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Temporal Metric Spaces in Radiative Transfer Theory 

III. Characteristic Spheroids and Ellipsoids 

Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California 

La Jolla, California 

INTRODUCTION 

A pulse of light is directed into a medium of known optical prop­

erties. As the pulse proceeds into the medium some of its energy is ab­

sorbed, some is redirected by scattering, and the scattered energy goes 

on to be scattered further. We may ask: How much scattered light from 

the pulse is expected to exist in the form of primary scattered light, 

secondary scattered light, etc., at a given time after the pulse enters 

the medium? Or we may ask: What is the expected radiance of that part 

of the energy scattered from the pulse, as seen at the transmitter (or 

any other observation point), at a given time after the pulse enters the 

medium? These questions are fundamental in the experimental and theoret­

ical study of natural aerosols and hydrosols. For by knowing the answers 

to these questions, one can better understand the results of actual 

experiments carried out with time-dependent light fields. Furthermore, 

the order of these questions and answers may be inverted so that a 

measured response of a medium to a pulse of known characteristics can 

lead to an estimate of the optical properties of the medium. 
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The questions posed above may be answered by using the set theo­

retical tools developed in the paper; specific illustrations are given 

in the section on Applications. The main emphasis of this paper, and 

the others of this series is, however, on the development of a new set 

of concepts in radiative transfer theory which may eventually broaden 

its scope of applicability and draw it closer to the discipline of 

topological dynamics - the mathematics of future physics. 

CHARACTERISTIC SUBSETS 

The characteristic function "~)C defined in paper II yields a cri­

terion for deciding whether a given point in a general carrier space is 

being irradiated at a certain time by flux (either directly transmitted 

or scattered) from a given point source. We now consider in detail two 

closely related problems: for a given local source and local epoch time 

for that source, what is the totality of points which may receive radiant 

flux (either directly transmitted or scattered) from that source? Also: 

for the same fundamental source and a given point in the associated 

irradiated set of points, what subset of the preceding totality of 

points may actually scatter flux from the fundamental source to the 

given point? These subsets will now be defined and studied. 
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Characteristic Spheroid 

Definition 1. Let p.. in a carrier space X be a fixed local 

source for the point £•' in X . The set of all points f." in X 

for which ft is a local source at local epoch time Tp* (p.) and 

which satisfy the characteristic function equation 

defines a subset W?/?'; Tp<* (/>')) of X called the characteristic 

spheroid of y2 relative to /2 * . 

Theorem^. *d(fif, Tp* (?i<)) j n X , with respect to the metric 

defined by least local epoch time, is: 

(i) A spheroidal body, 

(ii) with center 42 

(iii) of radius Tp*(p')% 

Proof- By definition, J(fi '; Tp*-(p'l) is the set of all points /2 ", 

such that y~( f>\p", Tp*(/i')) =1 , which is equivalent to the condition 

(see Figure la) 

But this is precisely the metrical definition of a spheroidal body with 

center V and radius T p * (p'), which completes the proof. 
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The spheroidal body r<-f°rrcd to in the preceding theorem is thus a 

true sphere plus its internal points, in the space X with metric ~JZp/ 

Of— • , 

Hence, if one were to drav a three dimensional &raph of x)(fi •> Ia.'r(fi)) 

in some classical carrier spj.ee one would obtain a sub region of /\ 

which, with respect to ~T~a& ' , would oe precisely n spheroiaal body. 

However, if one were to adopt Ihc usual metric C[ in A , the set 

iJi(fl • 7~fl:*(/i)) would generally be of irregular shape and multiply con­

nected (have holes in it). 

Characteristic Ellipsoid 

To S..U the stage for the next dsflnition, let (c^'^l) be - fixed 

p?ir of points in X . i.ct A ' ba a local source for ̂ 2 ; let^2 in A 

be a local source for _y<2. . Th?t is, ̂ 2 emits radiant flux and thereby 

induces ./2. (after a sufficient interval of time) to emit radiant flux. 

JZ may be the fundamental source jp0 forX , but for generality, p . ' 

need not be 4Z0 . We consider the effects at J2, induced only by ,/2. ; 

and we consider effects at /•!> induced only by jZ . With this chain 

of events in mind we new can state: 

Definition 2. The subset &(p.'j ft ; TpT^( ft') ) of X consisting 

of all points £ U such that 

'U?">/L ; U'lfi**) 

http://spj.ee
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is called the characteristic ellipsoid of the point pair (ft \/zj relative 

to the local source ft . 

There are two local sources involved in the definition of £ . x'hc 

local source ̂ 2 serves, with A . to generate £. by means of the above-

equation, ^ L = / . The local source ft, *" gives a means of establishing local 

epoch time at /2 . 

