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An Approximate Bayesian Estimator Suggests Strong,
Recurrent Selective Sweeps in Drosophila
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Abstract

The recurrent fixation of newly arising, beneficial mutations in a species reduces levels of linked neutral variability. Models
positing frequent weakly beneficial substitutions or, alternatively, rare, strongly selected substitutions predict similar
average effects on linked neutral variability, if the product of the rate and strength of selection is held constant. We propose
an approximate Bayesian (ABC) polymorphism-based estimator that can be used to distinguish between these models, and
apply it to multi-locus data from Drosophila melanogaster. We investigate the extent to which inference about the strength
of selection is sensitive to assumptions about the underlying distributions of the rates of substitution and recombination,
the strength of selection, heterogeneity in mutation rate, as well as the population’s demographic history. We show that
assuming fixed values of selection parameters in estimation leads to overestimates of the strength of selection and
underestimates of the rate. We estimate parameters for an African population of D. melanogaster (ŝ,2E203, 2N l̂l*2E{04)
and compare these to previous estimates. Finally, we show that surveying larger genomic regions is expected to lend much
more discriminatory power to the approach. It will thus be of great interest to apply this method to emerging whole-
genome polymorphism data sets in many taxa.
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Introduction

The fixation of beneficial mutations can strongly reduce levels of

closely linked neutral variation – the so-called genetic hitchhiking

effect [1]. This prediction has been used to search for positive

selection by looking for regions of the genome with reduced

variability [e.g., 2]. The hitchhiking model most often used is of a

single selective sweep, where the location and timing of selection

are assumed to be known [3]. This single sweep model has been of

great value in understanding the effect that a single selective event

has on patterns of polymorphism, as a function of the strength of

selection and location of the beneficial mutation [e.g., 1,4,5].

However, this model is somewhat disconnected from the problem

of detecting selective sweeps in the genome, for which locations

and timings are not known a priori, and should be treated as

random variables.

Kaplan et al. (1989) described a ‘‘recurrent hitch-hiking’’ (RHH)

model, where the expected number of sweeps (per base pair, per

2N generations) is 2Nl with sweeps occurring at random locations

in the genome [6]. The RHH model is most commonly considered

for the case of genic selection on new mutations entering the

population [e.g., 6–8]. Under this model, several patterns expected

under the single sweep model no longer apply. For example, the

single sweep model predicts coalescent histories with long internal

branches, as some lineages may escape the recent coalescent event

via recombination. This results in the widely employed prediction

of an excess of high-frequency derived alleles flanking the fixed site

[5]. Under RHH models however, the probability of such a history

is small, as sweeps are on average old and high frequency derived

mutations have thus likely drifted to fixation [9].

Wiehe and Stephan (1993) showed that under a RHH model,

for a given recombination rate, the expected level of heterozygos-

ity at linked sites relative to neutral expectations is dependent upon

the compound parameter (s)(2Nl), where 2Nl is the rate of fixation

of beneficial mutations and s is the average strength of selection

[7]. This result implies that that the two parameters are

confounded (much like the effective population size, Ne, and

mutation rate, m, in h = 4Nem) as their effect on expected levels of

diversity depends on their product. In D. melanogaster and D.

simulans, lower than expected levels of nucleotide diversity are

observed in regions of reduced recombination [10] and in the

coding sequences of rapidly evolving proteins [11,12]. These

findings are compatible with either strong but infrequent positive

selection (i.e., large s and small 2Nl) or weak but common positive

selection (i.e., small s and large 2Nl) [7,11–13].

A number of methods have been proposed for quantifying s and

2Nl (separately) using divergence and polymorphism data [e.g.,

11–12,14–17]. These approaches typically make strong assump-

tions regarding the possible distribution of selection coefficients,

the number of adaptive substitutions between species, or the

timing of selection. For example, Li and Stephan (2006) examined

250 non-coding regions from an East African population of D.

melanogaster [18]. Using a likelihood approach, they estimate that

approximately 160 beneficial mutations have fixed in this
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population over the last ,60,000 years (corresponding to

2N l̂l~1:9E{04), with mean selection coefficient ŝ,0.002. This

inference is achieved by effectively assuming that the timing of all

sweeps is known (and the time since the sweep, t = 0). Under a

recurrent sweep model, this assumption may bias the estimation of

s and 2Nl. Additionally, as this method relies on first fitting a

demographic model to non-coding DNA polymorphisms, it is

possible that the effects of purifying selection on the site frequency

spectrum of non-coding DNA [19–20] may strongly affect the

estimates.

Using synonymous polymorphism data in D. melanogaster, and

divergence to D. simulans, at 137 X-linked loci, Andolfatto (2007)

employed a maximum likelihood approach to estimate the joint

parameter 2Nls, followed by a McDonald-Kreitman-based

method to separately estimate 2Nl and s [11]. Based on these

calculations, Andolfatto estimated that most beneficial amino acid

substitutions are very weakly advantageous on average (with

average ŝ,1.2E25 and 2Nl̂l*2:6E{03). Macpherson et al.

(2007), using polymorphism data from D. simulans (and divergence

to D. melanogaster), propose a method to infer the rate and strength

of selection from the spatial scale of variation in polymorphism

and divergence [12]. In contrast to Andolfatto’s estimates,

Macpherson et al. estimate a much stronger average selection

coefficient (ŝ,0.01) and less frequent selection (2Nl̂l*1E{05).

However, they note that their method is more likely to detect

strong selection, so the effects of many weakly beneficial mutations

may be missed.

