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Abstract 

Spatial Data Science for addressing environmental challenges in the 21
st
 century 

By 

Jenny Lizbeth Palomino 

Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 

Professor Maggi Kelly, Chair 

 

The year 2005 sparked a geographic revolution through the release of Google Maps, arguably the 

first geographic tool to capture public interest and act as a catalyst for neogeography (i.e. the 

community of non-geographers who built tools and technologies without formal training in 

geography). A few years later, in 2008, the scientific community witnessed another major 

turning point through open access to the Landsat satellite archive, which had been collecting 

earth observation data since 1972. These moments were critical starting points of an explosion in 

geographic tools and data that today remains on a rapid upward trajectory. In more recent years, 

new additions in data and tools have come from the Free and Open Source Software (FOSS), 

open and volunteered data movements, new data collection methods (such as unmanned aerial 

vehicles, micro-satellites, real-time sensors), and advances in computational technologies such as 

cloud and high performance computing (HPC). However, within the broader Data Science 

community, specific attention was often not given to the unique characteristics (e.g. spatial 

dependence) and evolutions in geospatial data (e.g. increasing temporal/spatial resolutions and 

extents). Beginning in 2015, researchers such as Luc Anselin as well as others who had been 

developing geospatial cyber-infrastructure (CyberGIS) since 2008 began to call for a Spatial 

Data Science, a field that could leverage the advances from Data Science, such as data mining, 

machine learning, and other statistical and visualization ‗big‘ data techniques, for geospatial 

data. New challenges have emerged from this rapid expansion in data and tool options: how to 

scale analyses for ‗big‘ data; deal with uncertainty and quality for data synthesis; evaluate 

options and choose the right data or tool; integrate options when only one will not suffice; and 

use emerging tools to effectively collaborate on increasingly more multi-disciplinary and multi-

dimensional research that aims to address our current societal and environmental challenges, 

such as climate change, loss of biodiversity and natural areas, and wildfire management. 

This dissertation addresses in part these challenges by applying emerging methods and tools in 

Spatial Data Science (such as cloud-computing, cluster analysis and machine learning) to 

develop new frameworks for evaluating geospatial tools based on collaborative potential and for 

evaluating and integrating competing remotely-sensed map products of vegetation change and 

disturbance.  In Chapter One, I discuss in further detail the historical trajectory toward a Spatial 
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Data Science and provide a new working definition of the field that recognizes its 

interdisciplinary and collaborative potential and that serves as the guiding conceptual foundation 

of this dissertation. In Chapter Two, I identify the key components of a collaborative Spatial 

Data Science workflow to develop a framework for evaluating the various functional aspects of 

multi-user geospatial tools. Using this framework, I then score thirty-one existing tools and apply 

a cluster analysis to create a typology of these tools. I present this typology as the first map of the 

emergent ecosystem and functional niches of collaborative geospatial tools. I identify three 

primary clusters of tools composed of eight secondary clusters across which divergence is driven 

by required infrastructure and user involvement. I use my results to highlight how environmental 

collaborations have benefited from these tools and propose key areas of future tool development 

for continued support of collaborative geospatial efforts.   

In Chapters Three and Four, I apply Spatial Data Science within a case study of California fire to 

compare the differences as well as explore the synergies between the three remotely-sensed map 

products of vegetation disturbance for 2001-2010: Hansen Global Forest Change (GFC); North 

American Forest Dynamics (NAFD); and Landscape Fire and Resource Management Planning 

Tools (LANDFIRE). Specifically, Chapter Three identifies the implications of the differing 

creation methods of these products on their representations of disturbance and fire. I identify that 

LANDFIRE (the traditional created product that integrates field data and public data on 

disturbance events with remote sensing) reported the highest amount of vegetation disturbance 

across all years and habitat types, as compared to GFC and NAFD, which are both produced 

from automated remote sensing analyses. I also find that these differences in reported 

disturbance are driven by differential inclusion of reference data on fire (rather than differences 

in environmental conditions) and identify the widest range in reported disturbance (i.e. more 

uncertainty) in years with more fire incidence and in scrub/shrub habitat. In Chapter Four, I use 

spatial agreement among the competing products as a measure of uncertainty. I identify low 

uncertainty in disturbance (i.e. where all products agree) across only 15% of the total area of 

California that was reported as disturbed by at least one product between 2001 and 2010. 

Specifically, I find that scrub/shrub habitat had a lower uncertainty of disturbance than forest, 

particularly for fire, and that uncertainty was universally high across all bioregions. I also 

identify that LANDFIRE was solely responsible for approximately 50% of the total area reported 

as disturbed and find large differences between the burned areas reported by the reference data 

and the areas with low uncertainty of disturbance, indicating potential overestimation of 

disturbance by both LANDFIRE and the reference data on fire.  

Last, in Chapter Five, I conclude by highlighting how unresolved key challenges for Spatial Data 

Science can serve as new opportunities to guide the scaling of methods for ―big‖ data, increased 

spatial-temporal integration, as well as promote new curriculum to better prepare future Spatial 

Data Scientists. In all, this dissertation explores the opportunities and challenges posed by 

Spatial Data Science and serves as a guiding reference for professionals and practitioners to 

successfully navigate the changing world of geospatial data and tools.   
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Chapter One 

Opportunities and challenges presented by Spatial Data Science  

Since 2005, when Google Maps launched, the discipline of geography has experienced 

significant revitalization from increased public use of mapping as well as a major expansion in 

the availability of geospatial data that is broader in extent (from regional to global) as well as 

finer in spatial and temporal resolution (in real-time and daily). More recently, new data 

collection methods (e.g. mobile, sensor networks, unmanned aerial vehicles, micro-satellites) 

(Anselin, 2015; Miller & Goodchild, 2015) as well as open data (Anselin, 2015) and volunteered 

data movements (Goodchild, 2007) have made geospatial data ―big‖, characterized not only by 

the volume, velocity, and variety that have come to characterize large and complex datasets, but 

also by the increased detail and complexity of the data. Intertwined with these evolutions in 

geospatial data collection has been an increased availability of tools to analyze, visualize and 

disseminate data including: scripting libraries in the widely used Python and R programming 

languages; the development of interactive web mapping (Haklay et al., 2008); more free and 

open source software (FOSS) options (Steiniger & Hunter 2013); web-based methods to 

seamlessly exchange data, such as application programming interfaces (APIs); and multi-user 

platforms that support collaborative workflows for geospatial tasks (i.e. collaborative geospatial 

tools). To harness this explosion in geospatial data and tools, the field of CyberGIS emerged 

around 2010 to create methods for improving tool interoperability and leveraging high 

performance computing (HPC) to overcome desktop-based limitations for analyzing of big 

geospatial data (Anselin, 2012; Wang et al., 2013; Wright & Wang, 2011; Yang et al., 2010). 

Since then, researchers in geography as well as professionals working with geospatial data have 

also recognized the importance of modifying and scaling analytical methods to match the size 

and complexity of modern geospatial data through data handling, mining, and statistical and 

computational techniques borrowed from Data Science and Computer Science. These efforts 

have been coalescing into a newly emerging discipline known as Spatial Data Science.  

 

The first mention of Spatial Data Science in the scientific literature appeared in a 2015 online 

essay by Luc Anselin, who defined it as:  

―a subset of the broader data science (e.g., Schutt and O’Neil 2014), differentiated by dealing 

explicitly with the role of space (location, spatial arrangement, spatial interaction). In analogy 

to generic data science, it consists of a combination of the strengths of exploratory spatial data 

analysis, spatial statistics, and spatial econometrics from a statistical disciplinary perspective, 

with spatial data mining, spatial database manipulation, and machine learning from a computer 

science disciplinary perspective‖ (Anselin, 2015, pg. 1).  

Since Anselin‘s essay, other researchers have similarly identified that ―geospatial data science is 

a transdisciplinary field comprising statistics, mathematics, and computer science‖ (Eftelioglu et 
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al., 2017, pg. 9), though some scholars have outlined goals and priorities for this emerging field 

while treating it as a known entity that needs no formal definition: 

―While data science is in general driven by data analysis and related creative inquiry, data 

synthesis has become increasingly important in the context of spatial data science. Two specific 

and interrelated challenges are fundamental to spatial data synthesis: data aggregation and 

integration. Data aggregation refers to the problem of bringing together various data streams at 

scale, while data integration concerns the processes of harmonizing diverse (in format, type, 

spatial scale, spatial reference, spatial unit, etc.) spatial datasets‖ (Wang, 2016, pg. 967). 

“Spatial or Geospatial Data Science… Primary communities…Geography, Statistics, Computer 

Science… Special emphases…Spatial Statistics, Spatial Big Data, Machine learning” (Yuan, 

2017, pg. 429). 

 

While these descriptions provide useful insight into the methodological gains that Spatial Data 

Science has provided (i.e. modern statistical and data handling methods for big data, integration 

of machine learning, focus on data synthesis), there has been little recognition (i.e. discussion, 

research) within Spatial Data Science of the computational environment or tools that are actually 

used (or needed) to conduct these analyses. Specifically, within academia, research on the 

computational tools used to accomplish the goals of Spatial Data Science has primarily been the 

domain of CyberGIS, formally defined as ―geographical information science and systems (GIS) 

based on advanced cyberinfrastructure (CI) … [that] provides a seamless integration of advanced 

CI, GIS, and spatial analysis and modeling capabilities‖ (Wang, 2016, pg. 966). As such, 

CyberGIS is typically presented as a related but separate field that focuses on developing the 

technological infrastructure needed to conduct Spatial Data Science (i.e. interoperability between 

tools and HPC integration). The lack of focus on technology is a critical omission within Spatial 

Data Science because many widely-used geospatial tools (e.g. popular FOSS options such as 

QGIS, MapBox, ROpenSci, Jupyter Notebook, and PostGIS; cloud-based tools like CARTO and 

Google Earth Engine) are not developed by CyberGIS researchers but rather by other academic 

researchers (e.g. natural and physical scientists), private industry, and individuals collaborating 

within non-profit efforts that support the development of FOSS (e.g. OSGeo Foundation). 

Disregarding the integral role of technological infrastructure within Spatial Data Science ignores 

the need to investigate how tools can best be used to integrate and synthesize disparate data and 

methods as well as support increasingly larger and distributed teams in collaborative work. 

In this dissertation, I unite these various aspects of geospatial data and tool development by 

providing a new, and more broad definition of Spatial Data Science: a collaborative discipline 

that integrates fundamental GIS methods and principles of spatial analysis, geoprocessing, and 

cartography, with statistical, data mining, and web-based data visualization techniques from Data 

Science, within infrastructure that leverages recent advances in computation– such as FOSS, 

HPC, and cloud-based computing– through the efforts of CyberGIS researchers and geospatial 
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professionals and practitioners. Based on this richer definition of Spatial Data Science, my 

research addresses several key challenges for researchers and professionals that stem from the 

rapid and intertwined growth in available geospatial data and analytical tools: choosing the right 

geospatial data or tool from an ever-expanding list of options; evaluating data; and examining 

uncertainty. As no one dataset represents a complete truth and no one tool can fulfill all needs, 

this dissertation provides frameworks for evaluating geospatial tools based on how they can be 

leveraged for collaborative research (Chapter Two) and for comparing and integrating 

competing or alternative geospatial datasets (Chapter Three) and evaluating the uncertainty in 

competing geospatial products (Chapter Four). Specifically, using emerging methods and tools in 

Spatial Data Science such as cloud-computing, cluster analysis and machine learning, I apply 

these frameworks in case studies to provide the first typology of collaborative geospatial tools 

(Chapter Two), to identify the implications of differing creation methods of remotely-sensed 

maps of vegetation change on the representation of disturbance and fire (Chapter Three), and to 

quantify spatially explicit uncertainty in disturbance (particularly fire) across landscapes 

(Chapter Four). Overall, I believe these frameworks provide easy and clear methodologies for 

researchers and practitioners to evaluate available options and to integrate multiple choices into 

unified solutions.  

While this dissertation emphasizes the critical role of tools and technology, it also recognizes 

that our current societal and environmental challenges such as climate change, loss of 

biodiversity and natural areas, and wildfire management are challenging researchers and 

professionals to find solutions that require increased collaboration between multiple stakeholders 

and the synthesis of data across multiple scales and formats. Though Spatial Data Science cannot 

address all aspects of these challenges (e.g. how to best engage with public audiences or design 

policies that address both ecological and societal needs), the discipline can provide the 

theoretical and technical infrastructure for the collaboration, data synthesis, and large-scale 

analysis needed to explore scientific solutions to these ―wicked‖ problems (Allen & Gould, 

1986; Balint et al., 2011; Carroll et al., 2007; Temby et al., 2016), or ―complex social-ecological 

systems‖ (Akamani et al., 2016) that cross multiple administrative and ecological boundaries, are 

part of coupled and complex spatial-temporal interactions, and do not have past precedent for 

solutions. In the sections that follow, I outline each chapter of this dissertation and highlight how 

I employ Spatial Data Science methods and technologies within case studies to address these 

new research questions stemming from the rapidly expansion in geospatial data and tools.  

The integral role of collaboration in evaluating geospatial tools 

As researchers and practitioners seek to address complex and multi-dimensional questions about 

environment challenges that require both geospatial data and increasingly larger teams, I are also 

searching for tools that can provide the functionality needed for multiple users to work together 

on geospatial tasks. In Chapter Two, I identify that previous typologies of geospatial tools have 

not explicitly considered technical functionality that tools provide for completing collaborative 
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tasks, and thus are not useful for understanding how geospatial tools can support collaborative 

geospatial research. To this end, I outline a new Spatial Data Science workflow that highlights 

the role of collaboration (i.e. user involvement, reproducibility) and computational infrastructure 

(i.e. FOSS, HPC) alongside key workflow tasks (i.e. setting up the working environment, data 

wrangling, analysis, visualization, publication/dissemination). I use this collaborative Spatial 

Data Science workflow to score thirty-one geospatial tools that aim to support multiple users 

working collaboratively on geospatial tasks. I then apply an unsupervised cluster analysis (using 

a machine learning approach) to develop the first typology of geospatial tools based on 

functionality for collaboration. I present this typology as a map of the emergent ecosystem of 

collaborative geospatial tools with three identifiable functional niches: (1) participatory data 

aggregators; (2) content managers; and (3) highly scalable and customizable tools. Using this 

new typology, I highlight the current strengths of collaborative geospatial tools (i.e. strong 

integration of open source technologies and interoperability), identify key areas of future 

development (i.e. more integration of HPC and versioning of data and workflows), and outline 

ongoing challenges for both collaborative tool development and Spatial Data Science (i.e. big 

data handling, scaling of analyses, spatial-temporal integration, data quality and synthesis).  

 

Evaluating and integrating competing datasets to understand and quantify uncertainty 

Chapters Three and Four apply Spatial Data Science to the challenge of describing and 

quantifying landscape change in a data-rich world, in which the existence of multiple, competing 

datasets result in overall uncertainty in amount and location of vegetation disturbance over time 

(i.e. change or reduction in vegetation due to natural or anthropogenic causes such as fire, 

harvesting, and mortality due to drought and pestilence). I use a case study of fire in California to 

compare the differences as well as explore the synergies between the three vegetation 

disturbance products that have complete coverage for California between 2001 and 2010: Hansen 

Global Forest Change (GFC); North American Forest Dynamics (NAFD); and Landscape Fire 

and Resource Management Planning Tools (LANDFIRE). While these products have been 

developed from the same data source– the Landsat Time Series (LTS) which provides satellite 

images at moderate spatial (30 m resolution) and temporal (approximately 2 weeks) resolutions– 

the products differ greatly in the methodology used to identify and map disturbance. Specifically, 

GFC and NAFD are both based on modern ―big‖ data approaches that are automated and analyze 

the entire dataset to quantify annual changes (i.e. compare values across years to identify the 

change in a given year), while LANDFIRE has been developed through a traditional, year-to-

year approach that manually combines public data on annual disturbance events provided by 

federal, state, and local agencies with semi-automated remote sensing analyses of vegetation 

indices derived from the LTS. Although these products use different methods to map annual 

vegetation disturbance, they are easily comparable due to the shared 30 m spatial resolution of 

the LTS. However, this spatial resolution also means that the products are ―big‖ data, covering 

approximately 450 million pixels for each year of data. As such, I use the cloud-based geospatial 
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tool, Google Earth Engine (GEE), for its functionality for reproducibility (i.e. code-sharing and 

cloud data storage) as well as large data handling via cloud-based, distributed computing. 

 

In Chapter Three, I compare the amounts of annual and total vegetation disturbance reported by 

the products and explore how their differing methods of creation can create uncertainty in 

disturbance by comparing their coverage of environmental conditions (i.e. vegetation, elevation, 

climate) and burn conditions from federal and state reference data on fire (i.e. fire perimeters and 

burn severity data). My results indicate that the products examined differ greatly in their amounts 

of reported disturbance, particularly in scrub/shrub habitats (where reference data on fire 

reported higher disturbance) and in years with high numbers of fire events. In particular, the 

traditionally curated product, LANDFIRE, reported much higher amounts of disturbance across 

all years, as compared to either of the two modern products, GFC and NAFD. I also find that 

these differences in reported disturbance are driven by differential inclusion of reference data on 

fire (e.g. the manual creation process of LANDFIRE explicitly incorporates these reference 

data), rather than differences in environmental conditions. These results provide key insights into 

how the products differentially map disturbance and the conditions under which they identify it, 

which are important for the research and conservation communities that use these products to 

study the implications of vegetation disturbance on ecosystem characteristics such as carbon 

dynamics and habitat fragmentation. Due to their differences, I conclude that users of these 

products should not rely on one product to accurately represent disturbance in their study areas, 

but rather need to view these products as different representations of disturbance (based on 

different thresholds) and seek to account for this uncertainty in their work.  

 

In Chapter Four, I outline a simple but powerful methodology for quantifying uncertainty in 

disturbance based on identifying spatial agreement among competing products (i.e. where the 

products agree). For this methodology, I use basic raster calculations completed in GEE to 

identify which products overlap at each pixel, and then convert these levels of spatial agreement 

to measures of uncertainty based on the number of products that report disturbance at a given 

location (e.g. high uncertainty of disturbance due to only one product reporting disturbance 

versus low uncertainty where all products report disturbance). I continue the case study of fire in 

California to explore uncertainty among GFC, NAFD, and LANDFIRE across biogeographical 

divisions (i.e. habitat and bioregions) as well as burn conditions (i.e. size of fire, burn severity). I 

find that low spatial agreement among the disturbance products results in a low uncertainty for 

only 15% of the total area reported as disturbed across California between 2001 and 2010. 

Furthermore, I find that while scrub/shrub habitat had a lower uncertainty of disturbance than 

forest, particularly for fire events, uncertainty was universally high across all bioregions.  

My results for Chapter Four also indicate potential over-estimation of disturbance by 

LANDFIRE as well as by the reference data on fire. Specifically, I identify that LANDFIRE was 

solely responsible for approximately 50% of the total area reported as disturbed and find large 

differences between the burned areas reported by the reference data and the areas with low 
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uncertainty of disturbance derived from spatial agreement among the disturbance products. This 

uncertainty in disturbance is noteworthy for two primary reasons: (1) almost 10% of California 

was reported as disturbed by at least one product in the same time period (but only 15% of the 

total area reported as disturbed had a low uncertainty); and (2) published research that quantify 

the impact of disturbance on ecosystem characteristics, such as aboveground carbon dynamics, 

do not account for this uncertainty, and instead choose only one product to represent the amount 

and location of disturbance in their study areas. Overall, this examination of uncertainty in 

disturbance in California provides both insight into the potential implications of not accounting 

for uncertainty in disturbance (e.g. choosing only one product to represent disturbance in a given 

study area or year) as well as a simple and clear methodology for all users of these products, 

particularly non-remote sensing experts, to account for uncertainty in disturbance in their work.  

Based on the key findings of my research as well as the current developments in the field, 

Chapter Five concludes this dissertation with final thoughts regarding new research directions for 

Spatial Data Science. In the concluding chapter, I highlight how unresolved key challenges for 

Spatial Data Science can serve as new opportunities within this emerging field to guide the 

scaling of geospatial methods for ―big‖ data, to support increased spatial-temporal integration 

(particularly for analysis land cover change and vegetation disturbance), as well as to promote 

the development of new curriculum in Spatial Data Science to better prepare future geospatial 

professionals and researchers. Overall, this dissertation provides a key exploration of the 

fundamental opportunities and challenges posed by this newly emerging field and serves as a 

guiding reference for researchers and practitioners to successfully navigate the changing world of 

data and tool options and to choose the best options for their needs.   
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Chapter Two 

A review of the emergent ecosystem of collaborative geospatial tools for 

addressing environmental challenges 

 

To solve current environmental challenges such as biodiversity loss, climate change, and rapid 

conversion of natural areas due to urbanization and agricultural expansion, researchers are 

increasingly leveraging large, multi-scale, multi-temporal, and multi-dimensional geospatial 

data. In response, a rapidly expanding array of collaborative geospatial tools is being developed 

to help collaborators share data, code, and results. Successful navigation of these tools requires 

users to understand their strengths, synergies, and weaknesses. In this chapter, I identify the key 

components of a collaborative Spatial Data Science workflow to develop a framework for 

evaluating the various functional aspects of collaborative geospatial tools. Using this framework, 

I then score thirty-one existing collaborative geospatial tools and apply a cluster analysis to 

create a typology of these tools. I present this typology as a map of the emergent ecosystem and 

functional niches of collaborative geospatial tools. I identify three primary clusters of tools 

composed of eight secondary clusters across which divergence is driven by required 

infrastructure and user involvement. Overall, my results highlight how environmental 

collaborations have benefited from the use of these tools and propose key areas of future tool 

development for continued support of collaborative geospatial efforts. 

Introduction 

Environmental challenges such as biodiversity loss, wildfire management, climate change, and 

rapid conversion of natural areas due to urbanization and agricultural expansion are recognized 

as ―wicked problems‖ (Allen & Gould, 1986; Balint, Stewart, & Desai, 2011; Carroll, Blatner, 

Cohn, & Morgan, 2007; Temby, Sandall, Cooksey, & Hickey, 2016), or ―complex social-

ecological systems‖ (Akamani, Holzmueller, & Groninger, 2016). Many of these challenges can 

be described as global in scale, at the nexus of interdisciplinary approaches, and/or part of 

coupled processes. Research teams have also become larger, more distributed, and multi-

disciplinary (Elwood, Goodchild, & Sui, 2012; MacEachren & Brewer, 2004). To address these 

challenges, researchers have called for collaboration not only in the environmental management 

and decision-making processes (Daniels & Walker, 2001; Frame, Gunton, & Day, 2004; Selin & 

Chevez, 1995), but also in the knowledge production process, including the sharing of data, 

methods and tools (Cravens, 2014;Head& Alford, 2015; Temby et al., 2016). Consequently, 

understanding how various technologies, including geospatial tools, can support collaborative 

efforts for environmental problem-solving is a critical area of ongoing research (Cravens, 2014; 

Cravens, 2016; MacEachren & Brewer, 2004; Wright, Duncan, & Lach, 2009). 

Contemporaneous to the emergence of these complex and large scale research challenges has 

been a rapid expansion in the sources of geospatial data from mobile devices, environmental 
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sensors, and Unmanned Aerial Vehicles (Miller & Goodchild, 2015) as well as from increased 

public access to administrative data through cloud/web-based Application Programming 

Interfaces (APIs; Anselin, 2015). In addition, Volunteered Geographic Information (VGI; 

Goodchild, 2007) as well as data captured by citizen scientists continue to increase in volume 

(Dickinson, Zuckerberg, & Bonter, 2010; Dickinson et al., 2012), both complementing and 

challenging the anonymity and centralized nature of traditional geospatial data produced by large 

organizations (i.e. governments and proprietary companies). Available data are now more 

detailed, with changes in scale from local to global extents, from coarse spatial resolutions in 2D 

planimetric to fine grain sizes with 3D and 4D options, and from seasonal/monthly temporal 

scales to daily or real-time capture. As such, researchers working on environmental challenges 

are increasingly leveraging large, multi-scale, multi-temporal, and multi-dimensional geospatial 

data in search of solutions (Goodman, Parker, Edmonds, & Zeglin, 2014; Miller & Goodchild, 

2015).  

Complementing this explosion in data has been the development of diverse array of geospatial 

analytical tools (i.e., scripting libraries, open source and cloud/web-based mapping options) and 

increased functionality to support multi-user workflows (i.e. standardized working environments, 

code-sharing, data exchange, status updates). Through advances in Web 2.0 technologies 

(Haklay, Singleton, & Parker, 2008) and Free and Open Source Software for Geospatial 

(FOSS4G; Steiniger & Hunter, 2013), the primary use of geospatial data is evolving from 

proprietary desktop software and data formats used to create static cartographic products toward 

the leveraging of open source and cloud/web-based tools, open data format and standards, and 

APIs to create dynamic web visualizations shared by collaborative teams across technology, 

science, and the public.  

These intertwined evolutions in available geospatial data and tools also highlight the ongoing 

discussion regarding the role of technology within collaborative projects and how to best 

leverage technology to support collaborative tasks. Successful collaboration is dependent on 

many things including dynamics of negotiation, equity in knowledge and power, inclusion and 

access, and trust, which have been explored by various researchers (Elwood, 2006; Sieber, 2000; 

Wright et al., 2009). In addition to these social dimensions, collaboration is also dependent on 

the technology used to complete and achieve the desired tasks and outcomes (Cravens, 2014; 

Cravens, 2016). In their seminal work on ―geocollaboration‖, MacEachren and Brewer (2004) 

identify four ―stages of group work‖ as ―explore, analyze, synthesize, present‖ (pg. 7) and 

explain that these stages represent ―collaborative tasks for knowledge construction‖ (pg. 19) that 

can be accomplished using technology, especially those for geovisualization. 

MacEachren and Brewer (2004) also offer a definition of collaboration that applies well to the 

context of leveraging geospatial data and technology for environmental problem-solving: ―a 

committed effort …of two or more people to use geospatial information technologies to 

collectively frame and address a task involving geospatial information‖ (pg. 2). MacEachren and 

Brewer (2004) categorize these multi-user collaborations into four types: same place-same time, 
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same place-different time, different place-same time, and different place-different time, stating 

that these last two (different place)were still primarily in the prototype phase at the time of their 

publication and were being driven by advances in database and web technology. 

Since then, as these technological advances have progressed further, there has been a rise in 

technologies that support all of these collaborations, most notably for different place-different 

time collaborations. In particular, the logistics and mechanisms provided for collective work by 

technology in general, and geospatial ones in particular, have been identified by other 

researchers in varying descriptions of collaborations between scientists, non-scientists, and the 

general public: ―collaboratories‖ (or collaboration laboratories; Pedersen, Kearns, & Kelly, 2007; 

Wulf, 1993) and ―geocollaboratories‖ (specifically ―work by geographically distributed scientists 

about geographic problems‖ MacEachren et al., 2006, pg. 201), participatory planning and 

management (Jankowski, 2009; Kelly, Ferranto, Lei, Ueda, & Huntsinger, 2012; Voss et al., 

2004; Wright et al., 2009), citizen science efforts (Connors, Lei, & Kelly, 2012; Dickinson et al., 

2010; Dickinson et al., 2012), observatory networks such as National Ecological Observatory 

Network (NEON; Goodman et al., 2014), virtual networks for collaboration such as Geosciences 

Network (GEON; Gahegan, Luo, Weaver, Pike, & Banchuen, 2009) and Human-Environment 

Regional Observatory (HERO; MacEachren et al., 2006) and ―action ecology‖ (White et al., 

2015). Through these collaborative efforts, researchers highlight how advances in geospatial data 

and tools provide technical support for collaborations through facilitation of: (i) group use and 

development of technology (i.e. field data collection at broad and long scales; dispersed 

responsibility of tasks); (ii) sharing and peer reviewing of data and results (i.e. crowdsourcing of 

data validation; data editing by multiple users); (iii) communication between stakeholders (i.e. 

ability for stakeholders to share their different representations of space and project outcomes); 

and (iv) integration of complementary tools (i.e. combining geospatial and communication-

oriented tools; integration of big data tools and open data formats). Hence, the technical 

capabilities of geospatial tools can provide the practical mechanisms and infrastructure that allow 

people to successfully work together on tasks and goals, despite their distributions across time 

and space. 

While it is evident that geospatial tools can support collaboration through providing the 

technological infrastructure needed for collaborative tasks, existing literature does not yet 

provide a clear framework for evaluating geospatial tools based on how well they support 

completion of these collaborative tasks. Furthermore, as projects can differ greatly in their 

requirements, there is no single tool that fulfills all needs and often, multiple tools must be 

integrated into workflows. As such, in addition to features that support workflows across 

multiple users, geospatial tools also need to support interoperability between tools (i.e. transfer 

of data, methods and results between tools). Consequently, successful navigation of the ever-

expanding list of collaborative (i.e. multi-user) geospatial tools requires an understanding of their 

strengths, synergies, and weaknesses, specifically regarding functionality for collaborative tasks 

and capabilities for tool interoperability. 
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A typology of geospatial tools can provide a roadmap for these explorations by focusing on 

technical infrastructure for collaborative tasks such as setting up common working environments 

and shared data exploration, analysis, and visualization. This typology would also illustrate 

connections between collaborative geospatial tools as an ecosystem with identifiable niches of 

functionality. In this chapter, I provide such a typology of the emergent ecosystem of 

collaborative geospatial tools by evaluating how key multi-user tools address technical barriers 

to collaboration through their varying capabilities and functionality. 

The three objectives of this chapter are to: 

1. Select representative case studies (i.e. collaborative geospatial tools) that have been 

developed to support multi-user geospatial workflows; 

2. Develop a quantitative and reproducible framework to evaluate the tools based on the key 

components of a collaborative Spatial Data Science workflow; and 

3. Apply a cluster analysis to develop a typology of collaborative geospatial tools. 

To provide a conceptual understanding of my evaluation framework, I first review the key 

factors that have led to the evolution of a collaborative Spatial Data Science workflow. Next, I 

describe how others have previously outlined typologies of geospatial and collaboration tools. 

Last, I apply my quantitative framework to score and cluster multi-user geospatial tools based on 

their functionality for collaborative tasks. Overall, I use this typology to present a map of the 

emergent ecosystem and niches of tools, highlight how environmental research collaborations 

have benefited from the strengths of these tools, and propose key areas of future tool 

development for continued support of collaborative geospatial workflows. I believe that 

understanding the current ecosystem of collaborative geospatial tools can highlight opportunities 

for expanded or new functionality, promote stronger interoperability between existing tools, and 

help stakeholders to leverage the best tools for their needs. 

The evolution of collaborative Spatial Data Science workflow 

In their fundamental work on geocollaboration, MacEachren and Brewer (2004) identify that 

while many geospatial projects are pursued as group efforts, most geospatial technologies at the 

time of their writing were developed and evaluated for individual use. To address this 

discrepancy, the authors propose ―geocollaborative environments‖ that are focused on providing 

a shared working environment, whether or not the users are in the same physical environment or 

collaborating in real time. In addition to technical barriers to collaboration in working 

environments, Steiniger and Hunter (2013) identify barriers to open science stemming from the 

lack of transparency in analysis methods and programming code. These authors highlight various 

publications (e.g. Ince, Hatton, & Graham-Cumming, 2012; Morin et al., 2012; Rocchini & 

Neteler, 2012) arguing against ―proprietary- ‗black box‘ - programs that hinder scientific 

advancement and testing‖ (p. 147). Specifically, Rocchini and Neteler (2012) urge ecologists to 

embrace Stallman's (1985) ―four freedoms‖ paradigm of FOSS to freely execute, modify, and 
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share programs, while also identifying the need for better mechanisms (i.e. tools) for scientists to 

share ―the backbone of ecological software: its code‖ (p. 311). Seemingly responding to the call 

by MacEachren and Brewer (2004) for better ―multi-user system interfaces‖ as well as calls for 

increased application of FOSS and open science ideas to geospatial research, there are now more 

multi-user options to share data and code than ever before. As such, new concerns have arisen 

about how to choose the right tool, especially when evaluating newer FOSS4G and cloud/web-

based tools (Steiniger & Hunter, 2013).  

The proliferation of cloud/web-based and FOSS4G tools also highlights the progression from the 

traditional desktop model of Geographic Information Science (Goodchild, 1992; abbreviated to 

GI Science per Hall, 2014) to an advancing geospatial cyberinfrastructure, or CyberGIS 

(Anselin, 2012; Wang et al., 2013; Wright &Wang, 2011; Yang, Raskin, Goodchild, & Gahegan, 

2010). In particular, the CyberGIS community has promoted the integration of existing GI 

Science and spatial analysis tools with cyberinfrastructure tools that harness cloud and high 

performance computing technologies (i.e. distributed, parallel, clustered) for scalable geospatial 

data research. Another strong focus of CyberGIS has been on tool interoperability in order to 

promote the sharing of data and methods as well as reduce the plethora of narrowly customized 

tools and ―non-sharable stove-piped data systems‖ (Yang et al., 2010, pg. 272). In the quest to 

transform the technological infrastructure available for geospatial research, CyberGIS has also 

recognized the importance of support for shared problem-solving, distribution of geospatial data 

in flexible and secure ways, and community-driven solutions for wrangling and analyzing large 

and complex datasets (Wang et al., 2013; Wright & Wang, 2011; Yang et al., 2010). 

Supported by CyberGIS technical frameworks for tool integration and interoperability, a 

complementary field of Spatial Data Science is emerging as an interdisciplinary approach to 

leveraging the spatial data explosion provided by sensor networks, VGI and mobile technologies, 

and by the open data and science movements (Anselin, 2015; Jiang & Thill, 2015; Wang, 2016; 

Yuan, 2016). Identifying Spatial Data Science as a branch of the broader Data Science field, 

Anselin (2015) describes it as ―a combination of… exploratory spatial data analysis, spatial 

statistics, and spatial econometrics from a statistical disciplinary perspective, with spatial data 

mining, spatial database manipulation, and machine learning from a computer science 

disciplinary perspective‖ (p. 1). Maintaining the connection to GI Science, Yuan (2016) similarly 

describes Spatial Data Science as the domain of ―Geography, Statistics, Computer Science‖ 

communities that focus on ―Spatial Statistics, Spatial Big Data, Machine learning‖ (p. 5).While 

exploring synergies between CyberGIS and Spatial Data Science, Wang (2016) identifies key 

aims of Spatial Data Science as ―scalable spatial data access, analysis and synthesis‖ (p. 3), with 

key challenges to these goals being data aggregation and data integration. Similarly, Anselin 

(2015) identifies related challenges as issues of ―scale …endogeneity…[and] computational 

efficiency to deal with large amounts of very fine grained geographical data in near real-time‖ (p. 

