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Data-driven workflows, of which IBM’s Business Artifacts are a prime exponent, have

been successfully deployed in practice, adopted in industrial standards, and have spawned a

rich body of research in academia, focused primarily on static analysis. This thesis represents a

significant advance on the problem of verifying data-driven workflows in two major aspects.

First, this thesis introduces Hierarchical Artifact Systems (HAS), a much richer and more

realistic model than previously considered, incorporating core elements of IBM’s successful

Guard-Stage-Milestone model. In particular, the HAS model features task hierarchy, concurrency,

and richer artifact data. It also allows database key and foreign key dependencies, as well as
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arithmetic constraints. The results show decidability of verification and establish its complexity

under a set of reasonable restrictions, making use of novel techniques including a hierarchy of

Vector Addition Systems and a variant of quantifier elimination tailored to this context.

Second, this thesis bridges the gap between the theory and practice of data-driven

workflow verification with two successful implementations, SpinArt and VERIFAS. SpinArt

is a practical verifier based on the classical model-checking tool Spin, and can verify a core

subset of the HAS model. The implementation includes nontrivial optimizations and achieves

good performance on real-world business process examples. VERIFAS further bridges the gap

with a specialized implementation built from scratch. It verifies within seconds linear-time

temporal properties over both real-world and synthetic workflows of complexity in the range

recommended by software engineering practice. Compared to SpinArt, VERIFAS not only

supports a model with richer data manipulations but also outperforms it by over an order of

magnitude. VERIFAS’s good performance is due to a novel symbolic representation approach and

a family of specialized optimizations. To the best of our knowledge, these are the first practically

significant implementations of artifact verifiers, that provide full support for unbounded data.
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Chapter 1

Introduction

The past decade has witnessed the evolution of workflow specification frameworks from

the traditional process-centric approach towards data-awareness. Process-centric formalisms

focus on control flow while under-specifying the underlying data and its manipulations by the

process tasks, often abstracting them away completely. In contrast, data-aware formalisms treat

data as first-class citizens. A notable exponent of this class is IBM’s business artifact model

pioneered in [103], successfully deployed in practice [16, 14, 33, 40, 130] and adopted in

industrial standards. Business artifacts have also spawned a rich body of research in academia,

dealing with issues ranging from formal semantics to static analysis.

In a nutshell, business artifacts (or simply “artifacts”) model key business-relevant

entities, which are updated by a set of services that implement business process tasks, specified

declaratively by pre-and-post conditions. A collection of artifacts and services is called an artifact

system. IBM has developed several variants of artifacts, of which the most recent is Guard-

Stage-Milestone (GSM) [37, 76]. The GSM approach provides rich structuring mechanisms for

services, including parallelism, concurrency and hierarchy, and has been incorporated in the

OMG standard for Case Management Model and Notation (CMMN) [17, 94].

Artifact systems deployed in industrial settings typically specify very complex workflows

that are prone to costly bugs, whence the need for verification of critical properties. Over the

past few years, an active line of research on the verification of artifact systems has emerged.
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Rather than relying on general-purpose software verification tools suffering from well-known

limitations, the aim of this thesis, described below, is to identify practically relevant classes

of artifact systems and properties for which fully automatic verification is possible. This is an

ambitious goal, since artifacts are infinite-state systems due to the presence of unbounded data.

Approaches to this problem rely critically on the declarative nature of service specifications,

bringing into play a novel marriage of database and computer-aided verification techniques.

In previous work [44, 36], the verification problem was studied for a bare-bones variant

of artifact systems, without hierarchy or concurrency, in which each artifact consists of a flat

tuple of evolving values and the services are specified by simple pre-and-post conditions on the

artifact and database. More precisely, the problem considered was to statically check whether

all runs of an artifact system satisfy desirable properties expressed in LTL-FO, an extension of

linear-time temporal logic where propositions are interpreted as ∃FO sentences on the database

and current artifact tuple. In order to deal with the resulting infinite-state system, in [44],

a symbolic approach was developed to allow a reduction to finite-state model checking and

yielding a PSPACE verification algorithm for the simplest variant of the model (no database

dependencies and uninterpreted data domain). In [36] the approach was extended to allow

for database dependencies and numeric data testable by arithmetic constraints. Unfortunately,

decidability was obtained subject to a rather complex semantic restriction on the artifact system

and property (feedback freedom), and the verification algorithm has non-elementary complexity.

The present thesis represents a significant advance on the artifact verification problem on

several fronts. It considers a much richer and more realistic model, called Hierarchical Artifact

System (HAS), abstracting core elements of the GSM model. In particular, the model features

task hierarchy, concurrency, and richer artifact data (including updatable artifact relations).

In brief, a HAS consists of a database and a hierarchy (rooted tree) of tasks. Each task has

associated to it local evolving data consisting of a tuple of artifact variables and an updatable

artifact relation. It also has an associated set of services. Each application of a service is guarded

by a pre-condition on the database and local data and causes an update of the local data, specified
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by a post condition (constraining the next artifact tuple) and an insertion or retrieval of a tuple

from the artifact relation. In addition, a task may invoke a child task with a tuple of parameters,

and receive back a result if the child task completes. A run of the artifact system is obtained by

any valid interleaving of concurrently running task services. For verification, properties of HAS

are expressed in a novel hierarchical temporal logic, HLTL-FO, that is well-suited to the model.

The main results establish the complexity of checking HLTL-FO properties for various

classes of HAS, highlighting the impact of various features on verification. The results require

qualitatively novel techniques, because the reduction to finite-state model checking used in

previous work is no longer possible. Instead, the richer model requires the use of a hierarchy of

Vector Addition Systems with States (VASS) [18]. The arithmetic constraints are handled using

quantifier elimination techniques, adapted to the HAS and HLTL-FO setting. The discussion of

the HAS model, HLTL-FO and the theoretical results are presented in Chapter 3.

Chapter 4 and Chapter 5 of the thesis study the practical implementation of data-driven

workflows verifiers. The first presented implementation is SpinArt in Chapter 4, a fully automatic

verifier for artifact systems. The goal in this implementation is to explore the feasibility of

using existing off-the-shelf tools to build such a practical verifier. The implementation focuses

specifically on Spin [74], the main model checker used in the verification community and

the natural candidate for a verifier implementation. SpinArt verifies a core fragment of HAS

called the Tuple Artifact Systems (TAS). The model is expressive enough to allow a database of

arbitrary size, which is not directly supported by Spin or other state-of-the-art model checkers.

SpinArt addresses this challenge by exploiting the symbolic verification techniques establishing

the decidability results for HAS. Together with an array of optimization techniques, SpinArt

renders verification tractable. To the best of our knowledge, SpinArt is the first implementation

of an artifact verifier that preserves decidability under unbounded data while being based on

off-the-shelf model checking technology.

This first attempt of implementation shed light on the capabilities and limitations of

off-the-shelf verification tools in the context of data-driven workflows. For example, SpinArt
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cannot handle some of the most useful features supporting the unbounded data, such as the

updatable artifact relations (i.e. updatable sets of tuples). Moreover, even after deploying a

set of non-trivial optimizations, the performance of SpinArt is still unsatisfactory because of

intrinsic limitations of Spin (shared by similar tools) and missing problem-specific optimization

opportunities. This indicates the restricted applicability of existing tools for HAS verification

and suggests the need for tailored approaches.

In view of these findings, Chapter 5 of the thesis presents VERIFAS, a workflow verifier

implementation built from scratch. The main contributions are the following. VERIFAS

verifies a novel variant of HAS called HAS*, which strikes a more practically relevant trade-off

between expressivity and verification complexity. This is demonstrated by its ability to specify a

realistic set of business processes. We adapt to HAS* the theory developed for HAS, laying the

groundwork for the implementation. To achieve good performance, VERIFAS makes use of a

set of crucial optimizations with dramatic impact, including concise symbolic representations,

aggressive pruning in search algorithms, and the use of highly efficient data structures.

The performance of SpinArt and VERIFAS is evaluated and compared on both real-world

and synthetic data-driven workflows and properties from a benchmark we create, bootstrapping

from existing sets of business process specifications and properties by extending them with data-

aware features. This is the first benchmark for business processes and properties that includes

such data aware features. The experiments highlight the impact of the various optimizations and

parameters of the workflows and the properties.

To further evaluate performance on practical workflows, we adapt to HAS* a standard

complexity measure of control flow used in software engineering, cyclomatic complexity [128],

and show experimentally, using the above benchmark, that cyclomatic complexity of HAS*

specifications correlates meaningfully with verification times. Since conventional wisdom in

software engineering holds that well-designed, human readable programs have relatively low

cyclomatic complexity, this is an indication that verification times are likely to be good for

well-designed HAS* specifications.
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Taking this and other factors into account, the experimental results show that VERIFAS

performs very well on practically relevant classes of data-driven workflows. Compared to

SpinArt, it not only applies to a much broader class of data-driven workflows but also has a

decisive performance advantage even on the simple workflows that SpinArt is able to handle. To

our knowledge, VERIFAS is the first implementation of practical significance of a data-driven

workflow verifier with full support for unbounded data.

The rest of the thesis is organized as follows. First, Chapter 2 presents a survey of the

state-of-the-art of artifact verification. Chapter 3 introduces the HAS model with HLTL-FO and

presents the decidability/complexity results. Chapter 4 describes the SpinArt implementation,

with a discussion on the TAS model, a review of Spin and the optimization techniques for

the Spin-based implementation. Chapter 5 presents VERIFAS, the specialized verifier built

from scratch, including the HAS* model, various optimization techniques, benchmarks and

experimental results. Finally, the thesis concludes with Chapter 6.
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Chapter 2

Related Work

This chapter surveys the state-of-the-art of data-driven workflow verification. More

specifically, we describe several models and results on verification, focusing on temporal proper-

ties of the underlying infinite-state transition systems. We review verification of business artifacts,

and use it as a vehicle to introduce the main concepts and results. The technical challenges

posed by verification of business artifacts are representative of those raised in some of the other

models (notably data-driven web services), which can be viewed as syntactic variants of business

artifacts. Section 2.8 summarizes some of the work pertaining specifically to data-driven web

services.

2.1 Business Artifacts

IBM’s business artifacts are a model of workflows in which data evolves under the

action of “services” implementing business process tasks. They are a prominent exponent of

data-aware business processes, that enrich the traditional process-centric approach by treating

data as a first-class citizen. The notion of business artifact was first introduced in [103] and [85]

(called there “adaptive documents”), and was further studied, from both practical and theoretical

perspectives, in [14, 63, 64, 15, 92, 37, 76, 70]. Roots of the artifact model are present in

“adaptive business objects” [101], “business entities”, “document-driven” workflow [127] and

“document” engineering [65]. The Vortex framework [78, 57, 77] also allows the specification of
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database manipulations and provides declarative specifications for when services are applicable

to a given artifact.

The artifact model is inspired in part by the field of semantic web services. In particular,

the OWL-S proposal [98, 95] describes the semantics of services in terms of input parameters,

output parameters, pre- and post-conditions. In the artifact model considered here the services are

applied in a sequential fashion (there is no true concurrency). IBM has developed Siena [35], a

tool for compiling artifact-based procedural specifications into code supporting the corresponding

business process. Its open-source descendant is the BizArtifact suite [19]. More recently, the

Guard-Stage-Milestone (GSM) approach [37, 76] provides rich structuring mechanisms for

services, including parallelism, concurrency and hierarchy, and has been incorporated in the

OMG standard for Case Management Model and Notation (CMMN) [17, 94].

2.2 Tuple Artifact Systems

Early work on artifact verification focused on a minimalistic variant of the artifact model,

called tuple artifact system (TAS). In a TAS, the artifact consists simply of a tuple of values that

evolves throughout the workflow. TAS is described informally relying on an example (a more

formal development can be found in Chapter 4 or [44, 36]). The example models an e-commerce

business process in which the customer chooses a product and a shipment method and applies

various kinds of coupons to the order. The artifact is an evolving tuple of values, referred to by

variables (sometimes called attributes). The example has the following variables:

status, prod id, ship type, coupon, amount owed, amount paid, amount refunded

The status variable tracks the status of the order and can take the following values:

“edit product”, “edit ship”, “edit coupon” “processing”,

“received payment”, “shipping”, “shipped”, “canceling”, “canceled”.

Artifact variables ship type and coupon record the customer’s selection, received as

an external input; amount paid is also an external input (from the customer, possibly indirectly
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via a credit card service). Variable amount owed is set by the system using arithmetic oper-

ations that sum up product price and shipment cost, subtracting the coupon value. Variable

amount refunded is set by the system in case a refund is activated.

The database is a finite first-order structure over a relational signature (called schema

in database parlance), consisting of the following relations whose coordinates are given names,

called attributes. Underlined attributes denote keys, which are attributes that uniquely identify

each tuple in the relation.

• PRODUCTS(id, price, availability, weight)

• COUPONS(code, type, value, min value, free shiptype)

• SHIPPING(type, cost, max weight)

• OFFERS(prod id, discounted price, active)

The database also satisfies the following inclusions:

COUPONS[free shiptype] ⊆ SHIPPING[type]

OFFERS[prod id] ⊆ PRODUCTS[id]

The first inclusion says that each free shiptype value in the COUPONS relation is also a type

value in the SHIPPING relation. The second states that every prod id value in the OFFERS is

the actual id of a product in the PRODUCTS relation. In database terminology, it is said that

free shiptype and prod id are foreign keys.

2.2.1 Services

Recall that artifacts evolve under the action of services. Each service is specified declara-

tively by a pre-condition π and a post-condition ψ, here limited to existential first-order (∃FO)

sentences. The pre-condition refers to the current values of the artifact variables and the database.
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choose product: The customer chooses a product.
π : status = “edit prod”
ψ : ∃p, a, w(PRODUCTS(prod id′, p, a, w) ∧ a > 0) ∧ status′ = ”edit shiptype”

choose shiptype: The customer chooses a shipping option.
π : status = “edit ship”
ψ : ∃c, l, p, a, w(SHIPPING(ship type′, c, l) ∧ PRODUCTS(prod id, p, a, w) ∧ l > w)∧

status′ = “edit coupon” ∧ prod id′ = prod id

apply coupon: The customer optionally inputs a coupon number.
π : status = “edit coupon”
ψ : (coupon′ = λ ∧ ∃p, a, w, c, l(PRODUCTS(prod id, p, a, w)∧

SHIPPING(ship type, c, l) ∧ amount owed′ = p+ c) ∧ status′ = “processing”
∧prod id′ = prod id ∧ ship type′ = ship type)∨
(∃t, v,m, s, p, a, w, c, l(COUPONS(coupon′, t, v,m, s)∧
PRODUCTS(prod id, p, a, w) ∧ SHIPPING(ship type, c, l) ∧ p+ c ≥ m∧
(t = “free shipping”→ (s = ship type ∧ amount owed′ = p))∧
(t = “discount”→ amount owed′ = p+ c− v))
∧status′ = “processing” ∧ prod id′ = prod id ∧ ship type′ = ship type)

Figure 2.1. Three services

The post-condition ψ refers simultaneously to the current and next artifact values, as well as the

database. In addition, both π and ψ may use arithmetic constraints on the variables, consisting of

linear inequalities with integer coefficients.

Figure 2.1 shows some of the services for the business process of the example. The

primed artifact variables x′ refer to the next value of variable x.

Notice that the pre-conditions of the services check the value of the status variable. For

instance, according to choose product, the customer can only input her product choice while

the order is in “edit prod” status.

Also notice that the post-conditions constrain the next values of the artifact variables

(denoted by a prime). For instance, according to choose product, once a product has been picked,

the next value of the status variable is “edit shiptype”, which will at a subsequent step enable the

choose shiptype service (by satisfying its pre-condition). Similarly, once the shipment type is

chosen (as modeled by service choose shiptype), the new status is “edit coupon”, which enables

the apply coupon service. The interplay of pre- and post-conditions achieves a sequential filling
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of the order, starting from the choice of product and ending with the claim of a coupon.

Notice the arithmetic computation used in the post-conditions. For instance, in service

apply coupon, the sum of the product price p and shipment cost c (looked up in the database) is

adjusted with the coupon value (notice the distinct treatment of the two coupon types) and stored

in the amount owed artifact variable.

2.2.2 Semantics

The semantics of a TAS A consists of its runs. Given a database D, a run of A is an

infinite sequence {ρi}≥0 of artifact tuples such that ρ0 and D satisfy the initial condition of

the system, and for each i ≥ 0 there is a service S of the system such that ρi and D satisfy

the pre-condition of S and ρi, ρi+1 and D satisfy its post-condition. For uniformity, blocking

prefixes of runs are extended to infinite runs by repeating forever their last tuple.

Note that the above semantics only considers linear runs of the system. A more infor-

mative notion is the tree of runs that completely captures the choice of services applicable at

any given stage in the computation. Formulating and verifying branching-time properties would

require a semantics consisting of the full tree of runs.

2.3 Specifying Temporal Properties

Verifying temporal properties of runs of data-driven workflows is of interest in this thesis.

For instance, in the artifact system example, the following property is desired to be verified:

• If a correct payment is submitted then at some time in the future either the product is shipped

or the customer is refunded the correct amount.

An extension of LTL (linear-time temporal logic) is used in order to specify such temporal

properties. Recall that LTL is propositional logic augmented with temporal operators such as

G (always), F (eventually), X (next) and U (until) (e.g., see [105]). For example, Gp says that

p holds at all times in the run, Fp says that p will eventually hold, and G(p → Fq) says that
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whenever p holds, q must hold sometime in the future. The extension of LTL, called1 LTL-FO, is

obtained from LTL by replacing propositions with quantifier-free FO statements about particular

artifact tuples in the run. The statements use the artifact variables and may use additional global

variables, shared by different statements and allowing to refer to values in different tuples. The

global variables are universally quantified over the entire property.

For example, to specify the above example property, the LTL-FO formula is of the form

G(p → Fq), where p says that a correct payment is submitted and q states that either the

product is shipped or the customer is refunded the correct amount. Moreover, if the customer is

refunded, the amount of the correct payment (given in p) should be the same as the amount of

the refund (given in q). This requires using a global variable x in both p and q. More precisely,

p is interpreted as the formula amount paid = x ∧ amount paid = amount owed and q as

status = ”shipped” ∨ amount refunded = x. This yields the LTL-FO property

(ϕ) ∀xG((amount paid = x ∧ amount paid = amount owed)

→ F(status = ”shipped” ∨ amount refunded = x))

Note that, as one would expect, the global variable x is universally quantified at the outermost

scope. An artifact system A satisfies an LTL-FO sentence ϕ if all runs of the artifact system

satisfy ϕ for all values of the global variables. Note that the database is fixed for each run, but

may be different for different runs.

Note that variants of LTL-FO have been introduced in [58, 120]. The use of globally

quantified variables is also similar in spirit to the freeze quantifier defined in the context of LTL

extensions with data by Demri and Lazić [42, 43].

1The variant of LTL-FO used here differs from previous ones in that the FO formulas interpreting propositions
are quantifier-free. By slight abuse the same name is used in this thesis.
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2.4 Automatic Verification of Tuple Artifact Systems

Classical model checking applies to finite-state transition systems. While finite-state

systems may fully capture the semantics of some systems to be verified (for example logical

circuits), most software systems are in fact infinite-state systems, of which a finite-state transition

system represents a rough abstraction. Properties of the actual system are also abstracted, using

a finite set of propositions whose truth values describe each of the finite states of the transition

system. Checking that an LTL property holds is done by searching for a counterexample run of

the system. Its finiteness is essential and allows to decide property satisfaction in PSPACE using

an automata-theoretic approach (see e.g. [34, 99]).

Consider now a TAS A and an LTL-FO property ϕ. Model checking A with respect to

ϕ can be viewed once again as a search for a counterexample run of A, i.e. a run violating ϕ.

The immediate difficulty, compared to the classical approach, stems from the fact that TA is an

infinite-state system. To obtain decidability in this context, the typical approach consists of using

symbolic representations of runs, as described later.

In the broader context of verification, research on automatic verification of infinite-state

systems has also focused on extending classical model checking techniques (e.g., see [28] for

a survey). However, in much of this work the emphasis is on studying recursive control rather

than data, which is either ignored or finitely abstracted. More recent work has been focusing

specifically on data as a source of infinity. This includes augmenting recursive procedures with

integer parameters [22], rewriting systems with data [23, 21], Petri nets with data associated

to tokens [86], automata and logics over infinite alphabets [25, 24, 102, 42, 81, 20, 21], and

temporal logics manipulating data [42, 43]. However, the restricted use of data and the particular

properties verified have limited applicability to the business artifact setting, or other database-

driven applications.
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2.5 Tuple artifacts without constraints or dependencies

First, tuple artifact systems and properties without arithmetic constraints or data depen-

dencies are considered. This case was studied in [44], with a slightly richer model in which

artifacts can carry some limited relational state information (however, here the discussion sticks

for simplicity to the earlier minimalistic model). The main result is the following.

Theorem 1. It is decidable, given a TAS A with no data dependencies or arithmetic constraints,

and an LTL-FO property ϕ with no arithmetic constraints, whether A satisfies ϕ.

The complexity of verification is PSPACE-complete for fixed-arity database, and EX-

PSPACE otherwise. This is the best one can expect, given that even very simple static analysis

problems for finite-state systems are already PSPACE-complete [117].

The main idea behind the verification algorithm is to explore the space of runs of the

artifact system using symbolic runs rather than actual runs. This is based on the fact that the

relevant information at each instant is the pattern of connections in the database between attribute

values of the current and successor artifact tuples in the run, referred to as their isomorphism type.

Indeed, the sequence of isomorphism types in a run can be generated symbolically and is enough

to determine satisfaction of the property. Since each isomorphism type can be represented by a

polynomial number of tuples (for fixed arity), this yields PSPACE verification.

It turns out that the verification algorithm can be extended to specifications and properties

that use a total order on the data domain, which is useful in many cases. This however complicates

the algorithm considerably, since the order imposes global constraints that are not captured by

the local isomorphism types. The algorithm was first extended in [44] for the case of a dense

countable order with no end-points. This was later generalized to an arbitrary total order by

Segoufin and Torunczyk [111] using automata-theoretic techniques. In both cases, the worst-case

complexity remains PSPACE.
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2.6 Tuple artifacts with arithmetic constraints and data
dependencies

Unfortunately, Theorem 1 fails even in the presence of simple data dependencies or

arithmetic. Specifically, as shown in [44, 36], verification becomes undecidable as soon as the

database is equipped with at least one key dependency, or if the specification of the artifact

system uses simple arithmetic constraints allowing to increment and decrement by one the value

of some attributes. Hence, a restriction is needed to achieve decidability as discussed next.

To gain some intuition, consider the undecidability of verification for TAS with incre-

ments and decrements. The proof of undecidability is based on the ability of such systems

to simulate counter machines, for which the problem of state reachability is known to be un-

decidable [100]. To simulate counter machines, a TAS uses an attribute for each counter. A

service performs an increment (or decrement) operation by “feeding back” the incremented

(or decremented) value into the next occurrence of the corresponding attribute. To simulate

counters, this must be done an unbounded number of times. To prevent such computations, the

restriction imposed in [36] is designed to limit the data flow between occurrences of the same

artifact attribute at different times in runs of the system that satisfy the desired property. As a

first cut, a possible restriction would prevent any data flow path between unequal occurrences of

the same artifact attribute. Let us call this restriction acyclicity. While acyclicity would achieve

the goal of rendering verification decidable, it is too strong for many practical situations. In the

running example, a customer can choose a shipping type and coupon and repeatedly change

her mind and start over. Such repeated performance of a task is useful in many scenarios, but

would be prohibited by acyclicity of the data flow. To this end, a more permissive restriction

called feedback freedom is defined in [36]. The formal definition considers, for each run, a graph

capturing the data flow among variables, and imposes a restriction on the graph. Intuitively, paths

among different occurrences of the same attribute are permitted, but only as long as each value of

the attribute is independent on its previous values. This is ensured by a syntactic condition that
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takes into account both the TAS and the property to be verified. It is shown in [36] that feedback

freedom of a TAS together with an LTL-FO property can be checked in PSPACE by reduction to

a test of emptiness of a two-way alternating finite-state automaton. Feedback freedom turns out

to ensure decidability of verification in the presence of arithmetic constraints, and also under a

large class of data dependencies including key and foreign key constraints on the database.

Theorem 2. [36] It is decidable, given a TASA whose database satisfies a set of key and foreign

key constraints, and an LTL-FO property ϕ such that (A, ϕ) is feedback free, whether every run

of A on a valid database satisfies ϕ.

The intuition behind decidability is the following. Recall the verification algorithm of

Theorem 1. Because of the data dependencies and arithmetic constraints, the isomorphism types

of symbolic runs no longer suffice, because every artifact tuple in a run is constrained by the

entire history leading up to it. This can be specified as an ∃FO formula using one quantified

variable for each artifact attribute occurring in the history, referred to as the inherited constraint

of the tuples. The key observation is that due to feedback freedom, the inherited constraint can

be rewritten into an ∃FO formula with quantifier rank bounded by k2, where k is the number of

attributes of the artifact (the quantifier rank of a formula is the maximum number of quantifiers

occurring along a path from root to leaf in the syntax tree of the formula, see [90]). This implies

that there are only finitely many non-equivalent inherited constraints. This allows to use again a

symbolic run approach to verification, by replacing isomorphism types with inherited constraints.

However, the complexity of the resulting algorithm is non-elementary (a tower of exponentials

of height k2).

One might wonder if the decidability results of this section can be extended to branching-

time logics (CTL or CTL*). Unfortunately, it is easily shown that even very simple CTL

properties become undecidable in the above framework. It remains open whether there are

reasonable restrictions that guarantee decidability of CTL or CTL*. Limited positive results on

verification of branching-time properties of data-driven web services are obtained in [49].
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2.7 Other work on verification of artifact systems

Initial work on formal analysis of artifact-based business processes in restricted contexts

has investigated reachability [63, 64], general temporal constraints [64], and the existence of

complete execution or dead end [15]. For each considered problem, verification is generally

undecidable; decidability results were obtained only under rather severe restrictions, e.g., restrict-

ing all pre-conditions to be “true” [63], restricting to bounded domains [64, 15], or restricting

the pre- and post-conditions to be propositional, and thus not referring to data values [64]. [29]

adopts an artifact model variation with arithmetic operations but no database. Decidability relies

on restricting runs to bounded length. [129] addresses the problem of the existence of a run that

satisfies a temporal property, for a restricted case with no database and only propositional LTL

properties. None of these works model an underlying database, artifact relations, task hierarchy,

or arithmetic.

A more recent line of work has tackled the verification of artifact systems in which

properties are checked only over the runs starting from a given initial database that may evolve

via updates, insertions and deletions. [10, 9, 11, 12, 38] consider several models and property

languages, culminating in [71], which addresses verification of first-order µ-calculus (hence

branching time) properties in a framework that is equivalent to artifact systems whose input is

provided by external services. [13, 31] extend the results of [71] to artifact-centric multi-agent

systems where the property language is a version of first-order branching-time temporal-epistemic

logic expressing the knowledge of the agents. This line of work uses variations of a business

process model called DCDS (data-centric dynamic systems), which is sufficiently expressive

to capture the GSM model, as shown in [119]. In their unrestricted form, DCDS and HAS

(introduced in Chapter 3) have similar expressive power. However, verification for DCDS is only

considered for a fixed rather than arbitrary initial database. Recently, [4] considered verification

of monadic second-order properties of runs in a model where the underlying database can be

updated by insertions and deletions. Decidability is obtained subject to a restriction called
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k-recency boundedness, allowing only the most recent k elements in the database to be modified

by an update, for a fixed k.

See [80] for a survey on data-centric business process management, and [30] for a survey

of corresponding verification results.

2.7.1 Verifier implementations for data-driven workflows

On the practical side of data-driven workflow verification, [41] considers the verification

of business processes specified in a Petri-net-based model extended with data and process

components, in the spirit of the theoretical work of [110, 6, 87, 112], which considers extending

Petri nets with data-carrying tokens. The verifier of [41] checks properties for a given initial

database. [68] and its prior work [66, 67] implemented a verifier for artifact systems specified

directly in the GSM model. While the above models are expressive, the verifiers require

restrictions of the models strongly limiting modeling power [66], or predicate abstraction

resulting in loss of soundness and/or completeness [67, 68]. Lastly, the properties verified in

[67, 68] focus on temporal-epistemic properties in a multi-agent finite-state system.

Practical verification has also been studied in business process management (see [123] for

a survey). The considered models are mostly process-driven (BPMN, Workflow-Net, UML etc.),

with the business-relevant data abstracted away. The implementation of a verifier for data-driven

web applications was studied in [46, 50]. The model is similar in flavor to the artifact model, but

much less expressive. The verification approach developed there is not applicable to the models

introduced in this thesis, which requires substantially new tools and techniques.

2.8 Data-Driven Web Services

The goal of the Web services paradigm is to enable the use of Web-hosted services with

a high degree of flexibility and reliability. Web services can function in a stand-alone manner, or

they can be “glued” together into multi-peer compositions that implement complex applications.

To describe and reason about Web services, various standards and models have been proposed,
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focusing on different levels of abstraction and targeting different aspects of the Web service (see

[79] for a tutorial).

A commercially successful high-level specification tool for web applications is Web Ratio

[2], an outgrowth of the earlier academic prototype WebML [32, 26]. This section illustrates

with an example the WebML approach to specifying data-driven web services, formally studied

in [48, 49]. Consider the common scenario of a web service that takes input from external users

and responds by producing output. The contents of a Web page is determined dynamically by

querying the underlying database as well as the state. The output of the Web site, transitions

from one Web page to another, and state updates, are determined by the current input, state, and

database, and defined by first-order queries. Figure 2.2 illustrates a WebML-style specification

of an e-commerce Web site selling computers online. New customers can register a name and

password, while returning customers can login, search for computers fulfilling certain criteria,

add the results to a shopping cart, and finally buy the items in the shopping cart.

A run of the above Web site starts as follows. Customers begin at the home page by

providing their login name and password, and choosing one of the provided buttons (login,

register, or cancel). Suppose the choice is to login. The reaction of the Web site is determined by

a query checking if the name and password provided are found in the database of registered users.

If the answer is positive, the login is successful and the customer proceeds to the Customer page

or the Administration page depending on his status. Otherwise, there is a transition to the Error

page. This continues as described by the flowchart in the figure.

2.8.1 Verification of data-driven web services

The verification problem for database-driven web services has been studied using a

transducer-based formal model, called Extended Abstract State Machine Transducer, in brief

ASM+ . The model is an extension of the Abstract State Machine (ASM) transducer previously

studied by Spielmann [120]. Similarly to the earlier Relational Transducer [5], the ASM+

transducer models database-driven reactive systems that respond to input events by producing

18



Hone page(HP)

Name

passwd

cancel

Desktop

My order laptop

Product detail page(PP)

Product detail

Add to cart

laptop Search(LSP)

Desktop search

Ram:

Hdd:

Display:

search

login

back

Cart detail

Continue shopping

submit

M

Error Message

homepage

Continue shopping

logout

View cart

Continue shopping

logout

View cart

Continue shopping

back Continue shopping

logout
logout

back View cartView cart Continue shopping

View cart

Pending Order (POP)

Pending Order

logout

Order status(OSP)

Order status

cancel

back View cart Continue shopping

logout

Cancel confirmation page(CCP)

logout

View cart

Administrate order page (AP)

Order

logout

ship

back Continue contol

Shipment confirmation page(SCP)

Continue control

logout

register

register

Your registration is successful,

Now you are log in

Continue shopping

logout

Buy items in cartEmpty cart

delete

View cart Continue shoppingback

Continue Shopping

Credit  Verification

Continue control

New user Page(NP)
Error Message page(MP)

Name

Passwd

Re-passwd

clear back

Customer page(CP) logout

Sucessful Registration(RP)

Desktop Search(DSP)

Desktop search

Ram:

Hdd:

View Order page(VOP) logout

Order status

search

Product index page(PIP)
logout

Matching products

back View cart

Deletion confirmation page(DCP)

logout

Cart Content(CC) logout

User payment(UPP) logout

Confirmation page(COP)
Payment

CC No:

Expire date

Order detail

back View cart Continue shopping

Figure 2.2. Web pages in the computer shopping site.

19



some output, and maintain state information in designated relations. The control of the device

is specified using first-order queries. The main motivation for ASM+ transducers is that they

are sufficiently powerful to simulate complex Web service specifications in the style of WebML.

Thus, they are a convenient vehicle for developing the theoretical foundation for the verification

of such systems, and they also provide the basis for the implementation of a verifier.

As in the case of business artifacts, restrictions are needed on the ASM+ transducers and

properties in order to ensure decidability of verification. The main restriction, first proposed in

[120] for ASM transducers, is called “input boundedness”. The core idea of input boundedness

is that quantifications used in formulas of the specification and property are guarded by input

atoms. For example, if pay is an input, the LTL-FO formula (where B is shorthand for before)

∀x (G (∃z(pay(x, z) ∧ price(x, z)) B ship(x)))

is input bounded, since the quantification ∃z is guarded by pay(x, z). This restriction matches

naturally the intuition that the system modeled by the transducer is input driven. The actual

restriction is quite technical, but provides an appealing package. First, it turns out to be tight,

in the sense that even small relaxations lead to undecidability. Second, as argued in [48, 49], it

remains sufficiently rich to express a significant class of practically relevant applications and

properties. As a typical example, the e-commerce Web application illustrated in Figure 2.2

can be modeled under this restriction, and many relevant natural properties can be expressed.

Third, as in the case of tuple artifacts without dependencies or arithmetic, the complexity of

verification is PSPACE (for fixed-arity schemas). Moreover, the proof technique developed to

show decidability in PSPACE provides the basis for the implementation of an actual verifier,

described in Section 2.8.3.

2.8.2 Compositions of ASM+ Transducers

The verification results discussed above apply to single ASM+ transducers in isolation.

These results were extended in [52] to the more challenging case of compositions of ASM+ trans-
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ducers, modeling compositions of database-driven Web services. Asynchronous communication

between transducers adds another dimension that has to be taken into account. In an ASM+

composition, the transducers communicate with each other by sending and receiving messages

via one-way channels. Properties of runs to be verified are specified in an extension of LTL-FO,

where the FO components may additionally refer to the messages currently read and received.

Towards decidable verification, the input-boundedness restriction is extended in the

natural way. Additional restrictions must be placed on the message channels: they may be

lossy, but are required to be bounded. With these restrictions, verification is again shown to be

PSPACE-complete (for fixed-arity relations, and EXPSPACE otherwise). The proof is by reduction

to the single transducer case, and the restrictions are shown to be tight.

As in the case of single transducers, verification becomes undecidable if some of the

restrictions are relaxed. Not surprisingly, verification is undecidable with unbounded queues

(this already happens for finite-state systems [27]). More interestingly, lossiness of channels is

essential: verification becomes undecidable under the assumption that channels are perfect, i.e.

messages are never lost (the proof is by reduction of the Post Correspondence Problem [106]).

The above model of compositions assumes that all specifications of participating peers are

available to the verifier. However, compositions may also involve autonomous parties unwilling

to disclose the internal implementation details. In this case, the only information available is

typically a specification of their input-output behavior. This leads to an investigation of modular

verification. It consists in verifying that a subset of fully specified transducers behaves correctly,

subject to input-output properties of the other transducers. Decidability results are obtained

in [52] for modular verification, subject to an appropriate extension of the input-boundedness

restriction.

2.8.3 The WAVE Verifier

While the PSPACE upper bound obtained for verification of ASM+ transducers in the

input-bounded case is encouraging from a theoretical viewpoint, it does not provide any indication
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of practical feasibility. Fortunately, it turns out that the symbolic approach described above also

provides a good basis for efficient implementation. Indeed, this technique lies at the core of the

WAVE verifier, targeted at data-driven Web services of the WebML flavor [52, 47].

The verifier, as well as its target specification framework, are both implemented from

scratch. First, a tool is developed for high-level, efficient specification of data-driven Web

services, in the spirit of WebML. Next, WAVE is implemented taking as input a specification

of a Web service using the tool, and an LTL-FO property to be verified. The starting point

for the implementation is the symbolic run technique. The verifier basically carries out a

search for counterexample symbolic runs. However, verification becomes practical only in

conjunction with an array of additional heuristics and optimization techniques, yielding critical

improvements. Chief among these is dataflow analysis, allowing to dramatically prune the search

for counterexample symbolic runs.

The verifier was evaluated on a set of practically significant Web application specifica-

tions, mimicking the core features of sites such as Dell, Expedia, and Barnes and Noble. The

experimental results show very good verification times (on the order of seconds), suggesting

that automatic verification is practically feasible for significant classes of properties and Web

services. The implementation and experimental results are described in [47], and a demo of the

WAVE prototype was presented in [51].
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Chapter 3

Verification of Hierarchical Artifact Sys-
tems

3.1 Overview

As discussed in Chapter 2, in previous work [44, 36], the verification problem was

studied for a bare-bones variant of artifact systems, without hierarchy or concurrency, in which

each artifact consists of a flat tuple of evolving values and the services are specified by simple

pre-and-post conditions on the artifact and database. More precisely, the problem considered was

to statically check whether all runs of an artifact system satisfy desirable properties expressed in

LTL-FO, an extension of linear-time temporal logic where propositions are interpreted as ∃FO

sentences on the database and current artifact tuple. In order to deal with the resulting infinite-

state system, in [44], a symbolic approach was developed to allow a reduction to finite-state

model checking and yielding a PSPACE verification algorithm for the simplest variant of the

model (no database dependencies and uninterpreted data domain). In [36] the approach was

extended to allow for database dependencies and numeric data testable by arithmetic constraints.

Unfortunately, decidability was obtained subject to a rather complex semantic restriction on

the artifact system and property (feedback freedom), and the verification algorithm has non-

elementary complexity.

The present chapter describes a significant advance on the artifact verification problem on

several fronts. We consider a much richer and more realistic model, called Hierarchical Artifact
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System (HAS), abstracting core elements of the GSM model. In particular, the model features

task hierarchy, concurrency, and richer artifact data (including updatable artifact relations).

We consider properties expressed in a novel hierarchical temporal logic, HLTL-FO, that is

well-suited to the model. Our main results establish the complexity of checking HLTL-FO

properties for various classes of HAS, highlighting the impact of various features on verification.

The results require qualitatively novel techniques, because the reduction to finite-state model

checking used in previous work is no longer possible. Instead, the richer model requires the use

of a hierarchy of Vector Addition Systems with States (VASS) [18]. The arithmetic constraints

are handled using quantifier elimination techniques, adapted to our setting.

We next describe the model and results in more detail. A HAS consists of a database and

a hierarchy (rooted tree) of tasks. Each task has associated to it local evolving data consisting

of a tuple of artifact variables and an updatable artifact relation. It also has an associated set of

services. Each application of a service is guarded by a pre-condition on the database and local

data and causes an update of the local data, specified by a post condition (constraining the next

artifact tuple) and an insertion or retrieval of a tuple from the artifact relation. In addition, a task

may invoke a child task with a tuple of parameters, and receive back a result if the child task

completes. A run of the artifact system consists of an infinite sequence of transitions obtained by

any valid interleaving of concurrently running task services.

In order to express properties of HAS’s we introduce a subset of LTL-FO called hierar-

chical LTL-FO (HLTL-FO). Intuitively, an HLTL-FO formula uses as building blocks LTL-FO

formulas acting on runs of individual tasks, called local runs, referring only to the database and

local data, and can recursively state HLTL-FO properties on runs resulting from calls to children

tasks. The language HLTL-FO closely fits the computational model and is also motivated on

technical grounds discussed in the paper. A main justification for adopting HLTL-FO is that

LTL-FO (and even LTL) properties are undecidable for HAS’s.

Hierarchical artifact systems as sketched above provide powerful extensions to the

variants previously studied, each of which immediately leads to undecidability of verification
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if not carefully controlled. Our main contribution is to put forward a package of restrictions

that ensures decidability while capturing a significant subset of the GSM model. This requires a

delicate balancing act aiming to limit the dangerous features while retaining their most useful

aspects. In contrast to [36], this is achieved without the need for unpleasant semantic constraints

such as feedback freedom. The restrictions are discussed in detail in the paper, and shown to be

necessary by undecidability results.

The complexity of verification under various restrictions is summarized in Tables 3.1

(without arithmetic) and 3.2 (with arithmetic). As seen, the complexity ranges from PSPACE

to non-elementary for various packages of features. The non-elementary complexity (a tower

of exponentials whose height is the depth of the hierarchy) is reached for HAS with cyclic

schemas, artifact relations and arithmetic. For acyclic schemas, which include the widely used

Star (or Snowflake) schemas [84, 126], the complexity ranges from PSPACE (without arithmetic

or artifact relations) to double-exponential space (with both arithmetic and artifact relations).

This is a significant improvement over the previous algorithm of [36], which even for acyclic

schemas has non-elementary complexity in the presence of arithmetic (a tower of exponentials

whose height is the square of the total number of artifact variables in the system).

This chapter is organized as follows. The HAS model is presented in Section 3.2. We

present its syntax and semantics, including a representation of runs as a tree of local task runs,

that factors out interleavings of independent concurrent tasks. The temporal logic HLTL-FO is

introduced in Section 3.3, together with a corresponding extension of Büchi automata to trees

of local runs. Section 3.4 justifies the restrictions imposed on the HAS model by showing that

lifting any of them leads to undecidability of verification. In Section 3.5 we prove the decidability

of verification for HAS without arithmetic, and establish its complexity. To this end, we develop

a symbolic representation of HAS runs and a reduction of model checking to state reachability

problems in a set of nested VASS (mirroring the task hierarchy). In Section 3.6 we show how

the verification results can be extended in the presence of arithmetic. Finally, we conclude in

Section 3.7. The appendix provides more details and proofs.
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3.2 Framework

In this section, we present the syntax and semantics of Hierarchical Artifact Systems

(HAS’s). The formal definitions are illustrated with an intuitive example of the HAS specification

of a travel booking business process inspired by Expedia [60]. At a high level, the example

captures a process where a customer books flights and/or makes hotel reservations.

3.2.1 Syntax of HAS

We begin with the underlying database schema. We assume familiarity with the notions

of key and foreign key (e.g., see [114]), as well as first-order formula (FO), existential FO (∃FO),

and quantifier-free FO (e.g., see [90]).

Definition 3. A database schema DB is a finite set of relation symbols, where each relation R

of DB has an associated sequence of distinct attributes containing the following:

• a key attribute ID (present in all relations),

• a set of foreign key attributes {F1, . . . , Fm}, and

• a set of non-key attributes {A1, . . . , An} disjoint from {ID, F1, . . . , Fm}.

To each foreign key attribute Fi of R is associated a relation Ri of DB and the inclusion

dependency R[Fi] ⊆ Ri[ID] (stating that the projection of R on Fi is included in the projection

of Ri on ID). It is said that Fi references Ri. We denote by attr(R) the set of attributes of R.

The domain Dom(A) of each attribute A depends on its type. The domain of all non-key

attributes is numeric, specifically R. The domain of each key attribute is a countable infinite

domain disjoint from R. For distinct relations R and R′, Dom(R.ID) ∩Dom(R′.ID) = ∅. The

domain of a foreign key attribute F referencing R is Dom(R.ID). We denote by DOMid =

∪R∈DBDom(R.ID). Intuitively, in such a database schema, each tuple is an object with a

globally unique id. This id does not appear anywhere else in the database except in foreign keys

referencing it. An instance of a database schema DB is a mapping D associating to each relation

symbol R a finite relation D(R) of the same arity as R, whose tuples provide, for each attribute,
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a value from its domain. In addition, D satisfies all key and inclusion dependencies associated

with the keys and foreign keys of the schema. The active domain of D, denoted adom(D),

consists of all elements of D (id’s and reals). A database schema DB is acyclic if there are no

cycles in the references induced by foreign keys. More precisely, consider the labeled graph FK

whose nodes are the relations of the schema and in which there is an edge from Ri to Rj labeled

with F if Ri has a foreign key attribute F referencing Rj . The schema DB is acyclic 1 if the

graph FK is acyclic, and it is linearly-cyclic if each relation R is contained in at most one simple

cycle. A main reason for considering these special schemas is that they lead to significantly

improved complexity of verification. The most restricted, acyclic schemas, still capture Star and

Snowflake schemas [84, 126], widely used in storing business process data.

Example 4. The HAS of the travel booking business process has the following database schema:

• FLIGHTS(ID, price, comp hotel id)

HOTELS(ID, unit price, discount price)

In the schema, the ID’s are key attributes, price, unit price, discount price are non-key

attributes, and comp hotel id is a foreign key attribute satisfying the inclusion dependency:

FLIGHTS[comp hotel id] ⊆ HOTELS[ID].

Intuitively, each flight stored in the FLIGHTS table has a hotel compatible for discount. If a

flight is purchased together with a compatible hotel reservation, a discount is applied on the

hotel reservation. Otherwise, the full price needs to be paid. The schema is acyclic, since

FLIGHTS[comp hotel id] ⊆ HOTELS[ID] is the only inclusion dependency in the schema.

The assumption that the ID of each relation is a single attribute is made for simplicity, and

multiple-attribute IDs can be easily handled. The fact that the domain of all non-key attributes

1Here a cycle is a sequence of relations {Ri}1≤i≤k where k ≥ 2, R1 = Rk and there is a foreign key reference
from Ri−1 to Ri for every i > 1.
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is numeric is also harmless. Indeed, a uninterpreted domain on which only equality can be

used can be easily simulated. Note that the keys and foreign keys used on our schemas are

special cases of the dependencies used in [36]. The limitation to keys and foreign keys is one of

the factors leading to improved complexity of verification and still captures most schemas of

practical interest.

We next proceed with the definition of tasks and services, described informally in the

introduction. The definition imposes various restrictions needed for decidability of verification.

These are discussed and motivated in Section 3.4.

Similarly to the database schema, we consider two infinite, disjoint sets VARid of ID

variables and VARval of numeric variables. We associate to each variable x its domain Dom(x).

If x ∈ VARid, then Dom(x) = {null} ∪ DOMid, where null 6∈ DOMid ∪ R (null plays a

special role that will become clear shortly). If x ∈ VARval, then Dom(x) = R. An artifact

variable is a variable in VARid ∪ VARval. If x̄ is a sequence of artifact variables, a valuation of x̄

is a mapping ν associating to each variable in x̄ an element of its domain Dom(x).

Definition 5. A task schema over database schema DB is a triple T = 〈x̄T , ST , s̄T , x̄Tin, x̄Tout〉

where x̄T is a sequence of distinct artifact variables, ST is a relation symbol not in DB with

associated arity k, s̄T is a sequence of k distinct ID variables in x̄T and x̄Tin and x̄Tout are

subsequences of x̄T called the input and output variables of T .

We denote by x̄Tid = x̄T ∩ VARid and x̄TR = x̄T ∩ VARval. We refer to ST as the artifact

relation or set of T . Intuitively, an artifact relation is an updatable set where a task can insert/re-

trieve tuples. As we shall see, tuples of artifact relations are restricted to contain values from

DOMid. The data stored in the artifact variables and relations together represent the current state

of a task.

Example 6. ManageTrips is a task in the travel booking artifact system. This task models the

process whereby the customer creates, stores, and retrieves candidate trips. A trip consists of

a flight and/or hotel reservation. The customer can also choose one of the candidate trips and
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finalize the booking. The task has the following artifact variables:

• ID variables: flight id, hotel id,

• numeric variables: amount paid, status.

It also has an artifact relation TRIPS storing candidate trips (flight id, hotel id). Man-

ageTrips has no input/output variables.