By evaluating a wide array of recurrent selection models across

a variety of sampling schemes, with parameters relevant for both

Drosophila and human populations, we demonstrate here that

there are differences in the predictions of weak and strong

selection models, both in the spatial distribution of variability levels

and the distribution of polymorphism frequencies (also called the

site frequency spectrum, hereafter SFS). We propose a polymor-

phism-based approximate Bayesian (ABC) estimator that is most

closely allied to the approach of Macpherson et al. (2007), but is

also applicable to sub-genomic multi-locus data of the kind that

has most often been collected [e.g., 11,21–22], and incorporates

more information from the data. Fundamentally, this estimation

procedure is based on the principle that while models may predict

the same average affects, the variance of many common summary

statistics varies greatly between models. We show that highly

accurate estimation will be possible with large-scale genome

polymorphism data, and that the approach is robust to both

mutation and recombination rate heterogeneity.

Results/Discussion

Distinguishing Models of Weak and Strong Recurrent
Selection

As pointed out by Macpherson et al. (2007), there is reason to

anticipate that region size may be key in uncoupling the strength

of selection (s) from the rate of beneficial fixation (2Nl) (see

Table 1 for a summary of terms). Intuitively, because only a very

strong sweep is capable of severely reducing larger regions - on

the order of 100 kb for instance - regions may be observed with

very little variation under this model. However, because

selection is rare, other regions will appear close to neutral.

Conversely, weak selection serves to homogenize variation as it

occurs with much greater frequency. For example, for an

effective population size of 106 and r = 4Nr = 0.1/bp, the

expected waiting time between sweeps is 68,000 generations,

for s = 1E204 and 2Nl = 5E204, for a region size of 104 base

pairs. For the same population parameters, but s = 0.01 and

2Nl = 5E206, the expected waiting time between sweeps is

532,000 generations. Considering that most signatures of

selection are dissipated by 400,000 generations for these

parameters [9,23], this demonstrates that if selection is strong

and rare on average, there will likely be a large variance across

the genome, from strongly swept to essentially neutral looking

regions (Figure 1). Capturing this variance is dependent upon the

size of the sampled region as, while many values of s may reduce

a 500 bp region for instance, only large selection coefficients are

capable of reducing a 100 kb region, suggesting that larger

region sizes should afford greater discriminatory power.

In order to more precisely determine this ‘region size’ effect, we

examined 500 bp, 1 kb, 2 kb, 5 kb, 10 kb, 25 kb, 50 kb, and

100 kb regions using simulated data (Figure 2A). First examining

L = 500 bp regions (matching existing empirical datasets, e.g.,

[11,21]), we observe that there is relatively little difference in the

coefficient of variation (CV) of p between RHH models of strong

and weak selection (Figure 2), consistent with previous observa-

tions that s and 2Nl are difficult to estimate separately with data of

this kind [13].

Examining larger regions, the CV is essentially unchanged

under weak selection models once regions larger than 25 kb have

been sequenced. Conversely, the CV continues to grow rapidly

under a strong selection model, producing a four-fold difference in

Author Summary

Understanding the process of adaptive evolution requires
quantifying the extent to which beneficial mutations
contribute to differences between species. However,
fundamental parameters of adaptation, such as the rate
and strength of beneficial mutations, are poorly under-
stood and have historically been difficult to estimate from
data. In particular, distinguishing a high rate of weakly
selected substitutions from a low rate of strongly selected
substitutions has been problematic. Here, we introduce a
new method to estimate the parameters of adaptive
evolution from multi-locus population genetic data. We
conduct simulations to show that this method is able to
discriminate the rare/strong model from the frequent/
weak model. Applying this method to an African
population sample of Drosophila melanogaster, we esti-
mate selection parameters and find that recurrent
adaptive evolution has reduced genome variability by
,50% on average. The availability of genome-scale
population genetic data will lend considerable discrimina-
tory power to the approach. Thus, this new approach
represents an important step towards characterizing the
nature of adaptive evolution in natural populations.

Table 1. Definitions of commonly used symbols.

Symbol Definition

t Time since sweep in units of 4N generations

L The length of the sequenced region

n Sample size

h 4Nm; the population mutation rate

r 4Nr; the population recombination rate

s The selection coefficient of beneficial mutations

2Nl = L The rate of fixation of beneficial mutations

doi:10.1371/journal.pgen.1000198.t001

Quantifying Adaptive Evolution in Drosophila
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the CV at 50 kb of sequence relative to weak selection models, and

over a five-fold difference at 100 kb for these parameters, for

Drosophila-like parameters (h = 0.01/site; r/h = 10). The differ-

ence between strong and weak selection models in Figure 2 does

not appear to be attributable to the total amount of surveyed

sequence between the 100 kb and 500 bp regions. By comparing

the distribution observed when considering ten 100 kb regions vs.

two thousand 500 bp regions (and thus the same number of

segregating sites on average) we still observe a large difference in

CV at the scale of 100 kb, and little difference between models at

the scale of 500 bp (results not shown).

We found that the relative point at which the region size benefit

plateaus is a function of h, r/h, 2Nl and s. We examined the effect

of doubling the recombination rate (such that r/h = 20), and find

that the CV is reduced under all models relative to r/h = 10, and

that the models begin to differentiate at smaller region sizes

(Figure 2B). These effects are a result of the fact that the expected

size of the swept region will decrease as the recombination rate

increases [6]. Additionally, using human-like parameters

(h = 0.002/site, r/h = 1), we find that the pattern of an increasing

CV with region size is still observed to some extent. However, the

CV is much larger on average even under neutrality when r/

h = 1, and the models are more similar to one another with

human-like parameters (Figure 2C) than with Drosophila-like

parameters (Figures 2A and B). This implies that weak and strong

selection models will be more difficult to distinguish in humans.