2). 
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While not explicitly mentioned in these definitions of Spatial Data Science, data wrangling (i.e. 

harnessing, cleaning, transforming) ―often constitutes the most tedious and time-consuming 

aspect of analysis‖ (Kandel et al., 2011, pg. 271). As such, effective data wrangling plays a key 

role within modern geospatial workflows and is integral for overcoming the identified challenges 

of data aggregation, integration and scalability. Similarly, in these descriptions of Spatial Data 

Science, little emphasis is placed on data representation and visualization, as compared to 

analysis and synthesis. In particular, cartographic principles remain central to the display and 

representation of geospatial data, especially for the web. This is evident through the focus on 

color palettes (i.e. tools like ColorBrewer), vector line simplification (i.e. algorithm-based tools 

like MapShaper and Simplify), typological representations (i.e. data formats like TopoJSON), 

and efficient rendering of basemaps and large datasets (i.e. data formats like Vector Tiles). 

Similarly, visualization has also been identified as a key component of data analysis, as it is 

―particularly essential for analysing phenomena and processes unfolding in geographical space‖ 

(Andrienko & Andrienko, 2013, pg. 3). For example, visual analytics provides methods and tools 

for analyses of large spatial datasets through interactive visualization of iteratively mined data 

and has proven particularly important for movement data such as mobile and VGI (Andrienko & 

Andrienko, 2013; Beecham, Wood, & Bowerman, 2014; Stange, Liebig, Hecker, Andrienko, & 

Andrienko, 2011). 

In light of these descriptions, Spatial Data Science can be seen as standing at the intersection of 

the three fields of GI Science, Data Science and CyberGIS (Figure 2-1). Through this 

intersection, Spatial Data Science unites the statistical, data mining, and web-enabled data 

visualization techniques of Data Science with fundamental GI Science methods and principles of 

spatial analysis, geoprocessing, and cartography within the computational infrastructure and 

interoperability potential provided by CyberGIS. With an emphasis on standardized and 

repeatable workflows, Spatial Data Science promotes the compilation and integration of 

disparate data from multiple sources, the use of open source and cloud/web-based technologies 

for robust data analysis, and the leveraging of an expanding suite of data visualization and 

publication tools to support communication between project collaborators, the public, and other 

stakeholders. Due to the increasing overload of geospatial data available, the harnessing of tools 

that assist users in data wrangling, management, analysis, visualization, and publication is 

critical for collaborative geospatial research. To this end, Spatial Data Science provides a path 

(i.e. workflow) for navigating the rapidly expanding field of data, methods, and multi-user tools 

for working with and analyzing large and complex geospatial data. 
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Figure 2-1. Spatial Data Science at the Intersection of GI Science, Data Science and CyberGIS 

At the heart of Spatial Data Science is a common workflow (Figure 2-2) that leverages 

cloud/web-based and open source geospatial tools to address technical impediments to 

collaboration such as non-standardized working environments, siloing of data, unreproducible 

analyses, and static map visuals. While there are many possible routes available when navigating 

a collaborative Spatial Data Science workflow, these routes generally consist of four key primary 

tasks through which collaboration can not only be fostered, but are actually fundamental to 

geospatial problem-solving in the 21st century: (1) setting up the working environment; (2) data 

wrangling (i.e. harnessing, cleaning, transforming); (3) data analysis; (4) data visualization and 

publication. Both data management and visualization are deeply embedded within all tasks, 

particularly data wrangling and analysis. Data visualization is highlighted specifically with 

publication (Figure 2-2) to emphasize its important role in facilitating the dissemination of 

results and knowledge gained. Facilitating this workflow are (5) the integration and support of 

FOSS4G and (6) user involvement by the public, scientists, technologists, practitioners, and 

governments. Given the iterative nature of collaboration, this Spatial Data Science workflow is 

adaptive; the tools chosen for each task can be modified or replaced as the needs of the projects 

are further refined or new tools become available. By addressing technical challenges at each 

step, this collaborative Spatial Data Science workflow allows researchers and stakeholders to 

more easily share research ideas, analyses, code, results, and conclusions to work toward the 

integration and synthesis of knowledge. 
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Figure 2-2. Collaborative Spatial Data Science Workflow 

 

Typologies of geospatial tools and collaboration 

Existing typologies (or classifications based on general type) of geospatial tools have been 

created through qualitative categorization and comparison of tool capabilities. To date, reviews 

of tool applications have been conducted to identify technical approaches to building tools, 

domain-specific evolutions in tools, and capabilities of tools for specific applications (Table 2-1). 

Although these qualitative typologies provide fundamental understanding of the evolution and 

landscape of geospatial tools, none provide a framework for evaluating how tools address 

technical barriers to collaborative tasks.  

Table 2-1. Existing Typologies of Geospatial Tools 

Technologies Reviewed Publication 

Web-based spatial decision support tools Rinner (2003) 

―Trends and developments in GIS-based multi-criteria 

decision analysis‖ tools  

Malczewski (2006), p. 1 

―Visually-enabled geocollaboration‖ tools  MacEachren and Brewer (2004), p. 1 

GI Systems for public participation Sieber (2006) 

Historical evolution in web tools for geospatial 

applications 

Haklay (2008) 

Historical evolution of Participatory GIS Jankowski (2009) 

FOSS4G tools for landscape ecology Steiniger and Hay (2009) 
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Marine Geospatial Ecology Tools Roberts et al. (2010) 

―Enabling technologies‖ for CyberGIS  Yang et al. (2010), p. 266 

Evolution of software for spatial analysis Anselin (2012) 

―Domains of VGI‖ Elwood et al. (2012), p. 573 

―Capabilities and interfaces of existing tools‖ for GIS 

and spatial analysis tools integrated within CyberGIS 

Wang et al. (2013), p. 2026 

FOSS4G landscape in 2012 Steiniger and Hunter (2013) 

―Major classes of technology tools and needs they 

might meet‖, among them being GI Systems, decision 

support tools, visualization tools, and ―distance 

collaboration‖ tools 

Cravens (2014), p. 23 

―Map-based web tools supporting climate change 

adaptation‖ 

Neset et al. (2016), p. 1 

Though specifically highlighting only FOSS4G options, Steiniger and Hunter (2013) have 

provided the most comprehensive qualitative typology of GI Systems (GIS) software to date, 

expanding to nine categories of software from the seven original types identified in Steiniger and 

Weibel (2009): (1) desktop GIS; (2) spatial database management systems; (3) server GIS; (4) 

mobile GIS; (5) exploratory spatial data analysis tools; (6) remote sensing software; (7) GIS 

libraries (i.e. projection and geometry libraries); (8) GIS extensions, plug-ins, and APIs; and (9) 

Web Mapping Servers and Development Frameworks (p. 136 and 139). In addition to this 

fundamental qualitative typology, the authors also identify benefits of FOSS4G, key factors to 

consider for evaluations of options, and the primary barriers to FOSS4G adoption (referencing 

others such as Cruz, Wieland & Ziegler, 2006 and Nagy, Yassin & Bhattacherjee, 2010).Not 

identified as key functionality, the potential to support collaboration is not addressed in the 

criteria for evaluation or adoption.  

The literature focusing on categorizations of tools with an explicit focus on collaborative work 

have been broader in scope and not specific to geospatial options. In support of geocollaboration 

tools, MacEachren and Brewer (2004) provided a summary of Computer-Supported Cooperative 

Work tools, or ―CSCW technologies, often called groupware…characterized as information 

technology that allows people to work together… with an emphasis on sharing tasks and 

decision-making‖ (p. 10). In the listed categories of CSCW tools, multi-criteria evaluation tools 

integrated with GIS are the only geospatially enabled options. Similarly, in discussing the 

evolution of web mapping technologies, Haklay et al. (2008) presented a general ―series of 

‗technologies of collaboration‘‖ from Saveri, Rheingold, and Vian (2005), including ―Self-

organising mesh networks…Community computing grids…Peer production networks…Social 

mobile computing…Group-forming networks…Social software…Social accounting 

tools…Knowledge collectives‖ (p. 2025–2026). 
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While some geospatial tools can be embedded within these broader typologies of collaborative 

technologies (i.e. OpenStreetMap and other FOSS4G tools are products of peer production 

networks), I expand on these works by providing a new typology of geospatial tools that is 

specifically centered on collaboration. I ask the following specific questions: what are the 

common types of collaborative geospatial tools, and what functional niches do they fill? To 

answer these questions, I develop a quantitative and reproducible framework to evaluate multi-

user geospatial tools based on their functionality for supporting common tasks in collaborative 

projects (i.e. wrangling, analyzing, visualizing, and publishing geospatial data) and present a 

typological map of the emergent ecosystem of collaborative geospatial tools. 

Methods 

Selection of Tools 

I evaluated thirty-one multi-user geospatial tools based on their functionality to support 

collaborative tasks (Table 2-2). The tools represent a variety of platform types: cloud-based (i.e. 

hosted on the cloud by the tool provider), web-based (i.e. hosted by user on a web server), local 

installation (i.e. installed locally on an individual computer or cluster of computers), and mobile 

(i.e. application installed on mobile device). The tools also vary in their FOSS status and in the 

industry type of their primary creators and contributors. Specifically, the included tools express a 

mission of supporting collaboration and/or offer functionality for supporting collaboration (e.g. 

sharing of data and code, asynchronous tasks, status updates). This requirement excludes tools 

focused on big data processing such as distributed computation engines (e.g. Spark) or scenario 

modeling such as ecosystem valuation tools (e.g. Integrated Valuation of Ecosystem Services 

and Tradeoffs, or InVEST). The included tools also provide a set of analytical and/or data 

collection functionality within a multi-user environment (e.g. beyond basic online data providers 

or interactive web maps such as Cal-Adapt, WorldMap, etc.). This requirement also excludes 

tools focused primarily on workflows by individuals (e.g. desktop GIS tools such as GeoDa). In 

addition, included tools provide an out-of-the-box user interface and do not require the creation 

of a custom user interface or the use of a third party user interface. This definition excludes tool 

extensions such as widgets and plug-ins, which are not considered to be distinct from the 

platform onto which they are installed. This requirement also excludes geostack components 

whether open source or not (e.g. ArcGIS Server, OpenLayers, PostGIS, Leaflet). Tools currently 

in Beta mode were also excluded (e.g. GeoGig, a promising versioning tool). Finally, multi-user 

tools not exclusively limited to geospatial tasks were also included, if the stated criteria were met 

and the tool was able to integrate geospatial tasks (e.g. Jupyter Hub, RShiny). Though not an 

exhaustive list, the thirty-one tools evaluated in this chapter are representative of the wide range 

of available platforms that support multi-user workflows for geospatial data. 
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Table 2-2. List of Multi-user Geospatial Tools Included In Analysis 
 

Label Name Platform Type Creators/Contributors FOSS status* 

T1 CARTO Cloud-based 
CARTO (private 

sector) 

Limited free, not open 

source 

T2 MapGuide Web-based OSGeo (non-profit) FOSS 

T3 XchangeCore Web-based 

National Institute for 

Hometown Security 

(non-profit) 

Free (restricted access),            

not open source 

T4 Jupyter Hub Web-based 
NumFOCUS 

Foundation (non-profit) 
FOSS 

T5 
NASA NEX 

sandbox 
Local install NASA (public sector) 

Free (restricted access),            

not open source 

T6 OS Geo Live Local install OSGeo (non-profit) FOSS 

T7 ROpenSci Local install 

Project of the 

NumFOCUS 

Foundation (non-profit) 

FOSS 

T8 Rshiny 
Local install              

or cloud-based 
RStudio (private sector) 

Limited free, limited 

open source 

T9 
Global Forest 

Watch 
Cloud-based 

World Resources 

Institute (non-profit) 
FOSS 

T10 NextGIS 
Local install              

or cloud-based 

NextGIS (private 

sector) 

Limited free, limited 

open source 

T11 QGIS Cloud 
Local install              

or cloud-based 

Sourcepole (private 

sector) 

Limited free, limited 

open source 

T12 FME 
Local install              

or web-based 

Safe Software (private 

sector) 

Neither free nor open 

source 

T13 
Google Earth 

Engine 
Cloud-based Google (private sector) Free, not open source 

T14 Madrona 
Local install              

or web-based 
Ecotrust (non-profit) FOSS 

T15 
MapBox 

Studio 
Cloud-based 

MapBox (private 

sector) 

Limited free, limited 

open source 

T16 Field Papers Cloud-based 
Stamen Design (private 

sector) 
FOSS 

T17 iNaturalist Mobile 

California Academy of 

Sciences 

(non-profit) 

FOSS 

T18 
OpenDataKit_

GeoODK 
Mobile 

University of 

Washington, Seattle 

(academia) 

FOSS 

T19 OpenStreetMap Cloud-based 

OpenStreetMap 

Foundation 

(non-profit) 

FOSS 
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T20 eBird Cloud-based 

Partnership between 

Audubon (non-profit) 

and Cornell University 

(academia) 

Free, not open source 

T21 GeoLocate 
Local install              

or cloud-based 

Tulane University 

(academia) 
Free, not open source 

T22 HOLOS 
Local install              

or cloud-based 

University of 

California, Berkeley 

(academia) 

FOSS 

T23 Data Basin Cloud-based 

Conservation Biology 

Institute 

(non-profit) 

Free, not open source 

T24 
ESRI Collector 

for ArcGIS 
Mobile ESRI (private sector) 

Limited free, not open 

source 

T25 Geopaparazzi Mobile 
HydroloGIS (private 

sector) 
FOSS 

T26 Locus Map Mobile 
Asamm Software 

(private sector) 

Limited free, not open 

source 

T27 Orux Maps Mobile 
OruxMaps (private 

individuals) 
Free, not open source 

T28 ArcGIS Online Cloud-based ESRI (private sector) 
Limited free, not open 

source 

T29 Seasketch Web-based 

University of 

California, Santa 

Barbara (academia) 

Neither free nor open 

source 

T30 AmigoCloud Cloud-based 
AmigoCloud (private 

sector) 

Limited free, not open 

source 

T31 
ArcGIS Open 

Data 
Cloud-based ESRI (private sector) 

Limited free, not open 

source 
* see Appendix 2-1 and 2-2 for more information on FOSS status
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A workflow-based evaluation of functionality 

The included tools were evaluated on twenty-nine different features that support multi-user 

workflows for geospatial data (Appendix 2-1). Based on a collaborative Spatial Data Science 

workflow (Figure 2-1), these features represent functionality provided to address traditional 

technical impediments to collaboration and are organized into groups that represent the key 

components of the workflow: (1) setting up the working environment; (2) data wrangling; (3) 

data analysis; (4) data visualization and publication; (5) the integration and support of FOSS4G; 

and (6) user involvement. A standardized scoring rubric was used to assign a value of 1–3 for 

each feature, with 1 indicating little to no application of that feature within the tool to 3 

indicating that the feature is critical to the functionality of the tool (Appendix 2-1). As no single 

tool can provide functionality for all features, I chose to treat the features as categorical variables 

referred to as factors, instead of as continuous variables. As such, tools with scores of 1 for 

particular features are not automatically clustered more closely with tools scoring 2, than with 

tools scoring 3; each score is simply considered to represent a different level of functionality. For 

example, all tools were scored on their reliance on cloud/web-based functionality. Tools that rely 

primarily on local installations (i.e. Desktop, Server, and Mobile) were given a score of 1, while 

tools that are completely cloud/web-based (i.e. no local installations of any kind) were given a 

score of 3. Tools that have both local and cloud/web-based components were given a score of 2. 

As factor variables, this scoring does not promote a score of 3 as more desirable for collaboration 

than a score of 1 or 2; these scores simply indicate different functionality based on the level of 

cloud/web-based integration. Last, the scores for all features were based on the mission 

statement or stated capacity provided on the tool website as well as my professional experience. 

All of the included tools that are available for download or online access were tested by the 

authors; the exceptions being Seasketch, NASA NEX, and XchangeCore, as these tools require 

granted permissions to download or access. When a feature could not easily be scored using 

online references or professional experience, questions regarding those features were sent to the 

tool provider, with a 100% response rate. The individual tool scores were also used to calculate 

an average score across all tools (i.e. an average tool score) for each of the twenty-nine features 

(Appendix 2-2).  

 

Cluster Analysis 

Next, I applied a statistical clustering method on the individual tool scores to determine the 

common typologies among tools and identify existing niches. My clustering method uses a 

custom R package called Threshold Smoothing Ensemble Clustering (TSEC or TSEClustering, 

developed by Oliver C. Muellerklein),which incorporates the Weighted K-Means Clustering 

method from the R package wskm (Zhao, Salloum, Cai, & Huang, 2015). The TSEC model 

clusters the observations (i.e. tools) and variables (i.e. features) based on an ensemble of co-

occurrences across pre-defined subsets of the features using a smoothing threshold function. 

Conceptually, the final cluster memberships are the result of a threshold approximated ensemble 



20 

 

of similarities between the tools across subsets of the features (see Appendix 2-1 for list of 

features and subsets). This method is targeted at datasets with low sample size yet a high number 

of variables, building an ensemble of similarity measurements used to assess intra-cluster and 

inter-cluster variance for optimized information gain. Further, cluster membership weights are 

generated for observations at local (i.e. for subsets of features) and global (i.e. complete list of 

features) levels of variable importance. In sum, this unsupervised approach generates similarities 

among the observations based on various subsets of the features (i.e. subsets of predictor space) 

to assign clusters, concluding with a final ensemble of all cluster assignments.  

The cluster analysis workflow is shown in Figure 2-3. The workflow begins with (a) input data 

of n × p (i.e. number of observations x number of features, or predictors). From the input data, 

six subsets of predictor space (i.e. gi, predefined subsets of the twenty-nine features) are created 

manually by splitting the features into groups that represent one of the six components of the 

collaborative Spatial Data Science workflow (i.e. from the first subgroup describing the working 

environment to the sixth subgroup outlining user involvement, see Appendix 2-1). Six additional 

subsets of predictor space are created by iteratively grouping all subsets except the initial gi 

subset (i.e. for all gx not gi, the leave one-out method). A final subset of predictor space is 

created by grouping all gi subsets (i.e. the complete list of twenty-nine features).  

Intra-observational similarity matrices (b) are generated through correlation matrices for each of 

the thirteen subsets of predictor space (i.e. gi). Then, using entropy-weighted K-means clustering 

(c), cluster assignments are produced for each of the thirteen similarity matrices. The Elbow 

Method is used to obtain the optimal number of clusters by calculating the relative percentage of 

variance captured by the clusters versus the total number of clusters (Tibshirani, Walther, & 

Hastie, 2001). Next, observational co-occurrences (d) are generated for each of the thirteen K-

means cluster memberships to obtain an ensemble of probabilistic assignments (e) (i.e. a 

correlational matrix of co-assignment among observations). These co-assignments are displayed 

as a dendrogram, a visualization of the partitions from hierarchical clustering (Figure 2-4). 

Threshold approximation is used to dropout low pairwise observational assignments (i.e. force to 

zero). Finally, a last K-means clustering (f) is run on the resulting Smooth Ensemble, an n × n 

correlational matrix of observational assignments, to generate the final cluster memberships. 

These final cluster memberships are visualized in a bivariate cluster plot, which uses Principal 

Components to make a two dimensional representation of the clusters (Figure 2-5). The final 

cluster assignment for each of the thirty-one tools is listed in Table 2-3. 
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Results 

Three primary clusters composed of eight secondary clusters were revealed from the cluster 

analysis (Table 2-3). The divergences between the clusters are visualized in complementary 

ways in a dendrogram (Figure 2-4) and a map of the K-means Two-Dimensional Space (Figure 

2-5). The first primary cluster A, composed of subclusters 1–3, contains tools that are highly 

scalable and customizable, allowing for the highest integration of advanced spatial analysis and 

visualization techniques as well as interoperability with other tools. The second primary cluster 

B, composed of subclusters 4–5, demarcates participatory data aggregators that have inherently 

large project scopes (i.e. functionality is optimally leveraged with high numbers of public users). 

The third primary cluster C, composed of subclusters 6–8, identifies content managers, or 

project-based tools focused on managing access to data and tasks for a predefined set of users. 

Table 2-3. Summary of Cluster Results 

Label Name Primary Cluster Secondary Cluster 

T1 CARTO A 1 

T2 MapGuide A 1 

T3 XchangeCore A 1 

T4 Jupyter Hub A 2 

T5 NASA NEX sandbox A 2 

T6 OS Geo Live A 2 

T7 ROpenSci A 2 

T8 Rshiny A 2 

T9 Global Forest Watch A 3 

T10 NextGIS A 3 

T11 QGIS Cloud A 3 

T12 FME A 3 

T13 Google Earth Engine A 3 

T14 Madrona A 3 

T15 MapBox Studio A 3 

T16 Field Papers B 4 

T17 iNaturalist B 4 
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T18 OpenDataKit_GeoODK B 4 

T19 OpenStreetMap B 4 

T20 eBird B 5 

T21 GeoLocate B 5 

T22 HOLOS B 5 

T23 Data Basin C 6 

T24 ESRI Collector for ArcGIS C 6 

T25 Geopaparazzi C 7 

T26 Locus Map C 7 

T27 Orux Maps C 7 

T28 ArcGIS Online C 8 

T29 Seasketch C 8 

T30 AmigoCloud C 8 

T31 ArcGIS Open Data C 8 

Primary drivers of divergence 

The first bifurcation between the clusters emerges from the required level of infrastructure 

needed to best leverage the tool (i.e. required user setup, use of high performance computing and 

cloud services, support for multi-tier users, user knowledge needed to extend functionality). This 

bifurcation is reflected along Component 1 of the K-means Two-Dimensional Space (Figure 2-

5), wherein tools with the heaviest infrastructure needs are clustered on the right-hand side 

(primary cluster A of highly scalable and customizable tools), while tools with lighter 

infrastructure requirements are clustered on the left-hand side (primary cluster B of the 

participatory data aggregators and primary cluster C of the content managers). 

A second key divergence between the clusters is driven by user involvement, a key determinant 

of project scope (i.e. optimal number of users and public accessibility). The K-means Two 

Dimensional Space reflects this divergence along Component 2 (Figure 2-5). Tools with 

inherently larger scopes are clustered toward the top (i.e. primary cluster B of the participatory 

data aggregators). The functionality of these tools is best leveraged with high number of public 

users engaging in data collection. Tools with smaller scopes due to a focus on managing user 

access to data and tasks are clustered toward the bottom (i.e. primary cluster C of the content 

managers). The functionality of these tools does not vary with a change in the number of users, 

and access to these data is controlled by a project manager. Along the center of Component 2 are 
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the highly scalable and customizable tools of primary cluster A. For these tools, an increase in 

the number of users leads to a leveraging of expandable functionality that is not necessary for 

small user groups, such as differential access to datasets and workflows facilitated by custom 

web visualizations and APIs (i.e. multi-tier versions of the tools with differing functionality and 

access based on the user type).  

 

 

Figure 2-4. Dendrogram of Collaborative Geospatial Tools. Primary clusters are designated 

as A-C, with secondary clusters labeled as 1-8.   
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Figure 2-5. Typological Map of Collaborative Geospatial Tools, based on the K-means 

Two-Dimensional Space.  Bifurcation driven by required infrastructure is reflected along 

Component 1, from low (left) to high (right).  Divergence driven by user involvement (i.e. 

optimal number of users and public accessibility) is reflected along Component 2, from project-

based content managers (bottom) to participatory data aggregators (top). The identified clusters 

account for 76.3% of the total variance.    
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Highly scalable and customizable tools 

Primary cluster A (subclusters 1–3) is characterized by tools that are the most extendable for 

integrating advanced analysis and data visualization and for supporting reproducible code and 

interoperability through APIs and tool integration. Due to this flexibility, these highly scalable 

and customizable tools also require the most infrastructure to best leverage the full range of 

functionality offered. The primary products of these tools are datasets and workflows resulting 

from advanced analytical, data visualization, or querying methods. As the user base increases, 

the functionality provided (particularly by APIs and tool integration) can be leveraged to create 

multiple versions of the tools based on user needs (i.e. from low to high interactivity and 

privileges). The divergences between subclusters 1–3 are driven by differences in out-of-the-box 

functionality. Subcluster 1 highlights cloud/web-based tools (with APIs available) that have 

more built-in functionality for data exploration, visualization, and publication than for spatial 

analysis and querying (CARTO, MapGuide, XchangeCore). Subcluster 2 identifies tools with a 

stronger focus on facilitating reproducible workflows or standardized working environments 

(Jupyter Hub, NASA NEX, OS Geo Live, ROpenSci, RShiny). These tools require either server 

or desktop installed components and are best leveraged by integration with additional tools and 

packages for spatial data analysis and visualization. Subcluster 3 differentiates tools with the 

highest built-in functionality for geoprocessing or spatial analysis (Global Forest Watch, 

NextGIS, QGIS Cloud, FME, Google Earth Engine, Madrona, MapBox Studio). These tools 

provide APIs or expose open source capabilities to users, and thus, easily integrate custom 

scripting or can be expanded to build new tools in a multi-tier user environment. 

Participatory data aggregators 

Primary cluster B (subclusters 4 and 5) represents crowdsourcing tools that have inherently large 

and public scopes. The functionality of these tools is optimally leveraged with a high number of 

users. Often with a specifically defined focus (i.e. crowdsourcing data for a particular ecological 

phenomenon), the primary products of these tools are aggregated datasets compiled from many 

public contributors. The divergence between subclusters 4 and 5 is primarily driven by the 

differing roles of citizen scientists. Subcluster 4 delineates FOSS4G tools focused on 

crowdsourced data collection by the public either in real-time or asynchronously from the field 

or based on lived experience (Field Papers, iNaturalist, OpenDataKit/GeoODK, 

OpenStreetMap). Subcluster 5 represents research-driven participatory tools that are more 

focused on expert data curation by scientists (i.e. no mobile applications or syncing of field data) 

and provide APIs to engage and exchange data with the public (eBird, GeoLocate, HOLOS). 

Content managers 

Primary cluster C (subclusters 6–8) delineates project-based tools that focus on the management 

of users and their access to data and tasks. The primary products of these tools are content 

management systems (some with supporting APIs) controlled by a project manager. The 



27 

 

divergences between subclusters 6–8 are driven by differences in data management functionality 

and infrastructure. Subcluster 6 characterizes tools with functionality for managing projects and 

tasks (i.e. organization of workspaces, group communication tools, assignment of tasks), in 

addition to managing user access to data (Data Basin, ESRI Collector for ArcGIS). Subcluster 7 

designates Android-based mobile data collectors that provide functionality for navigation and 

surveying (Geopaparazzi, Locus Map, Orux Maps). These tools allow a predefined set of users to 

collect geospatial data asynchronously and are not restricted to cloud-based databases. Finally, 

subcluster 8 identifies tools with light spatial analysis or querying capabilities that rely on ―live‖ 

databases (i.e. cloud/web-based database services) for managing the exchange of data (ArcGIS 

Online, Seasketch, ArcGIS OpenData, AmigoCloud). 

Discussion 

Based on previously cited calls for more collaboration in geospatial research and technologies, it 

is clear that evaluation of geospatial tools must also include how they facilitate collaboration in 

the wrangling, analysis, visualization, and publication of geospatial data. Previous typologies 

have qualitatively categorized and compared geospatial tools without explicit consideration of 

the functionality provided to support collaborative tasks (see Table 2-1). By providing an 

essential assessment of geospatial tools specifically centered on functionality for collaboration, 

this typology can help geospatial researchers and stakeholders of collaborative geospatial 

projects evaluate and choose the best tools for their needs. By following the Spatial Data Science 

tenet of standardized and reproducible workflows, this typological map can evolve and expand 

over time, as more collaborative geospatial tools continue to be developed and adopted. In this 

paper, I use this typology to highlight the strengths of existing collaborative tools, identify key 

areas of future technical development, and elucidate ongoing challenges for collaborative 

geospatial tool development. 

Strengths of collaborative geospatial tools 

Even as the ecosystem of collaborative geospatial tools continues to expand, research focused on 

global environmental change are already benefiting from the existing technical strengths of these 

tools. Key benefits stem from increased integration of open source technologies as well as from 

an increased focus on interoperability through APIs and integration across tools. Users benefit 

not only from the cost-effectiveness of additional functionality from open source integration and 

interoperability with other tools, but also from being able modify and expand on these built-in 

open source capabilities and APIs. 

Overall, the scored tools range from a moderate to high level of open source integration on the 

backend, whether a mix of open and closed source technologies to completely built on open 

source technologies (average tool score=2.61, along a gradient in which 1.0 indicates no 

integration of open source technology and 3.0 indicates completely open  source). Similarly, the 
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scored tools support a range of moderate to high level of interoperability, from being able to 

push or pull data from other tools to providing a fully open API (average tool score = 2.68). 

These high scores for open source integration and interoperability (as compared to all other 

scored features) provide a clear understanding of the role of cost and accessibility, as the 

resulting clusters do not represent groupings based on the price of the tools. Each cluster is a mix 

of free and/or completely open access tools to ―freemium‖ (i.e. cost applied to access higher 

levels of functionality) and/or restricted access tools (i.e. domain specific applications that are 

free once access is granted, such as XchangeCore and NASA NEX from primary cluster A). 

Focusing solely on the cost of the tools as the key barrier to collaborative projects would result in 

a very different typology of collaborative geospatial tools, one that would not fully account for 

the niches of technical functionality that tools provide for collaborative tasks. 

In my analysis, the individual clusters reflect differences in the level of open source integration, 

the level of modification allowed by users, and overall interoperability (see Appendix 2-2 for 

individual tool scores). Primary cluster A of the highly scalable and customizable tools 

demarcate tools that are primarily built on open source technologies, provide strong support for 

users to modify built-in open source capabilities, and generally, are highly interoperable either 

through the ability to integrate with other tools or through APIs. On the other hand, primary 

cluster C composed of content managers represent tools that are primarily a mix of open and 

closed source technologies, provide less support for users to modify the built-in open source 

capabilities, and as such, are generally less interoperable (with a few exceptions of tools that 

provide API access such as AmigoCloud, ArcOpenData and Locus Map). This is perhaps 

unsurprising as the strength of content managers are built-in functionalities that do not require 

much modification or technical knowledge by users (i.e. support for asynchronous tasks - such as 

offline capture of data, task assignment, and status updates - and user/content management 

- such as access/workspace control and group definitions). Primary cluster B of the participatory 

data aggregators is more evenly split; about half of the tools are mixed open and closed source 

that provide less support for modification by users (similar to primary cluster C), while the other 

half are primarily built on open source technologies and provide mechanisms for users to modify 

open source functionality (similar to primary cluster A). As compared to primary clusters A and 

C, the distinguishing characteristic of primary cluster B is that all of its tools scored the highest 

value (3.0) for interoperability (i.e. primary clusters A and B had wider ranges of scores). In fact, 

all participatory data aggregators included in this analysis provide access to APIs and/or 

Software Development Kits (SDKs). 

For research centered on global environmental change, increased open source integration and 

support for interoperability in collaborative geospatial tools are allowing for unprecedented 

cross-disciplinary integration of data and methods, beyond simply powerful data processing or 

spatial analysis capabilities. Citizens with varying levels of technological skillsets (from non-

scientists to practitioners) are commonly leveraging these strengths through access to source 
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code on Github and public API access to data and analytical methods. On the data side, citizen 

science projects that leverage participatory data collection tools are becoming more cost effective 

due to the availability of low-to-no cost, easy-to-launch tools that require little infrastructure 

investment or technical knowledge by users. Through these citizen science efforts, researchers 

are granted a mechanism for ―dovetailing research with conservation and management‖ 

(Dickinson et al., 2012, p. 294). On the methods side, repeatability of complex workflows is 

facilitated by increased availability of APIs that allow for seamless exchange of geospatial data 

and by the ability to integrate functionality from other specialized tools. 

A key example of open source integration benefitting citizen science efforts is the application of 

the mobile geospatial data collector iNaturalist from primary cluster B of the participatory data 

aggregators. This lightweight mobile application is increasingly being used in BioBlitzes, which 

are short-duration field collection efforts to inventory biodiversity or to monitor a particular 

species within a specified area, typically parks and protected areas (Dickinson et al., 2012; 

Francis, Easterday, Scheckel, & Beissinger, 2017). Citizen scientists simply download the free 

mobile application and capture photos and notes that automatically sync to the iNaturalist 

database. All data collected with iNaturalist are available for public exploration and use through 

their web mapping application and API and are also shared with free and open access scientific 

databases such as the Global Biodiversity Information Facility. In a unique global collaboration, 

National Geographic, the iNaturalist team, and citizens in 100 countries participated in The Great 

Nature Project between 2013 and 2015 to collect ―over half a million images of over 20,000 

different species of plants, animals, and fungi‖ (Francis et al., 2017; National Geographic, 2016). 

Key examples of the benefits from increased interoperability are Global Forest Watch (of 

primary cluster A of the highly scalable and customizable tools) and Seasketch (of primary 

cluster C of the content managers). Global Forest Watch leverages the Google Earth Engine API 

and the CARTO platform (both tools also in primary cluster A of the highly scalable and 

customizable tools) to create interactive web maps that can analyze forest change on-the-fly for 

an area of interest. Building off of the Google Earth Engine API, Global Forest Watch freely 

provides its own customized APIs as well as templates for ArcGIS Online (in primary cluster C 

of the content managers) to facilitate additional tool building and data sharing by others. 

Leveraging the benefits of tool integration, Seasketch is a key example of a collaborative 

environmental planning tool that has benefited from integration with widely used spatial decision 

support tools such as Marxan and InVEST, as well as from integration with ArcGIS Online for 

content management. Focused on marine area protection, Seasketch is currently being used 

―around the globe by 4441 users in 229 active projects‖ to provide stakeholders with the 

capability to explore scenarios and propose their own plans for new marine protected areas 

(Seasketch, 2016). For example, through collaboration between Parque Nacional Galapagos, 

Conservation International, and World Wildlife fund, user-sketched plans from Seasketch are 

being integrated with the InVEST toolkit to allow public stakeholders to evaluate habitat risk and 
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explore outcomes of proposed zoning scenarios for marine protection around the Galapagos 

Islands (Seasketch, 2016). 

Key areas of future technical development 

In addition to highlighting the strengths of collaborative geospatial tools, my typology can help 

identify key areas of future technical development. One such area of needed development is the 

continued integration of cloud and high performance computing (average tool score = 1.7, along 

a gradient in which 1.0 indicates no integration of cloud and high performance computing and 

3.0 indicates full integration). For collaborations centered around global environmental change, 

the leveraging of cloud and high performance computing can shift the cost-benefit structure, such 

that research questions that previously would have been very difficult or even possible to answer 

(due to computing time and resources) can now be addressed. Ongoing support of CyberGIS 

research as well as collaborations between scientists and technologists are key for continued 

integration of cloud and high performance computing into geospatial tools. 