Definition 7. An artifact schema is a tuple A = 〈H,DB〉 where DB is a database schema and

H is a rooted tree of task schemas over DB with pairwise disjoint sets of artifact variables2 and

distinct artifact relation symbols.

The rooted tree H defines the task hierarchy. Suppose the set of tasks is {T1, . . . , Tk}.

For uniformity, we always take task T1 to be the root ofH. We denote by �H (or simply � when

H is understood) the partial order on {T1, . . . , Tk} induced by H (with T1 the minimum). For

a node T ofH, we denote by tree(T) the subtree ofH rooted at T , child(T ) the set of children

of T (also called subtasks of T ), desc(T ) the set of descendants of T (excluding T ). Finally,

desc∗(T ) denotes desc(T ) ∪ {T}. We denote by SH (or simply S when H is understood) the

relational schema {STi | 1 ≤ i ≤ k}. An instance of S is a mapping associating to each STi ∈ S

a finite relation over DOMid of the same arity.

Example 8. The travel booking artifact system has the following 4 tasks: T1:ManageTrips,

T2:AddHotel, T3:AddFlight and T4:BookTrip, which form the hierarchy represented in Fig. 5.1.

T1: ManageTrips

T2: AddHotel T4: BookTripT3: AddFlight T5: CancelTrip

Figure 3.1. Tasks hierarchy.

The process implemented by the above tasks can be described informally as follows. At

the root task ManageTrips, the customer can add a flight and/or hotel to the trip by calling the
2In examples we sometimes use for convenience the same artifact variable names in several tasks, with the

understanding that they represent distinct variables.
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AddHotel or the AddFlight tasks. The customer can also store candidate trips in the artifact

relation TRIPS and retrieve previously stored trips. After the customer has made a decision, the

BookTrip task is called to book the trip and the payment is processed. After the payment, the

customer can decide to cancel the flight and/or the hotel reservation using the CancelTrip task

and receive a refund.

Definition 9. An instance of an artifact schema A = 〈H,DB〉 is a tuple Ī = 〈ν̄, stg,D, S̄〉

where D is an instance of DB, S̄ an instance of S , ν̄ a valuation of
⋃k
i=1 x̄

Ti , and stg (standing

for “stage”) a mapping of {T1, . . . , Tk} to {init, active, inactive}.

The stage stg(Ti) of a task Ti has the following intuitive meaning in the context of a run

of its parent: init indicates that Ti is inactive and available to be called, active says that Ti has

been called and has not yet returned its answer, and inactive indicates that Ti has returned its

answer. As we shall see, Ti cannot be called while its stage is inactive, but the model provides

a way to reset the stage to init. Thus, Ti can be called multiple times during a run of its parent.

However, only one instance of Ti can be active at any given time.

Example 10. Fig. 5.2 shows an example of an instance of the travel booking business process

specified in HAS. The only active task is ManageTrip.

flight_id hotel_id amount_
paid status

F1 H1 0.0 'Shopping'

flight_id hotel_id

F0 null

null H0

ID price comp_hotel_id

F0 $500 H0

F1 $200 H1

TRIPS (Artifact Relation):Artifact Variables: FLIGHTS: HOTELS:

ManageTrips: active DB:

AddHotel, AddFlight: closed   BookTrip, CancelTrip: init

ID price discount_price

H0 $100 $80

H1 $120 $100

Figure 3.2. An instance of the travel booking schema.

We proceed with the definition of conditions, used to specify task services. We denote by

C an infinite set of relation symbols, each of which has a fixed interpretation as the set of real

solutions of a finite set of polynomial inequalities with integer coefficients. By slight abuse, we

sometimes use the same notation for a relation symbol in C and its fixed interpretation. For a given
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artifact schema A = 〈H,DB〉 and a sequence x̄ of variables, a condition on x̄ is a quantifier-free

FO formula overDB∪C∪{=} whose variables are included in x̄. The special constant null can

be used in equalities with ID variables. For each atom R(x, y1, . . . , ym, z1, . . . , zn) of relation

R(ID, A1, . . . , Am, F1, . . . , Fn) ∈ DB, {x, z1, . . . , zn} ⊆ VARid and {y1, . . . , ym} ⊆ VARval.

Atoms over C use only numeric variables. If α is a condition on x̄, D is an instance of DB and ν

a valuation of x̄, we denote by D ∪ C |= α(ν) the fact that D ∪ C satisfies α with valuation ν,

with standard semantics. For an atom R(ȳ) in α where R ∈ DB and ȳ ⊆ x̄, if ν(y) = null for

any y ∈ ȳ, then R(ȳ) is false. As will become apparent, although conditions used in HAS are

quantifier-free, ∃FO conditions can be simulated by adding variables to x̄T , so we use them as

shorthand whenever convenient.

Example 11. The following ∃FO formula indicates that the customer in the travel booking

process has chosen a pair of compatible flight and hotel and paid the discounted amount:

∃q∃p1∃p2FLIGHTS(flight id, q, hotel id)∧HOTELS(hotel id, p1, p2)∧amount paid = q+p2.

We next define services of tasks. We start with internal services, which update the artifact

variables and artifact relation of the task.

Definition 12. Let T = 〈x̄T , ST , s̄T , x̄Tin, x̄Tout〉 be a task schema of an artifact schema A. An

internal service σ of T is a tuple 〈π, ψ, δ〉 where:

• π and ψ, called pre-condition and post-condition, respectively, are conditions over x̄T

• δ ⊆ {+ST (s̄T ),−ST (s̄T )} is a set of artifact relation updates; +ST (s̄T ) and −ST (s̄T ) are

called an insertion and retrieval of s̄T , respectively.

Intuitively, an internal service of T can be called only when the current instance satisfies

the pre-condition. The update of variables x̄T is valid if the next instance satisfies the post-

condition. Variables can be changed arbitrarily during a service activation, as long as the post

condition holds. This feature allows services to also model actions by external actors who
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provide input into the workflow by setting the value of non-propagated variables. Such actors

may even include humans or other parties whose behavior is not deterministic. For example, a

bank manager carrying out a “loan decision” action can be modeled by a service whose result is

stored in a variable and whose value is restricted by the post-condition to either “Approve” or

“Deny”. Note that deterministic actors can be modeled by simply using tighter post-conditions.

As will be seen in the formal definition, +ST (s̄T ) causes an insertion of the current value

of s̄T into ST , while −ST (s̄T ) causes the removal of some non-deterministically chosen tuple of

ST and its assignment as the next value of s̄T . In particular, if δ = {+ST (s̄T ),−ST (s̄T )}, the

tuple inserted by +ST (s̄T ) and the one retrieved by −ST (s̄T ) are generally distinct, but may be

the same as a degenerate case.

Example 13. The ManageTrips task has 3 internal services: Initialize, StoreTrip and Re-

trieveTrip. Initialize creates a new trip with flight id = hotel id = null. When Re-

trieveTrip is called, a previously stored trip is chosen non-deterministically and removed from

TRIPS for processing, and (flight id, hotel id) is set to be the chosen tuple. When Store-

Trip is called, the current tuple (flight id, hotel id) is inserted into TRIPS. The latter two

services are specified as follows.

RetrieveTrip:
Pre: flight id = null ∧ hotel id = null

Post: status = “Shopping”
Update: {−TRIPS(flight id, hotel id)}

StoreTrip:
Pre: flight id 6= null ∨ hotel id 6= null

Post: flight id = null∧hotel id = null∧
status = “Shopping”
Update: {+TRIPS(flight id, hotel id)}

Figure 3.3. Examples of two services.

As seen above, internal services of a task cause transitions on the data local to the task.

Interactions among tasks are specified using two kinds of special services called the opening-

services and closing-services. Specifically, each task T is equipped with an opening service

σoT and a closing service σcT . Each non-root task T can be activated by its parent task via a call

to σoT which includes passing parameters to T that initialize its input variables x̄Tin. When T

terminates (if ever), it returns to the parent the contents of its output variables x̄Tout via a call
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to σcT . Moreover, calls to σoT are guarded by a condition on the parent’s artifact variables, and

closing calls to σcT are guarded by a condition on the artifact variables of T .

Definition 14. Let Tc be a child of a task T in A.

(i) The opening-service σoTc of Tc is a tuple 〈π, fin〉, where π is a (pre-)condition over x̄T , and

fin is a 1-1 mapping from x̄Tcin to x̄T (called the input variable mapping). We denote range(fin)

by x̄T
T ↓c

(the variables of T passed as input to Tc).

(ii) The closing-service σcTc of Tc is a tuple 〈π, fout〉, where π is a (pre-)condition over x̄Tc ,

and fout is a 1-1 mapping from x̄Tcout to x̄T (called the output variable mapping). We denote

range(fout) by x̄T
T ↑c

, referred to as the returned variables from Tc. It is required that x̄T
T ↑c
∩ x̄Tin =

∅.

Requiring x̄T
T ↑c
∩ x̄Tin = ∅ means that a returning child task cannot overwrite the input

variables of the parent task, so that the values of the input variables stay unchanged throughout

an execution of the task. While the definition allows the return of numeric variables, it turns out

that for the purpose of verification one can assume that only ID variables are returned. One can

additionally assume that the sets of variables returned by different subtasks are disjoint. The

discussion of the simplifications is postponed to Section 3.3, since they must be considered in

the context of the property language HLTL-FO.

For uniformity of notation, we also equip the root task T1 with a service σoT1 with pre-

condition true that initiates the computation by providing a valuation to a designated subset x̄T1in of

x̄T1 (the input variables of T1), and a service σcT1 whose pre-condition is false (so it never occurs

in a run). For a task T we denote by ΣT the set of its internal services, Σoc
T = ΣT ∪ {σoT , σcT},

Σobs
T = Σoc

T ∪ {σoTc , σ
c
Tc
| Tc ∈ child(T )}, and Σδ

T = ΣT ∪ {σoT} ∪ {σcTc | Tc ∈ child(T )}.

Intuitively, Σobs
T consists of the services observable in runs of task T and Σδ

T consists of services

whose application can modify the variables x̄T .

Example 15. The opening-service σoT4 of the BookTrip task has pre-condition flight id 6=

null ∧ hotel id 6= null ∧ status = “Shopping”, meaning that both the hotel and flight
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have been chosen by the customer but are not yet paid. The input variables x̄T4in of BookTrip are

{flight id, hotel id}, which are mapped by the mapping fin to variables {flight id,

hotel id} of ManageTrips. The closing-service σcT4 of the BookTrip task has pre-condition

status = “Paid”, meaning that the trip was successfully paid. The output variables x̄T4out of

BookTrip are {status, amount paid}, which are mapped by fout to the identically named vari-

ables {status, amount paid} of ManageTrips (the returned variables x̄T1T4↑ from BookTrip).

Definition 16. A Hierarchical Artifact System (HAS) is a triple Γ = 〈A,Σ,Π〉, where A is an

artifact schema, Σ is a set of services of tasks in A including σoT and σcT for each task T of A,

and Π is a condition over x̄T1in (where T1 is the root task).

3.2.2 Semantics of HAS

We next define the semantics of HAS. Intuitively, a run of a HAS on a databaseD consists

of an infinite sequence of transitions among HAS instances (also referred to as configurations, or

snapshots), starting from an initial artifact tuple satisfying pre-condition Π, and empty artifact

relations. At each snapshot, each active task T can open a subtask Tc if the pre-condition of

the opening service of Tc holds, and the values of a subset of x̄T are passed to Tc as its input

variables. Tc can be closed if the pre-condition of its closing service is satisfied. When Tc is

closed, the values of the return variables of Tc are sent to T . An internal service of T can only be

applied after all active subtasks of T have returned their answer.

Tree of Local Runs

Because of the hierarchical structure, and the locality of task specifications, the actions of

concurrently active children of a given task are independent of each other and can be arbitrarily

interleaved. To capture just the essential information, factoring out the arbitrary interleavings, we

first define the notion of local run and tree of local runs. Intuitively, a local run of a task consists

of a sequence of services of the task, together with the transitions they cause on the task’s local
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artifact variables and relation. The tasks’ input and output are also specified. A tree of local runs

captures the relationship between the local runs of tasks and those of their subtasks, including

the passing of inputs and results. Then the runs of the full artifact system simply consist of all

legal interleavings of transitions represented in the tree of local runs, lifted to full HAS instances

(we refer to these as global runs). We begin by defining instances of tasks and local transitions.

For a mapping M , we denote by M [a 7→ b] the mapping that sends a to b and agrees with M

everywhere else.

Definition 17. Let T = 〈x̄T , ST , s̄T , x̄Tin, x̄Tout〉 be a task in Γ and D a database instance over

DB. An instance of T is a pair (ν, S) where ν is a valuation of x̄T and S an instance of ST . For

instances I = (ν, S) and I ′ = (ν ′, S ′) of T and a service σ ∈ Σobs
T , there is a local transition

I
σ−→ I ′ if the following holds. If σ is an internal service 〈π, ψ〉, then:

• D ∪ C |= π(ν) and D ∪ C |= ψ(ν ′)

• ν ′(y) = ν(y) for each y in x̄Tin

• if δ = {+ST (s̄T )}, then S ′ = S ∪ {ν(s̄T )}, 3

• if δ = {−ST (s̄T )}, then ν ′(s̄T ) ∈ S and S ′ = S − {ν ′(s̄T )},

• if δ = {+ST (s̄T ),−ST (s̄T )}, then ν ′(s̄T ) ∈ S∪{ν(s̄T )} and S ′ = (S∪{ν(s̄T )})−{ν ′(s̄T )},

• if δ = ∅ then S ′ = S.

If σ = σoTc = 〈π, fin〉 is the opening-service for a child Tc of T then D ∪ C |= π(ν),

ν ′ = ν and S ′ = S. If σ = σcTc then S = S ′, ν ′|(x̄T − x̄TTc↑) = ν|(x̄T − x̄TTc↑) and ν ′(z) = ν(z)

for every z ∈ x̄TTc↑ ∩ VARid for which ν(z) 6= null. Finally, if σ = σcT then I ′ = I .

Example 18. Figure 5.5 shows two local transitions obtained by calling internal services

StoreTrip and RetrieveTrip of ManageTrips. Figure 3.5 illustrates a transition caused by closing

a sub-task.

3All artifact relation operations preserve the order of variables/attributes.
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flight_id hotel_id amount_
paid status

F0 H0 0.0 'Shopping'

flight_id hotel_id

F0 null

F1 H1

TRIPS (Artifact Relation):

Artifact Variables:

ManageTrips: active

flight_id hotel_id amount_
paid status

null null 0.0 'Shopping'

flight_id hotel_id

F0 null

F1 H1

F0 H0

TRIPS (Artifact Relation):

Artifact Variables:

ManageTrips: active

StoreTrip RetrieveTrip

flight_id hotel_id amount_
paid status

F1 H1 0.0 'Shopping'

flight_id hotel_id

F0 null

F0 H0

TRIPS (Artifact Relation):

Artifact Variables:

ManageTrips: active

Figure 3.4. Two transitions caused by the StoreTrip and the RetrieveTrip services.

flight_id hotel_id amount_
paid status

F1 H1 0.0 'Shopping'

flight_id hotel_id

F0 H0

TRIPS (Artifact Relation):

ManageTrips: active

Close-BookTrip

flight_id hotel_id amount_
paid status

F1 H1 $200.0 'Paid'

flight_id hotel_id

F0 H0

TRIPS (Artifact Relation):

ManageTrips: active

flight_id hotel_id amount_
paid status

F1 H1 $200.0 'Paid'

BookTrips: active

flight_id hotel_id amount_
paid status

BookTrips: closed

Figure 3.5. Transition caused by a closing service.

Remark 19. Recall that tuples retrieved from artifact relations are selected non-deterministically.

For example, the RetrieveTrip service above extracts an arbitrary trip from the TRIPS relation.

However, it may be useful to be able to select a particular trip for retrieval. While this capability

is not explicitly provided, it can be simulated. Extracting the trip with a specified flight id

can be done as follows:

1. an internal service retrieves a trip non-deterministically

2. a subtask T is called and returns the desired flight id

3. the retrieved trip and the chosen flight id are passed to another subtask T ′ which checks

whether the trip has the chosen flight id. The run blocks (so is invalidated) if this is not

the case.

We now define local runs.

Definition 20. Let T = 〈x̄T , ST , s̄T , x̄Tin, x̄Tout〉 be a non-root task in Γ and D a database instance

over DB. A local run of T over D is a triple ρT = (νin, νout, {(Ii, σi)}0≤i<γ), where:

• γ ∈ N ∪ {ω}
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• for each i ≥ 0, Ii = (νi, Si) is an instance of T and σi ∈ Σobs
T

• νin is a valuation of x̄Tin

• σ0 = σoT and S0 = ∅,

• ν0|x̄Tin = νin, ν0(z) = null for z ∈ VARid − x̄Tin and ν0(z) = 0 for z ∈ VARval − x̄Tin

• if for some i, σi = σcT then γ ∈ N and i = γ − 1 (and ρT is called a returning local run)

• νout = νγ−1|x̄Tout if ρT is a returning run and ⊥ otherwise

• a segment of ρT is a subsequence {(Ii, σi)}i∈J , where J is a maximal interval [a, b] ⊆ {i |

0 ≤ i < γ} such that no σj is an internal service of T for j ∈ [a + 1, b]. A segment J is

terminal if γ ∈ N and b = γ−1 (and is called returning if σγ−1 = σcT and blocking otherwise).

Segments of ρT must satisfy the following properties. For each child Tc of T there is at most

one i ∈ J such that σi = σoTc . If J is not blocking and such an i exists, there is exactly one

j ∈ J for which σj = σcTc , and j > i. If J is blocking, there is at most one such j.

• for every 0 < i < γ, Ii−1
σi−→ Ii.

Local runs of the root task T1 are defined as above, except that νin is a valuation of x̄T1in such that

D ∪ C |= Π, and νout = ⊥ (the root task never returns).

For a local run as above, we denote γ(ρT ) = γ. Note that by definition of segment, a

task can call each of its children tasks at most once between two consecutive services in Σoc
T and

all of the called children tasks must complete within the segment, unless it is blocking. These

restrictions are essential for decidability and are discussed in Section 3.4.

Observe that local runs take arbitrary inputs and allow for arbitrary return values from its

children tasks. The valid interactions between the local runs of a tasks and those of its children

is captured by the notion of tree of local runs.

Definition 21. A tree of local runs is a directed labeled tree Tree where each node is an

occurrence of a local run ρT for some task T and every edge connects a local run of a task T

with a local run of a child task Tc and is labeled with a non-negative integer i (denoted i(ρTc)).

In addition, the following properties are satisfied. Let ρT = (νTin, ν
T
out, {(Ii, σi)}0≤i<γ) be a node
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of Tree, where Ii = (νi, Si), i ≥ 0. Let i be such that σi = σoTc the opening service of some child

Tc of T . There exists a unique edge labeled i from ρT to a node ρTc = (νin, νout, {(I ′i, σ′i)}0≤i<γ′)

of Tree, and the following hold:

• νi(fin(z)) = νin(z) for every z ∈ x̄Tcin where fin is the input variable mapping of σoTc

• ρTc is a returning run iff there exists j > i such that σj = σcTc; let k be the minimum such j.

Then for every z ∈ x̄Tcout if either (1) νk−1(fout(z)) = null4 or (2) variable z is numeric, then

νk(fout(z)) = νout(z), where fout is the output variable mapping of σcTc .

Finally, for every node ρT of Tree, if ρT is blocking then there exists a child of ρT that is not

returning (so is infinite or blocking).

The above definition is illustrated in Fig. 3.6. Note that a tree of local runs may generally

be rooted at a local run of any task of Γ. We say that Tree is full if it is rooted at a local run of T1.

i j k ...T1

... ... ... ... ... ...T2 T3

Root
Open-T2 Open-T2 Open-T3

i j
k

Figure 3.6. A tree of local runs.

Global runs

Intuitively, a global run of Γ on database instance D over DB is an infinite sequence

ρ = {(Ii, σi)}i≥0, where each Ii is an instance (νi, stgi, D, Si) of A and σi ∈ Σ, resulting from

a tree of local runs by interleaving its transitions, lifted to full HAS instances. Let D be a

database and Tree a full tree of local runs over D. For a local run ρ = (νin, νout, {(Im, σm)}m<γ)

(where Im = (νm, Sm)) and i < γ, we denote by σ(ρ, i) = σi, ν(ρ, i) = νi, and S(ρ, i) = Si.

Let � be the pre-order on the set {(ρ, i) | ρ ∈ Tree, 0 ≤ i < γ(ρ)} defined as the smallest

reflexive-transitive relation containing the following:
4Although an ID variable with non-null values cannot be overwritten by a returning child task, it can be reset to

null later by an internal transition.

38



1. for each node ρ and 0 ≤ i ≤ j < γ(ρ), (ρ, i) � (ρ, j)

2. for each edge in Tree from ρT to ρTc labeled i, (ρT , i) � (ρTc , 0) and (ρTc , 0) � (ρT , i).

Additionally, if ρTc is returning and m is the smallest j > i for which σ(ρT , j) = σcTc , then

(ρTc , γ(ρTc)) � (ρT ,m) and (ρT ,m) � (ρTc , γ(ρTc)).

Let ≈ be the equivalence relation induced by � (i.e., a ≈ b iff a � b and b � a). Note

that all classes of ≈ are singletons except for the ones induced by (2), which are of the form

{(ρ1, i), (ρ2, j)} where σ(ρ1, i) = σ(ρ2, j) ∈ {σoT , σcT} for some task T . For an equivalence

class ε of ≈ we denote by σ(ε) the unique service of elements in ε. A linearization of � is

an enumeration of the equivalence classes of ≈ consistent with �. Consider a linearization

{εi}i≥0 of �. Note that ε0 = (ρT1 , 0) and let ν(ρT1 , 0) = ν0. A global run induced by {εi}i≥0 is

a sequence ρ = {(Īi, σi)}i≥0 such that σi = σ(εi) and each Īi is an instance (ν̄i, stgi, D, S̄i) of

A, defined inductively as follows. For i = 0,

• ν̄0(x̄T1) = ν0(x̄T1) (and arbitrary on other variables)

• stg0 = {T1 7→ active, Ti 7→ init | 2 ≤ i ≤ k}

• S̄0 = {STi 7→ ∅ | 1 ≤ i ≤ k}.

For i > 0, Īi is defined as follows. Suppose first that εi = {(ρ, j)} where ρ is a local run of task

T and σ(ρ, j) is an internal service of T . Then ν̄i = ν̄i−1[x̄T 7→ ν(ρ, j)(x̄T )], S̄i = S̄i−1[ST 7→

S(ρ, j)], and stgi = stgi−1[T̄ 7→ init | T̄ ∈ desc(T )]. Now suppose ε = {(ρT , j), (ρTc , 0)},

where Tc is a child of T , ρT and ρTc are local runs of T and Tc, and σ(ε) = σoTc . Then ν̄i =

ν̄i−1[x̄Tc 7→ ν(ρTc , 0)(x̄Tc)], S̄i = S̄i−1[STc 7→ ∅], and stgi = stgi−1[Tc 7→ active]. Finally,

suppose ε = {(ρT , j), (ρTc , γ − 1)} where σ(ε) = σcTc . Then ν̄i = ν̄i−1[x̄T 7→ ν(ρT , j)(x̄
T )],

stgi = stgi−1[Tc 7→ inactive], and S̄i = Si−1[STc 7→ ∅].

We denote by L(Tree) the set of global runs induced by linearizations of �. The set of

global runs of Γ on a database D is RunsD(Γ) =
⋃
{L(Tree) | Tree is a full tree of local runs of

Γ on D} and the set of global runs of Γ is Runs(Γ) =
⋃
D RunsD(Γ).
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3.3 Hierarchical LTL-FO

In order to specify temporal properties of HAS’s we use an extension of LTL (linear-time

temporal logic). Recall that LTL is propositional logic augmented with temporal operators X

(next), U (until), G (always) and F (eventually) (e.g., see [58]). We provide a formal review of

LTL next.

3.3.1 Review of LTL and LTL-FO

Here, we review the classical definition of LTL over a set P of propositions. LTL specifies

properties of infinite words (ω-words) {τi}i≥0 over the alphabet consisting of truth assignments

to P . Let τ≥j denote {τi}i≥j , for j ≥ 0.

The meaning of the temporal operators X, U is the following (where |= denotes satisfac-

tion and j ≥ 0):

• τ≥j |= Xϕ iff τ≥j+1 |= ϕ,

• τ≥j |= ϕU ψ iff ∃k ≥ j such that τ≥k |= ψ and τ≥l |= ϕ for j ≤ l < k.

Observe that the above temporal operators can simulate all commonly used operators, including

G (always) and F (eventually). Indeed, Fϕ ≡ true U ϕ and Gϕ ≡ ¬(F¬ϕ).

The standard construction of a Büchi automaton Bϕ corresponding to an LTL formula ϕ

is given in [124, 118]. The automaton Bϕ has exponentially many states and accepts precisely

the set of ω-words that satisfy ϕ.

It is sometimes useful to apply LTL on finite words rather than ω-words. The finite

semantics we use for temporal operators is the following [39]. Let {τi}0≤i≤n a finite sequence of

truth values of P . Similarly to the above, let τ≥j denote {τi}j≤i≤n, for 0 ≤ j ≤ n. The semantics

of X and U are defined as follows:

• τ≥j |= Xϕ iff n > j and τ≥j+1 |= ϕ,

• τ≥j |= ϕU ψ iff ∃k, j ≤ k ≤ n such that τ≥k |= ψ and τ≥l |= ϕ for j ≤ l < k.
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It is easy to verify that for the Bϕ obtained by the standard construction [124, 118] there

is a subset Qfin of its states such that Bϕ viewed as a finite-state automaton with final states Qfin

accepts precisely the finite words that satisfy ϕ.

LTL-FO. An extension of LTL in which propositions are interpreted as FO sentences has

previously been defined to specify properties of sequences of structures [120], and in particular

of runs of artifact systems [44, 36] (see Chapter 2). The extension is denoted by LTL-FO. In

this thesis, we use multiple variants of LTL-FO to specify properties of different models. The

differences are explained when each variant is introduced: in this chapter, Chapter 4, and Chapter

5.

3.3.2 Formal Definition of HLTL-FO

In order to specify properties of HAS’s, we shall use a variant of LTL-FO, called

hierarchical LTL-FO, denoted HLTL-FO. Intuitively, an HLTL-FO formula uses as building

blocks LTL-FO formulas acting on local runs of individual tasks, referring only to the database

and local data, and can recursively state HLTL-FO properties on runs resulting from calls to

children tasks. This closely mirrors the hierarchical execution of tasks, and is a natural fit for this

computation model. In addition to its naturalness, the choice of HLTL-FO has several technical

justifications. First, verification of LTL-FO (and even LTL) properties is not possible for HAS’s.

Specifically, let LTL(Σ) be LTL using the services Σ as its set of propositions. For a global

run {(Ii, σi)}i≥0, proposition σ holds in (Ii, σi) if σ = σi (thus, formulas in LTL(Σ) express

properties of the sequence of services in a global run).

Theorem 22. It is undecidable, given an LTL(Σ) formula ϕ and a HAS Γ = 〈A,Σ,Π〉, whether

every global run of Γ satisfies ϕ.

The proof, provided in Appendix 3.8.1, is by reduction from repeated state reachability

in VASS with resets and bounded lossiness, whose undecidability follows from [96]. Essentially,

when defined on global runs, LTL is expressive enough to encode the transitions of a VASS
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using the interleavings of multiple tasks. When combined with resets of counters, which can be

simulated by opening/closing of tasks, verification becomes undecidable.

Another technical argument in favor of HLTL-FO is that it only expresses properties

that are invariant under interleavings of independent tasks. Interleaving invariance is not only

a natural soundness condition, but also allows more efficient model checking by partial-order

reduction [104]. Moreover, HLTL-FO enjoys a pleasing completeness property: it expresses, in

a reasonable sense, all interleaving-invariant LTL-FO properties of HAS’s. This is discussed at

the end of the section.

To illustrate the difference between LTL-FO and HLTL-FO, we exhibit a simple LTL

property that is not expressible in HLTL.

Example 23. Referring to our travel booking example, suppose that the opening services

of AddFlight and AddHotel have preconditions flight id = null and hotel id = null,

respectively. Thus, the two tasks may be active at the same time. Suppose that AddFlight has an

internal service ChooseFlight and AddHotel has an internal service ChooseHotel. Consider the

LTL property

G
(
(σoAddFlight ∧ F σoAddHotel)→ ( ¬ChooseHotel U ChooseFlight )

)
stating that whenever the AddFlight task is called before the AddHotel task, the hotel is not

chosen before the flight. Clearly, this property is violated by the example, because it is not

invariant with respect to legal interleavings of services. Indeed, when AddFlight and AddHotel

are simulteneously active, their internal services may interleave arbitrarily. Such properties are

conveniently filtered out by HLTL, which only expresses interleaving-invariant properties.

We next define HLTL-FO. We first define the propositional version of the language,

HLTL. Similarly to LTL-FO, HLTL-FO formulas are obtained by interpreting the propositions as

statements about instances of tasks in a run.
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Definition 24. Let Γ = 〈A,Σ,Π〉 be an artifact system where A = 〈H,DB〉. An HLTL formula

ϕ over a task T ofH is an expression defined as follows:

ϕ ::= Σobs
T | Pϕ

T | [ψ]Tc | X ϕ | ϕU ϕ | F ϕ | G ϕ | (ϕ ∧ ϕ) | (¬ϕ)

where Pϕ
T is a finite set of propositions and ψ is an HLTL formula over task Tc ∈ child(T ).

Additionally, Pϕ
T ′ ∩ P

ϕ
T ′′ = ∅ for all distinct T ′, T ′′ in H. The set of HLTL formulas over T is

denoted HLTL(T ).

Intuitively, a formula [ψ]Tc holds in a given configuration if T makes a call to Tc and the

run of Tc resulting from the call satisfies ψ.

For an HLTL formula ϕ, we denote Pϕ
H =

⋃
T∈H Pϕ

T . An HLTL-FO formula over

task T is obtained from an HLTL formula over T by interpreting each proposition in Pϕ
H as a

quantifier-free FO formula referring to the variables and artifact relations of the tasks, and a fixed

specified set of global variables. Informally, a proposition of Pϕ
T mapped by f to a quantifier-free

FO formula holds in a given configuration of T if the formula is true in that configuration. We

next formally define HLTL-FO formulas.

Definition 25. Let Γ = 〈A,Σ,Π〉 be an artifact system where A = 〈H,DB〉. Let ȳ be a finite

sequence of variables in VARid ∪ VARval disjoint from
⋃
T∈H x̄

T , called global variables. Let

CT be the set of conditions on x̄T ∪ ȳ extended by allowing atoms of the form ST (z̄) in which

all variables in z̄ are in ȳ ∩ VARid. An HLTL-FO formula over task T using global variables

ȳ is a pair (ϕ, f) (denoted for conciseness ϕf ) where ϕ is an HLTL formula over T and f is

a mapping on Pϕ
H such that f(p) ∈ CT ′ for every p ∈ Pϕ

T ′ . An HLTL-FO formula over Γ is an

expression ∀ȳϕf , where ϕf is an HLTL-FO formula over task T1 using global variables ȳ.

Since HLTL-FO properties depend on local runs of tasks and their relationship to local

runs of their descendants, their semantics is naturally defined using the full trees of local runs. We

first define satisfaction by a local run in the tree, of HLTL-FO formulas with no global variables.
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This is done recursively. Let Tree be a full tree of local runs of Γ over some database D. Let ϕf

be an HLTL-FO formula for task T , with no global variables. If we associate to each expression

[ψ]Tc in ϕ a distinct proposition [ψ]propTc
, ϕ can be viewed as an LTL formula using propositions

in Pϕ
T ∪Σobs

T ∪{[ψ]propTc
| ψ ∈ HLTL(Tc), Tc ∈ child(T )}. Let ρT = (νin, νout, {(Ii, σi)}i<γ) be

a local run of T in Tree. For each configuration (Ij, σj), we define the truth assignment induced

on the propositions of ϕ by the function f . A proposition σ ∈ Σobs
T holds in (Ij, σj) if σ = σj .

For p ∈ Pϕ
T , its induced truth value is that of the FO formula f(p) in Ij . Finally, the induced

truth value of [ψ]propTc
in (Ij, σj) is true iff σj = σoTc and the local run of Tc connected to ρT in

Tree by an edge labeled j satisfies the HLTL-FO formula ψf . The formula ϕf is satisfied if the

sequence of induced truth values of its propositions via f satisfies ϕ. Note that ρT may be finite,

in which case a finite variant of the LTL semantics is used [39] (see Appendix 3.3.1).

A full tree of local runs satisfies an HLTL-FO formula ϕf over T1 if its root (a local run of

T1) satisfies ϕf . Finally, let ϕf (ȳ) be an HLTL-FO over T1 with global variables ȳ. Then ∀ȳϕf (ȳ)

is satisfied by Tree, denoted Tree |= ∀ȳϕf (ȳ), if for every valuation ν of ȳ, Tree satisfies ϕfν

where f ν is obtained from f by replacing each y in f(p) by ν(y) for every p ∈ P . Finally, Γ

satisfies ∀ȳϕf (ȳ), denoted Γ |= ∀ȳϕf (ȳ), if Tree |= ∀ȳϕf (ȳ) for every database instance D and

tree of local runs Tree of Γ on D.

The semantics of HLTL-FO on trees of local runs of a HAS also induces a semantics

on the global runs of the HAS. Let ∀ȳϕf (ȳ) be an HLTL-FO formula and ρ ∈ L(Tree), where

Tree is a full tree of local runs of Γ. We say that ρ satisfies ∀ȳϕf (ȳ) if Tree satisfies ∀ȳϕf (ȳ).

This is well defined in view of the following easily shown fact: if ρ ∈ L(Tree1) ∩ L(Tree2) then

Tree1 = Tree2.

Example 26. The following property of the travel booking workflow can be specified in HLTL-

FO: if a discount is applied to the hotel reservation, then a compatible flight must be purchased

without cancellation. One typical way to defeat the policy would be for a user to first book the

flight and the hotel with the discount price, but next cancel the flight trying to avoid paying a
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penalty. Detecting such bugs can be subtle, especially when they involve multiple tasks. The

following HLTL-FO property of task ManageTrips says “if BookTrip is called and the discount

is applied, then if CancelTrip is called next and the customer cancels the flight, then the hotel

discount must also be canceled and deducted from the flight refund”. The property is specified

as the formula ϕf , where

ϕ = G
(
Discounted→ X

(
σoT5:CancelTrip → [G(CancelFlight→ Refund)]T5:CancelTrip

))
,

CancelFlight is the name of the service for canceling only the flight in CancelTrip, and f

interprets the proposition Discounted as the subformula defined in Example 99, and Refund as

the formula

∃q∃p1∃p2 FLIGHTS(flight id, q, hotel id) ∧ HOTELS(hotel id, p1, p2) ∧

amount refunded = q − (p1 − p2).

Simplifications. Before proceeding, we note that several simplifications to HLTL-FO

formulas and HAS specifications can be made without impact on verification. First, although

useful at the surface syntax, the global variables, as well as set atoms, can be easily eliminated

from the HLTL-FO formula to be verified (Lemma 89 in Appendix 3.8.2). It is also useful to

note that one can assume, without loss of generality, two simplifications on artifact systems

regarding the interaction of tasks with their subtasks: (i) for every task T , the set of variables

passed to subtasks is disjoint with the set of variables returned by subtasks, and (ii) all variables

returned by subtasks are non-numeric (Lemma 90 in Appendix 3.8.2). In view of the above, we

henceforth consider only properties with no global variables or set atoms, and artifact systems

simplified as described.

Checking HLTL-FO properties using automata. We next show how to check

HLTL-FO properties of trees of local runs of artifact systems. Before we do so, recall the
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standard construction of a Büchi automaton Bϕ corresponding to an LTL formula ϕ [124, 118].

The automaton Bϕ has exponentially many states and accepts precisely the set of ω-words that

satisfy ϕ. Recall that we are interested in evaluating LTL formulas ϕ on both infinite and finite

runs. It is easily seen that for the Bϕ obtained by the standard construction there is a subset

Qfin of its states such that Bϕ viewed as a finite-state automaton with final states Qfin accepts

precisely the finite words that satisfy ϕ (details omitted).

Consider now an artifact system Γ and let ϕf be an HLTL-FO formula over Γ. Consider

a full tree Tree of local runs. For task T , denote by ΦT the set of sub-formulas [ψ]
T

occurring in

ϕ and by 2ΦT the set of truth assignments to these formulas. For each T and η ∈ 2ΦT , let B(T, η)

be the Büchi automaton constructed from the formula

(
∧ψ∈ΦT ,η(ψ)=1 ψ

)
∧
(
∧ψ∈ΦT ,η(ψ)=0 ¬ψ

)
and define the collection of automata Bϕ = {B(T, η) | T ∈ H, η ∈ 2ΦT }.

We now define acceptance of Tree by Bϕ. An adornment of Tree is a mapping α

associating to each edge from ρT to ρTc a truth assignment in 2ΦTc . Tree is accepted by Bϕ if

there exists an adornment α such that:

• for each local run ρT of T with no outgoing edge and incoming edge with adornment η, ρT is

accepted by B(T, η)

• for each local run ρT of T with incoming edge labeled by η, α(ρT ) is accepted by B(T, η),

where α(ρT ) extends ρT by assigning to each configuration (ρj, σ
o
Tc

) the truth assignment in

2ΦTc adorning its outgoing edge labeled j. (Recall that in configurations (Ij, σj) for which

σj 6= σoTc , all formulas in ΦTc are false by definition.)

• α(ρT1) is accepted by the Büchi automaton Bϕ where α(ρT1) is defined as above.

The definition of acceptance is illustrated in Figure 3.7. The following can be shown.

Lemma 27. A full tree of local runs Tree satisfies ϕf iff Tree is accepted by Bϕ.
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i j k ...T1

... ... ... ... ... ...T2 T3

Root
Open-T2 Open-T2 Open-T3

i j k
η2η1

η3

Accepted by B(T2, η1) Accepted by B(T2, η2) Accepted by B(T3, η3)

Accepted by Bφ 

Extended w. η1 Extended w. η2 Extended w. η3

Figure 3.7. A tree of local runs accepted by Bϕ.

HLTL-FO vs. interleaving-invariant LTL-FO. We next show that HLTL-FO ex-

presses, in a reasonable sense, all interleaving-invariant LTL-FO properties. We consider a

notion of interleaving-invariance of LTL-FO formulas based on their propositional structure,

rather than the specifics of the propositions’ interpretation (which may lead to “accidental”

invariance). In view of Lemma 89, we consider only formulas with no global variables or set

atoms. We first recall the logic LTL-FO, slightly adapted to our context. Let Γ = 〈A,Σ,Π〉

be a HAS where A = 〈H,DB〉. An LTL-FO formula ϕf over Γ consists of an LTL formula

ϕ with propositions P ∪ Σ together with a mapping f associating to each p ∈ P a condition

over x̄T for some T ∈ H (and we say that f(p) is over T ) . Satisfaction of ϕf on a global run

ρ = {(Ii, σi)}i≥0 of Γ on database D, where Ii = (νi, stgi, D, Si), is defined as usual, modulo

the following:

• f(p) over T holds in (Ii, σi) iff stgi(T ) = active and the condition f(p) on νi(x̄T ) holds;

• proposition σ in Σ holds in (Ii, σi) if σ = σi.

Thus, the information about (Ii, σi) relevant to satisfaction of ϕf consists of σi, the stage of each

task (active or not), and the truth values in Ii of f(p) for p ∈ P .

We now make more precise the notion of (propositional) invariance under interleavings.

Consider an LTL-FO formula ϕf over Γ. Invariance under interleavings is a property of the

propositional formula ϕ (so independent on the interpretation of propositions provided by f ).

Let P ∪ Σ be the set of propositions of ϕ and let PT denote the subset of P for which f(p)

is a condition over x̄T . Thus, {PT | T ∈ H} is a partition of P . We define the set L(Γ) of

47



ω-words associated to Γ, on which ϕ operates. The alphabet, denoted A(Γ), consists of all triples

(κ, stg, σ) where σ ∈ Σ, κ is a truth assignment to the propositions in P , and stg is a mapping

associating to each T ∈ H its stage (active, init or inactive). An ω-word {(κi, stgi, σi)}i≥0

over A(Γ) is in L(Γ) if the following hold:

1. for each i > 0, if σi ∈ Σδ
T , then κi and κi−1 agree on all PT̄ where T̄ 6= T ;

2. the sequence of calls, returns, and internal services obeys the conditions on service sequences

in global runs of Γ;

3. for each i > 0 and T ∈ H, stgi(T ) is the stage of T as determined by the sequence of calls

and returns in {σj}j<i.

The formal definition of (2) and (3) mimics closely the analogous definition of global runs of

HAS’s (omitted). Consider an ω-word u = {(κi, stgi, σi)}i≥0 in L(Γ). We define the partial

order �u on {i | i ≥ 0} as the reflexive-transitive closure of the relation consisting of all pairs

(i, j) such that i < j and for some T , σi, σj ∈ Σobs
T . Observe that 0 is always the minimum

element in �u. A linearization of �u is a total order on {i | i ≥ 0} containing �u. One can

represent a linearization of�u as a sequence {ij | j ≥ 0} such that in �u im implies that n ≤ m.

For each such linearization α, we define the ω-word uα = {(κ̄j, stgj, σij)}j≥0 in L(Γ) as follows.

The stage function is the one determined by the sequence of services. The functions κ̄j are

defined by induction as follows:

• κ̄0 = κ0;

• if j > 0 and σij ∈ Σδ
T then κ̄j = κ̄j−1[PT 7→ κij(PT )]

Intuitively, uα is obtained from u by commuting actions that are incomparable with respect to

�u, yielding the linearization α. We note that the relation �u is the analog to our setting of

Mazurkiewicz traces, used in concurrent systems to capture dependencies among process actions

[97, 56, 55].

Definition 28. An LTL-FO formula ϕf over Γ is propositionally invariant with respect to

interleavings if for every u ∈ L(Γ) and linearization α of �u , u |= ϕ iff uα |= ϕ.
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We can show the following (see Appendix 3.8.3).

Theorem 29. HLTL-FO expresses precisely the LTL-FO properties of HAS’s that are proposi-

tionally invariant with respect to interleavings.

3.4 Restrictions and Undecidability

We briefly review the main restrictions imposed on the HAS model and motivate them

by showing that they are needed to ensure decidability of verification. Specifically, recall that the

following restrictions are placed:

1. in an internal transition of a given task (caused by an internal service), only the input

parameters of the task are explicitly propagated from one artifact tuple to the next

2. each task may overwrite upon return only null variables in the parent task

3. the artifact variables of a task storing the values returned by its subtasks are disjoint from the

task’s input variables

4. an internal transition can take place only if all active subtasks have returned

5. each task has just one artifact relation

6. the artifact relation of a task is reset to empty every time the task closes

7. the tuple of artifact variables whose value is inserted or retrieved from a task’s artifact relation

is fixed

8. each subtask may be called at most once between internal transitions of its parent

These restrictions are placed in order to control the data flow and recursive computation in the

system. Lifting any of them leads to undecidability of verification, as stated informally next.

Theorem 30. For each i, 1 ≤ i ≤ 8, let HAS(i) be defined identically to HAS but without

restriction (i) above. It is undecidable, given a HAS(i) Γ and an HLTL-FO formula ϕf over Γ,

whether Γ |= ϕf .

The proofs of undecidability for (1)-(7) are by reduction from the Post Correspondence

Problem (PCP) [106, 115]. They make no use of arithmetic, so undecidability holds even without
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arithmetic constraints. The only undecidability result relying on arithmetic is (8). Indeed,

restriction (8) can be lifted in the absence of numeric variables, with no impact on decidability or

complexity of verification. This is because restriction (2) ensures that even if a subtask is called

repeatedly, only a bounded number of calls have a non-vacuous effect.

The proofs using a reduction from the PCP rely on the same main idea: removal of the

restriction allows to extract from the database a path of unbounded length in a labeled graph, and

check that its labels spell a solution to the PCP. For illustration, the proof of undecidability for

(2) using this technique is sketched in Appendix 3.9.

We claim that the above restrictions remain sufficiently permissive to capture a wide

class of applications of practical interest. This is confirmed by numerous examples of practical

business processes modeled as artifact systems, that we encountered in our collaboration with

IBM The restrictions limit the recursion and data flow among tasks and services. In practical

workflows, the required recursion is rarely powerful enough to allow unbounded propagation of

data among services. Instead, as also discussed in [36], recursion is often due to two scenarios:

• allowing a certain task to undo and retry an unbounded number of times, with each retrial inde-

pendent of previous ones, and depending only on a context that remains unchanged throughout

the retrial phase (its input parameters). A typical example is repeatedly providing credit card

information until the payment goes through, while the order details remain unchanged.

• allowing a task to batch-process an unbounded collection of records, each processed indepen-

dently, with unchanged input parameters (e.g. sending invitations to an event to all attendants

on the list, for the same event details).

Such recursive computation can be expressed with the above restrictions. Moreover, as

discussed in Chapters 4 and 5, HAS can express a realistic benchmark of workflows obtained

from existing sets of business process specifications and properties by extending them with

data-aware features.
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3.5 Verification Without Arithmetic

In this section we consider verification for the case when the artifact system and the

HLTL-FO property have no arithmetic constraints. We show in Section 3.6 how our approach

can be extended when arithmetic is present.

The roadmap to verification is the following. Let Γ be a HAS and ϕf an HLTL-FO

formula over Γ. To verify that every tree of local runs of Γ satisfies ϕf , we check that there

is no tree of local runs satisfying ¬ϕf , or equivalently, accepted by B¬ϕ. Since there are

infinitely many trees of local runs of Γ due to the unbounded data domain, and each tree can be

infinite, an exhaustive search is impossible. We address this problem by developing a symbolic

representation of trees of local runs, called symbolic tree of runs. The symbolic representation is

subtle for several reasons. First, unlike the representations in [44, 36], it is not finite state. This is

because summarizing the relevant information about artifact relations requires keeping track of

the number of tuples of various isomorphism types. Second, the symbolic representation does not

capture the full information about the actual runs, but just enough for verification. Specifically,

we show that for every HLTL-FO formula ϕf , there exists a tree of local runs accepted by Bϕ

iff there exists a symbolic tree of runs accepted by Bϕ. We then develop an algorithm to check

the latter. The algorithm relies on reductions to state reachability problems in Vector Addition

Systems with States (VASS) [18].

One might wonder whether there is a simpler approach to verification of HAS, that

reduces it to verification of a flat system (consisting of a single task). This could indeed be

done in the absence of artifact relations, by essentially concatenating the artifact tuples of the

tasks along the hierarchy that are active at any given time, and simulating all transitions by

internal services. However, there is strong evidence that this is no longer possible when tasks are

equipped with artifact relations. First, a naive simulation using a single artifact relation would

require more powerful updating capabilities (e.g. resetting artifact relations to be empty) than

available in the model. Adding these capabilities would result in a model expressive enough to
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simulate vector addition systems with resets where verification is undecidable [96]. Moreover,

Theorem 22 shows that LTL is undecidable for hierarchical systems, whereas the results in this

section imply that it is decidable for flat ones (as it coincides with HLTL for single tasks). While

this does not rule out a simulation, it shows that there can be no effective simulation natural

enough to be extensible to LTL properties. A reduction to the model of [36] is even less plausible,

because of the lack of artifact relations. Note that, even if a reduction were possible, the results of

[36] would be of no help in obtaining our lower complexities for verification, since the algorithm

provided there is non-elementary in all cases.