It is noteworthy that for large surveyed regions, more strongly

negative values of Fay and Wu’s H-statistic (i.e., SFS skewed

towards high-frequency derived alleles) and Tajima’s D-statistic

(i.e., SFS skewed towards rare alleles) are observed under strong

selection models (Figure 3), suggesting that differences in the

polymorphism site frequency spectrum may also be used to

distinguish between models if large enough regions are surveyed.

Though this differs qualitatively from the conclusions of

Przeworski (2002), simulations demonstrate that this is attributable

to a modeling difference (results not shown), as we here allow

sweeps within the sampled region (following [24]). This discrep-

ancy between modeling approaches will thus only become greater

as region sizes increase.

Estimating Recurrent Selection Parameters: An
Approximate Bayesian Approach

The above results suggest that focusing on variability across loci

may distinguish models of strong, rare sweeps from those of

frequent, weak sweeps. Thus, we here implement an approximate

Bayesian (ABC) approach to estimate the strength of selection (s),

the rate of fixation of beneficial mutations (2Nl) and the neutral

population mutation rate (h = 4Neu) under a recurrent hitchhiking

model. We begin by employing the observed mean and standard

deviation of heterozygosity (p), which is closely related to

previously published estimation procedures [e.g., 11–12]. In order

to evaluate this approach, we tested the performance using

simulated data. Figure S1 shows distributions of maximum a

posteriori (MAP) estimates of s, 2Nl, and h under two different

models (strong rare and weak frequent selection), for 50 kb and

500 bp regions. In these simulations, s, 2Nl and r have fixed

values indicated with the vertical dotted line.

We find that this p-based estimation performs reasonably well,

particularly when the size of surveyed regions is large and selection is

strong. For 500 bp regions, MAP estimates are accurate within an

order of magnitude. However, distributions of MAP estimates are

typically widely dispersed, particularly when selection is weak (Figure

S1; Table S1). Additionally, estimation of s, 2Nl, and h is generally

upwardly biased. Under the best conditions - large region sizes and

strong selection - the performance of the estimator is greatly

improved (RMSE(ŝ) = 0.179, and the relative bias, RB(ŝ) = 20.281).

Given the computational efficiency of ABC, it is straightforward

to explore multiple combinations of test statistics, in order to

determine whether incorporating additional information from the

site frequency spectrum or spatial distribution of sites may

significantly improve the accuracy of estimation. We found that

the incorporation of the mean and variance of several common

summary statistics did not significantly improve or alter estima-

tion, owing to correlations with p (results not shown). However,

other statistics such as hH [25], and ZnS [26] are only weakly

correlated with p (results not shown). As such, it may be

anticipated that the addition of these statistics may provide

additional information, which would allow for further discrimina-

tion between models.

Figure 1. A cartoon representation of the difference between models of common weak and rare strong selection. On the X-axis is
distance along a chromosome in kilobases (kb), and the on the Y-axis is variability. The dotted-line represents the average heterozygosity, and the
solid bars represent loci sequenced for polymorphism data. As shown, under the weak selection model each individual selective fixation impacts a
small genomic region, though sweeps are occurring frequently. The combination results in a homogenizing effect across the chromosome.
Alternatively, under the strong selection model each fixation impacts a large genomic region. However, because selection is rare, other regions will
appear at equilibrium. Thus, sampling loci under these models, the mean level of variation among loci may be identical, but the variance between
loci will be far greater under the strong selection case – with some loci falling in severely reduced regions of variation, and others in neutral regions.
doi:10.1371/journal.pgen.1000198.g001

Quantifying Adaptive Evolution in Drosophila
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This intuition appears to be accurate. The addition of the

mean and SD of ZnS and hH particularly, and the number of

segregating sites (S) to a lesser extent, appear to improve the

performance of the method considerably. For strong selection,

even at the 500 bp scale, the addition of multiple summary

statistics reduces the bias and RMSE by half relative to p-based

estimation (Table S1), thereby improving the accuracy of

estimation (Figure 4). This result suggests a distinct advantage

to utilizing these additional summary statistics, particularly when

surveying larger regions.

The Effect of Variation in Model Parameters
Though the parameters s, 2Nl, and r are fixed in the above

simulations, these parameters likely vary among genomic regions

in real data. While it is attractive to assume a fixed parameter

model given its simplicity, if the true model is in fact one in which

parameters are drawn from distributions, this may lead to a bias in

estimation owing to misspecification of the model. We consider a

variety of examples – those in which s and 2Nl are drawn from

exponentials, and r is drawn from an exponential or normal.

When comparing between fixed and distributed models – the

mean of the distribution is equal to the fixed value used previously

(i.e., if in the fixed model s = 0.01, the distribution model to which

it would be compared would have s exponentially distributed with

mean 0.01). Figure S2 documents the effect of modeling

parameters drawn from distributions on the relative CV of p
(compare to Figure 2). As expected the relative CV is inflated

compared to the fixed parameter model, which may lead to biases

in estimation if unaccounted for.

In order to consider the effect of model misspecification on

parameter estimation, datasets are simulated under a model where

parameters were drawn from distributions, yet priors are

constructed assuming that these parameters have fixed values.

Misspecification of the model in this way leads to an upward bias

in the estimate of selection coefficients, and a downward bias in

the estimated rate of selection (Figure 5). To account for this

misspecification, the priors must be appropriately constructed, by

allowing each locus within a given replicate dataset to also be

drawn from distributions (see Methods). As shown in Figure 5,

while the distribution of MAP estimates are more greatly dispersed

when compared with Figure 4 (e.g., under a fixed model the

RMSE(ŝ) = 7.9E206 for strong selection and large regions, and

under a distributed model the RMSE(ŝ) = 1.11), the mean of the

distribution nonetheless accurately reflects the means of s, 2Nl,

and h (for the above two models, the RB(ŝ) are 0.12 and 0.57,

respectively; Table S1). Additionally, for all estimated parameters,

the relative bias is reduced for 50 kb relative to 500 bp regions.