My analysis indicates that primary cluster A of the highly scalable and customizable tools has 

the highest overall application or potential for cloud and high performance computing (i.e. all 

tools scored at least 2.0, with the majority scoring 3.0). An exemplar of this cluster is Google 

Earth Engine, which was successfully leveraged to create the Hansen Global Forest Change 

dataset by a team consisting of fifteen collaborators, including technologists from Google, 

scientists from the USGS and Woods Hole Research Center, and researchers from the University 

of Maryland-College Park, SUNY-Syracuse, and South Dakota State University. Hansen et al. 

(2013) applied the distributed computing power of Google Earth Engine to map global forest loss 

and gain for 2000–2014 at the finest combined spatial and temporal resolution of any global 

product to date (yearly data at a 30mpixel resolution). A BBC News article quoted lead author 

Matt Hansen: ―This is the first map of forest change that is globally consistent and locally 

relevant. What would have taken a single computer 15 years to perform was completed in a 

matter of days using Google Earth Engine computing‖ (BBC, November 14, 2013). 

Another key area of future development is increased support for non-traditional raster and vector 

data formats (i.e. open data options, cloud-based tile services). Although these non-traditional 

data formats are becoming critical for environmental collaborations investigating questions of 

larger extents and finer resolutions, existing functionality to support these formats varies greatly 

depending on the data type and the task. For example, across all features scored, the highest 

average tool score is for data download of non-traditional vector formats (average tool score = 

2.81), while the lowest average tool score is for data editing of non-traditional raster formats 

(average tool score = 1.39). Overall, average tool scores for non-traditional vector formats are 

higher than for non-traditional raster formats across all data tasks (i.e. creation, editing, upload, 

download), and for both non-traditional vector and raster formats, average tool scores for data 

uploads and downloads are higher than for data creation and editing. 
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Regarding discrepancies between non-traditional vector and raster formats, there are two primary 

contributing factors. First, increased integration of open source technologies and development of 

APIs have both lead to and been reinforced by stronger support and wider use of non-traditional 

vector formats such as GeoJSON, Vector Tiles, and MBTiles (average tool score = 2.55 for data 

uploads to 2.81 for data downloads). This dual reinforcement is not as strongly reflected within 

collaborative geospatial tools for non-traditional raster formats such as HDF5 and Tile Mapping 

Services or for older raster formats that are seeing a resurgence such as NetCDF (average tool 

score=2.32 for data uploads and 1.68 for data downloads). This could be driven by the fact that 

non-traditional raster formats are increasingly being used to cover larger extents and/or finer 

resolutions, resulting in larger datasets and storage needs, which are ongoing challenges for 

geospatial tools in general.  

Second, the typical process for creating and editing raster data often differs greatly from that of 

vector data. Most raster data are still expert curated in single user environments, and unlike 

editing of individual features in vector data, editing of raster data typically involves global re-

calculations of pixels for which GUI-based editing tools are not as useful. These differences in 

the curation of vector and raster data are reflected in the average tool scores. For both editing and 

creation, the average tool scores for non-traditional vector data are higher than for non-traditional 

raster (for editing, average tool score= 2.13 for vector compared to 1.39 for raster; for creation, 

average tool score = 2.42 for vector compared to 1.52 for raster). 

Regarding the higher average tool scores for data uploads and downloads of both non-traditional 

vector and raster formats (as compared to editing and creation), these scores are reflective of the 

unique strengths of each primary cluster which focus on a different aspect of data management. 

For example, the highly scalable and customizable tools of primary cluster A provide flexibility 

and expandability for data integration, while the participatory data aggregators of primary cluster 

B provide infrastructure for data aggregation. Similarly, the content managers of primary cluster 

C provide strong built-in functionality for managing access by users to data, projects, and 

workflows. 

Other key areas of needed tool development include the wider adoption of functionality to 

support reproducibility of workflows (i.e. sharing of code or steps of workflow, average tool 

score=1.9), custom scripting for analysis (average tool score=2.03) and for data visualizations 

(average tool score= 1.9), and the integration of time (average tool score =2.16). For tools that 

best support these options at present (i.e. primary cluster A of the highly scalable and 

customizable tools), users are able to modify open source capabilities or harness APIs to create 

tailored analyses and applications for a second tier of users. However, an intermediate to high 

level skillset in programming is often needed for leveraging these functionalities. In addition, 

stronger support for integrating time into analyses is an outstanding need in Spatial Data Science 

beyond that of collaborative geospatial tools, particularly for visualization and analysis across 

continuous timelines (i.e. dynamic modeling approaches). While of all geospatial technologies, 

remote sensing analytical tools have most successfully addressed time, these same tools are not 



32 

 

structured to provide multi-user support (with few exceptions such as Google Earth Engine), and 

typically function within discrete timelines. Similarly, support for reproducibility of workflows 

and results is a key component not only for collaborative geospatial workflows, but for Spatial 

Data Science as a field of study focused on repeatability and transparency of workflows. 

A final key area of needed functionality is user controlled versioning of data and workflows; this 

feature was not scored in my evaluation, as so few of the representative tools offer this 

functionality. While many collaborative geospatial tools provide some light versioning 

capabilities (i.e. revision history of code in Google Earth Engine, the ability to create and 

compare different runs of a model in Seasketch, user contribution history for participatory data 

aggregators), what is not yet available is true distributed versioning of data, workflows and code 

that allows users to track changes at the object level (i.e. a data attribute or function), to reconcile 

conflicts that arise in competing edits (i.e. multiuser versioning), and to roll back changes as 

needed (i.e. adaptive management of data and workflows). In a fully versioned environment, all 

of these tasks are documented and available for review. For environmental planning and 

management projects, these kinds of native versioning capabilities would provide stakeholders 

with a structured and transparent mechanism for examining the trajectory of data and models and 

for actively contributing to their construction. Stakeholders could move from being primarily 

users of scenario exploration tools to active developers of them, as constructors of alternative 

stories and models beyond just offering their version of a controlled output map. 

Of the key areas of future tool development presented in this paper, support for distributed 

versioning in collaborative geospatial tools is clearly in the earliest phase of its evolution. In 

general, collaborative geospatial tools have focused on other asynchronous tasks (i.e. off-line 

capture of data, task assignment, status updates; average tool score = 2.26) and user and content 

management (i.e. access and workspace control, group definitions; average tool score=2.32). As 

the integration of ―live‖ databases through web and cloud-based data services continues to 

become more standard in collaborative geospatial tools, particularly for multi-user collecting of 

data (average tool score = 2.39), versioning capabilities can also continue to be expanded. 

Mechanisms for supporting further integration of versioning can be adopted from existing spatial 

database engines (i.e. ESRI ArcSDE, PostGIS) which offer versioning of geospatial data or allow 

it to be programmed, and from existing version control frameworks such as Git/Github, which 

has played a key role in the FOSS4G movement, allowing any user to contribute to and modify 

the source code to fix bugs and extend functionality. Tools such as GeoGig, a Git-like versioning 

tool for geospatial data (currently in Beta testing), can serve as a preview of collaborative 

geospatial tool functionality that will likely become standard in the near future. 

Challenges and Future Directions  

The technical challenges for continued development of collaborative geospatial tools parallel 

existing research areas within Spatial Data Science centered around issues inherent to large and 

complex geospatial datasets. While data mining techniques integrated from Data Science have 
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provided ways to turn massive data into usable information, analysis and visualization of large 

geospatial datasets remain difficult, as not all approaches scale appropriately (Anselin, 2012; Li 

et al., 2016). Visual analytics for spatial-temporal data is one area of research that aims to 

provide scalable methods for analyzing datasets that are too large to be contained within working 

memory (or random access memory, RAM). For example, Andrienko, Andrienko, Bak, Keim, 

and Wrobel (2013) outline a methodology for clustering of large movement datasets that begins 

with sub-setting the data and creating an iterative identification list of each event's neighbors that 

are ―stored in the database, to be later retrieved on demand‖ (pg. 214). Similarly, Stange et al. 

(2011) employ various spatial and temporal filters and aggregations to prepare large movement 

datasets for clustering of trajectories and flows using data mining methods such as self-organized 

maps (SOM) and algorithms specific to mobile data. Additional solutions to the challenges posed 

by large datasets are being explored through the use of high performance computing 

environments for data wrangling and analysis (Leonard & Duffy, 2014; Li et al., 2016) and 

through geovisualization techniques integrated from visual analytics, or ―geovisual analytics‖ 

(Anselin, 2012). These techniques include the use of multiple-linked views that allow users to 

work with multiple visualizations at once and human ―vision-inspired‖ techniques such as 

foveation that aim to reduce information overload by varying detail depending on area of focus 

(Li et al., 2016, pg. 124). However, though advances in rendering have been made with emerging 

data formats (i.e. Vector Tiles, MBTiles, TileMapping Services), issues of optimizing geospatial 

data storage and querying remain. Tiles still require producer-side storage of raw data, and in 

general, spatial indexing techniques need to evolve for larger geospatial datasets, particularly in 

real-time applications (Li et al., 2016). 

Even as computational techniques to extract and render information from data are improving, 

collaborative geospatial tools are limited by ongoing conceptual challenges to synthesizing 

information derived from large amounts of geospatial data. In particular, Miller and Goodchild 

(2015) point out that key issues resulting from the progression from a ―data scarce to data-rich 

environment‖ are also longstanding challenges in geographic research: accuracy; uncertainty; 

representations of data and features; ―populations (not samples), messy(not clean) data, and 

correlations (not causality)‖ (p. 450). While it is clear that these issues will continue to be 

ongoing challenges for both theory and technology, collaborative geospatial tools can serve as 

exploratory testing grounds of proposed solutions. For example, participatory data aggregators 

have already begun to integrate approaches to addressing issues of quality in VGI data such as 

biases in geographic coverage, user motivations, and knowledge levels (Quinn, 2015) through 

crowdsourced-based approaches (i.e. validation, repetition), social based approaches (i.e. trusted 

users), and geographic knowledge based approaches (i.e. spatial dependence and topological 

rules) (Goodchild & Li, 2012). 

Developers of collaborative geospatial tools should also note ongoing concerns regarding the 

centralized production of technology and knowledge. It is clear that while collaborative 

geospatial tools are indeed becoming more interoperable and sophisticated, the development of 
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these tools require knowledge that is not equally shared, which serves as a barrier to including 

stakeholders in the tool development process. For example, Wright et al. (2009) explore how 

geospatial tools used in collaborative natural resource management projects can either reinforce 

the technical knowledge divide between scientists and the public or provide alternative ways for 

the citizens to engage in the storytelling process. In addition, through presenting a ―hierarchy of 

hacking‖, Haklay (2013) identifies a key barrier to democratization within neogeography as the 

technical knowledge and skillsets needed for citizens to be empowered to create their own tools, 

in light of ―the current corporatisation of the web‖ (p. 63). The author concludes that new 

geospatial tools have increased the access and use of geographic information only at the lower 

hacking levels; ―the higher levels, where deep democratisation of technology is possible… 

require skills and aptitude that are in short supply and are usually beyond the reach of 

marginalised and excluded groups in society‖ (p. 67). Similarly concerned about corporate and 

top-down control of geospatial tool development, Miller and Goodchild (2015) argue: ―We must 

be cognizant about where this research is occurring— in the open light of scholarly research 

where peer review and reproducibility is possible, or behind the closed doors of private-sector 

companies and government agencies, as proprietary products without peer review and without 

full reproducibility‖ (p. 460). Consistent with the concerns expressed in the literature, my 

analysis also indicates an overall high level of user knowledge needed to fully leverage the 

functionality offered by collaborative geospatial tools (average tool score = 2.55, along a 

gradient in which 1.0 indicates none needed and 3.0 indicates a high level needed). This score 

reflects the fact that many tools in primary cluster A of highly scalable and customizable tools 

and primary cluster B of participatory data aggregators provide both basic functionalities as well 

as capabilities for expansion of the tools by advanced users. 

Looking into the future, continued development of collaborative geospatial tools requires a 

sustained focus on the eight dimensions of Open GIS proposed by Sui (2014): ―Open Data, Open 

Software, Open Hardware, Open Standards, Open Research, Open Publication, Open Funding, 

and Open Education‖ (p. 4). In particular, Open Software and Open Standards have been critical 

for the previously highlighted strengths of collaborative geospatial tools: integration of open 

source technology and support of interoperability through tool integration and APIs. These aims 

are supported by ongoing evolution of Open Geospatial Consortium standards and other open 

data standards, combined with a renewed focus on standardized and queryable metadata (Sui, 

2014). Similarly, Elwood et al. (2012) highlight that the required integration of data across 

differing formats and media can be a major challenge to data synthesis, which often ―can only be 

achieved if systems are to a large degree interoperable‖ (p. 582). Steiniger and Hunter (2013) 

further argue for more open source APIs, as many popular ―web-mapping tools work as black 

boxes and do not give users the freedom to study and modify them‖ (p. 145). 

Finally, tools are but one component in the collaborative process, an iterative exercise in 

communication between people to ―generate (ideas and options), negotiate, choose, and execute‖ 

solutions to community and global challenges (MacEachren & Brewer, 2004, p. 7). As such, the 



35 

 

process of stakeholders evaluating, implementing, and troubleshooting tools as a group may be 

more fundamental to the success of collaborative efforts than the functionality provided by the 

tools themselves. One likely reason is that while many environmental management and planning 

projects aspire to incorporate collaborative tasks (Cravens, 2016; Wright et al., 2009), tools are 

often chosen before project needs are understood, or are not evaluated until after projects are 

completed (Cravens, 2014). In addition, group discussion regarding the applicability and 

functionality tools can also serve a strong mechanism of stakeholder engagement, as the 

negotiation process can allow individuals to feel acknowledged and heard. While I have argued 

that tool functionality can be leveraged to provide technical support for collaborative tasks, 

future research can expand on this collaborative geospatial typology to focus on identifying 

which technical improvements are most critical for strengthening public engagement of non-

scientists, particularly in the contexts of citizen science and collaborative environmental 

planning. It remains ―a challenge for future research… how to combine computer technology 

with facilitation without stifling the creativity of participants‖ (Jankowski, 2009, p. 1971). In 

addition to focusing on expanding functionality, research can continue to explore additional 

ways that tools can empower stakeholders (i.e. further incorporation of theories of 

communication and decision-making, tool design, and user-computer interactions). As 

stakeholders become more involved in the applied process of technology design and creation, 

they can also highlight previously unrecognized barriers and impediments to collaboration (both 

social and technical) as well as help to redefine both conceptual frameworks and best practices 

for collaboration. 

Conclusion 

Spatial Data Science, which combines aspects of GI Science, Data Science, and CyberGIS, has 

emerged as an interdisciplinary field that supports collaborative geospatial research through an 

emphasis on leveraging cloud/web-based and open source geospatial tools that foster 

reproducible workflows and address long-standing technical barriers to collaboration. Here, I 

used a quantitative and repeatable approach to create an adaptable typology of collaborative 

geospatial tools based on their functionality for collaborative tasks. The resulting typological 

map reveals three key clusters composed of eight subclusters, across which divergence is driven 

by required infrastructure and user involvement. These clusters represent three primary types of 

collaborative geospatial tools: (1) highly scalable and customizable tools with heavier 

infrastructure needs, (2) participatory data aggregators and (3) content managers, the latter two 

with lighter infrastructure needs. As the process of collaboration is complex, one way (i.e. one 

cluster) is not better than another; these clusters represent discrete types of functionality that 

support communication and collaborative tasks for different needs and purposes. Overall, the 

development of a typology of collaborative geospatial tools can suggest key areas of future tool 

development and Spatial Data Science research, as well as help stakeholders evaluate tools by 

providing an understanding of the strengths of existing tools and highlighting areas of needed 

development. Thus, my example exploration of the emergent ecosystem of collaborative 
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geospatial tools is not only about tools per se; this work highlights the ongoing need to facilitate 

communication between scientists and stakeholders in order to support fruitful collaborations 

that address community and global challenges. 
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Chapter Three 

Comparison of remotely-sensed vegetation disturbance products results in 

large differences in reported disturbance and representation of fire across 

California 

Recent advances in high performance computing (HPC) have promoted the creation of 

standardized remotely-sensed products that map annual vegetation disturbance through two 

primary methods: (1) traditional approaches that integrate field data, public data on disturbance 

events, and vegetation indices derived from partially automated analyses, and (2) ―big‖ data 

approaches based on automated HPC-based analyses. Given the recent proliferation of these 

annual products as well as their potential utility for understanding vegetation dynamics, it is 

important for product end-users (i.e. practitioners and researchers in domains other than remote 

sensing) to understand the differences in their representations of disturbance and the conditions 

under which they report it. I use fire in California as a case study to evaluate three widely used 

vegetation disturbance products created using different methods – LANDFIRE (representing the 

traditional approach), and Hansen Global Forest Change (GFC) and North America Forest 

Dynamics (NAFD), both created from automated approaches but with differing thresholds for 

reporting disturbance. Using Google‘s Earth Engine, I compared the reported amount of 

disturbance for 2001-2010 among these products and examined the products across differing 

environmental and burn conditions. I found that GFC reported the least amount of disturbed area 

in most years and across all habitat types, while LANDFIRE reported the highest amount across 

all years and habitat types. My comparison of environmental conditions (i.e. elevation, climate, 

habitat) did not reveal major differences in coverage by the products, but it did identify large 

differences in the coverage of burn conditions between GFC/NAFD (products created by 

automated methods) and LANDFIRE (the traditionally created product). Furthermore, I also 

identified the widest range in reported disturbance among the products (i.e. more uncertainty) in 

years with more fire incidence and in scrub/shrub habitat. Overall, rather than focusing on 

accuracy, my study can help end-users to evaluate these products based on the conditions under 

which they report disturbance, to understand these products as different representations of 

disturbance based on differing thresholds, and to identify drivers of uncertainty in reported 

disturbance.  

Introduction 

Recent advances in high performance computing (HPC; including distributed, parallel, clustered, 

and cloud-based methods) have provided new opportunities to analyze ―big‖ remotely sensed 

data across broader spatial scales and finer temporal resolutions (Kalluri et al., 2015; Kang & 

Lee, 2016; Kumar et al., 2017; Lee, Gasster, Plaza, Chang, & Huang, 2011; Plaza & Chang, 

2007). These HPC-based remote sensing analyses are increasingly being used to identify long-

term vegetation changes using the Landsat Time Series (LTS) (Hermosilla et al., 2016; Soulard, 

https://paperpile.com/c/Bnntm8/uxK56+jILB6+H4iQf+TtHUx+zMcbk
https://paperpile.com/c/Bnntm8/uxK56+jILB6+H4iQf+TtHUx+zMcbk
https://paperpile.com/c/Bnntm8/uxK56+jILB6+H4iQf+TtHUx+zMcbk
https://paperpile.com/c/Bnntm8/EviXN+zdnod
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Albano, Villarreal, & Walker, 2016), with some efforts resulting in standardized maps of annual 

vegetation disturbance (i.e. annual changes in vegetation due to either natural and anthropogenic 

events) across the U.S. and globally (Goward et al., 2015; Hansen et al., 2013). These LTS-based 

products of annual vegetation disturbance have been primarily produced through two methods: 

(1) traditional approaches that integrate field data, data on disturbance events reported by public 

agencies, and remote sensing-derived vegetation indices from partially automated analyses, and 

(2) ―big‖ data approaches based on algorithms and workflows that are automated with HPC to 

execute across a complete dataset (typically all LTS images collected for a given time period and 

spatial extent). 

A key example of the traditional approach is Landscape Fire and Resource Management 

Planning Tools (LANDFIRE). Historically, LANDFIRE focused on providing spatially explicit 

data of canopy characteristics such as vegetation height and cover (Keane, Rollins, & Zhu, 2007; 

Reeves, Ryan, Rollins, & Thompson, 2009; Rollins, 2009; Ryan & Opperman, 2013). Through 

recent integration of vegetation indices calculated via HPC (such as differenced Normalized 

Burn Ratios (dNBR) to identify burned areas) and manual aggregation of data provided by public 

agencies on disturbance events (i.e. fire, harvest), LANDFIRE has released standardized 

products that report vegetation disturbance for each year between 1999 and 2014 across the 

entire U.S. In contrast to the traditional creation method of LANDFIRE, the big data approach 

relies on automated algorithms and workflows via HPC to identify annual changes in spectral 

signature (i.e. reflectance) at individual pixels across large multi-temporal stacks of images from 

LTS. Key examples are North American Forest Dynamics (NAFD) and Hansen Global Forest 

Change (GFC). Specifically, NAFD was produced using the Vegetation Change Tracker (VCT) 

(Huang et al., 2010) algorithm applied to the LTS within an HPC environment developed by 

NASA (NASA Earth Exchange, NEX) (Nemani, Votava, Michaelis, Melton, & Milesi, 2011). 

The resulting product is a collection of annual maps of vegetation disturbance across North 

America for 1984-2010 (Goward et al., 2015). In a similar vein, GFC was produced through 

collaboration between a group of academic researchers and Google that leveraged Google‘s 

cloud-based HPC infrastructure to produce an annual product of global forest change for 2000-

2014, creating the first product to be mapped at the spatial and temporal resolution of LTS at a 

global extent (Hansen et al., 2013). Additional algorithms developed from the LTS, such as 

LandTrendr (Kennedy, Yang, & Cohen, 2010), Continuous Change Detection and Classification 

(CCDC) (Zhu and Woodcock 2014), and others (Cohen et al., 2017; Healey et al., 2017), may 

result in additional vegetation disturbance products in the future. 

While there have been comparative evaluations of the algorithms used by remote sensing experts 

to map vegetation disturbance, such as VCT, CCDC, LandTrendr et al., (Cohen et al., 2017; 

Healey et al., 2017), there have been no systematic comparisons (at the time of this publication) 

of the vegetation disturbance products that are frequently being used by non-remote sensing 

experts (e.g. GFC, NAFD, LANDFIRE).  Previously published papers evaluating vegetation 

disturbance products have focused on the accuracy or validation of an individual product 

https://paperpile.com/c/Bnntm8/EviXN+zdnod
https://paperpile.com/c/Bnntm8/FXUjr+vpynR
https://paperpile.com/c/Bnntm8/yb1wu+0LlBR+58g8i+q41Hj
https://paperpile.com/c/Bnntm8/yb1wu+0LlBR+58g8i+q41Hj
https://paperpile.com/c/I0UHXP/70sF9
https://paperpile.com/c/Bnntm8/3y0Og
https://paperpile.com/c/I0UHXP/1xxx8
https://paperpile.com/c/I0UHXP/Ysy8z
https://paperpile.com/c/uxgMtb/0oQN
https://paperpile.com/c/I0UHXP/gBLbX
https://paperpile.com/c/I0UHXP/KkSfg+Ge4el
https://paperpile.com/c/I0UHXP/KkSfg+Ge4el
https://paperpile.com/c/I0UHXP/KkSfg+Ge4el
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(Gudex-Cross, Pontius, & Adams, 2017; Hyde, Strand, Hudak, & Hamilton, 2015; K. Krasnow, 

Schoennagel, & Veblen, 2009; McKerrow, Dewitz, Long, Nelson, & Connot, 2016; Thomas et 

al., 2011; Tyukavina et al., 2015; Zhao et al., 2018; Zimmerman et al., 2013) or on integration of 

these products (or the algorithms used to create them) to improve the accuracy of disturbance 

identification (Healey et al., 2017, Schroeder et al., 2017, Soulard et al., 2017).  

The lack of comparative evaluations is a notable omission in scientific literature, as these 

products (GFC, NAFD, and LANDFIRE) are widely used to study the impacts of vegetation 

change and disturbance on ecosystem processes such as carbon. For example, GFC has been 

used to examine the impacts of forest change on carbon dynamics both globally (Arneth et al., 

2017; Tyukavina et al., 2015) and within the United States (U.S.) (Anderegg et al., 2016; 

Woodall et al., 2016). NAFD has also been frequently used to explore the impacts of forest 

disturbance on carbon dynamics within the U. (Dolan et al., 2017; Gu, Williams, Ghimire, Zhao, 

& Huang, 2016; Sleeter et al., 2018; Williams, Gu, MacLean, Masek, & Collatz, 2016). 

LANDFIRE has been applied more broadly across landscapes in the U.S. to explore impacts of 

past disturbance on hydrology (Boisramé, Thompson, Collins, & Stephens, 2017), subsequent 

fire(Parks, Miller, Nelson, & Holden, 2014) as well as carbon dynamics (Gonzalez, Battles, 

Collins, Robards, & Saah, 2015; Liu et al., 2011). 

Given the recent proliferation of these annual products as well as their potential utility for non-

remote sensing experts to explore the spatial-temporal impacts of vegetation disturbance on 

ecosystems, it is important to evaluate them to understand the differences in their representations 

of disturbance and the conditions under which they report it. To this end, this chapter targets end-

users of remotely sensed vegetation disturbance products who are not remote sensing experts 

(i.e. practitioners and researchers of domains like ecology and conservation biology), but who 

rely on these products for their work and seek a greater understanding of how they identify and 

represent disturbance, beyond a discussion of accuracy. I provide a comparative evaluation of the 

three annual vegetation disturbance products derived from the LTS that have overlapping spatial 

and temporal extents at the time of this publication: Hansen Global Forest Change (GFC), North 

American Forest Dynamics (NAFD), and LANDFIRE. I use fire in California across 2001-2010 

as a case study to identify where and when these products identify disturbance, using two widely 

used reference datasets of fire across California: Monitoring Trends in Burn Severity (MTBS) 

and fire perimeters from the California Department of Forestry‘s Fire and Resource Assessment 

Program (FRAP) database. California is a fire-prone state, and large wildfires occur annually 

across the state, resulting in significant changes to forest, scrub/shrub and grass (Krasnow, Fry, 

& Stephens, 2017; Moritz & Stephens, 2008; Stephens, Martin, & Clinton, 2007), the three 

habitat types of focus in this study. I recognize that users are seeking these products to accurately 

characterize annual vegetation change and disturbance in their work, and this is the first 

comprehensive study to examine the key differences across these competing annual vegetation 

disturbance products. Rather than focusing on accuracy, this chapter compares the spatial and 

https://paperpile.com/c/uxgMtb/E6l4+5zzS+iBuc+yiOs+ItUD+yfU2+ZbWo+b4dD
https://paperpile.com/c/uxgMtb/E6l4+5zzS+iBuc+yiOs+ItUD+yfU2+ZbWo+b4dD
https://paperpile.com/c/uxgMtb/E6l4+5zzS+iBuc+yiOs+ItUD+yfU2+ZbWo+b4dD
https://paperpile.com/c/uxgMtb/xyj4+ipnc+a526+Pgmw
https://paperpile.com/c/uxgMtb/xyj4+ipnc+a526+Pgmw
https://paperpile.com/c/uxgMtb/0jTh
https://paperpile.com/c/uxgMtb/ArmU
https://paperpile.com/c/uxgMtb/Wcui+wKqj
https://paperpile.com/c/uxgMtb/Wcui+wKqj
https://paperpile.com/c/uxgMtb/uymo+5iM2+fyfl
https://paperpile.com/c/uxgMtb/uymo+5iM2+fyfl
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temporal coverage of these products to identify the differences in the amounts and locations of 

reported disturbance. 

Specifically, this chapter asked: 

1. How comparable were the three vegetation disturbance products in their reported 

disturbance amounts across California, by year and by habitat type? 

2. How different were the environmental conditions covered by the products (i.e. 

distribution of bioclimatic conditions and proportional areas for habitat types)? 

3. How different were the burn conditions covered by the products (i.e. fire perimeter size 

and burn severity)? 

To help end-users of these products better understand the differing methods used to create these 

products, I first review the key differences between the modern automated approaches of GFC 

and NAFD and the traditional creation approach of LANDFIRE and explain how their creation 

methods result in differing thresholds for reporting disturbance. For my comparative analysis of 

reported disturbance as well as environmental and burn conditions among the products, I 

employed Earth Engine (EE), a cloud-based, distributed HPC platform created by Google that 

provides a set of analytical functions for analyzing vector and raster-based geographic data via 

multiple cloud-based user interfaces (Gorelick et al., 2017). Even while limited to California, the 

disturbance products evaluated in this study are ―big‖ data, as approximately 450 million pixels 

were analyzed for each year based on the LTS spatial resolution of 30 m. As such, I used the 

JavaScript API Code Editor to leverage the HPC capabilities of EE as well as the built-in 

functionality such as code-sharing and cloud data storage, which support reproducibility and 

collaboration (Palomino, Muellerklein, & Kelly, 2017). Overall, I believe my results can help 

researchers and practitioners to understand the impacts of disturbance identification methods (i.e. 

the traditional versus modern approaches) on the representation of disturbance, evaluate these 

products based on the conditions under which they report disturbance, and to choose the most 

appropriate data for their needs.  

Study Data: Vegetation Disturbance Products 

The three vegetation disturbance products included in this study are the only annual products that 

share an overlapping spatial and temporal extent at the time of this publication. A summary of 

the key differences in their creation methods are found in Table 3-1.   

  

https://paperpile.com/c/I0UHXP/XkoBI
https://paperpile.com/c/uxgMtb/7psu
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Table 3-1. Summary of Vegetation Disturbance Products  

Disturbance 

Product 

Time 

Period 

Extent and            

Target 

Vegetation 

Definition and Identification of 

Disturbance from LTS 

Computing 

Environment 

Hansen 

Global Forest 

Change 

(GFC) 

2000-

20141 

 

Global 

 

Forest 

Loss of cover (discrete): ―stand-

replacement disturbance‖ leading 

to a non-forest state for the pixel 

(Hansen et al., 2013, supplemental 

material) 

Identification method 

(automated): supervised 

classification of forest loss; NDVI 

time series analysis to identify year 

of loss 

Google Earth 

Engine (EE): 

cloud-based 

distributed 

computing 

platform 

(proprietary)  

North 

American 

Forest 

Dynamics 

(NAFD) 

1986-

2010 

North 

America 

 

Forest 

Disturbance of cover 

(continuous): annual change in the 

integrated forest z-score (IFZ), an 

inverse measure of likelihood that a 

pixel is forested in a given year 

Identification method 

(automated): VCT algorithm 

applied to LTS, supplemented by 

dNBR analyses  

NASA Earth 

Exchange 

(NEX): HPC 

cluster managed 

by NASA 

LANDFIRE 1999-

2014 

United 

States 

 

All 

vegetation 

Loss and disturbance of cover 

(discrete and continuous): 

depending on data integrated in that 

year 

Identification method (manual 

integration): year-by-year 

integration of disturbance events 

reported by public agencies and 

calculated indices from LTS 

including NDVI, dNBR, MTBS, 

VCT algorithm, and Multi-Index 

Integrated Change Algorithm 

(MIICA) 

Custom multi-

node HPC 

cluster managed 

by the USGS 

Earth Resources 

Observation 

and Science 

(EROS) 

1
 first year of identifiable loss is 2001 
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Distributed HPC approach to identify discrete losses: Hansen Global Forest Change (GFC) 

GFC (Hansen et al., 2013) is a key example of modern products that can be created at 

increasingly broader extents through the automation of standard remote sensing analyses on 

HPC. Specifically, GFC was produced as the first global-scale, annual forest loss product at 

spatial resolution of LTS (30 m) using Google‘s Earth Engine (EE), a cloud-based distributed 

computing platform that provides analytical capabilities of geospatial data (Gorelick et al., 

2017). Within EE, a supervised classification process was conducted to identify locations of 

forest loss between 2000 and 2014, using training data of locations pre-labeled with known 

forest loss or no forest loss (i.e. discrete identification). As the baseline for forest, pixels 

containing tree cover with a height greater than five meters were identified as forested. In the 

training dataset, forest loss represented by pre-identified pixels that had experienced ―stand-

replacement disturbance‖ leading to a non-forest state for the pixel (Hansen et al., 2013). As 

such, forest degradation that did not result in a new cover type (i.e. any non-forest state) was not 

labeled as forest loss. The year of loss was identified through an analysis of a time series for 

Normalized Difference Vegetation Index (NDVI; an indicator of greenness calculated from the 

LTS bands for red and near-infrared); the year with the sharpest drop in NDVI was identified as 

the year of loss. The cause of loss, severity, and measurement of uncertainty were not provided.  

Algorithmic approach to identify continuous disturbance with HPC: North American Forest 

Dynamics (NAFD) 

NAFD (Goward et al., 2015) exemplifies a modern algorithmic approach to identifying 

continuous disturbance (i.e. reduction in vegetation cover) from the LTS, using the Vegetation 

Change Tracker (VCT) algorithm (Huang et al., 2010) on NASA Earth Exchange‘s computing 

facilities (Nemani et al., 2011). In contrast to the discrete disturbance (i.e. stand-clearing or 

replacement) reported by GFC, ―the VCT approach captures most rapid stand-clearing events 

(including clearcut harvests and fire), as well as many non-stand-clearing events (partial harvest, 

thinning, storm damage, insect damage)‖ (Masek et al., 2013, pg. 1089). To create the NAFD 

data, the VCT algorithm was employed to identify annual forest cover and disturbance between 

1986 and 2010 using a time series analysis of an integrated forest z-score (IFZ), an inverse 

measure of likelihood that a pixel is forested in a given year. The IFZ was informed by 

normalization indices that were calculated from a training dataset of known forest locations. A 

consistently low IFZ (close to zero) across the time period indicated relative stability in the forest 

cover, while a marked increase in IFZ indicated a disturbance in forest cover, ranging from 

partial to total stand disturbance (i.e. continuous identification of disturbance). To better 

incorporate disturbances specifically due to fire, NAFD also integrated differenced Normalized 

Burn Ratio (dNBR) analyses (i.e. the ratio of the difference between the near-infrared and short 

wave infrared bands of the LTS over the sum of these bands) that compared the burn indices 

between a pair of pre- and post-fire images. However, like GFC, NAFD also did not contain 

information on the cause, severity, or uncertainty of the disturbance.  

https://paperpile.com/c/I0UHXP/1xxx8+Ysy8z
https://paperpile.com/c/I0UHXP/XkoBI
https://paperpile.com/c/I0UHXP/XkoBI
https://paperpile.com/c/I0UHXP/1xxx8+Ysy8z
https://paperpile.com/c/I0UHXP/70sF9
https://paperpile.com/c/I0UHXP/AkfXM
https://paperpile.com/c/I0UHXP/93wW
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Traditional year-by-year approach to data curation: LANDFIRE 

While GFC and NAFD were produced from modern, automated analysis pipelines via HPC, the 

LANDFIRE disturbance data represents a more traditional, year-by-year approach: ―developed 

through a multistep process employing a number of varied geospatial datasets to identify and 

label changes in vegetation cover‖ (LANDFIRE 2016). Specifically, a separate data layer for 

each year is independently created by combining all known data of reported disturbance in that 

given year: (1) point locations and perimeters of disturbance events provided by public agencies; 

(2) vegetation and burn indices calculated from remote sensing analyses of the LTS (e.g. NDVI, 

dNBR, Burned Area Reflectance Classification, Rapid Assessment of Vegetation Condition after 

Wildfire); and (3) other data integrated from MTBS, the VCT algorithm, and the Multi-Index 

Integrated Change Algorithm (MIICA) (Jin et al., 2013). A custom ―multi-node cluster‖ 

managed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science 

(EROS) was used to process satellite imagery, calculate vegetation and burn indices, and 

integrate the data into one raster layer for each year (USGS 2016).  