We next embark upon the development outlined above.

3.5.1 Symbolic Representation

We begin by defining the symbolic analog of a local run, called local symbolic run. The

symbolic tree of runs is obtained by connecting the local symbolic runs similarly to the way

local runs are connected in trees of local runs.

Each local symbolic run is a sequence of symbolic representations of an actual instance

within a local run of a task T . The representation has the following ingredients:

1. an equality type of the artifact variables of T and the elements in the database reachable

from them by navigating foreign keys up to a specified depth h(T ). This is called the

T -isomorphism type of the variables.

2. the T -isomorphism type of the input and return variables (if representing a returning local

run)

3. for each T -isomorphism type of the set variables of T together with the input variables, the

net number of insertions of tuples of that type in ST .

Intuitively, (1) and (2) are needed in order to ensure that the assumptions made about the

database while navigating via foreign keys in tasks and their subtasks are consistent. The depth

h(T ) is chosen to be sufficiently large to ensure the consistency. (3) is required in order to make
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sure that a retrieval from ST of a tuple with a given T -isomorphism type is allowed only when

sufficiently many tuples of that type have been inserted in ST .

We now formally define the symbolic representation, starting with T -isomorphism type.

Let x̄T be the variables of T . We define h(T ) as follows. Let FK be the foreign key graph of

the schema DB and F (n) be the maximum number of distinct paths of length at most n starting

from any relation R in FK. Let h(T ) = 1 + |x̄T | · F (δ) where δ = 1 if T is a leaf task and

δ = maxTc∈child(T ) h(Tc) otherwise.

Note that when the schema DB is acyclic, the maximum depth h(T ) is trivially bounded

since starting from any arbitrary entry in the database, the longest path obtained by navigations

with the keys/foreign keys has length bounded by the number of relations in DB. However, this

is not the case when DB is cyclic, as the paths can be infinite. The maximum depth h(T ) of

navigations is now determined by the number of variables in each task and the height of the

hierarchy. Intuitively, when T is a leaf task, the maximum depth is bounded by the number of

variables in T because the longest navigation path is obtained when all variables are used to form

the path. When T is a non-leaf task, a path can be obtained by chaining the navigation paths

in multiple child tasks by passing input and return variables, which gives the above recursive

definition of h(T ). We explain this in more detail in the proof of Lemma 49.

We next define expressions that denote navigation via foreign keys starting from the set

of id variables x̄Tid of T . For each x ∈ x̄Tid and R ∈ DB, let xR be a new symbol. An expression

is a sequence ξ1.ξ2. . . . ξm, where ξ1 = xR for some x ∈ x̄Tid and R ∈ DB, ξ2 is an attribute of R,

and for each i, 2 ≤ i < m, ξi is a foreign key and ξi+1 is an attribute in the relation referenced

by ξi. We define the length of ξ1.ξ2. . . . ξm as m. A navigation set ET is a set of expressions such

that:

• for each x ∈ x̄Tid, ET contains at most one expression xR (R ∈ DB)

• ET consists of all expressions xR.w where xR ∈ ET and the length of xR.w is at most h(T ).

In other words, the expressions in ET denote all possible ways of navigating via foreign keys
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from a given subset of x̄Tid, by paths of length at most h(T ). In particular, note that ET is closed

under prefix. We can now define T -isomorphism type. Let E+
T = ET ∪ x̄T ∪ {null, 0}. The sort

of e ∈ E+
T is numeric if e ∈ x̄TR ∪ {0} or e = w.a where a is a numeric attribute; its sort is null

if e = null or e = x ∈ x̄Tid and xR 6∈ ET for all R ∈ DB; and its sort is ID(R) for R ∈ DB if

e = xR, or e = x ∈ x̄Tid and xR ∈ ET , or e = w.f where f is a foreign key referencing R.

Definition 31. A T -isomorphism type τ consists of a navigation set ET together with an equiva-

lence relation ∼τ over E+
T such that:

• if e ∼τ e′ then e and e′ are of the same sort;

• for every {x, xR} ⊆ E+
T , x ∼τ xR;

• for every e of sort null, e ∼τ null;

• if u ∼τ v and u.f, v.f ∈ ET then u.f ∼τ v.f .

We call an equivalence relation ∼τ as above an equality type for τ . The relation ∼τ is

extended to tuples componentwise.

The intuition underlying the above definition is the following. First, the relation ∼τ is an

equivalence relation over the navigation set ET extended with the variables x̄T and the constants.

Two expressions can be equal in ∼τ only when they are of the same sort, meaning that they

are both numeric, nulls or navigations ending with foreign key attributes referencing the ID of

the same relation. Second, for an ID variable x, if an expression xR appears in E+
T , this means

that x contains a tuple id of relation R, and x and xR are essentially the same. Finally, if two

expressions u and v are equal, then the key and foreign key dependencies require that expressions

u.f and v.f extending u and v with the same expression f must also be equal.

Note that τ provides enough information to evaluate conditions over x̄T . Satisfaction of

a condition ϕ by an isomorphism type τ , denoted τ |= ϕ, is defined as follows:

• x = y holds in τ iff x ∼τ y,

• R(x, y1, . . . , yn, z1, . . . , zm) holds in τ for relation R(id, a1, . . . , an, f1, . . . , fm) where the

ai’s and fi’s are numeric and foreign key attributes respectively, iff {xR.a1, . . . , xR.an, xR.f1, . . . ,
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xR.fm} ⊆ ET , and (y1, . . . , yn, z1, . . . , zm) ∼τ (xR.a1, . . . , xR.an, xR.f1, . . . , xR.fm).

• Boolean combinations of conditions are standard.

Example 32. Figure 4.4 shows an example of a T -isomorphism type. The database schema

contains two relations R(ID, A) and S(ID, B, C) where A is a foreign key attribute referencing

ID of S and {B,C} are numeric attributes. The task T contains 3 ID variables {x, y, z}. The

T -isomorphism type has the following expressions: variables {x, y, z}, constants {0, null}

and a set of navigations {xR.A, yR.A, xR.A.B, yR.A.B, xR.A.C, yR.A.C}. Since the schema

is acyclic, the navigation depth h(T ) is bounded by the depth of the foreign key graph. The

edges in Fig. 4.4 represent the equality type ∼τ where two expressions e and e′ are connected if

e ∼τ e′. Note that since xR.A ∼ yR.A, to ensure that the FDs are satisfied, we must also have

xR.A.B ∼τ yR.A.B and xR.A.C ∼τ yR.A.C in ∼τ .

y

z

x xR

yR

null

xR.A

yR.A

xR.A.B xR.A.C

yR.A.B yR.A.C
0

Figure 3.8. A T -isomorphism type.

Let τ be a T -isomorphism type with navigation set ET and equality type ∼τ . The

projection of τ onto a subset of variables z̄ of x̄T is defined as follows. Let ET |z̄ = {xR.e ∈

ET |x ∈ z̄} and ∼τ |z̄ be the projection of ∼τ onto z̄ ∪ ET |z̄ ∪ {null, 0}. The projection of

τ onto z̄, denoted as τ |z̄, is a T -isomorphism type with navigation set ET |z̄ and equality type

∼τ |z̄. Furthermore, the projection of T -isomorphism onto z̄ up to length k, denoted as τ |(z̄, k),

is defined as τ |z̄ with all expressions in ET |z̄ with length more than k removed.

We apply variable renaming to isomorphism types as follows. Let f be a 1-1 partial

mapping from x̄T to VARid∪VARval such that f(x̄Tid) ⊆ VARid, f(x̄TR) ⊆ VARval and f(x̄T )∩x̄T =

∅. For a T -isomorphism type τ with navigation set ET , f(τ) is the isomorphism type obtained as

follows. Its navigation set is obtained by replacing in ET each variable x and xR in ET with f(x)

and f(x)R, for x ∈ dom(f). The relation ∼f(τ) is the image of ∼τ under the same substitution.
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As we shall see, variable renaming and projection are applied to an isomorphism type when a

subset of the variables of a task are passed as input variables to a child task. Projection is also

used when a tuple is inserted in an artifact relation.

As noted earlier, a T -isomorphism type captures all information needed to evaluate a

condition on x̄T . However, the set ST can contain unboundedly many tuples, which cannot be

represented by a finite equality type. This is handled by keeping a set of counters for projections

of T -isomorphism types on the variables relevant to ST , that is, (x̄Tin ∪ s̄T ). We refer to the

projection of a T -isomorphism type onto (x̄Tin ∪ s̄T ) as a TS-isomorphism type, and denote by

TS(T ) the set of TS-isomorphism types of T . We will use counters to record the number of

tuples in ST of each TS-isomorphism type.

We can now define symbolic instances.

Definition 33. A symbolic instance I of task T is a tuple (τ, c̄) where τ is a T -isomorphism type

and c̄ is a vector of integers where each dimension of c̄ corresponds to a TS-isomorphism type.

We denote by c̄(τ̂) the value of the dimension of c̄ corresponding to the TS-isomorphism

type τ̂ and by c̄[τ̂ 7→ a] the vector obtained from c̄ by replacing c̄(τ̂) with a.

Example 34. Examples of symbolic instances can be found in Fig. 4.5, where the task schema is

the same as the one in Example 32 and the database schema is a single relation R(ID, A) with

a single numeric attribute A. The symbolic instances consist of the T -isomorphism types and

collections of counters of TS-isomorphism types.

Definition 35. A local symbolic run ρ̃T of task T is a tuple (τin, τout, {(Ii, σi)}0≤i<γ), where:

• each Ii is a symbolic instance (τi, c̄i) of T

• each σi is a service in Σobs
T

• γ ∈ N ∪ {ω} (if γ = ω then ρ̃T is infinite, otherwise it is finite)

• τin, called the input isomorphism type, is a T -isomorphism type projected to x̄Tin. And τin |= Π

if T = T1.
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• at the first instance I0, τ0|x̄Tin = τin, for every x ∈ x̄Tid − x̄Tin, x ∼τ0 null, and for every

x ∈ x̄TR − x̄Tin, x ∼τ0 0. Also c̄0 = 0̄ and σ0 = σoT .

• if for some i, σi = σcT then ρ̃T is finite and i = γ − 1 (and ρ̃T is called a returning run)

• τout is ⊥ if ρ̃T is infinite or finite but σγ−1 6= σcT , and it is τγ−1|(x̄Tin ∪ x̄Tout) otherwise

• a segment of ρ̃T is a subsequence {(Ii, σi)}i∈J , where J is a maximal interval [a, b] ⊆ {i |

0 ≤ i < γ} such that no σj is an internal service of T for j ∈ [a + 1, b]. A segment J is

terminal if γ ∈ N and b = γ − 1. Segments of ρ̃T must satisfy the following properties. For

each child Tc of T there is at most one i ∈ J such that σi = σoTc . If J is not terminal and such

i exists, there is exactly one j ∈ J for which σj = σcTc , and j > i. If J is terminal, there is at

most one such j.

• for every 0 < i < γ, Ii is a successor of Ii−1 under σi (see below).

The successor relation is defined next. We begin with some preliminary definitions.

A TS-isomorphism type τ̂ is input-bound if for every s ∈ s̄T , s 6∼τ̂ null implies that

there exists an expression xR.w in τ̂ such that x ∈ x̄Tin and xR.w ∼τ̂ s. We denote by TSib(T )

the set of input-bound types in TS(T ). Informally, a TS-isomorphism type is input-bound if the

values of all the variables in s̄T are uniquely determined by the values of the input variables of

T . Since the values of the input variables are fixed in a local run of T , tuples s̄T reachable from

them in the same run by given navigations are unique. Therefore, the counter values for these

TS-isomorphism types cannot exceed 1, and are treated as special cases when updated, as shown

below.

For τ̂ , τ̂ ′ ∈ TS(T ), update δ of the form {+ST (s̄T )} or {−ST (s̄T )} and mapping c̄ib from

TSib(T ) to {0, 1}, we define the mapping ā(δ, τ̂ , τ̂ ′, c̄ib) from TS(T ) to {−1, 0, 1} as follows.

Informally, the vector ā(δ, τ̂ , τ̂ ′, c̄ib) specifies how the current counters need to be modified to

reflect the update δ. Note that ā0 is the mapping sending TS(T ) to 0.

• if δ = {+ST (s̄T )}, then ā(δ, τ̂ , τ̂ ′, c̄ib) is ā0[τ̂ 7→ 1] if τ̂ is not input-bound, and ā0[τ̂ 7→

(1− c̄ib(τ̂))] otherwise

• if δ = {−ST (s̄T )}, then ā(δ, τ̂ , τ̂ ′, c̄ib) = ā0[τ̂ ′ 7→ −1]
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• if δ is {+ST (s̄T ),−ST (s̄T )} then ā(δ, τ̂ , τ̂ ′, c̄ib) = ā(δ+, τ̂ , τ̂ ′, c̄ib) + ā(δ−, τ̂ , τ̂ ′, c̄ib) where

δ+ = {+ST (s̄T )} and δ− = {−ST (s̄T )}.

Next, we define the successor relation of symbolic instances. For symbolic instances I = (τ, c̄)

and I ′ = (τ ′, c̄′), I ′ is a successor of I by applying service σ′ iff:

• If σ′ is an internal service 〈π, ψ, δ〉, then for τ̂ = τ |(x̄Tin ∪ s̄T ) and τ̂ ′ = τ ′|(x̄Tin ∪ s̄T ),

– τ |x̄Tin = τ ′|x̄Tin,

– τ |= π and τ ′ |= ψ,

– c̄′ ≥ 0̄ and c̄′ = c̄+ ā(δ, τ̂ , τ̂ ′, c̄ib), where c̄ib the restriction of c̄ to TSib(T ).

• If σ′ is an opening service 〈π, fin〉 of subtask Tc, then τ = τ ′ |= π and c̄′ = c̄.

• If σ′ is a closing service of subtask Tc, then for x̄Tconst = x̄T − {x ∈ x̄T
T ↑c
|x ∼τ null},

τ ′|x̄Tconst = τ |x̄Tconst and c̄′ = c̄.

• If σ′ is the closing service σcT = 〈π, fout〉 of T , then τ |= π and (τ, c̄) = (τ ′, c̄′).

Example 36. Figure 4.5 shows an example of two symbolic transitions. There is a single

database relation R(ID, A), the task T has 3 variables {x, y, z} and s̄T = {y, z}. There is no

input variable. The two applied services are “insert yz” and “retrieve yz”:

• The pre-condition of insert yz is x = y, the post-condition is x = null∧y = null∧z = null,

and the set update is {+ST (y, z)}. So when applying insert yz, the current tuple (y, z) is

inserted to ST and the values of all variables are set to null.

• The pre-condition of retrieve yz is True, the post-condition is x = null, and the set update

is {−ST (y, z)}. So when applying retrieve yz, a tuple (y, z) will be retrieved from ST , the

variables {y, z} are set to the retrieved tuple, and x is set to null.

Denote by (τ1, c̄1), (τ2, c̄2) and (τ3, c̄3) the 3 symbolic instances. In order for (τ2, c̄2) to be a

valid successor of (τ1, c̄1) by applying insert yz, the T -isomorphism types τ1 and τ2 must satisfy

the pre-condition and post-condition of insert yz respectively, and the counter vector c̄2 must be

obtained from c̄1 by incrementing the counter for the projection τ1|{y, z} by 1. Similarly, in order

58



to apply retrieve yz, τ2 and τ3 must satisfy the pre-condition and post-condition of retrieve yz,

and the counter for the projection τ3|{y, z} must be decremented by 1 in c̄3.
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Figure 3.9. Two local symbolic transitions.

Note that there is a subtle mismatch between transitions in actual local runs and in

symbolic runs. In the symbolic transitions defined above, a service inserting a tuple in ST always

causes the correspoding counter to increase (except for the input-bound case). However, in

actual runs, an inserted tuple may collide with an already existing tuple in the set, in which

case the number of tuples does not increase. Symbolic runs do not account for such collisions

(beyond the input-bound case), which raises the danger that they might overestimate the number

of available tuples and allow impossible retrievals. Fortunately, the proof of Theorem 39 shows

that collisions can be ignored at no peril. More specifically, it follows from the proof that for

every actual local run with collisions satisfying an HLTL-FO property there exists an actual

local run without collisions that satisfies the same property. The intuition is the following. First,

given an actual run with collisions, one can modify it so that only new tuples are inserted in the

artifact relation, thus avoiding collisions. However, this raises a challenge, since it may require

augmenting the database with new tuples. If done naively, this could result in an infinite database.

The more subtle observation, detailed in the proof of Theorem 39, is that only a bounded number

of new tuples must be created, thus keeping the database finite.

Definition 37. A symbolic tree of runs is a directed labeled tree Sym in which each node is a

local symbolic run ρ̃T for some task T , and every edge connects a local symbolic run of a task T
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with a local symbolic run of a child task Tc and is labeled with a non-negative integer i (denoted

i(ρ̃Tc)). In addition, the following properties are satisfied. Let ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ)

be a node of Sym. Let i be such that σi = σoTc for some child Tc of T . There exists a unique edge

labeled i from ρ̃T to a node ρ̃Tc = (τ ′in, τ
′
out, {(I ′i, σ′i)}0≤i<γ′) of Sym, and the following hold:

• τ ′in = f−1
in (τi)|(x̄Tcin , h(Tc)) where fin is the input variable mapping of σoTc

• ρ̃Tc is a returning run iff there exists j > i such that σj = σcTc; let k be the minimum such

j. Let x̄r = x̄T
T ↓c

and x̄w = {x|x ∈ x̄T
T ↑c
, x ∼τk−1

null}. Then τk|(x̄r ∪ x̄w, h(Tc)) =

((fin ◦ fout)(τout))|(x̄r ∪ x̄w) where fout is the output variable mapping of σcTc .

For every local symbolic run ρ̃T where γ 6= ω and τout = ⊥, there exists a child of ρ̃T which is

not returning.

Now consider an HLTL-FO formula ϕf over Γ. Satisfaction of ϕf by a symbolic tree

of runs is defined analogously to satisfaction by local runs, keeping in mind that as previously

noted, isomorphism types of symbolic instances of T provide enough information to evaluate

conditions over x̄T . The definition of acceptance by the automaton Bϕ, and Lemma 27, are also

immediately extended to symbolic trees of runs. We state the following.

Lemma 38. A symbolic tree of runs Sym over Γ satisfies ϕf iff Sym is accepted by Bϕ.

The key result enabling the use of symbolic trees of runs is the following.

Theorem 39. For an artifact system Γ and HLTL-FO property ϕf , there exists a tree of local

runs Tree accepted by Bϕ, iff there exists a symbolic tree of runs Sym accepted by Bϕ.

The only-if part is relatively straightforward and we outline the proof in Section 3.5.2.

The if part is non-trivial. We prove it by showing a construction of an actual database and an

accepted tree of local runs from any accepted symbolic tree of runs Sym. The construction has 3

major components.

• First, for each finite local symbolic run, we construct an actual accepted local run over a

local database (Lemma 44), using a global equality type that extends the local equality types
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by taking into account connections across instances resulting from the propagation of input

variables and insertions/retrievals of tuples from ST , and subject to satisfaction of the key

constraints. The key challenge in this step is to show that our choice of h(T ), the maximal

navigation depth in the symbolic representations, is sufficiently large to guarantee satisfaction

of all key constraints (Lemma 49).

• Next, we apply the same construction to each infinite local symbolic run, resulting in an

accepted infinite local run over an infinite database. The infinite database is then turned into a

finite one by carefully merging data values, while avoiding any inconsistencies. One of the

subtleties is showing that the mismatch between symbolic and actual transitions discussed

above, leading to the possible overestimation by the counters in symbolic runs of the number

of tuples available in artifact relations, is not dangerous (Lemma 62).

• Finally, all finite and infinite local runs are recursively combined into a tree of local runs by

renaming and merging data values stored in the variables and the local databases.

3.5.2 Only-if: from actual runs to symbolic runs

Let Tree be a tree of local runs accepted by Bϕ (with database D). The construction of

Sym from Tree is simple. This can be done by replacing each local run ρT ∈ Tree with a local

symbolic run ρ̃T . More precisely, let

ρT = (νin, νout, {(Ji, σi)}0≤i<γ)

be a local run in Tree, where Ji = (νi, Si), We construct a corresponding local symbolic run

ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ)

For 0 ≤ i < γ, Ii = (τi, c̄i) is constructed from (νi, Si) as follows. The navigation set ET of τi

contains every xR for every x ∈ x̄T and R such that ν(x) is an ID of relation R in D. Then we

define ν∗i to be a mapping from E+
T = ET ∪ {0, null} ∪ x̄T to actual values, where:
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• ν∗i (e) = e if e ∈ {0, null},

• ν∗i (e) = νi(x) for e = x or e = xR, and

• ν∗i (e.ξ) = t.ξ if ν∗i (e) is an ID of a tuple t ∈ D.

We construct the equality type ∼τi such that for every e and e′ in E+
T , e ∼τi e′ iff ν∗i (e) = ν∗i (e′).

Also we let τin = τ0|x̄Tin and τout = τγ−1|x̄Tin ∪ x̄Tout if νout 6= ⊥ and τout = ⊥ otherwise. Since

D satisfies the functional dependencies, for every τi and expressions e and e′, e ∼τi e′ implies

that ν∗i (e) = ν∗i (e′), so for every attribute a, if e.a and e′.a are in the navigation set of τi, then

e.a ∼τi e′.a because ν∗i (e.a) = ν∗i (e′.a).

To illustrate the construction of the local symbolic runs, consider the two actual transitions

shown in Figure 3.10. The above construction yields the symbolic instances shown in Figure 4.5.

Insert_yz retrieve_yzx y z

a a null

x y z

null null null

x y z

null b c

y z
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d e

ST:

y z
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y z
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d e

Variables:ID A

a 1

b 0

c 0

d 0

e 0

R:
ST: ST:Variables:Variables:

Figure 3.10. Illustration of the construction of the local symbolic runs.

By construction of the τi’s, the following facts hold:

Fact 40. For every condition ψ over x̄T , D |= ψ(νi) iff τi |= ψ.

Fact 41. For all i, i′ and x̄ ⊆ x̄T , if νi(x̄) = νi′(x̄) then τi|x̄ = τi′ |x̄.

Given {(τi, σi)}0≤i<γ , the sequence of vectors of TS-isomorphism type counters {c̄i}0≤i<γ

is uniquely defined. Let ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ). In view of Fact 40, it is easy to see that

ρ̃T satisfies all items in the definition of local symbolic run that do not involve the counters. To

show that ρ̃T is a local symbolic run, it remains to show that c̄i ≥ 0̄ for 0 ≤ i < γ. To see that

this holds, we associate a sequence of counter vectors {c̃i}0≤i<γ to the local run ρT , where each

c̃i provides, for each TS-isomorphism type τ̂ , the number of tuples in Si of TS-isomorphism
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type τ̂ (the TS-isomorphism type of a tuple t ∈ Si is defined analogously to the T -isomorphism

type for each local instance). By definition, c̃i ≥ 0̄ for each i ≥ 0. Thus it is sufficient to show

that c̃i ≤ c̄i for each i. We show this by induction. For i = 0, c̃0 = c̄0 = 0. Suppose c̃i−1 ≤ c̄i−1

and consider the transition under service σi in ρT and ρ̃T . It is easily seen that c̃i−1 and c̄i−1

are modified in the same way except in the case when +ST (s̄T ) ∈ δ, τ̂i−1 is not input-bound,

and νi−1(s̄T ) ∈ Si−1. In this case, if τ̂ is the TS-isomorphism type of νi−1(s̄T ), c̃i(τ̂) = c̃i−1(τ̂)

whereas c̄i(τ̂) = c̄i−1(τ̂) + 1. In all cases, c̃i ≤ c̄i. Thus, ρ̃T is a local symbolic run. The fact

that Sym is a tree of symbolic local runs follows from Fact 41, which ensures the consistency of

the isomorphism types passed to and from subtasks. Finally, the fact that Sym is accepted by Bϕ

follows from acceptance of Tree by Bϕ and Fact 40.

3.5.3 If part: from symbolic runs to actual runs

We denote by FD the set of key dependencies in the database schema DB and IND the

set of foreign key dependencies. We show the following.

Lemma 42. For every symbolic tree of runs Sym accepted by Bβ, there exists a tree Tree of

local runs accepted by Bβ with a finite database instance D where D |= FD.

Note that the above does not require that D satisfy IND. This is justified by the following.

Lemma 43. For every tree of local runs Tree with database D |= FD if Tree is accepted by Bβ

then there exists a finite database D′ |= FD ∪ IND such that Tree with database D′ is also a

tree of local runs accepted by Bβ .

Proof. We can construct D′ by adding tuples to D as follows. First, for each relation R such

that R is empty in D, we add an arbitrary tuple t to R. Next, for each foreign key dependency

Ri[F ] ⊆ Rj[ID], for each tuple t of Ri such that there is no tuple in Rj with id t[F ], we add to

Rj a tuple t′ where

• t′[ID] = t[F ], and
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• t′[attr(Rj)− {ID}] = t′′[attr(Rj)− {ID}] where t′′ is an existing tuple in Rj .

Tree with database D′ is accepted by Bβ since D′ is an extension of D. Also D′ is finite since

the number of added tuples is at most linear in the sum of number of empty relations in D and

the number of tuples in D that violate IND.

To show Lemma 42, we begin with a construction of a local run ρT on a finite database

DT for each local symbolic run ρ̃T ∈ Sym. The local runs are constructed so that they can be

merged consistently into a tree of local runs Tree with a single finite database D. The major

challenge in the construction of each ρT and DT is that if ρ̃T is infinite, the size of ST can grow

infinitely, and a naive construction of ρT would require infinitely many distinct values in DT . Our

construction needs to ensure that DT is always finite. For ease of exposition, we first consider

the case where ρ̃T is finite and then extend the result to infinite ρ̃T .

3.5.4 Handling finite local symbolic runs

Recall from the previous section that ν∗(e) denotes the value of expression e in database

DT with valuation ν of x̄T . By abuse of notation, we extend ν∗(e) to e ∈ {xR.w|x ∈ x̄T , R ∈

DB} ∪ x̄T ∪ {0, null} where there is no restriction on the length of w. So for expression

e = xR.w, ν∗(e) is the value in DT obtained by foreign key navigation starting from the value

ν∗(x) at relation R and by the sequence of attributes w, if such a value exists. Note that ν∗ may

be only partially defined since DT may not satisfy all foreign key constraints. Analogously, we

define ν∗in(e) to be the value of e in DT at valuation νin and ν∗out(e) to be the value of e in DT at

valuation νout.

We prove the following, showing the existence of an actual local run corresponding to a

finite local symbolic run. The lemma provides some additional information used when merging

local runs into a final tree of runs.

Lemma 44. For every finite local symbolic run ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ) (γ 6= ω), there

exists a local run ρT = (νin, νout, {(ρi, σi)}0≤i<γ) on finite database DT |= FD such that for
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every 0 ≤ i < γ,

(i) for every expression e = xR.w where ν∗i (e) is defined, there exists expression e′ = xR.w
′

where |w′| ≤ h(T ) such that ν∗i (e) = ν∗i (e′),

(ii) for all expressions e, e′ ∈ E+
T of τi, if ν∗i (e) and ν∗i (e′) are defined, then e ∼τi e′ iff ν∗i (e) =

ν∗i (e′), and

(iii) for δ = h(Tc) if σi ∈ {σoTc , σ
c
Tc
} for some Tc ∈ child(T ) and δ = 1 otherwise, for every

expression e ∈ E+
T − {xR.w|x ∈ x̄T , |w| > δ}, ν∗i (e) is defined.

Part (i), needed for technical reasons, says that for all values v in DT , if v is the value

of expression xR.w, then v is also the value of an expression xR.w′ where the length of w′ is

within h(T ). Part (ii) says, intuitively, that the equality types in the symbolic local run and the

constructed local run are the same. Part (iii) states that for every 0 ≤ i < γ, at valuation νi, every

expression e within δ steps of foreign key navigation from any variable x is defined in DT . Since

δ ≥ 1, this together with (ii) implies that for every condition π, τi |= π iff DT |= π(νi). So if ρ̃T

is accepted by some computation of a Büchi automaton B(T, η) then ρT is also accepted by the

same computation of B(T, η).

We provide the proof of Lemma 44 in the remainder of the section. We first show that

from each finite local symbolic run ρ̃T , we can construct a global isomorphism type of ρ̃T , which

is essentially an equality type over the entire set of expressions in the symbolic instances of ρ̃T .

Then we show that the local run ρT and database DT whose domain values are the equivalence

classes of the global isomorphism type, satisfy the properties in Lemma 44.

Global isomorphism types. We prove Lemma 44 by constructing ρT and DT from

ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ) (γ 6= ω). We first introduce some additional notation.

Let I+ be the set of symbolic instances Ii of ρ̃T (i < γ − 1) such that +ST (s̄T ) ∈ δi+1

and τ̂i is not input-bound. Similarly let I− be the set of symbolic instances Ij (j < γ) such that

−ST (s̄T ) ∈ δj and τ̂j is not input-bound. We define a one-to-one function Retrieve from

I− to I+ such that for every Ii = Retrieve(Ij), i < j and τ̂i = τ̂j . We say that Ij retrieves
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from Ii. As c̄i ≥ 0 for every i, at least one mapping Retrieve always exists. Intuitively,

Retrieve connects symbolic instance Ij to Ii such that Ij retrieves a tuple from ST which has

the same isomorphism type as a tuple inserted at Ii. For each Ii = Retrieve(Ij), in the local

run ρT we construct, valuations νi and νj have same values on variables s̄T . Here we ignore

input-bound isomorphism types since these can be seen as part of the input isomorphism type: in

ρT , instances having the same input-bound TS-isomorphism type have the same values on s̄T .

i1 j1 i2 j2 i3 j3

Retrieve Retrieve

ρT    :
0

segment 1 segment 2 segment 3

Figure 3.11. An illustration of a life cycle.

Recall that a segment S = {(Ii, σi)}a≤i≤b is a maximum consecutive subsequence of

{(Ii, σi)}0≤i<γ such that σa is an internal service and for a < i ≤ b, σi is opening service or

closing service of child tasks of T . For our choice of the Retrieve relation, we define a life

cycle L = {(Ii, σi)}i∈J as a maximum subsequence of {(Ii, σi)}0≤i<γ for J ⊆ [0, γ) where for

each pair of consecutive (Ia, σa) and (Ib, σb) in L where a < b, (Ia, σa) and (Ib, σb) are either

in the same segment or Ia = Retrieve(Ib) (illustrated in Figure 3.11). Note that a life cycle

L is also a sequence of segments. From the definition of local symbolic runs, we can show the

following properties for segments and life cycles:

Lemma 45. (i) For every segment S = {(Ii, σi)}a≤i≤b, for every i, j ∈ [a, b] where i < j, for

x̄ = {x|x ∈ x̄T , x 6∼τi null}, τi|x̄ = τj|x̄. (ii) For every life cycle L = {(Ii, σi)}i∈J , for every

i, j ∈ J where i < j, for x̄ = {x|x ∈ x̄Tin ∪ s̄T , x 6∼τi null}, τi|x̄ = τj|x̄.

Next, for each symbolic instance Ii, we define the pruned isomorphism type λi =

(Ei,∼i) of Ii as follows. Intuitively, each λi is obtained from τi by removing expressions

with “long” navigation from variables. Formally, let E+
T be the extended navigation set of

τi and E−T = E+
T − {xR.w|x ∈ x̄T , |w| > δ}, where δ = 1 if T is a leaf task, otherwise

δ = maxTc∈child(T ) h(Tc). The choice of δ ensures that the remaining information in each λi
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is sufficient for the consistency of keys and foreign keys within one single transition (i.e. an

internal transition or a child task return). A local expression of Ii is a pair (i, e) where e ∈ E−T ,

and we define Ei = {(i, e)|e ∈ E−T } as the local navigation set of λi. We also define the local

equality type ∼i of λi to be an equality type over Ei where (i, e) ∼i (i, e′) iff e ∼τi e′, for every

e, e′ ∈ E−T . Intuitively, the set Ei contains all expressions that are assigned with fresh values

when the actual local run is constructed.

Then we define the global isomorphism type as follows. A global isomorphism type is a

pair Λ = (E ,∼), where E =
⋃

0≤i<γ Ei is called the global navigation set and ∼ is an equality

type over E called global equality type. For each expression e ∈ E , let [e] denote its equivalence

class with respect to ∼. The global equality type ∼ is constructed as follows:

1. Initialization: ∼←
⋃

0≤i<γ ∼i

2. Chase: Until convergence, merge two equivalence classes E and E ′ of ∼ if E and E ′ satisfy

one of the following conditions:

• Segment-Condition: For some segment S = {(Ii, σi)}a≤i≤b, variable x ∈ x̄T and i, i′ ∈

[a, b] where x 6∼τi null and x 6∼τi′ null, E = [(i, x)] and E ′ = [(i′, x)].

• Life-Cycle-Condition: For some life cycle L = {(Ii, σi)}i∈J , variable x ∈ x̄Tin ∪ s̄T and

i, i′ ∈ J where x 6∼τi null and x 6∼τi′ null, E = [(i, x)] and E ′ = [(i′, x)].

• Input-Condition: For some variable x ∈ x̄Tin and i, i′ ∈ [0, γ), E = [(i, x)] and E ′ =

[(i′, x)].

• FD-Condition: For some local expressions (i, e), (i′, e′) and attribute a where (i, e) ∼

(i′, e′), E = [(i, e.a)] and E ′ = [(i′, e′.a)].

From the global isomorphism type Λ defined above, we construct ρT and DT as follows.

The domain of DT is the set of equivalence classes of ∼. Each relation R(id, a1, . . . , ak) in DT

consists of all tuples ([(i, e)], [(i, e.a1)], . . . [(i, e.ak)]) for which (i, e), (i, e.a1), . . . , (i, e.ak) ∈

E . Note that the chase step guarantees that for all local expressions (i, e), (i′, e′), if (i, e.a), (i′, e′.a) ∈

E and (i, e) ∼ (i′, e′), then (i, e.a) ∼ (i′, e′.a). It follows that DT |= FD. We next define
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ρT = (νin, νout, {(ρi, σi)}0≤i<γ), where ρi = (νi, Si). First, let νi(x) = [(i, x)] for 0 ≤ i < γ,

νin = ν0|x̄Tin, and νout = ⊥ if τout = ⊥ and νout = νγ−1|x̄Tout otherwise. Suppose that, as will

be shown below, properties (i)-(iii) of Lemma 44 hold for DT and the sequence {νi}0≤i<γ so

defined. Note that (ii) and (iii) imply that the pre-and-post conditions of all services σi hold.

Also, by construction, for every variable x ∈ x̄T where νi−1(x) = νi(x) is required by the

transition under σi we always have (i, x) ∼ (i+ 1, x). Consider the sets {Si}0≤i<γ . Recall the

constraints imposed on sets by the definition of local run: S0 = ∅, and for 0 < i < γ where δi is

the set update of σi,

1. Si = Si−1 ∪ νi−1(s̄T ) if δi = {+ST (s̄T )},

2. Si = Si−1 − νi(s̄T ) if δi = {−ST (s̄T )},

3. Si = (Si−1 ∪ {νi−1(s̄T )})− {νi(s̄T )} if δi = {+ST (s̄T ),−ST (s̄T )}, and

4. Si = Si−1 if δi = ∅.

Note that the only cases that can make ρT invalid are those for which δi contains −ST (s̄T ).

Indeed, while a tuple can always be inserted, a tuple can be retrieved only if it belongs to ST (or

is simultaneously inserted as in case (3)). Thus, in order to show that the specified retrievals are

possible, it is sufficient to prove the following.

Lemma 46. Let 0 < i < γ be such that (1)-(4) hold for {Sj}0≤j<i. If δi = {−ST (s̄T )} then

νi(s̄
T ) ∈ Si−1. If δi = {+ST (s̄T ),−ST (s̄T )} then either νi(s̄T ) ∈ Si−1 or νi(s̄T ) = νi−1(s̄T ).

Proof. The key observations, which are easily checked by the construction of Λ, are the follow-

ing:

(†) for every k, k′ ∈ [0, γ), if τ̂k, τ̂k′ are not input-bound and Ik and Ik′ are not in the same life

cycle, then νk(s̄T ) 6= νk′(s̄
T ).

(‡) for every k, k′ ∈ [0, γ), if τ̂k, τ̂k′ are input-bound, νk(s̄T ) = νk′(s̄
T ) iff τ̂k = τ̂k′ .

Now suppose that 0 < i < γ, (1)-(4) hold for {Sj}0≤j<i, and δi = {−ST (s̄T )}. Suppose

first that τ̂i is not input-bound. Let L be the life cycle to which Ii belongs, and n < i be such
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that In = Retrieve(Ii). By (†), νk(s̄T ) 6= νi(s̄
T ) for every n < k < i. Since (1)-(4) hold for

all j < i, νn(s̄T ) ∈ Si−1. By construction of Λ (specifically the Life-Cycle chase condition),

νn(s̄T ) = νi(s̄
T ). Thus, νi(s̄T ) ∈ Si−1. The case when δi = {+ST (s̄T ),−ST (s̄T )} is similar.

Now suppose τ̂i is input-bound and δi = {−ST (s̄T )}. By definition of symbolic local

run, c̄i−1(τ̂i) = 1. Thus, there must exist a maximum n < i such that τ̂n = τ̂i and for which the

transition under σn sets c̄n(τ̂i) = 1. Since c̄i−1(τ̂i) = 1 and n is maximal, there is no j, n < j < i

for which δj contains −ST (s̄T ) and τ̂j = τ̂i. From the above and (‡) it easily follows that

νn(s̄T ) = νi(s̄
T ) and νi(s̄T ) ∈ Si−1. The case when δi = {+ST (s̄T ),−ST (s̄T )} is similar.

It remains to prove properties (i)-(iii) of Lemma 44. First, as δ ≥ 1 and δ ≥ h(Tc) for

every Tc ∈ child(T ), property (iii) is immediately satisfied. We next prove (i) and (ii).

Proof of property (i). We first introduce some additional notation. For each i and

(i, e) ∈ Ei, we denote by [(i, e)]i the equivalence class of (i, e) wrt ∼i. And for x ∈ x̄T we

denote by Reachi(x,w) the unique equivalence class of ∼i reachable from [(i, xR)]i by some

navigation w (if such class exists). More precisely:

Definition 47. For each 0 ≤ i < γ, we define the navigation graph G(∼i) of the local equality

type ∼i to be the labeled directed graph whose nodes are the equivalence classes of ∼i and

where for each attribute a, there is an edge labeled a from E to F if there exist e ∈ E and f ∈ F

such that (i, e.a) ∈ Ei and e.a ∼τi f . Note that for each E there is at most one outgoing edge

labeled a. For x ∈ x̄T , x 6∼i null and sequence of attributes w, we denote by Reachi(x,w) the

unique equivalence class F of ∼i reachable from [(i, x)]i by a path in G(∼i) whose sequence of

edge labels spells w, if such exists, and the empty set otherwise.

Example 48. The graph G(∼i) of the equality type in Example 32 is shown in Figure 3.12. In

this G(∼i), the node Reachi(y, AB) is the equivalence class {(i, xR.A.B), (i, yR.A.B), (i, 0)}.

By our choice of h(T ) and our construction of the λi’s, we can show that
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Figure 3.12. An illustration of the navigation graph G(∼i).

Lemma 49. For every 0 ≤ i < γ and expression xR.w, if Reachi(x,w) is non-empty, then

there exists an expression xR.w̃ where |w̃| < h(T ) such that Reachi(x,w) = Reachi(x, w̃).

Proof. It is sufficient to show that for each i, |G(∼i)| < h(T ), where |G(∼i)| is the number of

nodes in G(∼i). Indeed, since there is a path from [(i, xR)]i to Reachi(x,w) in G(∼i), there

must exist a simple such path, of length at most |G(∼i)| < h(T ).

To show that |G(∼i)| < h(T ), recall that |G(∼i)| is bounded by the number of isomor-

phism types of ∼i. Recall that h(T ) = 1 + |x̄T | · F (δ) where F (n) is the maximum number

of distinct paths of length at most n starting from any relation in the foreign key graph FK. By

definition, for each variable x, the number of expressions {e|e = xR.w, (i, e) ∈ Ei} is bounded

by F (δ). Thus the number of equivalence classes of ∼i is at most |x̄T | · F (δ) < h(T ). So

|G(∼i)| < h(T ).

Property (i) now follows from Lemma 49. Let e = xR.w be an expression for which ν∗i (e)

is defined. By construction, Reachi(x,w) ⊆ ν∗i (e). By Lemma 49, there exists e′ = xR.w
′

where |w′| < h(T ) and Reachi(x,w′) = Reach(x,w). It follows that ν∗i (e′) is defined and

ν∗i (e) ∩ ν∗i (e′) 6= ∅. As ν∗i (e) and ν∗i (e′) are equivalence classes of ∼, we have ν∗i (e) = ν∗i (e′),

proving (i).

Proof of property (ii). To show property (ii), it is sufficient to show an invariant which

implies property (ii) and is satisfied throughout the construction of Λ. For simplicity, we assume

that the chase step in the construction of ∼ is divided into the following 3 phases.

• The Segment Phase. In this phase, we merge equivalence classes E and E ′ that satisfies either

the Segment-Condition or the FD-condition.
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• The Life Cycle Phase. In this phase, we merge equivalence classes E and E ′ that satisfies

either the Life-Cycle-Condition or the FD-condition.

• The Input Phase. In this phase, we merge equivalence classes E and E ′ that satisfies either

the Input-condition or the FD-condition.

It is easily seen that no chase step applies after the input phase. Thus, the above steps compute

the complete chase.

For each equivalence class E of ∼, we let i(E) be the set of indices {i|(i, e) ∈ E} and

for each i ∈ i(E), we denote by E|i the projection of E on the navigation set Ei. One can show

that during the segment phase, for every E of ∼, i(E) are indices within the same segment.

During the life cycle phase, for every E of ∼, i(E) are indices within the same life cycle. And

during the input phase, i(E) can be arbitrary indices.

The invariant is defined as follows.

Lemma 50. (Invariant of Λ) Throughout the construction of Λ, for every equivalence class E

of ∼, there exists variable x ∈ x̄T and navigation w where |w| ≤ h(T ), such that for every

i ∈ i(E), E|i = Reachi(x,w).

Lemma 50 implies that for each equivalence class E of ∼ and for each λi, E is a superset

of at most one equivalence class of λi. So (i, e) ∼ (i, e′) implies (i, e) ∼i (i, e′) thus Λ|Ei = λi

for every 0 ≤ i < γ, which implies property (ii) of Lemma 44.

Proof. We consider each step of the construction of the global equality type ∼. For the initializa-

tion step, the invariant holds by Lemma 49.

For the Chase steps, assume that the invariant is satisfied before merging two equivalence

classes E and E ′. For each equivalence class E of ∼, we denote by x(E) and w(E) the variable

and the navigation for E as stated in Lemma 50. To show the invariant is satisfied after merging

E and E ′, it is sufficient to show that there exists variable y and navigation u where |u| ≤ h(T )

such that for every i ∈ i(E), E|i = Reachi(y, u) and for every i ∈ i(E ′), E ′|i = Reachi(y, u).

Consider the segment phase. Suppose first that E and E ′ are merged due to the Segment-

Condition. For simplicity, we let x = x(E), x′ = x(E ′), w = w(E) and w′ = w(E ′). If
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E = [(i, y)] and E ′ = [(i′, y)] where i, i′ are indices within the same segment S, then by the

assumption, we have (i, y) ∈ Reachi(x,w), so y ∼τi xR.w. As i(E) are indices of a segment

S, and by Lemma 45, we have that for every j ∈ i(E), y ∼τj xR.w, so E|j = Reachj(x,w) =

Reachj(y, ε). Similarly, we can show that for every j ∈ i(E ′), E ′|j = Reachj(y, ε).

Next suppose E and E ′ are merged due to the FD-condition. Thus, E = [(i, e.a)] and

E ′ = [(i′, e′.a)] where (i, e) ∼ (i′, e′). Let E∗ be the equivalence class of ∼ that contains

(i, e) and (i′, e′). By the assumption, for y = x(E∗) and u = w(E∗), we have that E∗|i =

Reachi(y, u) so (i, e) ∈ Reachi(y, u). By Lemma 49, there exists navigation ũ where |ũ| <

h(T ) such that Reachi(y, u) = Reachi(y, ũ). So (i, e.a) ∈ Reachi(y, ũ.a). Then in E, by

the hypothesis, we have (i, e.a) ∈ Reachi(x,w) so Reachi(y, ũ.a) = Reachi(x,w). As i(E)

are indices of a segment S, and by Lemma 45, we have that for every j ∈ i(E), for some relation

R1 and R2, yR1 .ũ.a ∼τj xR2 .w so E|j = Reachj(x,w) = Reachj(y, ũ.a). Similarly, we can

show that for every j ∈ i(E ′), E ′|j = Reachj(y, ũ.a). Therefore, the invariant is preserved

during the segment phase.

Consider the life cycle phase. We can show that the invariant is again preserved, together

with the following additional property: for each equivalence class E of ∼ produced in this

phase, x(E) ∈ x̄Tin ∪ s̄T . Suppose E and E ′ are merged due to the Life-Cycle Condition, where

E = [(i, y)], E ′ = [(i′, y)] and y ∈ x̄Tin∪ s̄T . We have thatE|j = Reachj(x,w) = Reachj(y, ε)

for every j ∈ i(E). Indeed, by Lemma 45 and because i(E) are indices of some life cycle L,

xR.w ∼τi y implies that xR.w ∼τj y for every index j of L. Similarly, E ′|j = Reachj(y, ε) for

every j ∈ i(E ′). The case when E and E ′ are merged in this stage due to the FD-condition is

similar to the above. Following similar analysis, we can show that the input phase also preserves

the invariant together with the property that for every E produced at the input phase, x(E) ∈ x̄Tin.

This uses the fact that τi|x̄Tin = τin for every 0 ≤ i < γ.

This completes the proof of Lemma 44.
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3.5.5 Handling infinite local symbolic runs

Next we show that Lemma 44 can be extended to infinite periodic local symbolic runs,

which together with finite runs are sufficient to represent accepted symbolic trees of runs by our

VASS construction (see Lemma 65). Specifically, we show that we can extend the construction

of the global isomorphism type to infinite periodic ρ̃T , while producing only finitely many

equivalence classes. This is sufficient to show that the corresponding database DT is finite. We

define periodic local symbolic runs next.

Definition 51. A local symbolic run ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ) is periodic if γ = ω and

there exists n > 0 and 0 < t ≤ n, such that for every i ≥ n, the symbolic instances Ii = (τi, c̄i)

and Ii−t = (τi−t, c̄i−t) satisfy that (τi, σi) = (τi−t, σi−t) and c̄i ≥ c̄i−t. The integer n and t are

called the offset and period of ρ̃T respectively.

The following is a consequence of Lemma 65, proven later in the section.

Corollary 52. If there exists a symbolic tree of runs Sym accepted by Bβ, then there exists a

symbolic tree of runs Sym′ accepted by Bβ such that for every ρ̃T ∈ Sym, ρ̃T is finite or periodic.

