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Reducing batch effects in single cell chromatin accessibility measurements by pooled 

transposition with MULTI-ATAC 

Daniel Nicholas Conrad 

Abstract 

Large-scale scATAC-seq experiments are challenging because of their costs, 

lengthy protocols, and confounding batch effects. Several sample multiplexing 

technologies aim to address these challenges, but do not remove batch effects introduced 

when performing transposition reactions in parallel. We demonstrate that sample-to-

sample variability in nuclei-to-Tn5 ratios is a major cause of batch effects and develop 

MULTI-ATAC, a multiplexing method that pools samples prior to transposition, as a 

solution. MULTI-ATAC provides high accuracy in sample classification and doublet 

detection while eliminating batch effects associated with variable nucleus-to-Tn5 ratio. 

We illustrate the power of MULTI-ATAC by performing a 96-plex multiomic drug assay 

targeting epigenetic remodelers in a model of primary immune cell activation, uncovering 

tens of thousands of drug-responsive chromatin regions, cell-type specific effects, and 

potent differences between matched inhibitors and degraders. MULTI-ATAC therefore 

enables batch-free and scalable scATAC-seq workflows, providing deeper insights into 

complex biological processes and potential therapeutic targets. 
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Chapter 1 – Preface 
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Introduction 

 Single-cell genomics techniques allow for the composition and state of complex 

systems to be compared across time, space, individual, and perturbation. Fundamental 

challenges of these methods include the high reagent costs, time, and technical artifacts 

(e.g. batch effects) associated with their complex workflows. Sample multiplexing 

technologies circumvent these challenges, reducing the complexity of experiments and 

eliminating batch effects by pooling samples and processing them together through 

downstream molecular biology steps. Such methods are now widely used to generate 

high throughput single-cell RNA-seq (scRNA-seq) datasets and enable transcriptomic 

profiling of dozens to hundreds of samples at once1–4. Single-cell assay for transposase-

accessible chromatin (scATAC-seq) is an orthogonal sequencing modality that profiles 

chromatin accessibility instead of gene expression using a hyperactive Tn5 transposase 

loaded with sequencing adapters. This enzyme enters the nucleus and stochastically 

inserts its adapters into regions of the genome that it can access, fragmenting the genome 

into a library of gDNA fragments of variable sizes that can be amplified and sequenced 

for downstream analysis5–7. By mapping the fragments and their endpoints to a reference 

genome, the relative accessibility of any given genomic locus can be interpreted from the 

relative frequency of Tn5 insertions detected there. 

Much like with scRNA-seq, a host of different technologies have been developed 

to attempt to address scalability and throughput in scATAC-seq. Droplet microfluidics 

methods for single-cell isolation and library generation are excellent at yielding high-

quality data for tens of thousands of cells at once but are implicitly limited in sample 

throughput due to microfluidic chip design limitations. Combinatorial indexing methods, 
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which subject cells or nuclei to multiple rounds of split-pool barcoding, are much less 

confined with regard to sample number, but typically yield lower-quality data and 

necessitate large amounts of starting material in order to recover sufficient nuclei for 

sequencing after a lengthy protocol. This makes these methods challenging to apply to 

precious samples. More recent methods have utilized indexed Tn5 adapter oligos (or 

oligos that hitch a ride on the Tn5) to label the nuclei or their gDNA fragments with sample-

specific barcodes during transposition, enabling subsequent pooling of nuclei from 

different samples and even superloading of the microfluidics device. The result is higher 

sample and cell throughput while still taking advantage of the superior data quality of this 

platform. However, these methods still require that separately-indexed Tn5 assemblies 

be prepared per unique sample, which inevitably requires excess of this costly reagent to 

be used. Lastly, one method has been successfully shown to barcode and transpose 

samples in a pooled format, but still requires that many individual transposition reactions 

be performed due to its reliance on combinatorial indexing. Of note, all of these methods 

require running many separate transposition reactions.  