Suppose )( has an index of refraction function /? which is constant 

over a classical carrier space X . Then Definition 2 implies that the 

totality of points ft form an actual ellipsoid of revolution with /2 and 

fi, at the foci. This interpretation is actually valid for any space X 

when the least local epoch time metric ~T2.ti/ is used as a yardstick, 

as is proved in: 

Theorem 2. The characteristic ellipsoid S(p. 'j/2 ; %!.*(/*')) in X with 

respect to the least local epoch time metric is: 

(i) An ellipsoidal body, 

(ii) with foci at A and ft- , 

(iii) of ma.jor diameter "/ft'* (/*-') t 

(iv) af eccentricity <£" - 7/t'M /TA *(fc ') . 

Proof: By definition of <£ , any point /Z " in £ satisfies the charac­

teristic equation 

~XfK A ;'£•(,<')) = / 



// 
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which implies 

"£> ^ Tp'(r') = T^(ft') -Tftft" 

so that, at local epoch time Ta.~* (ft*) > C consists of all points <u 

in A satisfying the inequality (see Figure lb): 

Tf-'fi* + TfJ'ft ^ T;;* (ft') 

But this is precisely the metric definition of an ellipsoidal body with 

the point pair (ft' ^ ) as foci, and with major diameter T^^^ft'J* The 

metric definition of eccentricity is: the quotient of the distance between 

the foci, by the major diameter of the ellipsoid. Thus (iv) follows, 

and the proof is complete. 

From the definition of the characteristic ellipsoid CCft^ftij 7f*(/i>')) 

it is clear that this subset of/( contains all points ft! which, at a 

certain given epoch time, are contributing at least primary scattered 

radiant flux to ft. with respect to the flux leaving ft . Conversely, 

if a point ft^ is contributing at least primary scattered radiant flux 

to p , , it must be in the characteristic ellipsoid iz(ft.'jft, J ys.^Oz)} • 

Thus at any instant ~Tn*(/L ') > tne characteristic ellipsoid 

£(/*•'& 'Ta*(fi')) defines tnat subset of A which can pass on flux to ft, 

which originated at jl . 
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Some Observations for Classical Carrier Spaces 

In classical carrier spaces of spatially and temporally uniform index 

of refraction there is a particuleirly simple connection between the tem­

poral metrics and the usual metric U . In such spaces the least local 

epoch time metric ~T , coincides with the metric 77 (Theorem 3, paper II). 
'rr 

As a consequence, if ft and ft. are any two points in X > tne natural path 

between ft1 and ft is a straight line (Example 1, paper I), and 

Tfi'ft ~ i.(ft'}ft) =c/(ft/
/ft)/2/'} where V is the speed of light in X . 

Suppose, for simplicity, that ft.''- ft4' = f t 0 , then ~7}±* (ft ') = T , 

the epoch time in )( . It follows that the temporal diameter of the charac­

teristic ellipsoid £(ft'jft ; T^(^j) - 8(/^o,ftjT) is s™?1? T > 

and the geometrical length of the diameter is D~!fT. Thus the 

eccentricity of £ (ft.0jft : J~J is: 

D 

According to the preceding formula for £ , when T i s jus t equal to 

L (ft" ft) € — / ) implying tha t the charac te r i s t i c e l l ipsoid at t h i s 

ins tan t i s a s t ra igh t l ine in X , namely the s t ra igh t l ine connecting ftZt 

and ft (see Figure 2a) . The ins tan t the wavefront from ftl0 p a s s e s ^ , 

8(po &' Tj s t a r t s fattening out, which i s mathematically ref lected in a 

decreasing £ (Figure 2b). As epoch time 7" increases , the eccent r ic i ty 

of <£* continues to decrease so tha t , in the l imit as ~ft~"QD > (E-^O > 

and the charac te r i s t i c spheroid i s eventually spherical in shape. 
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At any epoch time T ~ > £^ft0jp.) , the surface of the e l l ipsoid may 

bo expressed in polar coordinate form: 

D3 - d 
H9) = 

Z(D>- CLCOSQ) 

Here /-/£>) i s the geometrical distance from _/2 0 to a boundary point 

of £ where Q i s the angle between the direct ions ft-oft, /2 & ft*" 

(Figure 2c) . Further, D=VT and (^ ~ c/(ftoyft.J. If, for example, 

oi~ O , then /2.o=/2 , and 

h(&) = a. *_. ^ 7 -

for all <y . That is, the characteristic ellipsoid (£(ft.0/ftoj T) associated 

with the special pair of points (ft<> ft0) is a sphere (with respect to 

either the temporal or spatial metrics) with a radius half that of the 

characteristic spheroid \o (pc ; 7~J- Hence, under these conditions, the 

boundary of t(fto.ft* -T) i s moving away from ft. with a speed half that 

of *Q(P°}T) • *n general, the rate of recession of a point on the 

boundary of G(ftcJft* ~f) from either fto or ft- depends on & . However, 

for large ~T~ , this rate always approaches 7/ft/^ for all 0 : 

He) —— .£ 

as *7"-> 00 y so that 

dne) 9 

which follows from the general expression for /-/'£?/ • 

3L 
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WORLD-LINE REPRESENTATIONS OF CHARACTERISTIC SUBSETS 

General Remarks 

The preceding discussion of the characteristic subsets in the classier.' 

settings threw much light on the essential geometric structure of these 

subsets because the spatial and temporal metrics could be simply compared. 