The above corollary indicates that for verification, it is sufficient to consider only finite

and periodic ρ̃T . So what we need to prove is:

Lemma 53. For every periodic local symbolic run ρ̃T = (τin, τout, {(Ii, σi)}0≤i<ω), there exists

a local run ρT = (νin, νout, {(ρi, σi)}0≤i<ω) on finite database DT |= FD such that for every

i ≥ 0,

(i) for every expression e = xR.w where ν∗i (e) is defined, there exists expression e′ = xR.w
′

where |w′| ≤ h(T ) such that ν∗i (e) = ν∗i (e′),

(ii) for all expressions e, e′ ∈ E+
T of τi, if ν∗i (e) and ν∗i (e′) are defined, then e ∼τi e′ iff ν∗i (e) =

ν∗i (e′), and

(iii) for δ = h(Tc) if σi ∈ {σoTc , σ
c
Tc
} for some Tc ∈ child(T ) and δ = 1 otherwise, for every

expression e ∈ E+
T − {xR.w|x ∈ x̄T , |w| > δ}, ν∗i (e) is defined.
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Intuitively, if we directly apply the construction of ρT and DT from Lemma 44 in the

case of finite ρ̃T , then each life cycle with non-input-bound TS-isomorphism types would be

assigned with distinct sets of values, which could lead to an infinite DT . However, for any two

disjoint life cycles L1 and L2, reusing the same values in L1 and L2 does not cause any conflict.

And in particular, if L1 and L2 are identical on the sequence of τi’s and σi’s, they can share

exactly the same set of values.

Thus at a high level, our goal is to show that any periodic local symbolic run ρ̃T can

be partitioned into finitely many subsets of identical life cycles with disjoint timespans. Un-

fortunately, this is generally not true if we pick the Retrieve function arbitrarily (recall that

Retrieve defines the set of life cycles). This is because an arbitrary Retrieve may yield

life cycles whose timespans have unbounded length. If the timespans overlap, it is impossible

to separate the life cycles into finitely many subsets of life cycles with disjoint timespans. So

instead of picking an arbitrary Retrieve as in the finite case, we show that for periodic ρ̃T we

can construct Retrieve such that the timespan of each life cycle has bounded length. This

implies that we can partition the life cycles into finitely many subsets of identical life cycles with

disjoint timespans, as desired. Finally we show that given the partition, we can construct the

local run ρT together with a finite DT .

We first define the equivalence relation between life cycles.

Definition 54. Segments S1 = {(Ii, σi)}a1≤i≤b1 and S2 = {(Ii, σi)}a2≤i≤b2 are equivalent,

denoted as S1 ≡ S2, if {(τi, σi)}a1≤i≤b1 = {(τi, σi)}a2≤i≤b2 .

Recall that I+ (and I−) are the sets of symbolic instances inserting (and retrieving)

non-input-bound TS-isomorphism types respectively. We define that

Definition 55. A segment S = {(Ii, σi)}a≤i≤b is static if Ia ∈ I−, Ib ∈ I+ and τa|s̄T = τb|s̄T .

A segment S is called dynamic if it is not static.

When we compare two life cycles L1 and L2, we can ignore their static segments since

they do not change the content of ST . We define equivalence of two life cycles as follows.
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Definition 56. For life cycle L, let dyn(L) = {Si}1≤i≤k be the sequence of dynamic segments

of L. Two life cycles L1 and L2 are equivalent, denoted as L1 ≡ L2, if |dyn(L1)| = |dyn(L2)|

and for dyn(L1) = {S1
i }1≤i≤k and dyn(L2) = {S2

i }1≤i≤k, for every 1 ≤ i ≤ k, S1
i ≡ S2

i .

Note that for each life cycle L, the number of dynamic segments within L is bounded

by |s̄T | since within L, each variable in s̄T is written at most once by returns of child tasks of

T . For a task T , as the number of T -isomorphism types is bounded, the number of services is

bounded and the length of a segment is bounded because each subtask can be called at most once,

the number of equivalence classes of segments is bounded. And since the number of dynamic

segments is bounded within the same life cycle, the number of equivalence classes of life cycles

is also bounded. Thus,

Lemma 57. The equivalence relation ≡ on life cycles has finite index.

Our next step is to show that one can define a Retrieve function so that all life cycles

have bounded timespans. The timespan of a life cycle is defined as follows:

Definition 58. The timespan of a life cycle L, denoted by sp(L), is an interval [a, b] where a is

the index of the first symbolic instance of the first dynamic segment of L and b is the index of the

last symbolic instance of the last dynamic segment.

Consider an equivalence class L of life cycles. Suppose that for each L ∈ L, the

length of sp(L) is bounded by some constant m. Then we can further partition L into m subsets

L0, . . . ,Lm−1 of life cycles with disjoint timespan by assigning each L ∈ L where sp(L) = [a, b]

to the subset Lk where k = a modm.

We next show how to construct the function Retrieve. In particular, we construct a

periodic Retrieve such that there is a short gap between each pair of inserting and retrieving

instances. This is done in several steps, illustrated in Figure 3.13. Recall that n and t are the

offset and the period of ρ̃T .

1. Initialize Retrieve to be an arbitrary one-to-one mapping with domain {Ij|Ij ∈ I−, 0 ≤

75



j ≤ n} such that for every Ii = Retrieve(Ij), i < j and τ̂i = τ̂j (recall that τ̂i =

τi|x̄Tin ∪ s̄T ).

2. For every j ∈ [n + 1, n + t], for j′ = j − t and for i′ being the index where Ii′ =

Retrieve(Ij′),

(i) if i′ ∈ [n− t+1, n], then for i = i′+ t, let Retrieve← Retrieve[Ij+k·t 7→ Ii+k·t|k ≥

0], otherwise

(ii) if i′ ∈ [0, n− t], then we pick i ∈ [n− t+1, n] satisfying that Ii ∈ I+, τ̂i = τ̂j and Ii is cur-

rently not in the range of Retrieve. Then we let Retrieve← Retrieve[Ij+k·t 7→

Ii+k·t|k ≥ 0].

At step 2 for the case i′ ∈ [0, n− t], the i that we picked always exists for the following

reason. For every TS-isomorphism type τ̂ , let

• M−
τ̂ be the number of symbolic instances in I− with TS-isomorphism type τ̂ and indices in

[n− t+ 1, n] that retrieves from symbolic instances with indices in [0, n− t], and

• M+
τ̂ be the number of symbolic instances in I+ with TS-isomorphism type τ̂ and indices in

[n− t+ 1, n] that is NOT retrieved by symbolic instances with indices in [n− t+ 1, n].

We have M+
τ̂ −M

−
τ̂ = c̄n(τ̂)− c̄n−t(τ̂) ≥ 0. So for every Ii′ = Retrieve(Ij′) where

j′ ∈ [n − t + 1, n] and i′ ∈ [0, n − t], we can always find a unique i ∈ [n − t + 1, n] such

that Ii ∈ E+, τ̂i = τ̂j′ = τ̂i′ and Ii is not retrieved by any retrieving instances with indices in

[n− t+ 1, n].

n n+t n+2tn-t
...

0 n n+t n+2tn-t
...

0
have not been 
retrieved

Case 2(i): Case 2(ii):
j-t j j+tj-t j j+t

Figure 3.13. Construction of Retrieve

Let us fix the function Retrieve constructed above. We first show the following:

Lemma 59. For every periodic ρ̃T , and j > n, Ii = Retrieve(Ij) implies that j− i ≤ 2t and

Ii+t = Retrieve(Ij+t).
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Proof. By construction, for every Ii = Retrieve(Ij) where j > i > n, Ii+t = Retrieve(Ij+t).

And it is also guaranteed that for the indices i and j, either (1) i and j are both in the same

range [n + tk + 1, n + t(k + 1)] for some k ≥ 0, or (2) i ∈ [n + tk + 1, n + t(k + 1)] and

j ∈ [n+ t(k + 1) + 1, n+ t(k + 2)] for some k ≥ 0. In both cases, j − i ≤ 2t.

For every life cycle L, for every pair of consecutive dynamic segments S and S ′, we

denote by gap(S, S ′) the number of static segments in between S and S ′. To show that sp(L) is

bounded, it is sufficient to show that gap(S, S ′) is bounded for every pair of consecutive dynamic

segments S and S ′. For every segment S, we denote by a(S) the index of the first symbolic

instance of S. For every segment S where a(S) > n, we let p(S) = (a(S)− n− 1) mod t.

For every pair of consecutive dynamic segments S and S ′ and by periodicity of Retrieve,

there are no two static segments T and T ′ in L in between S and S ′ such that a(S) < a(T ) <

a(T ′) < a(S ′) and p(T ) = p(T ′). Thus in L, the number of static segments in between S and S ′

is at most n+ t. Then by Lemma 59, the number of symbolic instances in between any pair of

consecutive segments is bounded by max(2t, n) so gap(S, S ′) ≤ (n+ t) ·max(2t, n+ t). And

as the number of dynamic segments in L is bounded by |s̄T | and the length of each segment is at

most 2|child(T )|, it follows that:

Lemma 60. For every periodic local symbolic run ρ̃T and life cycle L of ρ̃T , |sp(L)| is bounded

by m = (n+ t) ·max(2t, n+ t) · (|s̄T |+ 1) · 2|child(T )|.

So for a possibly infinite set of life cycles L where |sp(L)| ≤ m for each L ∈ L, L can

be partitioned into sets L0, . . . ,Lm−1 by assigning each life cycle L ∈ L where sp(L) = [a, b]

to the set La mod m. So for every Li and two distinct L1, L2 in Li where sp(L1) = [a1, b1] and

sp(L2) = [a2, b2], we have a1 6= a2. Assume a1 < a2. Then as a1 ≡ a2 (mod m), a2− a1 ≥ m.

And since b1 − a1 + 1 < m, L1 and L2 are disjoint. Thus, given Lemma 57 and Lemma 60, we

have
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Lemma 61. Every local symbolic run ρ̃T can be partitioned into finitely many subsets of life

cycles such that for each subset L, if L1 ∈ L, L2 ∈ L and L1 6= L2 then L1 ≡ L2 and

sp(L1) ∩ sp(L2) = ∅.

Next, we show how we can construct the local run ρT and finite database DT from ρ̃T

using the partition. We first construct a global isomorphism type Λ = (E ,∼) of ρ̃T using the

approach for the finite case. Then we merge equivalent segments in Λ as follows to obtain a

new global isomorphism type with finitely many equivalence classes. To merge two equivalent

segments S1 = {(Ii, σi)}a1≤i≤a1+l and S2 = {(Ii, σi)}a2≤i≤a2+l, first for every 0 ≤ i ≤ l and for

every x ∈ x̄T , we merge the equivalence classes [(a1 + i, x)] and [(a2 + i, x)] of ∼. Then we

apply the chase step (i.e. the FD-condition) to make sure the resulting database satisfies FD.

The new Λ is constructed as follows. For every two segments S1 = {(Ii, σi)}a≤i≤b

and S2 = {(Ii, σi)}c≤i≤d, we define that S1 precedes S2, denote by S1 ≺ S2, if b < c. For

each subset L and for each pair of life cycles L1, L2 ∈ L where dyn(L1) = {S1
i }1≤i≤k and

dyn(L2) = {S2
i }1≤i≤k,

• for 1 ≤ i ≤ k, merge S1
i and S2

i ,

• for 1 ≤ i < k, for every static segments S1 ⊆ L1 and S2 ⊆ L2 where S1
i ≺ S1 ≺ S1

i+1,

S2
i ≺ S2 ≺ S2

i+1 and S1 ≡ S2, merge S1 and S2, and

• for every pair of static segments S1 ⊆ L1 and S2 ⊆ L2 where S1
k ≺ S1, S2

k ≺ S2 and S1 ≡ S2,

merge S1 and S2.

Finally, ρT and DT are constructed following the same approach as in the finite case.

In the above construction, as the number of subsets of life cycles is finite, and for each L,

the number of dynamic segments is bounded and the number of equivalence classes of static

segments is bounded, the number of equivalence classes of Λ is also finite so DT is finite.

By an analysis similar to the finite case, we can show that ρT and DT satisfy property

(i)-(iii) in Lemma 53 and DT |= FD. In particular, to show property (ii), we can show the

same invariant as in Lemma 50, the invariant holds because every pair of merged segments are

equivalent.
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Finally, to show Lemma 53, it remains to show that ρT is a valid local run. Similar to the

finite case, it is sufficient to show that

Lemma 62. For every i ≥ 0, if δi = {−ST (s̄T )} then νi(s̄T ) ∈ Si−1. If δi = {+ST (s̄T ),−ST (s̄T )}

then either νi(s̄T ) ∈ Si−1 or νi(s̄T ) = νi−1(s̄T ).

Proof. The following can be easily checked by the construction of Λ:

(i) for every pair of distinct life cycles L and L′ where sp(L) ∩ sp(L′) 6= ∅, for every Ik ∈ L and

Ik′ ∈ L′, if τ̂k, τ̂k′ are not input-bound then νk(s̄T ) 6= νk′(s̄
T ), and

(ii) for every pair of life cycles L and L′ where sp(L) ∩ sp(L′) = ∅, if Ii, Ij ∈ L, Ij =

Retrieve(Ii), τ̂i is not input-bound, Ik ∈ L′ for j < k < i and νk(s̄T ) = νi(s̄
T ) = νj(s̄

T ),

then Ik is contained in a static segment of L′.

(iii) for every k, k′ ≥ 0, if τ̂k, τ̂k′ are input-bound, νk(s̄T ) = νk′(s̄
T ) iff τ̂k = τ̂k′ .

Consider the case when δi = {−ST (s̄T )} and τ̂i is not input-bound. Let Ij = Retrieve(Ii)

and L be the life cycle that contains Ii. Consider Ik where j < k < i and let L′ be the life

cycle containing Ik. If sp(L) ∩ sp(L′) 6= ∅, by (i), νi(s̄T ) 6= νk(s̄
T ). If sp(L) ∩ sp(L′) = ∅, by

(ii), the segment containing Ik is static, so it does not change ST . Thus, for every segment S

between Ij and Ii, the tuple νi(s̄T ) remains in ST after S. So νi(s̄T ) ∈ Si−1. The case when

δi = {−ST (s̄T ),+ST (s̄T )} is similar.

The proof for the case when τ̂i is input-bound is the same as the proof for Lemma 46.

This completes the proof of Lemma 53.

3.5.6 Handling symbolic trees of runs

Finally, we show Lemma 42 by providing a recursive construction of a tree of runs Tree

and database D from any symbolic tree of runs Sym where all local symbolic runs are either

finite or periodic, using Lemmas 44 and 53. Intuitively, the construction simply applies the two

lemmas to each node ρ̃T of Sym to obtain a local run ρT with a local database DT . Then the local

runs and databases are combined into a tree of local runs recursively by renaming the values
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in each ρT and DT in a bottom-up manner, reflecting the communication among local runs via

input and return variables.

Formally, we first define recursively the construction function F where F (SymT ) =

(TreeT , DT ) where SymT is a subtree of Sym and (TreeT , DT ) are the resulting subtree of local

runs and database instance. F is defined as follows.

If T is a leaf task, then SymT contains a single local symbolic run ρ̃T . We define that

F (SymT ) = F (ρ̃T ) = (ρT , DT ) where ρT and DT are the local run and database instance shown

to exist in Lemmas 44 and 53 corresponding to ρ̃T .

If T is a non-leaf task where the root of SymT is ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ), then

we first let (ρT , Droot) = F (ρ̃T ). Next, let J = {i|σi = σoTc , Tc ∈ child(T )}. For every i ∈ J ,

we denote by Symi the subtree rooted at the child of ρ̃T where the edge connecting it with ρ̃T

is labeled i and let ρ̃i be the root of Symi. We denote by (Treei, Di) = F (Symi) and by ρi the

local run at the root of Treei. From the construction in Lemmas 44 and 53, we assume that the

domains of Droot and the Di’s are equivalence classes of local expressions. We first define the

renaming function r whose domain is
⋃
i∈J adom(Di) as follows.

1. Initialize r to be the identity function.

2. For every i ∈ J , for every expression xR.w where x ∈ x̄Tcin and ν∗in(xR.w) is defined, for

y = fin(x), let r ← r[ν∗in(xR.w) 7→ ν∗i (yR.w)]. Note that ν∗in is defined wrt νin of ρi and Di

and ν∗i is defined wrt νi of ρT and Droot. And we shall see next that for every such xR.w, if

ν∗in(xR.w) is defined, then ν∗i (yR.w) is also defined.

3. For every i ∈ J where ρ̃i is a returning local symbolic run where the index of the correspond-

ing σcTc in ρ̃T is j, for every expression xR.w where x ∈ x̄Tcout and ν∗out(xR.w) is defined, for

y = fout(x), let r ← r[ν∗out(xR.w) 7→ ν∗j (yR.w)].

We denote by r(D) the database instance obtained by replacing each value v ∈ dom(r) in D

with r(v) and denote by r(Tree) the tree of runs obtained by replacing each value v ∈ dom(r)

in Tree with r(v).
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Then if ρ̃T is finite, we define F (SymT ) = (TreeT , DT ) where DT = Droot∪
⋃
i∈J r(Di)

and TreeT is obtained from SymT by replacing the root of SymT with ρT and each subtree Symi

with r(Treei).

If ρ̃T is periodic where the period is t and the loop starts with index n, we define

F (SymT ) = (TreeT , DT ) where DT = Droot ∪
⋃
i∈J,i<n r(Di) and TreeT is obtained from

SymT by replacing the root of SymT with ρT and each subtree Symi with r(Treei′), where i′ = i

if i < n otherwise i′ = n+ (i− n) mod t.

To prove the correctness of the construction, we first need to show that for every SymT

and (TreeT , DT ) = F (SymT ), DT is a finite database satisfying FD and TreeT is a valid tree of

runs overDT . Let ρ̃T and ρT be the root of SymT and TreeT respectively. We show the following:

Lemma 63. For every symbolic tree of runs SymT where (TreeT , DT ) = F (SymT ), DT is a

finite database satisfying FD, TreeT is a valid tree of runs over DT , and (ρT , DT ) satisfies

properties (i)-(iii) in Lemma 44 and 53.

Proof. We use a simple induction. For the base case, where T is a leaf task, the lemma holds

trivially. For the induction step, assume that for each i ∈ J , Di is finite and satisfies FD, Treei is

a valid tree of runs over Di, and (ρi, Di) satisfies property (i)-(iii).

For each i ∈ J , where ρ̃i is a local symbolic run of task Tc ∈ child(T ), we first consider

the connection between ρ̃i and ρ̃T via input variables. As ρi satisfies properties (i) and (ii),

for every expressions xR.w and x′R′ .w
′ in the input isomorphism type τin of ρ̃i, if ν∗in(xR.w)

and ν∗in(x′R′ .w
′) are defined, then ν∗in(xR.w) = ν∗in(x′R′ .w

′) iff xR.w ∼τin x′R′ .w
′. And by

definition of symbolic tree of runs, we have that τin = f−1
in (τi)|(x̄Tcin , h(Tc)). So for y = fin(x)

and y′ = fin(x′), ν∗in(xR.w) = ν∗in(x′R′ .w
′) iff yR.w ∼τi y′R′ .w′. Then as ρT satisfies (ii) and

(iii), ν∗i (yR.w) and ν∗i (y′R′ .w
′) are defined and ν∗i (yR.w) = ν∗i (y′R′ .w

′) iff yR.w ∼τi y′R′ .w′ so

ν∗i (yR.w) = ν∗i (y′R′ .w
′) iff ν∗in(xR.w) = ν∗in(x′R′ .w

′).

If ρ̃i is returning, using the same argument as above, we can show the following. Let j
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be the index of the corresponding returning service σcTc . Let f be the function where f(x) =
fin(x), x ∈ x̄Tcin

fout(x), x ∈ x̄Tcout

and let ν be the valuation where ν(x) =


νin(x), x ∈ x̄Tcin

νout(x), x ∈ x̄Tcout

, where

νin and νout are the input and output valuation of ρi. For all expressions xR.w and x′R′ .w
′

where x, x′ ∈ x̄Tcout ∪ x̄Tcin , if ν∗(xR.w) and ν∗(x′R′ .w
′) are defined, then for y = f(x) and

y′ = f(x′), ν∗j (yR.w) and ν∗j (y′R′ .w
′) are also defined and ν∗j (yR.w) = ν∗j (y′R′ .w

′) iff ν∗(xR.w) =

ν∗(x′R′ .w
′).

Given this, after renaming, Droot and r(Di) can be combined consistently. Also, one

can easily check that TreeT is a valid tree of runs where (ρT , DT ) satisfies properties (i)-(iii)

and DT |= FD. And DT is a finite database because it is the union of Droot and finitely many

r(Di)’s and by the hypothesis, Droot and the Di’s are finite.

Finally, to complete the proof of correctness of the construction, we note:

Lemma 64. For every full symbolic tree of runs Sym where all local symbolic runs in Sym

are either finite or periodic, for (Tree, D) = F (Sym) and every HLTL-FO property ϕf , Sym is

accepted by Bϕ iff Tree is accepted by Bϕ on D.

The above follows immediately from the fact that by construction, for every task T and

local symbolic run ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ) in Sym where the corresponding local run in

Tree is ρT = (νin, νout, {(ρi, σi)}0≤i<γ), for every condition π over x̄T and 0 ≤ i < γ, τi |= π

iff D |= π(νi).

This completes the proof of Lemma 42, and the only-if part of Theorem 39.

3.5.7 Symbolic Verification

In view of Theorem 39, we can now focus on the problem of checking the existence

of a symbolic tree of runs satisfying a given HLTL-FO property. To begin, we define a notion

that captures the functionality of each task and allows a modular approach to the verification

algorithm. Let ϕf be an HLTL-FO formula over Γ, and recall the automaton Bϕ and associated
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notation from Section 3.3. We consider the relation RT between input and outputs of each

task, defined by its symbolic runs that satisfy a given truth assignment β to the formulas in

ΦT . More specifically, we denote byHT the restriction ofH to T and its descendants, and ΓT

the corresponding HAS, with precondition true. The relation RT consists of the set of triples

(τin, τout, β) for which there exists a symbolic tree of runs SymT ofHT such that:

• β is a truth assignment to ΦT

• SymT is accepted by Bβ

• the root of SymT is ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ)

Note that there exists a symbolic tree of runs Sym over Γ satisfying ϕf iff (τin,⊥, β) ∈ RT1

for some τin satisfying the precondition of Γ, and β(ϕf ) = 1. Thus, if RT is computable for

every T , then satisfiability of ϕf by some symbolic tree of runs over Γ is decidable, and yields

an algorithm for model-checking HLTL-FO properties of HAS’s.

We next describe an algorithm that computes the relations RT (τin, τout, β) recursively.

The algorithm uses as a key tool Vector Addition Systems with States (VASS) [18, 69], which

we review next.

A VASS V is a pair (Q,A) where Q is a finite set of states and A is a finite set of actions

of the form (p, ā, q) where ā ∈ Zd for some fixed d > 0, and p, q ∈ Q. A run of V = (Q,A)

is a finite sequence (q0, z̄0) . . . (qn, z̄n) where z̄0 = 0̄ and for each i ≥ 0, qi ∈ Q, z̄i ∈ Nd, and

(qi, ā, qi+1) ∈ A for some ā such that z̄i+1 = z̄i + ā. We will use the following decision problems

related to VASS.

• State Reachability: For given states q0, qf ∈ Q, is there a run

(q0, z̄0) . . . (qn, z̄n) of V such that qn = qf ?

• State Repeated Reachability: For given states q0, qf ∈ Q, is there a run

(q0, z̄0) . . . (qm, z̄m) . . . (qn, z̄n) of V such that qm = qn = qf and z̄m ≤ z̄n ?

Both problems are known to be EXPSPACE-complete [91, 107, 69]. In particular, [69] shows that

for a n-states, d-dimensional VASS where every dimension of each action has constant size, the
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state repeated reachability problem can be solved in O((log n)2c·d log d) non-deterministic space

for some constant c. The state reachability problem has the same complexity.

VASS construction. Let T be a task, and suppose that relationsRTc have been computed

for all children Tc of T . We show how to computeRT using an associated VASS. For each truth

assignment β of ΦT , we construct a VASS V(T, β) = (Q,A) as follows. The states in Q are all

tuples (τ, σ, q, ō, c̄ib) where τ is a T -isomorphism type, σ a service, q a state of B(T, β), and c̄ib

a mapping from TSib(T ) to {0, 1}. The vector ō indicates the current stage of each child Tc of

T (init, active or inactive) and also specifies the outputs of Tc (an isomorphism type or

⊥). That is, ō is a partial mapping associating to some of the children Tc of T the value ⊥, a

Tc-isomorphism type projected to x̄Tcin ∪ x̄
Tc
out or the value inactive. Intuitively, Tc 6∈ dom(ō)

means that Tc is in the init state, and ō(Tc) = ⊥ indicates that Tc has been called but will not

return. If ō(Tc) is an isomorphism type τ , this indicates that Tc has been called, has not yet

returned, and will return the isomorphism type τ . When Tc returns, ō(Tc) is set to inactive,

and Tc cannot be called again before an internal service of T is applied.

The set of actions A consists of all triples (α, ā, α′) where α = (τ, σ, q, ō, c̄ib), α′ =

(τ ′, σ′, q′, ō′, c̄′ib), δ′ is the update of σ′, and the following hold:

• τ ′ is a successor of τ by applying service σ′;

• ā = ā(δ′, τ̂ , τ̂ ′, c̄ib) (defined in Section 3.5.1), where τ̂ = τ |(x̄Tin ∪ s̄T ) and τ̂ ′ = τ ′|(x̄Tin ∪ s̄T )

• c̄′ib = c̄ib + ā

• if σ′ is an internal service, dom(ō′) = ∅.

• If σ′ = σoTc , then Tc 6∈ dom(ō) and for τTcin = f−1
in (τ |(x̄T

T ↓c
, h(Tc))), for some output τTcout of

Tc and truth assignment βTc to ΦTc , tuple (τTcin , τ
Tc
out, β

Tc) is in RTc . Note that τTcout can be ⊥,

which indicates that this call to Tc does not return. Also, ō′ = ō[Tc 7→ τTcout].

• If σ′ = σcTc , then ō(Tc) = (f−1
out ◦ f−1

in )(τ ′|(x̄T
T ↓c
∪ x̄T

T ↑c
, h(Tc))) and ō′ = ō[Tc 7→ inactive].

• q′ is a successor of q in B(T, β) by evaluating ΦT using (τ ′, σ′). If σ′ = σoTc , formulas in ΦTc

are assigned the truth values defined by βTc .
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An initial state of V(T, β) is a state of the form v0 = (τ0, σ0, q0, ō0, c̄
0
ib) where τ0 is

an initial T -isomorphism type (i.e., for every x ∈ x̄Tid − x̄Tin, x ∼τ0 null, and for every

x ∈ x̄TR − x̄Tin, x ∼τ0 0), σ0 = σoT , q0 is the successor of some initial state of B(T, β) under

(τ0, σ0), dom(ō0) = ∅, and c̄0
ib = 0̄.

Computing RT (τin, τout, β) from V(T, β). Checking whether (τin, τout, β) is in RT

can be done using a (repeated) reachability test on V(T, β), as stated in the following key lemma.

Lemma 65. (τin, τout, β) ∈ RT iff there exists an initial state v0 = (τ0, σ0, q0, ō0, c̄
0
ib) of V(T, β)

for which τ0|x̄Tin = τin and the following hold:

• If τout 6= ⊥, then there exists a state vn = (τn, σn, qn, ōn, c̄
n
ib) where τout = τn|(x̄Tin ∪ x̄Tout),

σn = σcT , qn ∈ Qfin where Qfin is the set of accepting states of B(T, β) for finite runs, such

that vn is reachable from v0. A path from (v0, 0̄) to (vn, z̄n) is called a returning path.

• If τout = ⊥, then one of the following holds:

– there exists a state vn = (τn, σn, qn, ōn, c̄
n
ib) in which qn ∈ Qinf where Qinf is the set of

accepting states of B(T, β) for infinite runs, such that vn is repeatedly reachable from v0. A

path (v0, 0̄) . . . (vn, z̄n) . . . (vn, z̄
′
n) where z̄n ≤ z̄′n is called a lasso path.

– there exists state vn = (τn, σn, qn, ōn, c̄
n
ib) in which ōn(Tc) = ⊥ for some child Tc of T and

qn ∈ Qfin, such that vn is reachable from v0. The path from (v0, 0̄) to (vn, z̄n) is called a

blocking path.

The proof of Lemma 65 is by induction on the task hierarchyH.

Proof. Base Case. Consider RT (τin, τout, β) where T is a leaf task. As T has no subtask,

dom(ō) is always empty so ō can be ignored. Note that, by definition, there can be no blocking

path of V(T, β).

For the if part, consider (τin, τout, β) ∈ RT . Suppose first that τout 6= ⊥. By definition,

there exists a finite local symbolic run (τin, τout, {(Ii, σi)}0≤i<γ) accepted byB(T, β), where γ ∈

N and σγ−1 = σcT . Consider an accepting computation {qi}0≤i<γ of B(T, η) on {(Ii, σi)}0≤i<γ ,
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such that qγ−1 ∈ Qfin. We can construct a returning path P = {(pi, z̄i)}0≤i<γ of V(T, β) where

for each state pi = (τi, σi, qi, ōi, c̄
i
ib), (τi, σi, qi) is obtained directly from {(Ii, σi)}0≤i<γ and

{qi}0≤i<γ , z̄i = c̄i, and c̄iib is the projection of c̄i to input-bound TS-isomorphism types.

Now suppose τout = ⊥. By definition, and since T is a leaf task, there exists an infinite

symbolic run (τin, τout, {(Ii, σi)}0≤i<ω) accepted by B(T, β). Consider the sequence {qi}0≤i<ω

of states in an accepting computation of B(T, η) on {(Ii, σi)}0≤i<ω. There must exist qf ∈ Qinf

such that for infinitely many i, qi = qf . So we can construct a path P = {(pi, z̄i)}0≤i<ω of

V(T, β) where for each state pi = (τi, σi, qi, ōi, c̄
i
ib) is obtained in the same way as in the case

where τout 6= ⊥. By the Dickson’s lemma [53], there exists two distinct indices m and n such

thatm < n, (τm, σm, qm, c̄
m
ib ) = (τn, σn, qn, c̄

n
ib), qm = qn = qf and z̄m ≤ z̄n. Thus, the sequence

(p0, z̄0), . . . , (pm, z̄m), . . . , (pn, z̄n) is a lasso path of V(T, β).

For the only-if direction, if there exists a returning path in V(T, β), then by definition, τin

and τout together with the sequence {(Ii, σi)}0≤i≤n where each (Ii, σi) is obtained directly from

(pi, z̄i) is a valid local symbolic run ρ̃T . And ρ̃T is accepted by B(T, β) since qn is in Qfin. If

there exists a lasso path in V(T, β), then we can obtain a finite sequence {(Ii, σi)}0≤i≤n similar

to above. And we can construct {(Ii, σi)}0≤i<ω by repeating the subsequence from index m+ 1

to index n infinitely many times. As qn = qf ∈ Qinf , (τin,⊥, {(Ii, σi)}0≤i<ω) is an infinite local

symbolic run accepted by B(T, β), so (τin,⊥, β) ∈ RT .

Induction. Consider a non-leaf task T , and suppose the statement is true for all its

children tasks.

For the if part, suppose (τin, τout, β) ∈ RT . Then there exists an adorned symbolic tree

of runs SymT with root ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ) accepted by Bβ̄. We construct a path

P = {(pi, z̄i)}0≤i<γ of V(T, β) as follows. The transitions in ρ̃T caused by internal services are

treated as in the base case. Suppose that σi = σoTc for some child Tc of T . Then there is an edge

labeled (i, βTc) from ρ̃T to a symbolic tree of runs accepted by Bβ̄Tc , rooted at a run ρ̃Tc of Tc

with input τTcin and output τTcout. Thus, (τTcin , τ
Tc
out, β

Tc) ∈ RTc and V(T, β) can make the transition

from (pi−1, z̄i−1) to (pi, z̄i) as in its definition (including the updates to ō). If τTcout 6= ⊥ then there
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exists a minimum j > i for which σj = σcTc and once again V(T, β) can make the transition from

(pj−1, z̄j−1) to (pj, z̄j) as in its definition, mimicking the return of Tc using the isomorphism type

τTcout stored in ō(Tc). Now consider the resulting path P = {(pi, z̄i)}0≤i<γ . By applying a similar

analysis as in the base case, if γ 6= ω and τout 6= ⊥, then P is a returning path. If γ 6= ω and

τout = ⊥, then P is a blocking path. If γ = ω, then there exists a prefix P ′ of P such that P ′ is a

lasso path.

For the only-if direction, let P be a path of V(T, β), starting from a state p0 = (τ0, σ0, q0,

ō0, c̄
0
ib) where τ0|x̄Tin = τin. If P is a returning path, let vn = (τn, σn, qn, ōn, c̄

n
ib) be its last state

and τout = τn|(x̄Tin ∪ x̄Tout). If P is not a returning path, then τout = ⊥. From P we can construct

a adorned symbolic tree of runs SymT accepted by Bβ̄ as follows. The root of SymT is a local

symbolic run ρ̃T constructed analogously to the construction in the only-if direction in the base

case. Then for each σi = σoTc , by the induction hypothesis, there exists a symbolic tree of runs

SymTc whose root has input isomorphism type τTcin , output isomorphism type τTcout and is accepted

by BβTc (note that τTcin , τTcout and βTc are uniquely defined by P and i). We connect SymT with

SymTc with an edge labeled (i, βTc).

If P is a returning or blocking path, then SymT is accepted by Bβ̄. If P is a lasso path,

then we first modify the root ρ̃T of SymT by repeating the subsequence from m+1 to n infinitely,

then for each integer i such that m+ 1 ≤ i ≤ n and SymT is connected with some SymTc with

edge labeled index (i, βTc), for each repetition Ii′ of symbolic instance Ii, we make a copy of

SymTc and connect SymT with SymTc with edge labeled (i′, βTc). The resulting SymT is accepted

by Bβ̄ . Thus, (τin, τout, β) ∈ RT .

Complexity of verification. We now have all ingredients in place for our verification

algorithm. Let Γ be a HAS and ϕf an HLTL-FO formula over Γ. In view of the previous

development, Γ |= ϕf iff ¬ϕf is not satisfiable by a symbolic tree of runs of Γ. We outline a

non-deterministic algorithm for checking satisfiability of ¬ϕf , and establish its space complexity

O(f), where f is a function of the relevant parameters. The space complexity of verification (the

complement) is then upper bounded by O(f 2) by Savitch’s theorem [115].
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Recall that ϕf is satisfiable by a symbolic tree of runs of Γ iff (τin,⊥, β) ∈ RT1 for some

τin satisfying the precondition of Γ, and β(¬ϕf ) = 1. By Lemma 65, membership inRT1 can

be reduced to state (repeated) reachability in the VASS V(T1, β). For a given VASS, (repeated)

reachability is decided by non-deterministically generating runs of the VASS up to a certain

length, using space O(log n · 2c·d log d) where n is the number of states, d is the vector dimension

and c is a constant [69]. The same approach can be used for the VASS V(T1, β), with the added

complication that generating transitions requires membership tests in the relations RTc’s for

Tc ∈ child(T1). These in turn become (repeated) reachability tests in the corresponding VASS.

Assuming that n and d are upper bounds for the number of states and dimensions for all V(T, β)

with T ∈ H, this yields a total space bound of O(h log n · 2c·d log d) for membership testing in

V(T1, β), where h is the depth ofH.

In our construction of V(T, β), the vector dimension d is the number of TS-isomorphism

types. The number of states n is at most the product of the number of T -isomorphism types, the

number states in B(T, β), the number of all possible ō and the number of possible states of c̄ib.

The worst-case complexity occurs for HAS with unrestricted schemas (cyclic foreign keys) and

artifact relations. To understand the impact of the foreign key structure and artifact relations, we

also consider the complexity for acyclic and linear-cyclic schemas, and without artifact relations.

A careful analysis yields the following (see Appendix 3.10). For better readability, we state the

complexity for HAS over a fixed schema (database and maximum arity of artifact relations). The

impact of the schema is detailed in Appendix 3.10.

Theorem 66. Let Γ be a HAS over a fixed schema and ϕf an HLTL-FO formula over Γ. The

deterministic space complexity upper bounds of checking whether Γ |= ϕf are summarized in

Table 3.1. 5

Note that the worst-case space complexity is non-elementary, as for feedback-free systems

[36]. However, the height of the tower of exponentials in [36] is the square of the total number

5k- exp is the tower of exponential functions of height k.
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Table 3.1. Space complexity upper bounds for verification without arithmetic (N : size of
(Γ, ϕf ); h: depth of hierarchy; c: constants depending on the schema).

Acyclic Linearly-Cyclic Cyclic
w/o. Artifact relations c ·NO(1) O(N c·h) h- exp(O(N))

w. Artifact relations O(exp(N c)) O(2- exp(N c·h)) (h+ 2)- exp(O(N))

of artifact variables of the system, whereas in our case it is the depth of the hierarchy, likely to

be much smaller.

Lower bounds. Several complexity lower bounds for verification can be immediately

obtained. When there are no artifact relations, the verification problem is PSPACE-hard, as LTL

model checking alone is already PSPACE-complete [124]. When artifact relations are present,

one can show EXPSPACE-hardness by a direct simulation of VASS by HAS, and the fact that

model checking for VASS is EXPSPACE-complete [91, 107, 69]. These lower bounds are tight

when the schema is acyclic. Lower bounds for the other cases remain open.

3.6 Verification with Arithmetic

We next outline the extension of our verification algorithm to handle HAS and HLTL-FO

properties whose conditions use arithmetic constraints expressed as polynomial inequalities with

integer coefficients over the numeric variables (ranging over R). We note that one could alterna-

tively limit the arithmetic constraints to linear inequalities with integer coefficients (and variables

ranging over Q), yielding the same complexity. These are sufficient for many applications.

The seed idea behind our approach is that, in order to determine whether the arithmetic

constraints are satisfied, we do not need to keep track of actual valuations of the task variables and

the numeric navigation expressions they anchor (for which the search space would be infinite).

Instead, we show that these valuations can be partitioned into a finite set of equivalence classes

with respect to satisfaction of the arithmetic constraints, which we then incorporate into the

isomorphism types of Section 3.5, extending the algorithm presented there. This however raises
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some significant technical challenges, which we discuss next.

Intuitively, this approach uses the fact that a finite set of polynomials P partitions the

space into a bounded number of cells containing points located in the same region (= 0, < 0, > 0)

with respect to every polynomial P ∈ P . Isomorphism types are extended to include a cell,

which determines which arithmetic constraints are satisfied in the conditions of services and in

the property. In addition to the requirements detailed in Section 3.5, we need to enforce cell

compatibility across symbolic service calls. For instance, when a task executes an internal service,

the corresponding symbolic transition from cell c to c′ is possible only if the projections of c and

c′ on the subspace corresponding to the task’s input variables have non-empty intersection (since

input variables are preserved). Similarly, when the opening or closing service of a child task is

called, compatibility is required between the parent’s and the child’s cell on the shared variables,

which amounts again to non-empty intersection between cell projections. This suggests the

following first-cut (and problematic) attempt at a verification algorithm: once a local transition

imposes new constraints, represented by a cell c′, these constraints are propagated back to

previously guessed cells, refining them via intersection with c′. If an intersection becomes empty,

the candidate symbolic run constructed so far has no corresponding actual run and the search is

pruned. The problem with this attempt is that it is incompatible with the way we deal with sets in

Section 3.5: the contents of sets are represented by associating counters to the isomorphism types

of their elements. Since extended isomorphism types include cells, retroactive cell intersection

invalidates the counters and the results of previous VASS reachability checks.

We develop an alternative solution that avoids retroactive cell intersection altogether.

More specifically, for each task, our algorithm extends isomorphism types with cells guessed

from a pre-computed set constructed by following the task hierarchy bottom-up and including in

the parent’s set those cells obtained by appropriately projecting the children’s cells on shared

variables and expressions. Only non-empty cells are retained. We call the resulting cell collection

the Hierarchical Cell Decomposition (HCD).

The key benefit of the HCD is that it arranges the space of cells so that consistency of
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a symbolic run can be guaranteed by performing simple local compatibility tests on the cells

involved in each transition. Specifically, (i) in the case of internal service calls, the next cell

c′ must refine the current cell c on the shared variables (that is, the projection of c′ must be

contained in the projection of c); (ii) in the case of child task opening/closing services, the parent

cell c must refine the child cell c′. This ensures that in case (i) the intersection with c′ of all

relevant previously guessed cells is non-empty (because we only guess non-empty cells and c′

refines all prior guesses), and in case (ii) the intersection with the child’s cell c′ is a no-op for the

parent cell. Consequently, retroactive intersection can be skipped as it can never lead to empty

cells.

A natural starting point for constructing the HCD is to gather for each task all the

polynomials appearing in its arithmetic constraints (or in the property sub-formulas referring to

that task), and associate sign conditions to each. This turns out to be insufficient. For example,

the projection from the child cell can impose on the parent variables new constraints which do

not appear explicitly in the parent task. It is a priori not obvious that the constrained cells can be

represented symbolically, let alone efficiently computed. The tool enabling our solution is the

Tarski-Seidenberg Theorem [122], which ensures that the projection of a cell is representable

by a union of cells defined by a set of polynomials (computed from the original ones) and sign

conditions for them. The polynomials can be efficiently computed using quantifier elimination.

Observe that a bound on the number of newly constructed polynomials yields a bound on

the number of cells in the HCD, which in turn implies a bound on the number of distinct extended

isomorphism types manipulated by the verification algorithm, ultimately yielding decidability of

verification. A naive analysis produces a bound on the number of cells that is hyperexponential

in the height of the task hierarchy, because the number of polynomials can proliferate at this rate

when constructing all possible projections, and p polynomials may produce 3p cells. Fortunately,

a classical result from real algebraic geometry ([8], reviewed in Section 3.6.2) bounds the

number of distinct non-empty cells to only exponential in the number of variables (the exponent

is independent of the number of polynomials). This yields an upper bound of the number of
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cells (and also the number of extended isomorphism types) which is singly exponential in the

number of numeric expressions and doubly exponential in the height of the hierarchy H. We

state below our complexity results for verification with arithmetic, relegating details (including a

fine-grained analysis) to the remainder of this section.

Theorem 67. Let Γ be a HAS over a fixed database schema and ϕf an HLTL-FO formula over

Γ. If arithmetic is allowed in (Γ, ϕf ), then the deterministic space complexity uuper bounds for

checking whether Γ |= ϕf are summarized in Table 3.2.

Table 3.2. Space complexity upper bounds for verification with arithmetic (N : size of (Γ, ϕ); h:
depth of hierarchy; c: constants depending on the schema.)

Acyclic Linearly-Cyclic Cyclic
w/o. Artifact relations O(exp(N c·h)) O(exp(N c·h2)) (h+ 1)- exp(O(N))

w. Artifact relations O(2- exp(N c·h)) O(2- exp(N c·h2)) (h+ 2)- exp(O(N)))

3.6.1 Background on Quantifier Elimination

We next outline the technical details for verification with arithmetic, starting with a

review of quantifier elimination and real algebraic geometry. The quantifier elimination (QE)

problem for the reals can be stated as follows.

Definition 68. For real variables Y = {yi}1≤i≤l and a formula Φ(Y ) of the form (Q1x1) . . . (Qkxk)

F (y1 . . . yl, x1 . . . xk) where Qi ∈ {∃,∀} and F (y1 . . . yl, x1 . . . xk) is a Boolean combination of

polynomial inequalities with integer coefficients, the quantifier elimination problem is to output

a quantifier-free formula Ψ(Y ) such that for every Y ∈ Rl, Φ(Y ) is true iff Ψ(Y ) is true.

The best known algorithm for solving the QE problem for the reals has time and space

complexity doubly-exponential in the number of quantifier alternations and singly-exponential

in the number of variables. When applying QE in verification of HAS, we are only interested in
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formulas that are existentially quantified. According to Algorithm 14.6 of [7], the result for this

special case can be stated as follows:

Theorem 69. For existentially quantified formula Φ(Y ), an equivalent quantifier-free formula

Ψ(Y ) can be computed in time and space (s · d)O(k)O(l), where s is the number of polynomials in

Φ, d is the maximum degree of the polynomials, k is the quantifier rank of Φ and l = |Y |.

Note that in the special case when l = 0, quantifier elimination simply checks satisfiability.

Thus we have:

Corollary 70. Satisfiability over the reals of a Boolean combination Φ of polynomial inequalities

with integer coefficients can be decided in time and space (s · d)O(k), where s is the number of

polynomials in Φ, d is the maximum degree of the polynomials, and k is the number of variables

in Φ.

Also in Section 14.3 of [7], it is shown that if the bit-size of coefficients in Φ is bounded

by τ , then the bit-size of coefficients in Ψ is bounded by τ · dO(k)O(l).

3.6.2 Background on General Real Algebraic Geometry

We next review a classic result in general real algebraic geometry.

Definition 71. For a given set of polynomials P = {P1, . . . , Ps} over k variables {xi}1≤i≤k, a

sign condition of P is a mapping σ : P 7→ {−1, 0,+1}. We denote by κ(σ,P) the semialgebraic

set {x|x ∈ Rk, sign(P (x)) = σ(P ),∀P ∈ P}6 called the cell of the sign condition σ for P .

We use the following result from [72, 8]:

Theorem 72. Given a set of polynomials P with integer coefficients over k variables {xi}1≤i≤k,

the number of distinct non-empty cells, namely #{σ : P 7→ {−1, 0,+1} |κ(σ,P) 6= ∅}, is at

most (s · d)O(k), where s = |P| and d is the maximum degree of polynomials in P .

6The sign function sign(x) equals −1 if x < 0, 0 if x = 0 and 1 if x > 0.
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Given a set of polynomials P , we can use the following naive approach to compute the

set of sign conditions resulting in non-empty cells. We simply enumerate sign conditions of P

and discard sign conditions that results in empty cells or cells equivalent to any recorded sign

conditions known to be non-empty. Checking whether a cell is empty and checking whether

two cells are equivalent can be reduced to checking satisfiability of a formula of polynomial

inequalities. By Corollary 70, this naive approach takes space (s · d)O(k).

Theorem 73. Given a set of polynomials P over {xi}1≤i≤k, the set of non-empty cells {σ : P 7→

{−1, 0,+1} | κ(σ,P) 6= ∅} defined by P can be computed in space (s · d)O(k) where s = |P|

and d is the maximum degree of polynomials in P .

3.6.3 Cells for Verification

Intuitively, in order to handle arithmetic in our verification framework, we need to extend

each isomorphism type τ with a set of polynomial inequality constraints over the set of numeric

expressions in the extended navigation set E+
T .

We say that an expression e is numeric if e = x for some numeric variable x or e = xR.w

and the last attribute of w is numeric. For each task T , we denote by ETR the set of numeric

expressions of T where for each xR.w ∈ ETR , |w| ≤ h(T ).

The constraints over the numeric expressions are represented by a non-empty cell κ

(formally defined below). When a service is applied, the arithmetic parts of the conditions

are evaluated against κ. And for every transition I σ′−→ I ′ where κ, κ′ are the cells of I, I ′

respectively, if any variables are modified by the transition, then the projection of κ′ onto the

preserved numeric expressions has to refine the projection of κ onto the preserved numeric

expressions. Similar compatibility checks are required when a child task returns to its parent.

We introduce some more notation. For every T ∈ H, we consider polynomials in

the polynomial ring Z[ETR ]. For each polynomial P , we denote by var(P ) the set of numeric

expressions mentioned in P and for a set of polynomials P , we denote by var(P) the set
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⋃
P∈P var(P ). For P ⊂ Z[ETR ] and E ⊆ ETR , we denote by P|E the set of polynomials {P |P ∈

P , var(P ) ⊆ E}.