In this dissertation, I describe MULTI-ATAC, a scATAC-seq sample multiplexing 

technology that improves scATAC-seq sample throughput and optimizes scATAC-seq 

data quality through doublet detection and the mitigation of batch effects caused by 

variable nuclei:Tn5 ratios. In Chapter 2, I re-analyze publicly-available scATAC-seq 

datasets and identify the presence of significant batch effects that arise due to variable 

nuclei:Tn5 ratios. In Chapter 3, I demonstrate that MULTI-ATAC is compatible with pooled 

transposition workflows and enables the generation of multiplexed scATAC-seq data with 

minimal batch effects. In Chapter 4, I leverage MULTI-ATAC to perform a 96-plex 
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multiomic drug perturbation experiment measuring how primary human immune cells 

respond to diverse inhibitors and proteolysis targeting chimeras (PROTACs) targeting 

chromatin remodeling enzymes. From these data we identify tens of thousands of 

immune- and drug-responsive chromatin regions and genes and discover that MS177 

accentuates NF-κB signaling, while SWI/SNF perturbation induces a potent type I 

interferon response.  
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Chapter 2 – Pervasive batch effects from variable 

transposition conditions  
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Background 

Beyond just limiting scalability and increasing experimental cost, parallel 

transposition workflows raise the concern that variability in the nuclei:Tn5 ratio between 

samples could introduce significant batch effects that confound downstream analysis 

(Fig. 2.1). Tn5 is a single-turnover enzyme, so the stoichiometric ratio of Tn5 to nuclei 

dictates the average number of fragments generated per nucleus in a reaction; this can 

even bias the proportions of genomic features detected5,6,8. While this phenomenon is 

well-established in bulk ATAC-seq workflows, how variable nuclei:Tn5 ratios contribute 

to batch effects in scATAC-seq analysis has never been thoroughly explored. 

 

Transposition batch effects detected in published datasets 

 To determine if batch effects are linked to nuclei:Tn5 ratio in large-scale and multi-

sample scATAC-seq experiments, we re-analyzed 12 publicly-available datasets 

representing a variety of species and library preparation methods (Table 2.1) and 

assessed the magnitude of batch effects between independent transposition reactions in 

each dataset9–19 (Methods). Importantly, we made the assumption that the number of 

nuclei in the dataset associated with each Tn5 reaction was correlated to the number of 

nuclei used as input. The range of nuclei per sample varied greatly within a single 

experiment, spanning a range of 2-fold to 66-fold (Fig. 2.2; Table 2.1), and thereby 

offered the opportunity to quantitatively measure batch effects between samples. Notably, 

datasets generated from experiments where low numbers of samples were split across 

many transposition reactions – a situation where nuclei counts are easiest to control – 
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had minimal nuclei count variability. Conversely, datasets from experiments with high 

numbers of unique samples or where nuclei were isolated from tissue samples – a 

situation where nuclei counts are challenging to control – had far greater nuclei count 

variability between transposition reactions. These observations across 12 datasets 

suggest that nuclei count variability in transposition reactions is an intrinsic feature of 

complex scATAC-seq experiments.  

 We next asked whether data quality-control metrics correlated with the number of 

nuclei processed per reaction. scATAC-seq methods can be divided into two classes 

depending on whether they utilize Tn5 loaded with barcoded adapters (‘indexed 

transposome’) or universal adapters (‘standard transposome’). In standard transposome 

datasets, we observed that the median number of fragments per cell was negatively 

correlated with the number of transposed nuclei (Fig. 2.2), mirroring results in bulk ATAC-

seq8. Interestingly, indexed transposome datasets exhibited the opposite trend, yielding 

more fragments per cell in batches with greater nuclei counts (Fig. 2.2). While the 

mechanism underlying this trend reversal remains unclear, ‘index hopping’ between 

transposition products due to the presence of free adapters could play a role12,13.  

Regardless of the mechanism or direction of the relationship, a correlation between 

transposition batch size and fragment yield could be detrimental to analysis as previously 

described in bulk ATAC-seq data. We therefore investigated how this technical artifact 

impacted downstream analyses and biological interpretation. Dimensionality reduction is 

commonly used during scATAC-seq analysis and provides the foundation for 

unsupervised clustering, cell type annotation, and differential accessibility analysis. Due 

to the inherent sparsity of chromatin accessibility data, Latent Semantic Indexing (LSI) is 
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the predominant algorithm applied to scATAC-seq data20,21. In practice, the first LSI 

component correlates strongly with per-cell fragment counts, and is thus customarily 

excluded to avoid technical bias7,12,17,20–22. However, by separating cells by subtype, we 

find that many more LSI components covaried in absolute magnitude with per-cell 

fragment counts, indicating that simply excluding the first LSI component is not sufficient 

to abrogate depth-related effects on clustering (Fig 2.3). 

