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Temporal Metric Spaces in Radiative Transfer Theory

1II, Characteristic Spheroids and Ellipsoids

Rudolph W. Preisendorfer
Scripps Institution of Oceanography, University of Californi-

La Jolla, California

INTRODUCTION

A pulse of light is directed into a medium of known optical prop-

erties, As the pulse proceeds into the medium some of its energy is “b-
sorbed, some is redirected by scattering, and the scattered energy goes
on to be scattered further. We may ask: How much scattered light from
the pulse is expected to exist in the form of primary scattered light,
secondary scattered light, ctc., at a given time after the pulse enters
the medium? Or we may ask: What is the expected radiance of that part
of the energy scattered from the pulse, as seen at the transmitter (or
anv other observation point), at a given time after the pulse enters the
medium? These questions are fundamental in the experimecntal and theoret-
jcal study of netural aerosols and hydrosols. For by knowing the answers
to these questions, one can better understand the results of actual
experiments carried out with time-dependent light fields. Furthermore,
the order of these questions and answers may be inverted so that a
measured response of a medium to a pulse of known characteristics can

lead to an estimate of the optical properties of the medium.
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The questions posed above may be answered by using the set theo-

retical tools developed in the paper; specific illustrations are given
in the scction on Applications. The main emphasis of this paper, and
the others of this series is, however, on the development of a new set
of concepts in radiative transfer theory which may eventually broaden
its scope of applicability and draw it closer to the discipline of

topological dynamics - the mathematics of future physics,
CHARACTERISTIC SUBSETS

The characteristic function iXi defined in paper II yields a cri-
terion for deciding whether a given point in a general carrier space is
being irradiated at a certain time by flux (either directly transmitted
or scattered) from a given point source. We now consider in detail two
closely related problems: for a given local source and local epoch time
for that source, what is the totality of points which may receive radiant
flux (either directly transmitted or scattered) from that source? Also:
for the same fundamental source and a given point in the associated
irradiated set of points, what subset of the preceding totality of
points may actually scatter flux from the fundamental source to the

given point? These subsets will now be defined and studied.



SI0O Ref: 59-10 -3 -

Characteristic Spheroid

Definition 1. Let ,2.* in a carrier space X be a fixed local

source for the point 4@/ in X ., The set of all points 4 " in X
/
for which £ 1is a local source at local epoch time 7,53* (R) and

which satisfy the characteristic function equation

Xip', e ; Tp* (A)) =1

defines a subset Sj[ﬁ’; 7—’9#' (p'))  of X called the characteristic

spheroid of ﬂ/ relative to A * .

Theorem 1. k/(,ﬂ’; 7;2*//1’}) in X , with respect to the metric

defined by least local epoch tiume, is:

(1) A spheroidal body,

(ii) with center @’ |

(iii)  of radius [p*(p’).

Proof. By definition, ,/(,a ' Ipx(p')) is the set of all points 7,

such that r)((f’,ﬂ”, 7;;* (p')) =1 , which is equivalent to the condition

(see Figure la)

T & Tp* (p),

But this is precisely the metrical definition of a sphercidal body with

center ﬁ’ and radius Tp"’* (/2'}, which completes the proof.
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The spheroidal body roeferred to in the preceding theorem is thus a

true sphere plus its internal points, in the space X with metric Tf;/’/ .
Hence, 1f ons were tc dravw a three dimensioncl graph of ,.(}0( ,2/3 7'/Z ‘#(F'))
in some classical carrier spuce onc would obtain a subregion of /\<
which, with respect to —[74,/ , wouid ve precisely a spherolaal. body.
However, if one were to adopt Lhe usual metric d mX , the set

N j ( /4-/5 ‘[”ax(,«’J) would generally be of irrcgular shape and multiply con-

nected (have holes in it).
Characteristic Ellipsoid

To s.t the stage for the neat dafinjiion, iet (’,c, ’,/:) be . fixed

. . . . e ¥,

psir of pocinte 12:)( . Lct V2 bz a local source for/i H let/Z in X
K
be a local source for ,ﬂ—/ . Thet is, £ emits radiant flux and thercby
/

induces £  (after a sufficient interval of time) to emit radiant flux.

* " . s
,Q may be the fundamental source 4, for X » but for generality, £ ¥

Ve

need not be 10,0 . We consider the cffects at/z, induced only by 2 ;

2nd we consider effects at ﬂ/ induced only by /J,:l‘ « With this chain

of events in mind we now can state:

Definition 2, The subset g//.z 7’ ; 7';‘;{{/21)) of X consisting

of all points /Q” such that

Kpy e s Taripn)) =/
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is called the characteristic ellipsoid of the point pair //e f/zl relative

tn the local source /2-"' .