We next define the cells used in our verification algorithm. At task T , for a set of numeric

expressions E ⊆ ETR and a set of polynomials P where var(P) ⊆ E , we define the cells over

(E ,P) as follows.

Definition 74. A cell κ over (E ,P) is a subset of R|E| for which there exists a sign condition σ

of P such that κ = κ(σ,P).

ForP ⊂ Z[ETR ], we denote byK(P , E) the set of cells over (E ,P|E). Namely,K(P , E) =

{κ(σ,P|E)|σ ∈ P|E 7→ {−1, 0,+1}}. And we denote by K(P) the set of cells
⋃
E⊆ETR

K(P , E).

Compatibility between cells is tested using the notion of refinement. Intuitively, a cell κ

refines another cell κ′ if κ can be obtained by adding extra numeric expressions and/or constraints

to κ′. Formally,

Definition 75. For cell κ over (E ,P) and cell κ′ over (E ′,P ′) where κ = κ(σ,P) and κ′ =

κ(σ′,P ′), we say that κ refines κ′, denoted by κ v κ′, if E ′ ⊆ E , P ′ ⊆ P and σ|P ′ = σ′. Note

that if E = E ′, then κ v κ′ iff κ ⊆ κ′.

We next define the projection of a cell onto a set of variables. For each cell κ over (E ,P)

where E ⊆ ETR and variables x̄ ⊆ x̄T , the projection of κ onto x̄, denoted by κ|x̄, is defined to be

the projection of κ onto the expressions E|x̄ where E|x̄ = {e ∈ E|e = xR.w∨ e = x, x ∈ x̄}. By

the Tarski-Seidenberg theorem [122], κ|x̄ is a union of disjoint cells. Also, the projections κ|x̄

can be obtained by quantifier elimination. Let Φ(κ) be the conjunctive formula defining κ using

polynomials in P . Then by treating E|x̄ as the set of free variables, the formula Ψ(κ) obtained

by eliminating E −E|x̄ from Φ(κ) defines κ|x̄. We denote by proj(κ, x̄) the set of polynomials

mentioned in Ψ(κ). It is easy to see that κ|x̄ is a union of cells over (E|x̄,proj(κ, x̄)).

The following notation is useful for checking compatibility between a cell and the

projection of another cell: we define that a cell κ refines another cell κ′ wrt to projection to x̄,

denoted as κ vx̄ κ′, if there exists a cell κ̃ ⊆ κ′|x̄ such that κ v κ̃.
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Example 76. We illustrate the key notations of cells, projection and refinement in Figure 3.14.

Consider a task T with only two numeric variables {x, y} where x is an input variable. Figure

3.14(a) illustrates a cell κ1 defined by 3 half-planes L1, L2 and L3, which are polynomial

constraints from the task T . When an internal service of T is applied, the pre-condition is

first evaluated against {L1, L2, L3}, then the value of x is propagated, so the triangular region

κ1 is projected to the x-axis and comes the cell κ2 illustrated in Figure 3.14(b). Finally, the

post-condition is evaluated thus the resulting cell κ3 is a refinement of κ2 with the additional

constraints L4 and L5 from the post-condition.

(a) A cell of {x, y} defined by 
half-planes L1, L2 and L3

Project onto {x}

(b) Projecting onto {x} results in 
a region defined by a < x < b

L1L2

L3

κ1 κ2

a b

Refine with L4, L5

c3

a b

L4

L5κ3

(c) Refinement of κ2

Figure 3.14. Illustration of cells, projection, and refinement

Finally, we introduce notation relative to variable passing between parent task and child

task. For each task T and Tc ∈ child(T ), we denote by ETc→TR the set of numeric expressions

{e|e ∈ ETcR , e = x ∨ e = xR.w, x ∈ x̄Tcin ∪ x̄
Tc
out}. In other words, ETc→TR is the subset of

expressions in ETcR connected with expressions in ETR by calls/returns of Tc. Let fin, fout be the

input and output mapping between T and Tc. For each expression e ∈ ETc→TR , we define eTc→T

to be an expression in ETR as follows. If e = x, then eTc→T = (fin ◦ fout)(x). If e = xR.w,

then eTc→T = ((fin ◦ fout)(x))R.w. For a set of variables E ⊆ ETc→TR , we define ETc→T to be

{eTc→T |e ∈ E}. For a polynomial P over ETc→TR where Tc ∈ child(T ), we denote by P Tc→T the

polynomial obtained by replacing in P each numeric expression e with eTc→T . For a cell κ of

Tc where κ = κ(σ,P) and var(P ) ⊆ ETc→TR for every P ∈ P , we let κTc→T to be the cell of T

which equals κ(σ′,P ′), where P ′ = {P Tc→T |P ∈ P} and σ′ is a sign condition over P ′ such

that σ′(P Tc→T ) = σ(P ) for every P ∈ P .
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3.6.4 Hierarchical Cell Decomposition

We now introduce the Hierarchical Cell Decomposition. Intuitively, for each task T , we

would like to compute a set of polynomials P and a set of cells KT such that for each subset E

of ETR , the set of cells over (E ,P|E) in KT is a partition of R|E|.

The set of cells KT satisfies the property that for the set of polynomials P mentioned at

any condition of T in the specification Γ and HLTL-FO property ϕf , each cell κ ∈ KT uniquely

defines the sign condition of P . This allows us to compute the signs of any polynomial in any

condition in the local symbolic runs. In addition, for each pair of cells κ, κ′ ∈ KT , we require

that the projection of κ and κ′ to the input variables x̄Tin (and x̄Tin ∪ s̄T ) be disjoint or identical. So

to check whether two cells κ and κ′ of two consecutive symbolic instances in a local symbolic

run are compatible when applying an internal service, we simply need to check whether their

projections on x̄Tin are equal (note that refinement is implied by equality). Finally, for each child

task Tc of T , for each cell κ ∈ KT and κ′ ∈ KTc , κ uniquely defines the sign condition for the set

of polynomials that defines κ′|x̄Tcin and κ′|(x̄Tcout ∪ x̄Tcin ). This reduces to the problem of checking

cell refinements when child tasks are called or return.

The Hierarchical Cell Decomposition is formally defined as follows.

Definition 77. The Hierarchical Cell Decomposition associated to an artifact system H and

property ϕf is a collection {KT}T∈H of sets of cells, such that for each T ∈ H, KT = K(P ′T ),

where the set of polynomials P ′T is defined as follows. First, let PT consist of the following:

(1) all polynomials mentioned in any condition over x̄T in Γ and the property ϕf ,

(2) polynomials {e|e ∈ ETR } ∪ {e− e′|e, e′ ∈ ETR }, and

(3) for every Tc ∈ child(T ) and subset x̄ ⊆ x̄Tcout, the set of polynomials {P Tc→T |P ∈ proj(κ, x̄Tcin ∪

x̄), κ ∈ KTc}.

Next, let PsT = PT ∪
⋃
c∈K(PT ) proj(κ, x̄Tin ∪ s̄T ). Finally, P ′T = PsT ∪

⋃
c∈K(PsT ) proj(κ, x̄Tin).
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Intuitively, when T is a leaf task, the set of cells KT is constructed simply from (1) all

polynomials within services of T and the parts of HLTL-FO property ϕf related T and (2) all

possible tests of equality. When T is a non-leaf task, in addition to (1) and (2), we also need

to take into account the constraints propagated to T from each child task Tc of T , which can

be obtained by projecting cells in KTc onto Tc’s input/output variables, resulting in the set of

polynomials in (3).

The Hierarchical Cell Decomposition satisfies the following property, as desired.

Lemma 78. Let T be a task and P ′T as above. For every pair of cells κ1, κ2 ∈ KT , and

x̄ = (x̄Tin ∪ s̄T ) or x̄ = x̄Tin, if κ1 ∈ K(P ′T , E1) and κ2 ∈ K(P ′T , E2) where E1|x̄ = E2|x̄, then κ1|x̄

and κ2|x̄ are either equal or disjoint.

Proof. We prove the lemma for the case when x̄ = x̄Tin. The proof is similar for x̄ = x̄Tin ∪ s̄T .

Let P̃sT =
⋃
c∈K(PsT ) proj(κ, x̄Tin). For each cell κ ∈ K(P ′T , E), since P ′T |E = (PsT |E) ∪

(P̃sT |E) as P ′T = PsT ∪ P̃sT , there exist κ1 ∈ K(PsT , E) and κ2 ∈ K(P̃sT , E) such that κ = κ1 ∩ κ2.

Then consider κ|x̄Tin. Since all polynomials in P̃sT are over expressions of x̄Tin, we have κ|x̄Tin =

(κ1 ∩ κ2)|x̄Tin = (κ1|x̄Tin) ∩ κ2. And by definition, proj(κ1, x̄
T
in) ⊆ P̃sT , so κ2 uniquely defines

the sign conditions for proj(κ1, x̄
T
in), which means that either κ2 ∩ κ1|x̄Tin = ∅ or κ2 ⊆ κ1|x̄Tin.

And as κ2 ∩ κ1|x̄Tin = κ|x̄Tin is non-empty, κ|x̄Tin = κ2.

Therefore, for every κ1 ∈ K(P ′T , E1) and κ2 ∈ K(P ′T , E2) where E1|x̄Tin = E2|x̄Tin = E ,

there exist cells κ̃1, κ̃2 ∈ K(P ′T , E) such that κ1|x̄Tin = κ̃1 and κ2|x̄Tin = κ̃2. Since κ̃1 and κ̃2 are

either disjoint or equal, κ1|x̄Tin and κ2|x̄Tin are also either disjoint or equal.

From the above lemma, the following Corollary is obvious:

Corollary 79. For every task T and κ ∈ KT , κ|x̄Tin and κ|(x̄Tin ∪ s̄T ) are single cells in KT .

In view of the corollary, we use the notations of single-cell operators (projection, refine-

ment, etc.) on κ|x̄Tin and κ|(x̄Tin ∪ s̄T ) in the rest of our discussion.

To be able to connect with child tasks, we show the following property of KT :
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Lemma 80. For all tasks T and Tc where Tc ∈ child(T ), and every cell κ1 ∈ KT and κ2 ∈ KTc

where κ1 ∈ K(P ′T , E1) and κ2 ∈ K(P ′Tc , E2), for each set of variables x̄ = x̄T
T ↑c
∪ ȳ where ȳ is

some subset of x̄T
T ↓c

, if E1|x̄ = (E2)Tc→T |x̄, then either (1) κ1 vx̄ (κ2)Tc→T or (2) κ1|x̄ is disjoint

from (κ2)Tc→T |x̄.

Proof. Denote by P x̄Tc the set of polynomials {P Tc→T |P ∈ proj(κ, x̄), κ ∈ KTc}. For each cell

κ1 ∈ K(P ′T , E1), there exists κ̃1 ∈ K(P x̄Tc , E1) such that κ1 ⊆ κ̃1. For each cell κ2 ∈ K(P ′Tc , E2),

as E1|x̄ = (E2)Tc→T |x̄, (κ2)Tc→T |x̄ is a union of cells in K(P x̄Tc , E1). So either κ̃1 is disjoint with

or contained in (κ2)Tc→T |x̄. If κ̃1 and (κ2)Tc→T |x̄ are disjoint, then (κ2)Tc→T |x̄ and κ1|x̄ are

disjoint. If κ̃1 ⊆ (κ2)Tc→T |x̄, then we have κ1 v κ̃1 ⊆ (κ2)Tc→T |x̄ so κ1 vx̄ (κ2)Tc→T .

3.6.5 Extended Isomorphism Types

Given the Hierarchical Cell Decomposition {KT}T∈H, we can extend our notion of

isomorphism type to support arithmetic.

Definition 81. For navigation set ET , equality type ∼τ over E+
T and κ ∈ KT , the triple τ =

(ET ,∼τ , κ) is an extended T -isomorphism type if

• (ET ,∼τ ) is a T -isomorphism type, and

• κ = κ(σ,P ′T |(ETR ∩ E+
T )) for some sign condition σ of P ′T |(ETR ∩ E+

T ) such that for every

numeric expression e, e′ ∈ E+
T , e ∼τ e′ iff σ(e− e′) = 0 and e ∼τ 0 iff σ(e) = 0.

For each condition π over x̄T and extended T -isomorphism type τ , τ |= π is defined as

follows. For each polynomial inequality “P ◦ 0” in π where ◦ ∈ {<,>,=}, P ◦ 0 is true iff

σ(P ) ◦ 0 where σ is the sign condition of κ. The rest of the semantics is the same as in normal

T -isomorphism type.

The projection of an extended T -isomorphism type τ on x̄Tin and x̄Tin ∪ s̄T is defined in

the obvious way. For τ = (ET ,∼τ , κ), we define that τ |x̄ = (ET |x̄,∼τ |x̄, κ|x̄) for x̄ = x̄Tin or

x̄ = x̄Tin ∪ s̄T . The projection of τ on x̄Tin and x̄Tin ∪ s̄T up to length k is defined analogously. The
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projection of every extended T -isomorphism type on x̄Tin ∪ s̄T is an extended TS-isomorphism

type.

To extend the definitions of local symbolic run and symbolic tree of runs, we first

replace T -isomorphism type with extended T -isomorphism type and TS-isomorphism type with

extended TS-isomorphism type in the original definitions. The semantics is extended with the

following rules.

For two symbolic instances I and I ′ where the cell of I is κ and the cell of I ′ is κ′, I ′ is a

valid successor of I by applying service σ′ if the following conditions hold in addition to the

original requirements:

• if σ′ is an internal service, then κ|x̄Tin = κ′|x̄Tin.

• if σ′ is an opening service of Tc ∈ child(T ) or closing service of T , then κ = κ′.

• if σ′ is a closing service of Tc ∈ child(T ), then κ′ v κ.

The counters c̄ are updated as in transitions between symbolic instances without arithmetic. Each

dimension of c̄ corresponds to an extended TS-isomorphism type.

For each local symbolic run ρ̃T = (τin, τout, {(Ii, σi)}0≤i<γ), the following are addition-

ally satisfied:

• κin = κ0|x̄Tin, where κin is the cell of τin and κ0 is the cell of τ0;

• if τout 6= ⊥, then κout vx̄Tin∪x̄Tout κγ−1, where κout is the cell of τout and κγ−1 is the cell of τγ−1.

In a symbolic tree of runs Sym, for every two local symbolic runs ρ̃T = (τin, τout,

{(Ii, σi)}0≤i<γ) and ρ̃Tc = (τ ′in, τ
′
out, {(I ′i, σ′i)}0≤i<γ′) where Tc ∈ child(T ), if ρ̃Tc is connected

to ρ̃T by an edge labeled with index i, then the following conditions must be satisfied in addition

to the original requirements:

• for the cell κi of symbolic instance Ii and the cell κin of τ ′in, κi v κTc→Tin .
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• if ρ̃Tc is a returning local symbolic run, then for the cells κout of τ ′out and κj of Ij where j

is the smallest index such that σj = σcTc and j > i, we have that κj vx̄null κTc→Tout , where

x̄null = {x|x ∈ x̄T
T ↑c
, x ∼τj−1

null}.

3.6.6 Connecting Actual Runs with Symbolic Runs

We next show that the connection between actual runs and symbolic runs established in

Theorem 39 still holds for the extended local and symbolic runs. The structure of the proof is the

same, so we only state the necessary modifications needed to handle arithmetic.

From Trees of Local Runs to Symbolic Trees of Runs

Given a tree of local runs Tree, the construction of a corresponding symbolic tree of runs

Sym can be done as follows. We first construct Sym from Tree without the cells following the

construction described in the proof of the only-if part of Theorem 39. Then for each task T and

symbolic instance I with extended isomorphism type τ in some local symbolic run of T , let E be

the set of numeric expressions in τ and v : E 7→ R the valuation of E at I . Then the cell κ of I is

chosen to be the unique cell in K(P ′T , E) that contains v. For cells κ and κ′ of two consecutive

symbolic instances I and I ′ where the service that leads to I ′ is σ′,

• if σ′ is an internal service, by Lemma 78, as κ|x̄Tin and κ′|x̄Tin overlaps, we have κ|x̄Tin = κ′|x̄Tin,

• if σ′ is an opening service, κ = κ′ is obvious, and

• if σ′ is a closing service, let E be the numeric expressions of κ and E ′ be the numeric

expressions of κ′. We have E ⊆ E ′ so P ′T |E ⊆ P ′T |E ′. So κ′ can be written as κ1 ∩ κ2 where

κ1 ∈ K(P ′T , E) and κ2 ∈ K(P ′T , E ′ − E). As the values of the preserved numeric expressions

are equal in the two consecutive instances, we have κ1 = c so κ v κ′.

Thus, each local symbolic run in Sym is valid. Following a similar analysis, one can verify that

for every two connected local symbolic runs ρ̃T and ρ̃Tc , the conditions for symbolic tree of runs

stated in Section 3.6.5 are satisfied due to Lemma 80.
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From Symbolic Trees of Runs to Trees of Local Runs

Given a symbolic tree of runs Sym, we construct the tree of local runs Tree as follows.

Recall that in the original proof, for each local symbolic run ρ̃T , we construct the global

isomorphism type Λ of ρ̃T and use Λ to construct the local run ρT and database instance DT .

With arithmetic, the construction of Λ remains unchanged but we use a different construction for

ρT and DT .

To construct ρT and DT , we first define a sequence of mappings {pi}0≤i<γ from the

sequence of cells {κi}0≤i<γ of ρ̃T where each pi is a mapping from E+
T ∩ ETR to R and E+

T is

the extended navigation set of τi. Note that each pi can be also viewed as a point in κi. The

sequence of mappings {pi}0≤i<γ determines the values of numeric expressions, as we shall see

next. For each mapping p whose domain is the set of numeric expressions E , we denote by p|x̄

the projection of p to E ∩ (x̄ ∪ {xR.w|x ∈ x̄}). Then {pi}0≤i<γ is constructed as follows:

• First, we pick an arbitrary point (mapping) pin from κin where κin is the cell of the input

isomorphism type of ρ̃T .

• Then, for each equivalence class L of life cycles in ρ̃T , let κL be the cell of the last symbolic

instances in the last dynamic segments of life cycles in L. Pick a mapping pL ∈ κL such that

pL|x̄Tin = pin. Such a mapping always exists because, by Lemma 78, for each 0 ≤ i < γ,

κi|x̄Tin = κin.

• Next, for each equivalence class S of segments in L, let κS be the cell of the last symbolic

instance in segments in S . Pick a mapping pS from κS such that pS |(x̄Tin∪ s̄T ) = pL|(x̄Tin∪ s̄T ).

Such a mapping always exists because for each life cycle L ∈ L and Ii in L, κL|(x̄Tin ∪ s̄T ) v

κi|(x̄Tin ∪ s̄T ).

• Finally, for each segment S = {(Ii, σi)}a≤i≤b ∈ S, let pb = pS , and for a ≤ i < b, let

pi = pi+1|x̄ where x̄ = {x|x 6∼τi null} are the preserved variables from Ii to Ii+1. Such

mappings always exist because for each a ≤ i < b, κi+1 v κi.
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For the sequence of mappings {pi}0≤i<γ constructed above, the following is easily shown:

Lemma 82. For all local expressions (i, e) and (i′, e′) in the global isomorphism type Λ, where

e and e′ are numeric, (i, e) ∼ (i′, e′) implies that pi(e) = pi′(e
′).

Given the above property, we can construct ρT and DT as follows. We first construct ρT

and DT as in the case without arithmetic. Then for each equivalence class [(i, e)], we replace

the value [(i, e)] in ρT and DT with the value pi(e). It is clear that Lemmas 44 and 53 still hold

since the global equality type in Λ remains unchanged.

To construct the full tree of local runs Tree from the symbolic tree of runs, we perform

the above construction in a top-down manner. For each local symbolic run ρ̃T , we first construct

{pi}0≤i<γ for the root ρ̃T1 of Sym using the above construction. Then recursively for each

ρ̃T ∈ Sym and child ρ̃Tc connected to ρ̃T by an edge labeled with index i, we pick a mapping pin

from κin of ρ̃Tc such that pTc→Tin = pi|x̄TT ↓c . And if ρ̃Tc is a returning run, we pick pout from κout

of ρ̃Tc such that pTc→Tout |x̄null = pj|x̄null where j is index of the corresponding closing service

σcTc at ρ̃T , and x̄null is defined as above.

We next construct {pi}0≤i<γ of ρ̃Tc similarly to above, except that (1) pin is given, and (2)

if ρ̃Tc is a returning run, then for the equivalence class L of life cycles where Iγ−1 is contained

in some life cycle L ∈ L, we pick pL such that pL|x̄Tcin ∪ x̄
Tc
out = pout. Then ρTc and DTc are

constructed following the above approach. The tree of local runs Tree is constructed as described

in the proof of Theorem 39. Following the same approach, we can show:

Theorem 83. For every HAS Γ and HLTL-FO property ϕf with arithmetic, there exists a

symbolic tree of runs Sym accepted by Bϕ iff there exists a tree of local runs Tree and database

D such that Tree is accepted by Bϕ on D.

3.6.7 Complexity of Verification with Arithmetic

Similarly to the analysis in Appendix 3.10, it is sufficient to upper-bound the number

of T -and TS-isomorphism types. To do so, we need to bound the size of {KT}T∈H. By the
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construction of each KT and by Theorem 72, it is sufficient to bound the size of each P ′T .

We denote by l the number of numeric expressions, s the number of polynomials in Γ

and ϕf , d the maximum degree of these polynomials, t the maximum bitsize of the coefficients,

and h the height of the task hierarchy H. For each task T , we denote by s(T ) the number of

polynomials in P ′T and d(T ) the maximum degree of polynomials in P ′T .

If T is a leaf task, then |PT | ≤ s+ l2. The number of polynomials in PsT is no more than

the product of (1) the number of subsets of ETR , (2) the maximum number of non-empty cells

over (E ,PT |E) and (3) the maximum number of polynomials in each proj(κ, x̄Tin ∪ s̄T ). By

Theorem 69, the number of polynomials is no more than the running time, which is bounded by

((s+ l2) · d)O(l2). Then by Theorem 72, the number of non-empty cells over (E ,PT |E) is at most

((s+ l2) · d)O(l). Thus, |PsT | ≤ ((s+ l2) · d)O(l2). By the same analysis, we obtain that for P ′T ,

s(T ) = |P ′T | ≤ ((s+ l2) · d)O(l4). Similarly, d(T ) can be upper-bounded by ((s+ l2) · d)O(l4).

Next, if T is a non-leaf task, we denote by s′ the size of PT and by d′ the maximum

degree of polynomials in PT . We have that s′ ≤ (s+ l2) +
∑

Tc∈child(T ) 2l(s(Tc) · d(Tc))
O(l2) ·

(s(Tc) · d(Tc))
O(l) ≤ (s+ l2) + (s(Tc) · d(Tc))

O(l2), and d′ ≤ maxTc∈child(T )(s(Tc) · d(Tc))
O(l2).

Following the same analysis as above, we have that both s(T ) and d(T ) are at most

((s′ + l2) · d′)O(l4). By solving the recursion, we obtain that s(T ), d(T ) ≤ ((s+ l2) · d)(c·l6)h for

some constant c. Then by Theorem 72, |KT | is at most (s(T ) · d(T ))O(k). So we have

Lemma 84. For each task T , the number of cells in KT is at most ((s+ l2) · d)(c·l6)h for some

constant c.

The space used by the verification algorithm with arithmetic is no more than the space

needed to pre-compute {KT}T∈H plus the space for the VASS (repeated) reachability for each task

T . By Theorem 73, for each task T , the setKT can be computed in spaceO
(

((s+ l2) · d)(c·l6)h
)

.

For VASS (repeated) reachability, according to the analysis in Appendix 3.10, state

(repeated) reachability can be computed inO(h2 ·N2 log2M ·2c·D logD) space (O(h2 ·N2 log2M)

w/o. artifact relation), where h is the height of H, N is the size of (Γ, ϕf ), M is the number
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of extended T -isomorphism types and D is the number of extended TS-isomorphism types.

With arithmetic, M and D are the products of number of normal T -and TS-isomorphism types

multiplied by |KT | respectively. As l is less than the number of expressions whose upper bounds

are obtained in Appendix 3.10, by applying Lemma 84, we obtain upper bounds for M and D

for the different types of schema.

By substituting the bounds for M and D, we have the following results. Note that for Γ

without artifact relations, the complexity is dominated by the space for pre-computing {KT}T∈H.

Theorem 85. Let Γ be a HAS with acyclic schema and ϕf an HLTL-FO property over Γ, where

arithmetic is allowed in Γ and ϕf . Γ |= ϕf can be verified in 2- exp(NO(h+r)) deterministic

space. If Γ does not contain artifact relation, then Γ |= ϕf can be verified in exp(NO(h+r))

deterministic space.

Theorem 86. Let Γ be a HAS with linearly-cyclic schema and ϕf an HLTL-FO property over

Γ, where arithmetic is allowed in Γ and ϕf . Γ |= ϕf can be verified in O(2- exp(N c1·h2))

deterministic space, where c1 = O(r). If Γ does not contain artifact relation, then Γ |= ϕf can

be verified in O(exp(N c2·h2)) deterministic space, where c2 = O(r).

Theorem 87. Let Γ be a HAS with cyclic schema and ϕf an HLTL-FO property over Γ, where

arithmetic is allowed in Γ and ϕf . Γ |= ϕf can be verified in (h+ 2)- exp(O(N)) deterministic

space. If Γ does not contain artifact relation, then Γ |= ϕf can be verified in (h+ 1)- exp(O(N))

deterministic space.

3.7 Conclusion

This chapter shows decidability of verification for a rich artifact model capturing core

elements of IBM’s successful GSM system: task hierarchy, concurrency, database keys and

foreign keys, arithmetic constraints, and richer artifact data. The extended framework requires

the use of novel techniques including nested Vector Addition Systems and a variant of quantifier
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elimination tailored to our context. We improve significantly on previous work on verification

of artifact systems with arithmetic [36], which only exhibits non-elementary upper bounds

regardless of the schema shape, even absent artifact relations. In contrast, for acyclic and

linearly-cyclic schemas, even in the presence of arithmetic and artifact relations, our new upper

bounds are elementary (doubly-exponential in the input size and triply-exponential in the depth

of the hierarchy). Moreover, the complexity of our verification algorithm gracefully reduces to

PSPACE (for acyclic schema) and EXPSPACE in the hierarchy depth (for linearly-cyclic schema)

when arithmetic and artifact relations are not present. The sole remaining case of nonelementary

complexity occurs for arbitrary cyclic schemas. Altogether, our results provide substantial new

insight and techniques for the automatic verification of artifact systems. We used the techniques

developed in this chapter to implement a verifier for HAS with acyclic database schemas, that

exhibits very good performance on a realistic benchmark obtained from existing sets of business

process specifications and properties by extending them with data-aware features, as described

in Chapter 5. This points to HAS with acyclic schemas as a sweet spot for verification, and is a

strong indication of the practical potential of the approach.

3.8 Appendix: Framework and HLTL-FO

3.8.1 Proof of Theorem 22

We show that it is undecidable whether a HAS Γ = 〈A,Σ,Π〉 satisfies an LTL(Σ)

formula. The proof is by reduction from the repeated state reachability problem of VASS with

reset arcs and bounded lossiness (RB-VASS) [96]. An RB-VASS extends the VASS reviewed

in Section 3.5 as follows. In addition to increments and decrements of the counters, an action

of RB-VASS also allows resetting the values of some counters to 0. And after each transition,

the value of each counter can decrease non-deterministically by an integer value bounded by

some constant c. The results in [96] (Definition 2 and Theorem 18) indicate that the repeated

state reachability problem for RB-VASS is undecidable for every fixed c ≥ 0, since the structural
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termination problem for Reset Petri-net with bounded lossiness can be reduced to the repeated

state reachability problem for RB-VASS’s. In our proof, we use RB-VASS’s with c = 1.

Formally, a RB-VASS V (with lossiness bound 1 and dimension d > 0) is a pair

(Q,A) where Q is a finite set of states and A is a set of actions of the form (p, ā, q) where

ā ∈ {−1,+1, r}d, and p, q ∈ Q. A run of V = (Q,A) is a sequence (q0, z̄0), . . . (qn, z̄n) where

z̄0 = 0̄ and for each i ≥ 0, qi ∈ Q, z̄i ∈ Nd, and for some ā such that (qi, ā, qi+1) ∈ A, and for

1 ≤ j ≤ d:

• if ā(j) ∈ {−1,+1}, then z̄i+1(j) = z̄i(j) + ā(j) or z̄i+1(j) = z̄i(j) + ā(j)− 1, and

• if ā(j) = r, then z̄i+1(j) = 0.

For a given RB-VASS V = (Q,A) and a pair of states q0, qf ∈ Q, we say that qf is repeatedly

reachable from q0 if there exists a run (q0, z̄0) . . . (qn, z̄n) . . . (qm, z̄m) of V such that qn = qm =

qf and z̄n ≤ z̄m. As discussed above, checking whether qf is repeatedly reachable from q0 is

undecidable.

We now show that for a given RB-VASS V = (Q,A) and (q0, qf ), one can construct a

HAS Γ = 〈A,Σ,Π〉 and LTL(Σ) property Φ such that qf is repeatedly reachable from q0 iff

Γ |= Φ. At a high level, the construction of Γ uses d tasks to simulate the d-dimensional vector

of counters. Each task is equipped with an artifact relation, and the number of elements in the

artifact relation is the current value of the corresponding counter. Increment and decrement the

counters are simulated by internal services of these tasks, and reset of the counters are simulated

by closing and reopening the task (recall that this resets the artifact relation to empty). Then

we specify in the LTL(Σ) formula Φ that the updates of the counters of the same action are

grouped in sequence. Note that this requires coordinating the actions of sibling tasks, which is

not possible in HLTL-FO. The construction is detailed next.

The database schema of Γ consists of a single unary relation R(id). The artifact system

has a root task T1 and subtasks {P0, P1, . . . , Pd, C1, . . . , Cd} which form the following tasks

hierarchy:
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T1

P1 P2 Pd-1 Pd

C1 C2 Cd-1 Cd

P0

Figure 3.15. Tasks hierarchy.

The tasks are defined as follows. The root task T1 has no variables nor internal services.

The task P0 contains a numeric variable s, indicating the current state of the RB-VASS. For each

q ∈ Q, P0 has a service σq, whose pre-condition is true and post-condition sets s to q.

For i ≥ 1, task Pi has no variable. It has a single internal service σri whose pre- and

post-conditions are both true.

Each Ci has an ID variable x, an artifact relation Si and a pair of services σ+
i and σ−i ,

which simply insert x into Si and removes an element from Si, respectively. Intuitively, the size

of Si is the current value of the i-th counter. Application of service σri corresponds to resetting

the i-th counter. And application of services σ+
i and σ−i correspond to increment and decrement

of the i-th counter, respectively.

Except for the closing condition of T1, all opening and closing conditions of tasks are

true.

We encode the set of actions A into an LTL(Σ) formula as follows. For each state p ∈ Q,

we denote by α(p) the set of actions starting from p. For each action α = (p, ā, q) ∈ A, we

construct an LTL(Σ) formula ϕ(α) as follows. First, let φ1, . . . φd, φd+1 be LTL(Σ) formulas

where:

• φd+1 = Xσq,

• for i = d, d− 1, . . . , 1:

– if ā(i) = +1, then φi = σ+
i ∧Xφi+1,

– if ā(i) = −1, then φi = (σ−i ∧Xφi+1) ∨ (σ−i ∧X(σ−i ∧Xφi+1)), and
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– if ā(i) = r, then φi = σci ∧X(σri ∧X(σoi ∧Xφi+1)) where σoi and σci are the opening and

closing services of task Ci.

Let ϕ(α) = Xφ1. Intuitively, ϕ(α) specifies a sequence of service calls that update the content

of the artifact relations S1, . . . Sd according to the vector ā. In particular, for ā(i) = r, the

subsequence of services σciσ
r
i σ

o
i first closes task Ci then reopens it. This empties Si. For

ā(i) = +1, by executing σ+
i , the size of Si might be increased by 1 or 0, depending on whether

the element to be inserted is already in Si. And for ā(i) = −1, we let σ−i to be executed either

once or twice, so the size of Si can decrease by 1 or 2 nondeterministically. Then we let

Φ = Φinit ∧
∧
p∈Q

G

σp → ∨
α∈α(p)

ϕ(α)

 ∧GFσqf

where Φinit is a formula specifying that the run is correctly initialized, which simply means that

the opening services σoT of all tasks are executed once at the beginning of the run, and then a σq0

is executed.

The second clause says that for every state p ∈ Q, whenever the run enters a state p (by

calling σp), a sequence of services as specified in ϕ(α) is called to update S1, . . . , Sk, simulating

the action α that starts from p.

Finally, the last clause GFσqf guarantees that the service σqf is applied infinitely often,

which means that qf is reached infinitely often in the run.

We can prove the following lemma, which implies Theorem 22:

Lemma 88. For RB-VASS (Q,A) and states q0, qf ∈ Q, there exists a run (q0, z̄0), . . . , (qm, z̄m),

. . . , (qn, z̄n) of (Q,A) where qm = qn = qf and z̄m ≤ z̄n iff there exists a global run ρ of Γ such

that ρ |= Φ.
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3.8.2 Simplifications

We first show that the global variables, as well as set atoms, can be eliminated from

HLTL-FO formulas.

Lemma 89. Let Γ be a HAS and ∀ȳϕf (ȳ) an HLTL-FO formula over Γ. One can construct in

linear time a HAS Γ̄ and an HLTL-FO formula ϕ̄f , where ϕ̄f contains no atoms ST (z̄), such

that Γ |= ∀ȳϕf (ȳ) iff Γ̄ |= ϕ̄f .

Proof. Consider first the elimination of global variables. Suppose Γ has tasks T1, . . . , Tk. The

Hierarchical artifact system Γ̄ is constructed from Γ by adding ȳ to the variables of T1 and

augmenting the input variables of all other tasks with ȳ (appropriately renamed). Note that ȳ

is unconstrained, so it can be initialized to an arbitrary valuation and then passed as input to

all other tasks. Let Γ̄ consist of the resulting tasks, T̄1, . . . , T̄k. It is clear that Γ |= ∀ȳϕf (ȳ) iff

Γ̄ |= ϕ̄f .

Consider now how to eliminate atoms of the form ST (z̄) from ϕ̄f . Recall that for all

such atoms, z̄ ⊆ ȳ, so z̄ is fixed throughout each run. The idea is keep track of the membership

of z̄ in ST using two additional numeric artifact variables xz̄ and yz̄, such that xz̄ = yz̄ indicates

that ST (z̄) holds7. Specifically, a pre-condition ensures that xz̄ 6= yz̄ initially holds, then xz̄ 6= yz̄

is enforced as soon as there is an insertion +ST (s̄T ) for which s̄T = z̄, and xz̄ 6= yz̄ is enforced

again whenever there is a retrieval of a tuple equal to z̄. This can be achieved using pre-and-post

conditions of services carrying out the insertion or retrieval. Then the atom ST (z̄) can be replaced

in ϕ̄f with (xz̄ = yz̄).

We next consider two simplifications of artifact systems regarding the interaction of tasks

with their subtasks.

Lemma 90. Let Γ be a HAS and ϕf an HLTL-FO property over Γ. One can construct a

HAS Γ̃ and an HLTL-FO formula ϕ̃f such that Γ |= ϕf iff Γ̃ |= ϕ̃f and: (i)
⋃
Tc∈child(T ) x̄

T

T ↑c

7This is done to avoid introducing constants, that could also be used as flags.

110



and
⋃
Tc∈child(T ) x̄

T

T ↓c
are disjoint for each task T in Γ̃, (ii) for each child task Tc ∈ child(T ),

x̄T
T ↑c
∩ VARval = ∅.

Proof. Consider (i). We describe here informally the construction of Γ̃ that eliminates

overlapping between
⋃
Tc∈child(T ) x̄

T

T ↑c
and

⋃
Tc∈child(T ) x̄

T

T ↓c
. For each task T and for each subtask

Tc of T , for each variable x ∈ x̄T
T ↓c

, we introduce to T a new variable x̂ whose type is the same

as the type (id or numeric) of x. We denote by x̂TTc↓ the set of variables added to T for subtask

Tc. Then instead of passing x̄T
T ↓c

to Tc, T passes x̂TTc↓ to Tc when Tc opens. And for the opening

service σoTc with opening condition π, we check π in conjunction with
∧
x∈x̄T

T
↓
c

(x = x̂). Note

that
⋃
Tc∈child(T ) x̂

T
Tc↓ and

⋃
Tc∈child(T ) x̄

T

T ↑c
are disjoint. By this construction, in each run of Γ̃,

after each application of an internal service σ of task T , the variables in x̂TTc↓ for each subtask Tc

receives a set of non-deterministically chosen values. Then each subtask Tc can be opened only

when x̂TTc↓ and x̄T
T ↓c

have the same values. So passing x̂TTc↓ to Tc is equivalent to passing x̄T
T ↓c

to

Tc.

To guarantee that there is a bijection from the runs of Γ to the runs of Γ̃, we also need to

make sure that the values of x̂TTc↓ are non-deterministically chosen before the first application of

internal service. (Recall that they either contain 0 or null at the point when T is opened.) So

we extend T with an extra binary variable xinit and an extra internal service σinit
T . Variable xinit

indicates whether task T has been “initialized”. The service σinit
T has precondition that checks

whether xinit = 0 and post-condition sets xinit = 1. It sets all id variables to null and numeric

variables 0 except for variables in x̂TTc↓ for any Tc. So application of σinit
T assigns values to x̂TTc↓

for every subtask Tc non-deterministically and all other variables are initialized to the initial

state when T is opened. All other services are modified such that they can be applied only when

xinit = 1 and initialize x̂TTc↓ with non-deterministically chosen values for all subtask Tc. So in a

projected run ρT of Γ̃, the suffix with xinit = 1 corresponds to the original projected run of Γ.

Thus we only need to rewrite the HLTL-FO property ϕf to ϕ̃f such that each formula in ΦT only

looks at the suffix of projected run ρT after xinit is set to be 1 (namely, each ψ ∈ ΦT is replaced
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with F((xinit = 1) ∧ ψ)).

Now consider (ii). We outline the construction of Γ̃ and ϕ̃f informally. For each task

T , we introduce a set of new numeric variables {xTc|Tc ∈ child(T ), x ∈ x̄T
T ↑c
∩ VARval} to x̄T .

Intuitively, these variables contain non-deterministically guessed returning values from each

child task Tc. These are passed to each child task Tc as additional input variables. Before

Tc returns, these are compared to the values of the returning numeric variables of Tc, and

Tc returns only if they are identical. More formally, for each child task Tc of T , variables

{xTc |x ∈ x̄T
T ↑c
∩ VARval} are passed from T to Tc as part of the input variables of Tc. For

each variable xTc in T , we let xTc→T ∈ x̄Tc be the corresponding input variable of xTc . And

for each xTc , we denote by xret the variable in x̄Tc satisfying that fout(x) = xret for fout in

the original Γ. Then at Tc, we remove all numeric variables from x̄Tcret and add condition∧
x∈x̄T

T
↑
c

∩VARval
xret = xTc→T to the closing condition of Tc. Note that we need to guarantee that

the variables in {xTc|Tc ∈ child(T ), x ∈ x̄T
T ↑c
∩ VARval} obtain non-deterministically guessed

values. This can be done as in the simulation for (i).

Conditions on x̄T after a subset T ’s children has returned are evaluated using the guessed

values for the variables returned so far. Specifically, the correct value to be used is the latest

returned by a child transaction, if any (recall that children tasks can overwrite each other’s

numeric return variables in the parent). Keeping track of the sequence of returned transactions

and evaluating conditions with the correct value can be easily done directly in the verification

algorithm, at negligible extra cost. This means that we can assume that tasks have the form in (ii)

without the exponential blowup in the conditions, but with a quadratic blowup in the number of

variables.

To achieve the simulation fully via the specification is costlier because some of the

conditions needed have exponential size. We next show how this can be done. Intuitively, we

guess initially an order of the return of the children transactions and enforce that it be respected.

We also keep track of the children that have already returned. Let child(T ) = {T1, . . . , Tn}.

To guess an order of return, we use new ID variables ō = {oij | 1 ≤ i, j ≤ n}. Intuitively,
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oij 6= null says that Ti returns before Tj . We also use new ID variables {ti | 1 ≤ i ≤ n}, where

ti 6= null means that Ti has returned. The variables ō are subject to a condition specifying the

axioms for a total order:

∧1≤i,j≤n(oij 6= null ∨ oji 6= null)

∧1≤i<j≤n¬(oij 6= null ∧ oji 6= null)

∧1≤i,j,m≤n((oij 6= null ∧ ojm 6= null)→ oim 6= null)

These are enforced using pre-conditions of services as well as one additional initial internal

service (which in turn requires a minor modification to ϕf , similarly to (i)). When Ti returns, ti

is set to a non-null value, and the condition

∧
1≤i,j≤n

(ti 6= null ∧ tj = null)→ oij 6= null

enforcing that transactions return in the order specified by ō is maintained using pre-conditions.

Observe that, at any given time, the latest transaction that has returned is the Ti such that

ti 6= null ∧
∧

1≤j≤n

((oij 6= null)→ tj = null)

For each formula π over x̄T , we construct a formula o(π) by replacing each variable

x ∈ x̄TR with xTc for the latest Tc where x ∈ x̄T
T ↑c

if there is such Tc). The size of the resulting

o(π) is exponential in the maximum arity of database relations. Finally we obtain Γ̃ and ϕ̃f by

replacing, for every T ∈ H, each condition π over x̄T with o(π). One can easily verify that

Γ̃ |= ϕ̃f iff Γ |= ϕf and for every task T of Γ, x̄T
T ↑c

does not contain numeric variables. This

completes the proof of (ii).

The construction in (i) takes linear time in the original specification and property. For

(ii), the construction introduces a quadratic number of new variables and the size of conditions
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becomes exponential in the maximum arity of data-base relations. However, as discussed in

Appendix 3.8, the verification algorithm can be slightly adapted to circumvent the blowup

in the specification without penalty to the complexity. Intuitively, this makes efficient use of

non-determinism, avoiding the explicit enumeration of choices required in the specification,

which leads to the exponential blowup.

3.8.3 Proof of Theorem 29

For conciseness, we refer throughout the proof to propositionally interleaving-invariant

LTL-FO simply as interleaving-invariant LTL-FO.

Showing that HLTL-FO expresses only interleaving-invariant LTL-FO properties is

straightforward. The converse however is non-trivial. We begin by showing a normal form

for LTL formulas, which facilitates the application to our context of results from [54, 55] on

temporal logics for concurrent processes. Consider the alphabet H(Γ) = {(κ, σ) | (κ, stg, σ) ∈

A(Γ)}. Thus, H(Γ) is A(Γ) with the stage information omitted. Let H(Γ) = h(L(Γ)) where

h((κ, stg, σ)) = (κ, σ). We define local-LTL to be LTL using the set of propositions PΣ =

{(p, σ) | p ∈ PT , σ ∈ Σobs
T }. A proposition (p, σ) holds in (κ̄, σ̄) iff σ̄ = σ and κ̄(p) is true. The

definition of interleaving-invariant local-LTL formula is the same as for LTL.

Lemma 91. For each interleaving-invariant LTL formula ϕ over L(Γ) one can construct an

interleaving-invariant local-LTL formula ϕ̄ overH(Γ) such that for every u ∈ L(Γ), u |= ϕ iff

h(u) |= ϕ̄ where h((κ, stg, σ)) = (κ, σ).

Proof. We use the equivalence of FO and LTL over ω-words [82]. It is easy to see that each

LTL formula ϕ over L(Γ) can be translated into an FO formula ψ(ϕ) over H(Γ) using only

propositions in PΣ, such that for every u ∈ L(Γ), u |= ϕ iff h(u) |= ψ(ϕ). Indeed, it is

straightforward to define by FO means the stage of each transaction in a given configuration,

as well as each proposition in P ∪ Σ in terms of propositions in PΣ, on words in H(Γ). One

can then construct from the FO sentence ψ(ϕ) an LTL formula ϕ̄ equivalent to it over words in
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H(Γ), using the same set of propositions PΣ. The resulting LTL formula is thus in local-LTL,

and it is easily seen that it is interleaving-invariant.

We use the propositional variant HLTL of HLTL-FO, whose semantics over ω-words in

H(Γ) is defined similarly to the semantics of HLTL-FO on global runs. Recall that in HLTL,

the LTL formulas applying to transaction T use propositions in PT ∪ Σobs
T and expressions [ψ]Tc

where Tc is a child of T and ψ is an HLTL formula applying to Tc.

We show the following key fact.

Lemma 92. For each interleaving-invariant local-LTL formula over H(Γ) there exists an

equivalent HLTL formula overH(Γ).

Proof. To show completeness of HLTL, we use a logic shown in [54, 55] to be complete for

expressing LTL properties invariant with respect to valid interleavings of actions of concurrent

processes (or equivalently, well-defined on Mazurkievicz traces). The logic, adapted to our

framework, operates on partial orders �u of words u ∈ H(Γ), and is denoted LTL(�). For

u = {(κi, σi) | i ≥ 0}, we define the projection of u on T as the subsequence πT (u) =

{(κij |PT , σij)}j≥0 where {σij | j ≥ 0} is the subsequence of {σi | i ≥ 0} retaining all services

in Σobs
T . LTL(�) uses the set of propositions PΣ and the following temporal operators on �u:

• XTϕ, which holds in (κi, σi) if πT (v) 6= ε for v = {(κj, σj) | j ≥ m}, where m is a minimum

index such that i ≺u m, and ϕ holds on πT (v);

• ϕ UT ψ, which holds in (κi, σi) if πT (v) 6= ε for v = {(κj, σj) | j ≥ i}, and ϕ U ψ holds on

πT (v).

From Theorem 18 in [54] and Proposition 2 and Corollary 26 in [55] it follows that LTL(�)

expresses all local-LTL properties overH(Γ) invariant with respect to interleavings.

We next show that HLTL can simulate LTL(�). To this end, we consider an extension

of HLTL in which LTL(�) formulas may be used in addition to propositions in PT ∪ Σobs
T in
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every formula applying to transaction T . We denote the extension by HLTL+LTL(�). Note that

each formula ξ in LTL(�) is an HLTL+LTL(�) formula. The proof consists in showing that the

LTL(�) formulas can be eliminated from HLTL+LTL(�) formulas. This is done by recursively

reducing the depth of nesting of XT and UT operators, and finally eliminating propositions. We

define the rank of an LTL(�) formula to be the maximum number of XT and UT operators along

a path in its syntax tree. For a formula ξ in HLTL+LTL(�), we define r(ξ) = (n,m) where n is

the maximum rank of an LTL(�) formula occurring in ξ, and m is the number of such formulas

with rank n. The pairs (n,m) are ordered lexicographically.

Let ξ be an HLTL+LTL(�) formula. For uniformity of notation, we define [ξ]T1 = ξ. We

associate to ξ the tree Tree(ξ) with root [ξ]T1 , whose nodes are all occurrences of subformulas of

the form [ψ]T in ξ, with an edge from [ψi]Ti to [ψj]Tj if the latter occurs in ψi and Tj is a child of

Ti inH.

