1.25

*
Values in parentheses are for highest-resolution shell.
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