However, general carrier spaces usually do not possess a "geometrical" 

metric to describe the characteristic subsets; or if there is such a metric 

we are generally unable to compare it with temporal metric in a simple way. 

Nevertheless, for practical applications, it is essential to have some 

relatively simple way to represent both the spatial and temporal features 

of the characteristic subsets. We will show that a particularly fruitful 

solution to this problem lies in the world-line representation of charac­

teristic subsets. This mode of representation of space-time events has 

been used to advantage for example in the special relativity theory. It 

has two particularly useful features: it places the time parameters on 

an equal footing with the spe.ee parameters; it allows a purely set-

theoretic description of physical events associated with space-time phenomen. 

The basic idea behind the world-line representation is to consider 

not just trajectories of photons in the space X > ̂ u^ their trajectories 

in the cartesian product Y*J~ of \ and ~J~ > where J~ is the time 

domain. A point of X * 7 ~ is an ordered pair (fty-£) of points, the ft. 

belonging to X > t n e Z. to ~T~ . Thus we no longer consider just the 

point ft in X > D u t t n e point zL at time c . Therefore, the world-

line representation contains temporal information about events in addition 

to the usual spatial information. 

http://spe.ee
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*v3 an i l l u s t r a t i o n , consider t h t t r i j co to ry /\0Wo£io i n X of -. 

photon or a ray of l i gh t (Figure 3 ) . Oh. two path segments Aa K/c -rx'A-

Wo 3o give a l l the information nbout the spa t ia l configuration of th; 

t ra jec tory . However, there i s no information in the diagram about tho 

times of t r ave l from A o to Wo , and from \MJ to 8 j . I f a time 

ixis i s erected "perpendicular" to A (where X i s represented for 

simplici ty as a two dimensional space) wc can include the temporal infor­

mation associated with the t r a jec to ry /jo Wo Go . Suppose, for example, 

tha t the ray s t a r t s at A a at time -£Q and ar r ives at \A/o at time £ . 

The t ra jec tory in space-time of the ray i s given by the segment /\v j/(/ in 

the space X*T~ • T n e point W i s actual ly an ordered pair (H/a^ £'), 

i . e . , the point ]/\J0 1° X a - t time C , and simile-rly Ao should be 

wri t ten as the ordered pa i r (Ao.~60) • ^ the r a y then proceeds from W 

and arr ives at Bo at time £^ , t h i s leg of the photon's space-time 

journey i s represented by the segment H/ 3 in space-time. We say that 

AaW'fi in X A 7" i s t n e world-line of the t ra jec tory /\c\A/c $o in X • 
/ 

The t ra jec tory AoWoBo in )( i s c lear ly a "projection" of 

AoW o on X • A projection P on X i s -J- mapping of X * / ctnto X > 

defined as : , 

Px (ft,*) = /2 , 

i . e . , Px takes a point (ft ^ J in X * 7~ ^ ^ a s s igns i t to the- point 

ft in X • From t h i s i t i s c lear t h r t two l is t ine t points in \*T~ may 

have the same- projected ima?*- in X . For example, \A/ ' — (1/1/ /'J 'm^ 
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W * *» "flA£*£ ")?-ro d i s t i nc t points in X * T" , but 

Px(W') = PK(W") ^= WO EX 

In jus t the same w\y, two subsets of X * 7" may nav<- the same ITO-

joction in X • Thus the two world-lines ti0\^J' 'V3 , and A^IA/''/* , 

hive the same nrojection fta \A/0 /J~?C in X • Symbolically: 

P* (4oW'ib)-= %(A«W"8 ) ^ A,W'uBo . 
' t 

Character is t ic Cone 

In Fi.c^ure 4, l e t point ft0 be che fundamental source of radiant 

:-nergy which begins to emit radiant energy at "poch "7"""= O • The future 

nappe of the cha rac te r i s t i c cone associated with ftZ0 i s defined as the 

set CJ. / //„ Q J of a l l points (ft ' f ' ) in X*7~ with the folloxving 

property: 

Ct(j*o,oj *= jfcr'j : r^ *>?(/-» T')\ . 

Thpt is, a p«int (p^T') *** X* 7~ i s i n ^-h (ft»,o) i f /2 ' 

the spat ial component of / # , ' 7" '^ i s in the charac te r i s t i c spheroid 

xj(A.J T') w i t ^ center ^ 2 0 -nd radius 7~" . I f X w e r c x c l a s s i ca l 

ca r r i e r spr-ce with constant iniex of refraction on y(K~J~ , then 



SIO Ref: 59-10 - 12 -

C V (fl»jO) would be a four-dimensional conical solid in the usual sense. 