Consider an HLTL+LTL(�) formula ξ such that r(ξ) ≥ (1, 1). Suppose ξ has a subfor-

mula XTϕ in LTL(�) of maximum rank. Pick one such occurrence and let T̄ be the minimum

task (wrtH) such that XTϕ occurs in [ψ]T̄ . We construct an HLTL+LTL(�) formula ξ̄ such that

r(ξ̄) < r(ξ), essentially by eliminating XT . We consider 4 cases: T = T̄ , T is a descendant or

ancestor of T̄ , or neither.

Suppose first that T = T̄ . Consider an occurrence of XTϕ. Intuitively, there are two

cases: XTϕ is evaluated inside the run of T corresponding to [ψ]T , or at the last configuration.

In the first case (¬σcT holds), XTϕ is equivalent to Xϕ. In the second case (σcT holds), XTϕ

holds iff ϕ holds at the next call to T . Thus, ξ is equivalent to ξ1 ∨ ξ2, where:

1. ξ1 says that ϕ does not hold at the next call to T (or no such call exists) and XTϕ is replaced

in ψ by ¬σcT ∧Xϕ

2. ξ2 says that ϕ holds at the next call to T (which exists) and XTϕ is replaced in ψ by

¬σcT → Xϕ.

We next describe how ξ1 states that ϕ does not hold at the next call to T (ξ2 is similar). We
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need to state that either there is no future call to T , or such a call exists and ¬ϕ holds at the

first such call. Consider the path from T1 to T in H. Assume for simplicity that the path is

T1, T2, . . . , Tk where Tk = T . For each i, 1 ≤ i < k, we define inductively (from k − 1 to 1)

formulas αi, βi(¬ϕ) such that αi says that there is no call leading to T in the remainder of the

current subrun of Ti, and βi(¬ϕ) says that such a call exists and the first call leads to a subrun of

T satisfying ¬ϕ. First, αk−1 = G(¬σoTk) and βk−1(¬ϕ) = ¬σoTk U [¬ϕ]Tk . For 1 ≤ i < k − 1,

αi = G(σoTi+1
→ [αi+1]Ti+1

) and βi(¬ϕ) = (σ0
Ti+1
→ [αi+1]Ti+1

) U [βi+1(¬ϕ)]Ti+1
. Now

ξ1 = ξ0
1 ∨

∨
1≤j<k ξ

j
1 where ξ0

1 states that there is no next call to T and ξj1 states that Tj is the

minimum task such that the next call to T occurs during the same run of Tj (and satisfies ¬ϕ).

More precisely, let [ψ1]T1 , [ψ2]T2 , . . . [ψk]Tk be the path leading from [ξ]T1 to [ψ]T in Tree(ξ) (so

ψ1 = ξ and ψk = ψ). Then ξ0
1 is obtained by replacing each ψi by ψ̄i, 1 ≤ i < k, defined

inductively as follows. First, ψ̄k−1 is obtained from ψk−1 by replacing [ψk]Tk with [ψk]Tk ∧ αk−1.

For 1 ≤ i < k − 1, ψ̄i is obtained from ψi by replacing [ψi+1]Ti+1
with [ψ̄i+1]Ti+1

∧ αi. For

1 ≤ j < k, ξj1 is obtained by replacing in ψj , [ψj+1]Tj+1
with [ψ̄j+1]Tj+1

∧ βj(¬ϕ). It is clear that

ξ1 states the desired property. The formula ξ2 is constructed similarly. Note that r(ξ1∨ξ2) < r(ξ).

Now suppose T is an ancestor of T̄ . We reduce this case to the previous (T = T̄ ). Let

T ′ be the child of T . Suppose [ψT ]T is the ancestor of [ψ]T̄ in Tree(ξ). Then ξ is equivalent to

ξ̄ = ξ1 ∨ ξ2 where:

1. ξ1 says that ϕ does not hold at the next action of T wrt � (or no such next action exists) and

ψ is replaced by ψ(XTϕ← false) (← denotes substitution)

2. ξ2 says that ϕ holds at the next action of T wrt � and ψ is replaced by ψ(XTϕ← true)

To state that ϕ does not hold at the next call to T (or no such call exists) ξ1 is further modified

by replacing in ψT , [ψT ′ ]T ′ with [ψT ′ ]T ′ ∧ (G(¬σcT ′) ∨ (¬σcT ′ U (σcT ′ ∧ ¬XTϕ)). Smilarly, ξ2 is

further modified by replacing in ψT , [ψT ′ ]T ′ with [ψT ′ ]T ′ ∧ (¬σcT ′ U (σcT ′ ∧XTϕ)). Note that

there are now two occurrences of XTϕ in the modified ψT ’s. By applying twice the construction

for the case T̄ = T we obtain an equivalent ξ̄ such that r(ξ̄) < r(ξ).
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Next consider the case when T̄ is an ancestor of T . Suppose the path from T1 to T inH

is T1, . . . , Ti, . . . Tk where Ti = T̄ and Tk = T . Consider the value of XTϕ in the run ρψ of T̄

on which ψ is evaluated. Similarly to the case T = T̄ , there are two cases: ϕ holds at the next

invocation of T following ρψ, or it does not. Thus, ξ is equivalent to ξ1 ∨ ξ2, where:

1. ξ1 says that ϕ does not hold at the next call to T (or no such call exists) and XTϕ is replaced

in ψ by βi(ϕ), where βi(ϕ) says that there exists a future call leading to T in the current run

of T̄ , and the first such run of T satisfies ϕ; βi(ϕ) is constructed as in the case T = T̄ .

2. ξ2 says that ϕ holds at the next call to T following the current run of T̄ and XTϕ is replaced

in ψ by αi ∨ βi(ϕ) where αi, constructed as for the case T = T̄ , says that there is no future

call leading to T in the current run of T̄ .

To say that ϕ does not hold at the next call to T following ρψ (or no such call exists), ξ1 is

modified analogously to the case T̄ = T , and similarly for ξ2.

Finally suppose the least common ancestor of T̄ and T is T̂ distinct from both. Let [ψT̂ ]T̂

be the ancestor of [ψ]T̄ in Tree(ξ). Consider the value of XTϕ in the run of T̄ on which ψ is

evaluated. There are two cases: ϕ holds at the next invocation of T following the run of T̄ , or it

does not. Thus, ξ is equivalent to ξ1 ∨ ξ2, where:

1. ξ1 says that ϕ does not hold at the next call to T (or no such call exists) and ψ is replaced by

ψ(XTϕ← false)

2. ξ2 says that ϕ holds at the next call to T and ψ is replaced by ψ(XTϕ← true)

To say that ϕ does not hold at the next call to T (or no such call exists), ξ1 is modified analogously

to the case T̄ = T , and similarly for ξ2, taking into account the fact that the next call to T , if

it exists, must take place in the current run of T̂ or of one of its ancestors. This completes the

simulation of XTϕ.

Now suppose ξ has a subformula (ϕ1 UT ϕ2) of maximum rank. Pick one such occur-

rence and let T̄ be the minimum task (wrt H) such that (ϕ1 UT ϕ2) occurs in [ψ]T̄ . There are
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several cases: T̄ = T , T̄ is an ancestor or descendant of T , or neither. The simulation technique

is similar to the above. We outline the construction for the most interesting case when T̄ = T .

Consider the run of T on which [ψ]T is evaluated. There are two cases: (†) (ϕ1 UT ϕ2)

holds on the concatenation of the future runs of T , or (†) does not hold. Thus, ξ is equivalent to

ξ1 ∨ ξ2 where:

1. ξ1 says that (†) holds and ψ is modified by replacing the occurrence of (ϕ1 UT ϕ2) with

Gϕ1 ∨ (ϕ1 U ϕ2), and

2. ξ2 says that (†) does not hold and ψ is modified by replacing the occurrence of (ϕ1 UT ϕ2)

with (ϕ1 U ϕ2).

We show how ξ1 ensures (†). Let T1, . . . , Tk be the path from root to T inH. For each i,

1 ≤ i < k, we define inductively (from k− 1 to 1) formulas αi, βi as follows. Intuitively, αi says

that all future calls leading to T from the current run of Ti must result in runs satisfying G ϕ1:

• αk−1 = G(σoTk → [G ϕ1]Tk),

• for 1 ≤ i < k − 1, αi = G(σoTi+1
→ [αi+1]Ti+1

)

The formula βi says that there must be a future call to T in the current run of Ti satisfying ϕ1Uϕ2

and all prior calls result in runs satisfying Gϕ1:

• βk−1 = (σoTk → [Gϕ1]Tk) U [ϕ1Uϕ2]Tk ,

• for 1 ≤ i < k − 1, βi = (σoTi+1
→ [αi+1]Ti+1

) U [βi+1]Ti+1
.

Now ξ1 is
∨

1≤j<k ξj where ξj states that the concatenation of runs resulting from calls

to T within the run of Tj on which [ψj]Tj is evaluated, satisfies (ϕ1 U ϕ2). More precisely, let

[ψ1]T1 , . . . , [ψk]Tk be the path from [ξ]T1 to [ψ]T in Tree(ξ) (so ψ1 = ξ and ψk = ψ). For each j

we define ψji , 1 ≤ i < k as follows:

• if j < k − 1, ψjk−1 is obtained from ψk−1 by replacing [ψk]Tk with [ψk]Tk ∧ αk−1
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• if j = k − 1, ψjk−1 is obtained from ψk−1 by replacing [ψk]Tk with [ψk]Tk ∧ βk−1

• for j < i < k − 1, ψji is obtained from ψi by replacing [ψji+1]Ti+1
with [ψji+1]Ti+1

∧ αi

• ψjj is obtained from ψj by replacing [ψjj+1]Tj+1
with [ψjj+1]Tj+1

∧ βj

• for 1 ≤ i < j, ψji is obtained from ψi by replacing [ψi+1]Ti+1
with [ψji+1]Ti+1

.

Finally, ξj = [ψj1]T1 . The formula ξ2 is constructed along similar lines. This completes the case

(ϕ1 UT ϕ2).

Consider now the case when the formula of maximum rank is a proposition (p, σ) ∈ PΣ,

where p ∈ PT and σ ∈ Σobs
T . There are several cases:

• (p, σ) occurs in [ψ]T . Then (p, σ) is replaced with p ∧ σ.

• (p, σ) occurs in [ψ]T̄ where T̄ 6= T and T̄ is not a child or parent of T . Then (p, σ) is replaced

with false.

• (p, σ) occurs in [ψT ′ ]T ′ for some parent T ′ of T . If σ ∈ ΣT then (p, σ) is replaced with false

in ψT ′ . If σ = σoT then (p, σ) is replaced by [p]T . If σ = σcT , we use the past temporal operator

S whose semantics is symmetric to U. This can be simulated in LTL, again as a consequence

of Kamp’s Theorem [82]. The proposition (p, σ) is replaced in ψT ′ by σcT ∧ ((¬σoT ) S [F(σcT ∧

p)]T )

• (p, σ) occurs in [ψT ′ ]T ′ for some child T ′ of T . Let [ψT ]T be the parent of [ψT ′ ]T ′ in Tree(ξ).

As above, if σ ∈ ΣT then (p, σ) is replaced with false in ψT ′ . If σ = σoT ′ , there are two cases:

(1) p holds in T when the call to T ′ generating the run on which ψT ′ is evaluated is made, and

(2) the above is false. Thus, ψT is replaced by ψ1
T ∨ ψ2

T where ψ1
T corresponds to (1) and ψ2

T

to (2). Specifically:

– ψ1
T is obtained from ψT by replacing [ψT ′ ]T ′ with p ∧ [ψ1

T ′ ]T ′ , where ψ1
T ′ is obtained from

ψT ′ by replacing (p, σoT ′) with σoT ′
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– ψ2
T is obtained from ψT by replacing [ψT ′ ]T ′ with ¬p ∧ [ψ2

T ′ ]T ′ where ψ2
T ′ is obtained from

ψT ′ by replacing (p, σoT ′) with false.

Now suppose σ = σcT ′ . Again, there are two cases: (1) if T ′ returns then p holds in the run of

T when T ′ returns, and (2) this is false. The two cases are treated similarly to the above.

This concludes the proof of the lemma.

Theorem 29 now follows. Let ϕf be an interleaving-invariant LTL-FO formula over Γ.

By Lemma 91, we can assume that ϕ is in local-LTL and in particular uses the set of propositions

PΣ. By Lemma 92, there exists an HLTL formula ξ equivalent to ϕ over ω-words in H(Γ),

using propositions in P ∪ Σ. Moreover, by construction, each sub-formula [ψ]T of ξ uses only

propositions in PT ∪Σobs
T . It is easily seen that ξf is a well-formed HLTL-FO formula equivalent

to ϕf on all runs of Γ.

3.9 Appendix: Restrictions and Undecidability

We provide a proof of Theorem 30 for relaxing restriction (2). Recall that HAS(2) allows

subtasks of a given task to overwrite non-null ID variables. The same proof idea can be used for

restrictions (1) to (7).

Proof. We show undecidability by reduction from the Post Correspondence Problem (PCP)

[106, 115]. Given an instance P = {(ai, bi)}1≤i≤k of PCP, where each (ai, bi) is a pair of

non-empty strings over {0, 1}, we show how to construct a HAS(2) Γ and HLTL-FO formula ϕf

such that there is a solution to P iff there exists a run of Γ satisfying ϕf (i.e., Γ 6|= ¬ϕf ).

The database schema of Γ contains a single relation

G(id, next, label)

where next is a foreign-key attribute referencing attribute id and label is a non-key attribute.

Let α, β be distinct id values in G. A path in G from α to β is a sequence of IDs i0, . . . , in

121



in G where α = i0, β = in, and for each j, 0 ≤ j < n, ij+1 = ij.next. It is easy to see that

there is at most one path from α to β for which ij 6= α, β for 0 < j < n, and the path must

be simple (i0, i1, . . . , in are distinct). If such a path exists, we denote by w(α, β) the sequence

of labels i0.label, . . . , in.label (a word over {0, 1}, assuming the values of label are 0 or 1).

Intuitively, Γ and ϕf do the following given database G:

1. non-deterministically pick two distinct ids α, β in G

2. check that there exists a simple path from α to β and that w(α, β) witnesses a solution to

P ; the uniqueness of the simple path from α to β is essential to ensure that w(α, β) is well

defined.

Step 2 requires simultaneously parsing w(α, β) as as1 . . . asm and bs1 . . . bsm for some si ∈

[1, k], 1 ≤ i ≤ m, by synchronously walking the path from α to β with two pointers Pa and Pb.

More precisely, Pa and Pb are initialized to α. Then repeatedly, an index sj ∈ [1, k] is picked

non-deterministically, and Pa advances |asj | steps to a new position P ′a, such that the sequence

of labels along the path from Pa to P ′a is asj and no id along the path equals α or β. Similarly,

Pb advances |bsj | steps to a new position P ′b, such that the sequence of labels along the path

from Pb to P ′b is bsj and no id along the path equals α or β. This step repeats until Pa and Pb

simultaneously reach β (if ever). The property ϕf checks that eventually Pa = Pb = β, so

w(α, β) witnesses a solution to P .

In more detail, we use two tasks Tp and Tc where Tc is a child task of Tp (see Figure

3.16).

start   end   Pa   PbTp:

Tc: start   end   Pa   Pb    Pa’  Pb’  

Figure 3.16. Undecidability for HAS(2).

Task Tp has two input variables start, end (initialized to distinct ids α and β by the global

precondition), and two artifact variables Pa and Pb (holding the two pointers). Tp also has a
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binary artifact relation S whose set variables are (Pa, Pb). At each segment of Tp, the subtask

Tc is called with (Pa, Pb, start, end) passed as input. Then an internal service of Tc computes

P ′a and P ′b, such that Pa, P ′a, Pb and P ′b satisfy the condition stated above for some sj ∈ [1, k].

Then Tc closes and returns P ′a and P ′b to Tp, overwriting Pa and Pb (note that this is only possible

because restriction (2) is lifted). At this point we would like to call Tc again, but multiple

calls to a subtasks are disallowed between internal transitions. To circumvent this, we equip Tp

with an internal service that simply propagates (Pa, Pb, start, end). The variables start, end are

automatically propagated as input variables of Tp. Propagating (Pa, Pb) is done by inserting it

into S and retrieving it in the next configuration (so δ = {+S(Pa, Pb),−S(Pa, Pb)}). Now we

are allowed to call again Tc, as desired.

It can be shown that there exists a solution to P iff there exists a run of the above system

that reaches a configuration in which Pa = Pb = end. This can be detected by a second internal

service success of Tp with pre-condition Pa = Pb = end. Thus, the HLTL-FO property ϕf is

simply [F (success)]Tp . Note that this is in fact an HLTL formula. Thus, checking HLTL-FO

(and indeed HLTL) properties of HAS(2) systems is undecidable.

3.10 Appendix: Complexity of Verification without Arith-
metic

Let Γ be a HAS and ϕf an HLTL-FO formula over Γ. Recall the VASS V(T, β) con-

structed for each task T and assignment β to ΦT . According to the discussion of the complexity

of verification in Section 3.5, checking whether Γ 6|= ϕf can be done in O(h log n · 2c·d log(d))

nondeterministic space, where c is a constant, h is the depth ofH, and n, d bound the number

of states, resp. vector dimensions of V(T, β) for all T and β. We will estimate these bounds

using the maximum number of T -isomorphism types, denoted M , and the maximum number of

TS-isomorphism types, denoted D. We also denote by N the size of (Γ, ϕf ). To complete the

analysis, the specific bounds M and D will be computed for acyclic, linear-cyclic, and cyclic
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schemas, as well as with and without artifact relations.

By our construction, the vector dimension of each V(T, β) is the number of TS-

isomorphism types, so bounded by D. The number of states is at most the product of the

number of distinct T -isomorphism types, the number states in B(T, β), the number of all possi-

ble ō and the number of possible states of c̄ib. And since the number of Tc-isomorphism types is

no more than the number of T -isomorphism types if Tc is child of T , the number of all possible

ō is at most (3 +M)|child(T )| ≤ (3 +M)N . Note that the number of states in B(T, β) is at most

exponential in the size of the HLTL-FO property ϕf (extending the classical construction [125]).

Thus, n = M · 2O(N) · (3 +M)N · 2D bounds the number of states of all V(T, β). It follows that

O(h log n ·2c·d log(d)) = O(h ·N · logM ·2c·D·logD), yielding the complexity of checking Γ 6|= ϕf .

Thus, checking whether Γ |= ϕf can be done in O(h2 ·N2 log2M · 2c·D logD) deterministic space

by Savitch’s Theorem [115], for some constant c.

For artifact systems with no artifact relation, the bounds degrade to O(h ·N logM) and

O(h2 ·N2 log2M).

The number of T - and TS-isomorphism types depends on the type of the schema DB of

Γ, as described next. In our analysis, we denote by r the number of relations in DB and a the

maximum arity of relations in DB. We also let k = maxT∈H |x̄T |, s = maxT∈H |s̄T | and h be

the height ofH.

Acyclic schema. if DB is acyclic, then the length of each expression in the navigation

set is bounded by the number of relations in DB. So the size of the navigation set of each

T -isomorphism type is at most ark. The total number of T -isomorphism types is at most the

product of the number of possible navigation sets and the number of possible equality types. So

M = (r + 1)k · (ark)a
rk is a bound for the number of T -isomorphism types for every T .

For TS-isomorphism types, we note that within the same path in V(T, β), all TS-

isomorphism types have the same projections on x̄Tin since the input variables are unchanged

throughout a local symbolic run. So within each query of (repeated) reachability, each TS-
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isomorphism type can be represented by (1) the equality connections from expressions starting

with x ∈ x̄Tin to expressions starting with x ∈ s̄T and (2) the equality connections within

expressions starting with x ∈ s̄T . For (1), the total number of all possible connections is at

most M1
M2 where M1 is the number of expressions starting with x ∈ x̄Tin and M2 is the number

of expressions starting with x ∈ s̄T . For (2), the total number of all possible connections is

at most MM2
2 . Note that M1 ≤ ark and M2 ≤ ars. So the total number of TS-isomorphism

type is at most D = (r + 1)s · (ark · ars)ars = (r + 1)s · (a2rk · s)ars. So for DB of fixed size

and ST of fixed arity, the number of T -isomorphism type is exponential in k and the number of

TS-isomorphism type is polynomial in k.

By substituting the above values of M and D in the space bound O(h2 · N2 log2M ·

2c·D logD), we obtain:

Theorem 93. For HAS Γ with acyclic schema and HLTL-FO property ϕf over Γ, Γ |= ϕf

can be checked in O(exp(N c1)) deterministic space, where c1 = O(ar log rs). If Γ does not

contain artifact relations, then Γ |= ϕf can be checked in c2 ·NO(1) deterministic space, where

c2 = O(a2r log2 ar).

Note that ifDB is a Star schema [84, 126], which is a special case of acyclic schema, then

the size of the navigation set is at most ark instead of ark. So verification has the complexities

stated in Theorem 93, with constants c1 = O(ars) and c2 = O(ar2 log2 ar) respectively.

Note that with the simulation used in Lemma 90, the number of variables is at most

quadratic in the original number of variables. This only affects the constants in the above

complexities.

Linearly-cyclic schema. Consider the case where DB is linearly cyclic. To bound

the number of T - and TS-isomorphism types, it is sufficient to bound h(T ), which equals to

1 + k · F (δ) where δ = maxTc∈child(T ){h(Tc)} if T is a non-leaf task and δ = 1 if T is a leaf.

And recall that F (δ) is the maximum number of distinct paths of length at most δ starting from

any relation in the foreign key graph FK. If DB is linearly cyclic, then by definition, the graph of
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cycles in FK form an acyclic graph G (each node in G is a cycle in the FK graph and there is an

edge from cycle u to cycle v iff there is an edge from some node in u to some node in v in FK).

Consider each path P of length at most δ in FK. P can be decomposed into a list of

subsequences of nodes, where each subsequence consists of nodes within the same cycle in FK

(as shown in Figure 3.17).

...

Figure 3.17. A path in a Linearly-Cyclic Foreign Key graph.

So F (δ) can be bounded by the product of (1) the number of distinct paths in G starting

from any cycle and (2) the maximum number distinct paths of length at most δ formed using

subsequences of nodes from cycles within the same path in G. It is easy to see that (1) is at most

ar. And since the length of a path in G is at most r, (2) is at most δr. Thus F (δ) is bounded by

ar · δr = (a · δ)r.

So if DB is linearly cyclic, then h(T ) is bounded by 1 + ark if T is a leaf task and h(T )

is bounded by 1 + (a · δ)r · k if T is non-leaf task where δ = maxTc∈child(T ){h(Tc)}. By solving

the recursion, for every task T , we have that h(T ) ≤ c · (a · k)r·h for some constant c. So the size

of the navigation set of each T -isomorphism type is at most c · (a · k)r(h+1). Thus the number

of T - and TS-isomorphism types are bounded by (r + 1)k · (c · (a · k)r(h+1))c·(a·k)r(h+1) . By an

analysis similar to that for acyclic schemas, we can show that

Theorem 94. For HAS Γ with linearly-cyclic schema and HLTL-FO property ϕf over Γ, Γ |= ϕf

can be checked in O(2- exp(N c1·h)) deterministic space where c1 = O(r). If Γ does not contain

artifact relations, then Γ |= ϕf can be checked in O(N c2·h) deterministic space where c2 = O(r).

Cyclic schema. If DB is cyclic, then each relation in FK has at most a outgoing

edges so F (δ) is bounded by aδ. So h(T ) = O(k · aδ) where δ = 1 if T is a leaf task and
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δ = maxTc∈child(T ) h(Tc) otherwise. Solving the recursion yields h(T ) = h- exp(O(N)). By

pursuing the analysis similarly to the above, we obtain the following:

Theorem 95. For HAS Γ with cyclic schema and HLTL-FO property ϕf over Γ, Γ |= ϕf can

be checked in (h+ 2)- exp(O(N)) deterministic space. If Γ does not contain artifact relations,

then Γ |= ϕf can be checked in h- exp(O(N)) deterministic space.

To summarize, the schema type determines the size of the navigation set, and hence

the complexity of verification, as follows (h the height of the task hierarchy and N the size of

(Γ, ϕf )).

• Acyclic schemas are the least general, yet sufficiently expressive for many applications. A

special case of acyclic schema is the Star schema [84, 126] (or Snowflake schema) which is

widely used in modeling business process data. For fixed acyclic schemas, the navigation sets

have constant depth.

• Linearly-cyclic schemas extend acyclic schemas but yield higher complexity. In general, the

size of the navigation set is exponential in h and polynomial in N . Linearly-cyclic schemas

allow very simple cyclic foreign key relations such as a single Employee-Manager relation.

They include important special cases such as schemas where each relation has at most one

foreign key attribute.

• Cyclic schemas allow arbitrary foreign keys but also come with much higher complexity (a

tower of exponentials of height h), as the size of navigation sets become hyper-exponential

wrt h.
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Chapter 4

SpinArt: A Spin-based Verifier for Arti-
fact Systems

4.1 Overview

In this chapter, we study the implementation of SpinArt, a practical artifact system verifier

based on the classic model checker Spin. We begin by formally defining Tuple Artifact System

(TAS) reviewed informally in Chapter 2. Compared to the reviewed TAS model, the version of

TAS considered here is slightly different, with additional restriction on the schema. The model

captures a core fragment of HAS that can potentially be handled by Spin (Section 4.2). At a high

level, a TAS consists of an acyclic read-only database, a tuple of updatable artifact variables and

a set of services specifying transitions of the system. The properties of TAS’s to be verified are

specified using LTL-FO.

This model is expressive enough to allow data of unbounded domain and size, which

are features not directly supported by Spin or other state-of-the-art model checkers. Therefore,

a direct translation into Spin requires setting limits on the size of the data and its domain,

resulting in an incomplete verifier. To address this challenge, we exploit the symbolic verification

techniques establishing the decidability results for HAS and develop a simple algorithm for

translating TAS specifications and properties into equivalent problem instances that can be

verified by Spin, without sacrificing either the soundness or the completeness of the verifier.

However, a naive use of Spin still results in poor performance even with the translation algorithm.
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Therefore, we develop an array of nontrivial optimizations techniques to render verification

tractable. To the best of our knowledge, SpinArt is the first implementation of an artifact system

verifier that preserves decidability under unbounded data while being based on off-the-shelf

model checking technology. The main contributions are summarized as follows.

• We formally define Tuple Artifact System (TAS), a core fragment of HAS that permits efficient

implementation of a Spin-based verifier. By exploiting the symbolic verification approach from

previous work [45, 36], we show a simple algorithm for translating the verification problem

into an equivalent instance in Spin. This algorithm forms the basis of our implementation of

SpinArt.

• We implement SpinArt with two nontrivial optimization techniques to achieve satisfactory

performance. The first consists of a more efficient translation algorithm avoiding a quadratic

blowup in the size of the specification due to keys and foreign keys, so that it shortens

significantly the compilation and execution time for Spin. The second optimization is based on

static analysis, and greatly reduces the size of the search space by exploiting constraints

extracted from the input specification during a pre-computation phase. Although these

techniques are designed with Spin as the target tool, we believe that they can be adapted to

implementations based on other off-the-shelf model checkers.

• We evaluate the performance of SpinArt experimentally using real-world data-driven work-

flows and properties. We created a benchmark of artifact systems and LTL-FO properties

from existing sets of business process specifications and temporal properties by extending

them with data-aware features. The experiments highlight the impact of the optimizations and

various parameters of the specifications and properties on the performance of SpinArt.

This chapter is organized as follows. We start by reviewing in Section 4.2 the HAS model

and formally defining TAS, a core fragment of HAS. We also define the variant of LTL-FO

used in this chapter to specify properties of TAS’s. In Section 4.3 we first review the theory

adapted to TAS, then describe the initial direct implementation of SpinArt based on the symbolic
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representation technique for HAS. We next present the specialized optimizations, essential for

achieving acceptable performance. The experimental results are shown in Section 4.4. Finally,

we discuss and conclude in Section 4.5.

4.2 The Model

In this section, we present the variant of artifact systems supported by our verifier, as

well as the temporal logic LTL-FO used to specify the properties to be verified.

4.2.1 Tuple Artifact Systems

The model is a variant of the Hierarchical Artifact System (HAS) model presented in

Chapter 3 and is restricted as follows:

• it disallows evolving relations in artifact data

• it does not use arithmetic in service pre-and-post conditions

• the underlying database schema uses an acyclic set of foreign keys

The implemented model retains the hierarchy of tasks present in HAS. However, for

simplicity of exposition, we only define formally the core of the model, consisting of a single

task in which a tuple of artifact values evolves throughout the workflow under the action of

services. For clarity, we also describe the algorithms in terms of the core model. The exposition

can be easily extended to a hierarchy of tasks.

We now present the syntax and semantics of TAS. The formal definitions below are

illustrated with an intuitive example of the TAS specification of an order fulfillment business

process originally written in BPMN [1]. Intuitively, the workflow allows customers to place

orders and the supplier company to process the orders.

At a high level, a TAS consists of a database schema and a TAS artifact schema. The

database schema for TAS is the same as the acyclic database schema for HAS (Definition 3).

Here, we illustrate the acyclic schema with an example.
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Example 96. The order fulfillment workflow has the following database schema:

• CUSTOMERS(ID, name, address, record), ITEMS(ID, item name, price)

CREDIT RECORD(ID, status)

The IDs are key attributes, price, item name, name, address, status are non-key attributes,

and record is a foreign key attribute satisfying the dependency CUSTOMERS[record] ⊆

CREDIT RECORD[ID]. Intuitively, the CUSTOMERS table contains customer information with a

foreign key pointing to the customers’ credit records stored in CREDIT RECORD. The ITEMS table

contains information on the items. Note that the schema is acyclic as there is only one foreign

key reference from CUSTOMERS to CREDIT RECORD.

Figure 5.2 shows an example of an instance of the acyclic schema of the order fulfillment

workflow. Note that the domains of CUSTOMERS.ID, ITEMS.ID and CREDIT RECORD.ID and

the domain for non-key attributes are mutually disjoint. The domain of CUSTOMERS.record

is included in Dom(CREDIT RECORD.ID) since record is a foreign key attribute referencing

CREDIT RECORD.ID.

ID name address record

C0 'John' '1 Main St' R0

C1 'Tina' '2 Boardway' R1

CUSTOMERS:

ID status

R0 'Good'

R1 'Bad'

CREDIT_RECORD:

ID item_name price

Item1 'Printer' 10

Item2 'Scanner' 15

ITEMS:

Figure 4.1. An instance of an acyclic schema.

We next proceed with the definition of TAS artifact schema. Similarly to the database

schema, we consider two infinite, disjoint sets VARid of ID variables and VARval of data variables.

We associate to each variable x its domain Dom(x). If x ∈ VARid, then Dom(x) = DOMid ∪

{null}, and if x ∈ VARval, then Dom(x) = DOMval ∪ {null}. An artifact variable is a

variable in VARid ∪ VARval. If x̄ is a sequence of artifact variables, a valuation of x̄ is a mapping

ν associating to each variable x in x̄ an element in Dom(x).
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Definition 97. A TAS artifact schema is a pair A = 〈DB, x̄〉 with an acyclic database schema

DB and x̄ ⊆ VARid ∪ VARval a set of artifact variables. The domain of each variable x ∈ x̄ is

either DOMval ∪ {null} or dom(R.ID)∪ {null} for some relation R ∈ DB. In the latter case

we say that the type of x is type(x) = R.ID. An instance ρ of A is a pair (D, ν) where D is a

finite instance of DB and ν is a valuation of x̄.

Example 98. The TAS artifact schema of the order fulfillment example consists of the acyclic

database schema described in Example 96 and the following artifact variables:

• ID variables: cust id of type CUSTOMERS.ID and item id of type ITEMS.ID

• Non-ID variables: status and instock

Intuitively, cust id and item id store the ID of the customer and the ID of the item ordered

by the customer. Variable status indicates the different stages of the order, namely “Init”,

“OrderPlaced”, “Passed” (passed the credit check), “Shipped” or “Failed”. Variable instock

indicates whether the ordered item is in stock.

For a given TAS artifact schema A = 〈DB, x̄〉 and a sequence ȳ of variables, a condition

on ȳ is a quantifier-free first-order (FO) formula overDB∪{=}whose variables are included in ȳ.

In more detail, a condition over ȳ is a Boolean combination of relational or equality atoms whose

variables are included in ȳ. A relational atom over relation R(ID, A1, . . . , Am, F1, . . . , Fn) ∈

DB, is of the form R(x, y1, . . . , ym, z1, . . . , zn), where {x, z1, . . . , zn} ⊆ VARid and {y1, . . . ,

ym} ⊆ VARval. An equality atom is of the form x = z, where x is variable and z is a variable

of the same type, or x ∈ VARval and z ∈ DOMval. The special constant null can be used in

equalities. If α is a condition on ȳ ⊆ x̄, D an instance of DB and ν a valuation of x̄, we denote

by D |= α(ν) the fact that D satisfies α with valuation ν, with standard semantics. For an atom

R(z̄) in α where R ∈ DB, if ν(z) = null for some z ∈ z̄, then R(ν(z̄)) is false (since the

database instances do not contain null). Although conditions are quantifier-free, conditions

with existentially quantified variables (denoted ∃FO) can be easily simulated by adding variables

to x̄, so we use them as shorthand whenever convenient.
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Example 99. The following ∃FO condition states that the customer with ID cust id has good

credit:

∃n∃a∃r CUSTOMERS(cust id, n, a, r) ∧ CREDIT RECORD(r,“Good”).

We next define services in TAS.

Definition 100. Let A = 〈DB, x̄〉 be a TAS artifact schema. A TAS service σ of A is a tuple

〈π, ψ, ȳ〉 where:

• π and ψ, called pre-condition and post-condition, respectively, are conditions over x̄, and

• ȳ is the set of propagated variables, where ȳ ⊆ x̄.

Intuitively, π and ψ are conditions which must be satisfied by the previous and the next

instance respectively when σ is applied. In addition, the values stored in ȳ are propagated to the

next instance.

Example 101. The order fulfillment TAS has the following five services: EnterCustomer, En-

terItem, CheckCredit, Restock and ShipItem. Intuitively, for each order, the workflow first

obtains the customer and item information by applying the EnterCustomer service and the

EnterItem service. Then the credit record of the customer is checked by the CheckCredit service.

If the record is good, ShipItem can be called to ship the item to the customer. If the requested

item is unavailable, then Restock must be called before ShipItem to procure the item.

Next, we illustrate each service in more detail. The EnterCustomer and EnterItem allow

the customer to enter his/her information and the ordered item’s information. The CUSTOMERS

and ITEMS tables are queried to obtain the customer ID and item ID. When EnterItem is

called, the supplier also checks whether the item is currently in stock and sets the variable

instock to “Yes” or “No” accordingly. This step is modeled as an external service so we

use the post-condition to enforce that the two values are chosen nondeterministically. In both

services, if both cust id and item id have been entered, the current status of the order is

updated to “OrderPlaced” (otherwise it remains “Init”). The two services can be called multiple
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times to allow the customer to modify previously entered data. The propagated variables of

EnterCustomer are item id and instock since their values are not modified when the service

is applied. Similarly, the only propagated variable of EnterItem is cust id. The two services

are formally specified in Fig. 4.2, and Fig. 5.5 shows transitions that result from applying the

two services consecutively.

EnterCustomer:
Pre-condition: status = “Init”
Propagated: {item id, instock}
Post-condition:

∃n∃a∃r CUSTOMERS(cust id, n, a, r)∧
(item id 6= null→
status = “OrderPlaced”)∧
(item id = null→ status = “Init”)

EnterItem:
Pre-condition: status = “Init”
Propagated: {cust id}
Post-condition:

∃n∃p ITEMS(item id, n, p)∧
(instock = “Yes” ∨ instock = “No”)∧
(cust id 6= null→ status = “OrderPlaced”)∧
(cust id = null→ status = “Init”)

Figure 4.2. Examples of two TAS services.

cust_id item_id status instock

C0 null 'Init' null

cust_id item_id status instock

null null 'Init' null
EnterCustomer cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'
EnterItem

Figure 4.3. Two transitions caused by TAS services.

We describe in brief the rest of the TAS services. The CheckCredit service can be called

if status = “OrderPlaced”. It checks the credit record of the customer using the condition

IsGood(cust id) in Example 99. If the credit record is good, then it updates status to “Passed”

otherwise to “Failed”. The Restock service can be called if status = “Passed” which means

that the credit check is passed. The service simply updates instock to “Yes”, indicating that

ordered item is now in stock. Finally, the ShipItem can be called if status = “Passed” and

instock = “Yes”. It updates status to “Shipped”, meaning that the shipment is successful.

We can now define TAS’s.

Definition 102. A Tuple Artifact System (TAS) is a triple Γ = 〈A,Σ,Π〉, where A is a TAS
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artifact schema, Σ is a set of TAS services over A, and Π, called the global pre-condition, is a

condition over x̄.

We next define the semantics of TAS. Intuitively, a run of a TAS on a database D consists

of an infinite sequence of transitions among artifact instances (also referred to as configurations,

or snapshots), starting from an initial artifact tuple satisfying pre-condition Π. We begin by

defining single transitions.

Definition 103. Let Γ = 〈A,Σ,Π〉 be a tuple artifact system, whereA = 〈x̄,DB〉. We define the

transition relation among instances of A as follows. For two instances (ν,D), (ν ′, D′) and TAS

service σ = 〈π, ψ, ȳ〉, (ν,D)
σ−→ (ν ′, D′) if D = D′, D |= π(ν), D |= ψ(ν ′), and ν ′(y) = ν(y)

for each y ∈ ȳ.

Then a run of the TAS Γ = 〈A,Σ,Π〉 on database instance D is an infinite sequence

ρ = {(Ii, σi)}i≥0, where each Ii is an instance (νi, D) of A, D |= Π(ν0), and for each i > 0,

Ii−1
σi−→ Ii. In the run, σ0 is a special initializing service init, whose role is to produce the

instance I0.

4.2.2 Specifying Properties of TAS’s with LTL-FO

In this chapter we focus on verifying temporal properties of runs of a tuple artifact system.

For instance, in the business process of the example above, we would like to specify properties

such as:

(†) If an order is taken and the ordered item is out of stock, then the item must be restocked before

it is shipped.

Such temporal properties of a TAS are specified using a variant of LTL-FO. Formally, an

LTL-FO property of a tuple artifact system A is obtained starting from an LTL formula using

some set P ∪Σ of propositions. Propositions in P are interpreted as conditions over the variables

x̄ together with some additional global variables ȳ, shared by different conditions and allowing

to refer to the state of the task at different moments in time. The global variables are universally
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quantified over the entire property. A proposition σ ∈ Σ indicates the application of service σ in

a given transition. LTL-FO formulas are defined as follows.

Definition 104. Let Γ = 〈A,Σ,Π〉 be a TAS where A = (x̄,DB). Let ȳ be a finite sequence of

variables in VARid ∪ VARval disjoint from x̄, called global variables. An LTL-FO formula for Γ

is an expression ∀ȳϕf , where:

• ϕ is an LTL formula with propositions P ∪ Σ, where P is a finite set of proposition disjoint

from Σ

• f is a function from P to conditions over x̄ ∪ ȳ

• ϕf is obtained by replacing each p ∈ P with f(p)

For example, suppose we wish to specify property (†). The property is of the form

ϕ = G(p→ (¬q U r)), which means: if p happens, then in the future q will not happen until r is

true. Here p says that the EnterItem service is called and chooses an out-of-stock item, q states

that the ShipItem service is called with the same item, and r states that the service Restock is

called to restock the item. Since the item mentioned in p, q and r must be the same, the formula

requires using a global variable i denoting the ID of the item. This yields the following LTL-FO

property:

∀i G((EnterItem ∧ item id = i ∧ instock = “No”)→

(¬(ShipItem ∧ item id = i) U (Restock ∧ item id = i)))

A correct specification can enforce (†) simply by requiring in the pre-condition of ShipItem

that the item is in stock. One such pre-condition is (instock = “Yes” ∧ status = “Passed”),

meaning that the item is in stock and the customer passed the credit check. However, in a similar

specification where instock = “Yes” is not tested in the pre-condition but performed in the

post-condition of ShipItem (i.e. the post-condition requires that if instock = “Yes”, then

status stays unchanged so the item is not shipped), the LTL-FO property (†) is violated because
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ShipItem can still be called without first calling the Restock service. The verifier would detect

this error and produce a counter-example illustrating the violation.

We say that a run ρ = {(Ii, σi)}i≥0 satisfies ∀ȳϕf , where prop(ϕ) = P ∪ Σ, if ϕ is

satisfied, for all valuations of ȳ in DOMid ∪ DOMval ∪ {null}, by the sequence of truth

assignments to P ∪Σ induced by f on the sequence {(Ii, σi)}i≥0. More precisely, for p ∈ P , the

truth value induced for p in (Ii, σi) is the truth value of the condition f(p) in Ii; a proposition

σ ∈ Σ holds in (Ii, σi) if σi = σ. A TAS Γ satisfies ∀ȳϕf (ȳ) if for every run ρ of Γ and valuation

ν of ȳ, ρ satisfies ϕf (ν(ȳ)).

It is easily seen that for given Γ with artifact variables x̄ and LTL-FO formula ∀ȳϕf (ȳ),

one can construct Γ′ with artifact variables x̄ ∪ ȳ such that Γ |= ∀ȳϕf (ȳ) iff Γ′ |= ϕf . Indeed, Γ′

simply adds ȳ to the propagated variables in each service. Therefore, we only consider in the

rest of the chapter quantifier-free LTL-FO formulas.

4.3 The Spin-based Verifier

In this section we describe the implementation of SpinArt. The implementation is based

on Spin, the widely used model checker in software verification. A brief review of Spin and

Promela, the specification language for Spin, is provided in Appendix 4.6.

Building an artifact verifier based on Spin is a challenging task due to limitations of Spin

and Promela. In Promela, one can only specify variables with bounded domains (byte, int, etc.)

and bounded size (i.e. arrays with dynamic allocation are not allowed), but in the TAS model,

the domains of the artifact variables and the database are unbounded and the database instance

can have arbitrary size, so a direct translation is not possible. In addition, Spin cannot handle

Promela programs of large size because the generated verifier V would be too large for the C

compiler. Spin could also fail due to space explosion in the course of verification. Thus, our

implementation requires a set of nontrivial translations and optimizations, discussed next.
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4.3.1 Symbolic Verification

The implementation makes use of the symbolic representation technique developed

in Chapter 3 to establish decidability and complexity results for HAS. With the symbolic

representation, the verification of TAS’s is reduced to finite-state model checking that Spin

can handle. Intuitively, given a TAS specification Γ and an LTL-FO property ϕf , we use

isomorphism types to describe symbolically the structure of the portion of the database reachable

from the current tuple of artifact variables by navigating the foreign keys. An isomorphism type

fully captures the information needed to evaluate any condition in Γ and ϕf . In addition, we can

show, similarly to HAS, that to check whether Γ |= ϕf , it is sufficient to check that all symbolic

runs of isomorphism types satisfy ϕf , or equivalently, that no symbolic run satisfies ¬ϕf . We

define symbolic runs next.

We start with defining isomorphism types that are similar to the T -isomorphism types

(Definition 31) for HAS. Essentially, an isomorphism type τ consists of a set of expressions E

and an equality type ∼τ of the expressions. For a set of variables ȳ, we denote by E(ȳ) the set

of symbols containing all variables ȳ, navigations starting from ȳ, and the set of all constants

that appear in Γ or ϕf . Note that the length of each expression is bounded because of acyclicity

of the foreign keys, so E is a finite set. We also include a tuple of variables ȳ in the definition

for convenience in the technical development in this chapter. We can now define isomorphism

types.

Definition 105. Let Γ be a TAS with variables x̄, and ϕf an LTL-FO property of Γ. An

isomorphism type τ for Γ, ϕf , and variables ȳ ⊆ x̄ consists of a navigation set E(ȳ) together

with an equivalence relation ∼τ over E(ȳ) such that:

• c 6∼τ c′ for constants c 6= c′ in const(Γ, ϕf ), and

• if u ∼τ v and u.f, v.f ∈ E(ȳ) then u.f ∼τ v.f .

Example 106. Figure 4.4 shows an isomorphism types τ of variables {x, y, z}, where R(ID, A)

is the only database relation, {x, y, z} are 3 variables of type R.ID and there is only one non-ID
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constant c0. Each pair of expressions (e, e′) are connected with an solid line (=-edge) if e ∼τ e′

otherwise a dashed line ( 6=-edge). The 6=-edges between {x, y, z} and {x.A, y.A, z.A, c0} are

omitted in the figure for clarity. Note that since (x, y) is connected with an =-edge, (x.A, y.A)

must also be connected with =-edge as enforced by the key dependency.

y z

x

y.A z.A

x.A  c0

Figure 4.4. An isomorphism type of variables {x, y, z}.

Note that when ȳ = x̄, τ provides enough information to evaluate conditions over x̄.

Satisfaction of a condition of ϕf by an isomorphism type τ is defined analogously to satisfaction

by a T -isomorphism type, defined in Chapter 3.

Let τ be an isomorphism type with navigation set E(ȳ) and equality type ∼τ . The

projection of τ onto a subset of variables z̄ of ȳ, denoted as τ |z̄, is (∼τ |z̄, E(z̄)) where ∼τ |z̄ is

the projection of ∼τ onto E(z̄). We define the symbolic transition relation among isomorphism

types as follows: for a TAS service σ = (π, ψ, ȳ) in Σ, τ σ−→ τ ′ iff τ |= π, τ ′ |= ψ and

τ |ȳ = τ ′|ȳ.

Definition 107. A symbolic run of Γ = 〈A,Σ,Π〉 is a sequence ρ̃ = {(τi, σi)}i≥0 such that for

each i ≥ 0, τi is an isomorphism type, σi ∈ Σ, σ0 = init, τ0 |= Π and τi
σi+1−→ τi+1.

Example 108. Figure 4.5 shows an example of applying a symbolic transition on an isomorphism

type. The previous isomorphism type τ (top-left) satisfies the pre-condition, the next isomorphism

type τ ′ (bottom) satisfies the post-condition, and they are consistent in their projection to the

propagated variables {x, z} (top-right).

Satisfaction of a quantifier-free LTL-FO property on a symbolic run is defined in the

standard way. One can show the following.

Theorem 109. Given a TAS Γ and LTL-FO property ϕf of Γ, Γ |= ϕf iff for every symbolic run

ρ̃ of Γ, ρ̃ |= ϕf .
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y.A z.A

x.A  c0

y z

x

y.A z.A

x.A  c0

⊨ Pre-cond: x = y ∧ ¬R(z, c0) ⊨ Post-cond: x ≠ y ∧ R(y, c0)

Propagate
{x, z} z

x

z.A

x.A  c0

Figure 4.5. Symbolic transition.

4.3.2 Implementation of SpinArt

Using Theorem 109, one can implement a verifier that constructs a Promela program P

to simulate the non-deterministic execution of symbolic transitions. The program P specifies

E(x̄) as its variables. Each condition ψ in Γ and ϕf is translated into a Promela condition f(ψ)

as follows.

• if ψ = (x = y), then f(ψ) = ψ;

• if ψ = R(x, y1, . . . , ym) for relation R(ID, A1, . . . , Am), then f(ψ) =
∧m
i=1(x.Ai = yi);

• Boolean connectives are handled in the standard way.

Then P simulates the following process of executing symbolic transitions. First, P initial-

izes the constant expressions with distinct values and other expressions with non-deterministically

chosen values that satisfy f(Π). Then for each service σ = (π, ψ, ȳ), we construct a non-

deterministic option with guard f(π) that executes the following:

(i) For each expression e ∈ E(x̄)− E(ȳ), assign to e a non-deterministically chosen value from

{0, . . . , |E(x̄)| − 1}.