To better quantify the impact of variable Tn5 batch size (and thus variable 

nuclei:Tn5 ratio) on dimensionality reduction, we selected datasets where unique 

samples were transposed across many reactions and for which fragment data were 

readily available (SNU_A, DSCI, TXCI, and PLEX). We binned the nuclei of each dataset 

into terciles according to Tn5 batch size (Fig. 2.2). We then used the Local Inverse 

Simpson’s Index algorithm23 (LISI) to score the degree of batch mixing of the terciles of 

each dataset across 30 LSI dimensions, and compared this value to the degree of mixing 

when bin assignments were permuted to represent perfect mixing (Fig. 2.3). Two of the 

datasets, SNU_A and PLEX, seemed largely unaffected; these datasets also exhibited 

the weakest association with transposition batch size (Fig. 2.2), likely due in part to 

experimental designs that facilitated consistent loading of transposition reactions. The 

two datasets with significantly impacted batch mixing, DSCI and TXCI, represent more 

complex experiments where nuclei from multiple heterogeneous primary samples (bone 

marrow mononuclear cells, human lung, mouse liver/lung) were isolated separately and 

transposed across many reactions – resulting in much stronger correlations between Tn5 

batch size and fragment counts (Fig. 2.2). This supports the notion that only simple 

experimental designs that allow for precise control of nuclei counts can control for batch 
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effects. Furthermore, excluding the first LSI component from this analysis yielded similar 

results, further supporting that bias from variation in per-cell library complexity is not 

uniquely captured by and removed with the first LSI component (Fig. 2.3).  

 In addition to influencing dimensionality reduction, we also observed significant 

shifts in cell type composition between Tn5 batches (Fig. 2.4). Specifically, across 5 

datasets representing heterogeneous samples split across many individual transposition 

reactions, we observed that the proportions of highly-prevalent cell types (i.e., > 5% of 

the total) such as hepatocytes and sinusoidal endothelial cells in the TXCI dataset, varied 

considerably between Tn5 batch terciles (Fig. 2.4). Importantly, the observed variation 

far exceeds differences in cell type proportions computed after permuting bin labels (Fig. 

2.4). One possible explanation for this result derives from differences in fragment yields 

among different cell types, in turn resulting in differential sensitivity to quality control 

filtering for cells with naturally lower fragment counts. Indeed, comparing the mean 

fragment count per cell type and its change in proportion between Tn5 bins revealed that 

cells with fewer fragments are selected against in Tn5 batches that yield fewer fragments 

(Fig. 2.4). Collectively, these results suggest that the nuclei:Tn5 ratio during transposition 

can dramatically influence two critical steps of scATAC-seq analysis and therefore 

biological interpretation. 

 

Discussion 

 Despite efforts to increase the scalability of scATAC-seq methods using 

multiplexing or combinatorial indexing, enzymatic transposition remains a limiting step, 

requiring that many separate parallel reactions be run simultaneously. Concerningly, we 
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identified previously unappreciated technical batch variation in publicly available datasets 

that use parallel transposition reactions that can be traced back to variable nuclei inputs 

across reactions. While this type of batch effect is not wholly unexpected considering 

similar findings in bulk ATAC-seq data, it is either rarely addressed or thought to be 

removed during pre-processing steps of typical analysis pipelines. Instead, we 

demonstrate that transposition batch effects are readily detectable across many publicly 

available datasets, are not easily removed using current data processing best practices, 

and impact downstream biological interpretation.  

 A key finding is that transposition batch size biases compositional analyses for or 

against certain cell types. Variation in cell type composition between individuals or in 

response to treatments can be biologically impactful and is thus important to understand 

and report accurately. For example, a decrease in cancer cells and increase in infiltrating 

immune cells in response to a new immunotherapy drug would be an indicator of clinical 

response. We find that variation in nuclei per sample can generate precisely this type of 

shifts in data. When aggregated and averaged across dozens of transposition batches 

such as in some sci-ATAC-seq3 datasets, these effects may become less severe. 