This i s the bas is for the diagrammatic conical representation of (j+(/2ajc>) 

in Figure 4 . 

The concept of a future nappe (?+(fto, O) associated with ftv need 

not be r e s t r i c t ed to y2o . We may wish to extend our a t tent ion to the 

radiant flux leaving some local source y<L at some f i n i t e epoch ~T *̂* O . 

The future nappe C^>f.(ft,7~) associated with (fttT"j i s then defined 

as (see Figure 5 ) : 

£+ Cfi>T) =/f/z* T") :/e" e sj?(ft; T"-r)Jt 

The future nappe CI/ft f~\ represents the totality of points in 

X * / which may receive radiant flux from *ftL either directly or in­

directly (by scattering, etc.). On the other hand, jZ itself may be 

receiving radiant flux from other local sources in /( . The totality of 

such points makes up the past nappe of the characteristic cone associated 

with A , and is defined as 

C-<fi>T)= I (ft'.T') : fi. £ J(/2'} T-T')} . 

Another way of defining C(ftj-) is directly in terms of future 

nappes (see Figure 5)J 
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The characteristic cone &(/*,T) 'associated with the point (ft, 7~J 

in X * T" is defined as: 

£(frT) * £_ (ft,T) U C+ffr'T) -

It should be emphasized that the symbol 7" in the notation 

f°r <$ > CJ. , and g_ refers to epoch time associated with the funda­

mental source fi& , whereas the times entering into the symbols for \a 

are of course local epoch times with respect to the local sources included 

in the ̂ -notation, and these local epoch times are in turn referred, 

without exception, to some fixed local source such as /<.<>, or in general 

some point ft, . In this way we can conveniently drop the ^2 and f£ 

from the notation for Tfi*(ft-) in sd(ft ; T^'O^i) without neces­

sarily incurring any ambiguity in the notation; the basic local source 

will always be explicitly given in any specific context requiring such 

information. 

Representation of the Characteristic Spheroid 

From the point of view of the preceding discussion, the notion of 

characteristic spheroid was basic in the sense that the concepts of C?+ , 

/' - , and hence £f were all ultimately defined in terms of fc/ . This 

is a natural consequence of the present order of development of the tem­

poral semimetric theory. It is conceivable, however, to begin the theory 

in such a way as to come upon the concept of £*/ before that of /C , 
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and hence, before that of ^7 . But l i t t l e i s gained in such an a l te rna te 

approach especial ly since the theore t ica l machinery gets into fu l l swing 

only af ter the def ini t ions of ^a and C have been made. Nevertheless, 

even in the present order of development, the representations of \^j and c 

in terms of the charac te r i s t i c cone LZ supplj* deeper insight into the 

spatial-temporal s t ructures of these concepts, and we wi l l continue to 

use the newer concept £ in the in te rpre ta t ion of \^f and C, . Thus, for 

example, the charac te r i s t i c spheroid \d/ftu' 7~') m ay De represented as 

the projection on / \ of the in tersect ion of (Sf (ftUj Oj sn<^ the subset 

X x T ' o f X*T : 

J(ft«;T')= P«/e,(ft.;o)/) (XxT-'j] T'^V. 

This is illustrated in Figure 4. In general, 

J(fi, T"-T) -.= S< [&(/ilT) n ( X x T ")], T "& T, 

which may be verif ied on the basis of the geometrical r e la t ions depicted 

in Figure 5. 

Representation of the Character is t ic El l ipsoid 

A purely se t - theore t i ca l representation of Q. in terms of C^f- and 

£?_can be made in a way similar to tha t of $J . Consider a local source 

ft. in X which begin? to emit at epoch time 7" . Let (ftjTJ be in 

£.(p\ -f') '> thus ft. € wY ft', T-T) ,an<i f2- i s receiving flux f rom ft 

(See Figure 6 ) . 
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Moreover, ft is also receiving flux from all those points ft" in its 

past nappe G_(ft,T) whose points themselves have been irradiated 

by flux from n . Thus, with respect to the local source ft and the 

receiving point ft. , the set of all points ft" in X which receive 

flux from ft md pas:* it on to ft is defined by the region in X x T 

common to both (?+ (p. \ T') and C-(pjT) : 

Hence the projection of this space-time region into X must be none other 

than <?(^V j 7-T') : 

g(p\p-T-T') - Px [ Cf^^T') fK-^T)] 

The general proof of this set-theoretic equality is straightforward. 

The proof is particularly illuminating in the context of classical carrier 

spaces with constant index of refraction on X * T . We will therefore 

outline the proof in this context. 