Methods  

Comparison of reported disturbance across California for 2001-2010 

For a standardized comparison of the reported disturbance, I created two sets of comparable 

raster images from the original GFC, NAFD, and LANDFIRE data using EE. The first set 

contained comparable annual rasters of reported disturbance for each year between 2001 and 

2010, while the second set contained comparable aggregated-time rasters of reported disturbance 

across the study period of 2001-2010. Details on the standardization process are included in the 

supplemental material (Appendix 3-1). The spatial extent of reported disturbance by each 

product was mapped using the aggregated-time raster created for each product (Figure 3-1). 

Disturbed areas attributable to fire were identified by overlaying of the aggregated-time raster 

created for each disturbance product with a raster of fire occurrence derived from fire perimeters 

provided by CALFIRE Fire Resource and Assessment Program (FRAP) for the study period 

(more information on this derived raster of fire occurrence is included in Appendix 3-1).   

I also used the derived fire occurrence raster in combination with the standardized annual rasters 

for each disturbance product to calculate the areas reported as disturbed (and attributable to fire) 

in each year (m
2
/year) and across the study period using the EE function called 

ee.Image.pixelArea (Figure 3-2). This function provides the pixel areas of the two categories in 

binary images (e.g. where pixels both reported as disturbed and overlapping with the fire 

occurrence are labeled with a value of 1, and all others labeled value of 0). For GFC and NAFD, 

the sums of these annual values of reported disturbance (both attributable and non-attributable to 

fire) were equivalent the total area reported as disturbed by product across 2001-2010 (Figure 3-

1). Due to the annual format of the original LANDFIRE data, pixels could be counted more than 

once in the sum across the time period (i.e. separate disturbances in different years); thus, two 
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sums are provided: the unique area reported as disturbed in the time period (Figure 3-1) as well 

as the duplicated total area reported as disturbed (Appendix 3-2). For the comparison across 

habitat type, I used the CALFIRE FVEG database to derive four major habitat categories across 

California: scrub/shrub, forest, grass, and other (e.g. desert, agriculture, wetlands, barren, urban). 

Definitions of the habitat types derived from FVEG are included in Appendix 3-1. To calculate 

the amounts of reported disturbance by habitat type, I applied ee.Image.pixelArea to binary 

images that combined the aggregated-time rasters for each disturbance product and rasters of the 

four habitat types derived from FVEG. These results provided the total pixel area identified as 

disturbed by each product across the study period for each habitat type (Figure 3-3; Appendix 3-

2). 

Environmental conditions 

I compared the environmental conditions at pixels reported as disturbed by each of the three 

disturbance products, based on elevation from the National Elevation Dataset, climate water 

deficit (CWD) from the California Climate Commons, and mean temperature from the PRISM 

climate project (see Appendix 3-1 for more details on these environmental datasets). To calculate 

the distributions of these environmental conditions as covered by each disturbance product, I 

used the EE functions called ee.Reducer.percentile, ee.Reducer.mean and ee.Reducer.stdDev to 

produce multiple summary statistics for each disturbance product including minimum and 

maximum values, the 25th, 50th, and 75th percentiles, means, and standard deviations (Figure 3-

4; Appendix 3-2). For a baseline reference comparison, the distributions of these environmental 

conditions across the total area of California were also calculated. I also compared the 

proportional areas of each habitat type within the disturbance products by dividing the calculated 

values for reported disturbance by habitat type by the overall area reported as disturbed by each 

product (Figure 3-5; Appendix 3-2). For another baseline reference comparison, the proportional 

areas of each habitat type across the total area of California were also calculated using 

ee.Image.pixelArea applied to the FVEG data. 

Burn conditions 

For the final portion of the analysis, I compared the products‘ spatial coverage across burn 

conditions as reported by the FRAP fire perimeters and the Monitoring Trends in Burn Severity 

(MTBS) data. For both datasets, I included the year 2000 to account for pixels that may have 

been reported as disturbed in the first year of the study (2001). For a baseline comparison of the 

reference data, I used ee.Image.pixelArea to calculate the reported amounts of fire disturbance 

across California and by habitat type using the fire occurrence raster derived from FRAP fire 

perimeters and the MTBS burn severity data (Table 3-2; Appendix 3-2). As the MTBS data were 

originally provided as annual rasters, I aggregated them to create a new single raster that 

contained the maximum burn severity at each pixel across the study period.  
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Since the creation method of LANDFIRE already incorporated versions of the FRAP and MTBS 

data (see section on Study Data), the primary intention of this analysis was to identify how 

comparable the burn conditions covered by GFC and NAFD were to those covered by 

LANDFIRE. To this end, the coverage of FRAP fire perimeters by size class and MTBS by burn 

severity level were calculated for each of the disturbance products (Figures 3-6 and 3-7). For the 

FRAP fire perimeters, I categorized the individual fire perimeters into six fire perimeter size 

classes based on acreage reported by FRAP (i.e. less than 100, 100-500, 500-1,000, 1,000-

10,000, 10,000-90,000, greater than 90,000). Coverage of the FRAP fire perimeters was 

calculated using ee.Reducer.frequencyHistogram, which provided the pixel count for each 

disturbance product contained within each fire perimeter. These pixel counts were converted to 

percentages by dividing the number of pixels reported as disturbed by each disturbance product 

by the total number of pixels contained within the fire perimeter. For each size class of fire 

perimeters, a mean of these percentages was calculated to provide the average percentage of 

coverage in that size class for each disturbance product (Figure 3-6; Appendix 3-2). Last, I used 

ee.Image.pixelArea to calculate coverage by each of the disturbance products for each MTBS 

burn severity level (unburned to low, low, medium, high) by habitat type (Figure 3-7). 

Results 

LANDFIRE reported the highest amounts of disturbance across California for all years and 

habitat types 

Across California between 2001 and 2010, GFC and NAFD reported similarly lower amounts of 

disturbance as compared to LANDFIRE (Figure 3-1). LANDFIRE reported the highest amount 

of disturbance at 8.41% of the total area of California (with 5.54% of the reported disturbance 

overlapping with a FRAP fire perimeter), while GFC reported the least amount of disturbance at 

2.54% of the total area of California (with 1.71% of the reported disturbance overlapping with a 

FRAP fire perimeter). Overall, the products reported more similar amounts for disturbance that 

did not overlap with FRAP fire perimeters, ranging from 0.83% to 2.87% of the total area of 

California attributed to non-fire disturbance.  

Comparing reported disturbance across years, LANDFIRE reported the highest amounts of 

disturbance in each year, while GFC and NAFD reported more similar amounts of disturbance, 

though NAFD generally reported slightly more disturbance in each year with the exception of 

2006 (Figure 3-2). The greatest differences in reported disturbance between LANDFIRE and 

GFC/NAFD occurred in 2008, 2003, 2007, and 2006 (in descending order), all years for which 

FRAP reported the highest annual numbers of individual fire perimeters (between 309 and 425). 

In these years, the reported disturbances by LANDFIRE also demonstrated higher overlap with 

the FRAP fire perimeters, as compared to other years; similarly, the reported disturbances by 

GFC and NAFD demonstrated the highest overlaps with the FRAP fire perimeters in 2008, 

followed by 2007. The smallest difference between LANDFIRE and GFC/NAFD occurred in 
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2010 and 2001, years in which FRAP reported the lowest annual numbers of individual fire 

perimeters (204 and 200, respectively).      

Across all habitat types, LANDFIRE also reported the highest amounts of disturbance as 

compared to NAFD, and even more so as compared to GFC (Figure 3-3). The products differed 

in their amounts of reported disturbance the most for scrub/shrub (ranging from approximately 

6.5% to 20% of the total scrub/shrub area of California) and forest (ranging from approximately 

4% to 14% of the total forest area of California). Overall, all of the products reported higher 

amounts of disturbances overlapping with FRAP fire perimeters in scrub/shrub (ranging from 

5.7% to 17% of the total scrub/shrub area of California attributed to fire disturbance), as 

compared to forest (ranging from approximately 2.5 to 7% of the total forest area of California 

attributed to fire disturbance).   

 

 

Figure 3-1. Total reported disturbance across California between 2001 and 2010. 

Disturbance attributed to fire is based on overlap with fire perimeters from CALFIRE Fire 

Resource and Assessment Program (FRAP).  
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Figure 3-2. Annual reported disturbance across California for years 2001 to 2010. Darkest 

portion of each bar represents proportion of reported disturbed area attributed to fire, based on 

overlap with FRAP occurrence, for Hansen Global Forest Change (GFC), North American Forest 

Dynamics (NAFD), and LANDFIRE (LF).  
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Figure 3-3. Reported disturbance by habitat type. Darkest portion of each bar represents 

proportion of reported disturbed area attributed to fire, based on overlap with FRAP occurrence,  

for Hansen Global Forest Change (GFC), North American Forest Dynamics (NAFD), and 

LANDFIRE (LF).  

Vegetation disturbance products covered similar environmental conditions 

In my analysis of bioclimatic conditions covered by the disturbance products, I found that the 

products covered very similar distributions across elevation, climate water deficit (CWD), and 

mean temperature (Figure 3-4). Specifically, the products reported disturbance at higher 

elevations, lower CWD, and lower mean temperatures, as compared to the reference baselines 

for the total area of California. The products also covered similar proportions of habitat types 

that differed from the reference baselines for California (Figure 3-5). In particular, as proportions 

of their total areas, the products covered more forest (ranging from approximately 47.5% to 50% 

of their total areas) and notably more scrub/shrub (ranging from approximately 30 to 40% of 

their total areas), as compared to the proportions of those habitat types across California 

(approximately 30% for forest and 15% for scrub/shrub). The products demonstrated some 

variability in their coverage of grass and the other category, with GFC and NAFD reporting more 

similar values that were lower than that of LANDFIRE. Even with this variability, the products 

still reported less coverage in grass and notably less coverage in the other category than the 

reference baseline for California.  
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Figure 3-4. Distributions of bioclimatic conditions covered by the products. For reference 

comparison, the distributions of conditions across total area of California are also reported, 

alongside distributions for Hansen Global Forest Change (GFC), North American Forest 

Dynamics (NAFD), and LANDFIRE (LF). 
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Figure 3-5. Habitat areas as proportions of total area of products. For reference comparison, 

habitat areas as proportions of total area of California are also reported, alongside proportions for 

Hansen Global Forest Change (GFC), North American Forest Dynamics (NAFD), and 

LANDFIRE (LF).    

Burn conditions covered by GFC/NAFD differed greatly from those of LANDFIRE  

FRAP and MTBS reported similar amounts of fire disturbance in the study period, with both 

reporting approximately 5.8% of California as burned and reporting the most fire disturbance in 

scrub/shrub habitats (approximately 18% of all scrub/shrub habitat across California) (Table 3-2; 

Appendix 3-2). As LANDFIRE already incorporated versions of the FRAP fire perimeters and 

MTBS burn severity data, its coverage of the burn conditions reported by these reference 

datasets was close to 100% across all fire perimeter sizes and burn severity levels (Figures 3-6 

and 3-7). In contrast, the automated disturbance products of GFC and NAFD demonstrated 

similar coverage of both the FRAP fire perimeters and MTBS burn severity data that were 

notably less than that of LANDFIRE. For fire perimeter sizes larger than 1,000 acres, GFC and 

NAFD reporting of disturbance within the fire perimeters increased with size, but reached a 

maximum coverage of approximately 40% at the largest fire perimeter size (Figure 3-6). As burn 

severity increased, both GFC and NAFD reported more disturbance overlapping with the MTBS 
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data across all habitat types, with the most disturbance reported for forest, which reached a 

maximum coverage of approximately 80% at the highest burn severity (Figure 3-7).  

Table 3-2. FRAP and MTBS fire disturbance for 2000-2010  

  All California  Scrub/Shrub  Forest  Grass  Other  

FRAP Percent of      

Area Burned 

 
5.83% 17.87% 7.31% 5.6% 0.89% 

MTBS Percent of 

Area Burned 

 
5.77% 18.10% 7.29% 4.99% 0.84% 

 

 

Figure 3-6. Comparison of covered burn conditions across fire perimeter size.  Based on 

overlap with fire perimeters from CALFIRE Fire Resource and Assessment Program (FRAP) for 

Hansen Global Forest Change (GFC), North American Forest Dynamics (NAFD), and 

LANDFIRE (LF).  
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Figure 3-7. Comparison of covered burn conditions across burn severity and habitat type. 

Based on overlap with data from Monitoring Trends in Burn Severity (MTBS) for Hansen 

Global Forest Change (GFC), North American Forest Dynamics (NAFD), and LANDFIRE (LF). 

Discussion 

Differing methods of creation greatly impacted reported disturbance 

Overall, the automated disturbance products of GFC and NAFD both reported significantly less 

disturbance across all years and habitat types than did the traditionally created product, 

LANDFIRE. While the comparison of environmental conditions (i.e. distributions of elevation 

and climate; proportional areas of habitat types) did not reveal major differences in spatial 

coverage by the products, my analysis of burn conditions identified notably less overlap with the 

reference data for GFC and NAFD, as compared to LANDFIRE. These results indicate that 

differences in reported disturbance by the products were not driven by differential coverage of 

bioclimatic or habitat conditions, but rather by the threshold for disturbance that is inherent to 

method of creation for each product. Specifically, as GFC and NAFD were both created from 

automated HPC-based analyses of only satellite imagery, rather than by a more manual data 

aggregation method like that of LANDFIRE, their thresholds for reporting disturbance are higher 

than that of LANDFIRE which incorporates disturbance events that have been reported and 

spatially delineated by other public agencies. The higher reporting of disturbance by NAFD as 

compared to GFC also reflects a key difference in their automated processes, namely that the 

threshold for discrete disturbance in GFC is higher than that of continuous disturbance in NAFD. 

Thereby, reductions in vegetation cover that do not result in a discrete change in vegetation cover 

would be captured by NAFD but not GFC. 
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These results clearly reflect the strengths and weaknesses of the different approaches to 

identifying disturbance and creating standardized annual products. Specifically, while the key 

strength of the distributed computing approach of GFC is that the workflow is both simplistic 

and replicatable (based on standard remote sensing techniques such as supervised classification 

and time series analysis of vegetation indices), it is clear that a major limitation of this approach 

is the identification of only discrete losses of vegetation. Reductions in vegetation cover are not 

identified until the reduction is significant enough to cause a change in cover type or notable 

drop in greenness, possibly limiting its applicability to certain habitat types. Furthermore, while 

the workflow for identifying loss is simple and approachable for non-remote sensing experts, it is 

not easily reproducible (i.e. based on a portable algorithm that can easily be copied to and 

executed on another platform). In contrast, the algorithmic approach of NAFD is based on an 

integrated-time comparison (through the VCT algorithm) that allows for the identification of 

partial disturbances and reductions in vegetation cover, and is completely reproducible and easily 

integrated with other analyses due to the portability of the VCT algorithm across platforms. 

However, a major limitation of this approach is that calculations of metrics like the IFZ score 

used by VCT require expert knowledge to interpret how the changes in values correspond to 

disturbance (i.e. identifying a partial disturbance from noise), making it less approachable for 

non-remote sensing experts to fully interpret or recreate products like NAFD. In general, as the 

approaches used by GFC and NAFD are automated remote sensing analyses focused on forest, 

there exists a notable potential for underreporting of disturbance, as smaller disturbances or 

disturbances in other vegetation types may be missed by these approaches that rely solely on 

spectral changes in satellite imagery.   

In contrast to GFC and NAFD, the traditional approach of LANDFIRE does not target specific 

vegetation types and can easily incorporate both discrete and continuous disturbances because it 

is a manually curated product that aggregates multiple data types, including both HPC-based 

remote sensing analyses and publicly collected data on disturbance events. The variety of data 

used in this traditional curation approach also supports the labeling of a disturbance type, 

severity, and assigned uncertainty based on the data source. However, the major limitations of 

this approach are that it is neither easily replicatable nor reproducible (because it is not an 

automated process and aggregates data on a year-to-year basis) and there is a high potential for 

compounding data inaccuracies present in the datasets that are aggregated into LANDFIRE. 

Between years, this curation method can vary in data quality and accuracy, depending on the 

data that was received for that year by other public agencies (ranging from local to federal 

levels). For example, in the analysis of burn conditions, LANDFIRE did not demonstrate 

complete agreement with either the FRAP or MTBS, even though these reference data are stated 

to be integrated as part of the LANDFIRE creation process. Furthermore, there is a notable 

potential for overestimation of disturbance in products like LANDFIRE because disturbance 

event locations and perimeters reported by public agencies are not always ground-checked and 

can be hand-demarcated to include a larger area than the actual footprint of the disturbance. As 

both FRAP and MTBS follow a similar manual curation process as LANDFIRE through year-
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by-year aggregation of data and multiple analyses combined into one product, it is not surprising 

that overlap with the reference data did not converge more strongly between LANDFIRE and 

GFC/NAFD, and higher overlap with the reference data should not be interpreted to mean that 

LANDFIRE is a better representation of burned areas than GFC and NAFD. 

Implications for use of these products as representations of disturbance and fire 

The differences in the creation methods of these disturbance products and the conditions under 

which they report disturbance have notable implications for their use as representations of 

disturbance in ecological studies, particularly for fire. For example, my results suggest that while 

a higher number of individual fires in a given year resulted in more area reported as disturbed by 

all products, it also resulted in a wider range in the total areas reported as disturbed (Figure 3-2). 

The largest difference among the products occurred in 2008, which is the year with the highest 

number of FRAP fire perimeters as well as the highest values for the areas reported as disturbed 

(and attributed to fire disturbance). The smallest difference among the products occurred in 

2010, which corresponds with the second lowest number of fire perimeters as well as the lowest 

values for areas reported as disturbed for GFC and LANDFIRE. As smaller fires tend to occur 

more often than larger fires, it is likely that in the years with more recorded fire, smaller fires 

were driving the increased divergence in reported disturbance. As such, the difference between 

LANDFIRE and the other two products should be corroborated by higher spatial overlap of 

smaller fires by LANDFIRE than GFC and NAFD. Indeed, my results demonstrated much 

higher percent overlaps of the smallest fire size classes by LANDFIRE (Figure 3-7). These 

results highlight the impact of the differing thresholds for reporting disturbance, which will 

likely result in a wider gap (i.e. more uncertainty) among the products as the landscape 

experiences more disturbance or as reference data like FRAP and MTBS report more 

disturbance. Overall, higher coverage of smaller fires by LANDFIRE is primarily due to its 

inclusion of reference data on fire, while smaller fires likely do not impact the landscape 

significantly enough to be identified as disturbance by the spectral-based analyses behind the 

GFC and NAFD products. 

Interestingly, the differential focus on forest by GFC and NAFD did not result in higher reported 

disturbance for forest as compared to scrub/shrub. All three disturbance products reported the 

most disturbed area in scrub/shrub (mostly attributed to fire), and the range of reported 

disturbance among the products was also widest for scrub/shrub (Figure 3-3).  For forest, GFC 

and NAFD reported more similar totals for disturbed and burned areas that were lower than 

LANDFIRE, which reported more disturbance overall than GFC and NAFD but also reported 

less disturbed and burned area in forest than scrub/shrub. The greater difference in reported 

disturbance for scrub/shrub is somewhat surprising given that the products contained similar 

proportions of the habitat types and that scrub/shrub covers only 15% of the total area of 

California, as compared to approximately 30% for forest (Figure 3-5). My results show that 

scrub/shrub is most frequently reported as disturbed by both reference data and the disturbance 

products (Table 3-2; Figure 3-3), again suggesting that greater reporting of fire incidence by 
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reference data results in a wider range (i.e. more uncertainty) of reported disturbance among the 

disturbance products, in this case for scrub/shrub habitat.  

Integral Role of Spatial Data Science and HPC 

Previous to this study, comparative evaluations of disturbance products had likely been limited 

by two related factors: (1) the lack of overlap in products‘ coverage across space and time (i.e. 

limited and non-overlapping spatial and temporal extents); and (2) the inadequacy of traditional 

analytical tools to handle and analyze data at increasingly finer resolutions and broader extents. 

In other words, remotely-sensed products of vegetation disturbance with annual coverage at the 

spatial resolution of the LTS are recent developments that have been made possible by the 

creation of computational tools to create and compare them. In particular, the recent 

development of HPC tools specifically intended for geospatial analyses (such as EE) has helped 

to address computational challenges presented by large spatial-temporal datasets and has been 

encouraged by CyberGIS researchers interested in expanding geospatial tool interoperability and 

scalability for ‗big‘ spatial data (Wang, 2016; Yang et al., 2011; Yang, Raskin, Goodchild, & 

Gahegan, 2010). Alongside these technological advances, integration of traditional geospatial 

methods and modern Data Science techniques (i.e. data mining/algorithms, machine learning) 

have arisen from the development of a Spatial Data Science to support the application of 

fundamental geospatial analyses to ‗big‘ spatial-temporal data stacks such as the LTS (Palomino 

et al., 2017).  

These developments in Spatial Data Science and HPC have resulted in both the creation of 

products at finer spatial and temporal resolutions and broader extents as well as an increased 

ability to compare and evaluate them. Even while limited to the California scale, the disturbance 

products evaluated in this study are ―big‖ data, as approximately 450 million pixels were 

analyzed for each year to cover California at a 30 m spatial resolution. Just as the processing 

power and data handling capabilities of HPC were needed to create these disturbance products, a 

thorough interrogation and evaluation of these products also required the use of HPC to identify 

patterns across this complex multi-temporal data stack. The platform employed in this study, EE, 

is an exemplary tool emerging from these advances in HPC and Spatial Data Science, as it 

supports fundamental geospatial analyses such as raster stack calculations and zonal statistics on 

data that are not easily handled in traditional desktop tools. 

While it is clear that the differences in the creation methods of these products have significant 

implications for their use in representing disturbance, the evolution from more curated (i.e. 

LANDFIRE) to more automated (i.e. GFC and NAFD) workflows is indicative of the overall 

trajectory of the Spatial Data Science field. As products of self-contained analysis pipelines or 

algorithms running autonomously on HPC, GFC and NAFD are key examples of data that will 

likely continue to be produced with high temporal frequency. In contrast to the lengthy protocols 

and manual data integration of a product like LANDFIRE, these modern Spatial Data Science 

products stream-line the identification of disturbance by focusing exclusively on changes in 

spectral characteristics using a data science approach that does not require a priori knowledge of 

https://paperpile.com/c/uxgMtb/TmLs+aXXO+7ZIG
https://paperpile.com/c/uxgMtb/TmLs+aXXO+7ZIG
https://paperpile.com/c/uxgMtb/TmLs+aXXO+7ZIG
https://paperpile.com/c/uxgMtb/TmLs+aXXO+7ZIG
https://paperpile.com/c/I0UHXP/gZgl5
https://paperpile.com/c/I0UHXP/gZgl5
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disturbance events. Despite lower overlap with the reference data as compared to LANDFIRE, 

GFC and NAFD both provide unique spatial coverage of vegetation disturbance that are not 

currently available in other products. At the time of this publication, GFC is the only dataset that 

maps annual vegetation change at a global extent with the spatial resolution of the LTS. While 

focusing on the more narrow extent of North America, NAFD uniquely provides identification of 

continuous disturbance (i.e. reduction of cover, not just discrete changes in vegetation) over a 

large continental-scale. Moving forward, these modern workflows and the products they create 

can also enable regional (and possibly global) analyses of fire return intervals and dynamics of 

burn intensity to identify generalizable trends (Stevens, Collins, Miller, North, & Stephens, 

2017), beyond local analyses of individual fires(Collins et al., 2009; Collins, Kelly, van 

Wagtendonk, & Stephens, 2007). 

Future Directions 

This comparative study of these disturbance products provides an understanding of the 

implications of competing approaches to creating disturbance products and identifies how 

different approaches can possibly result in under- and over-estimation of reported disturbance. 

Expanding on this study to focus on spatially explicit agreement across the disturbance products, 

rather than on their differences, could provide the ability to more accurately identify burned 

areas within fire perimeters and other reference data as well as provide a spatially explicit 

measure of uncertainty for both fire and non-fire disturbances reported by the products. While 

there has been some research on integrating some of these products (Schroeder et al., 2017; 

Soulard et al., 2017) or the algorithms used to create them (Healey et al., 2017) to improve the 

accuracy of disturbance identification (i.e. potentially reducing uncertainty), the integrated 

products have not been used to quantify uncertainty across study areas. Through data integration 

based on spatial agreement, uncertainty could be identified in spatially explicit approach. For 

example, pixels that are reported as disturbed by all products (i.e. pixels of highest agreement) 

and are contained within a fire perimeter could be assigned a low uncertainty for a fire 

disturbance. Similarly, pixels that are reported as disturbed by all products (again, pixels of 

highest agreement) but are not contained within a fire perimeter could be assigned a low 

uncertainty for a non-fire disturbance. On the other hand, pixels that are not reported as disturbed 

in any product but are contained within a fire perimeter in reference data could be assigned a 

high uncertainty for fire disturbance (i.e. likely unburned area within the fire perimeter), helping 

to narrow down the true extent of fire events. These kind of spatial agreement metrics could 

provide a more automated and more objective identification of unburned areas (as compared to 

dNBR analyses which require defining thresholds for disturbance that vary by vegetation and 

ecosystem type) as well as highlight areas where individual disturbance products may be 

overzealous in reporting disturbance (i.e. errors of commission). These measures of uncertainty 

in disturbance could also help narrow the range of the amount of vegetation disturbance toward 

the ―true‖ amount of disturbance in a given landscape.  

https://paperpile.com/c/uxgMtb/5xPJ
https://paperpile.com/c/uxgMtb/5xPJ
https://paperpile.com/c/uxgMtb/XHRj+2mW9
https://paperpile.com/c/uxgMtb/XHRj+2mW9
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Conclusion 

I used Earth Engine to compare the reported amounts of disturbance for 2001-2010 among three 

widely used vegetation disturbance products and examined the products across differing 

environmental and burn conditions. Overall, GFC reported the least amount of disturbed area 

(2.54% of California) as well as least amount of disturbed area attributable to fire (1.71% of 

California) for 2001-2010, as compared to NAFD (3.77% and 2.13%) and LANDFIRE (8.41 and 

5.55%). My analysis did not reveal major differences in the coverage of environmental 

conditions (i.e. elevation, climate, habitat) by the products, but I did identify notable differences 

in the coverage of burn conditions between GFC/NAFD (products created by automated 

methods) and LANDFIRE (the traditionally created product that manually incorporates some 

versions of the reference data on fire). These results indicate that differences in reported 

disturbance were driven by the differing methods of creation among the products, rather than by 

differential coverage of environmental conditions. Furthermore, I also identified notable 

differences in reported disturbance by year and by vegetation type. In particular, a higher 

incidence of fire as reported by the reference data in a given year resulted in more reported 

disturbance by all products, but also contributed to a wider range in the amount of reported 

disturbance (i.e. uncertainty). Similarly, both the reference data on fire and the disturbance 

products reported the most disturbance in scrub/shrub habitats over forest, grass, and other 

habitat types, again indicating that higher disturbance reported by reference data resulted in a 

greater difference in reported disturbance among the products (i.e. uncertainty).  

Designed and executed within EE, my methodology provides a reproducible framework for 

comparative analyses of vegetation disturbance products to identify the conditions under which 

they report disturbance as well as drivers of uncertainty in reported disturbance. This chapter 

used fire in California as a case study to help end-users of these products understand how the 

identification methods of disturbance (i.e. the creation method of disturbance products) impact 

the amounts and locations of reported disturbance. Rather than focusing on accuracy, I interpret 

the differences in reported disturbance as the result of differing thresholds for reporting 

disturbance that are inherent to each product due its creation method. Thus, these disturbance 

products exist along a continuum of low to high thresholds for reporting disturbance (i.e. from 

LANDFIRE to GFC), with the ―true‖ amount of disturbance existing somewhere on the 

continuum. Future work can explore spatial agreement among of these products (i.e. where they 

agree) as a data integration method for quantifying bounded estimates of vegetation disturbance, 

more accurate identification of burned areas and assigning spatially explicit metrics of 

uncertainty in disturbance across study areas. 
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Chapter Four 

Low spatial agreement among remotely-sensed map products highlights high 

uncertainty of vegetation disturbance across California for 2001-2010 

The Landsat Time Series (LTS) is increasingly being used to create standardized, remotely-

sensed products that map annual occurrences of vegetation disturbance across the United States. 

These vegetation disturbance products are often used in research that aims to quantify the impact 

of disturbance (e.g. fire) on ecosystem processes, such as aboveground carbon dynamics. 

However, most carbon studies to date use only one product to represent disturbance in their study 

areas, without accounting for uncertainty in the amount and/or location of disturbance in that 

product. In this Chapter, I introduce a methodology for quantifying uncertainty in reported 

disturbance using an analysis of spatial agreement among competing vegetation disturbance 

products (i.e. data integration). My methodology uses basic raster calculations to identify which 

products overlap at each pixel, and then determines the amount of spatial agreement among 

products to identify uncertainty of disturbance (e.g. high uncertainty of disturbance due to only 

one product reporting disturbance versus low uncertainty where all products report disturbance). 

Using Google‘s Earth Engine, I present a case study of my methodology using the three 

vegetation disturbance products that have overlapping coverage across California between 2001 

and 2010: Global Hansen Forest Change (GFC); North American Forest Dynamics (NAFD); and 

LANDFIRE. I examined the patterns of uncertainty of disturbance across habitat types, 

bioregions, and burn conditions as reported by reference data on fire. My results indicated low 

spatial agreement among the products, resulting in high uncertainty of disturbance across 

California. The low uncertainty of disturbance category covered only 15% of the total area in 

California that was reported as disturbed by at least one product. Most of the area with low 

uncertainty of disturbance was attributed to fire events, rather than non-fire events. Scrub/shrub 

was both most frequently reported as disturbed as well as identified to have the lowest 

uncertainty of disturbance, as compared to forest or grass. Across the California bioregions, 

uncertainty was universally high; on average, the areas with high uncertainty accounted for 64% 

or more of the total area reported as disturbed across all regions. Furthermore, my results 

highlighted large differences between the burned areas reported by the reference data and the 

areas with low uncertainty of disturbance derived from spatial agreement among the disturbance 

products. I also identified that LANDFIRE was solely responsible for approximately 50% of the 

total area reported as disturbed (the majority attributed to fire events), while GFC and NAFD 

individually accounted for less than 10% of the total area reported as disturbed (both attributing 

the majority to non-fire events). These results point to potential overestimation of disturbance by 

both the reference data on fire and LANDFIRE as well as potential underestimation by GFC and 

NAFD, particularly for fire events. Overall, my investigation of uncertainty of disturbance within 

California helps researchers and practitioners to identify the strengths and weaknesses of the 

individual and collective detection capabilities of these products and provides a clear case study 
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of a simple but powerful methodology for using a data integration approach to quantify 

uncertainty of disturbance across broad spatial and temporal extents. 

Introduction 

Remote sensing data have become critical components of research on interactions between 

vegetation and disturbance dynamics, such as fire, across the United States (U.S.) (Arroyo, 

Pascual, & Manzanera, 2008; Lentile et al., 2006). In particular, the Landsat Time Series (LTS), 

which provides satellite images at moderate spatial (i.e. 30 m) and temporal (i.e. approximately 2 

weeks) resolutions, has been widely used by fire ecologists to identify site-specific connections 

between vegetation and fire severity through comparison of pre- and post-fire satellite images 

(Collins, Kelly, van Wagtendonk, & Stephens, 2007; Collins & Stephens, 2010; Miller, Safford, 

Crimmins, & Thode, 2009) and by remote sensing experts to develop LTS-specific algorithms 

aimed at identifying spatial-temporal dynamics of vegetation disturbance (i.e. quantifying 

changes in vegetation cover due to fire, drought, pestilence, harvesting, or land cover/use 

change) (Huang et al., 2010; Kennedy, Yang, & Cohen, 2010; Zhu, 2017; Zhu & Woodcock, 

2014). Open access to the LTS coupled with its broad utility in mapping vegetation has led to the 

creation of multiple remotely-sensed products that map annual vegetation disturbance using 

different methods, including Hansen Global Forest Change (GFC) (Hansen et al., 2013), North 

American Forest Dynamics (NAFD) (Goward et al., 2015), and Landscape Fire and Resource 

Management Planning Tools (LANDFIRE) (Keane, Rollins, & Zhu, 2007; Reeves, Ryan, 

Rollins, & Thompson, 2009; Rollins, 2009; Ryan & Opperman, 2013). My previous work 

evaluating the differences among these products (Chapter Three) concluded that differing 

methods of creation (i.e. automated remote sensing analyses by GFC and NAFD versus a 

traditional approach by LANDFIRE that integrates field data and public data on disturbance 

events with remote sensing) resulted in different thresholds for reporting disturbance, from GFC 

on the low end of reported disturbance to LANDFIRE at the high end. Thus, rather than relying 

on one product to accurately represent disturbance, researchers and practitioners should view 

these products as differing representations of disturbance along a continuum of low to high 

thresholds for reporting disturbance, and instead, seek ways to represent uncertainty of reported 

disturbance in their work. 