There are two local sources involved in the definition of (Sn . <he
/ > o
local sourcn /4 serves, with 7& . to generate £ by mcans of the abeve
k

equation, %:/ . The local source /Q,: gives a means of establishing local

/
cpoch time at /Q .

Suppose )( has an index of refraction function /7 which is constant
nver a classical carrier space X . Then Definition 2 implies that the
totality of points p// form an actual ellipsoid of revolution with /d g and
/0, at the foci. This interpretation is actually valid for any space X
when the least local epoch time metric 7,2// is used as a yardstick,

as 1s proved in:

Theorem 2, The characteristic ellipsoid C‘f‘/,é TRy Zz*(ﬁ ')) in X with

respect to the least local epoch time metric is:

(1)  An ellipsoidal body,
(1i)  with foci at 2’ and 2 ,

(1ii) of major diameter /z2¢ (& /),

(iv) of eccentricity € = 7,294,/7,_4 *lpal) .

Prcof: By Aefinition of & , any point/dl/ in é° satisfies the charac—

teristic equation
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which implies

; < " —_— S
Tﬂ./ﬂ\-_]—ﬁ/(/z) ——7;>K(/¢/)——-/ﬁ//2//
so that, at local epoch time 7;‘-%'(/0’) , & consists of all points /4;”
in x satisfying the inequality (see Figure lb):

fopr * Tare < Tow (o)

But this is precisely the metric definition of an ellipsoidal body with

. . Y s . . < N '
the point pair (/Ll/é) as foci, and with major diameter 7/;4’//7/. The
metric definition of eccentricity is: the quotient of the distance between
the foci, by the major diameter of the ellipsoid. Thus (iv) follows,

and the proof is complete,

From the definition of the characteristic ellipsoid 5(,0 /’/Z; 7/‘,'4.—(/;'/)
it is clear that this subset ofX contains all points /2/,which, at a
certain given epoch time, are contributing at least primary scattered
radiant flux to /0, with respect to the flux leaving /é/. Conversely,
if a point /2// is contributing at least primary scattered radiant flux
to £. , it must be in the characteristic ellipsoid (?(/Qj/z,) 7,;‘/\‘(/«33) .
Thus at any instant 7/;2-*(/2/} , the characteristic ellipsoid
8(/,;%)7/;,»(/4,// defines that subsct of X which can pass on flux to 2

which originated at Ié/.
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Some Observations for Classical Carrier Spaces

In classical carricr spaces of spatially and temporally uniform index
of refraction there is a particularly simple connection between the tem-
poral metrics and the usual metric 0’ . In such spaces the least local
epoch time metric 7‘/‘&,/! coincides with the metric z,L (Theorcem 3, paper 11).
As a consequence, if /Q/and/z are any two points in X , the natural path
between /Z/ and 2 is a streight line (Example 1, paper I), and
7/_2'/2 = f(/fﬂ_) =C/(/&/’/<_’}/y, where 7/ is the speed of light in X .
Suppose, for simplicity, that /é’r/z*=/eo » then 7. (=T,
the epoch time in X . It follows that the temporal diameter of the charic-
teristic ellipsoid E‘(F;/g 3 Texlp!) = ERo,f2;T) 1s simply 7,
and the geometrical length of the diameter is (OD=77. Thus the

eccentricity of éa('/eo),e)- 7‘) is:

€ = Ckopr) _ dfoup)
T D

hAccording to the preceding formula for &€ , when T is just cqual to
L[(/éo,,é_)) €=/ , implying that the characteristic ellipsoid at this
instant is a straight line in X , namely the straight line connecting /Qo
and R (see Figure 2a). The instant the wavefront from 2, passes 2 ,
é‘(/aol/z,)- /_} starts fattening out, which is mathematically reflected in a
decreasing € (Figure 2b). As epoch time 7 increases, the eccentricity
of 8 continues to decrease so that, in the limit as /~w»w, &€ -0 ,

and the characteristic spheroid is eventually spherical in shape.