Assume that ft f C + ( p. , T '/ . We consider first only rays which 

go from (ft'jT'J to (f,T) in X x T along the boundaries of ft (ftjT'J 

and C-Lp-jT) . Figure 6 shows such a world-line defined by the segments 

U\T')-*(p"}T«) and ̂ "; T")-^(p,T) . Tne first of these 

segments lies in C+( P'} T') , the second lies in C-(ft,TJ . Therefore 

if \T 'l lies in the space-time curve £• which is the intersection of 

the boundaries of <w Cfi'tT') and £?-(P,T) . Since the index of 
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refract ion function tl i s constant on X * 7 ~ , the geometric longthsof 

the projections of these worid-line segments i s c fixed factor times the 

temporal lengths associated with the segments, i . e . , 

d(t',fi") - V(T"-T') ^ o/pft"^) = lr{T-T«J. 

Hence 

d(ft'tft") + clf^fti) ~ ir(T-T'l 5 

which is independent of (ft 'li T ''J . Therefore ,2. ̂  , the projection of 

(ft")T"j on X traces out an ellipsoidal surface f£(J=) on X whose 

major diameter is clearly V(T~7~>Jf and whose foci are at ftL '= /-^(ft'T'l 

and ^1 - /? (ftt j) . If, finally, U ^T'jbere properly contained within 

('iffijT')/) C_ (fi-)T) > then the length of the projection of the seg­

ment (ft fj j-/J ->. /g u} j - M) would be less than V(T "-T') similarly, 

the length of the projection of the segment (rj, "} T"J—* /^ j-J would 

be less than y(-f—T"j • Therefore the projection of 

£- + (/zj7~///C'-(/£jT) is contained within P% ( pz ) that is, within 

tlflfPyT'-Tj. Conversely, any trajectory in the region of X bounded 

by P^ (jE) with beginning and end points corresponding to (ft'jTr/ and 

IpyT) in ysYS\~ must necessarily map, under p^ , (the inverse of 

Px ) into Cf(p'ft') QC-CftiT) • This completes the outline of 

the proof. 
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An Important Special Case of the Characteristic Ellipsoid 

An important special case of the characteristic ellipsoid arises 

when the source point ftL coincides with the receiving point /2* in a 

classical carrier space. This case is illustrated in Figure 7. The real 

counterpart to this situation occurs in the operation of an instrument 

which is designed to both send out radiant energy and receive radiant 

energy scattered back from the medium. There are three features of the 

diagram which should be observed: (a) the characteristic ellipsoid 

t(fio,pQ • T) is a spheroid of radius ITT/2 ', (b) the characteristic 

spheroid sdtpo,' T) is a spheroid of radius V~T ; (c) all primary 

scattered radiant flux received at (pio/T) is necessarily generated on JE. , 

the intersection of (?f (ft0j Q) and C- (ftu,T)» 

The preceding observation on the space-time locale of the generation 

of primary scattered flux received at jt>o applies also to the general 

case where the transmitting and receiving points are distinct. The curve 

£~ in Figure 6 is the corresponding locale in this more general case. 

Thus the world-line of a primary scattered photon originally emitted at ftL 

(Figure 7) and received at ̂  is a two-segmented line with vertex 

on £T . The world-lines of secondary and higher order scattered photons 

may be easily represented on diagrams such as those in Figures 6 and 7. 



»30 Ref: '59-10 - ..- -

APPLICATION.-.-

We w i l l now d i s c u s s two a p p l i c a t i o n s of the concepts r l ' Jv'..!r;;.ctor:i/-'+,i.-. 

spheroid and e l l i p s o i d . The- c h a r a c t e r i s t i c spK r<vid i r f s p e c i a l l y u.^ *\U 

i n the- d e r i v a t i o n of formulas which desc r ibe tb« radi int. energy oonu-tu 

:f va r ious subse t s a t given epoch t i m e s . This fact, w i l l be i l l u s t r a t e d 

by de r iv ing the.- formula f o r t h e primary s c a t t e r s ; r ad i an t energy in X 

•at epoch t i n e ~f . The c h a r a c t e r i s t i c e l l i p s o i d i s h e l p f u l i n f o m i u l ' t i n r 

express ions for the: t ime-dependent radiance f u n c t i o n . This wi l l b<" iLTac-

t r a t e ' J for the case of primary s c a t t e r e d r a d i a n c e . 

Time-Dependent Radiant Energy 

For t h i s i l l u s t r a t i o n , the c a r r i e r space X i-r' t o have the; fo l lowlur 

p r o p - r t i e s : i t s l o c a t i o n space component \ 0 is th->. entire; euclideon 

three-space. The volume attenuation function cxl , and index of refraction 

function f[ are constant on X ^ T " • The volume scattering function 

(F(-X't: f • ffj w i l 1 t h u s b e independent of 2f ^ X ° and ^ f 7" , but 

;iay depend in any way on the direction variables S and S_ . The funda­

mental source ft o will be i t the origin of X o > 'mc* will emit radiant 

flux in all directions £ ( JZ. according to some given general pattern, 

'•"urthormore, i t s total, radiant flux output p (•£) will vary with tirr.-; 

in ••' given general manner over the time Interval (Oj Tuj • ^ o r valuer, 

of •£ outside this interval, P°t~t) will be- zero. 
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Figure 8 shows the wo rid-region occupied by th«.. photons from ft^ . 