For comparison, an alternate distributed parameter model was

considered. As opposed to s being drawn from an exponential

distribution for each locus, we model s being drawn from an

exponential distribution for each selective event. Results between

the two models are similar, though this case results in consistently

smaller RMSEs (results under this alternative model, mirroring

Figure 5, are given in Table S1). This result suggests that this

Figure 2. The ratio of the coefficient of variation (CV) of p under four recurrent selection models to the CV of p under equilibrium
neutrality, for four selection coefficients (s = 1E202, 1E203, 1E204, and 1E205). n = 25. A) Drosophila-like parameters, r/h = 10, r = 0.1/
site, h = 0.01/site. (B) Drosophila-like parameters, r/h = 20, r = 0.2/site, h = 0.01/site. (C) Human-like parameters, r/h = 1, r = 0.002/site, h = 0.002/site.
The selection coefficient, s, and rate of advantageous substitution, 2Nl, differ among selection models, though their product remains the same for
each given value of r/h (sl= 2.5E213 for r/h = 10, 20; sl= 5E211 for r/h = 1 and N = 106). 1000 replicates were generated under each model for each
data point. As seen, the models begin to differentiate from one another as the size of the sampled region gets larger, suggesting greater power to
distinguish weak and strong selection models at larger physical scales.
doi:10.1371/journal.pgen.1000198.g002

Quantifying Adaptive Evolution in Drosophila
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alternative distribution model is intermediate between the two

extreme cases examined here - fixed models and distributed locus-

by-locus models. Despite the overall improvement gained by

modeling distributed parameters in general, an important

limitation is the assumption that the shape of the underlying

distribution of each parameter is known.

The above simulations however, continue to assume a

constant mutation rate among regions. In reality, the mutation

rate may vary among loci, which may be a potential source of

bias for the method [11–12]. Thus, in order to consider the

possible effects of mutation rate variation, the distribution of

variation at synonymous sites among loci in the Andolfatto

(2007) dataset (see below) was taken as a proxy for mutation rate

variation. We estimated the parameters for a C-distribution

using the distribution of synonymous site divergence estimates

across loci. Modeling this observed distribution with simulated

data (i.e., C(200,2.5); Figure S3), we found that the estimation

was not affected and results resemble those of a fixed h model

(Figure S1, Figures 4–5). This result suggests that the variation in

mutation rate observed in D. melanogaster is not widely dispersed

enough to impact estimation, and is thus not likely to be biasing

our estimated parameter values.

As there is relatively little variance at synonymous sites observed

among regions in the Andolfatto (2007) dataset, data was

simulated in which h is much more widely dispersed (i.e., C
(10,50)), in order to determine the possible bias introduced by

more extreme mutation rate variation. Importantly, under this

model, estimation based upon �pp and SD(p) becomes strongly

biased in the direction of estimating larger selection coefficients, as

heterogeneity in mutation rate is artificially inflating the variance

among loci (Figure S3). However, when estimation is based upon

the means and SDs of p, S, hH, and ZnS, results appear robust to

mutation rate variation (for p-based estimation, the RB of ŝ = 8.95,

for all statistics the RB = 0.51; Table S1). This is owing to the fact

that while p is greatly impacted by this heterogeneity, other

statistics, such as ZnS, have standard deviations that vary greatly

between RHH models, yet are largely unaffected by mutation rate

variation within any given model. Importantly, we only here

consider regional variation in mutation rates and not site-to-site

variation within genes (e.g., CpG in mammals).

In summary, we propose that our estimator of recurrent

hitchhiking model parameters that incorporates information from

multiple summary statistics performs reasonably well. This method

is preferable to a p-based approach both because it is more

accurate and more robust to variation in mutation rate. The

overall performance of the method will be greatly improved by the

availability of genome-scale polymorphism data. An important

point relevant to all of these models is that relatively simple

adaptive models have been considered, and additional complex-

ities such as recently increased or decreased rates of adaptation,

variation in dominance of beneficial mutations, or selection from

standing variation, have yet to be incorporated.

Figure 3. Distributions of Fay and Wu’s H-statistic [5] and Tajima’s D-statistic [45] under common weak and rare strong selection
models. (A) The distribution of Fay and Wu’s H for 500 bp regions. (B) The distribution of Fay and Wu’s H for 100 kb regions. (C) The distribution of
Tajima’s D for 500 bp regions. (D) The distribution of Tajima’s D for 100 kb regions. 1000 replicates were generated under each model and the
following parameters were fixed: r = 0.1/site, h = 0.01/site (thus, r/h = 10), and n = 25. The selection coefficient, s, and rate, 2Nl, differ among models,
though their product is the same (2Nls = 5.0E207). As shown in [9], the mean H is positive under a recurrent sweep model. However, while we
confirm that the means are positive and nearly identical for 2Nls = constant, we find that previous attempts to differentiate these models have likely
been hampered by the scale of the regions considered. Specifically, while the distributions for both statistics appear similar for 500 bp regions, they
are quite distinct at larger physical scales (i.e., 100 kb).
doi:10.1371/journal.pgen.1000198.g003

Quantifying Adaptive Evolution in Drosophila
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An Application to Multi-Locus Data from D. melanogaster
Here we apply our approach to the multi-locus data set of

Andolfatto (2007), who surveyed 137 X-linked regions from an

East African population of D. melanogaster [11]. Though our

performance evaluation of the method suggests that regions of this

size are not ideal for estimation (the average region length in this

dataset is 680 bps), they indicate at least the possibility of

distinguishing weak from strong selection models, though such

small regions cannot assure accurate parameter estimation. We

estimated selection parameters both from 1) priors where these

parameters are drawn from distributions (exp(s), exp(2Nl) and

N(r, r/2), and 2) in order to compare to previous estimation

methods, priors that assume fixed values of s, 2Nl and r. The

strength of selection for each sweep, s, is drawn from an

exponential distribution (see Methods). We ignore variation in h
among loci as we have shown that this is not expected to

significantly impact estimation (see above).