However, when the number of transposition reactions per sample is low or a sample is 

transposed in a single reaction, common for droplet microfluidics workflows, the risk of 

analyses being influenced by nuclei counts and per-nucleus fragment yield is significant. 

 Variance in per-nucleus fragment counts between and within samples and cell 

types is expected due to biological and technical variation. However, we stress that 

decoupling this variance from transposition batch size is critical to proper experimentation 

and analysis. Additionally, these results suggest that scATAC-seq analysis would benefit 
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from new computational methods that can perform dimensionality reduction on this type 

of data in a manner that is less biased by per-nucleus depth.  
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Figures 
 
Table 2.1 - Published datasets reanalyzed for transposition batch effects. 

Single-cell ATAC-seq datasets from 11 publications spanning a variety of different techniques and biological 

systems. The number of nuclei per transposition reaction in each dataset was tabulated, and the range of 

transposition batch sizes was represented by the ratio of the maximum and minimum nuclei counts 

(excluding outliers above and below the 99
th
 and 1

st
 quantile of the count distribution, respectively). The 

number of transposition reactions represents the total recovered in the final dataset, and at times is less 

than the original experimental design intended due to drop-outs. 

* sci-ATAC-seq3 datasets (SCI3_A and SCI3_B) actually reflect aggregations of 11 and 4 transposition 

reactions per sample, respectively, due to sci-ATAC-seq3 methodology 

** PLEX reflects 96 samples pooled and split across 96 individual reactions 
 

Dataset Method Species Tn5 
Single-

Cell 
Platform 

q99/q1 
Count 
Ratio 

Tn5 
Rxns Samples Citation 

SNU_A SNuBar Human Std. 10x 3 95 3 Wang K, et al. 
SNU_B SNuBar Human Std. 10x 13 32 32 Wang K, et al. 
SPEAR Spear-ATAC Human Std. 10x 2 18 21 Pierce SE, et al. 

10X scATAC-seq Human Std. 10x 2 21 23 Ziffra RS, et al. 
SCI3_A sci-ATAC-seq3 Fruit Fly Std. CI 12 16* 16 Calderon D, et al. 
SCI3_B sci-ATAC-seq3 Human Std. CI 47 60* 60 Domcke S, et al. 
EASY EasySci-ATAC Mouse Idx. CI 5 384 20 Sziraki A, et al. 
SCI sci-ATAC-seq Human Idx. CI 34 8288 87 Zhang K, et al. 

DSCI dsci-ATAC-seq Human Idx. BR 66 280 4 Lareau CA, et al. 
SCIFI scifi-ATAC Maize Idx. 10x 26 96 7 Zhang X, et al. 
TXCI txci-ATAC-seq Mixed Idx. 10x 5 144 2 Zhang H, et al. 
PLEX sciPlex-ATAC-seq2 Human Idx. CI 44 87 96** Booth GT, et al.  

 
  

Figure 2.1 - Model of how sample-to-sample transposition batch variability influences scATAC-seq data 
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Figure 2.2 - Variable transposition batch size is common and produces a linear relationship with 
per-nucleus fragment count 

A. Inspection of 12 published datasets shows considerable variation in transposition batch 

size within individual experiments and datasets 

B. Methods using standard Tn5 (non-indexed adapter oligos) exhibit a negative association 

between transposition batch size and median per-nucleus fragment count, while methods 

using indexed Tn5 exhibit an unexpected positive association. 

C. Example samples from each dataset. Points represent the nuclei count and median 

fragment count per transposition reaction, and are colored by transposition batch size 

tercile. Correlation coefficients and p-values from two-sided Pearson’s test. 
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Figure 2.3 - Transposition batch size affects dimensionality reduction 

A. Relative mixing of transposition batch size terciles in the 30-dimensional LSI reduction across 4 

datasets. Points represent separate biological samples and/or technical replicates per dataset. 

Average Local Inverse Simpon’s Index (LISI) scores per sample were normalized to “idealized” 

mixing scores derived by permuting tercile labels. 

B. The 1
st
 LSI dimension obviously correlates with fragment count irrespective of cell type, whereas 

other dimensions show strong linear relationships with fragment count when separated by cell 

type.  