SI0O Ref: 59-10 -8 -

At any epoch time T>t(ﬂ°/f2) , the surface of the ellipsoid may

be expressed in polar coordinate form:

D2 — o<
2(D—dcosg)

(o) = :
Here /-/0) 1is the geometrical distance from /2, to a boundary point
of & where @ is the angle between the directions fop , Rom”
(Figure 2¢). Further, O=¥7 and = c/(/zo//z.). If, for example,

ol =0 » then /&o= » and

,B)= L« T
= 2

for all & . That is, the characteristic ellipsoid é'(/co//:’a; 7') associated
with the special pair of points (/424/,20) is 2 sphere (with respect to
either the temporal or spatial metrics) with a radius half that of the
characteristic spheroid J(ﬁc H 7). Hence, under these conditions, the
boundary of ‘9(/40//2"57_/ is moving away from £ with a speed half that
of (fo3 7“) « In general, the rate of recession of a point on the
boundary of é(/gcl/ég 7«—/ from either Lo orf2 depends on & ., However,

for large 7/ , this rate always approaches %' 7/2 for all O :

ro) —= £
<
as [-» @ , so that
cdro) U
a't <

which follows from the general expression for /«/’9/' .
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WORLD-LINE REPRESENTATIONS OF CHARACTERISTIC SUBSETS

General Remarks

The preceding discussion of the characteristic subsets in the classicea’
settings threw much light on the essential geometric structure of these
subsets because the spatial and temporal metrics could be simply compared.
However, general carrier spaces usually do not possess a "geometrical"
metric to describe the characteristic subsets; or if there is such a metric
we are generally unable to compare it with temporal metric in a simple way.
Nevertheless, for practical applications, it is essentisl to have some
relatively simple way to represent both the spatial and temporal features
of the characteristic subsets. We will show that a particularly fruitful

solution to this problem lies in the world-linc representation of charac-

teristic subsets. This mode of representation of space-time events has
been used to advantage for example in the special relativity theory. It
has two particularly useful features: it places the time parameters on
an equal footing with the spece parameters; it allows a purely set-

theoretic deoscription of physical events associated with space-time phcnomen.

The basic idea behind the world-line representation is to consider
not just trajectories of photons in the space )( , but their trajectories
in the cartesian product X‘T of X and / , where /  is the time
domain. A point of X X7~  is an ordered pair (,«L/f} of points, the &
belonging to )( , the f to / . Thus we no longer consider just the
point P 511)( , but the point /2 at time'i . Therefore, thc world-
line representation contains temporal information about events in addition

to the usual spatial information.


http://spe.ee
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ng8 an illustration, consider the trijectory AOM/OBO in )< of =
ohoton or a ray of light (Figurc 3). 'Th. twe path segments AW/  -nd
We Bo give all the information about thc¢ spatial configuration of th:
trajectory. However, there is no information in the diagram about the
times of travel from Ao to Wh , and from WL to B,. If & tim
1xis is erected "perpendicular" to X (where X is represented for
simplicity as a two dimensional space) wc can include the temporal infor-
mation associated with thc trajectory /40 W,/Rs . Suppose, for example,
that the ray starts at /4° at time zfu and arrives at Wb at time zf /.
The trajectory in space-time of the ray is given by the segment AqW /in
the space Xx7T . The point w' is actually an ordered pair (M/U,Z“/:
i.e., the point W, in X at time T, and similerly Ae should be
written as the ordered pair (Ao, {O) . If the ray then procecds from W /
and arrives at Bo  at time Z/ s, this leg of the photon's space-time
journey is represented by the segment WIB' in space-time. We say that

AsW’3 in X x7  is the world-line of the trajectory AWl Boin X .
!

The trajectory A W, B0 in X is clearly a "projection" of
/ ,
AcW /'3, on X . A projection PX on X is = mapping of Xx7 dnto X ,

Aefined as: :

/?( (/“’/l‘} =L,

1eCay ,O)( takes o point (/c.., ,_c’/ in X)( 7 and assigns it to the point

A in X . From this it is clear that twe iistinct points in X A7  may

ave j . for uxample /- /
have the same projected imase in )( for wxample, W _/Wd/zz) nd
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Waz"(ﬂm)-t”}am distinet points in X x 7T , but

Poiw') = RZ(w”) = w, ¢ X

In just the sam¢ wry, two subsets of Xxf may have the same Jro-
jection in )( . Thus the two world-lines Aol 7/3 , and H_ w'/e
[ /

hwe the same projection A, W /3, in X . Symbolically:

A (A3 ) = RIAW "3 ) = Adow, 3o
/

Characteristic Cone

In Figure 4, let point ,Qc be the fundamental socurce of radiant
nergy which begins to emit radiant cnergy at ~pnch 7= (0 . The future
nippe of the characteristic cone associated with /2, is defined as the

sst Oy ip, o) of all points (/77 ’)in X x7 with the following
property:

Cy (po,0) = ff,e; T il e s, T) f

Thot is, apeint (g/77/) in XX7 isin Cilp. o) itp’
the spatial component of (/Q // 7 ') is in the characteristic spheroid

)j(/“’d 7—// with center ,,do nd radius 7'/. If X werce 1 classical
7

earrier sprce with constant index of refroction on Xx 7/ , then
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Ci— ( Ho,0 ) would be a four-dimensional conical solid in the usual sense.