Shown in Figure 6 are marginal posterior distributions for

selection parameters (assuming distributed parameters, ŝ = 2E203,

2N l̂l~2E{04, and ĥh~0:04 per site). Consistent with simulated

data, parameter estimations assuming fixed values leads to

considerably larger estimates of ŝ, and reduced estimates of 2Nl̂l

(Figure 6, ŝ = 0.01, 2N l̂l~4E{05, and ĥh~0:04 per site). It is thus

important to emphasize that estimation will be sensitive to the

underlying models chosen for the priors. Given that we expect

these parameters to vary among loci, we consider the former

estimate to perhaps be better, with the caveat that we lack precise

knowledge of how these parameters are actually distributed (see

Methods for more details). Interestingly, the large estimate of ĥh
compared to previous studies [11–12] suggests a stronger mean

reduction in genome variation due to hitchhiking (,50%). Finally,

it is additionally noteworthy that estimation does not necessarily

need to be performed using the marginal posteriors as we have

implemented here. For example, Figure S4 compares estimation

between joint and marginal posteriors for our empirical dataset,

and finds that while the estimates are similar, they are not

identical. Understanding these differences, and better determining

if estimation based upon joint posteriors may have any advantages,

is a topic of future investigation.

The Effect of Demography on the Estimator
An important consideration we have not addressed thus far is

the impact of non-equilibrium demography, which may closely

resemble sweep-like patterns of variation and may be expected to

Figure 4. Approximate Bayesian estimation of the strength and rate of selection as well as the neutral h, when estimation is based
upon the means and SDs of p, S, hH and ZnS. The model is one in which s and 2Nl are fixed. For the strong selection case s = 1.0E202, and
2Nl = 2.0E205, for weak selection s = 1.0E204, and 2Nl = 2.0E203. r = 0.1/site and h = 0.01/site. Shown are the distributions of 1000 MAP estimates.
The dotted lines indicate the true values. The distributions for 10 50 kb region datasets are given in black, and for 1000 500 bp datasets in gray. As
shown, the use of these multiple summary statistics improves estimation relative to p alone (Figure S1), reducing the RMSEs (Table S1).
doi:10.1371/journal.pgen.1000198.g004
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bias the estimator [e.g., 27–28]. For instance, a strong population

bottleneck exhibits many characteristics of a selection model –

greatly increasing the variance of summary statistics, and

specifically producing very negative values of the H-statistic [29–

32]. In order to assess the potential bias induced by demography

on the proposed estimator, we model two simple bottleneck

models (BN1 and BN2) and a growth model (see Methods). BN1

and the growth model were fit to match the observed mean p and

Tajima’s D. BN2 was chosen specifically to match the observed

CV(p). Under all three models, the posterior distributions are

localized around weaker selection coefficients, and larger rates,

than we estimate from the observed data, with estimation based

upon distributed priors (MAP estimates given in Table 2).

This result suggests both that, while the estimator is obviously

sensitive to non-equilibrium demography, our empirical data is not

easily explained by any of the demographic models considered

(with the empirical estimates falling outside of the 95% CIs for the

demographic models considered). This is particularly encouraging

given that one of the bottleneck models, BN2, was chosen

specifically to match the CV(p) that was observed for this dataset.

Figure 5. Approximate Bayesian estimation of the strength and rate of selection as well as the neutral h, when estimation is based
upon the means and SDs of p, S, hH and ZnS. The true model is one in which s and 2Nl for each locus is drawn from exponential distributions.
The mean s = 1.0E202, and the mean 2Nl = 2.0E205 (given by dotted lines). Shown are the distributions of 1000 MAP estimates. r is given by a
Normal(0.1, 0.05), and h is fixed at 0.01/site. Results are given for estimation when priors are constructed under a distributed parameter model, as well
as a fixed parameter model (see Methods), for 10650 kb and 10006500 bp regions. As shown, falsely assuming fixed selection parameters leads to
consistent biases in estimation, whereas appropriately constructing the priors reduces the bias (see also Table S1).
doi:10.1371/journal.pgen.1000198.g005

Quantifying Adaptive Evolution in Drosophila

PLoS Genetics | www.plosgenetics.org 7 September 2008 | Volume 4 | Issue 9 | e1000198



Clearly, to minimize demographic effects, populations should be

carefully chosen when possible. The dataset we have analyzed is

from a putatively ancestral East African population that is believed

to have been relatively demographically stable compared to non-

African populations, which show signatures of a recent and severe

bottleneck [18,31–32]. Characterizing biases induced from a wider

range of demographic models is a topic of future study, and will be

important before performing estimation in other populations and

species. One promising direction will likely take advantage of the

observed correlation between ps and Ka [11–12], which is difficult

to explain under neutral demographic models. The incorporation

of divergence data of this sort may increase the robustness of the

estimator to non-equilibrium perturbations [12].