(ii) Proceeds if f(ψ) is True and for each pair of expressions e and e′, e = e′ implies that for

every attribute A where {e.A, e′.A} ⊆ E(x̄), e.A = e′.A. Otherwise the run is blocked and

invalidated.

Example 110. First, each TAS condition is translated into a condition in Promela. For example,

the pre-condition in Example 108 is translated into

(x == y) && !(z.A == c0).
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Then, to construct the Promela program P , we first have a do-statement to ensure that

the options constructed according to Section 4.3.2 are repeatedly chosen non-deterministically

and executed. For example, the service in Example 108 is translated into the fragment of a

Promela program shown in Fig. 4.6, where the select(y : 0 .. N - 1) statement is

a built-in macro for assigning a variable with a value non-deterministically chosen from a range

(here N is a constant equal to |E(x̄)|).

1 do
2 // check the pre-condition
3 :: ((x == y) && !(z.A == c0)) ->
4 // choose values for y and y.A non-deterministically
5 select(y : 0 .. N - 1);
6 select(y.A : 0 .. N - 1);
7 // validate the post-condition
8 if
9 :: (x != y && y.A == c0) -> skip;

10 fi;
11 // validate the Keys and FKs
12 if
13 :: ((x != y || x.A == y.A) && (y != z || y.A == z.A) && (

x != z || x.A == z.A)) -> skip;
14 fi;
15 :: // another service
16 ...
17 od

Figure 4.6. A fragment of a Promela program translated from a service.

Intuitively, each valid valuation v to E(x̄) corresponds to a valid isomorphism type τ of

x̄ where e ∼τ e′ iff v(e) = v(e′). The guard ensures that the pre-condition holds. Part (i) ensures

that the set of next valuations covers all possible valid successors of isomorphism types. Finally,

the conditions in (ii) ensure that the post-condition holds and the keys and FKs dependencies are

satisfied in the next isomorphism type.

Finally, the LTL-FO formula ϕf is translated into a LTL formula ϕ̃f in Promela by

replacing each FO component c with f(c) defined above. The universally quantified variables of
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ϕf are translated into extra variables added to the Promela program. Small modifications to the

LTL formula are also needed to skip the internal steps for assigning values and testing conditions

in the run such that the Spin verification only considers the snapshots right after complete service

applications. We can show the following.

Lemma 111. Every symbolic run ρ̃ = {(τi, σi)}i≥0 satisfies ϕf iff P |= ϕ̃f .

The intuition of the above Lemma is that each valid valuation v to E(x̄) in P corresponds

to an unique isomorphism type τ . The translated transitions in Promela guarantees that the set of

runs of P captures the set of all symbolic runs. So to check whether Γ satisfies ϕf , it is sufficient

to translate (Γ, ϕf ) into (P , ϕ̃f ) and verify whether P |= ϕ̃f .

However, this approach is inefficient in practice for the following reasons. In part (ii), the

size of the tests to ensure satisfaction of the key and foreign key dependencies is quadratic in the

number of expressions, so the compilation of P and the generated verifier is slow or simply fails.

In (i), assigning to each e values from {0, . . . , |E(x̄)| − 1} is also infeasible because it leads to

state explosion when the actual search is performed by the verifier. As shown by the experiments,

this leads to either slow execution or memory overflow. To overcome these two major obstacles,

we introduce two key optimizations.

4.3.3 Optimization with Lazy Dependency Tests

In the first optimization, we reduce the size of the generated Promela program by

eliminating the tests of key and foreign key dependencies in step (ii) of the above approach.

Instead, we introduce tests of the dependencies in a lazy manner, only when two expressions are

actually tested for equality. Formally, instead of performing the tests in (ii), we translate each

condition ψ of (Γ, ϕf ) into f(ψ) then add the following additional tests: for every atom (e = e′)

in the negation normal form1 of f(ψ), we replace (e = e′) with
(∧

w:{e.w,e′.w}⊆E(x̄) e.w = e′.w
)

where w is a sequence of attributes.

1 With negations pushed down and merged with the = and 6= atoms, the only remaining Boolean operators are ∧
and ∨.
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The size of the tests in the resulting Promela program P is O((|π|+ |ψ|) ·maxx∈x̄ |E(x)|)

for each service, while the original size is O(|E(x̄)|2 · a) where a is the maximum arity in the

database schema DB. Typically, the size of a condition is much smaller than the number of

expressions and maxx∈x̄ |E(x)| is also smaller than |E(x̄)|. We can see that the lazy dependency

significantly reduces the size of the tests.

Example 112. Consider the database schema DB = {R(ID, A,B), S(ID, C,D)} where A

and B are foreign key attributes referencing the ID of S and C,D are non-key attributes. A

condition R(x, y, z) is translated into (x.A == y && x.B == z) without the optimization

and (x.A == y && x.B == z && x.A.C == y.C && x.A.D == y.D &&

x.B.C == y.C && x.B.D == y.D) if the lazy dependency tests optimization is applied.

The additional terms in the conditions are added so that the tests for keys and FKs in the

translation can be removed.

Example 113. Consider the service and the translation shown in Fig. 4.6. With lazy dependency

tests, the translated pre-condition becomes (x == y) && !(z.A == c0) && (x.A ==

y.A) with one additional term (x.A == y.A). The translated post-condition is unchanged

and the tests for keys and FKs are removed (lines 12-14). The overall size of the translation is

reduced.

Correctness. The modified translation using lazy dependency tests preserves correctness.

The intuition is the following. With the lazy tests, in some snapshot with valuation v in the

execution of P , there could be two expressions e, e′ where v(e) = v(e′) and for some attribute

A, v(e.A) 6= v(e′.A), but this does not matter because e = e′ is never tested during the current

lifespan of e and e′ (the segment of the symbolic run where e and e′ are propagated), and neither

are any of the prefixes of e and e′. So within the same lifespan, we are free to replace v(e) and

v(e′) with different values and the run of P remains valid. Thus, there is no need to enforce the

equality e.A = e′.A.
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4.3.4 Optimization by Assignment Set Minimization

In the naive approach, assigning expressions with values chosen from a set of size |E(x̄)|

guarantees correctness by covering all possible isomorphism types, but it results in a large search

space for Spin, which can lead to poor performance or memory overflow. The goal of this

optimization is to reduce the size of the search space by minimizing the set of values used in the

assignments while preserving the correctness of verification.

We denote by A(e) the assignment set of a non-constant expression e, which is the set

from which the Promela program P chooses non-deterministically values for e. The technique

relies on static analysis of P and the translated property ϕ̃f , aiming to reduce the size of the

assignment sets as much as possible.

The intuition behind the optimization is the following. We notice that searching for an

accepting run in the generated Promela program P can be regarded as searching for a sequence

of sets of constraints {Ci}i≥0, where each Ci consists of the (in)equality constraints imposed

on the current snapshot by the history of the run. More precisely, the statements executed in P

can be divided into two classes: (1) testing a condition π and (2) assigning new values to some

expressions. At snapshot i, executing an (1)-statement can be viewed as adding π to Ci while

Ci should remain consistent (no contradiction implied by the =-or- 6= constraints in Ci), and a

(2)-statement assigning a value to e can be viewed as projecting away from Ci constraints that

involve e. When we construct the assignment set A(·), it is sufficient for correctness that the

valuations generated with A(·) can witness the set of all reachable Ci’s, which can be a small

subset of all the possible isomorphism types. Thus, the resulting A(·) can be much smaller.

Computing all reachable Ci’s can be as hard as the verification problem itself. So instead,

we over-approximate them with the constraint graph G of (P , ϕ̃f ) obtained by collecting all

(in)equalities from (P , ϕ̃f ), so that all Ci’s are subgraphs of G.

Formally, the constraint graph G is an undirected labeled graph with E(x̄) as the set of

nodes, where an edge (e, e′, ◦) is in G for ◦ ∈ {=, 6=} if (e ◦ e′) is an atom in any condition of P
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and ϕ̃f with all conditions converted in negation normal form.

A subgraph G′ of G is consistent if its edges do not lead to a contradiction (i.e., two

nodes connected in G′ by a sequence of =-edges are not also connected by an 6=-edge). Observe

that G itself is generally not consistent, since it may contain mutually exclusive constraints that

never arise in the same configuration. On the other hand, each Ci as above corresponds to a

consistent subgraph of G.

Intuitively, the approach to minimizing the assignment sets proceeds as follows. First,

consider the connected components of G with respect to its equality edges. Clearly, distinct

connected components can be consistently assigned disjoint sets of values. Next, within each

connected component, all expressions can be provided with the same assignment set, which we

wish to minimize subject to the requirement that it must provide sufficiently many values to

satisfy each of its consistent subgraphs.

More precisely, we can show the following.

Lemma 114. Let P ′ be the Promela program obtained from (P , ϕ̃f ) by replacing the assignment

sets with any A(·) that satisfies:

1. for every (e, e′,=) ∈ G, A(e) = A(e′), and

2. for every consistent subgraph G′ of G, there exists a valuation v such that for every e ∈ E(x̄),

v(e) ∈ A(e) and for ◦ ∈ {=, 6=}, v(e) ◦ v(e′) if (e, e′, ◦) ∈ G′.

Then P |= ϕ̃f iff P ′ |= ϕ̃f .

Note that constants are not taken into account in the above lemma but can be included in

a straightforward way. Condition 2 implies that whenever a new valuation v′ is generated from a

previous valuation v, regardless of the previous and next constraint sets C and C ′, there exists a

v′ that is consistent with v, C and C ′.

We next consider minimizing the assignment sets within each connected component. It

turns out that computing the minimal A(·) that satisfies the above conditions is closely related to

computing the chromatic number of a graph [59]. Recall that the chromatic number χ(G) of an
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Figure 4.7. Example of Assignment Sets Minimization.

undirected graph G is the smallest number of colors needed to color G such that no two adjacent

nodes share the same color. If the subgraph G′ in condition 2 is fixed, then the minimal |A(·)| is

precisely the chromatic number of G′ restricted to only 6=-edges and with connected components

of the =-edges merged into single nodes. We illustrate it with an example.

Example 115. Consider the constraint graph G in the left of Fig. 4.7. The solid lines represent

=-edges and the dashed lines represent 6=-edges. The entire graph consists of a single connected

component of =-edges. To find the minimal A(·), we need to find the largest chromatic number

over all consistent subgraphs of G. Consider two consistent subgraphs G1 (middle) and G2

(right). The chromatic number of G1 is 3 because (e2, e3) (and (e4, e5)) must share the same

color, so G1 is in fact a triangle. The chromatic number of G2 is 2 as it no long requires e2 and

e5 to have different colors. In fact, G1 is the subgraph with the largest chromatic number, so

setting A(ei) = {0, 1, 2} for every i minimizes the assignment sets.

As computing the chromatic number is NP-HARD, it is not difficult to show that computing

A(·) with minimal size is also NP-HARD. (We conjecture that it is ΠP
2 -HARD.) So computing

the minimal A(·) can be inefficient. In the implementation, we use a simple algorithm that

approximates the maximal chromatic number with the straightforward bound χ(G)(χ(G)−1) ≤

2m where m is the number of 6=-edges within the connected component. The algorithm ensures

satisfaction of the two conditions and produces reasonably small assignment sets in practice

because the constraint graph is likely to be very sparse and contains few 6=-edges. This is

confirmed by our experiments.
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Table 4.1. Statistics of the BPMN benchmark.

#Workflows Avg(#Relations) Avg(#Variables) Avg(#Services)

32 3.563 20.63 11.59

4.4 Experimental Results

In this section we describe the experiments evaluating the performance of SpinArt.

Benchmark. The benchmark used for the experiments consists of a collection of

32 artifact systems modeling realistic business processes from different application domains.

Because of the difficulty in obtaining fully specified real-world data-driven business processes,

we constructed the benchmark starting from business processes specified in the widely used

BPMN model, that are provided by the official BPMN website [1]. We rewrote the BPMN

specifications into artifact systems by manually adding the database schema, variables and

service pre-and-post conditions. Table 4.1 provides some characteristics of the benchmark. The

full benchmark has more features and is discussed in more detail in Section 5.4 of Chapter 5.

LTL-FO Properties. On each workflow in the benchmark, we run SpinArt on a

collection of 12 LTL-FO properties constructed using templates of real propositional LTL

properties, yielding a total of 384 runs. The LTL properties are all the 11 examples of safety,

liveness and fairness properties collected from a standard reference paper [116] and an additional

property False used as a baseline when comparing the performance of SpinArt on different

classes of LTL-FO properties. We list all the templates of LTL properties in Table 4.3. We

choose False as a baseline because it is the simplest property verifiable by Spin. By comparing

the running time for a property with the running time for False on the same specification, we

obtain the overhead for verifying the property.

For each workflow, we generate an LTL-FO property corresponding to each template by

replacing the propositions with FO conditions chosen from the pre-and-post conditions of all the

services and their sub-formulas. Note that by doing so, the generated LTL-FO properties on the
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Table 4.2. Performance of SpinArt in different modes.

Mode #Failed-Runs Total-Time Verify-Time Compile-Time #States

SpinArt-NoASM 48 / 384 21.399s 14.379s 7.020s 1,547,211
SpinArt-NoLDT 3 / 384 12.240s 3.769s 8.471s 809,025

SpinArt-Full 3 / 384 2.970s 0.292s 2.678s 44,826

real workflows are combinations of real propositional LTL properties and real FO conditions,

and so are close to real-world LTL-FO properties.

Setup. We implemented SpinArt in C++ with Spin version 6.4.6. All experiments were

performed on a Linux server with a quad-core Intel i7-2600 CPU and 16G memory. To allow

larger search space, Spin was run with the state compression optimization turned on. For faster

execution, the Spin-generated verifier was compiled with gcc and the -O2 optimization. The

time and memory limit of each run was set to 10 minutes and 8G respectively.

Performance. In addition to running the full verifier (SpinArt-Full), we also ran the

verifier with the lazy dependency tests optimization (LDT) turned off (SpinArt-NoLDT) and

with assignment set minimization (ASM) turned off (SpinArt-NoASM). For all the verifiers, we

compare their number of failed runs (timeout or memory overflow), the average compilation

time2 for generating the executable verifier (Compile-Time), the average execution time of the

generated verifier (Verify-Time), the average total running time (Verify-Time + Compile-Time),

and the average number of reached states as reported by Spin.

The results are shown in Table 4.2. We can see that the performance of SpinArt is

promising. Its average total running time is within 3 seconds and there are only 3/384 failed

runs (<1%) due to memory overflow. This is a strong indication that the approach is sufficiently

practical for real-world workloads. The full verifier is also significantly improved compared to

SpinArt-NoLDT and SpinArt-NoASM. Without ASM, the the verifier failed on 12.5% (48/384)

of all runs and the average running time is >7x times faster when the optimization is turned on.

Without LDT, most of the runs are still successful, but the average total running time is >4 times

2All averages (running times and #States) are taken over the successful runs.
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faster with the optimization turned on. Both optimizations significantly reduce the size of the

state space (>95% in total), resulting in much shorter verification time.

We next discuss the effect of each optimization in more detail.

Effect of Lazy Dependency Tests. From Table 4.2, we observe that for the successful

runs, compilation time accounts for a large fraction of the total running time, so minimizing

the size of the Promela program is critical to improve the overall performance of a Spin-based

verifier. Figure 4.8 shows the changes in the compilation time as the size of the input specification

(#Variables + #Services) increases, for runs with or without the LDT optimization. Each point in

the figure corresponds to one specification and the compilation time is measured by the average

compilation time of all runs of the specification. The figure shows that with LDT, the compilation

time grows not only slower as the input size increases, but in some cases it can compile >10

times faster than compilation without LDT. Overall, LDT leads to an average speedup of 3.2x in

compilation.

Effect of Assignment Set Minimization. We show the effectiveness of Assignment

Set Minimization (ASM) by comparing the approximation algorithm for ASM with a naı̈ve

approach (NoASM) where the size of the assignment set of each expression e is simply set to the

number of expressions having the same type as e. Figure 4.9 shows the growth of the average

size of the assignment sets as the size of the input specification increases. For ASM, the average

size stays very low (2.05 in average) as the input size grows. This shows that our algorithm

is near-optimal in practice. Compared to the naive approach where the average size increases

linearly with the input size, our approach produces much smaller assignment sets. In some cases,

the assignment set generated by the algorithm is >30 times smaller than the ones generated by

the naive approach.

Effect of the Structure of LTL-FO Properties. Next, we measure the performance on

different classes of LTL-FO properties. Table 4.3 lists all the LTL templates used in generating

the LTL-FO properties and their intuitive meaning, as in [116]. For each template, we measure
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Figure 4.9. Average size of the assignment
sets with or without minimization.

Table 4.3. Average running time of verifying different classes of LTL-FO properties.

Templates Avg(Time) Overhead Templates Avg(Time) Overhead

False 2.68s 0.00% G(ϕ→ Fψ) 2.72s 1.45%
Gϕ 2.68s -0.26% Fϕ 2.80s 4.08%

(¬ϕU ψ) 2.70s 0.61% GFϕ→ GFψ 2.91s 9.36%
(¬ϕUψ) ∧G(ϕ→ X(¬ϕUψ)) 5.07s 70.02% GFϕ 3.07s 15.14%
G(ϕ→ (ψ ∨Xψ ∨XXψ)) 2.72s 1.40% G(ϕ ∨Gψ) 2.71s 0.85%

G(ϕ ∨G(¬ϕ)) 2.69s 0.28% FGϕ→ GFψ 2.91s 9.11%

the average running time over all runs with LTL-FO properties generated using the template.

In addition, we measure the overhead of verifying a LTL-FO property by comparing with its

running time for the property False, the simplest non-trivial property for SpinArt. The overhead

of a class of LTL-FO properties is obtained by the average overhead of all properties of the

same class. The result in Table 4.3 shows that the average running time stays within 2x of the

average running time for False and the maximum average overhead is about 70%. The overhead

increases as the LTL property becomes more complex, but is within a reasonable range. Note

that this is much better than the theoretical upper bound, which is exponential in the size of the

LTL formula.
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4.5 Conclusion and Discussion

We described in this chapter the implementation of SpinArt, a verifier for data-driven

workflows using the widely used off-the-shelf model checker Spin. With a translation based

on the symbolic representation developed in Chapter 3 enhanced with nontrivial optimizations,

SpinArt achieves good performance on a realistic business process benchmark. We believe

this is a first successful attempt to bridge the gap between theory and practice in verification

of data-driven workflows, with full support for unbounded data and relying on an off-the-shelf

model checker.

The focus of this chapter is on sound and complete artifact verifiers, in contrast to

incomplete verifiers (e.g. based on theorem provers). Within this scope, SpinArt establishes

a practical trade-off point on the spectrum ranging from using off-the-shelf general software

verifiers to developing dedicated verifiers from scratch.

However, off-the-shelf tools share a number of limitations which are inherited by verifiers

based on them (including SpinArt). For instance, general-purpose model checkers have limited

support for unbounded data. While this chapter mitigates this limitation by supporting the

unbounded read-only database with symbolic representation, our model does not support other

ingredients of the HAS (and GSM) model, such as dynamically updatable artifact relations,

because as shown in Chapter 3 they require an enhanced symbolic representation based on VASS,

counting the number of tuples of different isomorphism types, which exceeds the capabilities of

Promela/Spin. Moreover, the encoding of the symbolic representation also hurts the performance

since some of the most effective optimizations cannot be encoded in languages like Promela.

These disadvantages indicate the need for a specialized implementation, which we present in the

next chapter.
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1 if
2 :: (a == 0) -> b = a + 1;
3 :: (b > 1) -> c = a;
4 :: a = a - 1;
5 b = b + 1;
6 fi

1 do
2 :: count = count - 1;
3 :: a = a + 2;
4 :: (count == 0) -> break;
5 :: (count > 0) -> skip;
6 od

Figure 4.10. Examples of Promela program (Left: if-statement; Right: do-statement).

4.6 Appendix: Review of Spin and Promela

The implementation of our artifact verifier relies on Spin, a widely used model checker

in software verification. Spin supports the verification of LTL properties of models specified

in Promela, a C-like modeling language for parallel systems. At a high level, a single-process

Promela program can be viewed as a non-deterministic C program, where one can specify

variables of fixed bit-length (e.g. byte, short, int) and statements that manipulate the variables

(e.g. assignments, goto, etc.). Non-determinism is specified using the if- and do-statements

illustrated in Fig. 4.10.

When the if-statement is executed, one of its options with no guard or with its guard

evaluating to True is chosen non-deterministically and executed. Each option is a sequence of

one or more statements. If no option can be chosen, then the run blocks the is not considered

as a valid run when Spin is executed. The do-statement is similar to the if-statement, with the

difference that the execution is repeated after an option is completed. Nesting is allowed within

the if- or do-statements.

Developers can verify LTL properties of a Promela program using Spin. Given a Promela

program P , a developer can write LTL properties where the propositions are Boolean conditions

over the variables of P , such as: “G ((a == 1) -> F (b > 0 || c < 0))”.

To check satisfaction of a LTL property ϕ, Spin first produces the source code of a

problem-specific verifier V in C. Then V is compiled with a C-compiler (e.g. gcc) and executed

to produce the result.
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Chapter 5

VERIFAS: A Practical Verifier for Arti-
fact Systems

5.1 Overview

This chapter presents VERIFAS, an artifact verifier built from scratch relaying on the

verification algorithm developed in Chapter 3. The main contributions are the following.

• We define HAS*, a variant of HAS which strikes a more practically relevant trade-off between

expressivity and verification complexity, as demonstrated by its ability to specify a realistic set

of business processes. We adapt to HAS* the theory developed for HAS in Chapter 3, laying

the groundwork for our implementation.

• We implement VERIFAS, a fully automatic verifier for HAS*. The implementation makes

crucial use of novel optimization techniques, with dramatic impact on performance. The

optimizations are non-trivial and include concise symbolic representations, aggressive pruning

in the search algorithm, and the use of highly efficient data structures.

• We evaluate the performance of VERIFAS using both real-world and synthetic artifact systems

and properties from a benchmark we create, bootstrapping from existing sets of business

process specifications and properties by extending them with data-aware features. To our

knowledge, this is the first benchmark for business processes and properties that includes such

data aware features. The experiments highlight the impact of the various optimizations and
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parameters of both the artifact systems and properties.

• We adapt to HAS* a standard complexity measure of control flow used in software engineering,

cyclomatic complexity [128], and show experimentally, using the above benchmark, that

cyclomatic complexity of HAS* specifications correlates meaningfully with verification times.

Since conventional wisdom in software engineering holds that well-designed, human readable

programs have relatively low cyclomatic complexity, this is an indication that verification

times are likely to be good for well-designed HAS* specifications.

Taking this and other factors into account, the experimental results show that our verifier

performs very well on practically relevant classes of artifact systems. Compared to SpinArt, it not

only applies to a much broader class of artifacts but also has a decisive performance advantage

even on the simple artifacts that SpinArt is able to handle. To the best of our knowledge, this

is the first implementation of practical significance of an artifact verifier with full support for

unbounded data.

The rest of this chapter is organized as follows. We start by introducing in Section 5.2 the

HAS* model supported by VERIFAS. Section 5.3 describes the implementation of VERIFAS by

first reviewing in brief the theory developed in Chapter 3, particularly the symbolic representation

technique used in establishing the theoretical results. We show an extension of the symbolic

representation, called partial isomorphism type, to allow practical verification by adapting the

classic Karp-Miller algorithm [83]. We then introduce three specialized optimizations to gain

further performance improvement. We present our experimental results in Section 5.4. Finally,

we conclude in Section 5.5. An appendix provides further technical details.

5.2 The Model

In this section we present the variant of Hierarchical Artifact Systems used in our study.

The variant, denoted HAS*, differs from the HAS model used in Chapter 3 in two respects. On

one hand, it restricts HAS as follows:
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• it disallows arithmetic in service pre-and-post conditions

• the underlying database schema uses an acyclic set of foreign keys

On the other hand, HAS* extends HAS by removing various restrictions:

• tasks may have multiple updatable artifact relations

• each subtask of a given task may be called multiple times between task transitions

• certain restrictions on how variables are passed as parameters among tasks, or inserted/retrieved

from artifact relations, are lifted

Because HAS* imposes some restrictions on HAS but removes others, it is incomparable

to HAS. Intuitively, the choice of HAS* over HAS as a target for verification is motivated by

the fact that HAS* achieves a more appealing trade-off between expressiveness and verification

complexity. The acyclic schema restriction, satisfied by the widely used Star (or Snowflake)

schemas [84, 126], is acceptable in return for the removal of various HAS restrictions limiting

modeling capability. Indeed, as shown by our real-life examples, HAS* is powerful enough to

model a wide variety of business processes. While the current version of VERIFAS does not

handle arithmetic, the core verification algorithm can be augmented to include arithmetic along

the lines developed for HAS. Limited use of aggregate functions can also be accommodated.

These enhancements are left for future work.

We now present the syntax and semantics of HAS*. To avoid duplication, the definitions

specify the new features and differences with the HAS model. These features are illustrated with

an intuitive example of the HAS* specification of the order fulfillment business process shown

in Chapter 4.

The database schemas of HAS* are acyclic database schemas, as defined for HAS. The

running example contains the following database schema:

• CUSTOMERS(ID, name, address, record)

ITEMS(ID, item name, price)
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CREDIT RECORD(ID, status)

In the schema, the IDs are key attributes, price, item name, name, address, status

are non-key attributes, and record is a foreign key attribute satisfying the dependency

CUSTOMERS[record] ⊆ CREDIT RECORD[ID].

Intuitively, the CUSTOMERS table contains customer information with a foreign key pointing to

the customers’ credit records stored in CREDIT RECORD. The ITEMS table contains information

on the items. Note that the schema is acyclic as there is only one foreign key reference from

CUSTOMERS to CREDIT RECORD.

We next proceed with tasks and services for HAS*. A HAS* task is similar to a task

in HAS with two new features: (1) a HAS* task T here can have a collection ST of artifact

relations and (2) each ID variable has a fixed type, meaning that its domain consists of the IDs of

a fixed relation in the database DB. Formally,

Definition 116. A HAS* task schema over database schemaDB is a tuple T = 〈x̄T ,ST , x̄Tin, x̄Tout〉

where x̄T is a sequence of artifact variables, ST is a set of relation symbols not in DB, and x̄Tin

and x̄Tout are subsequences of x̄T . For each relation S ∈ ST , we denote by attr(S) the set of

attributes of S. The domain of each variable x ∈ x̄T and each attribute A ∈ attr(S) is either

DOMval ∪ {null} or dom(R.ID) ∪ {null} for some relation R ∈ DB. In the latter case we

say that the type of x (or A) is type(x) = R.ID (type(A) = R.ID). An instance ρ of T is a

tuple (ν, S) where ν is a valuation of x̄T and S is an instance of ST such that S(S) is of the type

of S for each S ∈ ST .

HAS* artifact schemas are defined analogously.

Definition 117. A HAS* artifact schema is a tupleA = 〈H,DB〉 whereDB is a HAS* database

schema and H is a rooted tree of HAS* task schemas over DB with pairwise disjoint sets of

artifact variables and distinct artifact relation symbols.
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Example 118. The order fulfillment workflow has a task called ProcessOrders, which stores the

order data and processes the orders by interacting with other tasks. It has the following artifact

variables:

• ID variables: cust id of type CUSTOMERS.ID and item id of type ITEMS.ID

• non-ID variables: status and instock

There are no input or output variables. The task also has an artifact relation ORDERS(cust id,

item id, status, instock) with attributes of the same types as the variables. Intuitively,

ORDERS stores the orders to be processed, where each order consists of a customer and an

ordered item. The variable status indicates the current status of the order and instock

indicates whether the item is currently in stock.

The order fulfillment workflow has 5 tasks: T1: ProcessOrders, T2:TakeOrder,

T3:CheckCredit, T4: Restock and T5:ShipItem, which form the hierarchy represented in Figure

5.1. Intuitively, the root task ProcessOrders serves as a global coordinator which maintains a

pool of all orders and the child tasks TakeOrder, CheckCredit, Restock and ShipItem implement

the 4 sequential stages in the fulfillment of an order. At a high level, ProcessOrders repeatedly

picks an order from its pool and processes it with a stage by calling the corresponding child task.

After the child task returns, the order is either placed back into the pool or processed with the

next stage. For each order, the workflow first obtains the customer and item information using

the TakeOrder task. The credit record of the customer is checked by the CheckCredit task. If the

record is good, then ShipItem can be called to ship the item to the customer. If the requested

item is unavailable, then Restock must be called before ShipItem to procure the item.

T2: TakeOrder T4: RestockT3: CheckCredit

T1: ProcessOrders

T5: ShipItem

Figure 5.1. Tasks Hierarchy

Definition 119. An instance of a HAS* artifact schemaA = 〈H,DB〉 is a tuple I = 〈ν, stg,D, S〉
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where D is a finite instance of DB, S a finite instance of SH, ν a valuation of
⋃k
i=1 x̄

Ti , and stg

(standing for “stage”) a mapping of {T1, . . . , Tk} to {active, inactive}.

The stage stg(Ti) of a task Ti has the following intuitive meaning in the context of a

run of its parent: active says that Ti has been called and has not yet returned its answer, and

inactive indicates that Ti is not active. Notice that the stage component stg(Ti) of a task Ti

takes only two values unlike in HAS. The stage init is no longer needed because a task Ti can

be called any number of times within a given run of its parent, but only one instance of it can be

active at any given time.

Example 120. Figure 5.2 shows a partial example of an instance of the Order Fulfillment artifact

system. The only active task is ProcessOrder.

cust_id item_id status instock

null null 'Init'  null

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

C1 Item2 'Passed' 'Yes'

ID name address record

C0 'John' '1 Main St' R0

C1 'Tina' '2 Boardway' R1
ORDERS (Artifact Relation):

Artifact Variables: CUSTOMERS:

ID status

R0 'Good'

R1 'Bad'

CREDIT_RECORD:

ID item_name price

Item1 'Printer' 10

Item2 'Scanner' 15

ITEMS:

ProcessOrders: active DB:

TakeOrders, CheckCredit, Restock, ShipItem: inactive

Figure 5.2. An instance of the Order Fulfillment workflow

We next define services of tasks. Like in HAS, each HAS* task contains internal services

that update the artifact variables and artifact relation of the task.

Definition 121. Let T = 〈x̄T ,ST , x̄Tin, x̄Tout〉 be a task of a HAS* artifact schema A. An internal

service σ of T is a tuple 〈π, ψ, ȳ, δ〉 where:

• π and ψ, called pre-condition and post-condition, respectively, are conditions over x̄T

• ȳ is the set of propagated variables, where x̄Tin ⊆ ȳ ⊆ x̄T ;
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• δ, called the update, is a subset of {+Si(z̄),−Si(z̄)|Si ∈ ST , z̄ ⊆ x̄T ,type(z̄) =

type(attr(Si))} of size at most 1.

• if δ 6= ∅ then ȳ = x̄Tin

Like in HAS, an internal service σ of T can be called only when the current instance

satisfies the pre-condition π. The update on variables x̄T is valid if the next instance satisfies the

post-condition ψ and the values of propagated variables ȳ stay unchanged. This is a new feature

compared to HAS, where the propagated variables are restricted to the input variables. Also, we

note that a tuple of variables z̄ is specified in each update of δ. These new features add flexibility

in the manipulations of artifact variables and relations.

Any task variable that is not propagated can be changed arbitrarily during a task activation,

as long as the post condition holds. This allows services to also model actions by external actors

who provide input into the workflow by setting the value of non-propagated variables. Such actors

may even include humans or other parties whose behavior is not deterministic. For example, a

bank manager carrying out a “loan decision” action can be modeled by a service whose result

is stored in a non-propagated variable and whose value is restricted by the post-condition to

either “Approve” or “Deny”. Note that deterministic actors are modeled by simply using tighter

post-conditions.

When δ = {+Si(z̄)}, a tuple containing the current value of z̄ is inserted into Si. When

δ = {−Si(z̄)}, a tuple is chosen and removed from Si and the next value of z̄ is assigned

with the value of the tuple. Note that x̄Tin are always propagated, and no other variables are

propagated if δ 6= ∅. The restriction on updates and variable propagation may at first appear

mysterious. Its underlying motivation is that allowing simultaneous artifact relation updates and

variable propagation turns out to raise difficulties for verification, while the real examples we

have encountered do not require this capability.

Example 122. The ProcessOrders task has 3 internal services: Initialize, StoreOrder and

RetrieveOrder. Intuitively, Initialize creates a new order with cust id = item id = null.

When RetrieveOrder is called, an order is chosen non-deterministically and removed from
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ORDERS for processing, and (cust id, item id, status, instock) is set to be the chosen tuple.

When StoreOrder is called, the current order (cust id, item id, status, instock) is inserted

into ORDERS. The latter two services are specified as follows.

RetrieveOrder:

Pre: cust id = null ∧ item id = null

Post: True

Update: {−ORDERS(cust id, item id, status, instock)}

StoreOrder:

Pre: cust id 6= null ∧ item id 6= null ∧ status 6= “Failed”

Post: cust id = null ∧ item id = null ∧ status = “Init”

Update: {+ORDERS(cust id, item id, status, instock)}

The sets of propagated variables are empty for both services.

An internal service of a HAS* task T specifies transitions that modify the variables x̄T of

T and the contents of ST . Figure 5.3 shows an example of a transition that results from applying

the service StoreOrder of the ProcessOrders task.

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

cust_id item_id status instock

C1 Item2 'Passed' 'Yes'

ORDERS (Artifact Relation):

ProcessOrders: active

cust_id item_id status instock

null null 'Init' null

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

C1 Item2 'Passed' 'Yes'

ORDERS (Artifact Relation):

ProcessOrders: active

Store-
Order

Figure 5.3. Transition caused by an internal service

As seen above, internal services of a task cause transitions on the data local to the task.

Interactions among tasks are specified using the opening-services and closing-services already

defined in HAS (Definition 14).

We are now ready to define HAS*.
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Definition 123. A Hierarchical Artifact System* (HAS*) is a triple Γ = 〈A,Σ,Π〉, where A is a

HAS* artifact schema, Σ is a set of HAS* services over A including σoT and σcT for each task T

of A, and Π is a condition over x̄T1 (the global pre-condition of Γ), where T1 is the root task.

We next define the semantics of HAS*. Two semantics are provided, the tree of local runs

and the global runs, with relaxations to the HAS semantics allowing more flexibility. For clarity

of presentation, we focus on modifications to the definition of local run. The full definitions can

be obtained from those for HAS by taking the modifications into account. The differences lie in

local transitions caused by internal services, and opening and closing of child tasks, which we

define next.

A transition caused by an internal service is defined as follows.

Definition 124. Let T = 〈x̄T ,ST , x̄Tin, x̄Tout〉 be a HAS* task and D a database instance over

DB. An instance of T is a pair (ν, S) where ν is a valuation of x̄T and S an instance of ST . For

instances I = (ν, S) and I ′ = (ν ′, S ′) of T and an internal service σ = 〈π, ψ, ȳ, δ〉, there is a

local transition I σ−→ I ′ if the following holds.

• D |= π(ν) and D |= ψ(ν ′),

• ν ′(ȳ) = ν(ȳ),

• if δ = {+Si(z̄)}, then S ′ = S[Si 7→ S(Si) ∪ {ν(z̄)}],

• if δ = {−Si(z̄)}, then ν ′(z̄) ∈ S(Si) and S ′ = S[Si 7→ S(Si)− {ν ′(z̄)}],

• if δ = ∅ then S ′ = S.

The changes to the opening and closing of child tasks are simply the following:

• For every transition I
σ−→ I ′ where σ is a closing service σcTc , it is NOT required that

ν ′(z) = ν(z) if z is an ID variable and ν(z) 6= null. In other words, return values can

overwrite arbitrary variables in HAS*

• Within each segment J of a local run ρ and for each child task Tc of T , there can be arbitrary

number of i ∈ J such that σi = σoT . In addition, a child task Tc can be opened if stg(Tc) =
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inactive (this is originally init in HAS). This means that a child task can be called multiple

times within a segment (in between two internal service calls).

The semantics with the trees of local runs can be obtained by taking the above changes

into account. Then the semantics with global runs can be obtained by following the same

development as in HAS.

5.2.1 Specifying properties of HAS*

In this chapter we focus on verifying temporal properties of local runs of tasks in a HAS*

using a variant of LTL-FO. For instance, in the order fulfillment example, we would like to

specify in LTL-FO properties such as:

(†) If an order is taken and the ordered item is out of stock, then the item must be restocked

before it is shipped.

LTL-FO for TAS was already defined in Chapter 4. The variant of LTL-FO for HAS* is

slightly different as it applies to the local runs of a task T . The set of propositions is P ∪ Σobs
T ,

where propositions in P are interpreted as conditions as before and Σobs
T consists of the services

observable in local runs of T (including calls and returns from children tasks, see definition in

Chapter 3).

We provide a flavor of the language using property (†). The property is of the form

ϕ = G(p→ (¬q U r)), which means if p happens, then in what follows, q will not happen until

r is true. Here p says that the TakeOrder task returned with an out-of-stock item, q states that

the ShipItem task is called with the same item, and r states that the service Restock is called to

restock the item. Since the item mentioned in p, q and r must be the same, the formula requires

using a global variable i to record the item ID. This yields the following LTL-FO property:

∀iG((σcTakeOrder ∧ item id = i ∧ instock = “No”)→

(¬(σoShipItem ∧ item id = i) U (σoRestock ∧ item id = i)))
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A correct specification can enforce (†) simply by requiring in the pre-condition of σoShipItem

that the item is in stock. One such pre-condition is (instock = “Yes” ∧ status = “Passed”),

meaning that the item is in stock and the customer passed the credit check. However, in a

similar specification where the instock = “Yes” test is performed within ShipItem (i.e. in

the pre-conditions of all shipping internal services) instead of the opening service of ShipItem,

the LTL-FO property (†) is violated because ShipItem can be opened without first calling the

Restock task. VERIFAS would detect this error and produce a counter-example illustrating the

violation.

We use the standard definition for the satisfaction of a LTL-FO property ∀ȳϕf by a local

run ρT . Note that here we are interested in evaluating LTL-FO formulas ∀ȳϕf on both infinite

and finite local runs (infinite runs occur when a task runs forever).

Remark 125. In Chapter 3, we consider HLTL-FO, a more complex logic for specifying prop-

erties of artifact systems. The presentation here focuses on verification of LTL-FO properties

of individual tasks for simplicity. It can be shown that the basic techniques presented here for

LTL-FO can be used as building block for verifying the more complex HLTL-FO properties.

However, verifying LTL-FO properties of individual tasks is in fact adequate in most practical

situations we have encountered.

5.3 VERIFAS

In this section we describe the implementation of VERIFAS. We begin with a brief review

of the theory developed in Chapter 3 that is relevant to the implementation.

5.3.1 Review of the Theory

The decidability and complexity results of HAS can be extended to HAS* by adapting

the proofs and techniques developed there. We can show the following.

Theorem 126. Given a HAS* Γ and an LTL-FO formula ϕf for a task T in Γ, it is decidable in

EXPSPACE whether Γ satisfies ϕf .
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We review informally the roadmap to verification developed for HAS, which is the

starting point for the implementation. Let Γ be a HAS* and ϕf an LTL-FO formula for some task

T of Γ. We would like to verify that every local run of T satisfies ϕf . Since there are generally

infinitely many such local runs due so the unbounded data domain, and each run can be infinite,

an exhaustive search is impossible. This problem is addressed in Chapter 3 by developing a

symbolic representation of local runs. Recall that the symbolic representation has two main

components:

(i) the isomorphism type of the artifact variables, describing symbolically the structure of the

portion of the database reachable from the variables by navigating foreign keys

(ii) for each artifact relation and isomorphism type, the number of tuples in the relation that share

that isomorphism type

Observe that because of (ii), the symbolic representation is not finite state. Indeed, (ii) requires

maintaining a set of counters, which can grow unboundedly.

The heart of the proof in Chapter 3 is showing that it is sufficient to verify symbolic runs

rather than actual runs. That is, for every LTL-FO formula ϕf , all local runs of T satisfy ϕf iff

all symbolic local runs of T satisfy ϕf . Then the verification algorithm checks that there is no

symbolic local run of T violating ϕf (so satisfying ¬ϕf ). The algorithm relies on a reduction to

(repeated) state reachability in VASS. This turns out to be sufficient to capture the information

described above. The states of the VASS correspond to the isomorphism types of the artifact

variables, combined with states of the Büchi automaton needed to check satisfaction of ¬ϕ.

The above approach can be viewed as symbolically running the HAS* specification. Con-

sider the example in Section 5.2. After the TakeOrder task is called and returned, one possible

local run of ProcessOrders might impose a set of constraints {item id 6= null, cust id 6=

null, status = “OrderPlaced”, instock = “Yes”} onto the artifact tuple of ProcessOrders.

Now suppose the CheckCredit task is called. The local run can make the choice that the

customer has good credit. Then when CheckCredit returns, the above set of constraints is up-
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dated with constraint {cust id.record.status = “Good”}, which means that in the read-only

database, the credit record referenced by cust id via foreign key satisfies status = “Good”.

Next, suppose the StoreOrder service is applied in ProcessOrders. Then we symbolically store

the current set of constraints by increasing its corresponding counter by 1. The set of con-

straints of the artifact tuple is reset to {item id = null, cust id = null, status = “Init”}

as specified in the post-condition of StoreOrder.

Although decidability of verification can be shown as outlined above, implementation of

an efficient verifier is challenging. The algorithm that directly translates the artifact specification

and the LTL-FO property into VASS’s and checks (repeated) reachability is impractical because

the resulting VASS can have exponentially many states and counters in the input size, and

state-of-the-art VASS tools can only handle a small number of counters (<100) [3]. To mitigate

the inefficiency, VERIFAS never generates the whole VASS but instead lazily computes the

symbolic representations on-the-fly. Thus, it only generates reachable symbolic states, whose

number is usually much smaller. In addition, isomorphism types in the symbolic representation

are replaced by partial isomorphism types, which store only the subset of constraints on the

variables imposed by the current run, leaving the rest unspecified. This representation is not only

more compact, but also results in a significantly smaller search space in practice.

In the rest of the section, we first introduce our revised symbolic representation based

on partial isomorphism types. Next, we review the classic Karp-Miller algorithm adapted

to the symbolic version of HAS* for solving state reachability problems. Three specialized

optimizations are introduced to improve the performance. In addition, we show that our algorithm

with the optimizations can be extended to solve the repeated state reachability problems so that

full LTL-FO verification of infinite runs can be carried out. For clarity, the exposition in this

section focuses on specifications with a single task. The actual implementation extends these

techniques to the full model with arbitrary number of tasks.

166



5.3.2 Partial Isomorphism Types

We start with our symbolic representation of local runs using partial isomorphism types.

Intuitively, a partial isomorphism type captures the necessary constraints imposed by the current

run on the current artifact tuple and the read-only database. Compared to the full isomorphism

types in HAS or TAS, a partial isomorphism type allows “missing” edges between two expres-

sions, meaning that it is unknown whether the two expressions are equal or not. This results in a

more compact representation in practice, as shown by our experiments.

A partial isomorphism type contains a set of expressions that denote variables, constants

and navigation via foreign keys from id variables or attributes. An expression is either:

• a constant c occurring in Γ or ϕf , or

• a sequence ξ1.ξ2. . . . ξm, where ξ1 is an id artifact variable x or an id attribute A of some

artifact relation S, ξ2 is an attribute of R ∈ DB where R.ID = type(ξ1), and for each i,

2 ≤ i < m, ξi is a foreign key and ξi+1 is an attribute in the relation referenced by ξi.

We denote by E the set of all expressions. Note that there is a subtle difference with the

definition of expressions in HAS: the head ξ1 of an expression can also be an attribute of an

artifact relation. This is because each attribute of an artifact relation is no longer bound to a fixed

variable as in HAS, so we also need to capture navigation starting from attributes.

Note that the length of expressions is bounded because of the acyclicity of the foreign

keys, so E is finite.

We can now define partial isomorphism types.

Definition 127. A partial isomorphism type τ is an undirected graph over E with each edge

labeled by = or 6=, such that the equivalence relation ∼ over E induced by the edges labeled

with = satisfies:

1. for every e, e′ ∈ E and every attribute A, if e ∼ e′ and {e.A, e′.A} ⊆ E then e.A ∼ e′.A, and

2. (e1, e2, 6=) ∈ τ implies that e1 6∼ e2 and for every e′1 ∼ e1 and e′2 ∼ e2, (e′1, e
′
2, 6=) ∈ τ .
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Intuitively, a partial isomorphism type keeps track of a set of “=” and “ 6=” constraints

and their implications among E . Condition 1 guarantees satisfaction of the key and foreign key

dependencies. Condition 2 guarantees that there is no contradiction among the 6=-edges and the

=-edges. In addition, the connection between two expressions can also be “unknown” if they are

not connected by an edge. The full isomorphism type can be viewed as a special case of partial

isomorphism type where the undirected graph is complete. In the worst case, the total number

of partial isomorphism types is no smaller than the number of full isomorphism types so using

partial isomorphism types does not improve the complexity upper bound. In practice, however,

since the number of constraints imposed by a run is likely to be small, using partial isomorphism

types can greatly reduce the search space.

Example 128. Figure 5.4 shows two partial isomorphism types τ1 (left) and τ2 (right), where

R(ID, A) is the only database relation and {x, y, z} are 3 variables of type R.ID. Solid lines are

=-edges and dashed lines are 6=-edges. In τ1, (x, y) is connected with = so the edge (x.A, y.A,=)

is enforced by the key dependency. Missing edges between (x.A, z.A) and (y.A, z.A) indicate

these connections are “unknown”. τ2 is a full isomorphism type, which requires the graph to be

complete so (x.A, z.A) , (y.A, z.A) and all pairs between {x, y, z} and {x.A, y.A, z.A} must

be connected by either = or 6=. The 6=-edges between {x, y, z} and {x.A, y.A, z.A} are omitted

in the figure for clarity.

y z

x

y.A z.A

x.A

y z

x

y.A z.A

x.A

Figure 5.4. Partial and Full Isomorphism Types

We next define partial symbolic instances. Intuitively, a partial symbolic instance consists

of a partial isomorphism type capturing the connections of the current tuple of x̄, as well as, for

the tuples present in the artifact relations, the represented isomorphism types t and the count of

tuples sharing t.
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Definition 129. A partial symbolic instance I is a tuple (τ, c̄) where τ is a partial isomorphism

type and c̄ is a vector of N where each dimension of c̄ corresponds to a unique partial isomorphism

type.

It turns out that most of the dimensions of c̄ equal 0 in practice, so in implementation we

only materialize a list of those dimensions with positive counter values. We denote by pos(c̄)

the set {τS|c̄(τS) > 0}.

Next, we define symbolic transitions among partial symbolic instances by applying

internal services. First we need to define condition evaluation on partial isomorphism types.

Given a partial isomorphism type τ , satisfaction of a condition φ in negation normal form1 by τ ,

denoted τ |= φ, is defined as follows:

• x ◦ y holds in τ iff (x, y, ◦) ∈ τ for ◦ ∈ {=, 6=},

• for relation R(ID, A1, . . . , Am), R(x, y1, . . . , ym) holds in τ iff (yi, x.Ai,=) ∈ τ for every

1 ≤ i ≤ m,

• ¬R(x, y1, . . . , ym) holds in τ iff (yi, x.Ai, 6=) ∈ τ for some 1 ≤ i ≤ m, and

• Boolean combinations of conditions are standard.