This is the basis for thc diagrammatic conical representation of CS +(/2°/ o, )

in Figure 4.

The concept of a futurc nappe C’* (/001 0} associated with A, need
not be restricted to Lo . We may wish to extend our attention to the
radiant flux leaving some local source 42 at some finite epoch 7 = O ,
The future nappe C’* (2, 7‘} associated with [/2 17—} is then defined

as (see Figure 5):
CriaT) ==j((/2’,’7"”) e’ € SJ(/é; 7‘”—7)]

The future nappe C?L(ﬂ) 7—) represents the totality of points in
X)(T which may receive radiant flux from ﬂ. either directly or in-
directly (by scattering, etc.). On the other hand, 72 itself may be
receiving radiant flux from other local sources in X . The totality of
such points makes up the past nappe of the characteristic cone associated

with ﬂ , and is defined as

Cotp,7)= f(ﬂ,"f'/ cpe S T—7')f7-

Another way of defining (. (A, 7-) 1is directly in terms of future

nappes (see Figure 5):

Cé_(,e,r} = /(ﬁ,’r’) c(RrT)E C‘;/,e,’rf)} .
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The characteristic cone é(/” 7"} ~ssociated with the point [/2, T/

in X x T is defined as:

Cee,T)= C_toT) U Crepn7) .

It should be emphasized that the symbol / in the nototion
for © , C, , and &_ refers to epoch time associnted with the funda-
mental source /<o , whereas the times entering into the symbols for j
are of course local epoch times with respect to the local sources included
in the \‘j—notdtion, and these local epoch times are in turn referred,
without exception, to some fixed loccl source such as Z,, or in gengral

*. In this way we can conveniently drop the /2‘/( and 72

some point /2_
from the notation for 7/-:_*’//4} in z/[ﬂ’. Tﬂ"" //5// without neces-
sarily incurring any ambiguity in the notation; the basic local source

will always be explicitly given in any specific context requiring such

infomation,
Representetion of the Characteristic Spheroid

From the point of view of the preceding discussion, the notion of
characteristic spheroid was basic in the sense that the concepts of C:’+ )
{ - , and hence (C were 111 ultimately dcfined in terms of YJ . This
is = natural consequence of the present order of development of the tem-

poral semimetric theory. It is conceivable, however, to begin the theory

in such 1 way as to come upon the concept of ff’* hefore thet of >< s
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and hence, before that of Y(/ But little is gained in such an alternate
approach especially since the theoretical machinery gets into full swing
only after the definitions of ;/ and (ET have been made. Nevertheless,
even in the present order of development, the representations ofvd? and é )
in terms of the characteristic cone f supply deeper insight inte the
spatial-temporal structures of these concepts, and we will continuc to
use the newer concept (? in the interpretation of vf and CC_ . Thus, for
example, the characteristic spheroid J(/zu; 7’/) may be represented as

the projection on )< of the intersection of Cof { Ko, o} and the subset

XxT’ of XXT :

Heo; 7) = /’7</C°f(/2v/ ) /) (XXT’)I a2

This is illustrated in Figure 4. In general,

Lo 7T) = B[ Star) ) (X7 ], T =T,

which may be verified on the basis of the geometrical relations depicted

in Figurc 5.
Representation of the Characteristic Ellipsoid

4 purely set-theoretical representation cof 8 in terms of C,of and
C_can be made in a way similar to that of )J . Consider a local source
, :
/2 in X which begins to emit at epoch time -/, Let (/:/.7"/ be in
, / . '
C»fjf ('/():, T/ 5 thus g & vf(/zj 7"_7') and /0, is receiving flux from &

(Sec Figure 6).
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Moreover, 12 is also recciving flux from all those points ,2” in its

past nuppe (,5_ (/2,7") whose points themselves have been irradiated
Ly flux from Ia’ . Thus, with respect to the local source ,a/and the
recelving point /2, the set of all points ﬁ," in X which receive

£lux from ;2’ and pass it on to £ is defincd by the region in Xx T

comuon to both /,(ll,T')and C-(p r)
Cotp, T [ Cocpr)

Hence the projection of this space-time region into )( must be none other
than g(ﬂ’,ﬁ ; 7'-7'/)

—

Ecpp; T-T") = P [Cz (e'7) () C- (,a,T)j

The general proof of this set-theoretic equality is straightforward,
The proof is particularly illuminating in the context of clasgsical carrier
spices with constant index of refraction on X X T . We will therefore

outline the proof in this contoext.