This region is contained between the two future nappes ft.(ft\>,O) and 

/? (p " , To ) • ^ any time T^-Ta the region of ̂  ^ occupied by the 

emitted energy is given by 

J(ftot~r) = d(ftul r) - d<r», T-7ZJ , 

This region of Y is depicted in Figure 8 as the shaded annulus on )(o 

If T " < "T~0 then the region of X o occupied by the radiant energy 

is given by 

*f(fr,T) - J(ft^-r) ) 

since, by definition \jf(po,~r'} = <X > tnt; f-mPty set, if 7" '-< O 

We begin our calculations with a derivation of the formula for the 

reduced radiant energy U°(T') in so(fio^T) . The reduced radiant 

energy is carried by photons irtiich have not been scattered or absorbed. 

Let )Jic(X T) denote thfc reduced radiant elensity (reduced radiant 

energy per unit volume cf ̂ .j ) at a i X ^ im<^ at time ~J~ • Then, 

clearly 
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The multiple integral (1) may be written as an iterated integral: 

ITT 

^<w(oi V(T-To)) ftt'') 

where J\ (v \ is a sphere of radius \-*£ V~T~ • 

It is easy to see that 

which follows from the fact that the integral over /\ (\') may be 

interpreted as (reduced) radiant energy content of a spherical shell of 

radius /-* and unit thickness. Hence 

UTn~ i [ p" ( T -£ ) e ^^ t . .
 (2) 

'«-<** (e t t/tr-r„ij 

If, for example, p°(f) = p ° for O^S £ ̂ 1Z , then (J°(fJ 

is of the form: 

( PoT* [ l - cS-777"- ] c * T * To , 
I 5 > (3) 

ircn 

where ~J7v = | / - i r oC ^-s t n e time constant for (J ° in X o • 
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H graph showing the general profi le of 0°C1~) for th is simple 

example appears in Figure 9a. If the.source emitted uniformly in time for 

a l l "J" >" O , ( i . e . , "To = 00 ) , then the resul t ing expression, for U°(T^ 

i s given by the f i r s t equation in ( 3 ) . A graph of the corresponding U°("""' 

i s shown in Figure 9b. The l imit ing (or asymptotic) value, of \J°(T) in 

t h i s case i s : 

U>i-Iini U°(T)= P ° T * . U) 

We note parenthet ica l ly that the formula for (J (T) in (3) i s 

reminiscent of the formula in elementary c i r cu i t theory for the charge on 

a capacitor in a simple capacitance-resistance DC c i r c u i t . The quantity 

U ' J (T) takes the role of the charge, Ulf i s analogous to res i s tance , 

I /Q( i s analogous to capacitance, and ~T~^ ~ \/IT(J^- i s analogous to 

the time constant of the c i r c u i t . 

We now go on to derive the formula for (J ( T ) , the primary radiant 

energy in Xy a t T • Every point ^p* f in i<3 (ftoj ~T~) i s a potent ia l 

source of primary scat tered energy: as the wavefront from j2 o passes ft2.( . 

the element of volume about ft/ begins to emit scattered radiant energy. 

If fti i s a t a distance h. from fia , the region of X o permeated 

by the scattered energy from ft- / a t time ~T i s c lea r ly ^j(fttit 1~~ 7~f ) , 

where "77 = Pi /IT i s the epoch time pi / begins to emit (see Figure 8 ) . 

Suppose JJ, ( -x ~r) i s the radiant density at point DC and time 7~~ in 

j£(p ~r—~r\ of primary scattered radiant, energy produced per unit volume 
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around the local source ft . Then 

JJL'( j2l)T)^\ ^CZ,T)JV(*) , (5) 

represents the total primary scattered radiant energy in y(* a t time 7~ 

produced by a unit volume at about P/ . The total primary scattered 

radiant energy in Xo a t time ' i s then 

U ' ( T ) - j U\fi*>T) J\J(H - ( 6 ) 

dlP°>-T) 

As an explicit example of the use of (5) and (6), we assume that ftu 

radiates uniformly for all "7"'>-O ("To — a^) • Then (6) reduces to 

or 

Win = OJ„ UV) [i - (i + j-J e~r / r" ] (7) 

where LOo = - ^/oL i s the albedo for single scattering. Hence the 

limiting (or asymptotic) value of U C.T] i s : 
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Time-Dependent Radiance 

The present setting is associated \f±th a one-dimensional location 

space / \ o (figure 10). We assume that H is constant on X * ~T~ > 

but that Q£_ and (J~ may vary spatially in an arbitrary manner on X o 

and be constant on "]""" . The volume scattering function then has only 

two components in this space at each point J? : ̂ TV £j?'J the forward 

scattering component and C]~L ( 7;') the backward scattering component. 