While these vegetation disturbance products are increasingly being used by researchers 

(including many non-remote sensing experts) to estimate changes in vegetation biomass and 

quantify impacts on regional-scale aboveground carbon dynamics across the U.S., most studies 

to date use only one product to represent the amount and location of disturbance in their study 

areas. For example, GFC has been used to identify changes in forest cover and carbon stocks 

within Forest Inventory Analysis (FIA) plots in the Eastern U.S. (Woodall et al., 2016) and to 

explore the impact of disturbance on tree mortality and related changes in water and carbon 

fluxes in the Western U.S. (Anderegg et al., 2016). NAFD has been used to identify the impact 

of time since disturbance on biomass and carbon in in the Pacific Northwest (Gu, Williams, 

Ghimire, Zhao, & Huang, 2016), and more broadly, to explore the potential impact of 

https://paperpile.com/c/EYAh8y/IJGR+TXBL
https://paperpile.com/c/EYAh8y/IJGR+TXBL
https://paperpile.com/c/EYAh8y/yDsn+yS5Z+Dl28
https://paperpile.com/c/EYAh8y/yDsn+yS5Z+Dl28
https://paperpile.com/c/EYAh8y/svzd+zPmX+V4YZ+nvoo
https://paperpile.com/c/EYAh8y/svzd+zPmX+V4YZ+nvoo
https://paperpile.com/c/EYAh8y/oTAk
https://paperpile.com/c/EYAh8y/X4bk
https://paperpile.com/c/EYAh8y/lpt2+Gpq9+hrdR+mzXm
https://paperpile.com/c/EYAh8y/lpt2+Gpq9+hrdR+mzXm
https://paperpile.com/c/EYAh8y/5Zpp
https://paperpile.com/c/EYAh8y/hvly
https://paperpile.com/c/EYAh8y/NilP
https://paperpile.com/c/EYAh8y/NilP
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disturbance history on U.S. forests‘ ability to remain a net carbon sink (Williams, Gu, MacLean, 

Masek, & Collatz, 2016). In California, LANDFIRE has been used to project future wildfire 

emissions under different climate, population and development scenarios (Hurteau, Westerling, 

Wiedinmyer, & Bryant, 2014), and in combination with other data such as FIA or Monitoring 

Trends in Burn Severity (MTBS) to identify the influence of disturbance on carbon dynamics 

across short (2001-2010) (Gonzalez, Battles, Collins, Robards, & Saah, 2015) and longer time 

periods (1951-2000) (Liu et al., 2011). While some of these studies accounted for uncertainty of 

certain variables, such as habitat type or canopy characteristics, none accounted for uncertainty 

in the amount and/or location of disturbance in the product that they used to represent 

disturbance. 

The lack of accounting for uncertainty in the amount and location of disturbance presents 

challenges for applying the results of carbon studies based on only one disturbance product. For 

example, using LANDFIRE data, a previous study found that the majority (i.e. two-thirds) of the 

aboveground carbon loss across California between 2001 and 2010 was specifically due to 

wildfires in the predominantly forested Sierra Nevada and Klamath-Siskiyou mountains, while 

the remaining one-third was identified to have occurred in shrub/shrub habitats, primarily 

attributed to fire events in Central and Southern California chaparral (Gonzalez et al., 2015). 

However, my previous work (Chapter Three) identified notable differences in the amounts of 

reported disturbance among various products (i.e. GFC, NAFD, LANDFIRE) in both 

scrub/shrub and forest habitat areas and in years with high fire incidence, highlighting the 

uncertainty introduced by the choice in disturbance product used to represent disturbance in a 

given study. 

Recognizing the role of uncertainty in mapping and quantifying disturbance, other researchers 

have started to explore methodologies for addressing uncertainty in the amount and location of 

disturbance through integrating the algorithms used to identify disturbance (i.e. ensemble 

modeling) (Healey et al., 2017), the development of multi-step statistical models that incorporate 

many of these products as predictors of disturbance (Schroeder et al., 2017), and map integration 

approaches (Soulard et al., 2017) that improve the accuracy in the identification of disturbance. 

While these emerging approaches have contributed to a greater ability for remote sensing experts 

to identify and quantify disturbance (and will possibly led to more robust disturbance products in 

the future), they present new limitations for accounting for uncertainty: (1) not all disturbance 

products are the results of reproducible algorithms (e.g. the widely used LANDFIRE; see 

Chapter Three, for a detailed description); (2) the complexity of many of these approaches make 

them unrealistic for non-remote sensing experts, who need a simple way to incorporate measures 

of uncertainty of disturbance into their work; or (3) the approaches improve accuracy but do not 

provide a measure of uncertainty of reported disturbance that can be used for further research on 

the implications of disturbance on ecosystems. 

In this Chapter, I present a simplified methodology specifically for quantifying uncertainty of 

disturbance based on spatial agreement among competing vegetation disturbance products (i.e. a 

https://paperpile.com/c/EYAh8y/qeej
https://paperpile.com/c/EYAh8y/qeej
https://paperpile.com/c/EYAh8y/Rtdd
https://paperpile.com/c/EYAh8y/Rtdd
https://paperpile.com/c/EYAh8y/Amiq
https://paperpile.com/c/EYAh8y/LvCt
https://paperpile.com/c/EYAh8y/Amiq
https://paperpile.com/c/EYAh8y/d9Sp
https://paperpile.com/c/EYAh8y/WOUu
https://paperpile.com/c/EYAh8y/h75G
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data integration approach). As quantifying uncertainty is directly related to how it is defined, this 

Chapter is guided by a definition that highlights the contribution of competing representations to 

uncertainty: "The degree to which the measured value of some quantity is estimated to vary from 

the true value. Uncertainty can arise from a variety of sources, including limitations on the 

precision or accuracy of a measuring instrument or system; measurement error; the integration of 

data that uses different scales or that describe phenomena differently; conflicting representations 

of the same phenomena; the variable, unquantifiable, or indefinite nature of the phenomena being 

measured; or the limits of human knowledge" (ESRI 2018). My methodology begins with basic 

raster calculations to quantify spatial agreement at each pixel by overlaying the disturbance 

products and labeling each pixel based on the products that report disturbance at that pixel (e.g. 

only LANDFIRE reported disturbance at the given pixel). These spatial agreement metrics are 

then converted to measures of uncertainty based on the number of products that report 

disturbance (e.g. high uncertainty of disturbance due to only one product reporting disturbance at 

a given pixel versus low uncertainty at a given pixel where all products report disturbance), 

which can also be overlaid with reference data on disturbance events to label disturbance type. I 

use a case study of spatial agreement among the three vegetation disturbance products that have 

overlapping coverage across California (i.e. GFC, NAFD, and LANDFIRE) to quantify 

uncertainty of disturbance between 2001 and 2010. Motivated by previously discussed research 

highlighting the strong influence of habitat, regional area, and fire on carbon dynamics across 

California, this study further examines uncertainty of disturbance across habitat types (including 

scrub/shrub and forest), bioregions (including Central and Southern California and the Sierra 

Nevada and Klamath-Siskiyou mountains), and burn conditions as reported by state and federal 

reference data on fire. 

Specifically, I address the following questions:  

1. Where and how much did the three vegetation disturbance products agree across 

California between 2001 and 2010?  

2. Using spatial agreement among the products as measures of uncertainty of disturbance at 

a given location, how did uncertainty vary by habitat type and bioregion across 

California? 

3. How did uncertainty of disturbance vary across burn conditions reported by reference 

data on fire (i.e. fire perimeter size, burn severity)?   

While I use fire in California as a case study to examine the implications of uncertainty in 

reported disturbance, my methodology of mapping and quantifying uncertainty through data 

integration (i.e. spatial agreement among disturbance products) can easily be expanded to new 

study sites with other data sources and be reproduced for new disturbance products derived from 

the LTS and other satellite sensors as they become available. I believe that my simple 

methodology can encourage and empower non-remote sensing experts to easily account for 
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uncertainty in the amount and location of disturbance in analyses that aim to understand the 

potential impacts of disturbances on ecosystems.  

Methods 

Spatial agreement approach to identifying measures of uncertainty of disturbance 

The methodology presented in this Chapter for quantifying uncertainty of disturbance is based on 

a series of basic raster calculations that can be completed in any Geographic Information System 

(GIS) or programming language (e.g. R, Python) that supports operations on georeferenced 

image files such as pre-classified raster layers (Figure 4-1). As all disturbance products have a 

different labeling system for disturbance, any analysis should begin with a standardization of the 

raster layers to define which values constitute disturbance. This standardization can easily be 

accomplished by relabeling all pixels that are reported as disturbed within each raster layer, 

using a new value for each raster (such as 2, 3, 4 if using three raster products), and labeling all 

non-disturbed pixels in all raster layers with a different value (such as 0). Following Figure 4-1, 

the standardized raster layers can then be overlaid to (a) create a raster stack from which (b) 

overlaps are identified through a simple addition or multiplication across the raster images (e.g. a 

multiplied value of 6 would indicate that the first two layers labeled 2 and 3 reported disturbance 

at that pixel). If desired, the resulting (c) spatial agreement map can be overlaid with a raster 

layer of (d) reference data on disturbance (e.g. fire occurrence) and used to assign a disturbance 

type. The final spatial agreement map (with or without disturbance type) are translated to 

measures of uncertainty of disturbance based on the number of products that reported 

disturbance at that pixel. For example, if using three disturbance products, only one product 

reporting disturbance at a given pixel indicates a high uncertainty of disturbance, while two 

products or all products reporting disturbance at a given pixel indicates a medium or low 

uncertainty of disturbance, respectively.  

 

Figure 4-1. Methodology exemplified with products used in the case study. In this applied 

example of the methodology, spatial agreement at the given location exists only between NAFD 

and LANDFIRE (LF) and there is no spatial overlap with the fire reference data. As such, 

uncertainty is identified as a medium level of uncertainty for a non-fire disturbance.  
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Application of methodology to case study of California fire 

For this Chapter, I conducted my analysis using Google Earth Engine (EE), a cloud-based 

distributed computing platform that provides geospatial functionality, such as pixel-based 

calculations based on overlaying multiple raster layers and calculating pixels areas contained 

within pre-defined zones of raster layers or features within vector layers (Gorelick et al., 2017). I 

chose to use GEE due to the number of pixels that would be analyzed for the study area of 

California: approximately 450 million at a 30 m pixel resolution for each raster layer included in 

the raster calculation. The initial map of spatial agreement was created by overlaying 

standardized versions of the vegetation disturbance products (from Chapter Three), which 

labeled pixels based on reported disturbance at each pixel anytime between 2001 and 2010. The 

resulting map contains eight categories of spatial agreement (Figure 4-2): (1) no reported 

disturbance; (2-4) disturbance reported by only one product (GFC, NAFD, or LANDFIRE, 

exclusively); (5) by GFC and NAFD only; (6) GFC and LANDFIRE only; (7) NAFD and 

LANDFIRE only; and (8) by all three products. The spatial agreement categories were then 

aggregated to label uncertainty of disturbance based on the number of products that reported 

disturbance at a given pixel (Figure 4-3): (1) no reported disturbance; (2) high uncertainty of 

disturbance (only one product reported disturbance); (3) medium uncertainty of disturbance (two 

products reported disturbance); and (4) low uncertainty of disturbance (all products reported 

disturbance).  

The areas covered by each agreement and uncertainty level were calculated using the EE 

function called ee.Image.pixelArea, which calculates areas using binary images in which pixels 

with the chosen attribute are labeled with a 1 (e.g. the chosen spatial agreement category), while 

all other pixels are given a value of 0. The results are provided as percentages of the total area of 

California, based on the contiguous area of California (i.e. approximately 408,642 square 

kilometers, excluding islands), which was derived from a publicly available vector dataset of 

state boundaries provided by ESRI. Additionally, the results are provided as percentages of the 

total area that was reported as disturbed by at least one product (i.e. all levels with the exception 

of ―no reported disturbance‖, approximately 40,021 square kilometers). Detailed results are 

provided in Appendix 4-1. 

Next, I overlaid the calculated spatial agreement map with a raster dataset of fire occurrence, 

derived from the vector-based FRAP fire perimeter dataset for 2000-2010, to quantify 

uncertainty of disturbance across fire and non-fire events. Additional information on the FRAP 

fire perimeter data is provided in supplemental material for Chapter Three (Appendix 3-1). Fire 

occurrence in 2000 was included to account for pixels in the vegetation disturbance products that 

likely would have been reported as disturbed in the first year of analysis (2001). Pixels that 

overlapped with the fire occurrence raster were labeled with a fire disturbance event, while 

pixels that did not overlap with the fire occurrence raster but were reported as disturbed by at 

least one product were attributed to non-fire disturbance events. As reliable and complete 

reference data on non-fire disturbance (e.g. harvesting or tree mortality due to drought or 

https://paperpile.com/c/EYAh8y/8enH
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pestilence) are not readily available with full coverage across the state, non-fire disturbance was 

treated as an aggregated category of disturbance.  

To examine biogeographical variations in uncertainty of disturbance across California, the results 

were summarized by habitat type derived from the CALFIRE FVEG raster dataset (Table 4-1) 

and by California bioregions as defined by a vector dataset from the Jepson Herbarium Project 

(Table 4-2). Details regarding the bioregions used in this study can be found in the supplemental 

material (Appendix 4-1); definitions of the habitat types (scrub/shrub; forest; grass; and other) 

can be found in the supplemental material for Chapter Three (Appendix 3-1). For habitat type, 

the area calculations were completed using the EE function called ee.Image.pixelArea to 

calculate the area of binary images for each combination of uncertainty, disturbance type, and 

habitat type (e.g. total area of pixels labeled with high uncertainty attributed to a fire event in 

scrub/shrub). For the bioregions, I used the EE function, ee.Reducer.frequencyHistogram 

(intended for vector datasets), to complete a zonal calculation that provided a count of the pixels 

of each combination of uncertainty and disturbance type by bioregion and region (the aggregated 

unit of multiple bioregions) (e.g. number of pixels labeled with high uncertainty attributed to a 

fire event in the bioregions of the Sierra Nevada region). The results are provided as percentages 

of the total area or number of pixels in the respective habitat type or bioregion (e.g. the 

proportion of all scrub/shrub area across California) as well as percentages of the total reported 

disturbed area in that habitat type or bioregion (e.g. the proportion of scrub/shrub area across 

California reported as disturbed by at least one product) (Appendix 4-1).  

The final portion of this analysis examined uncertainty of disturbance across burn conditions by 

comparing the areas with low and high uncertainty of disturbance across California to the areas 

reported as burned by reference data on fire in California, organized by FRAP fire perimeter size 

and MTBS maximum burn severity for 2000-2010 (as described in supplemental material for 

Chapter Three, Appendix 3-1). The areas with low, medium and high uncertainty of disturbance 

were calculated across four maximum burn severity levels (unburned to low; low; medium; and 

high) using ee.Image.pixelArea, and across six fire perimeter size classes based on acreage (less 

than 100; 100-500; 500-1,000; 1,000-10,000; 10,000-90,000; and greater than 90,000) using 

ee.Reducer.frequencyHistogram. The results of uncertainty of disturbance by burn severity are 

provided as percentages of the total area in the burn severity class, while uncertainty of 

disturbance within the fire perimeters are provided as the average proportions within the size 

class (Figure 4-2). 

Results 

Low spatial agreement highlights high uncertainty of disturbance across California 

Spatial agreement among the disturbance products indicated that 9.79% of the total contiguous 

area of California was reported as disturbed by at least one product between 2001 and 2010, 

covering approximately 40,021 square kilometers (i.e. total area reported as disturbed) (Figure 4-
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2; Appendix 4-1). The highest agreement category (i.e. all products reported disturbance) 

accounted for only 1.47% of California (approximately 15% of the total area reported as 

disturbed), indicating overall low spatial agreement among the products. LANDFIRE and NAFD 

more frequently agreed with each other (12.39% of the total area reported as disturbed) than did 

either with GFC; agreement between GFC and NAFD was especially low (only 1.15% of the 

total area reported as disturbed). Furthermore, the disturbance products significantly varied in the 

amount of area for which they were the sole product to report disturbance. By itself, LANDFIRE 

accounted for 51.79% of the total area reported as disturbed (30.34% specifically attributed to 

fire), while GFC and NAFD individually accounted for much lower percentages at 3.02% and 

9.92% of the total area reported as disturbed (only 0.07% and 0.58% attributed to fire), 

respectively (Appendix 4-1).  

The uncertainty of disturbance map highlighted high uncertainty of reported disturbance for 

California between 2001 and 2010, particularly for non-fire events (Figure 4-3). The highest 

uncertainty level (i.e. only one product reported disturbance) covered 64.73% of the total area 

reported as disturbed across California, relatively split between fire and non-fire events (31% and 

33.73% of the total area reported as disturbed, respectively). However, at the medium 

uncertainty level (i.e. two products reported disturbance), the area attributed to fire (14.24%) was 

more than double of the area attributed to non-fire events (6.02%), resulting in medium 

uncertainty of disturbance covering 20.26% of the total area reported as disturbed across 

California. Agreement between NAFD and LANDFIRE was the greatest contributor to the 

medium uncertainty level (12.39% of the total area reported as disturbed), particularly regarding 

fire events (8.99%) (Appendix A). Furthermore, low uncertainty of disturbance (only 15% of the 

total area reported as disturbed across California) was primarily attributed to fire events 

(12.13%), rather than non-fire events. While the areas with low and medium uncertainty were 

higher for fire events than non-fire events, the overall low area totals in the low and medium 

uncertainty categories across California indicate high uncertainty regardless of disturbance type.  
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Figure 4-2. Map of spatial agreement among the vegetation disturbance products. 

Agreement between GFC and NAFD (orange) is negligible at displayed map scale.  
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Figure 4-3. Map of uncertainty of disturbance derived from spatial agreement. Low 

uncertainty of non-fire events (black) is highly scattered, primarily throughout Northern 

California and is not easily visible at displayed map scale.   
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The examination of uncertainty of disturbance by habitat type across California indicated that 

scrub/shrub was most frequently reported as disturbed as well as identified to have the highest 

amount of area in the lowest uncertainty of disturbance category (Table 4-1). Overall, the 

proportion of scrub/shrub reported as disturbed by at least one product (22.51%) was the highest 

of all habitat types, and of all scrub/shrub across California, 4.49% was identified to have a low 

uncertainty of disturbance (almost entirely attributed to fire, 4.21%), more than double the 

amount across all forest (2.35%, with 1.67% attributed to fire). Scrub/shrub and forest shared 

more similar values for low uncertainty of disturbance when limiting their areas to only habitat 

reported as disturbed by at least one product, with 19.96% of disturbed scrub/shrub identified to 

have a low uncertainty of disturbance (almost entirely attributed to fire events at 18.71%) and 

14.60% of disturbed forest area identified to have low uncertainty of disturbance (with a smaller 

proportion attributed to fire events, 10.36%). Overall, 44.51% of the scrub/shrub reported as 

disturbed had a low or medium uncertainty, as compared to only 35.32% of forest.  

Table 4-1. Uncertainty of disturbance by habitat type  

Habitat Type 

Total % Habitat 

Area Reported as 

Disturbed 

% Low  

Uncertainty 

% Medium 

Uncertainty  

% High 

Uncertainty  

Percentage of all habitat type area across California 

Scrub/Shrub 22.51% 4.49% 

(4.21%)
1
 

5.52% 12.5% 

Forest 16.10% 2.35% 

(1.67%)
1
 

3.33% 10.41% 

Grass 7.45% 0.59% 

(0.36%)
1
 

0.72% 6.15% 

Other 1.89% 0.09% 

(0.06%)
1
 

0.2% 1.6% 

Percentage of habitat type area reported as disturbed only 

Scrub/Shrub - 19.96% 

(18.71%)
1
 

24.55% 55.49% 

Forest - 14.6% 

(10.36%)
1
 

20.72% 64.68% 

Grass - 7.91% 

(4.86%)
1
 

9.63% 82.47% 

Other - 4.5% 

(3.1%)
1
 

10.67% 84.82% 

1
 percentage attributed to fire events based on overlap with fire occurrence derived from FRAP fire perimeters 



69 

 

Across the California bioregions, uncertainty was universally high, as the average areas with 

high uncertainty accounted for 64% or more of the total area reported as disturbed across all 

regions (the aggregated unit of multiple bioregions) (Table 4-2). Only two bioregions (San 

Gabriel Mountains in the Southwestern California region and Outer South Coast Range in the 

Central Western California region) of all the bioregions had a low uncertainty covering more 

than 30% of the total area reported as disturbed (Appendix 4-1). The scrub-dominant 

Southwestern California region had the highest average for reported disturbance across its 

bioregions (33.52% of the bioregion areas reported as disturbed by at least one product) and was 

identified to have the second highest average area with low uncertainty of disturbance across its 

bioregions (14.04% of the total area reported as disturbed had low uncertainty of disturbance, 

mostly attributed to fire, 13.69%). In particular, uncertainty of disturbance was lowest in the 

bioregions of San Gabriel Mountains, Western Transverse Ranges, and San Bernardino 

Mountains (with low uncertainty covering 31.72%, 20.14%, and 16.52% of their total areas 

reported as disturbed, respectively) (Appendix 4-1).  

In the middle range of reported disturbance, the regions of forest-dominant Cascade Ranges, 

Northwestern California (which includes the North Coast and Klamath Ranges), and Sierra 

Nevada had similar values for the average area reported as disturbed, ranging from 10.55% to 

15.34% of the bioregion area totals. Looking only at the total area reported as disturbed, the 

average proportions in the low uncertainty category were also similar, ranging from 8.34% to 

11.64% across the bioregions (2.25% to 9.43% attributed to fire). Within these regions in the 

middle-range of reported disturbance, uncertainty of disturbance was lowest in the bioregions of 

the Central Sierra Nevada Foothills District, Northern High Sierra Nevada District, and Klamath 

Ranges (with low uncertainty covering 20.03%, 19.42%, 18.82% of their total areas reported as 

disturbed, respectively) (Appendix 4-1).  

At the lowest end of reported disturbance, the regions of Central Western California (which 

includes the Central and South Coast ranges as well as the San Francisco Bay Area) and of Great 

Central Valley, as well as the Great Basin (which includes the White, Inyo, and Warner 

Mountains) and Desert Provinces had similar low averages for the area reported as disturbed by 

at least one product, ranging from 2.24% to 8.89% of the bioregion area totals. However, looking 

only at the total area reported as disturbed, the average proportion with low uncertainty ranged 

widely, from 0.38% (the lowest average across all regions) to 16.64% (the highest average across 

all regions), with 0.26% to 15.37% attributed to fire. Within these regions in the low-range of 

reported disturbance, outlier bioregions with low uncertainty of disturbance included the Outer 

South Coast Ranges District in the Central Western California Region and Warner Mountains 

Bioregion of the Great Basin Province (low uncertainty covering 34.61% and 25.25% of their 

total area reported as disturbed, respectively) (Appendix 4-1).  

Overall, the scrub-dominant areas of Central Western and Southwestern California had lower 

uncertainty as compared to the forest-dominant Sierra Nevada and Klamath mountains, and all of 
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these areas attributed the majority of the area with low uncertainty to fire disturbance. However, 

even with outlier bioregions, uncertainty was high across these and all other California 

bioregions (i.e. 64% or more of the total area reported as disturbed across all regions; Table 4-2). 

Table 4-2. Uncertainty of disturbance by California region  

California Region
1
 

% Region Area 

Reported as 

Disturbed 

% Low 

uncertainty
2
 

% Medium 

uncertainty
2
 

% High 

uncertainty
2
 

Region with Highest Reported Disturbance 

Southwestern 

California 
33.52% 14.04% 

(13.69%)
3
 

21.60% 64.36% 

Regions in Middle-range of Reported Disturbance 

Cascade Ranges 15.34% 8.34% 

(2.25%)
3
 

15.83% 75.83% 

Northwestern 

California 
14.36% 11.64% 

(6.95%)
3
 

18.41% 69.95% 

Sierra Nevada 10.55% 11.28% 

(9.43%)
3
 

16.73% 71.99% 

Regions with Lowest Reported Disturbance 

Central Western 

California 
8.89% 

16.64% 

(15.37%)
3
 

18.26% 65.09% 

Great Basin Province 6.83% 
10.7% 

(8.83%)
3
 

15.85% 73.45% 

Great Central Valley 2.78% 
0.38% 

(0.26%)
3
 

6.20% 93.42% 

Desert Province 2.24% 
0.65% 

(0.62%)
3
 

10.83% 88.53% 

1
 average provided across all bioregions in the region; see Appendix A for detailed results by bioregion 

2
 percentage calculated from area reported as disturbed only (values for low, medium and high sum to 100%) 

3
 percentage attributed to fire events based on overlap with fire occurrence derived from FRAP fire perimeters 
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High uncertainty of disturbance across all fire perimeter sizes and most burn severity classes 

My results indicated that uncertainty of disturbance decreased more with burn severity than with 

fire perimeter size, with the proportions of low uncertainty of disturbance more than doubling 

with each increase in burn severity (Figure 4-4). At the highest burn severity, 55% of the area 

had low uncertainty of disturbance, though 16.47% of the area still had a high uncertainty of 

disturbance. Across the fire perimeter size classes, high uncertainty of disturbance comprised a 

large proportion across all fire perimeter size classes (Figure 4-4). While there was an observable 

decrease in the area with high uncertainty for fire perimeters larger than 1,000 acres, the highest 

average value for low uncertainty was only 27.59% of the total perimeter area, occurring in 

largest fire perimeter size class (greater than 90,000 acres). In general, while low uncertainty of 

disturbance incrementally increased with both fire perimeter size and burn severity (Figure 4-4), 

my results also highlighted large differences between the burned areas reported by the reference 

data and the areas with low uncertainty of disturbance derived from spatial agreement among the 

three disturbance products (e.g. Figure 4-5, MTBS burn severity overlaid by low uncertainty of 

disturbance map).  

 

 

Figure 4-4. Uncertainty of disturbance by burn condition. High uncertainty of disturbance is 

identified where only one product reported disturbance, while low uncertainty is identified where 

all products report disturbance. Percent of areas in each fire perimeter size class are calculated 

based on overlap with fire perimeters from CALFIRE Fire Resource and Assessment Program 

(FRAP), while percent of areas in each burn severity class are based on overlap with data from 

Monitoring Trends in Burn Severity (MTBS).  
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Figure 4-5. Map of burn severity overlaid by low uncertainty of disturbance areas 

attributed to fire events (black). Based on overlap with data from Monitoring Trends in Burn 

Severity (MTBS).   
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Discussion 

Implications of high uncertainty of disturbance in products and reference data 

While the recent proliferation of these disturbance products has supported research examining 

relationships between vegetation disturbance and aboveground carbon dynamics, uncertainty in 

the location and amounts of disturbance have strong implications for determining the carbon 

trajectory of a given area (i.e. toward more loss or more storage). While my study indicated high 

uncertainty of disturbance across all bioregions (Table 4-2; Appendix 4-1), including the forest-

dominant Sierra Nevada and Klamath mountains, several recent studies of carbon dynamics in 

California have concluded that these same areas have been and will continue to primary 

contributors to carbon loss due to disturbances such as fire and harvesting, followed by fire in the 

scrub-dominant areas of Central and Southern California (Gonzalez et al., 2015; Hurteau et al., 

2014; Liu et al., 2011). All of these studies used LANDFIRE as the primary dataset, with some 

including reference data from MTBS and FIA. Furthermore, my results also indicated the 

uncertainty was generally high across all habitat types (Table 4-1), though scrub/shrub was 

identified to have lower uncertainty of disturbance than forest. While one study did acknowledge 

notable uncertainty related to the low accuracy of the LANDFIRE vegetation classification as 

well as the ordinal attribution of new characteristics to pixels as they are disturbed (i.e. changes 

to vegetation height or composition only occur due to a discrete change in vegetation type), 

uncertainty in the location or amount of disturbance is not explicitly considered (Gonzalez et al., 

2015). Rather, the study definitively concluded that ―wildfires on 6% of the state analysis area 

produced two-thirds of the live carbon stock loss‖ (pg. 68). As such, it is clear that uncertainty in 

the location and amount of disturbance needs to be more thoroughly accounted for in studies that 

estimate aboveground carbon dynamics across habitat types and bioregions. 

In addition to the uncertainty of disturbance products like LANDFIRE, it must be noted that the 

FRAP and MTBS reference data are also representations of fire with their own biases and 

uncertainties that introduce uncertainty. For example, because manually created fire perimeters 

(such as those provided by FRAP) enforce the assumption that all pixels within the demarcated 

perimeter burned in that fire event, researchers have recognized that fire perimeters often include 

large amounts of unburned areas, as they are often delineated at larger extents than the area 

likely to have actually burned (Kolden & Weisberg, 2007; Kolden, Lutz, Key, Kane, & van 

Wagtendonk, 2012). Similarly, researchers have questioned the ability of Difference Normalized 

Burn Ratio (dNBR) analysis (used by MTBS) to accurately classify burn severity across all 

ecosystem types or to even be consistently comparable across a single landscape (French et al., 

2008; Kolden, Smith, & Abatzoglou, 2015; Parker, Lewis, & Srivastava, 2015; Roy, Boschetti, 

& Trigg, 2006) 

In comparing the results of this Chapter to my past work (Chapter Three), I also identify that 

both FRAP and MTBS reported higher amounts of burned areas than the total area that was 

found to have low uncertainty of disturbance. The total burned area in FRAP and MTBS between 

https://paperpile.com/c/EYAh8y/Amiq+Rtdd+LvCt
https://paperpile.com/c/EYAh8y/Amiq+Rtdd+LvCt
https://paperpile.com/c/EYAh8y/Amiq
https://paperpile.com/c/EYAh8y/Amiq
https://paperpile.com/c/EYAh8y/YPWg+wlIQ
https://paperpile.com/c/EYAh8y/YPWg+wlIQ
https://paperpile.com/c/EYAh8y/FaIr+NeoV+1MwJ+yEsg
https://paperpile.com/c/EYAh8y/FaIr+NeoV+1MwJ+yEsg
https://paperpile.com/c/EYAh8y/FaIr+NeoV+1MwJ+yEsg
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2000 and 2010 represented approximately 6% of the area of California (Chapter Three), while 

the total area with the low uncertainty of disturbance between 2001 and 2010 identified in this 

analysis was less than 1.5% of California (Figure 4-1). Furthermore, FRAP and MTBS each 

reported similar proportions of burned area within each habitat type (Chapter Three) that were 

noticeably larger than the amount of that habitat area with low uncertainty of disturbance. In 

particular, both reference data indicated that approximately 18% of all scrub/shrub across 

California experienced a fire event between 2000 and 2010, while less than 5% of all scrub/shrub 

was identified in this study to have a low uncertainty of disturbance between 2001 and 2010. 

Similarly, the reference data indicated that approximately 7% of forest and 5% of grass had 

experienced a fire event, while less than 2.5% of forest and 1% of grass were identified to have a 

low uncertainty of disturbance (Table 4-1). 

High uncertainty of disturbance across all fire perimeter sizes and all but the highest burn 

severity (Figure 4-4) further indicate that the reference data may actually be overestimating the 

true amount of burned area in California. On average, high uncertainty of disturbance covered 

over 45% of the areas of the individual fire perimeters across all fire perimeter size classes. 

These results are consistent with other research that have identified overestimation (by an 

average of 18%, up to 37%) by manually mapped fire perimeters (such as those from FRAP), as 

compared to remotely-sensed fire perimeters (Kolden & Weisberg, 2007; Kolden et al., 2012). 

The discrepancy between burned area reported by MTBS and areas with low uncertainty of 

disturbance (Figure 4-5) is also supported by research concluding that independent classification 

of burned areas resulted in higher accuracy than use of MTBS data to identify burned areas 

(Meddens, Kolden, & Lutz, 2016); these researchers reported that the average proportion of 

unburned areas within remotely-sensed fire perimeters was 20%, with typically higher 

proportions of unburned area within non-forest. 

The uncertainty of disturbance highlighted by this study also points to the interesting dilemma 

introduced by a ―data-rich‖ world, in which there are many competing datasets that represent the 

landscape based on the assumptions and processes by which they are created. For example, in 

contrast to research in the U.S. that points to overestimation of burned areas in state and federal 

reference data, international researchers argue that global remote sensing-based products (for 

which reference data are limited) greatly underestimate burned areas due to the exclusion of 

small fires (Nogueira, Ruffault, Chuvieco, & Mouillot, 2016). Furthermore, my previous work 

(Chapter Three) demonstrated that LANDFIRE reported much higher disturbance than GFC and 

Hansen primarily due to the inclusion of small FRAP fire perimeters that may not be picked up 

by the automated analyses of the latter two. However, fire perimeters smaller than 1,000 acres 

were shown in this study to have high uncertainty of disturbance. In addition, as LANDFIRE 

was solely responsible for approximately 50% of the total area reported as disturbed (primarily 

attributed to fire events), it is likely that the greater inclusion of smaller fires actually contributed 

to over-reporting of disturbance by LANDFIRE. In contrast, GFC and NAFD were individually 

responsible for only 3% and 10% of the total area reported as disturbed, respectively, primarily 

https://paperpile.com/c/EYAh8y/YPWg+wlIQ
https://paperpile.com/c/EYAh8y/a8bG
https://paperpile.com/c/EYAh8y/vFlO
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attributed to non-fire events. Additional research investigating the omission of burned areas by 

GFC and NAFD could identify the extent to which these products may be underreporting 

disturbance by fire events at local and regional scales. 

While it is possible that an individual product (e.g. LANDFIRE) could be the sole reporter of 

disturbance at a particular location because it accurately identified disturbance at that location, 

the goal of this Chapter was to quantify and examine uncertainty of disturbance, rather than 

accuracy. For example, for LANDFIRE, being the sole reporter at a given location could also be 

due to the product having a lower threshold for disturbance (as it integrates data reported by 

other agencies without additional review). This is supported by that fact that it was the sole 

reporter of 50% of the total area reported as disturbed, while NAFD and GFC were only sole 

reporters for 3% and 10%, respectively (Figure 4-1). For NAFD, sole reporting could be 

attributed to higher sensitivity to continuous disturbance as compared to GFC, and to continuous 

disturbance not being readily identified and reported by agencies contributing data to 

LANDFIRE. For GFC, sole reporting could be due to a high "salt and pepper" effect that often 

results from pixel-based supervised classification methods (Liu & Xia, 2010; Yu et al., 2006). As 

such, the creation method of each product (see detailed descriptions of products in Chapter 

Three) contributes to uncertainty of the reporting of disturbance at a given location and is an 

important measurement that is separate from an accuracy assessment of whether disturbance 

truly occurred at that location. 

Data integration as a methodology to account for uncertainty of disturbance 

This study presented a simple data integration approach (based on spatial agreement) for dealing 

with the data deluge in remotely-sensed products of vegetation change and disturbance. In 

contrast to other approaches such as algorithm and model ensembling, I believe that my 

methodology is not only easier to implement but is also more flexible and able to accommodate a 

variety of data, regardless of how they are created. Specifically, while remote sensing experts are 

using algorithm ensemble modeling to account for uncertainty of disturbance (Healey et al., 

2017), not all disturbance products are the results of reproducible algorithms that can be 

ensembled. For example, LANDFIRE, a widely used product, is created by combining manually 

gathered data on disturbance events reported by federal, state, and local agencies (often vector-

based data), with remotely-sensed vegetation and burn indices calculated from the LTS through 

semi-automated analyses (see Chapter Three for more details). Furthermore, the complexity of 

algorithm ensembling and other methods such as multi-step predictive modeling (Schroeder et 

al., 2017) can make these frameworks unapproachable for users of these disturbance products 

who may have limited programming or remote sensing expertise. To this end, a data integration 

approach through basic raster calculations across chosen products can help address the ―black-

box‖ of ensembling approaches, particularly some machine learning methods that do not provide 

information on which features included in the models are most important (and to what extent) for 

accurate identification of disturbance. Overall, my data integration approach puts the power of 

uncertainty analysis back into the hands of users of these disturbance products, particularly non-

https://paperpile.com/c/EYAh8y/2oik+Ig03
https://paperpile.com/c/EYAh8y/d9Sp
https://paperpile.com/c/EYAh8y/d9Sp
https://paperpile.com/c/EYAh8y/WOUu
https://paperpile.com/c/EYAh8y/WOUu
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remote sensing experts who do not have the resources to conduct a more complex analyses 

and/or a subsequent accuracy assessment. 