Assume that @2 € C3+(/11-/)Tl) . We consider first only rays which
go from (2, T to (f,T) in Xx7 along the boundaries of (% (~, 7]
and f- (,417’) . Figure 6 shows such a world-linc defined by the segments
Cﬁzl) T~ (P l; T”) and (ﬁ y 7_") "’(ﬁ;T/ « The first of these
segments lies in Cy( R 7) s the second lies in C°-(/Z,7"} . Therefore
(¢ "7") lies in the space~time curve /& which is the intersection of

the boundaries of Cy (R)T') and C-(AT) . since the index of
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refraction function A 1is constant on XXT s the geometric lengthsof
the projectionsof these world-linc segments is ¢ fixed factor times the

terporal lengths associated with the segments, i,e.,

apip”) = v (T"-T") , dpir) = v (T-7).

Hence

dipip’)+dinlp) = r(r-7/,

which is independent of (74/4 7'”/ . Thercforec /Z'V s the projection of

(,e”) 7_”) on x traces out an ellipsoidal surface /% (E) on X whose

major diameter is clearly ’UTT-T'}, and whose foci cre ot @ ‘= /-2 [/g)’;‘y

and 2= /2 7) . If, finally, (2 “%T'Aere properly contained within
/ X L 4 st/

C.Df {,2;7")/) C. (/a) 7') » then the length of the projcction of the seg-

ment {/} § 7-/) - (/e //} 7-/1/ would be less than (7 /% 7'/’)’ similarly,

the length of the projection of the segment {}Z g 7”9}-a-(’¢/7—) would

be less than 2/]'7’—-7’”/ . Thercfore the projection of

Colp7T) ) C.(2,T)  is contained within A (£)  that is, within

é?/ﬂ)'/l)' 7—;7'7. Conversely, any trajectory in thc region of X bounded

by Pz( 65’) with beginning and end points corrcsponding to (] /2‘)' 7/ and

- — . —-/ 3

(/L,T} in XK ) must necessarily map, under p)( , (the inverse of

PX) into CD*(F;T‘/ /)C)_ (/Q,T) « This complctes the outline of

the proof,
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An Important Special Case of the Characteristic Ellipsoid

in importaont special case of the characteristic ellipsoid arises
when the source point /Q, ’ coincides with the receiving point ;ﬂ, in a
classical carrier space. This case is illustrated in Figure 7. The real
counterpart to this situation occurs in the operation of an instrument
which is designed to both send out radiant energy and receive radiant
energy scattered back from the medium. There are three features of the
diagram which should be observed: (a) the characteristic ellipsoid
é?(ﬁu,,a'a;‘f) is a spheroid of radius Z°7/2 ; (b) the characteristic
spheroid uJ?ﬂq 7) 1is a spheroid of radius 277 ; (¢) all primery
scattered radiant flux received at (/49,7 is necessarily generated on £,

the intersection of Cof {Fo, 0} and Cj__ (‘/Qu, T}.

The preceding observation on the space-time locale of the generation
of primary scattered flux received at .£o applies also to the general
case where the transmitting and receiving points are distinct. The curve
£ in Figure 6 is the corresponding locale in this more general case.
Thus the world-line of a primary scattered photon originally emitted at /2 g
(Figure 7) and received at /A 1is a two-segmented line with vertex
on E . The world-lines of secondary and higher order scattered photons

may be easily represented on diagrams such as those in Figures 6 and 7.
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We will now discuss two applications of the concopts ¢t charnctorieti.
spheroid and e¢llipsoid. The characteristic sph.roid ic especinlly sisc
in the derivation of formulas which describe the radi-nt cnergy content
1 various subsets at siven epoch times, This fact will be illustrated
by deriving the formmule for the primary scattercd radiant cnergy in X
at wpoch tinme T + The characteristic c¢llipsoid is helpful in formul-tine
expressions for the time-dependent radiance function. This will be iliag-

trated for the case of primary scattered radiance.
Time-Dependent Radisant Enerigy

For this illustration the carrier space X is to have the folloawine
propr rties: its location gpace componcnt Xo is tha entire euclidean
three -gpace, The volume attenuation function o¢ , and index of refractiorn
funecrvion /]  are constant on x OKT . The volume scattering function
G(g( Sii .53 "Js”) will thus be independent of 2 & Xo and ¥ € 7 , but
nay Adepend in any way on the direction variables §° and ,.2- . The funda-
mental cource ,/9., will be nt the origin of )(‘> , and will emit rodinant
flax in «ll directions f € = according to some given general pattor.
Marthermore, its total ;:tdif_mt flux output &~ 0({ } will vary with tir:
in » piven gencral manner over the time interval (Q, 7. } . For valuus

~f ¢ outside this interval, PO(¢) will be zero.
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Figure 8 shows the world-region occupied by the phctons from Fo
This region is contained between the two future nappes (Cr (Fo ,0 ) md
é"r (ﬂ a, 77,) « it any time 7 =7, the region of X - cccupled by the

emitted encergy is given by

Y:V(//JU‘T} = J(/e“/ T) - ’J(ﬁ"l T~7:) .