C. When aggregated by cell type, many LSI dimensions across 5 datasets correlate significantly with 

fragment count (R > 0.5, p < 0.05).  
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Figure 2.4 - Cell type proportions vary as a function of transposition batch size 

A. Two demonstrative cell types from the TXCI dataset, showing statistically significant changes in 

cell type frequency according to transposition batch tercile. P-values represent results from two-

sided Chi-squared proportion tests. 

B. Log2 fold-changes in cell type proportions between the bottom and top transposition batch size 

terciles plotted for all prominent cell types (> 5% of sample) across all samples of 5 datasets. For 

comparison, Log2 fold-changes were computed after permuting tercile labels (black). 

C. The same log2 fold-changes reported in B), plotted as a function of increasing mean fragment yield 

for each individual cell type. In the datasets represented here, cell types yielding fewer fragments 

are more likely to be underrepresented proportionally in smaller transposition batches. Permuted 

tercile labels abrogate this relationship.  
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Chapter 3 – Development and validation of MULTI-

ATAC 
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Background 

Lipid-modified oligonucleotides (LMOs) were developed in the Gartner lab for a 

process called DNA-programmed assembly of cells (DPAC)24,25. The technology was then 

adapted several years later to enable barcoding of cells and nuclei for multiplexed scRNA-

seq in a technique called MULTI-seq1. LMOs are a two-part system consisting of an LMO 

Anchor (41nt ssDNA with 3’-conjugated palmitic acid) and an LMO Co-Anchor (20nt 

ssDNA with 5’-conjugated lignoceric acid). The Anchor and Co-Anchor sequences are 

complementary with a 21-base overhang that can be used as a handle to hybridize an 

oligo of choice. For MULTI-seq, a barcode oligo designed to be compatible for capture 

with the 10x Genomics scRNA-seq kits (i.e. contains a polyA sequence) is pre-hybridized 

to the LMO Anchor in equimolar concentration. One unique Anchor-Barcode complex is 

generated per sample. These are then added to cells of each sample and incubated on 

ice for 5 minutes. Then the LMO Co-Anchor is added at the same concentration. During 

each step-wise addition, the hydrophobic fatty acid moiety of the LMO quickly integrates 

into available cellular membranes (i.e. plasma or nuclear membrane). Once the Co-

Anchor is added, the Anchor and Co-Anchor hybridize while embedded in membranes. 

The duplex has increased net hydrophobicity and is thus more stably integrated in the 

membrane, decreasing likelihood of “falling off”. The cells or nuclei can then be pooled, 

carrying their respective sample-specific barcode oligos with them into subsequent 

emulsion droplet encapsulation and biochemical steps. 
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Design of MULTI-ATAC protocol and oligonucleotides 

A simple solution to avoid batch effects from variable nuclei:Tn5 transposition 

ratios would be a sample multiplexing strategy that enables all samples to be transposed 

in a single pool, additionally streamlining the workflow and minimizing reagent costs. In 

order for samples to be pooled during transposition, sample-specific DNA barcodes must 

be incorporated into or onto nuclei in a manner that survives the transposition incubation 

without interfering with the reaction itself. In pursuit of this goal, we adapted the previously 

described MULTI-seq1 barcoding strategy to be compatible with scATAC-seq. This new 

method, MULTI-ATAC, takes advantage of the same LMO system to deliver a redesigned 

DNA barcode oligonucleotide to the nuclear membrane. Importantly, to minimize 

interaction with the transposome, the barcode complex was designed to ensure no direct 

hybridization with Tn5 adapter sequences (Fig. 3.1). 

To mimic gDNA fragments and enable single-cell barcoding by 10x Genomics 

scATAC-seq kits or similar technologies, the 5’ end of the ssDNA barcode begins with the 

full Nextera R1 sequence. This is followed by a unique molecular identifier (UMI) of 8 

random bases (N’s), a predetermined 8-base sample-specific barcode (X’s), and a 

TruSeq R2 sequence to enable barcodes to be separately amplified from ATAC 

fragments. Notably, we had to include a UMI sequence because the inherent randomness 

of transposition cut sites means fragments are mostly unique and do not require UMIs for 

counting. At the 3’ end is the TruSeq Small RNA R2 sequence which hybridizes to the 

LMO Anchor. The inclusion of the internal TruSeq R2 site for library amplification was 

intended to protect against degradation of the primer site by possible 3’-5’ exonuclease 

activity during in-GEM linear PCR, but this was not explicitly tested. 
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The 5’-3’ orientation of the ssDNA barcode prevents direct hybridization to the 