Comparison with Existing Estimates of Recurrent
Hitchhiking Parameters

Several other studies have attempted to estimate parameters

under a recurrent hitchhiking model, and a discussion of how our

estimates compare with those studies is of considerable interest. As

previous studies assumed fixed values of s, 2Nl and r, it is most

appropriate to first compare these estimates with our ‘‘fixed value’’

estimation. Li and Stephan (2006) employed a sliding window

likelihood ratio test using multi-locus polymorphism data and

estimate that ŝ,0.002 and 2Nl̂l*1:9E{04 [18], which is similar

to our estimates (Table 3). Their approach has a number of

notable differences with ours: they co-estimate a growth model

within their estimation procedure, use non-coding DNA rather

than synonymous sites, and assume that all detectable sweeps have

fixed immediately prior to sampling (i.e., t = 0). Given that our

values of 2Nls are quite similar, so is the expected level of

reduction in genome variability (Table 3). Macpherson et al. (2007)

used large-scale polymorphism data from six lines of D. simulans

and estimate a strong average selection coefficient (ŝ,0.01) [12],

which is identical to our fixed value estimate. The bigger

difference is in our estimates of 2Nl, with our estimate being

,46 larger. However, given that the dataset examined here is

from D. melanogaster, there is no reason to necessarily anticipate that

these estimates should match.

It is noteworthy that our estimated selection coefficient is an

order of magnitude smaller (and our estimate of the rate an order

of magnitude larger) when we assume that s, 2Nl and r are drawn

from distributions rather than taking fixed values. Despite this, our

estimated selection coefficient under the distributed model is still

almost two orders of magnitude larger than Andolfatto’s (2007)

estimate [11]. Andolfatto’s estimates of s and 2Nl are particularly

relevant, as we here examine the same dataset and arrive at quite

different conclusions. The discord between estimates may arise

Figure 6. Marginal posterior distributions of s, 2Nl, and h, for the 137-locus dataset of [11], when estimation is based upon the
means and SDs of p, S, hH and ZnS. Results are given when the priors are constructed assuming fixed selection parameters, as well as when
parameters for each locus are drawn from distributions (see Methods). In order to model the dataset under consideration, priors are constructed such
that each replicate consists of 137 loci each of the observed length. n = 12, r = 0.121, and Ne = 1.876 (in accord with the estimates of [11]). Consistent
with the simulation results, assuming a model in which selection coefficients are fixed leads to larger estimates of ŝ, and reduced estimates of 2Nl̂l.
doi:10.1371/journal.pgen.1000198.g006

Table 2. Comparing empirical estimates with estimated
demographic modelsa.

ŝb 2Nl̂l
b

Empirical data 2E23 2E24

Growthc 7E26 (6E26 – 9E26) 1E22 (1E22 – 2E22)

BN1c 3E25 (6E26 – 7E25) 7E23 (1E23 – 5E22)

BN2d 5E25 (7E26 – 1E24) 4E23 (8E24 – 1E22)

aestimation is performed using distributed priors (exp(2Nl) per locus, exp(s) per
sweep – see Methods).

bMAP estimates (95% CI).
cmodel estimated to match the empirically observed p and Tajima’s D.
dmodel estimated to match the empirically observed CV(p).
doi:10.1371/journal.pgen.1000198.t002
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from the fact that Andolfatto’s estimate of s relies on estimating

2Nl using the McDonald-Kreitman statistical framework [33–34].

However, we note that with short surveyed fragments, our

estimator of s is somewhat upwardly biased (Figure 5) so it will

be interesting to apply our method to larger genomic regions when

that data becomes available.

Additionally, while Andolfatto (2007) and Macpherson et al.

(2007) estimate a 20% average reduction in genome-wide

variability, we estimate a considerably larger reduction (50%),

which is more consistent with the estimate of 2Nls of Li and

Stephan (2006). This may to some extent explain Andolfatto’s

observation that the observed Tajima’s D at synonymous sites is

more negative than predicted by his estimates of s and 2Nl. When

we model a recurrent hitchhiking model with our estimated

parameters, the average Tajima’s D is 20.3, which is close to the

observed average (20.28). While a negative mean Tajima’s D is

usually interpreted in the context of demographic models (such as

population growth, see for example [18]), it may instead imply that

recurrent hitchhiking may be having a larger genome wide impact

than previously appreciated.

Conclusions
While common/weak and rare/strong recurrent positive

selection result in similar average levels of genome variation on

average (for 2Nls = constant), rare/strong selection greatly in-

creases the variance of common summary statistics relative to

common weak selection. We demonstrate, using an ABC

approach based upon this observation, that the rate and the

strength of selection may accurately be estimated jointly. Though

there is some power to differentiate parameters using existing data,

our results strongly suggest that genome scale data will afford

much better discriminatory power. Our study also highlights that

learning more about how parameters such as s, 2Nl and r are

distributed among loci will be crucial for accurate parameter

estimation.

Methods

Simulation of the Recurrent Hitchhiking Model
We use the recurrent selective sweep coalescent simulation

machinery described in [24], with a modification to account for

the stochastic trajectories of positively selected mutations in finite

populations [11,35–36]. Briefly, sweeps are occurring in the

genome at a rate determined by 2Nl = L, where l is the rate of

sweeps per generation [6,8]. Following [24], selective sweeps are

allowed both within the sampled region, as well as at linked sites.

This distinction is significant, because for large simulated regions

the probability of a sweep within the region may not be negligible

for large L. The rate of sweeps within a region is thus ML, and as

each sweep may affect up to s/rbp (from [6,37]; which is equivalent

to 4Ns/rbp), the rate considering both the sequenced and flanking

regions becomes 8Ns
rbp

LzML~ 2s
rbp

LzML, where rbp is the scaled

recombination rate between base pairs and M is the size of the

region in base pairs (see [6,37] for details). With this, the expected

waiting time between sweeps is 1
2 s

rbp
LzML in 2N generations.