This region cf X“ is depicted in Figure 8 as the shaded annulus on X;, .
t T <To then the region of >< o occupied by the radiant cnergy

is given by

7 2l
Jinr) = Jr)
since by definition QJ/;/;U)-,—’/I = % , the empty set, if /7 “z o .

We begin our calculations with a derivation ’of the formula for the
reduced radiant energy (J9(7) in )‘J(/f'o) 7] . The reduced radiant
energy is carried by photons shich have pot been scattered or absorbed.
Let u°(x 7) denote thg reduced radiant density (reduced radiant
energy per unit volume of X., ) at X ¢ Xu and at time 7/ . Then,

clearly

LT = /,U( T)d¥ex), (1)

Jipo,T)
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The maltiple integral (1) may be written as an iterated integral:

vT -
Uue(m = S L g 4°(x,T) c]Ajdf'
man(o0, v (T-To)) D
where A (v} is a sphere of radius F< U T .

It is casy to sce that

-«
AxT)dA = LpyT- L ‘
o VT A = PUT- ¥)e

which follows from the fact that the integral over A(}') nay be
interpreted as (reduced) radiant energy content of a spherical shell of

radius M and unit thickness. Hence
T
UO(-T-) — _'_ o — —0“*-0( o
= 3| PY(T-%)e .

e (o, U(T-Ta))

(2)

I1f, for example, P"(¢)= P° for o=t < T, , then UIT)

is of the form:

- -7
/ P..J;D—@ /m]) O TET, | .

Uom =
~T/T. T/ T
PTie "let ] T,

where T';(

I

l/’lfok is the time congtant for [J°© in X,.
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a graph showing the general profile of UOCT) for this simple
example appears in Figurc 9a. If the.source cmitted unifermly in time for
all T>J , (e, To=wo ), then the resulting exprossioa for {(J9(™)
is given by the first equation in (3). A graph of the corresponding (J07™
is shown in Figure 9b. The limiting (or asymptotic) valuc of {/YT) in

this case is:

V()= hn\T%wU”(T) = P%Tuo . (%)

We note parenthetically that the formula for U9(T) in (3) is
reminiscent of the formula in elementary circuit theory for the charge on
a capacitor in a simple capacitance-resistance DC circuit. The quantity

U'J(T') takes the role of the charge, l/?j‘ is analogous to resistance,
f/g( is analogous to capacitance, and T = '/U‘UL is analogous to

the time constant of the circuit.

We now go on to derive the formula for U‘(T) , the primary radiant
energy in XO at T . Every point £, in lj(/io,"/-) is a potential
source of primary scattered energy: as the wavefront from 70 > passes &, .
the element of volume about A&, begins to emit scattered radiant energy.

If ﬂ, is at a distance /‘, from A, , the region of Xo permeated
by the scattered energy from /2/ at time 7/  is clearly k/(/e,/ 7-7, ),
where 7, = M, /27  is the epoch time /l, begins to emit (see Figure 8).

Suppose ,U(,I ( x 7‘] is the radiant density at point X and time 7 in
Y L Sl > A

)J ( £ T"77) of primary scattered radiant energzy produced per unit valume
|
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around the local source /\ ;. Then
A0 2,7) :f Uy (x,7) V(=] (5)
;“J(FIJT‘T;)

represents the total primary scattered radiant energy in )( . at time 7

produced by 2 unit volume at about ,0/ The total primery scattered

radiant energy in X, at time / is then

Uiy = [ wce,m dveen) - ©
Z(f“’)‘r)

Ls an explicit example of the use of (5) and (6), we assume that o

radiates uniformly for all | >0 (To = a.?) Then (6) reduces to

O'(T)= 2 P°T jvr( -
% o

o a(}“—_é)——dU'T') d/v

or

s = wUte1-(1+ ) ]

where

wWo z,d—/i is the albedo for single scattering., Hence the

limiting (or asymptotic) value of U‘(T] is:

Vo) = lim O(T)= wol(e) =weF Ta
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Time-Dependent Radiance