Nextera adapter oligos in the Tn5 transposome, and is not immediately compatible with 

the orientation of the capture oligos employed by 10x Genomics in v1 and v2 scATAC-

seq kits. To overcome this, a Barcode Extension primer is pre-annealed to the MULTI-

ATAC barcode before labeling. This primer is extended during the initial gap-fill reaction 

in droplets which produces the complement strand needed for in-GEM capture and linear 

amplification of barcode oligos alongside ATAC fragments. Previous iterations of this 

technology (not shown) had the barcode in the 3’-5’ orientation and this caused assay 

failure.  

Because MULTI-ATAC barcodes are similar in size to the smallest ATAC 

fragments, they cannot be size-separated during scATAC-seq library preparation without 

loss of ATAC fragments. Thus, the barcode library is generated from a 1µL aliquot that is 

taken from each scATAC-seq library prior to the Sample Index PCR step (Fig. 3.2). This 

aliquot is amplified in a separate sample indexing PCR reaction using the same SI-PCR-

B Fwd primer (ordered separately to control concentration) as the scATAC-seq libraries 

and a custom TruSeq Rev primer with a unique library-specific i7 index.   

 

MULTI-ATAC barcode: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNXXXXXXXXAGATCG

GAAGAGCACACGTCTGAACTCCAGTCACCCTTGGCACCCGAGAATTCCA-3’ 

Barcode Extension primer: 5’-GTGACTGGAGTTCAGACGTGTGC-3’ 



 20 

TruSeq-# primer: 5’-

CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTC

TTCCGATCT-3’ 

SI-PCR-B primer: 5’-AATGATACGGCGACCACCGAGA-3’ 

 

MULTI-ATAC barcoding accurately classifies sample-of-origin and 

doublets 

To first validate the efficacy and accuracy of MULTI-ATAC for pooling samples at 

the droplet microfluidics step, we performed a pilot experiment using peripheral blood 

mononuclear cells (PBMCs) from 3 unrelated donors. Nuclei from each donor were 

isolated separately, transposed, and uniquely barcoded, after which they were pooled 

and a single library was generated using the 10x Genomics scATAC-seq kit. We used 

deMULTIplex2 to identify doublets and assign cells to individual samples based on their 

MULTI-ATAC barcode counts, and then compared these classifications to those obtained 

by genotyping the cells using Vireo26,27. There was near perfect agreement between 

singlets identified through either method (Fig. 3.3). The greatest degree of disagreement 

was in doublet classification, but we note that MULTI-ATAC-specific doublets were more 

similar to consensus doublets in both DoubletEnrichment scores and total fragment 

counts, suggesting they have a higher likelihood of being true doublets than false 

positives (Fig. 3.4). We then compared these classifications against an orthogonal 

doublet prediction algorithm, AMULET, which is specifically designed to identify doublets 

in scATAC-seq data from fragment counts28. We note that MULTI-ATAC classifications 
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agreed significantly with each of the other algorithms individually and in concert, and  

there were no Vireo-AMULET consensus doublets missed by MULTI-ATAC (Fig. 3.4). 

 

Pooled transposition with MULTI-ATAC eliminates transposition 

batch effects 

Having validated that we can accurately assign sample identities and remove 

doublets using MULTI-ATAC, we next sought to investigate whether pooled transposition 

could ameliorate the batch effects that arise from parallel transposition reactions.  To this 

end, we performed a “Parallel” multi-sample experiment comprising a range of nuclei 

yields. Specifically, we aliquoted a 50:50 mixture of K562 and Jurkat nuclei for parallel 

MULTI-ATAC labeling and transposition. Reactions were set up in triplicate at each of 

high, medium, and low nuclei:Tn5 ratios spanning the recommended range of the 10X 

Genomics protocol (Fig. 3.5). Nuclei were then combined after transposition for library 

generation. In a separate library consisting of the same cell populations, we performed a 

“Pooled” multi-sample experiment by combining each of the 9 barcoded samples into a 

single pooled transposition reaction to directly assess the impact of pooled transposition 

on batch effects (Fig. 3.5).  