For the purposes of testing the proposed estimator, we evaluated

models for Ne = 106, h = 4Nm = 0.01/site, and r = 4Nr = 0.2/site

(r = 5E208 per site per generation) and 0.1/site (r = 2.5E208 per

site per generation) in order to replicate Drosophila-like

parameters ([32]; corresponding to values of r/h = 20 and 10,

respectively). The product sl was set at 2.5E213 in the case of r/

h = 10, and to 5E213 for r/h = 20. To replicate human-like

parameters, we consider Ne = 104, h = 0.002/site, and r = 0.002/

site (r = 5E208 per site per generation; corresponding to r/h = 1)

and sl was set at 5E211. In all cases, the sample size (n) = 25, and

neutral variation is reduced to 60% of the neutral expectation.

These calculations may be made from Eq.(5) of [7], which predicts

the expected heterozygosity at linked neutral sites,

E pð Þ~ hr

rzkcl
; ð1Þ

where h is the neutral population mutation rate, r is the unscaled

recombination rate in Morgans per base pair per generation, k is a

constant ,0.075, c = 2Nes (where s is the selection coefficient), and

l is the rate of adaptive substitutions per site per generation. In

most cases, simulated datasets consist of 10 50 kb regions or 1000

500 bp regions (which correspond to the same number of surveyed

sites). 10,000 replicate datasets were generated under each model.

When simulating distributed rather than fixed values of s, 2Nl,

h, and r, values for each region are drawn from a distribution

(exp(s), exp(2Nl), N(r, r/2) or exp(r). Thus, the value is fixed for

an individual locus, but varies among loci. An alternative model

was additionally examined, in which s is not fixed per locus, but

rather is drawn from an exponential distribution for each selective

event. These two separate models were chosen for two distinct

purposes: 1) an exp(s) per locus is chosen for the performance

simulations as it results in a large variance between loci. Thus,

alongside the fixed parameter model, these comparisons represent

two extremes; 2) an exp(s) per sweep is chosen when analyzing the

empirical and demographic data, as we believe it better

approximates biological reality (representing a model first

introduced by Fisher). While the true underlying distributions

are unknown, there is some biological data to draw from. For

instance, observed Ka among genes [11] is nearly exponentially

distributed, implying that an exp(2Nl) is a reasonable approxi-

mation. We model a normally distributed recombination rate for

Drosophila-like parameters since heterogeneity in recombination

rates is not believed to be large [38]. Additionally, recombination

rate variation is minimized in the Andolfatto (2007) dataset

Table 3. Comparing estimates of recurrent hitchhiking model parameters in Drosophila.

ŝ l̂l N̂ 2Nl̂l 2Nlŝ

Li & Stephan 2006 [18] 0.002 1.1E211 8.6E+06 1.9E204 3.9E207

Andolfatto 2007 [11] 1.2E205 6.9E210 1.9E+06 2.6E203 2.6E208

Macpherson et al. 2007 [12] 0.010 3.6E212 1.5E+06 1.1E205 1.1E207

this study (fixed s,l,r) 0.011 7.9E212 2.5E+06 3.9E205 4.3E207

this study (distrib. s,l,r) 0.002 4.2E211 2.4E+06 2.0E204 4.0E207

doi:10.1371/journal.pgen.1000198.t003
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analyzed here, as high recombination regions of the X were

surveyed. For human-like parameters, we model an exponential

recombination rate because recombination rate heterogeneity is

more extreme [39]. When comparing between fixed and

distributed models, a fixed value of s = 0.01 for example, is

compared with a distributed model in which 0.01 is the mean of

the exponential distribution from which the loci are drawn. In

order to assess any bias which may be associated with variable

mutation rates between regions, models were tested in which h/

locus is drawn from a C-distribution. Two C-distributions are

examined, one matching the observed CV of synonymous site

divergences among loci in the Andolfatto (2007) dataset analyzed

here (C(200,2.5)), and one in which h is very widely dispersed

(C(10,50)).

In order to consider the performance of our method under non-

equilibrium demographic models, we fit a simple bottleneck and

growth model to the empirical data based on observed values of �pp
and the average Tajima’s D (0.025/site and 20.28, respectively).

Under both models, simulation parameters are thus scaled to

mimic the observed values of these two statistics. As with above,

n = 12, r = 0.1, h = 0.01 and Ne = 106. Course grids under both

models were simulated using the program ms [40]. We estimate a

growth model in which growth rates were set to a = 50 at time

t = 0.5 4N generations in the past, where N(t) = N0exp2at. We

estimate a bottleneck model that posits a stepwise reduction to

0.0001 of the population’s former size beginning at tb = 0.5 and

lasting 0.01 4N generations (BN1). In addition, a bottleneck model

was selected to fit another feature of the data, the observed CV(p)

(population reduced to 5.1% of its former size at time tb = 0.19 and

lasting 0.01 4N generations; BN2). Estimation is performed using

priors generated under a model in which parameters are

distributed between loci (and s is distributed per sweep), as we

argue that to be a more biologically relevant scenario compared to

fixed parameter models.

Parameter Estimation
To estimate the parameters s, 2Nl, and h, we relied upon their

relationship with the means and standard deviations of common

summary statistics. We take an approximate Bayesian (ABC)

approach [41–44] to obtain marginal posterior distributions

(estimation is also possible using joint posterior distributions, an

example of this is discussed in the Results and given as a

Supplement). Calculating our summary statistics (the means and

SDs of p, S, hH and ZnS) from the observed data, and from

simulated data with parameters drawn from uniform priors, we

implement the regression approach of [42]. Briefly, this involves

fitting a local-linear regression of simulated parameter values to

simulated summary statistics, and substituting the observed

statistics into a regression equation. The prior distributions used

were s,Uniform (1.0E206, 1.0), 2Nl,Uniform (1.0E207,

1.0E201), and h,Uniform (0.0001, 0.1), and the tolerance,

d= 0.001. Under a fixed selection parameter model, each draw

from the prior represents the parameter value that is in common

among all loci in a given dataset (i.e., 1000 500 bp regions, or 10

50 kb regions). Under a distributed parameter model, each draw

from the prior represents the mean of the distribution from which

each locus in a given dataset will be drawn (or in the case of the

alternative for modeling selection coefficients, a value of s is drawn

for each sweep – see ‘simulation of the recurrent hitchhiking

model’).