The present setting is associated with & one-dimensional location
space Xo (Figure 10). We assume that N is constant on Xx T R
but that ~( and (J° mayv vary spatially in an arbitrary manncr on )(o
and be constant on T . The volumc scattering function then has only
two components in this sp:ice at each point Z' : Q":,‘_ (Z’J the forward
scattering component and (O_ ( 7/) the backward scattering component.
The fundamental sourcc directs radiant flux in the upward (increasing Z )
direction in an arbitrary manner over a time interval (OJ 'To) s such
that the inherent radiance is given by N°{ (+) . The radiance
is zerc outside this time interval. This setting corresponds closely to
the real case of a narrow beam of radiant flux sent inteo a spatially
inhomogeneocus scattering-absorbing medium such as the atmosphere, Thus
the formulas developed below for the down and upwelling primary radiance
N'(Z) + ; { ) , are applicable to the problem of predicting primary
scattered radiance from clouds or haze layers when they are irradiated by

2 narrow vertical pulse of photons.

Figure 10a shows the location of the pulse in X at time T . The
pulse is of temporal length T, and of geometrical length | o =UTO s
and varies in radiance in the given manner over the period of time (o)TO) .
This shape is governed by the function '5; defined above, and is graphi-

cally depicted in the figure.
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Figure 10b shows a gcneral receiving point at hcight F , along with
its past nappec (?-(Z >T) . The intersection of this past nappe with
the futurc nappes C')+( 0,0} and Cr (9, TL) of the fundomental
source define thc heavily-drawn region on the ¥ -axis. In the terminology
of characteristic ellipsoids, this region is precisely representable as
C’Q(o,z )'T) - &¢ 0,%; T ) and has verticel extent of magnitude VTe/2 -
in examination of the figure will show that it is this region which con-
tributes downwelling primary scattered radiant flux to a radiance receiver
at Z at epoch time T . Consider a particular contributing point at
altitude 7 ’ in this region., In order that a set of photons travel
trom 7= O to Z= 2’ and then reach height Z  at time T , the
set must start out at Z=0 at time 7‘;-.—: T+ 5 - ij___%l « The inhcrent
rediance of this set is then N"{("ﬁ— ..5: - 2...%_Zl> . The reduc.i

radiance of this set as it reaches height £/ is
° z _ z2'
NoF(T+ 2 - 22') T, (0, +)

where TZ’(OI+) is the beam transmittance of the upward directed

path of length Z/ with initial point at Z=O

Now as the reduced radiance reaches height X its photons con-
verge on the point in a solid angle of magnitude 0.z ! ) s vhich is thc
solid angle subtense of the pulse transmitter as secn from hecight Z# / .
Part of this set of photons is then scattered back; the axact amount

/
scattered back per unit length of the shaded path et height Z is given by:

2. ‘: ! ’ ol /
NOF(T+ 2~ 22"y 1 64 ) g (2) L0(2))
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This 5.t of photons then trovels downward - vertical distance Z -z <

reach lovel Z ; the amount of radiance arriving at height z 1is
° Z_22' ~
N .F(T‘t-f); "_E:’)TZ/(O)"') —I;LZ(ZI)—)\I,(Z')_Q(f'),

T /
wierce '2 ‘2 (2 ) -) is the beam transmittance of a downward directed

path of length Z/— 2  with initial point at 77 .

This radiance is then the primary radiance arriving in a downward
direction at height Z at time T ; and this primery radiance has been
generated by a unit length of path about height Z /. Therefore the total
primery radiance arriving at Z  at time 7 is obtained by integrating
over the region EC 0, 2; T)— E(O, Z 5 7}) . The upper and lower
limits of the region arc shown in Figure 10b., If ¥ exceeds the alti-
tude of the lower limit of the region we must clearly choose X as the

lower limit of integration. Thus:

. ’ (8)
Ni(Z-,T)= N°U<T+§f-- LY T000) Tz F57)0-(2) (1(2)d2

~

YW\u/;ctg Z, ('U"T'+ 3')_~ l__z:g

-
<

The upward primary radiance N l( Z,t, T) is computed in a similar
way. "We now use Figure 10c to aid in the determination of the limits of
integration. 1n order for a set of photons to start out &t ZF= O and

rcach altitude Z et epoch time T , they must start at epoch



)

tim: - % . nssume thit 1 - % is ir (0, Tw) « (If it is
not, then (Z,T)

N (Z2,+,T)=0 ).

arriving at (7, 7T)

is out of the world-region of th¢ given palse, "nd

Farther, suppose th' primary scattored photons

were scnttercd at (X T') , i.e., at height Z

. ’ m .
st epoct time | . Thus if

NYF(T- %)Tj'(@)"")

— 1

a3 . P /
is the reduced radiance of the photons arriving 2t (7]

/ s this
radiance is then scattered forsard, the amount per unit length at
being

NOFCT=2) Ta(o,+) 032 Q02),
Finally,

this sect of photons is transmitted over an upward directced path
of length 7 — 7

(2,71} is:

, starting at height Z . Thus the amount at

N7 (T 7’%,)7}:(%*-)72_,2,(2’;—%) Tz 27).