Mirroring our analyses of the publicly-available datasets, we observed that variable 

nuclei:Tn5 ratios were associated with divergent per-cell fragment yields in the Parallel 

library (Fig. 3.5). In contrast, there was no density-dependent effect on fragment counts 

in the Pooled library (Fig. 3.5). As demonstrated previously, variation in per-nucleus 

fragment counts is a covariate that influences LSI dimensionality reduction (Fig. 2.3). 
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Even when excluding the first LSI component, the 9 samples in the Parallel library 

clustered according to nuclei density in the reduced dimensionality space, a relationship 

that is lost when looking at cells from the Pooled library (Fig. 3.6).  

We additionally observed the expected density-dependent changes in relative 

proportions of each cell type in the Parallel library. Even under highly controlled conditions 

where equal numbers of each cell type were combined, increasing transposition batch 

size decreased the proportion of Jurkat nuclei from 48% to 44% and increased the 

proportion of K562 nuclei from 52% to 56% of the total (Fig. 3.7). In contrast, cell type 

proportions remained constant across samples in the Pooled library (Fig. 3.7). Jurkat 

nuclei yielded on average 36% fewer fragments than the K562 nuclei (Fig. 3.7), 

consistent with our previous analysis that cell type proportion disparities linked to Tn5 

batch size are due to the differential sensitivity of cell types to quality-control filtering (Fig. 

2.4).  

 

MULTI-ATAC barcoding is compatible with paired scATAC-seq 

and scRNA-seq assays 

 A powerful alternative to both scRNA-seq and scATAC-seq is the Multiome assay 

offered by 10x Genomics, which can simultaneously capture both RNA and transposed 

gDNA fragments from the same cells or nuclei and enables powerful multimodal analyses. 

Multiome relies on the same Tn5 enzyme and adapter sequences to fragment the genome 

and produce chromatin accessibility data, but the biochemistry used to capture and 

amplify transposed gDNA fragments is not exactly the same. We reasoned that the 
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Multiome assay would stand to benefit from all of the same benefits of multiplexing and 

pooled transposition, so we sought to test whether MULTI-ATAC could be applied to this 

paired assay as some other methods before it had shown10.  

 We thawed and subsequently fixed and permeabilized a vial of mouse 

hepatocytes. Two aliquots of these cells were labeled with MULTI-ATAC barcodes, 

another two aliquots were labeled with MULTI-seq barcodes, and the rest were left 

unlabeled. The cells were pooled, transposed, and processed into a single pair of single-

cell gene expression (GEX) and ATAC libraries with the Multiome kit. Cells labeled with 

either barcoding method were easily classifiable to their sample of origin, and we note no 

obvious differences in per-cell quality metrics between unlabeled cells and labeled cells 

(Fig. 3.8).   

 

Discussion 

 To overcome the technical hurdles and batch effects we identified previously, we 

developed MULTI-ATAC, a method for labeling nuclei with sample-specific DNA barcodes 

that can be sequenced alongside scATAC-seq libraries. Using genotypically-distinct 

donor samples, we demonstrate the ability of MULTI-ATAC barcoding to reliably and 

accurately assign sample identities to nuclei pooled during library preparation. While 

almost no cells were misassigned to the wrong sample-of-origin, we did note increased 

rates of doublet-calling compared to two in silico methods. While we cannot rule out if 

these were false-positive doublet assignments, we observed that these particular cells 

shared similarities with bona fide doublets. Additionally, whereas the two other 

classification methods, AMULET & Vireo, rely on the sequenced chromatin fragments as 



 24 

input to classify each cell, MULTI-ATAC barcode counts represent an orthogonal modality 

that does not necessarily depend on per-nucleus ATAC data quality. It is therefore 

possible that MULTI-ATAC classifications are closest to ground truth.  

 We next utilized MULTI-ATAC barcoding to explicitly demonstrate how pooled 

transposition removes batch effects. We processed 9 samples, either in parallel or in a 

pooled format, at different nucleus-to-Tn5 ratios spanning the range recommended by 

commercially available scATAC-seq kits from 10X Genomics. By quantifying batch effects 

at the levels of data quality, clustering, and sample composition, we found that pooled 

processing enabled by MULTI-ATAC eliminates batch effects present in the parallel-

processed samples. These findings demonstrate that realistic variability in transposition 

conditions could easily impact sample comparisons within and between individual 

experiments if inputs are not carefully controlled.  