Notice that τ 6|= φ might be due to missing edges in τ but not because of inconsistent

edges, so it is possible to satisfy φ by filling in the missing edges. This is captured by the notion

of extension. We call τ ′ an extension of τ if τ ⊆ τ ′ and τ ′ is consistent, meaning that the edges

in τ ′ do not imply any contradiction of (in)equalities. We denote by eval(τ, φ) the set of all

minimal extensions τ ′ of τ such that τ ′ |= φ. Intuitively, eval(τ, φ) contains partial isomorphism

types obtained by augmenting τ with a minimal set of constraints to satisfy φ.

A symbolic transition is defined informally as follows (the full definition can be found in

Appendix 5.6). To make a symbolic transition with a service σ = (π, ψ, ȳ, δ) from I = (τ, c̄)

to I ′ = (τ ′, c̄′), we first extend the partial isomorphism type τ to a new partial isomorphism

type τ0 to satisfy the pre-condition π. Then the constraints on the propagated variables ȳ are

preserved by computing τ1, the projection of τ0 onto ȳ. Intuitively, the projection keeps only the
1Negations are pushed down to leaf atoms.
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expressions headed by variables in ȳ and their connections. Finally, τ ′ is obtained by extending

τ1 to satisfy the post-condition ψ. If δ is an insertion, then the counter that corresponds to

the partial isomorphism type of the inserted tuple is incremented. If δ is a retrieval, then a

partial isomorphism type τS with positive count is chosen nondeterministically and its count is

decremented. The new partial isomorphism type τ ′ is then extended with the constraints from τS .

We denote by succ(I) the set of possible successors of I by taking one symbolic transition with

any service σ.

Example 130. Figure 5.5 shows an example of symbolic transition. The DB schema is that of

Example 128. The variables are x, y of type R.ID and a non-ID variable z, with input variables

{y, z}. The applied service is σ = (π : R(x, z), ψ : x 6= y, ȳ : {y, z}, δ : {−S(x, z)}). First, the

pre-condition R(x, z) is evaluated so edge (x.A, z,=) is added (top-middle). Edge (y.A, z, 6=)

is also added so that the partial isomorphism type remains valid. Then variables {y, z} are

propagated, so the edges related to x or x.A are removed (top-right). Next, we evaluate the

post-condition x 6= y so (x, y, 6=) is added (bottom-right). Finally, a tuple from S is retrieved and

overwrites {x, z}. Suppose the nondeterministically chosen τS contains a single edge (x.A, z,=)

(below the retrieve arrow). Then c̄(τS) is decremented and τS is merged into the final partial

isomorphism type (bottom left). Note that if σ contains an insertion of +S(x, z) in δ instead

of a retrieval, then the subgraph of τ0 (top-middle) projected to {x, z} is inserted to S. The

corresponding counter in c̄ will be incremented by 1.

With symbolic transitions in place, verification works as follows. Informally, given a

single-task HAS* Γ and a LTL-FO property ϕf , one can check whether Γ |= ϕf by constructing

a new HAS* Γ′ obtained by combining Γ with conditions in ϕf and the Büchi automaton B¬ϕ

built from ¬ϕ. We can show that deciding whether Γ 6|= ϕf reduces to checking whether an

accepting state of B¬ϕ is repeatedly reachable in Γ′. Verification therefore amounts to solving

the following problem:

Problem 131. (Symbolic Repeated Reachability, or SRR) Given a HAS* Γ, an initial partial
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Figure 5.5. Symbolic Transition

symbolic state I0, and a condition φ, is there a partial symbolic run {Ii}0≤i≤m<n of Γ such that

Ii+1 ∈ succ(Ii) for every i ≥ 0, τm = τn, c̄m ≤ c̄n and τn |= φ?

The condition φ above simply states that B¬ϕ is in one of its accepting states.

5.3.3 The Classic Karp-Miller Algorithm

The SRR Problem defines an infinite search space due to the unbounded counter values,

so reduction to finite-state model checking is not possible. Adapting the theory developed in

Chapter 3 from symbolic representation based on isomorphism types to symbolic representation

based on partial isomorphism types, we can show that the symbolic transitions defined in

Section 5.3.2 can be modeled as a VASS whose states are the partial symbolic instances of

Definition 129. Consequently, The SRR problem reduces to testing (repeated) state reachability

in this VASS. The benefit of the new approach is that this VASS is likely to have much fewer

states and counters than the one defined in Chapter 3, because our search materializes partial

isomorphism types parsimoniously, by lazily expanding the current partial type c using the

(typically few) constraints of the symbolic transition to obtain a successor s. The transition

from c to s concisely represents all the transitions from full-type expansions of c to full-type

expansions of s (exponentially many in the number of “unknown” connections in c and s), which

in the worst case would be individually explored by the algorithm in Chapter 3.

The VERIFAS implementation of the (repeated) state reachability is based on a series of
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optimizations to the classic Karp-Miller algorithm [83]. We describe the original Karp-Miller

algorithm first, addressing the optimizations subsequently.

The Karp-Miller algorithm constructs a finite representation which over-approximates

the entire (potentially infinite) reachable VASS state space, called a “coverability set” of states

[61]. Any coverability set captures sufficient information about the global state space to support

global reasoning tasks, including repeated reachability. In our context, the VASS states are the

partial symbolic instances (PSIs) and a coverability set is a finite set I of PSIs, each reachable

from the initial PSI I0, such that for every reachable PSI I = (τ, c̄), there exists I ′ = (τ ′, c̄′) ∈ I

with τ = τ ′ and c̄ ≤ c̄′. We say that I ′ covers I , denoted I ≤ I ′. To represent counters that

can increase forever, the coverability set also allows an extension of PSIs in which some of the

counters can equal ω. Recall that the ordinal ω is a special constant where n < ω for all n ∈ N,

ω ≤ ω and ω ± 1 = ω.

Since the coverability set I is finite, we can effectively extract from it the reachable

τn’s that satisfy the condition φ (referring to the notation of the SRR problem). To test whether

τn is repeatedly reachable, we can show that In is repeatedly reachable iff In is contained in a

cycle consisting of only states in I. As a result, the repeatedly reachable τn’s can be found by

constructing the transition graph among I and computing its strongly connected components. A

partial isomorphism type τ is repeatedly reachable if its corresponding PSI I is included in a

component containing a non-trivial cycle.

The Karp-Miller algorithm searches for a coverability set by materializing a finite part

of the (potentially infinite) VASS transition graph starting from the initial state and executing

transitions, pruning transitions to states that are covered by already materialized states. The

resulting transition subgraph is traditionally called the Karp-Miller tree (despite the fact that it is

actually a DAG).

In the notation of the SRR problem, note that if at least one counter value strictly increases

from Im to In (c̄im < c̄in for some dimension i), then the sequence of transitions from m to n can

repeat indefinitely, periodically reaching states with the same partial isomorphism type τn, but
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with ever-increasing associated counter values in dimension i (there are infinitely many such

states). In the limit, the counter value becomes ω so a coverability set must include a state (τn, c̄)

with c̄i = ω, covering these infinitely many states.

Finite construction of the tree is possible due to a special accelerate operation that skips

directly to a state with ω-valued counters, avoiding the construction of the infinitely many states

it covers. Adapted to our context, when the algorithm detects a path {Ii}0≤i≤m<n in the tree

where Im ≤ In, the accelerate operation replaces in In the values of c̄n(τS) with ω for every τS

where c̄m(τS) < c̄n(τS).

We outline the details in Algorithm 1, which outputs the Karp-Miller tree T . We denote

by ancestors(I) the set of ancestors of I in T . Given a set I of states and a state I ′ = (τ ′, c̄′),

the accelerate function is defined as accel(I, I ′) = (τ ′, c̄′′) where for every τS , c̄′′(τS) = ω if

there exists (τ, c̄) ∈ I such that τ = τ ′, c̄ ≤ c̄′ and c̄(τS) < c̄′(τS). Otherwise, c̄′′(τS) = c̄′(τS).

Algorithm 1: Karp-Miller Tree Search Algorithm
input :Initial instance I0

output :T , the Karp-Miller tree
variables :W , set of states waiting to be explored

1 W ← {I0}, T ← ({I0}, ∅);
2 while W 6= ∅ do
3 Remove a state I from W ;
4 for I ′ ∈ succ(I) do
5 I ′′ ← accel(ancestors(I), I ′);
6 if I ′′ 6∈ T ∨ I ′′ ∈ W then
7 Add edge (I, I ′′) to T ;
8 W ← W ∪ {I ′′};

9 Return T ;

5.3.4 Optimization with Monotone Pruning

The original Karp-Miller algorithm is well-known to be inefficient in practice due to

state explosion. To improve performance, various techniques have been proposed. The main

technique we adopted in VERIFAS is based on pruning the Karp-Miller tree by monotonicity.
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Intuitively, when a new state I = (τ, c̄) is generated during the search, if there exists a visited

state I ′ where I ≤ I ′, then I can be discarded because for every state Ĩ reachable from I , there

exists a reachable state Ĩ ′ starting from I ′ such that Ĩ ≤ Ĩ ′ by applying the same sequence of

transitions that leads I to Ĩ . For the same reason, if I ≥ I ′, then I ′ and its descendants can be

pruned from the tree. However, correctness of pruning is sensitive to the order of application of

these rules (for example, as illustrated in [62], application of the rules in a breadth-first order

may lead to incompleteness). The problem of how to apply the rules without losing completeness

was studied in [62, 108] and we adopt the approach in [108]. More specifically, Algorithm 1 is

extended by keeping track of a set act of “active” states and adding the following changes:

• Initialize act with {I0};

• In line 3, choose the state from W ∩ act;

• In line 5, accel is applied on ancestors(I) ∩ act;

• In line 8, I ′′ is not added to W if there exists Î ∈ act such that I ′′ ≤ Î;

• When I ′′ is added to W , remove from act every state Î and its descendants for Î ≤ I ′′ and Î

is either active or not an ancestor of I ′′. Add I ′′ to act.

5.3.5 A Novel, More Aggressive Pruning

We generalize the comparison relation ≤ of partial symbolic instances to achieve more

aggressive pruning of the explored transitions. The novel comparison is based on the insight that

a state I can be pruned in favor of I ′ as long as every partial isomorphism type reachable from I is

also reachable from I ′. So I = (τ, c̄) can be pruned by I ′ = (τ ′, c̄′) if τ ′ is “less restrictive” than

τ (or τ implies τ ′), and for every occurrence of τS in c̄, there exists a corresponding occurrence

of τ ′S in c̄′ such that τ ′S is “less restrictive” than τS . Formally, given partial isomorphism types τ

and τ ′, τ implies τ ′, denoted as τ |= τ ′, iff τ ′ ⊆ τ . We replace the coverage relation ≤ on partial

symbolic instances with a new binary relation � as follows.

Definition 132. Given two partial symbolic states I = (τ, c̄) and I ′ = (τ ′, c̄′), I � I ′ iff τ |= τ ′

and there exists f : pos(c̄)× pos(c̄′) 7→ N ∪ {ω} such that
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• f(τS, τ
′
S) > 0 only when τS |= τ ′S ,

• for every τS ,
∑

τ ′S
f(τS, τ

′
S) = c̄(τS) and

• for every τ ′S ,
∑

τS
f(τS, τ

′
S) ≤ c̄′(τ ′S).

Intuitively, f describes a one-to-one mapping from tuples stored in the artifact relations

in I to tuples in I ′. f(τS, τ
′
S) = k means that there are k tuples in I of partial isomorphism type

τS that are mapped to k tuples in I ′ of type τ ′S . The condition τS |= τ ′S guarantees that each tuple

in I is mapped to one in I ′ of a less restrictive type.

Example 133. Consider the two PSIs I = (τ, c̄ = {τa : 2, τb : 2}) (left) and I ′ = (τ ′, c̄′ = {τa :

3, τb : 1}) (right) shown in Figure 5.6. Since τ 6= τ ′ and c̄(τb) > c̄′(τb), I ≤ I ′ does not hold.

However, any sequence of symbolic transitions applicable starting from I can also be applied

starting from I ′, because if the conditions imposed by these transitions do not conflict with those

in I , then they won’t conflict with the subset thereof in I ′. Consequently, I can be pruned if I ′

is found during the search. This fact is detected by �: I � I ′ holds since τ |= τ ′ and we can

construct f as f(τa, τa) = 2 and f(τb, τb) = f(τb, τa) = 1 since τb |= τa.

e1

e2 e3

ea

eb ec

ea

eb ec

e1

e2 e3

ea

eb ec

ea

eb ec

2 × τa :

2 × τb :

τ : c 

3 × τa :

1 × τb :

τ : c ’ ’

Figure 5.6. Illustration of �

Note that one can efficiently test whether I � I ′ by reduction to the Max-Flow problem

over a flow graph F with node set pos(c̄) ∪ pos(c̄′) ∪ {s, t}, with s a source node and t a sink

node. For every τS ∈ pos(c̄), there is an edge from s to τS with capacity c̄(τS). For every

τ ′S ∈ pos(c̄′), there is an edge from τ ′S to t with capacity c̄′(τS). For every pair of τS, τ ′S , there is

an edge from τS to τ ′S with capacity∞ if τ ′S |= τS . We can show that F has a max-flow equal to∑
τS
c̄(τS) if and only if I � I ′.
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The same idea can also be applied to the accel function. Formally, given I and I ′ =

(τ ′, c̄′), the new accelerate function

accel(I, I ′) = (τ ′, c̄′′) where c̄′′(τ ′S) = ω if there exists I ∈ I such that I � I ′ and there exists

mapping f satisfying the conditions in Definition 132 and
∑

τS
f(τS, τ

′
S) < c̄′(τ ′S). Otherwise

c̄′′(τ ′S) = c̄′(τ ′S).

5.3.6 Data Structure Support

The above optimization relies on two important operations applied every time a new state

is explored: given the set of active states act and a partial symbolic state I , (1) compute the set

{I ′|I ′ � I ∧ I ′ ∈ act} and (2) check whether there exists I ′ ∈ act such that I � I ′. As each

test of � might require an expensive operation of computing the max-flow, when |act| is large,

checking whether I ′ � I (or I � I ′) for every I ′ ∈ act would be too time-consuming.

We start with the simple case where c̄ = 0̄ in all I’s. Then to test whether I � I ′ for

I = (τ, c̄) and I ′ = (τ ′, c̄′) is to test whether τ ′ ⊆ τ . When the partial isomorphism types are

stored as sets of edges, we can accelerate the two operations with data structures that support

fast subset (superset) queries: given a collection C of sets and a query set q, find all sets in C that

are subsets (supersets) of q. The standard solutions are to use Tries for superset queries [109]

and Inverted Lists for subset queries [93].

The same idea can be applied to the general case where c̄ ≥ 0 to obtain an over-

approximations of the precise results. Given I = (τ, c̄), we let E(I) be the set of edges in τ or

any τS where c̄(τS) > 0. Then given I and I ′, I � I ′ implies E(I ′) ⊆ E(I). We build the Trie

and Inverted Lists indices such that for a given query I , they return a candidate set I� and a

candidate set I� where I� contains all I ′ from act such that E(I ′) ⊆ E(I) and I� contains all

I ′ such that E(I) ⊆ E(I ′). Then it suffices to test each member in the candidate sets for I � I ′

and I � I ′ to obtain the precise results of operations (1) and (2).
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5.3.7 Optimization with Static Analysis

Next, we introduce our optimization based on static analysis. At a high level, we notice

that in real workflow examples, some constraints in conditions of the specification and the

property are irrelevant to the result of verification because they can never cause violations when

conditions are evaluated in a symbolic run. Such conditions can be ignored to reduce the number

of symbolic states. For example, for a constraint x = y in the specification, if x 6= y does not

appear anywhere else and cannot be implied by other constraints, then x = y can be safely

removed from any partial isomorphism types without affecting the result of the verification

algorithm. Our goal is to detect all such constraints by statically analyzing the HAS* and the

LTL-FO property. Specifically, we analyze the constraint graph consisting of all possible “=”

and “ 6=” constraints that can potentially be added to any partial isomorphism types in symbolic

transitions of the HAS* Γ or when checking condition φ (refer to the notation in the SRR

problem).

Definition 134. The constraint graph G of (Γ, φ) is a labeled undirected graph over the set of

all expressions E with the following edges. For every atom a that appears in a condition of Γ or

φ in negation normal form, if a is

• (x = y), then G contains (x.w, y.w,=) for all sequences w where {x.w, y.w} ⊆ E ,

• (x 6= y), then G contains (x, y, 6=),

• R(x, y1, . . . , ym), thenG contains (x.Ai.w, yi.w,=) for all i and sequencesw where {x.Ai.w,

yi.w} ⊆ E , and

• ¬R(x, y1, . . . , ym), then G contains (x.Ai, yi, 6=) for all i.

For any subgraph G′ of G, G′ is consistent if the edges in G′ do not imply any contradiction,

meaning that there is no path of =-edges connecting two distinct constants or two expressions

connected by an 6=-edge.

An edge e of G is non-violating if for every consistent subgraph G′, G′ ∪ {e} is also

consistent.
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Intuitively, by collecting the edges described above, the constraint graph G becomes

an over-approximation of the reachable partial isomorphism types. Thus any edge in G that is

non-violating is also non-violating in any reachable partial isomorphism type. So our goal is to

find all the non-violating edges in G, since they can be ignored in partial isomorphism types to

reduce the size of the search space.

Non-violating edges can be identified efficiently in polynomial time. Specifically, an

edge (u, v, 6=) is non-violating if u and v belong to different connected components of =-edges

of G. An =-edge e is non-violating if there is no path u −→ v of =-edges containing e for

any (u, v, 6=) ∈ G or (u, v) being two distinct constants. This can be checked efficiently by

computing the biconnected components of the =-edges [121]. We omit the details here.

Example 135. Consider the two constraint graphs G1 and G2 in Figure 5.7. In G1 (left), (e3, e5)

is a non-violating 6=-edge because e3 and e5 belong to two different connected components of

=-edges ({e1, e2, e3, e4} and {e5, e6, e7} respectively). In G2 (right), (e3, e5) is a non-violating

=-edge because (e3, e5) is not on any simple path of =-edges connecting the two ends of any

6=-edges (i.e. (e2, e3) and (e5, e6)).
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Figure 5.7. Non-violating Edges

5.3.8 Extension to Repeated-Reachability

Recall from Section 5.3.2 that providing full support for verifying LTL-FO properties

requires solving the repeated state reachability problem. It is well-known that for VASS, the

coverability set I extracted from the tree T constructed by the classic Karp-Miller algorithm can

be used to identify the repeatedly reachable partial isomorphism types (see Section 5.3.3). The
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same idea can be extended to the Karp-Miller algorithm with monotone pruning (Section 5.3.4),

since the algorithm is guaranteed to construct a coverability set.

However, the Karp-Miller algorithm equipped with our �-based pruning (Section 5.3.5)

explores fewer states due to the more aggressive pruning, and it turns out that the resulting

coverability set I� is incomplete to determine whether a state is repeatedly reachable. We can

no longer guarantee that a repeatedly reachable state is only contained in a cycle of states in I�.

We can nevertheless show that the completeness of the search for repeatedly reachable states

can be restored by developing our own extraction technique which compensates for the overly

aggressive �-based pruning. The technical development is subtle and relegated to Appendix 5.7.

As confirmed by our experimental results, the additional overhead is acceptable.

5.4 Experimental Evaluation

We evaluated the performance of VERIFAS using both real-world and synthetic artifact

specifications.

5.4.1 Setup and Benchmark

The Real Set. We built an artifact system benchmark by rewriting in HAS* a sample

of real-world BPMN workflows published at the official BPMN website [1], which provides

36 workflows of non-trivial size. To rewrite these workflows in HAS*, we manually added

the database schema, artifact variables/relations, and services for updating the data. HAS* is

sufficiently expressive to specify 32 of the 36 BPMN workflows. The remaining 4 cannot be

expressed in HAS* because they involve computing aggregate functions or updating unboundedly

many tuples of the artifact relations, which is not supported in the current model. We will consider

such features in our future work.

The Synthetic Set. Since we wished to stress-test VERIFAS, we also randomly generated

a set of HAS* specifications of increasing complexity. All components of each specification,

including DB schema, task hierarchy, variables, services and conditions, were generated fully at
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random for a certain size. We provide in Appendix 5.8 more details on how each specification

is generated. Those with empty state space due to unsatisfiable conditions were removed from

the benchmark. Table 5.1 shows some statistics of the two sets of specifications. (#Relations,

#Tasks, etc. are averages over the real / synthetic sets of workflows.)

Table 5.1. Statistics of the Two Sets of Workflows

Dataset Size #Relations #Tasks #Variables #Services

Real 32 3.563 3.219 20.63 11.59
Synthetic 120 5 5 75 75

LTL-FO Properties. On each workflow of both sets, we run our verifier on a collection

of 12 LTL-FO properties of the root task constructed using templates of real propositional LTL

properties. The set of templates used here are the same classes used for SpinArt. The LTL

properties are all the 11 examples of safety, liveness and fairness properties collected from

a standard reference paper [116] and an additional property False used as a baseline when

comparing the performance of VERIFAS on different classes of LTL-FO properties. We list

all the templates of LTL properties in Table 5.4. To see why we choose False as the baseline

property, recall from Section 5.3 that the verifier’s running time is mainly determined by the

size of the reachable symbolic state space (VERIFAS first computes all reachable symbolic

states –represented by the coverability set– then identifies the repeatedly-reachable ones). The

reachable symbolic state space can be conceptualized as the cross-product between the reachable

symbolic state space of the HAS* specification (absent any property) and the Büchi automaton

of the property. When the LTL-FO property is False, the generated Büchi automaton is of the

simplest form (a single accepting state within a loop), so it has no impact on the cross-product

size, unlike more complex properties.

In each workflow, we generate an LTL-FO property for each template by replacing the

propositions with FO conditions chosen from the pre-and-post conditions and their sub-formulas.

Note that by doing so, the generated LTL-FO properties on the real workflows are combinations
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of real propositional LTL properties and real FO conditions, and so are close to real-world

LTL-FO properties.

Baseline. We compare VERIFAS with SpinArt, the verifier implementation based on

Spin presented in Chapter 4. Note that SpinArt supports a restricted version of the HAS* model

since it cannot handle the updatable artifact relations.

Platform. We implemented both verifiers in C++ with Spin version 6.4.6 for SpinArt.

All experiments were performed on a Linux server with a quad-core Intel i7-2600 CPU and 16G

memory. For each specification, we ran our verifiers to test each of the 12 generated LTL-FO

properties, resulting in 384 runs for the real set and 1440 runs for the synthetic set. Towards fair

comparison, since SpinArt cannot handle artifact relations, in addition to running our full verifier

(VERIFAS), we also ran it with artifact relations ignored (VERIFAS-NoSet). The timeout limit

of each run was set to 10 minutes and the memory limit was set to 8G.

5.4.2 Experimental Results

Performance. Table 5.2 shows the results on both sets of workflows. SpinArt achieves

acceptable performance in the real set, with an average elapsed time of a few seconds and only 3

timeouts. However, it failed in a large number of runs (440/1440) in the stress-test using synthetic

specifications. On the other hand, both VERIFAS and VERIFAS-NoSet achieve average running

times within 0.3 second and no timeout on the real set, and the average running time is within

seconds on the synthetic set, with only 19 timeouts over 1440 runs. The presence of artifact

relations introduced an acceptable amount of performance overhead, which was negligible in the

real set and less than 60% in the synthetic set. Compared with SpinArt, VERIFAS is >10x faster

in average running time and scales significantly better with workflow complexity.

The timeout runs on the synthetic workflows are all due to state explosion with a state

space of size ∼3×104. The reason is that though unlikely in practice, it is still possible that the

reached partial isomorphism types can degenerate to full isomorphism types, and in this case our

state-pruning optimization does not reduce the number of reached states.
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Table 5.2. Average Elapsed Time and Number of Failed Runs (#Fail) due to Timeout or
Memory Overflow

Verifier
Real Synthetic

Avg(Time) #Fail Avg(Time) #Fail

SpinArt 2.97s 3 83.983s 440
VERIFAS-NoSet .229s 0 6.983s 19

VERIFAS .245s 0 11.01s 16

Cyclomatic Complexity. To better understand the scalability of VERIFAS, we also

measured verification time as a function of workflow complexity, adopting a metric called

cyclomatic complexity, which is widely used in measuring complexity of program modules

[128]. For a program P with control-flow graph G(V,E), the cyclomatic complexity of P

equals |E| − |V |+ 2. We adapt this measure to HAS* specifications as follows. Given a HAS*

specification A, a control flow graph of A can be obtained by selecting a task T of A and

a non-id variable x ∈ x̄T and projecting all services of T onto {x}. The resulting services

contain only x and constants and thus can be viewed as a transition graph with x as the state

variable. The cyclomatic complexity of A, denoted as M(A), is defined as the maximum

cyclomatic complexity over all the possible control-flow graphs of A (corresponding to all

possible projections).

Figure 5.8 shows that the verification time increases exponentially with the cyclomatic

complexity, thus confirming the pertinence of the measure to predicting verification complexity,

where the verification time of a workflow is measured by the average running time over all

the runs of its LTL-FO properties. According to [128]’s recommendation, for a program to

remain readable and testable, its cyclomatic complexity should not exceed 15. Among all the

138 workflows with cyclomatic complexity at most 15, VERIFAS successfully verified 130/138

(∼94%) of them within 10s and only 4 instances have timeout runs (marked as hollow triangles

in Figure 5.8). For specifications with complexity above 15, only 2/14 instances have timeout

runs.
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Figure 5.8. Average Running Time vs. Cyclomatic Complexity

Typically, for the same cyclomatic complexity, the real workflows can be verified faster

compared to the synthetic workflows. This is because the search space of the synthetic workflows

is likely to be larger because there are more variables and transitions.

Impact of Optimizations. We studied the effect of our optimization techniques: state

pruning (SP, Section 5.3.5), data structure support (DSS, Section 5.3.6), and static analysis (SA,

Section 5.3.7). For each technique, we reran the experiment with the optimization turned off

and measured the speedup by comparing the elapsed verification time with the original elapsed

time. Table 5.3 shows the average speedups of each optimization on both datasets. Since some

instances have extreme speedups (over 10,000x), simply averaging could be misleading, so we

also present the trimmed averages of the speedups (i.e. removing the top/bottom 5% speedups

before averaging) to exclude the extreme values.

Table 5.3 shows that the effect of state pruning is the most significant in both sets of

workflows, with an average (trimmed) speedup of ∼25x and ∼127x in the real and synthetic set

respectively. The static analysis optimization is more effective in the real set (1.4x improvement)

but its effect in the synthetic set is less pronounced. It creates a small amount (7%) of overhead in

most cases, but significantly improves the running time of a single instance, resulting in the huge

gap between the normal average speedup and the trimmed average speedup. The explanation to

this phenomenon is that the workflows in the real set are more “sparse” in general, which means

there are fewer comparisons within a subset of variables so a larger number of comparisons
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can be pruned by static analysis. Finally, the data-structure support provides ∼1.2x and ∼1.6x

average speedup in each set respectively. Not surprisingly, the optimization becomes more

effective as the size of the state space increases.

Table 5.3. Mean and Trimmed Mean (5%) of Speedups

Dataset
SP SA DSS

Mean Trim. Mean Trim. Mean Trim.

Real 1586.54x 24.69x 1.80x 1.41x 1.87x 1.24x
Synthetic 322.03x 127.35x 28.78x 0.93x 2.72x 1.58x

Overhead of Repeated-Reachability. We evaluated the overhead of computing the

set of repeatedly-reachable states from the coverability set (Section 5.3.8) by repeating the

experiment with the repeated reachability module turned off. Compared with the turned off

version, the full verifier has an average overhead of 19.03% on the real set and 13.55% overhead

on the synthetic set (overheads are computed over the non-timed-out runs).

Effect of Different Classes of LTL-FO Properties. Finally, we evaluate how the

structure of LTL-FO properties affects the performance of VERIFAS. Table 5.4 lists all the LTL

templates used in generating the LTL-FO properties and their intuitive meaning stated in [116].

For each template and for each set of workflows, we measure the average running time over all

the runs with LTL-FO properties generated using the template. Table 5.4 shows that for each

class of properties, the average running time is within 2x of the average running time for the

simplest non-trivial property False. This is much better than the theoretical upper bound, which

is linear in size of the Büchi automaton of the LTL formula. Some properties even have a shorter

running time because, although the space of partial symbolic instances is enlarged by the Büchi

automaton, more of the states may become unreachable due to the additional constrains imposed

by the LTL-FO property.
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Table 5.4. Average Running Time of Verifying Different Classes of LTL-FO Properties

Templates for LTL-FO Meaning Real Synthetic

False Baseline 0.26s 10.13s
Gϕ Safety 0.28s 10.26s

(¬ϕU ψ) Safety 0.28s 16.13s
(¬ϕUψ) ∧G(ϕ→ X(¬ϕUψ)) Safety 0.30s 10.79s
G(ϕ→ (ψ ∨Xψ ∨XXψ)) Safety 0.29s 12.07s

G(ϕ ∨G(¬ϕ)) Safety 0.30s 12.17s
G(ϕ→ Fψ) Liveness 0.29s 16.81s

Fϕ Liveness 0.02s 6.44s
GFϕ→ GFψ Fairness 0.30s 14.09s

GFϕ Fairness 0.28s 6.91s
G(ϕ ∨Gψ) Fairness 0.05s 9.64s

FGϕ→ GFψ Fairness 0.28s 6.75s

5.5 Conclusion

We presented the implementation of VERIFAS, an efficient verifier of temporal properties

for data-driven workflows specified in HAS*, a variant of the Hierarchical Artifact System model

studied theoretically in Chapter 3. HAS* is inspired by the Business Artifacts framework

introduced by IBM [76] and incorporated in OMG’s CMMN standard [94, 17].

While the verification problem is EXPSPACE-complete, our experiments show that the

theoretical worst case is unlikely in practice and that verification is eminently feasible. Indeed,

VERIFAS achieves excellent performance (verification within seconds) on a practically relevant

class of real-world and synthetic workflows (those with cyclomatic complexity in the range

recommended by good software engineering practice), and a set of representative properties. The

good performance of VERIFAS is due to an adaptation of our symbolic verification techniques

developed in Chapter 3, coupled with the classic Karp-Miller algorithm accelerated with an array

of nontrivial novel optimizations.

The experiments highlight the impact of the various optimizations and parameters of

both the artifact systems and properties. The performance of VERIFAS significantly improves
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over SpinArt. On the real set of workflows, even when the tasks have updatable artifact relations,

VERIFAS achieves an >10x improvement in the average running time (0.245 seconds) with no

failed runs. Also on the synthetic set of workflows, it is able to scale with an average running

time of 11.01 second and fails due to timeout on <1% of the runs. In addition, the experiments

show that the verification time of VERIFAS increases exponentially with the input workflow’s

cyclomatic complexity, a classic metric for measuring the complexity of program modules. The

performance is within a reasonable range when the cyclomatic complexity is below the maximal

value recommended by software engineering practice. Thus, VERIFAS performs very well on

practically relevant classes of artifact systems. Compared to the Spin-based verifier, it not only

applies to a much broader class of artifacts but also has a decisive performance advantage even

on the simple artifacts the Spin-based verifier is able to handle. To the best of our knowledge,

VERIFAS is the first implementation of practical significance of an artifact verifier with full

support for unbounded data.

5.6 Appendix: Symbolic transitions

In this section, we provide the formal definition of symbolic transitions. Although

our discussion in Section 5.3 focuses primarily on single tasks, the notion of partial symbolic

instances and symbolic transitions can be naturally extended to the full HAS* model. For clarity,

we first define symbolic transitions for single tasks (ignoring interactions with children) and then

extend the definition to multiple tasks (taking into account such interactions).

Single Tasks. For a single task, we define succ(τ, c̄) as follows. For a given quantifier-

free FO formula ϕ, we denote by flat(ϕ) the formula obtained by replacing each relational

atom R(x, y1, . . . , ym) with
∧m
i=1 x.Ai = yi, and denote by conj(ϕ) the set of conjuncts of the

disjunctive normal forms of flat(ϕ). Note that each literal in every conj(ϕ) is positive as

negations can be removed by inverting each = and 6=. We let t(θ) to be the partial isomorphism

type induced by θ for θ ∈ conj(ϕ). Given a PSI I = (τ, c̄), for every service σ = (π, ψ, ȳ, δ),
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for every θ1 ∈ conj(π) where τ ∩ t(θ1) is satisfiable (the pre-condition is satisfied), for every

θ2 ∈ conj(ψ), succ(I) contains the following PSIs that are valid:

• ((τ ∩ t(θ1)|ȳ) ∩ t(θ2), c̄) if δ = ∅,

• ((τ ∩ t(θ1)|ȳ) ∩ t(θ2), c̄[τS → c̄(τS) + 1]) for τS = fz̄→S(τ |z̄) if δ = {+S(z̄)}, or

• ((τ ∩ t(θ1)|ȳ) ∩ t(θ2) ∩ fS→z̄(τS), c̄[τS → c̄(τS) − 1]) if δ = {−S(z̄)}) for some τS where

c̄(τS) > 0.

Extension to Multiple Tasks. For each task T , the definition of partial isomorphism

type of T is the same as Definition 127, except the set E is replaced with ET , the set of all

expressions of task T . Partial symbolic instances are defined as follows.

Definition 136. A partial symbolic instance (PSI) I of a task T is a tuple (τ, c̄, r̄) where

• τ is a partial isomorphism type of T ,

• c̄ is a vector of N where each dimension of c̄ corresponds to a unique partial isomorphism

type of T , and

• r̄ is a mapping from child(T ) to the set {active, inactive}.

Intuitively, the extra component r̄ records the status and return information of child tasks

of T . For a child task Tc ∈ child(T ), r̄(Tc) indicates whether Tc is active or not.

Symbolic transitions are specified by the successor function

succT (I) for each task T , which is formally defined as follows. We first consider successors

under internal services, then under opening and closing services of the children of T .

Internal Services. Given a PSI I = (τ, c̄, r̄) of task T the definition of symbolic

transitions with internal services resembles the definition in the single task case, with the extra

conditions that r̄(Tc) = inactive for every child task Tc ∈ child(T ) and for every resulting

PSI (τ ′, c̄′, r̄′), r̄′ = r̄.

We next consider opening and closing services of T ’s children. For PSI I = (τ, c̄, r̄) of

task T , succT (I) contains the following:
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Opening service σoTc with pre-condition π: (applicable if r̄(Tc) = inactive)

succT (I) contains (τ ∩ t(θ), c̄, r̄[Tc 7→ active])

for every θ ∈ conj(π) such that τ ∩ θ is satisfiable.

Closing service σcTc: (applicable if r̄(Tc) = active)

succT (I) contains (τ ∩ τc, c̄, r̄[Tc 7→ inactive])

for every partial isomorphism type τc of x̄T
Tc↑

such that τ ∩ τc is satisfiable.

5.7 Appendix: Repeated-Reachability

We describe in more detail how our Karp-Miller based algorithm with pruning can

be extended to state repeated reachability, thus providing full support for verifying LTL-FO

properties. For VASS, it is well-known that the coverability set I extracted from the tree T

constructed by the classic Karp-Miller algorithm can be used to identify the repeatedly reachable

partial isomorphism types (see Section 5.3.3). The same idea can be extended to the Karp-Miller

algorithm with monotone pruning (Section 5.3.4), since the algorithm guarantees to construct a

coverability set. This can be done as follows.

First, for every I = (τ, c̄) ∈ I , if there exists τS such that c̄(τS) = ω, then I is inherently

repeatedly reachable because the accelerate operation was applied to generate the ω. In addition,

it is sufficient to consider only the maximal PSIs in I. A PSI I is maximal if there is no state

I ′ 6= I in I and I � I ′. We denote by Imax the subset of maximal PSIs in I that contains no ω.

Then for PSI I ∈ Imax, it is not difficult to show that I is repeatedly reachable iff I is

contained in a cycle consisting of only PSIs in Imax. As a result, the set of repeatedly reachable

states can be computed by constructing the transition graph among Imax and computing its

strongly connected components. A PSI I is repeatedly reachable if I is contained in a component
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with at least 1 edge.

The reason this works is the following. Suppose I ∈ Imax and I is contained in a cycle

{Ii}a≤i≤b where Ia is not maximal. Then there exists a reachable PSI I ′a where Ia < I ′a. So the

sequence of transitions that leads Ia to Ib is also a valid sequence that can be applied starting

from I ′a and results in a cycle {I ′i}a≤i≤b. The transitions leave the counters unchanged, so I ′i > Ii

for every i ∈ [a, b], which contradicts the assumption that I is maximal.

However, the same approach cannot be directly applied when the Karp-Miller algorithm

is equipped with our �-based pruning (Section 5.3.5). The algorithm explores fewer states

due to the more aggressive pruning, and it turns out that the resulting coverability set I� is

incomplete to determine whether a state is repeatedly reachable. We can no longer guarantee

that a repeatedly reachable state is only contained in a cycle of maximal states in I�. The above

reasoning fails because it relies on the strict monotonicity property: for every PSI I and I ′ where

I < I ′, for every Inext ∈ succ(I), there exists I ′next ∈ succ(I ′) such that Inext < I ′next. This no

longer holds when < is replaced with ≺. Consequently, we need to explore PSIs outside of Imax

when we detect cycles. To avoid state explosion when the extra PSIs are explored, we make use

of a pruning criterion obtained by slightly restricting � as follows.

Definition 137. Given two partial symbolic states I = (τ, c̄) and I ′ = (τ ′, c̄′), I �+ I ′ iff I = I ′

or the following hold:

• τ |= τ ′,

• there exists f that satisfies the conditions of Definition 132, and

• there exists τ ′S such that
∑

τS
f(τS, τ

′
S) < c̄′(τ ′S).

By using the same Karp-Miller-based algorithm with �+ in monotone pruning, we

compute a set I+
max that satisfies the following: for every I ∈ Imax and I ′ reachable from I , there

exists I ′′ ∈ I+
max such that I ′ �+ I ′′. Since �+ satisfies the strict monotonicity property, a PSI

I ∈ Imax is repeatedly reachable iff I is contained in a cycle that contains only PSIs in I+
max,
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which can be checked efficiently by computing the strongly connected components. Note that

when we compute I+
max, we can accelerate the search by pruning a new PSI I if I �+ I ′ for

any I ′ in the previously computed Karp-Miller tree. In addition, there is no need to apply the

accelerate operator since it is sufficient to consider only PSIs with no ω. As confirmed by our

experiments, the overhead for computing the set of repeatedly reachable PSIs is acceptable.

5.8 Appendix: Synthetic Workflow Generator

We briefly describe how the synthetic workflows used in our experiments were produced.

Each part of a synthetic workflow is generated at random, for the given parameters #relations,

#tasks, #variables and #services.

We first generate a random tree of fixed size as the acyclic database schema where each

relation has a fixed number of (4) non-ID attributes. Then we generate a random tree of fixed size

as the task hierarchy. Within each task, for each variable type (non-ID or ID of some relation),

we uniformly generate the same number of variables. We randomly choose 1/10 of the variables

as input variables and another 1/10 as output variables. Then we generate a fixed number of

internal services for each task with randomly generated pre-and-post conditions (described next).

With probability 1/3, the internal service has ȳ propagating a randomly chosen subset (1/10) of

the task’s variables, or inserting a fixed tuple of variables into the artifact relation, or retrieving a

tuple from the artifact relation.

Each condition of each service is also generated as a random tree. We first generate a

fixed number of (5) atoms, where each atom has 1/3 of probability of having the form x = y,

x = c orR(x̄), where x, y, x̄ are variables chosen uniformly at random and c is a random constant

from a fixed set. Each leaf is negated with probability 1/2. Then we generate the condition as a

random binary tree with the atoms as the leafs of the tree. Each internal node of the binary tree

is an ∧-connective with probability 4/5 and an ∨-connective with probability 1/5. We chose to

generate ∧ with higher probability based on our observations of the real workflows.
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Chapter 6

Summary and Discussion

Data-driven workflows provide the backbone of many important applications such as

e-commerce, business process management, scientific applications and healthcare, for which

formal verification is critically important. In addition, the proliferation of tools supporting

high-level specification of the workflows provides natural targets for verification.

This thesis studies data-driven workflows verification in both theory and practice. From

the theory perspective, the thesis shows decidability of verification for HAS, a rich artifact system

model capturing core elements of IBM’s successful GSM model. Leveraging novel techniques,

including a hierarchy of Vector Addition Systems (or equivalently Petri nets) and a variant of

quantifier elimination, we showed new complexity upper bounds for verification, ranging from

PSPACE to non-elementary in various cases. Compared to previous work [36] where the best

upper bound is non-elementary in the number of variables when database keys and/or arithmetic

are present, our new upper bounds are elementary (EXPSPACE to 3EXPSPACE) for acyclic and

linearly-cyclic schemas even in the presence of arithmetic and artifact relations. Moreover, even

for arbitrary cyclic schema, the non-elementary complexity is only in the height of the task

hierarchy, likely to be much smaller than the number of variables in the workflow specification.

From the practical perspective, the thesis presents two successful implementations:

SpinArt and VERIFAS. Using the widely used off-the-shelf model checker Spin and a set of

nontrivial optimizations, SpinArt achieves good performance on a realistic set of data-driven
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business processes. VERIFAS pushed further the frontier of practical verification with a special-

ized implementation built from scratch. VERIFAS uses the HAS* model, a variant of HAS that

strikes a more practically relevant trade-off between expressivity and verification complexity. In

particular, we demonstrate its practical applicability by showing that it is sufficiently expressive

to specify a benchmark of realistic business processes extended with data-aware features. By

adapting the symbolic verification techniques developed for HAS, coupled with the classic

Karp-Miller algorithm accelerated with an array of nontrivial novel optimizations, VERIFAS

achieves excellent performance not only on the real benchmark, but also on a synthetic set

consisting of workflows of much larger size. Compared to SpinArt, VERIFAS not only applies

to a broader class of data-driven workflows, but also has a decisive performance advantage. To

our knowledge, SpinArt and VERIFAS are the first implementations of practical significance of

workflow verifiers with full support of unbounded data.

Future work

There are several promising future work opportunities towards improving the applicability

and impact of the presented results.

On the theoretical front, the quest for the right package of restrictions that enables

verification while capturing more relevant sets of specifications is still ongoing. For example,

real-life artifacts often require the ability to aggregate data collections (e.g. summing up all

items in the shopping cart). While adding features like aggregate functions over the artifact

relations can satisfy this need, it requires additional restrictions to the model and adaptation of

the verification techniques. Other useful extensions involve checking properties of the interaction

among multiple actors in data-driven workflows, or among multiple artifact instances evolving in

parallel. The inter-operation, evolution, and integration of multiple systems also raise important

static analysis questions.

Bridging the gap between the abstract setting of theoretical results and full-fledged
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specification frameworks also raises significant challenges. The current decidability results are

subject to strong restrictions. The boundary of decidability is subtle, as even small deviations

from the restrictions may lead to undecidability. This raises a need to design user interfaces for

workflow developers to guide the development of full-fledged specifications towards satisfaction

of the restrictions, whenever possible.

Clearly, a practical verifier needs to also deal with specifications that do not obey the

restrictions needed for decidability. As typical in software verification, this can be done by

abstracting the given specification to one that satisfies the restrictions, and verifying the resulting

abstraction. For example, if certain arithmetic operations are not supported by the verifier, they

can be abstracted as black-box relations, ignoring their semantics. The resulting verifier is

guaranteed to be sound (it is never wrong when it claims correctness of a specification), but

is possibly not complete (it may produce false negatives, i.e. candidate counterexamples to

the desired property, which need to be validated by the user). The technical challenge lies in

automatically generating the abstraction such that it gives up only as little completeness as

necessary for decidability. Also, in the case of false negatives, how user feedback can guide

changing the abstraction is an interesting and technically challenging research question.

Finally, the results and implementations presented in this thesis have boarder relevance

beyond data-driven workflows. One promising impact area is the verification of blockchain-

enabled applications specified using smart contracts. The blockchain paradigm is being adopted

in support of new platforms for business collaboration in various areas, including finance, supply

chain, food production, pharmaceuticals and healthcare [75]. The key component enabling such

functionality is blockchain’s programmable logic in the form of smart contracts. Essentially,

similar to data-driven workflows, a smart contract specifies the business data stored in the

blockchain and the transaction logic for updating the data invoked by external calls to the

contract. Due to the high cost of vulnerabilities in smart contracts (e.g. the $50 million loss

caused by the DAO hack [113]), formal verification has become a highly desirable features in

major blockchain platforms [73]. However, the commonly used smart contract languages are
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general-purpose, which means that automatic verification is not feasible in general. Therefore,

a new high-level language for smart contracts (such as those presented in this thesis) not only

enables efficient development, but also renders verification more feasible. Development of such

a language is underway1, and the new features specific to blockchain and smart contracts will

bring new verification challenges. The techniques developed in this thesis provide a powerful

toolbox for addressing them.

1The thesis author was involved in an ongoing related project during an internship in IBM Research.
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[72] Joos Heintz, Pablo Solernó, and Marie-Françoise Roy. On the complexity of semialgebraic
sets. In IFIP Congress, pages 293–298, 1989.

[73] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem provers. In
International Conference on Financial Cryptography and Data Security, pages 520–535.
Springer, 2017.

[74] Gerard Holzmann. Spin Model Checker, The: Primer and Reference Manual. Addison-
Wesley Professional, first edition, 2003.

[75] Richard Hull, Vishal S Batra, Yi-Min Chen, Alin Deutsch, Fenno F Terry Heath III,
and Victor Vianu. Towards a shared ledger business collaboration language based on
data-aware processes. In International Conference on Service-Oriented Computing, pages
18–36. Springer, 2016.

[76] Richard Hull, Elio Damaggio, Riccardo De Masellis, Fabiana Fournier, Manmohan Gupta,
Fenno Terry Heath III, Stacy Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam, et al.
Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions
with conditions and events. In DEBS, pages 51–62. ACM, 2011.

[77] Richard Hull, Francois Llirbat, Bharat Kumar, Gang Zhou, Guozhu Dong, and Jianwen
Su. Optimization techniques for data intensive decision flows. In ICDE, 2000.

[78] Richard Hull, Francois Llirbat, Eric Siman, Jianwen Su, Guozhu Dong, Bharat Kumar,
and Gang Zhou. Declarative workflows that support easy modification and dynamic
browsing. volume 24, pages 69–78. ACM, 1999.

[79] Richard Hull and Jianwen Su. Tools for design of composite web services. In SIGMOD,
pages 958–961. ACM, 2004.

[80] Richard Hull, Jianwen Su, and Roman Vaculı́n. Data management perspectives on business
process management: tutorial overview. In SIGMOD, 2013.

[81] Marcin Jurdzinski and Ranko Lazic. Alternation-free modal mu-calculus for data trees.
In LICS, pages 131–140. IEEE, 2007.

[82] H.W. Kamp. Tense logic and the theory of linear order, 1968. Phd thesis, University of
California, Los Angeles.

[83] Richard M Karp, Raymond E Miller, and Arnold L Rosenberg. Rapid identification of
repeated patterns in strings, trees and arrays. In Proc. ACM Symposium on Theory of
Computing (STOC), pages 125–136. ACM, 1972.

201



[84] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete guide to
dimensional modeling. 2011.

[85] Santhosh Kumaran, Prabir Nandi, Terry Heath, Kumar Bhaskaran, and Raja Das. Adoc-
oriented programming. In Symposium on Applications and the Internet, pages 334–341.
IEEE, 2003.
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