\

The range of intougration is now over the altitude interval ( 0,7

Therefore

Z
‘ sl ot ’ - ¢ - --;/
Jx‘(‘) ) \’ \‘{-(.r. )il(,{ )r_,/z.‘. 3

g

(9)
N'GZ+Ty= N f(T-2
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where T}(o)+)=T£,(U)f) TZ"Z" (z;-{.-) s by the semigroup property
of beam transmittances.

/n important special case of (8) arises in practice when L= QO .

The result of setting F= 0O in (8) is:

N'(o,—r) = N° j (T ;,(d)i-)(t.(i") (Z}dz’(lo)
masfo) zz--«;

wherec we have made use of the reciprocity property of TZ':

‘_

TZ’(Q‘*’) = TZ-’ (Z; _)

We close the discussion of applications with a remark on the com-
putation procedure for radiant flux of higher scattering orders. Consider
Figure 1lla, which shows the world-line of a photon which arrives at ,
(Z,T) after having been scattered four times. The points in Xo X
"where" scattering occurred are numbered consecutively. FEach of these
points is the vertex of a characteristic cone C( ) 5 ‘j‘ i,2,2 4
Observe that the future nappe C 4+ ( 3'4-1) is contained in the future nappe
€+(j‘)J j‘ =1,2,3 . In order to find N4(2,+)T/, we must
integrate N4, (}l -+ T’>over (,°+(4) (N4 = gq’Ngdﬂ) 5 but in
order to know N (2,4, T') we must know NE ZNE,T “) over

C°+(3 ) R et\,., down to knowing N' (27-;—-)7_) over 4 (i)
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But these latter primary radicnces werc just computed in detail above,

We may then retrace our steps through the sequence of integrals over
CJ-}(':\; ) 2 j"; 2,2,4 , scarting from thecse known primary radiances.

We eventually end up with a 4-fold iterated integral of the known

function N ° s— (f) . [igure 1lb shows a typical photon world-line which
gives rise to N4( Z. ~—JT] . This general technique can also be applied

to find UD(T) s the N-ary scattered radiant energy.

fiF: 1
1/26/59
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Properties of ,45’ and € in Arbitrary Spaces

. )X (pl;Tp*(p'))

Figure |a

Re Preisendorfer



General Geometric Properties of & in Classical Carrier Spaces

‘-——d =d<po,p>__-1

T=1(p,p) N _

P P (a)

(o]

-

vT

O
"

T>1t(p, P

(c)

D% - d°2

r(9) = 2(D-d cos 9)

Figure 2

R. treisendorfer



World— Line Representation

X
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/ >
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//’/
W, W'~ Wi W,
s e
A, A,
L [
fol 471 /1
|
/]

Figure 3
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Relation Between Charocteristic Spheroid  and Cone €+

4 (p TY=Cp, 00N (x xT"

Clp,,0)= {(p,‘T')= p'e ,g(po,T')}

Figure 4

R. irreisendorfer



Future and Past Nappes of Characteristic Cone

X

Cylp,T) = {(p"T L p e,X (p,T"- } Future nappe

C_(p,T)= {(p',T'): p e 4 p,'T—T')} Past nappe
or

C_(p,T)= {(p',T‘)‘- (P,T)e GJp'T')}

Figure 5

R. Preisendorfer



Relation Between Characteristic Ellipsoid and Cones

EU6,0s T-T= P [e4(pI TN ¢-(p, 7))

Figure 6

Re Preisemndorfer



Important Special Case of € in Classical Carrier Spaces

8( po' po3T) = PX [:C+(po’0) ﬂ 6—( pO’T):|

Figure 7
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Figure 8
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Pe(t) =PI OStST,

0° Tg p°(t)= 0 t<0, t>T,
ue(T)
T, T
(a)
. (Y= p° 0L t<®
o1, p(r)=p, 0t
ue(T)

Figure 9
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position of Loz VT,

pulse at time T

vT
/
/ V(T-T,)
/ l l r
fundamental source 1O T (a)
Po at Z2=0
directs flux upward () only
—&,(0,0)
L8,(0,T,)
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Lo/a
\"G_(Z,T)
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2
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(Z,T)

Figure Il
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