In order to determine the optimal combination of information,

estimation was performed using all combinations of the mean and

standard deviations of p, the number of segregating sites (S), hH,

Tajima’s D, Fay and Wu’s H, and ZnS. The combination of p, S,

hH, and ZnS was found to result in highly accurate and unbiased

MAP estimates. Two statistics were utilized to evaluate the MAPs

of ŝ, 2N l̂l and ĥh. First, in order to measure any biases, the relative

bias (RB) was determined from 1000 MAP estimates, as

RB = Mean(X̂2X)/X. Second, in order to measure deviations

from the expected values, the relative mean square error (RMSE)

was determined as RMSE = Mean (X̂2X)2/X2. The necessary

code, and instructions for performing estimation, can be found at:

http://www.molpopgen.org/.

Empirical Data
We use the137 X-linked coding loci surveyed in [11]; Genbank

accession numbers EU216760-EU218523. All loci were surveyed

in 12 lines of D. melanogaster from a Zimbabwe population. For this

analysis, only synonymous sites were considered. We summarized

the mean average pairwise diversity, �pp, its standard deviation,

SD(p), and the coefficient of variation, CV~ SD pð Þ=�ppð Þ, as well as

the means and SDs of the number of segregating sites, S, hH [25],

Tajima’s D [45], Fay and Wu’s H [5], and ZnS [26], for

synonymous sites across loci. Levels of synonymous polymorphism

positively correlate with rates of divergence at synonymous sites

[11]. To account for this, we also used partial regression corrected

values of p at synonymous sites that account for variation in Ks

[11]. We found that this had very little effect on �pp and SD(p) in

this particular case.

Supporting Information

Figure S1 Approximate Bayesian estimation of the strength and

rate of selection as well as the neutral h, when estimation is based

upon the mean and SD of p. The model is one in which s and 2Nl
are fixed. For the strong selection case s = 1.0E202 and

2Nl = 2.0E205, for weak selection s = 1.0E204, and

2Nl = 2.0E203. r = 0.1/site and h = 0.01/site. Shown are the

distributions of 1000 MAP estimates. The dotted lines indicate the

true values. The distributions for 10 50 kb region datasets are

given in black, and for 1000 500 bp datasets in gray. As shown, the

former affords more accurate estimation, and estimation is

improved in general as s becomes large (see also Table S1).

Found at: doi:10.1371/journal.pgen.1000198.s001 (0.2 MB TIF)

Figure S2 The ratio CV to CV(equilibrium neutrality) for four

values of s. The product 2Nls = 5E207 for all panels. (A–D)

Drosophila-like parameters: r/h = 10 (r = 0.1/site, h = 0.01/site),

r = constant or Normal(0.1, 0.05). (E–H) Human-like parameters:

r/h = 1 (r = 0.002/site, h = 0.002/site), r = constant or Exponen-

tial(0.1). (A,E) Exponential(s), Exponential(2Nl), and r = Nor-

mal(0.1, 0.05). (B, F) Exponential(2Nl), s = constant. (C, G)

Exponential(s), 2Nl = constant. (D, H) r = distributed, s = con-

stant, 2Nl = constant. The choice of exponentially distributed r
for human-like parameters is motivated by evidence for greater

heterogeneity in r relative to Drosophila [39]. Importantly, these

models only represent one possible way of modeling distributions

of s and 2Nl, and alternative models may result in differing

conclusions.

Found at: doi:10.1371/journal.pgen.1000198.s002 (0.2 MB TIF)

Figure S3 Approximate Bayesian estimation of the strength and

rate of selection as well as the neutral h, when estimation is based

upon the means and SDs of p, S, hH and ZnS, as well as with the

mean and SD of p alone. The model is one in which s and 2Nl are

fixed, s = 1.0E202, and 2Nl = 2.0E205, and h is drawn from a C-

distribution with mean 0.01 (given by dotted lines). r = 0.1. Shown

are the distributions of 1000 MAP estimates. Results are given for

h drawn from two C-distributions, one meant to match the
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variance observed in the empirical dataset of Andolfatto (2007)

(i.e., C (200,2.5)), and the other simply for representing a very large

variance (i.e., C (10,50)). As shown, estimation based upon these

multiple summary statistics appears to be robust to mutation rate

variation, with p-based estimation being greatly biased (see also

Table S1).

Found at: doi:10.1371/journal.pgen.1000198.s003 (0.2 MB TIF)

Figure S4 Joint posterior distributions of s and 2Nl, for the 137-

locus dataset of [11], when estimation is based upon the means

and SDs of p, S, hH and ZnS. Results are given when the priors are

constructed assuming a distributed parameter model. In order to

model the dataset under consideration, priors are constructed such

that each replicate consists of 137 loci each of the observed length.

n = 12, r = 0.121, and Ne = 1.876 (in accord with the estimates of

[11]). The joint MAP is marked by the X, and the marginal MAPs

(Figure 6) are given as dashed lines. As shown, estimation based

upon joint posteriors is similar, though not identical, to the

marginal posteriors.

Found at: doi:10.1371/journal.pgen.1000198.s004 (0.6 MB TIF)

Table S1 RMSE (RB).

Found at: doi:10.1371/journal.pgen.1000198.s005 (0.08 MB

DOC)
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