This data integration approach through spatial agreement can also provide insight into the 

contributions of individual products to overall uncertainty of disturbance, similar to how some 

ensemble models report the contribution of each algorithm to overall accuracy. This information 

can help users to further understand whether and how these products can be used in 

complementary ways. For example, my case study concluded that NAFD and LANDFIRE more 

frequently agreed with each other than did either with GFC, and that the area covered by NAFD-

LANDFIRE agreement was almost as much as the area covered by the complete agreement 

category (i.e. low uncertainty of disturbance) (Figure 4-1). This is perhaps not surprising given 

that the algorithm behind NAFD is focused on identifying continuous disturbance (i.e. any 

change or reduction in green vegetation), and LANDFIRE also attempts to incorporate 

continuous disturbance, while GFC only identifies discrete disturbances (i.e. stand-replacement 

change) (see Chapter Three for more details). However, it is surprising that agreement between 

NAFD and GFC was very low, given that both NAFD and GFC have a focus on forested areas, 

while LANDFIRE does not focus on any specific habitat type. As GFC was individually 

responsible for the least amount of the total area reported as disturbed, any spatial agreement 

combination with GFC would also result in low area totals. However, the conservative reporting 

of disturbance by GFC can be considered to have narrowed uncertainty even more, given that 

some of the continuous disturbance identified by NAFD and LANDFIRE may have minimal 

ecological impact (i.e. slight reductions of greenness due to natural ecological fluctuations). 

Furthermore, very little of the area with low uncertainty of disturbance was attributed to non-fire 

events, indicating that these products may not collectively provide useful data about the location 

and amount of non-fire disturbance such as harvesting or mortality from drought and pestilence. 

Given the dynamics of multi-disturbance regimes as well as potential overestimation of fire by 

the reference data, it is likely that incorporating reference data on non-fire events would actually 

result in large overlaps with the reference data on fire events, thereby introducing new 

uncertainties that need to be examined. 

While I acknowledge that this Chapter is not the first study to explore data integration of 

remotely sensed products, other studies have focused more on improving accuracy in 

identification of disturbance, rather than on quantifying or providing measures of uncertainty. 

For example, Schroeder et al. (2017) presented a different methodology for data integration 

based on a multi-step predictive model that integrates LANDFIRE and MTBS with other data 

(such as imagery from Google Earth and the National Agriculture Imagery Program, NAIP) as 

predictors to more accurately map five different types of forest disturbance. While this is an 

interesting and robust example of data integration, the complexity of this methodology likely 

resulted in the limited implementation to only ten LTS scenes across the U.S. Similarly, Soulard 

et al. (2017) also provided a useful data-driven methodology to improve accuracy in 

identification of forest disturbance and quantify magnitude of disturbance through ―harmonized 

https://paperpile.com/c/EYAh8y/WOUu
https://paperpile.com/c/EYAh8y/h75G
https://paperpile.com/c/EYAh8y/h75G


77 

 

maps‖ (pg. 169) that integrate multiple products (including GFC, NAFD, and LANDFIRE) and 

reduce commission errors. However, as pixels where only one product reported disturbance were 

not included in their final product, it is possible that high omission errors in their final product 

were primarily due to not including these pixels that my study labeled to have high uncertainty. 

Other researchers such as Kolden et al. (2015) have explored the integration of LANDFIRE and 

MTBS (both of which may be overestimating disturbance according to my results) to more 

accurately and consistently identify thresholds of burn severity across different habitat types and 

bioregions, though they concluded that more integration of data collected in the field, rather than 

remotely-sensed data, was needed for higher accuracy. In future work, my methodology and 

results could be combined with these other data integration approaches to address both accuracy 

and uncertainty of a given study area or time period. 

Moving forward, there are likely to be even more standardized disturbance products that can be 

incorporated into uncertainty analyses: from potential products developed from the LandTrendr 

algorithm (Kennedy et al., 2010) and the Landsat Burned Area Essential Climate Variable 

(BAECV) (Vanderhoof, Fairaux, Beal, & Hawbaker, 2017) to the upcoming Land Change 

Monitoring, Assessment and Projection (LCMAP), which is based on Continuous Change 

Detection and Classification (CCDC) algorithm (Zhu & Woodcock, 2014) and currently in 

validation phase before publication by USGS. As new vegetation disturbance metrics and 

products continued to be developed from LTS and possibly from other satellite sensors such as 

Sentinel 2 or WorldView 4 in the future, my methodology for data integration based on spatial 

agreement can be expanded and adapted to include new data options as they become available. 

Future work using my data integration approach could also examine patterns of uncertainty (e.g. 

spatial clustering; characteristics of individual fires with low or high uncertainty) as well as adapt 

my approach to integrate data across different sensor platforms and measurement scales such as 

non-standardized data from UAVs and micro-satellites. My flexible methodology allows for the 

combination of spatial agreement into uncertainty categories in different ways than were 

presented in this study (particularly if using a much higher number of products or if some 

products are identified to be complementary), and exploration of spatial clustering within and 

across uncertainty categories to explore potential issues introduced by raster stacking 

(particularly if trying to integrate across different satellite sensors and platforms for which pixel 

alignment may not match completely). 

Conclusion 

Low spatial agreement among the vegetation disturbance products resulted in less than 1.5% of 

California having a low uncertainty of disturbance between 2001 and 2010, despite the fact that 

almost 10% of California was reported as disturbed by at least one product in the time period. 

Most of the reported area with low uncertainty of disturbance was attributed to fire events, rather 

than non-fire events, indicating that spatial agreement among these products may not be 

appropriate for investigating non-fire disturbance (such as harvesting or mortality due to drought 

and pestilence). While I found that LANDFIRE and NAFD more frequently agreed with each 

https://paperpile.com/c/EYAh8y/yEsg
https://paperpile.com/c/EYAh8y/nvoo
https://paperpile.com/c/EYAh8y/Ylk0
https://paperpile.com/c/EYAh8y/zPmX


78 

 

other than did either product with GFC (agreement between GFC and NAFD being especially 

low), I also identified that LANDFIRE was solely responsible for approximately 50% of the total 

area reported as disturbed by at least one product, attributing the majority of the disturbed area to 

fire events. On the other hand, GFC and NAFD both individually accounted for less than 10% of 

the total area reported as disturbed, and both attributed the majority of the disturbed area to non-

fire events. These results point to both potential overestimation in disturbance by LANDFIRE as 

well as underestimation by GFC and NAFD, particularly for fire events. In my examination of 

uncertainty across biogeographical divisions, I found that scrub/shrub had a lower uncertainty of 

disturbance than forest, while uncertainty was universally high across all bioregions. As such, 

my results highlighted important implications of uncertainty of disturbance for studies of 

aboveground carbon dynamics in California, which have previously concluded that the forest-

dominant Sierra Nevada and Klamath-Siskiyou regions have been and will continue to be the 

primary contributors of aboveground carbon loss, followed by scrub-dominant Central and 

Southern California. Furthermore, I identified large differences between the burned areas 

reported by the reference data and the areas with low uncertainty of disturbance, as derived from 

spatial agreement among the disturbance products. As such, my results indicated potential over-

estimation of disturbance by the FRAP and MTBS reference data themselves. Overall, my 

investigation of uncertainty of disturbance for California identified the strengths and weaknesses 

of the individual and collective detection capabilities of these products and provided a clear case 

study of a simple but powerful methodology for using a data integration approach based on 

spatial agreement to quantify uncertainty across broad spatial and temporal extents.  
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Chapter Five 

Conclusions and Future Directions for Spatial Data Science  

Spatial Data Science presents both opportunities and challenges for geospatial researchers and 

practitioners. There are more options for geospatial data and analytical tools than ever before 

(particularly for earth and environmental monitoring and assessment), but these new tools have 

also helped to create new challenges surrounding how to evaluate and choose between data, 

software and tool options, how to integrate them into unified solutions, and how to evaluate their 

quality and uncertainty. Furthermore, as research teams investigate environmental challenges 

such as climate change, wildfire management, and the loss of biodiversity and natural areas that 

require increasingly more interdisciplinary collaboration as well as more complex geospatial 

analyses at broader extents and finer spatial resolutions, they also need to be able to evaluate 

analytical tools specifically on their functionality that supports collaborative completion of 

geospatial tasks. This dissertation addressed in part these challenges by successfully applying 

Spatial Data Science concepts and techniques to develop new frameworks for evaluating 

geospatial tools based on collaborative potential and for evaluating and integrating competing 

remotely-sensed data products on vegetation change and disturbance.  

Motivated by the lack of quantitative evaluation of geospatial tools based on their collaborative 

potential, Chapter Two developed a reproducible framework for evaluating multi-user geospatial 

tools based on their support for collaborative tasks and provided the first published typology of 

collaborative geospatial tools. While there had been efforts in the past to qualitatively evaluate 

and cluster geospatial software packages by various capacities, there had not been an attempt to 

evaluate the growing landscape of tools in a quantitative way. In Chapter Two, I outlined a 

collaborative Spatial Data Science workflow as the backbone of my evaluation framework to 

score and cluster multi-user geospatial tools (particularly open source and web/cloud-based 

options) based on their technical functionality that supports collaborative completion of 

geospatial tasks (i.e. setting up a working environment, data wrangling, analysis, and 

visualization/publication). I presented my results as a map of the emergent ecosystem of 

collaborative geospatial tools with three primary niches of tools: (1) participatory data 

aggregators; (2) content managers; and (3) highly scalable and customizable tools. While I 

discussed the advantages and disadvantages of each niche (based on user involvement and 

needed infrastructure), I also concluded that no single tool can meet all project needs, and that 

my framework can help researchers and practitioners to evaluate how collaborative geospatial 

tools meet certain needs and to explore ways that multiple tools can be integrated within the 

overall Spatial Data Science workflow. 

One of the key challenges facing researchers and analysts in the spatial data science discipline is 

meaningful integration of multiple data streams. There exist increasing amounts and types of 

spatially referenced products derived from remote sensing imagery, and often it is difficult to 
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understand their relative quality, utility, and provenance. Motivated by the absence of 

comparative evaluations of remotely-sensed disturbance products of vegetation change and 

disturbance, in Chapter Three, I compared the three published products with overlapping 

geographic and temporal extents for California (at the time of this dissertation) to identify drivers 

of uncertainty in vegetation disturbance (particularly for fire) and help end-users of these 

products understand how they report disturbance and the conditions under which they identify it. 

I found large differences in reported disturbance by the products that resulted from their differing 

methods of creation (i.e. explicit inclusion of reference data by LANDFIRE due to its manual 

creation process), rather than differences in their coverage of environmental conditions. Overall, 

LANDFIRE (a product which uses a more traditional workflow in its production through 

combining vector-based of disturbance events with remote sensing analyses) reported more 

disturbance across California for all years and all habitat types than did the two products that 

used automated, big data approaches to identifying disturbance in satellite imagery (i.e. Hansen 

Global Forest Change, GFC, and North American Forest Dynamics, NAFD).  When I compared 

GFC and NAFD, I found the former reported the least disturbance across all years and habitat 

types, reflecting the major difference in these automated approaches: GFC provides discrete 

identification of disturbance, while NAFD focuses on continuous disturbance. Specifically, while 

the algorithm used to create NAFD (Vegetation Change Tracker, VCT) can identify reductions in 

vegetation and green cover (i.e. continuous disturbance), the workflow used to create GFC 

(through a combination of standard remote sensing techniques such as supervised classification 

and time series analysis of vegetation indices) can only identify changes in vegetation that result 

in a complete change to a new cover type (i.e. discrete disturbance). I also concluded that the 

differences between the products were greatest in scrub/shrub areas (which were more frequently 

reported as disturbed by reference data) and in years with more fire incidence (as reported by 

reference data), indicating that more disturbance reported by reference data actually resulted in 

more differences among the products due to their differing thresholds for identifying disturbance 

(from GFC with the highest threshold based on discrete disturbance only to LANDFIRE with the 

lowest threshold as it incorporates reference data without limitations).   

These vegetation disturbance products are used widely in ecology and earth system science as 

the sole representation of disturbance in carbon studies, and often without regard to uncertainty 

in these datasets. This sort of product acceptance illustrates another key challenge in spatial data 

science: understanding and communicating uncertainty in spatial data and model products. In 

Chapter Four, I provided a simple but powerful methodology for accounting for uncertainty in 

disturbance based on quantifying spatial agreement among disturbance products. My framework 

used basic raster calculations (i.e. spatial overlays that can be calculated in any platform that can 

support satellite images) to identify where the products agreed in reporting disturbance, and then 

converted spatial agreement to measures of uncertainty of disturbance (e.g. high uncertainty 

where only one product reported disturbance, but low uncertainty where all products reported 

disturbance). I found that despite 10% of California being reported as disturbed by at least one 

product between 2001 and 2010, only 15% of that area had a low uncertainty of disturbance. 
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Across biogeographical divisions, I generally found that uncertainty was high across all 

bioregions and habitat types, though I did find that scrub/shrub had lower uncertainty than forest, 

particularly for fire events. My results also highlighted potential over-estimation of disturbance 

by both LANDFIRE and the reference data on fire, as LANDFIRE was found to be solely 

responsible for approximately 50% of the total area reported as disturbed in the study period, and 

large differences existed between burned areas reported by reference data and the areas with low 

uncertainty derived from the spatial agreement analysis. Based on my results indicating high 

uncertainty across California, I concluded that accounting for uncertainty in disturbance is 

particularly important for studies focused on the ecological implications of disturbance, such as 

impacts on aboveground biomass and carbon dynamics; rather than choosing only one product to 

represent disturbance, users of these products (in particular, non-remote sensing experts) can use 

simple methodologies for data integration (such as the presented framework) to address 

uncertainty in the location and amount of disturbance.  

Directions for future research 

Just as each chapter of this dissertation leveraged Spatial Data Science concepts and techniques 

to develop these frameworks for evaluating and integrating competing options from the plethora 

of available geospatial tools and data, each chapter also highlighted technical and conceptual 

challenges that remain for Spatial Data Science. Identifying additional challenges for the future 

of collaborative geospatial work, Chapter Two provided a list of technical developments needed 

for stronger functionality within collaborative geospatial tools (such as more integration of the 

cloud and high performance computing, HPC, for big data handling, stronger spatial-temporal 

integration, and controlled versioning of individual data features) and concluded with more 

general discussion of conceptual challenges for Spatial Data Science, including scaling of 

methods, data synthesis, how to develop tools to best serve users‘ needs, and centralized 

production of technology and knowledge. Chapter Three highlighted the critical need to view 

and use competing remotely-sensed vegetation disturbance products as different representations 

based on differing thresholds for reporting disturbance and called for new analytical frameworks 

that can help researchers and practitioners to quantify and account for uncertainty in disturbance 

products. While Chapter Four addressed this call by providing a new user-friendly framework 

(particularly for non-remote sensing experts) to account for uncertainty based on data 

integration, it concluded with a call for more analyses of patterns of uncertainty (e.g. spatial 

clustering; characteristics of individual fires with low or high uncertainty) and for frameworks to 

integrate data across different satellite sensors and measurement scales, particularly non-

standardized data from UAVs, micro-satellites, and newer satellites that are used for global 

environmental research such as Sentinel 2 and Worldview 4. While each dissertation chapter 

addressed different challenges in Spatial Data Science and identified research priorities in 

specific arenas, I conclude this dissertation by highlighting three avenues of future research that 

can provide key contributions toward data synthesis needed to address environmental challenges 
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in the 21
st
 century: scaling of geospatial methods; spatial-temporal integration; and academic 

curriculum focused explicitly on skills needed by Spatial Data Scientists.  

Scaling of methods 

In addition to the technical challenges posed by big data handling for scalability of geospatial 

tools, Spatial Data Science is also challenging the methodologies and techniques traditionally 

used to identify spatial patterns and processes. As geospatial datasets become larger (through 

coverage of broader extents, finer resolutions, or more dimensions), researchers are questioning 

whether the same geospatial methods that were previously used at smaller scales (such as spatial 

statistics and exploratory visualization techniques) are still useful at a global scale (Anselin 

2015). Furthermore, as the complexity of many environmental challenges require the analyses of 

increasingly multi-dimensional and multi-scale data with larger volumes, these analyses 

introduce new concerns regarding statistical significance of results from big data. Specifically, 

researchers such as Gandomi and Hader (2015) and Miller and Goodchild (2015) have identified 

concerns regarding noise in large data, the applicability of statistical methods when dealing with 

whole populations rather than samples, and other issues resulting from messy and disparate data.  

In particular, Miller and Goodchild also highlight the importance of remembering that even in 

big data, correlations are not causation, while Gandomi and Hader (2015) highlight work from 

others (Fan and Lv, 2008) to point out that stronger but spurious statistical correlations can result 

from randomness in big data simply as a result of the size of the dataset. As it is clear that these 

issues regarding scale, extent, and size are critical areas for Spatial Data Science, future research 

needs to focus on identifying new principles and methods for working with large datasets, such 

as the exploration of nested and stacked analyses to create an integrated view of a phenomena 

over many scales, and alternatives to long-held scientific tenets, such as questioning the 

relevance of significance values (i.e. p values), for large and complex data.   

Spatial-temporal integration   

Recognizing the complexity and feedback between ecosystem processes across both space and 

time, researchers have been calling for stronger spatial-temporal integration within 

environmental and ecological analyses, noting particular weakness in the temporal components 

of most research (Watson et al., 2013; Wolkovich et al., 2014). Within Spatial Data Science 

applications for identifying and quantifying landscape change, the gains that have been made in 

the spatial domain of landscape change have not necessarily been matched in the temporal 

domain. In particular, time series analyses of landscape change have been limited to either year-

to-year comparisons or identifications of the year of maximum or last loss, likely due to the lack 

of computational support for complex spatial-temporal analyses within existing geospatial tools. 

Future research can continue to leverage HPC to address this disparity through new frameworks 

that represent vegetation disturbance as multi-year processes, rather than individual, unrelated 

events. This reframing to an integrated spatial-temporal representation of landscape change 

provides two critical capabilities: (1) mapping of repeated disturbance as ecological regimes with 
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successional stages; and (2) differentiation of the impacts of disturbance regimes that appear to 

be similar but differ due to the historical context of a location. In addition, the rate of disturbance 

across years (i.e. a comparable metric of acceleration towards increasing or decreasing 

disturbance) can be interpreted as the temporal stability of vegetation in a given location. As an 

important application of this framework, identifying these differing trajectories of landscape 

change can address current limitations of existing land carbon balance studies, resulting from 

inadequate accounting of vegetation disturbance. For example, total loss has typically been 

calculated as the sum of point-in-time losses (i.e. aggregation of yearly losses), based on pixels 

of the same vegetation being assigned equal values of aboveground carbon loss. With spatially-

temporally integrated frameworks of vegetation disturbance, total carbon loss can be 

differentially estimated within vegetation types, based on whether a location is experiencing 

stability or deceleration (i.e. pixels unlikely to increase in carbon loss or remain as carbon sinks), 

or acceleration (i.e. pixels that are likely to remain carbon sources). 

New curriculum for Spatial Data Science 

In addition to collaboration, researchers have also noted the general need for more 

communication between scientists who model ecological and environmental processes and those 

who collect data and conduct experiments, citing differences in jargon and technical knowledge 

as well as issues in data quality, standardization and sharing (Heuschele et al., 2017). 

Furthermore, other researchers have specifically noted the lack of statistical training of doctoral 

students in ecological and environmental sciences, in sharp contrast to the advanced techniques 

that are being used in published ecological work (Touchon and McCoy, 2016). For Spatial Data 

Science, overcoming similar challenges is critical for achieving the data synthesis needed to 

tackle environmental challenges in the 21
st
 century (and beyond) and should be a priority in the 

curriculum that is used to prepare future Spatial Data Scientists. Spatial Data Scientists, like their 

ecological counterparts, need comparable technical knowledge and language to collaborate 

effectively on big or complex geospatial data projects. One of the main bifurcations in 

background knowledge for Spatial Data Science is whether a students‘ knowledge base 

originates within the computer science or statistics side (resulting in more technical skills but no 

domain knowledge) or within geography or other fields such as environmental science (resulting 

in more understanding of how space and time influence landscapes but weaker technical skills).  

To address this current limitation in academic curriculum, three key areas need to integrated 

within a new cross-disciplinary curriculum for Spatial Data Science: (1) computational training 

(i.e. scripting, cloud-based and HPC techniques, data management tools for storage, access, and 

versioning); (2) statistical training for both big data (i.e. machine learning, data mining) and 

spatial domains (i.e. remote sensing techniques and spatial statistics such as spatial 

autocorrelation and geographically weighted regression); and (3) visualization and publication 

tools that support collaboration (i.e. interactive web mapping using web frameworks that support 

both geospatial and  non-geospatial data; development of application programming interfaces). 
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While there are university and online courses that individually cover these skills, there is not yet 

a unified curriculum or program that builds on these concepts (particularly as they apply to 

spatial data) to advance students‘ knowledge from introductory to advanced levels needed to 

become Spatial Data Scientists. Rather, both students and professionals often have to acquire 

these skills on their own without formal guidance that can help them to appropriately target their 

learning. As our societal and environmental challenges grow more pressing and complex, I need 

new curriculum to prepare both students and professionals as Spatial Data Science leaders who 

can work collaboratively and successfully leverage data and tools to develop the needed policies, 

research, tools, and/or applications to find solutions at local to global scales.  

In conclusion, as Spatial Data Science continues to evolve through the development of new 

methods and tools for harnessing the ever-increasing amounts of data being collected through 

new instrumentation and volunteered by citizens, it is clear that interdisciplinarity will continue 

to be at the core of this emerging discipline. This interdisciplinarity specifically promotes the 

translation of methods and tools from related disciplines (such as Data and Computer Science) to 

geospatial questions as well as the applications of these methods and tools across multiple spatial 

and temporal scales and boundaries (both administrative and ecological). These avenues of 

interdisciplinarity also support increased scientific and policy collaborations through the 

development of collaborative tools for geospatial work and guidance on evaluating and 

integrating competing data and tools. In this light, the grand challenges of Spatial Data Science 

(i.e. choosing from the plethora of data and tool options, scaling of methods, spatial-temporal 

integration, achieving data synthesis) become grand opportunities to engage in data discovery, 

interdisciplinary explorations of spatial-temporal questions, and the harnessing of cutting-edge 

computational advances, thereby stimulating the breakthrough ideas and solutions needed to 

address our societal and environmental challenges in the 21
st
 century and beyond.  
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Appendices 

Appendix 2-1. Scoring Rubric 

Feature 
Name 

(metric) 
Group 

(Subset) 

Description 
of Group 
(Subset) Score of 1 Score of 2 Score of 3 

mobile 
support 

1 
Setting Up 
the Working 
Environment 

none - no mobile 
functionality (i.e. 
no application or 
cannot display UI 
on phone web 
browser) 

some - no specific 
mobile functionality 
or application 
provided but could 
be developed by 
user or used on 
phone web browser 

full - mobile 
application (i.e. 
Google Play or 
App store) or 
SDK available 

reproducibility 
of working 
environment 

1 
Setting Up 
the Working 
Environment 

none - platform 
does not 
reproduce 
working 
environment 

some - platform 
supports 
reproducibility of 
working environment 
via shared code or 
custom application 
installs but not 
required; or user 
interface is not the 
only primary working 
environment 

full - platform 
automatically 
reproduces 
working 
environment 
(i.e. working 
environment 
the same 
regardless of 
how users 
access user 
interface); or 
user interface 
is the primary 
working 
environment 

scalability 1 
Setting Up 
the Working 
Environment 

none - platform is 
limited by tool 
provider (i.e. 
functionality or 
data limits, 
number of users, 
applications/oper
ating systems 
supported) 

some - platform is 
somewhat limited by 
tool provider but not 
completely (i.e. data 
limits, number of 
users, 
applications/operatin
g systems 
supported); or there 
are not many 
limitations but the 
platform is 
exclusively hosted 
on cloud by provider 

full - platform 
not limited by 
tool provider 
(i.e. data limits, 
number of 
users, 
applications 
supported) or 
user can 
deploy their 
own cloud 
services (even 
if for a cost) 
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shared 
working 
environment 

1 
Setting Up 
the Working 
Environment 

none - platform is 
either local install 
only or does not 
have this 
capability 

some - platform can 
provide a shared 
working environment 
if desired but it is not 
necessary for full 
tool functionality 

full - platform 
requires users 
to use the 
same working 
environment in 
order to work 
on the same 
data jointly (i.e. 
the same UI 
within a same 
session) or 
there is only 
one dataset 
available for all 
users to work 
on (e.g. 
OpenStreetMa
p) 

web-based 1 
Setting Up 
the Working 
Environment 

none - platform 
relies on either 
local (Desktop or 
Mobile) or server 
based install 

some - platform has 
web-based or cloud-
based component 
(i.e. there are both 
desktop/mobile and 
web-based/cloud-
based options 
available or needed) 

full - platform is 
completely 
web-based or 
cloud-based 
(i.e. no installs 
needed or 
available) 

"live" data 
dissemination 
and database 
dependence 

2 
Data 
Wrangling 

none - "live" data 
not supported 

some - "live" data 
supported but not 
required 

full - "live" data 
is required for 
full tool 
functionality 

raster - create 2 
Data 
Wrangling 

none - user 
cannot create 
raster data 

some - user can 
create traditional 
raster formats (i.e. 
GeoTIFF) 

full - user can 
create non-
traditional and 
open data 
raster formats 
and services 
(i.e. NetCDF, 
HDF5, Tile 
Mapping 
Services) 

raster - edit 2 
Data 
Wrangling 

none - user 
cannot edit raster 
data 

some - user can edit 
traditional raster 
formats (i.e. 
GeoTIFF) 

full - user can 
edit non-
traditional and 
open data 
raster formats 
(i.e. NetCDF, 
HDF5, Tile 
Mapping 
Services) 
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raster - upload 2 
Data 
Wrangling 

none - user 
cannot upload 
raster data 

some - user can 
upload traditional 
raster formats (i.e. 
GeoTIFF) 

full - user can 
upload or 
consume non-
traditional and 
open data 
raster formats 
(i.e. NetCDF, 
HDF5, Tile 
Mapping 
Services) 

vector - create 2 
Data 
Wrangling 

none - user 
cannot create 
vector data 

some - user can 
create traditional 
vector formats (i.e. 
SHP, KML) 

full - user can 
create non-
traditional and 
open data 
vector formats 
and services 
(i.e. GeoJSON, 
WMS/WFS, 
Vector Tiles, 
MBTiles) 

vector - edit 2 
Data 
Wrangling 

none - user 
cannot edit vector 
data 

some - user can edit 
traditional vector 
formats (i.e. SHP, 
KML) 

full - user can 
edit non-
traditional and 
open data 
vector formats 
and services 
(i.e. GeoJSON, 
WMS/WFS, 
Vector Tiles, 
MBTiles) 

vector - 
upload 

2 
Data 
Wrangling 

none - user 
cannot upload 
vector data (i.e. 
formats beyond 
CSV) 

some - user can 
upload traditional 
vector formats (i.e. 
SHP, KML) 

full - user can 
upload or 
consume non-
traditional and 
open data 
vector formats 
and services 
(i.e. GeoJSON, 
WMS/WFS, 
Vector Tiles, 
MBTiles) 

spatial 
analysis 

3 
Data 
Analysis 

none - platform 
does not focus on 
data analysis 

some - platform 
provides some basic 
tools for analyzing 
data (i.e. 
geoprocessing, 
spatial filtering 
queries, creating 
new visualizations 
like heat maps) 

full - platform 
provides 
advanced tools 
for analyzing 
data (i.e. 
statistical 
functions) 
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integration of 
time 

3 
Data 
Analysis 

none - time is not 
an integral 
component of the 
platform 

some - platform 
provides some 
support for time data 
(i.e. collecting data 
over time, querying 
for or visualizing 
data over time) 

full - platform 
supports 
analysis over 
time (i.e. 
calculating 
change over 
time, statistical 
functions) 

scripting 
capabilities 

3 
Data 
Analysis 

none - platform 
does not provide 
options for 
scripting (i.e. not 
possible to 
integrate Python, 
R, C, JavaScript 
code) 

some - platform 
provides some 
functionality for 
integrating scripting 
for some spatial 
analysis (i.e. Python 
or R for 
geoprocessing); or 
API available for 
creating new 
analysis applications 
for analyzing data 

full - platform 
provide options 
for advanced 
scripting such 
as existing or 
custom 
statistical 
functions (i.e. 
Python, R, C, 
JavaScript) 

integration of 
high 
performance 
computing 

3 
Data 
Analysis 

none - platform is 
not able to or 
does not support 
distributed/paralle
l computing (i.e. 
user cannot or 
would not benefit 
much from 
implementing this 
functionality) 

some - platform 
could support 
distributed/parallel 
computing but does 
not currently provide 
a mechanism/tool to 
the user for this 
functionality 

full - platform 
supports or 
incorporates 
distributed/para
llel computing 

reproducibility 
of workflow 
(analysis) 

3 
Data 
Analysis 

none - platform 
does not provide 
tools for 
reproducing 
workflow; or 
platform is not 
focused on 
analyzing data 

some - platform 
supports 
reproducibility of 
workflow via shared 
code but not 
required 

full - platform 
automatically 
reproduces 
workflow (i.e. 
workflow is a 
saved product 
of any session) 

custom 
visualization 
options 

4 

Data 
Visualization 
and 
Publication 

none - user can 
only create 
standardized 
maps 

some - user can 
modify existing code 
for map or results 
(i.e. CSS, HTML) 

full - user can 
incorporate 
advanced 
visualization 
tools (i.e. D3, 
Leaflet, other 
JavaScript 
libraries) or 
create custom 
styles 

data 
publication 
options 

4 

Data 
Visualization 
and 
Publication 

none - user can 
only download 
maps or 
calculated results 

some - spatial data 
are downloadable 

full - API 
available to 
access data 
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raster - 
download 

4 

Data 
Visualization 
and 
Publication 

none - user 
cannot download 
raster data 

some - user can 
download traditional 
raster formats (i.e., 
GeoTIFF); for 
mobile, ability to use 
"big data" formats 
and services offline 

full - user can 
download non-
traditional and 
open data 
raster formats 
and services 
(i.e. NetCDF, 
HDF5, Tile 
Mapping 
Services) to be 
consumed in 
other 
applications 

vector - 
download 

4 

Data 
Visualization 
and 
Publication 

none - user 
cannot download 
vector data 

some - user can 
download traditional 
vector formats (i.e., 
SHP, KML); for 
mobile, ability to use 
"big data" formats 
and services offline 

full - user can 
download non-
traditional and 
open data 
vector formats 
and services 
(i.e. GeoJSON, 
WMS/WFS, 
Vector Tiles, 
MBTiles) to be 
consumed in 
other 
applications 

free of cost 5 
FOSS4G 
and 
Accessibility 

none - payment 
required (i.e. free 
is limited to trial 
basis only) 

some - free to a 
certain level (i.e. 
data or functionality 
limits) or free but 
restricted to a limited 
set of users for full 
functionality (i.e. tool 
is open but API is 
restricted) 

full - completely 
cost-free for full 
functionality 
and open to 
anyone 

interoperability 5 
FOSS4G 
and 
Accessibility 

none - platform 
does not take 
inputs from or 
provide outputs to 
other platforms 
(i.e. only 
imports/exports to 
SHP or KML) 

some - platform can 
import from or 
provide output to a 
limited set of 
platforms (at least 
one) (i.e. ArcGIS 
online, database 
management 
systems, 
WMS/WFS) 

full - platform 
provides tools 
open to 
consuming/bein
g consumed by 
a wide variety 
of platforms via 
API, SDK, or 
SOAP web 
services; or 
connects to at 
least 3 
tools/kernels 
(i.e. Jupyter 
kernels for R, 
Python, 
MatLab) 
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open source 
integration 
(back-end) 

5 
FOSS4G 
and 
Accessibility 

none - proprietary 
platform 

some - platform 
relies on both 
proprietary and open 
source components 

full - platform is 
composed 
entirely of open 
source 
components 

privacy and 
access control 

5 
FOSS4G 
and 
Accessibility 

none - all data, 
analysis and 
projects are 
public by default 

some - platform 
allows for some 
restriction to data, 
analysis workflow, 
and projects but 
does not include a 
user/content 
management 
system; or privacy 
can be provided for 
a cost; or it is private 
by default because it 
is a local install or 
data is used locally 

full - platform 
includes a 
user/content 
management 
system that 
allows full 
control over 
access to data, 
analysis 
workflow, and 
projects (even 
if paid) 

tools for 
asynchronous 
tasks 

6 
User 
Involvement 

none - platform 
does not provide 
tools to support 
asynchronous 
tasks (i.e. sharing 
code, versioning, 
off-line 
capabilities, 
sharing of status 
updates) 

some - platform 
provides some tools 
(at least 1) to 
support 
asynchronous tasks 
(i.e. sharing code, 
versioning, off-line 
capabilities, sharing 
of status updates) 

full - platform 
provides many 
tools to support 
asynchronous 
tasks (i.e. 
sharing code, 
versioning, off-
line 
capabilities, 
sharing of 
status updates) 

open source 
modifications 
by users 

6 
User 
Involvement 

none - user 
cannot add or 
modify existing 
open source 
functionality (i.e. 
platform is locked 
down) 

some - user can add 
open source 
functionality (i.e. add 
D3 code, use of API) 
but not modify 
existing open source 
functionality (i.e. 
modify existing 
functions) 

full - released 
under an open 
source license 
(e.g. GNU 
GPL); or user 
can add to and 
modify existing 
open source 
functionality 
(full source 
code available) 

user 
involvement in 
technology 
building 

6 
User 
Involvement 

none - users are 
not involved in 
creating or 
expanding the 
platform 

some - users can 
expand or build off 
of the platform (i.e. 
SDK provided, 
ability to build 
custom forms, 
leverage WFS, 
script new 
tools/processes) 

full - users are 
active 
participants in 
creating and 
expanding the 
platform (i.e. 
collaborative 
coding or 
customization) 



103 

 

user 
knowledge 
needed for 
modification of 
technology 

6 
User 
Involvement 

none - users do 
not need much 
technical 
knowledge to 
expand the 
platform (i.e. no 
programming) but 
there are limited 
or no 
modifications 
possible 

some - users need 
some technical 
knowledge to 
expand the platform 
(i.e. programming 
knowledge is 
useful), allowing for 
more modifications, 
such as form 
building 

full - users 
need standard 
technical 
knowledge to 
expand the 
platform (i.e. 
programming 
knowledge is 
required), 
allowing for 
advanced 
modification 
options such as 
integrating 
custom 
functions 