The fundamental source directs radiant flux in the upward (increasing J£ ) 

direction in an arbitrary manner over a time interval ( 0,To ) > such 

that the inherent radiance is given by [\j ° £ (•{; ) . The radiance 

is zerc outside this time interval. This setting corresponds closely to 

the roal case of a narrow beam of radiant flux sent into a spatially 

inhomogeneous scattering-absorbing medium such as the atmosphere. Thus 

the formulas developed below for the down and upwelling primary radiance 

f\| {i) "1" < -fc ) y are applicable to the problem of predicting primary 

scattered radiance from clouds or haze layers when they are irradiated by 

a narrow vertical pulse of photons. 

Figure 10a shows the location of the pulse in X c at time "J" . The 

pulse is of temporal length ~|~ and of geometrical length | _ 0 = V f0 , 

and varies in radiance in the given manner over the period of time (0{TQ ) 

This shape is governed by the function -j- defined above, and is graphi­

cally depicted in the figure. 
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Figure 10b shows a general receiving point at height j£ , along with 

its past nappe O-iH > T~] . The intersection of this past nappe with 

the future nappes (?+(0) O) and £+ (Oj~Ta) of the fundamental 

source define the heavily-drawn region on the £ -axis. In the terminology 

of characteristic ellipsoids, this region is precisely representable as 

C (o}3; ;T) — cfCe^ 2 ' To) ^^ nas ver%tical extent of magnitude l/"'|0/z 

/»n examination of the figure will show that it is this region which con­

tributes downwelling primary scattered radiant flux to a radiance receiver 

at ;? at epoch time ~T~ . Consider a particular contributing point at 

altitude J£ in this region. In order that a set of photons travel 

from ;?- O to Z ~ J£ and then reach height x at time ~f , the 
2 t 

set must s t a r t out at % =• O a t time £ = ~J~-+ £• — ^S . The inherent 
ir or 

radiance of t h i s set i s then fsJ°-f ( T + — — ̂  ) . The reduc.d 

radiance of t h i s set as i t reaches height %/ is 

V IT / ' / 

where T j ' ^ ̂  /~H is the beam transmittance of the upward directed 

path of length j? with initial point at Z — '3 

Now as the reduced radiance reaches height j£ its photonr. con­

verge on the point in a solid angle of magnitude _Q_(_-? / , which is the 

solid angle subtense of the pulse transmitter as seen from height j£ 

Part of this set of photons is then scattered back; the exact amount 

scattered back per unit length of the shaded path at height, Z is given by: 

N ° f ( r + | - v ' ) T ^ r o , + ) f f i ( 2 ' ) I i ^ ' ) „ 
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This 3> t of photons then travels downward '. vertioal distance / — jt ?* 

reach level j£ 5 the amount of radiance arriving at height g is 

"e$Cr-,-%-%!') T^^Ti'-nLz',-) <r-<z')Sit*'), 

where | - / 7 { 2 } — ) is the beam transmittance of a downward directed 

path of length •£ f— •? with initial point at ^ 

This radiance is then the primary radiance arriving in a downward 

direction at height j? at time ~~f ; and this primf ry radiance has been 

generated by a unit length of path about height % ' . Therefore the total 

primary radiance arriving at ^ at time ~J~ is obtained by integrating 

over the region £°( o ; ,? - T ) — £* (O, '£ j 7UJ . The upper and lower 

limits of the region are shown in Figure 10b. If 5? exceeds the alti­

tude of the lower limit of the region we must clearly choose TL as the 

lower limit of integration. Thus: 

r (8) 

The upward primary radiance NJ ( 2 , + , ! ) is computed in a sijnilnr 

way. We now use Figure 10c to aid in the determination of the limits of 

integration. In order for a set of photons to start out at j£ = Q and 

reach altitude % ?t epoch time T , they must start at epoch 



time T - — • assume th:t ~T~ ^- is ir. (c7,To) • (If i b i s 

not, then ( 2 ,T") is °̂ t °? ^e world-region of th< given pnlse, nnd 

N ' ( ; , - r J ) - G ). Further, suppose TJVU. primary scattered pnooons 

•irriving at <''7|Tj were scattered at (X j f'j , i.e., at height I* 

-r ' ••it epoch time / . Thus i.f 

is the reduced radiance of the photons arriving at ( 7 , T"y , thir. 

radiance is then scattered for.-rard, the amount per unit length at 

b(;ing 

Finally, this set of photons is transmitted over an upward directed path 

of length 7 — 2 > starting at height ;? . Thus the amount at 

The range of integration is now over the altitude interval ( O^ £ ) , 

Therefore 

.,2 (9) 
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where ~f2 (O^) - f^/ (0,+) T ^ - . - g , C*'j+-) » b ^ t h e semigroup property 

of beam transmittances. 