 

Appendix 2-2. Feature Scores by Tool 

Label Name 
mobile 
support 

reproducibility 
of working 

environment 
scalability 

shared 
working 

environment 
web-based 

T30 AmigoCloud 3 3 2 2 2 

T28 ArcGIS Online 2 3 2 2 3 

T31 
ArcGIS Open 
Data 

2 2 2 2 3 

T1 CARTO 3 2 3 2 2 

T23 Data Basin 2 2 2 2 3 

T20 eBird 2 3 2 2 3 

T24 
ESRI Collector 
for ArcGIS 

3 2 2 2 2 

T16 Field Papers 2 3 2 3 3 

T12 FME Suite 2 3 3 2 2 

T21 GeoLocate 2 2 3 2 2 

T25 Geopaparazzi 3 2 1 2 1 

T9 
Global Forest  
Watch 

2 2 3 2 3 

T13 
Google Earth  
Engine 

2 3 2 2 3 

T22 HOLOS 2 2 3 2 3 

T17 iNaturalist 3 3 3 2 2 
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T4 Jupyter Hub 2 3 3 2 2 

T26 Locus Map 3 2 1 1 1 

T14 Madrona 2 3 3 2 2 

T15 MapBox Studio 3 3 3 2 2 

T2 MapGuide 2 2 3 2 2 

T5 
NASA NEX  
sandbox 

1 2 2 2 2 

T10 NextGIS 3 2 2 2 2 

T18 
OpenDataKit/ 
GeoODK 

3 2 1 2 2 

T19 OpenStreetMap 2 3 2 3 3 

T27 Orux Maps 3 1 1 1 1 

T6 OS Geo Live 1 3 3 2 2 

T11 QGIS Cloud 2 2 3 2 2 

T7 ROpenSci 2 2 3 2 2 

T8 Rshiny 2 2 3 2 2 

T29 Seasketch 2 3 2 2 3 

T3 XchangeCore 2 2 3 2 2 

 
Average Tool 
Score 

2.258 2.387 2.355 2 2.226 

 

Label Name 

"live" data 

dissemination 

and database 

dependence 

raster 

- 

create 

raster - 

edit 

raster - 

upload vector - create 

T30 AmigoCloud 
3 1 1 2 3 

T28 ArcGIS Online 
3 1 1 3 2 

T31 
ArcGIS Open 
Data 

3 1 1 3 1 

T1 CARTO 
3 1 1 1 2 

T23 Data Basin 
2 1 1 3 2 
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T20 eBird 
3 1 1 1 1 

T24 
ESRI Collector 
for ArcGIS 

2 1 1 3 2 

T16 Field Papers 
2 1 1 1 2 

T12 FME Suite 
2 3 3 3 3 

T21 GeoLocate 
2 1 1 1 3 

T25 Geopaparazzi 
2 1 1 3 2 

T9 
Global Forest  
Watch 

2 2 1 3 3 

T13 
Google Earth  
Engine 

2 2 1 2 3 

T22 HOLOS 
3 1 1 1 1 

T17 iNaturalist 
3 1 1 1 3 

T4 Jupyter Hub 
2 3 3 3 3 

T26 Locus Map 
2 1 1 3 2 

T14 Madrona 
3 1 1 2 3 

T15 MapBox Studio 
3 1 1 3 3 

T2 MapGuide 
3 1 1 3 2 

T5 
NASA NEX  
sandbox 

2 3 3 3 3 

T10 NextGIS 
2 2 2 3 3 

T18 
OpenDataKit/ 
GeoODK 

2 1 1 1 3 

T19 OpenStreetMap 
3 1 1 1 2 

T27 Orux Maps 
2 1 1 3 2 

T6 OS Geo Live 
2 3 3 3 3 

T11 QGIS Cloud 
2 2 2 3 3 

T7 ROpenSci 
2 3 2 2 3 

T8 Rshiny 
2 3 2 3 3 

T29 Seasketch 
3 1 1 3 2 
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T3 XchangeCore 
2 1 1 2 2 

 Average Tool 
Score 

2.387 1.516 1.387 2.323 2.419 

 

Label Name 

vector - 

edit 

vector - 

upload 

spatial 

analysis 

integration of 

time 

scripting 

capabilities 

T30 AmigoCloud 
2 3 2 2 2 

T28 ArcGIS Online 
2 3 2 1 2 

T31 ArcGIS Open Data 
1 3 2 2 2 

T1 CARTO 
2 2 2 2 2 

T23 Data Basin 
2 3 2 2 1 

T20 eBird 
1 1 2 2 1 

T24 
ESRI Collector for 
ArcGIS 

2 3 1 2 1 

T16 Field Papers 
2 1 1 2 1 

T12 FME Suite 
3 3 2 1 2 

T21 GeoLocate 
1 1 2 1 1 

T25 Geopaparazzi 
2 3 1 2 1 

T9 
Global Forest  
Watch 

2 3 3 3 3 

T13 
Google Earth  
Engine 

1 2 3 3 3 

T22 HOLOS 
1 1 2 2 2 

T17 iNaturalist 
1 1 1 2 1 

T4 Jupyter Hub 
3 3 3 3 3 

T26 Locus Map 
2 3 2 2 1 

T14 Madrona 
3 3 3 2 3 

T15 MapBox Studio 
3 3 3 2 3 

T2 MapGuide 
2 3 2 2 2 

T5 
NASA NEX  
sandbox 

2 3 3 3 3 
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T10 NextGIS 
3 3 2 2 3 

T18 
OpenDataKit/ 
GeoODK 

3 3 1 2 2 

T19 OpenStreetMap 
2 1 1 2 1 

T27 Orux Maps 
2 3 1 2 1 

T6 OS Geo Live 
3 3 3 3 3 

T11 QGIS Cloud 
3 3 3 2 2 

T7 ROpenSci 
3 3 3 3 3 

T8 Rshiny 
3 3 3 3 3 

T29 Seasketch 
2 3 3 3 3 

T3 XchangeCore 
2 3 2 2 2 

 Average Tool 
Score 

2.129 2.549 2.129 2.161 2.032 

 

Label Name 
integration 

of HPC 

reproducibility 

of workflow 

(analysis) 

custom 

visualization 

options 

data 

publication 

options 

raster – 

download 

T30 AmigoCloud 
1 2 2 3 1 

T28 ArcGIS Online 
1 2 2 2 2 

T31 
ArcGIS Open 
Data 

1 1 2 3 1 

T1 CARTO 
3 2 3 3 1 

T23 Data Basin 
1 2 1 2 2 

T20 eBird 
1 1 1 1 1 

T24 
ESRI 
Collector for 
ArcGIS 

1 2 1 1 2 

T16 Field Papers 
1 2 1 2 1 

T12 FME Suite 
3 3 1 3 3 

T21 GeoLocate 
1 2 1 3 1 

T25 Geopaparazzi 
1 1 1 2 1 
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T9 
Global Forest  
Watch 

3 3 3 3 2 

T13 
Google Earth  
Engine 

3 3 3 3 2 

T22 HOLOS 
2 2 3 3 1 

T17 iNaturalist 
1 1 1 3 1 

T4 Jupyter Hub 
2 3 3 2 3 

T26 Locus Map 
1 1 1 3 1 

T14 Madrona 
2 2 3 3 1 

T15 
MapBox 
Studio 

2 2 3 3 3 

T2 MapGuide 
1 2 3 3 2 

T5 
NASA NEX  
sandbox 

3 2 3 2 3 

T10 NextGIS 
2 1 2 3 2 

T18 
OpenDataKit/ 
GeoODK 

1 2 1 3 1 

T19 
OpenStreet 
Map 

2 2 1 3 1 

T27 Orux Maps 
1 1 1 2 1 

T6 OS Geo Live 
2 2 3 2 3 

T11 QGIS Cloud 
2 2 1 2 2 

T7 ROpenSci 
2 2 3 3 2 

T8 Rshiny 
2 2 3 2 2 

T29 Seasketch 
2 2 1 2 1 

T3 XchangeCore 
2 2 1 2 2 

 Average Tool 
Score 

1.7097 1.903 1.903 2.484 1.677 

 

Label Name 

vector - 

download free interoperability 

open source 

integration  

privacy and 

access control 

T30 AmigoCloud 
3 1 3 2 3 

T28 ArcGIS Online 
3 2 2 2 3 
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T31 
ArcGIS Open 
Data 

3 2 3 2 3 

T1 CARTO 
3 2 3 3 3 

T23 Data Basin 
2 2 2 2 3 

T20 eBird 
3 2 3 2 1 

T24 
ESRI 
Collector for 
ArcGIS 

2 1 2 2 3 

T16 Field Papers 
3 3 3 3 2 

T12 FME Suite 
3 1 3 2 3 

T21 GeoLocate 
3 3 3 2 3 

T25 Geopaparazzi 
2 3 2 3 2 

T9 
Global Forest  
Watch 

3 3 3 3 2 

T13 
Google Earth  
Engine 

3 2 3 3 3 

T22 HOLOS 
2 3 3 3 1 

T17 iNaturalist 
3 3 3 3 1 

T4 Jupyter Hub 
3 3 3 3 3 

T26 Locus Map 
3 2 3 2 2 

T14 Madrona 
3 3 3 3 3 

T15 
MapBox 
Studio 

3 2 3 3 2 

T2 MapGuide 
3 3 2 3 3 

T5 
NASA NEX  
sandbox 

3 2 2 2 2 

T10 NextGIS 
3 2 3 3 3 

T18 
OpenDataKit/ 
GeoODK 

3 3 3 3 2 

T19 
OpenStreet 
Map 

3 3 3 3 1 

T27 Orux Maps 
2 3 2 2 2 

T6 OS Geo Live 
3 3 3 3 2 

T11 QGIS Cloud 
3 2 2 3 2 
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T7 ROpenSci 
3 3 3 3 1 

T8 Rshiny 
3 2 2 3 2 

T29 Seasketch 
2 1 2 2 3 

T3 XchangeCore 
3 2 3 3 3 

 
Average Tool 
Score 

2.806 

2.32

3 2.677 2.613 2.323 

 

Label Name 

tools for 

asynchronous 

tasks 

open source 

modification

by users 

user involvement 

in technology 

building 

user knowledge 

needed for 

modification of 

technology 

T30 AmigoCloud 
2 2 2 3 

T28 ArcGIS Online 
2 1 2 2 

T31 
ArcGIS Open 
Data 

2 2 2 2 

T1 CARTO 
2 3 2 3 

T23 Data Basin 
3 1 1 1 

T20 eBird 
1 1 1 1 

T24 
ESRI 
Collector for 
ArcGIS 

3 1 1 1 

T16 Field Papers 
3 3 2 3 

T12 FME Suite 
3 2 2 3 

T21 GeoLocate 
2 2 2 2 

T25 Geopaparazzi 
2 2 2 2 

T9 
Global Forest  
Watch 

2 3 2 3 

T13 
Google Earth  
Engine 

3 2 3 3 

T22 HOLOS 
2 2 2 3 

T17 iNaturalist 
2 3 2 3 
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T4 Jupyter Hub 
2 3 2 3 

T26 Locus Map 
2 2 2 3 

T14 Madrona 
3 3 3 3 

T15 
MapBox 
Studio 

2 2 2 3 

T2 MapGuide 
2 3 2 3 

T5 
NASA NEX  
sandbox 

2 2 3 3 

T10 NextGIS 
2 3 2 3 

T18 
OpenDataKit/ 
GeoODK 

2 3 3 3 

T19 
OpenStreet 
Map 

3 2 3 3 

T27 Orux Maps 
2 1 1 1 

T6 OS Geo Live 
2 3 3 3 

T11 QGIS Cloud 
2 2 2 2 

T7 ROpenSci 
2 3 3 3 

T8 Rshiny 
2 3 2 3 

T29 Seasketch 
3 2 3 2 

T3 XchangeCore 
3 3 2 3 

 Average Tool 
Score 

2.258 2.258 2.129 2.548 

 

Appendix 3-1. Supplemental Material to Chapter 3 

All datasets used in this study (including the disturbance products, reference data on fire, and 

environmental conditions) were used or calculated at a 30 m spatial resolution (resampled, if 

needed) and were clipped to the boundary of California using a vector file publicly provided by 

ESRI. All pre-processing was completed in Google Earth Engine (EE), unless otherwise noted. 

Once uploaded to EE, all data were projected and stored as WGS84 Web Mercator (EPSG 3857). 

Standardization of Vegetation Disturbance Products 

The standardization process was adjusted for the temporal structure of the individual disturbance 

products. Specifically, LANDFIRE was only provided as individual annual rasters, while GFC 

was only provided as a single raster with distinct values for each year. As NAFD was available 



112 

 

in both temporal formats, I decided to use the single raster NAFD provided for last year of 

disturbance to easily query the data by year. To create the annual rasters for GFC and NAFD, I 

queried the original rasters by year (2001 to 2010) and created new annual rasters, in which all 

pixels reported as disturbed in a given year were labeled with a value of 1. Undisturbed pixels in 

that year were labeled with a value of 0. To create comparable aggregated-time rasters of 

reported disturbance for GFC and NAFD, I relabeled the original rasters, so that all pixels 

reported as disturbed any time between 2001 and 2010 were given a value of 1, while 

undisturbed pixels or pixels disturbed outside of time frame (i.e. before 2001 or after 2010) were 

labeled with a value of 0. Similarly, to create comparable annual and aggregated-time rasters for 

LANDFIRE, I relabeled the original annual rasters such that all pixels reported as disturbed in a 

given year were given a value of 1 (all others given a value of 0), and then aggregated the annual 

rasters to create an aggregated-time raster in which all pixels reported as disturbed anytime 

between 2001 and 2010 were labeled with a value of 1 (all others given a value of 0). 

For GFC, the integrated-time raster of forest loss was available in Google Earth Engine as part of 

the raster image stack named Hansen Global Forest Change v1.2 (2000-2014). A layer called 

Lossyear (band 3) provided a value at each pixel representing the year in which loss was 

identified in the LTS, beginning with a value of 1 for 2001 to a value of 14 for 2014. A value of 

0 meant that no loss was identified between 2001 and 2014. I limited Lossyear to values greater 

than or equal 1 (representing 2001) and for values less than or equal to 10 (representing 2010). 

The individual pixel values were then queried to create rasters by year (i.e. the raster for year 

2001 was created by querying for pixels with a value 1, and so on). In my aggregated-time raster, 

pixels with values between 1 and 14 were set to a value of 1 to indicate identified disturbance in 

my study period, while all other pixels were given a value of 0.  

For NAFD, the aggregated-time raster of forest disturbance was available on the NAFD-NEX 

webpage (https://daac.ornl.gov/NACP/guides/NAFD-NEX_Forest_Disturbance.html) as 

VCT_30m_last.tif from version R1 of the Forest Disturbance History dataset. It provided a value 

at each pixel representing the last year of forest disturbance, calculated as the time passed since 

1970 (i.e. value = last year of disturbance - 1970). A value of 4 meant that no disturbance was 

identified in the time period. I limited VCT_30m_last.tif to values greater than or equal 31 

(representing 2001) and for values less than or equal to 40 (representing 2010). Mirroring my 

process for GFC, the individual pixel values were also queried to create rasters by year (i.e. the 

raster for year 2001 was created by querying for pixels with a value 31, and so on). In my 

aggregated-time raster, pixels with the values between 31 and 40 were then set to a value of 1 to 

indicate identified disturbance in my study period, while all other pixels were given a value of 0. 

For LANDFIRE, the yearly rasters of disturbance were available on the LANDFIRE website 

(https://www.landfire.gov/disturbance_2.php) for 2001 to 2010 (version 1.4.0.). Each raster was 

named US_DISTYEAR.tif, where YEAR is the year of disturbance. Each raster labeled pixels 

with values for various disturbance types ranging from 11 to 1133, with the exception of value 

https://daac.ornl.gov/NACP/guides/NAFD-NEX_Forest_Disturbance.html
https://www.landfire.gov/disturbance_2.php
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equal to 15 which represented increased greenness after a previous disturbance. A value of 0 

meant that no disturbance was identified in that year. While each yearly raster provided values at 

each pixel labeling the disturbance type and a measure of uncertainty, my processing of the 

LANDFIRE data treated all disturbance types equally, as GFC and NAFD did not identify 

disturbance type or uncertainty. As such, following my process for GFC and NAFD, I queried 

the pixels disturbed in each yearly raster (i.e. values between 11 and 1133 with the exception of 

15) and relabeled them with a value of 1 to indicate identified disturbance in that year, while all 

other pixels were given a value of 0. These yearly rasters were then aggregated in a raster 

calculation via the sum function to create the aggregated-time raster for LANDFIRE. All pixels 

identified as disturbed in any of the yearly rasters from 2000-2010 were given a value of 1, while 

all other pixels were given a value of 0.  

Use of FRAP Fire Perimeters for Fire Occurrence and Coverage Analysis by Size Class  

For a reference dataset on fire perimeters, this study used the vector database provided by the 

CALFIRE Fire and Resource Assessment Program (FRAP), version 15.1. My study included fire 

perimeters recorded for 2000 to 2010, which allowed for inclusion of areas that were already 

burned in year 1 of my study. The FRAP data are compiled in collaboration with the Bureau of 

Land Management, National Park Service, and U.S. Forest Service (USFS) and represent ―the 

most complete digital record of fire perimeters in California‖ for my study period 

(http://frap.fire.ca.gov/projects/fire_data/fire_perimeters_index). Each fire perimeter had 

associated attributes including name, year of occurrence, and size in acres (a standard unit of 

measurement within the field of fire management). I queried the original FRAP database for fire 

perimeters between 2000 and 2010 (n = 3,131). As the name attribute in the FRAP dataset did 

not contain unique values and sometimes contained null values, a unique identifier for each fire 

perimeter was created by combining the name and the object identifier, or OBJECTID, assigned 

in the table (ex: Barrel_360). Fires with extents occurring exclusively outside of the California 

boundary from ESRI (i.e. fires on islands, in other states, or in Mexico) were excluded from the 

analysis. I also excluded fires with extents smaller than 1 acre (approximately 4,046 square 

meters); for fires with partial extents in California, the size class was determined by the original 

acreage, though only the area contained within California was analyzed. The analyzed fire 

perimeters (n = 3023) were converted from vector data in the ESRI File Geodatabase format to 

GeoTIFF rasters using ESRI ArcGIS. For each year, I created a new raster of the fire perimeters 

occurring in that year, using a 30 m pixel resolution to match the disturbance products and the 

MTBS data. In these yearly rasters, pixels occurring within a fire perimeter are labeled with a 

value of 1, while a value of 0 indicates pixels outside of a fire perimeter. Next, I uploaded these 

yearly rasters to EE and aggregated them using a raster calculation (i.e. add function) to create a 

raster of fire occurrence for 2000-2010. Any value above 0 indicated a fire at a given pixel 

sometime within 2000 to 2010 (according to the FRAP fire perimeters), with values ranging 

from 1 to a maximum value of 4. Approximately 96% of the pixels in the final fire occurrence 

raster had a value of 1 (meaning the pixel was only burned once in the study period), 4% had a 

http://frap.fire.ca.gov/projects/fire_data/fire_perimeters_index
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value of 2, and values 3 and 4 were negligible. A value of 0 indicated that the pixel was not 

included in any fire perimeter within the study period.  

Additional Notes on Data for Environmental Conditions 

This study used the National Elevation Dataset (m) for the United States, which is available in 

EE at a 10 m spatial resolution. The raster data for CWD (mm) was obtained from the California 

Climate Commons at a spatial resolution of 270 m. This study used the 2014 version of the 30-

year summary for 1981-2010 as calculated by the California Basin Characterization Model 

(http://climate.calcommons.org/dataset/2014-CA-BCM). As CWD is a measure of how much 

potential evaporation exceeds actual evaporation, it was used in this study as a proxy for drought 

conditions. A raster of the 30-year normal conditions for mean temperature (degrees C) between 

1981 and 2010 was obtained from the PRISM Climate Project at a spatial resolution of 800 m 

(http://prism.oregonstate.edu/normals/). The original spatial resolutions for CWD (270 m) and 

mean temperature (800 m) were coarser than the disturbance products and reference data (30 m) 

and the elevation data (10 m). Although it is typically encouraged to rescale analyses up to the 

resolution of the coarsest data, this would have greatly diminished the specificity of locations 

identified as disturbed in each product. A comparison of analyses of mean temperature at 30 and 

800 m was also completed and did not indicate any major differences between the results 

(Appendix B).   

Habitat Types Derived from FVEG data 

For comparisons across vegetation types, this study used the dataset known as FVEG from 

CALFIRE FRAP, which collaborates with the California Department of Fish and Wildlife and 

USFS to compile the ―‗best available‘ land cover data available for California into a single 

comprehensive statewide data set‖ (as described in metadata found on 

http://frap.fire.ca.gov/data/frapgisdata-sw-fveg_download) . This study used version 15.1 for 

1990-2014, within which the vegetation types are coded as wildlife-habitat relationships (WHR) 

for California at a 30 m spatial resolution. Before uploading to EE, I converted the ESRI File 

Geodatabase format of FVeg to a GeoTIFF raster using ESRI ArcGIS. Within EE, I relabeled the 

pixel values (i.e. WHR values) into four major vegetation cover types for analysis: forest, 

scrub/shrub, grass, and other (i.e. desert, agriculture, wetlands, barren, urban). 

  

http://climate.calcommons.org/dataset/2014-CA-BCM
http://prism.oregonstate.edu/normals/
http://frap.fire.ca.gov/data/frapgisdata-sw-fveg_download
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WHRNUM WHRNAME Class Habitat Type 

1 Alpine-Dwarf Shrub Scrub_Shrub Scrub_Shrub 

3 Annual Grassland Grass Grass 

4 Alkali Desert Scrub Desert Other 

5 Aspen Forest Forest 

6 Barren Barren Other 

7 Bitterbrush Scrub_Shrub Scrub_Shrub 

8 Blue Oak-Foothill Pine Forest Forest 

9 Blue Oak Woodland Forest Forest 

10 Coastal Oak Woodland Forest Forest 

11 Closed-Cone Pine-

Cypress 

Forest Forest 

12 Chamise-Redshank 

Chaparral 

Scrub_Shrub Scrub_Shrub 

13 Coastal Scrub Scrub_Shrub Scrub_Shrub 

14 Douglas Fir Forest Forest 

15 Desert Riparian Desert Other 

17 Desert Scrub Desert Other 

18 Desert Succulent Shrub Desert Other 

19 Desert Wash Desert Other 

20 Eastside Pine Forest Forest 

21 Estuarine Aquatic Other 

22 Fresh Emergent 

Wetland 

Wetland Other 

24 Jeffrey Pine Forest Forest 

25 Joshua Tree Desert Other 

26 Juniper Forest Forest 
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27 Klamath Mixed Conifer Forest Forest 

28 Lacustrine Aquatic Other 

29 Lodgepole Pine Forest Forest 

30 Low Sage Scrub_Shrub Scrub_Shrub 

32 Mixed Chaparral Scrub_Shrub Scrub_Shrub 

34 Montane Chaparral Scrub_Shrub Scrub_Shrub 

35 Montane Hardwood-

Conifer 

Forest Forest 

36 Montane Hardwood Forest Forest 

37 Montane Riparian Riparian Other 

39 Perennial Grassland Grass Grass 

40 Pinyon-Juniper Forest Forest 

41 Palm Oasis Agriculture Other 

42 Ponderosa Pine Forest Forest 

43 Riverine Aquatic Other 

44 Redwood Forest Forest 

45 Red Fir Forest Forest 

48 Subalpine Conifer Forest Forest 

49 Saline Emergent 

Wetland 

Wetland Other 

50 Sagebrush Scrub_Shrub Scrub_Shrub 

51 Sierran Mixed Conifer Forest Forest 

53 Urban Urban Other 

55 Valley Oak Woodland Forest Forest 

56 Valley Foothill Riparian Riparian Other 

57 Water Water Other 

58 White Fir Forest Forest 
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59 Wet Meadow Wetland Other 

60 Cropland Agriculture Other 

61 Orchard - Vineyard Agriculture Other 

62 Undetermined Shrub Scrub_Shrub Scrub_Shrub 

63 Undetermined Conifer Forest Forest 

66 Dryland Grain Crops Agriculture Other 

67 Deciduous Orchard Agriculture Other 

68 Evergreen Orchard Agriculture Other 

69 Irrigated Grain Crops Agriculture Other 

70 Irrigated Row and Field 

Crops 

Agriculture Other 

71 Irrigated Hayfield Agriculture Other 

72 Pasture Agriculture Other 

75 Vineyard Agriculture Other 

76 Undetermined 

Hardwood 

Forest Forest 

77 Eucalyptus Forest Forest 

78 Rice Agriculture Other 

79 Marsh Wetland Other 

 

MTBS Burn Severity 

For a reference dataset on burn severity, this study used the raster data provided by the MTBS 

project from USGS EROS and USFS, which analyzes the LTS to map burn severity for all fires 

greater than 1,000 acres in size in the Western U.S (https://www.mtbs.gov/direct-download). To 

target burned areas, the MTBS project obtains fire perimeters from the National Interagency Fire 

Center, supplementing this data as needed from other land management and fire agencies. For 

these areas, burn severity is calculated using a dNBR analysis between pre- and post-fire images 

and pre-defined thresholds of difference that vary by ecological zone. After calculating burn 

severity over the targeted area, MTBS assigns a new fire perimeter based on their results. The 

resulting MTBS burn severity data are provided as annual rasters for 2000 to 2010 at the 30 m 

https://www.mtbs.gov/direct-download
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spatial resolution of the other data in my study. The values of burn severity are classified as 

follows: (0) pixels not included in the data (i.e. background data or pixels not included in 

MTBS); (1) unburned to very low severity; (2) low severity; (3) medium severity; and (4) high 

severity. Approximately 21% of the pixels in my aggregated raster of maximum burn severity 

across 2000-2010 had a value of unburned to very low, while 33% had a value of low. 26% had a 

value of medium, and 20% had a value of high. A value of 5, indicating increased greenness after 

fire, was not included in my study. More information regarding the creation of the MTBS dataset 

can be found in Eidenshink et al., 2007. 

 

Appendix 3-2. Detailed Results for Chapter 3 

Annual and Total Reported Disturbance  

Area Reported as Disturbed (m2/year) 

Year GFC 

% of 

CA* NAFD 

% of 

CA* LANDFIRE 

% of 

CA* 

2001 565,642,750.63 0.138% 1,240,159,716.43 0.303% 2,117,351,040.65 0.518% 

burn

** 264,608,477.85 0.065% 396,084,177.34 0.097% 1,029,627,458.31 0.252% 

no 

burn 301,034,272.78 0.074% 844,075,539.09 0.207% 1,087,723,582.35 0.266% 

  

 2002 822,541,689.12 0.201% 1,455,070,286.99 0.356% 3,439,689,012.80 0.842% 

burn

** 508,177,644.35 0.124% 781,333,920.09 0.191% 2,183,726,250.84 0.534% 

no 

burn 314,364,044.77 0.077% 673,736,366.90 0.165% 1,255,962,761.96 0.307% 

  

 2003 733,958,008.16 0.180% 1,132,966,059.06 0.277% 5,179,638,469.97 1.268% 

burn

** 448,610,269.33 0.110% 473,768,386.66 0.116% 3,911,508,620.81 0.957% 

no 

burn 285,347,738.83 0.070% 659,197,672.40 0.161% 1,268,129,849.16 0.310% 

  

 2004 764,186,617.20 0.187% 1,851,571,965.49 0.453% 2,524,008,478.72 0.618% 

burn

** 404,518,936.43 0.099% 1,117,040,272.72 0.273% 1,123,632,290.37 0.275% 

no 

burn 359,667,680.77 0.088% 734,531,692.77 0.180% 1,400,376,188.35 0.343% 

  

 2005 536,076,976.46 0.131% 858,378,650.41 0.210% 2,540,633,102.42 0.622% 

burn

** 157,232,454.53 0.038% 275,829,738.30 0.067% 1,015,485,477.23 0.249% 

no 

burn 378,844,521.94 0.093% 582,548,912.12 0.143% 1,525,147,625.19 0.373% 
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2006 1,194,180,079.49 0.292% 1,001,729,100.62 0.245% 4,578,914,498.46 1.121% 

burn

** 779,857,647.69 0.191% 318,926,849.51 0.078% 3,124,010,128.34 0.764% 

no 

burn 414,322,431.80 0.101% 682,802,251.11 0.167% 1,454,904,370.12 0.356% 

  

 2007 1,663,143,934.96 0.407% 2,502,284,298.95 0.612% 5,560,521,912.94 1.361% 

burn

** 1,282,671,446.25 0.314% 1,592,802,289.07 0.390% 4,198,234,134.34 1.027% 

no 

burn 380,472,488.70 0.093% 909,482,009.88 0.223% 1,362,287,778.59 0.333% 

  

 2008 2,302,505,126.02 0.563% 2,696,203,753.39 0.660% 8,182,624,092.76 2.002% 

burn

** 1,927,956,263.08 0.472% 2,117,897,286.22 0.518% 5,834,299,166.56 1.428% 

no 

burn 374,548,862.94 0.092% 578,306,467.17 0.142% 2,348,324,926.20 0.575% 

  

 2009 1,390,488,034.72 0.340% 1,515,451,902.32 0.371% 3,549,172,085.04 0.869% 

burn

** 1,093,282,788.94 0.268% 955,128,790.12 0.234% 2,076,418,733.38 0.508% 

no 

burn 297,205,245.78 0.073% 560,323,112.19 0.137% 1,472,753,351.66 0.360% 

  

 2010 392,809,854.51 0.096% 1,143,055,586.16 0.280% 1,855,639,028.85 0.454% 

burn

** 117,449,984.09 0.029% 683,139,641.18 0.167% 884,212,228.89 0.216% 

no 

burn 275,359,870.42 0.067% 459,915,944.98 0.113% 971,426,799.96 0.238% 

 

Total 

Across 

Years 

10,365,533,07

1.26 2.537% 

15,396,871,31

9.82 3.768% 

unique area = 

34,380,090,846.33 

 

multiple 

disturbances =  

39,528,191,722.63 

unique area 

= 8.413%                      

 

multiple 

disturbances 

= 9.67% 

Total 

Burned 

Across 

Years 

6,984,365,912

.54 1.71% 

8,711,951,351.

21 2.132% 

unique area = 

22,669,887,841.86

3        

 

multiple 

disturbances  =  

25,381,154,489.07

4 

unique area 

= 5.548%                      

 

multiple 

disturbances 

= 6.21% 
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Total 

Unburned 

Across 

Years 

3,381,167,158

.72 0.83% 

6,684,919,968.

61 1.64% 

unique area = 

11,710,203,004.46

7        

 

multiple 

disturbances =  

14,147,037,233.55

5 

unique area 

= 2.865%                      

 

multiple 

disturbances 

= 3.46% 

 

 

Disturbance by Habitat Type 

Scrub_Shrub 

  Area (m2) 

Percent of FVEG 

Total Area for CA 

CA 60,500,772,046.28 - 

GFC 3,879,083,801.63 6.41% 

NAFD 6,240,823,898.91 10.32% 

LANDFIRE 12,283,388,186.91 20.30% 

   Forest 

  Area (m2) 

Percent of FVEG 

Total Area for CA 

CA 122,343,395,591.28 - 

GFC 5,148,225,444.01 4.21% 

NAFD 7,327,788,601.76 5.99% 

LANDFIRE 17,058,583,230.48 13.94% 

   Grass 

  Area (m2) 

Percent of FVEG 

Total Area for CA 

CA 43,719,015,098.11 - 

GFC 426,423,162.99 0.98% 

NAFD 651,917,757.83 1.49% 

LANDFIRE 3,009,560,077.55 6.88% 

   Other (Ag, Desert, Urban, Wetland, etc) 

  Area (m2) 

Percent of FVEG 

Total Area for CA 

CA 182,079,305,596.65 - 

GFC 911,800,662.63 0.50% 

NAFD 1,176,341,061.33 0.65% 

LANDFIRE 2,028,544,435.44 1.11% 
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Environmental Conditions 

Habitat as Proportion of Map 

    Map Scrub_Shrub Forest Grass Other 

    CA 14.81% 29.94% 10.70% 44.56% 

    GFC 37.42% 49.67% 4.11% 8.80% 

    NAFD 40.53% 47.59% 4.23% 7.64% 

    LANDFIRE 35.73% 49.62% 8.75% 5.90% 

    

         

         Elevation 

Map Mean StdDev Min P_25 P_50 P_75 Max 

California 860.79 738.25 -83.03 239.88 719.90 1,328.26 4,407.22 

GFC 1,113.75 566.25 -69.63 711.94 1,127.90 1,512.01 3,846.09 

NAFD 1,161.34 596.50 -80.59 720.08 1,168.03 1,583.99 4,080.56 

LANDFIRE 1,110.52 598.38 -67.79 615.97 1,096.13 1,560.12 3,935.54 

                

Climate Water Deficit 

Map Mean StdDev Min P_25 P_50 P_75 Max 

California 930.53 338.80 0.22 643.97 939.94 1,220.08 1,566.16 

GFC 725.20 235.25 0.00 539.94 708.10 931.95 1,528.15 

NAFD 742.26 234.45 0.39 556.06 740.11 940.01 1,545.86 

LANDFIRE 756.78 246.15 20.50 556.03 740.05 980.04 1,525.99 

         Mean Temperature 

Map Mean StdDev Min P_25 P_50 P_75 Max 

California 13.97 4.66 -7.00 11.07 15.00 17.00 24.00 

GFC 12.15 3.04 -5.00 10.01 12.01 15.00 23.00 

NAFD 11.98 3.33 -3.00 9.01 12.03 15.00 24.00 

LANDFIRE 12.23 3.39 -1.00 10.02 13.01 15.00 23.00 

         Mean Temperature (800 m resolution) 

Map Mean StdDev Min P_25 P_50 P_75 Max 

California 13.97 4.66 -7.00 10.97 15.00 17.14 24.00 

GFC 12.08 3.03 2.00 10.00 11.47 14.00 18.00 

NAFD 11.82 3.25 -1.00 9.00 11.48 14.00 23.00 

LANDFIRE 12.07 3.39 0.00 9.51 11.94 14.67 23.00 
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FRAP Results 

Detailed Summary of FRAP Occurrence Data 

  All California 
Scrub/Shrub 

(m2) 
Forest (m2) Grass (m2) Other (m2) 

Unburned 

Area* 

384,830,504,51

8.42 

49,691,960,909.

66 

113,405,563,40

1.47 

41,268,902,80

2.69 

180,464,077,4

04.60 

Fire 

Occurrence 

= 1 

22,847,993,680.