/m important special case of (8) a r i ses in pract ice when %= O . 

The resu l t of set t ing ^ = O in (8) i s : 

where we have made use of the reciproci ty property of ~j -j' : 

\2'(v> + ) ^ I V Wj -) 

We close the discussion of applications with a remark on the com­

putation procedure for radiant flux of higher scat ter ing orders . Consider 

Figure 11a, which shows the world-line of a photon which ar r ives at •'•':''' .,.:• 

( £ , T ) a f te r having been scat tered four t imes. The points in X o X~T 

"where" scat ter ing occurred are numbered consecutively. Each of these 

points i s the ver tex of a charac te r i s t i c cone £f ( A ) .1— \}2 , 3 A . 

Observe that the future nappe C-f ( l -M) i s contained in the future nappe 

W- ( J ) rj ~ ' i ^ i 3 . I n order to find hj ( 2 >"*",T*/ > we must 

in tegrate M£ ( j? ', + , T ') over <?4 ( 4 ) / Kl^ == J <TN B o * l O j but i] 

order to know |N/jJ(2^-*- ,"T') we must know f\J 5 ( ; ? " ; ± , T "J over 

£°, ( 3 ) , e t c . , down to knowing l^'( £ 1±)T) over <f+ ( I ) • 

i n 
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But these latter primary ro.dic.nces were just computed in detail above. 

We nay then retrace our steps through the sequence of integrals over 

^-4^3 i ? J = "•• > - I ^i > starting from these known primary radiances. 

We eventually end up with a 4-fold iterated integral of the known 

function Kl °f(£) . Figure lib shows a typical photon world-line which 

gives rise to N ( Z . — Tl • This general technique can also be applied 

to find U (T) , the H-ary scattered radiant energy. 

KtJF: jl 
1/26/59 

http://ro.dic.nces


Properties of J and € in A rb i t ra ry Spaces 

• / ( p ' i T ^ t p 1 ) ) 

Figure I a 

e(p' ,p;Tp*(p ' ) ) 

T p * (p ' ) 

Figure I b 

R. Preisendorfer 



General Geometric Propert ies of <S in Classical Carr ier Spaces 

« d = d(pOJp)-

T = t (p o f p) 
(a) 

T > t ( p o l p ) 
(b) 

T > t (p ,p) 
(c) 

r (0) = 
D 2 - d 2 

2 ( D - d cos B) 

R. hreisendorfer 

Figure 2 



W o r l d - L ine Rep resen ta t i on 

A n W 0 B „ = Px o o " o A 0 W'B, 

F igure 3 

R. Preisendorfer 



Rela t ion Between Charac te r i s t i c Spheroid J and Cone -C + 

^ ( P o i T ' ) 

^ ^ p 0 J , ) = C + ( p o l o ) n ( x x T 1 ) 

^ ( p o . O J ^ I C p . ' T ' ) : P'€ i ( p o , T ' ) 

F igu re 4 

R. iTeisendorfer 



Futu re and Past Nappes of Characteristic Cone 

<Mp,T) = { ( p " T " ) : p " € x f ( p , T " - T ) } Future na ppe 

6 _(p,T)= { (p ' ,T ' ) : p e ^ ( p ; T - T ' ) j Past napp< 

or 

6_(p,T) = { ( p ' . T ' ) - (p ,T )€ e + ( p ' T ' ) } 

Figure 5 

R. Preisendorfer 



Relation Between Characteristic Ellipsoid and Cones 

£(p',P;T-T')J 

£(p' ,P;T-T' )= p, <S+(p;T')n6_(PlT) 

R. Preiseixlorf er 

Fi g ure 6 



m portent Special Case of £ in Classical Carrier Spaces 

<VPoP> 

6.(pT) 

£(P0 .PO-.T)= PxfeiPo.°)n e jP o .T) . 

R. Preisendorfer 

Figure 7 



i (p 0 J ) 

i (p„J) o ' o 

^(p , ,T -T , ) 

C?.(prt,0) 

F igu re 8 

R. Preisendori'er 



p°Td 

U°(T) 

P°(t)= P : 0 < t < T o 

p°(t)= 0 t < 0 , t>T 0 

(a) 

P°To: 

U°(T) 

p°( t) = P°, 0 < t < 00 

(b) 

F igu re 9 

R. rreisendorfer 



posit ion of 

pulse at t ime T 

fundamental source '° 

P0 at Z = 0 

d i rec ts f lux upward ( i ) only 

( a ) 

r 

z 

v v 

R. rreisendorfer 

( C ) 

Figure 10 



7 T ( Z ' T ) 

(a) 

( t > : 

R. Preisendorfer 

Figure II 