96 

10,126,708,807.

36 

8,813,862,205.

17 

2,331,159,085

.54 

1,576,263,582

.89 

Fire 

Occurrence 

= 2 

929,877,879.47 659,543,832.10 121,590,385.38 
111,193,416.7

3 
37,550,245.26 

Fire 

Occurrence 

= 3 

33,774,821.11 22,513,109.98 2,287,936.39 7,737,795.94 1,235,978.80 

Fire 

Occurrence 

= 4 

16,559.28 2,217.76 9,251.25 3,639.93 1,450.34 

Total 

Burned 

Area 

23,811,662,940.

82 

10,808,767,967.

20 

8,937,749,778.

19 

2,450,093,938

.14 

1,615,051,257

.29 

Total 

Habitat 

Area 

408,642,167,45

9.24 

60,500,728,876.

86 

122,343,313,17

9.66 

43,718,996,74

0.83 

182,079,128,6

61.89 

Percent of 

Habitat 

Burned 

5.83% 17.87% 7.31% 5.60% 0.89% 

* no overlap between FVEG and FRAP 

FRAP Fire Perimeters 

Year Count 

2000 174 

2001 200 

2002 238 

2003 331 

2004 268 

2005 301 

2006 309 

2007 326 

2008 425 

2009 247 

2010 204 

Total 3023 
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Total count of FRAP Fire Perimeters by size class 

 lt100 gt100_500 gt500_1000 gt1000_10000 gt10000_90000 gt_90000 

 1571 727 219 386 108 12 

  

      Mean percentage of pixels captured within FRAP Fire Perimeters for each size class 

  lt100 gt100_500 gt500_1000 

gt1000_ 

10000 

gt10000_ 

90000 gt_90000 

GFC 22.32% 18.70% 16.17% 21.39% 29.44% 36.64% 

NAFD 23.68% 21.43% 21.18% 28.12% 35.64% 44.70% 

LANDFIR

E 93.94% 96.20% 97.66% 95.67% 97.04% 98.66% 

 

 

MTBS Results 

Detailed Summary of MTBS data 

  
All California 

Scrub/Shrub 

(m2) 
Forest (m2) Grass (m2) Other (m2) 

Unburne

d Area* 

385,056,609,93

3.27 

49,549,087,184.

92 

113,423,096,108

.55 

41,539,319,494.

38 

180,545,107,14

5.42 

Unburne

d to Low 

Burn 

Severity 

5,003,826,045.

20 

1,577,259,365.1

5 

2,335,995,955.3

9 
548,382,893.16 542,187,831.50 

Low 

Burn 

Severity 

7,680,473,323.

94 

3,084,837,646.3

2 

3,040,897,488.3

7 
933,211,766.73 621,526,422.52 

Medium 

Burn 

Severity 

6,241,557,027.

19 

3,510,410,957.1

4 

2,008,118,323.5

4 
481,475,955.10 241,551,791.41 

High 

Burn 

Severity 

4,659,701,129.

63 

2,779,133,723.3

2 

1,535,205,303.8

1 
216,606,631.45 128,755,471.05 

Total 

Burned 

Area 

23,585,557,525

.94 

10,951,641,691.

92 

8,920,217,071.1

1 

2,179,677,246.4

4 

1,534,021,516.

47 

Total 

Habitat 

Area 

408,642,167,45

9.21 

60,500,728,876.

84 

122,343,313,179

.66 

43,718,996,740.

82 

182,079,128,66

1.89 

Percent 

of 

Habitat 

Burned 

5.77% 18.10% 7.29% 4.99% 0.84% 

* no overlap between FVEG and MTBS 
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Results of Product Overlap with MTBS Severity by Habitat Type 

  

Scrub/Shrub 

  

MTBS 

Total 

Area 

(m2) 

Unburned

_Low 

% of 

CA 

Unb_L Low 

% of CA 

Low Med 

% of 

CA Med High 

% of 

CA 

High 

CA 

10,951,6

41,691.9

2 

1,577,259,

365.15 - 

3,084,8

37,646.

32 - 

3,510,

410,95

7.14 - 

2,779

,133,

723.3

2 - 

GFC 

3,435,61

6,024.03 

61,856,245

.56 3.92% 

436,34

8,913.1

8 14.14% 

1,300,

564,71

0.30 37.05% 

1,636

,846,

155.0

0 

58.90

% 

NAFD 

4,793,95

3,711.70 

226,618,68

8.88 14.37% 

900,42

4,701.4

5 29.19% 

1,710,

322,20

4.24 48.72% 

1,956

,588,

117.1

4 

70.40

% 

LF 

10,609,7

40,794.7

6 

1,522,896,

176.51 96.55% 

3,002,6

21,193.

14 97.33% 

3,402,

635,59

8.20 96.93% 

2,681

,587,

826.9

1 

96.49

% 

 

  

Forest 

  

MTBS 

Total 

Area 

(m2) 

Unburned

_Low 

% of 

CA 

Unb_L Low 

% of CA 

Low Med 

% of CA 

Med High 

% of 

CA 

High 

CA 

8,920,2

17,071.

11 

2,335,995,

955.39 - 

3,040,8

97,488.

37 - 

2,008,

118,32

3.54 - 

1,535

,205,

303.8

1 - 

GFC 

3,117,7

96,899.

05 

178,542,11

7.17 7.64% 

681,95

1,001.6

7 22.43% 

1,016,

578,79

1.64 50.62% 

1,240

,724,

988.5

8 

80.82

% 

NAFD 

3,291,5

21,458.

13 

217,565,26

5.12 9.31% 

750,10

5,619.9

3 24.67% 

1,062,

841,96

9.13 52.93% 

1,261

,008,

603.9

4 

82.14

% 

LF 

8,658,3

81,148.

51 

2,243,380,

627.21 96.04% 

2,946,9

78,155.

76 96.91% 

1,955,

515,83

3.95 97.38% 

1,512

,506,

531.5

9 

98.52

% 
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Grass 

  

MTBS 

Total 

Area 

(m2) 

Unburned

_Low 

% of 

CA 

Unb_L Low 

% of CA 

Low Med 

% of CA 

Med High 

% of 

CA 

High 

CA 

2,179,677

,246.44 

548,382,89

3.16 - 

933,21

1,766.7

3 - 

481,4

75,95

5.10 - 

216,6

06,63

1.45 - 

GFC 

222,516,3

50.47 

5,939,172.

58 1.08% 

32,860,

158.36 3.52% 

75,75

3,211

.49 15.73% 

107,9

63,80

8.05 

49.84

% 

NAFD 

354,144,7

65.61 

29,865,828

.89 5.45% 

93,126,

339.30 9.98% 

120,0

41,32

9.10 24.93% 

111,1

11,26

8.31 

51.30

% 

LF 

2,028,278

,512.08 

517,594,06

7.85 94.39% 

892,24

9,275.1

4 95.61% 

438,2

30,70

3.29 91.02% 

180,2

04,46

5.80 

83.19

% 

 

  

Other Land Cover Types (Ag, Desert, Urban, Wetland, etc) 

  

MTBS 

Total 

Area 

(m2) 

Unburned

_Low 

% of 

CA 

Unb_L Low 

% of CA 

Low Med 

% of CA 

Med High 

% of 

CA 

High 

CA 

1,534,02

1,516.47 

542,187,83

1.50 - 

621,52

6,422.5

2 - 

241,55

1,791.

41 - 

128,7

55,47

1.05 - 

GFC 

158,948,

269.30 

7,284,231.

67 1.34% 

24,001,

480.99 3.86% 

51,570

,059.6

8 21.35% 

76,09

2,496

.96 

59.10

% 

NAFD 

277,445,

683.26 

27,678,907

.97 5.11% 

92,945,

378.66 14.95% 

75,063

,191.6

1 31.08% 

81,75

8,205

.02 

63.50

% 

LF 

1,440,12

4,836.60 

512,991,52

6.86 94.62% 

585,46

3,431.2

9 94.20% 

221,69

7,357.

21 91.78% 

119,9

72,52

1.23 

93.18

% 

 

Appendix 4-1 Supplemental Material and Detailed Results for Chapter 4 

California Bioregions from Jepson Herbarium data 

―The Jepson eFlora divides California into 35 ecologically distinct "bioregions" for the purpose 

of indicating where plant taxa grow‖ (Jepson Flora Project, 2017).  This biologically driven data 

reflects topographic, climatic, and vegetation variations across California, and thus provides 

more meaningful divisions for regions, as compared to administrative boundaries such as county 

boundaries. Additional details and a map of this dataset can be found on 
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http://ucjeps.berkeley.edu/eflora/filter_keys.html. In this analysis, we included all bioregions 

with the exception of the two island bioregions for the North and South Channel Islands. For the 

California Floristic Province, we analyzed and reported the data by bioregion and by the 

aggregated region level. For the Great Basin and Desert Provinces, we analyzed and reported the 

data by region.   

 

Spatial Agreement 

  Total Area (m2) 

Percent of 

California* 

Percent of Total Area Reported 

as Disturbed** 

No products reported 

disturbance 368,620,890,008.72 90.21% - 

    

  Total Area (m2) 

Percent of 

California* 

Percent of Total Area Reported 

as Disturbed** 

Only one product 

reported disturbance 

   GFC only 1,209,128,095.74 0.30% 3.02% 

overlap with FRAP fire 

occurrence 29,231,101.39 0.01% 0.07% 

no overlap with FRAP 

fire occurrence 1,179,896,994.35 0.29% 2.95% 

    NAFD only 3,970,937,453.95 0.97% 9.92% 

overlap with FRAP fire 

occurrence 233,571,095.32 0.06% 0.58% 

no overlap with FRAP 

fire occurrence 3,737,366,358.63 0.91% 9.34% 

    LANDFIRE only 20,726,999,429.38 5.07% 51.79% 

overlap with FRAP fire 

occurrence 12,144,400,588.40 2.97% 30.34% 

no overlap with FRAP 

fire occurrence 8,582,598,840.98 2.10% 21.44% 

    

    

  Total Area (m2) 

Percent of 

California* 

Percent of Total Area Reported 

as Disturbed** 

Two products reported 

disturbance 

   GFC and NAFD only 461,135,970.42 0.11% 1.15% 

overlap with FRAP fire 

occurrence 26,879,704.40 0.01% 0.07% 

http://ucjeps.berkeley.edu/eflora/filter_keys.html
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no overlap with FRAP 

fire occurrence 434,256,266.02 0.11% 1.09% 

    GFC and LANDFIRE 

only 2,688,288,961.70 0.66% 6.72% 

overlap with FRAP fire 

occurrence 2,073,986,701.97 0.51% 5.18% 

no overlap with FRAP 

fire occurrence 614,302,259.73 0.15% 1.53% 

    NAFD and 

LANDFIRE only 4,957,815,697.03 1.21% 12.39% 

overlap with FRAP fire 

occurrence 3,597,232,146.72 0.88% 8.99% 

no overlap with FRAP 

fire occurrence 1,360,583,550.31 0.33% 3.40% 

    

    

  Total Area (m2) 

Percent of 

California* 

Percent of Total Area Reported 

as Disturbed** 

All three products 

reported disturbance 6,006,971,842.28 1.47% 15.01% 

overlap with FRAP fire 

occurrence 4,854,268,404.77 1.19% 12.13% 

no overlap with FRAP 

fire occurrence 1,152,703,437.51 0.28% 2.88% 

* Total area of California: 408,642.17 square kilometers 

** Total area identified as disturbed by at least one product: 40,021.28 square kilometers (9.79% of CA) 

 

Uncertainty 

Low Uncertainty of Disturbance 

  Total Area (m2) 

Percent of 

California* 

Percent of Total 

Area Reported as 

Disturbed** 

Total Low Uncertainty 6,006,971,842.28 1.47% 15.01% 

overlap with FRAP fire 

occurrence 4,854,268,404.77 1.19% 12.13% 

no overlap with FRAP fire 

occurrence 1,152,703,437.51 0.28% 2.88% 

    Medium Uncertainty of Disturbance 

  Total Area (m2) 

Percent of 

California* 

Percent of Total 

Area Reported as 
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Disturbed** 

Total Medium Uncertainty 8,107,240,629.15 1.98% 20.26% 

overlap with FRAP fire 

occurrence 5,698,098,553.10 1.39% 14.24% 

no overlap with FRAP fire 

occurrence 2,409,142,076.05 0.59% 6.02% 

    High Uncertainty of Disturbance 

  Total Area (m2) 

Percent of 

California* 

Percent of Total 

Area Reported as 

Disturbed** 

Total High Uncertainty 25,907,064,979.07 6.34% 64.73% 

overlap with FRAP fire 

occurrence 12,407,202,785.11 3.04% 31.00% 

no overlap with FRAP fire 

occurrence 13,499,862,193.96 3.30% 33.73% 

* Total area of California: 408,642.17 square kilometers 

** Total area identified as disturbed by at least one product: 40,021.28 square kilometers (9.79% of CA) 

 

Uncertainty by Habitat Type 

Habitat 

Type Total Area (m2) 

Total Area Not 

Reported as 

Disturbed by any 

product (m2) 

Total Area Reported 

as Disturbed by at 

least one product 

(m2) 

% of Habitat 

Area that has 

been 

reported as 

Disturbed 

Scrub 60,500,728,876.85 46,879,177,817.52 13,621,551,059.32 22.51% 

Forest 122,343,313,179.66 102,642,440,747.05 19,700,872,432.61 16.10% 

Grass 43,718,996,740.82 40,459,903,613.11 3,259,093,127.72 7.45% 

Other 182,079,128,661.89 178,639,367,831.04 3,439,760,830.85 1.89% 

 

Low Uncertainty of Disturbance 

Habitat Type Total Area (m2) 

Percent of Total 

Habitat Area 

Across 

California* 

Percent of Total 

Habitat Area 

Reported as 

Disturbed** 

Scrub/Shrub 2,718,961,685.59 4.49% 19.96% 

overlap with FRAP fire occurrence 2,548,745,404.86 4.21% 18.71% 

no overlap with FRAP fire occurrence 170,216,280.72 0.28% 1.25% 

Forest 2,875,488,410.41 2.35% 14.60% 

overlap with FRAP fire occurrence 2,040,564,723.19 1.67% 10.36% 

no overlap with FRAP fire occurrence 834,923,687.22 0.68% 4.24% 
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Grass 257,578,982.39 0.59% 7.90% 

overlap with FRAP fire occurrence 158,242,738.88 0.36% 4.86% 

no overlap with FRAP fire occurrence 99,336,243.50 0.23% 3.05% 

Other 154,942,763.90 0.09% 4.50% 

overlap with FRAP fire occurrence 106,715,537.83 0.06% 3.10% 

no overlap with FRAP fire occurrence 48,227,226.06 0.03% 1.40% 

    Medium Uncertainty of Disturbance 

Habitat Type Total Area (m2) 

Percent of Total 

Habitat Area 

Across 

California* 

Percent of Total 

Habitat Area 

Reported as 

Disturbed** 

Scrub/Shrub 3,343,814,464.74 5.53% 24.55% 

overlap with FRAP fire occurrence 2,996,207,580.99 4.95% 22.00% 

no overlap with FRAP fire occurrence 347,606,883.75 0.57% 2.55% 

Forest 4,082,737,709.96 3.34% 20.72% 

overlap with FRAP fire occurrence 2,281,105,299.36 1.86% 11.58% 

no overlap with FRAP fire occurrence 1,801,632,410.61 1.47% 9.14% 

Grass 313,649,894.87 0.72% 9.62% 

overlap with FRAP fire occurrence 220,837,581.93 0.51% 6.78% 

no overlap with FRAP fire occurrence 92,812,312.93 0.21% 2.85% 

Other 367,038,559.58 0.20% 10.67% 

overlap with FRAP fire occurrence 199,948,090.81 0.11% 5.81% 

no overlap with FRAP fire occurrence 167,090,468.77 0.09% 4.86% 

    High Uncertainty of Disturbance 

Habitat Type Total Area (m2) 

Percent of Total 

Habitat Area 

Across 

California* 

Percent of Total 

Habitat Area 

Reported as 

Disturbed** 

Scrub/Shrub 7,558,774,909.00 12.49% 55.49% 

overlap with FRAP fire occurrence 4,964,175,719.08 8.21% 36.44% 

no overlap with FRAP fire occurrence 2,594,599,189.92 4.29% 19.05% 

Forest 12,742,646,312.24 10.42% 64.68% 

overlap with FRAP fire occurrence 4,359,131,640.04 3.56% 22.13% 

no overlap with FRAP fire occurrence 8,383,514,672.20 6.85% 42.55% 

Grass 2,687,864,250.46 6.15% 82.47% 

overlap with FRAP fire occurrence 1,883,035,138.14 4.31% 57.78% 

no overlap with FRAP fire occurrence 804,829,112.32 1.84% 24.69% 
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Other 2,917,779,507.37 1.60% 84.83% 

overlap with FRAP fire occurrence 1,200,860,287.85 0.66% 34.91% 

no overlap with FRAP fire occurrence 1,716,919,219.52 0.94% 49.91% 

* as a percentage of the habitat reported in Total Area (m2) 

** as a percentage of the disturbed habitat reported in Total Area Reported as Disturbed by at least one 

product (m2) 

 

Uncertainty by Bioregion 

  Total Pixels Disturbed Pixels Per_Disturbed 

Cascade Ranges 24,735,979.97 4,772,214.27 15.34% 

Cascade Range Foothills Subregion 4,482,779.15 410,138.93 9.15% 

High Cascade Range Subregion 20,253,200.82 4,362,075.35 21.54% 

    Central Western California 50,162,571.74 5,534,154.13 8.89% 

Central Coast Subregion 6,874,447.34 164,221.90 2.39% 

Inner South Coast Ranges District 12,566,882.28 391,238.94 3.11% 

Outer South Coast Ranges District 18,146,191.90 3,897,285.24 21.48% 

San Francisco Bay Area Subregion 12,575,050.22 1,081,408.06 8.60% 

    Desert Province 137,899,270.16 1,240,705.67 2.24% 

Desert Mountains Subregion 4,651,703.98 250,259.87 5.38% 

Mojave Desert Region 96,637,929.48 811,156.26 0.84% 

Sonoran Desert Region 36,609,636.69 179,289.54 0.49% 

    Great Basin Province 51,146,205.35 3,659,755.78 6.83% 

East of the Sierra Nevada Region 12,708,498.76 757,182.08 5.96% 

Modoc Plateau Region 32,735,554.26 2,603,664.56 7.95% 

Warner Mountains Subregion 2,159,519.09 276,023.49 12.78% 

White and Inyo Mountains Subregion 3,542,633.23 22,885.65 0.65% 

    Great Central Valley 80,362,272.92 2,268,876.62 2.78% 

Sacramento Valley Subregion 21,493,765.18 575,607.32 2.68% 

San Joaquin Valley Subregion 58,868,507.74 1,693,269.30 2.88% 

    Northwestern California 85,674,705.64 13,009,789.87 14.36% 

High North Coast Ranges District 7,105,889.92 1,716,630.93 24.16% 

Inner North Coast Ranges District 16,361,850.03 973,613.07 5.95% 

Klamath Ranges Region 33,946,266.05 7,180,617.93 21.15% 

North Coast Subregion 2,917,629.18 268,619.88 9.21% 
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Outer North Coast Ranges District 25,343,070.47 2,870,308.06 11.33% 

    Sierra Nevada 92,409,848.34 12,041,661.45 10.55% 

Central High Sierra Nevada District 17,061,022.15 1,746,067.40 10.23% 

Central Sierra Nevada Foothills District 6,464,352.79 546,955.45 8.46% 

Northern High Sierra Nevada District 30,120,992.22 5,539,028.39 18.39% 

Northern Sierra Nevada Foothills 

District 10,037,401.58 817,471.24 8.14% 

Southern High Sierra Nevada District 17,626,177.11 2,774,743.69 15.74% 

Southern Sierra Nevada Foothills District 8,562,777.80 414,207.46 4.84% 

Tehachapi Mountain Area Subregion 2,537,124.68 203,187.81 8.01% 

    Southwestern California 47,166,784.65 13,729,142.46 33.52% 

Peninsular Ranges Subregion 15,301,994.28 5,607,768.53 36.65% 

San Bernardino Mountains District 3,469,702.55 1,249,746.84 36.02% 

San Gabriel Mountains District 3,300,031.57 1,848,707.12 56.02% 

San Jacinto Mountains District 1,182,269.57 382,428.59 32.35% 

South Coast Subregion 12,484,817.14 687,752.03 5.51% 

Western Transverse Ranges District 11,427,969.55 3,952,739.35 34.59% 

 

Low Uncertainty by 

Bioregion 

Pixels_Low_

Unc 

Pixels_Low_

Unc_Burned 

Per_TotalDisturbed

_Low_Unc 

Per_TotalDisturbed

_Low_Unc_Burned 

Cascade Ranges 
613,443.00 131,681.00 8.34% 2.25% 

Cascade Range 

Foothills Subregion 
11,846.00 6,677.00 2.89% 1.63% 

High Cascade Range 

Subregion 
601,597.00 125,004.00 13.79% 2.87% 

 

 

   

Central Western 

California 
1,574,186.00 1,542,748.00 16.64% 15.37% 

Central Coast 

Subregion 
8,423.00 3,069.00 5.13% 1.87% 

Inner South Coast 

Ranges District 
41,403.00 37,361.00 10.58% 9.55% 

Outer South Coast 

Ranges District 
1,348,684.00 1,330,024.00 34.61% 34.13% 

San Francisco Bay 

Area Subregion 
175,676.00 172,294.00 16.25% 15.93% 

 

 

   

Desert Province 
8,182.00 7,941.00 0.65% 0.62% 
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Desert Mountains 

Subregion 
161.00 90.00 0.06% 0.04% 

Mojave Desert 

Region 
5,982.00 5,866.00 0.74% 0.72% 

Sonoran Desert 

Region 
2,039.00 1,985.00 1.14% 1.11% 

 

 

   

Great Basin 

Province 
351,828.00 216,626.00 10.70% 8.83% 

East of the Sierra 

Nevada Region 
70,785.00 66,204.00 9.35% 8.74% 

Modoc Plateau 

Region 
211,070.00 86,411.00 8.11% 3.32% 

Warner Mountains 

Subregion 
69,973.00 63,996.00 25.35% 23.18% 

White and Inyo 

Mountains Subregion 
0.00 15.00 0.00% 0.07% 

 

 

   

Great Central 

Valley 
9,116.00 6,941.00 0.38% 0.26% 

Sacramento Valley 

Subregion 
1,865.00 985.00 0.32% 0.17% 

San Joaquin Valley 

Subregion 
7,251.00 5,956.00 0.43% 0.35% 

 

 

   

Northwestern 

California 
2,008,902.00 1,417,822.00 11.64% 6.95% 

High North Coast 

Ranges District 
228,203.00 206,460.00 13.29% 12.03% 

Inner North Coast 

Ranges District 
46,547.00 38,022.00 4.78% 3.91% 

Klamath Ranges 

Region 
1,351,361.00 1,120,710.00 18.82% 15.61% 

North Coast 

Subregion 
23,593.00 4,049.00 8.78% 1.51% 

Outer North Coast 

Ranges District 
359,198.00 48,581.00 12.51% 1.69% 

 

 

   

Sierra Nevada 
1,826,100.00 1,418,482.00 11.28% 9.43% 

Central High Sierra 

Nevada District 
157,355.00 99,498.00 9.01% 5.70% 

Central Sierra 

Nevada Foothills 

District 
109,580.00 105,013.00 20.03% 19.20% 
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Northern High Sierra 

Nevada District 
1,075,686.00 761,143.00 19.42% 13.74% 

Northern Sierra 

Nevada Foothills 

District 
87,371.00 66,020.00 10.69% 8.08% 

Southern High Sierra 

Nevada District 
383,105.00 374,332.00 13.81% 13.49% 

Southern Sierra 

Nevada Foothills 

District 
1,726.00 1,402.00 0.42% 0.34% 

Tehachapi Mountain 

Area Subregion 
11,277.00 11,074.00 5.55% 5.45% 

 

 

   

Southwestern 

California 
2,063,272.00 2,034,928.00 14.04% 13.69% 

Peninsular Ranges 

Subregion 
438,788.00 431,811.00 7.82% 7.70% 

San Bernardino 

Mountains District 
206,493.00 199,993.00 16.52% 16.00% 

San Gabriel 

Mountains District 
586,455.00 584,096.00 31.72% 31.59% 

San Jacinto 

Mountains District 
24,984.00 21,190.00 6.53% 5.54% 

South Coast 

Subregion 
10,298.00 9,092.00 1.50% 1.32% 

Western Transverse 

Ranges District 
796,254.00 788,746.00 20.14% 19.95% 

 

Medium 

Uncertainty by 

Bioregion 

Pixels_Med_

Unc 

Pixels_Med_

Unc_Burned 

Per_TotalDisturbed_

Med_Unc 

Per_TotalDisturbed

_Med_Unc_Burned 

Cascade Ranges 
996,987.34 157,711.26 15.83% 5.07% 

Cascade Range 

Foothills Subregion 
39,887.90 29,558.47 9.73% 7.21% 

High Cascade 

Range Subregion 
957,099.44 128,152.79 21.94% 2.94% 

 

 

   

Central Western 

California 
1,209,861.83 1,098,394.64 18.26% 14.76% 

Central Coast 

Subregion 
16,235.70 6,479.83 9.89% 3.95% 

Inner South Coast 

Ranges District 
57,615.51 40,159.51 14.73% 10.26% 
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Outer South Coast 

Ranges District 
847,202.94 784,672.31 21.74% 20.13% 

San Francisco Bay 

Area Subregion 
288,807.68 267,082.99 26.71% 24.70% 

 

 

   

Desert Province 
111,533.39 94,105.23 10.83% 9.08% 

Desert Mountains 

Subregion 
46,023.35 37,111.11 18.39% 14.83% 

Mojave Desert 

Region 
51,678.23 44,592.30 6.37% 5.50% 

Sonoran Desert 

Region 
13,831.81 12,401.83 7.71% 6.92% 

 

 

   

Great Basin 

Province 
664,990.68 322,435.95 15.85% 11.29% 

East of the Sierra 

Nevada Region 
204,872.31 184,114.51 27.06% 24.32% 

Modoc Plateau 

Region 
403,000.33 90,815.82 15.48% 3.49% 

Warner Mountains 

Subregion 
57,078.04 47,468.62 20.68% 17.20% 

White and Inyo 

Mountains 

Subregion 
40.00 37.00 0.17% 0.16% 

 

 

   

Great Central 

Valley 
148,245.25 19,506.55 6.20% 0.67% 

Sacramento Valley 

Subregion 
31,823.00 1,608.00 5.53% 0.28% 

San Joaquin Valley 

Subregion 
116,422.25 17,898.55 6.88% 1.06% 

 

 

   

Northwestern 

California 
2,741,990.51 1,788,738.64 18.41% 10.48% 

High North Coast 

Ranges District 
361,290.14 292,903.82 21.05% 17.06% 

Inner North Coast 

Ranges District 
158,845.08 125,559.47 16.32% 12.90% 

Klamath Ranges 

Region 
1,679,253.80 1,281,998.65 23.39% 17.85% 

North Coast 

Subregion 
36,741.76 4,503.04 13.68% 1.68% 

Outer North Coast 

Ranges District 
505,859.72 83,773.67 17.62% 2.92% 
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Sierra Nevada 
2,335,624.92 1,412,930.91 16.73% 11.42% 

Central High Sierra 

Nevada District 
312,592.53 164,722.65 17.90% 9.43% 

Central Sierra 

Nevada Foothills 

District 
112,540.64 87,364.88 20.58% 15.97% 

Northern High 

Sierra Nevada 

District 
1,133,958.44 508,626.58 20.47% 9.18% 

Northern Sierra 

Nevada Foothills 

District 
140,652.93 78,174.05 17.21% 9.56% 

Southern High 

Sierra Nevada 

District 
582,583.15 530,383.25 21.00% 19.11% 

Southern Sierra 

Nevada Foothills 

District 
24,953.33 19,070.87 6.02% 4.60% 

Tehachapi Mountain 

Area Subregion 
28,343.90 24,588.62 13.95% 12.10% 

 

 

   

Southwestern 

California 
3,184,274.14 3,021,228.59 21.60% 19.84% 

Peninsular Ranges 

Subregion 
1,176,365.23 1,108,427.67 20.98% 19.77% 

San Bernardino 

Mountains District 
340,370.38 317,132.82 27.24% 25.38% 

San Gabriel 

Mountains District 
551,867.98 542,276.18 29.85% 29.33% 

San Jacinto 

Mountains District 
75,342.05 58,551.05 19.70% 15.31% 

South Coast 

Subregion 
45,891.06 34,020.94 6.67% 4.95% 

Western Transverse 

Ranges District 
994,437.44 960,819.93 25.16% 24.31% 

 

High Uncertainty 

by Bioregion 

Pixels_High

_Unc 

Pixels_High_

Unc_Burned 

Per_TotalDisturbed

_High_Unc 

Per_TotalDisturbed

_High_Unc_Burned 

Cascade Ranges 
3,161,783.93 463,466.57 75.83% 34.16% 

Cascade Range 

Foothills Subregion 
358,405.02 261,209.15 87.39% 63.69% 

High Cascade 

Range Subregion 
2,803,378.91 202,257.43 64.27% 4.64% 
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   Central Western 

California 
2,750,106.30 1,577,551.33 65.09% 31.80% 

Central Coast 

Subregion 
139,563.20 41,245.38 84.98% 25.12% 

Inner South Coast 

Ranges District 
292,220.43 156,641.62 74.69% 40.04% 

Outer South Coast 

Ranges District 
1,701,398.29 980,629.96 43.66% 25.16% 

San Francisco Bay 

Area Subregion 
616,924.38 399,034.38 57.05% 36.90% 

 

 

   

Desert Province 
1,120,990.28 756,162.88 88.53% 49.52% 

Desert Mountains 

Subregion 
204,075.52 142,935.64 81.55% 57.11% 

Mojave Desert 

Region 
753,496.04 576,740.53 92.89% 71.10% 

Sonoran Desert 

Region 
163,418.73 36,486.72 91.15% 20.35% 

 

 

   

Great Basin 

Province 
2,642,937.11 958,826.85 73.45% 24.59% 

East of the Sierra 

Nevada Region 
481,524.77 323,306.13 63.59% 42.70% 

Modoc Plateau 

Region 
1,989,594.23 541,004.06 76.42% 20.78% 

Warner Mountains 

Subregion 
148,972.45 94,358.67 53.97% 34.19% 

White and Inyo 

Mountains 

Subregion 
22,845.65 158.00 99.83% 0.69% 

 

 

   

Great Central 

Valley 
2,111,515.37 776,560.36 93.42% 33.02% 

Sacramento Valley 

Subregion 
541,919.32 175,973.16 94.15% 30.57% 

San Joaquin Valley 

Subregion 
1,569,596.05 600,587.20 92.70% 35.47% 

 

 

   

Northwestern 

California 
8,258,897.37 3,413,453.42 69.95% 24.52% 

High North Coast 

Ranges District 
1,127,137.79 569,098.92 65.66% 33.15% 
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Inner North Coast 

Ranges District 
768,220.99 458,329.16 78.90% 47.08% 

Klamath Ranges 

Region 
4,150,003.13 2,050,567.49 57.79% 28.56% 

North Coast 

Subregion 
208,285.12 6,275.56 77.54% 2.34% 

Outer North Coast 

Ranges District 
2,005,250.34 329,182.29 69.86% 11.47% 

 

 

   

Sierra Nevada 
7,879,936.54 2,754,259.49 71.99% 32.95% 

Central High Sierra 

Nevada District 
1,276,119.88 321,773.91 73.09% 18.43% 

Central Sierra 

Nevada Foothills 

District 
324,834.81 173,473.45 59.39% 31.72% 

Northern High 

Sierra Nevada 

District 
3,329,383.95 653,798.56 60.11% 11.80% 

Northern Sierra 

Nevada Foothills 

District 
589,447.31 165,075.44 72.11% 20.19% 

Southern High 

Sierra Nevada 

District 
1,809,055.55 1,104,256.88 65.20% 39.80% 

Southern Sierra 

Nevada Foothills 

District 
387,528.13 225,771.19 93.56% 54.51% 

Tehachapi Mountain 

Area Subregion 
163,566.91 110,110.06 80.50% 54.19% 

 

 

   

Southwestern 

California 
8,481,596.33 6,489,209.40 64.36% 46.70% 

Peninsular Ranges 

Subregion 
3,992,615.31 3,003,775.55 71.20% 53.56% 

San Bernardino 

Mountains District 
702,883.46 542,751.95 56.24% 43.43% 

San Gabriel 

Mountains District 
710,384.14 589,073.29 38.43% 31.86% 

San Jacinto 

Mountains District 
282,102.54 191,175.58 73.77% 49.99% 

South Coast 

Subregion 
631,562.97 388,261.76 91.83% 56.45% 

Western Transverse 

Ranges District 
2,162,047.91 1,774,171.27 54.70% 44.88% 
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Uncertainty by burn condition 

Uncertainty by FRAP Fire Perimeter Size Class 

Certainty of 

Disturbance fire_lt100 

fire_gt100

_500 

fire_gt500_

1000 

fire_gt1000_

10000 

fire_gt10000_

90000 

fire_gt90

000 

No Reported 

Disturbance 10.94% 7.63% 5.52% 4.35% 2.12% 1.24% 

Low 

Uncertainty 4.90% 6.61% 7.19% 12.06% 18.71% 27.59% 

Medium 

Uncertainty 11.28% 12.71% 13.23% 19.56% 26.50% 26.06% 

High 

Uncertainty 72.87% 73.05% 74.06% 64.03% 52.68% 45.12% 

 

Uncertainty by MTBS Burn Severity 

  

Unburned Low 

Severity Low Severity Medium Severity High Severity 

No Reported Disturbance 

total area 184,954,756.14 187,905,805.15 126,177,256.16 75,306,279.98 

% of severity 

class 3.70% 2.45% 2.02% 1.62% 

Low Uncertainty 

total area 70,763,900.19 542,325,585.08 1,642,537,876.36 2,564,917,281.06 

% of severity 

class 1.41% 7.06% 26.32% 55.04% 

Medium Uncertainty 

total area 591,813,766.83 1,861,856,959.92 2,030,359,436.09 1,252,135,576.76 

% of severity 

class 11.83% 24.24% 32.53% 26.87% 

High Uncertainty 

total area 4,156,293,622.03 5,088,384,973.79 2,442,482,458.58 767,341,991.81 

% of severity 

class 83.06% 66.25% 39.13% 16.47% 

 

Total Area in 

Severity 5,003,826,045.19 7,680,473,323.94 6,241,557,027.19 4,659,701,129.62 

 