Finally, we show that MULTI-ATAC barcoding can be extended to use in the 10x 

Genomics Multiome kit, which combines scATAC-seq and scRNA-seq into a single paired 

assay29. Besides just Multiome, Tn5 transposition has been harnessed in a growing 

variety of sequencing assays, including mitochondrial DNA sequencing, proteomics, 

profiling of DNA-binding proteins, and 3D chromatin mapping30–35. Because most depend 

on capturing transposed fragments on the 10x Genomics platform, we hypothesize that, 

perhaps with only minor protocol adjustments, MULTI-ATAC barcoding could be 

successfully extended to many of these methods as well to great effect. 

While MULTI-ATAC barcoding stands to greatly improve scATAC-seq workflows 

by allowing pooled transposition, we note that other workflow bottlenecks still impede 

large scale experiments. Barcoding itself is fast and can be done at various scales without 
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significant optimization. Nuclei isolation, however, is a step that all investigators must 

contend with and optimize for their sample type. Scaling up to many samples carries 

inherent risk of introducing batch effect if lysis times are not properly controlled. However, 

we note that the ability to include many replicates enables hedging against such 

challenges. 

 

  



 26 

Figures  

 
 

 
 

Figure 3.2 - MULTI-ATAC library prep schematic 

Figure 3.1 - Design of MULTI-ATAC barcode complex 
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Figure 3.3 - Multi-donor experiment highlights accurate sample classification by MULTI-ATAC 

A. MULTI-ATAC classifications (using deMULTIplex2) of pooled PBMC nuclei from 3 distinct donors 

closely matches the classifications determined by genotypic deconvolution using Vireo. 

B. Comparison of classification results from A) demonstrates high accuracy in singlet calling relative 

to genotypic deconvolution, with MULTI-ATAC/deMULTIplex2 identifying a higher rate of doublets. 

Figure 3.4 - Comparison of doublets identified by MULTI-ATAC and two in silico methods 

A. Comparison of fragment counts and DoubletEnrichment scores for doublets classified by both 

MULTI-ATAC and Vireo, only MULTI-ATAC, only Vireo, or neither. Student’s t test.  

B. Venn diagram comparing doublet classifications between MULTI-ATAC, Vireo, and AMULET. 

Notably there are no doublets agreed upon by Vireo and AMULET that MULTI-ATAC did not call. 
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Figure 3.5 - Parallel vs Pooled transposition experiment 

A. Diagram of how Parallel and Pooled transposition libraries were generated from 9 uniquely-

barcoded aliquots of a pool of K562 and Jurkat nuclei. 

B. Samples deconvolved from the Parallel library show decreasing per-nucleus fragment yield with 

increasing transposition batch size, whereas samples in the Pooled library all yield the same. 

Whisker length of boxplots shortened to 0.5 * IQR for visualization. 

Figure 3.6 - Pooled transposition abrogates effect on dimensionality reduction 

Spearman correlation between per-sample means across LSI dimensions 2:30 shows strong clustering 

of K562 (A) and Jurkat (B) cells by transposition batch size in the Parallel library that is lost in the Pooled 

library. 
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Figure 3.7 - Pooled transposition abrogates effect on cell type proportions 

A. Similar to analysis in Fig. 2.4, relative proportions of K562 and Jurkat nuclei recovered per 

sample varied as a function of transposition batch size in the Parallel library, but were 

consistent across samples in the Pooled library.  

B. Jurkat nuclei yielded on average 36% fewer fragments than K562 nuclei, possibly making 

them more sensitive to quality control filtering. 

Figure 3.8 - MULTI-ATAC is compatible with the Multiome assay 

A. UMAP embeddings of GEX library captured in Multiome experiment shows separation of 

mouse hepatocytes by zonation markers (bottom), and homogenous mixing of cells 

labeled with either MULTI-ATAC barcodes, MULTI-seq barcodes, or neither. 

B. Comparison of ATAC and GEX library quality control metrics between hepatocytes labeled 

with MULTI-ATAC barcodes, MULTI-seq barcodes, or neither. 
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Chapter 4 – High throughput single-cell chemical 

epigenomics with MULTI-ATAC 
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Background 

         Whether for treating cancer or curing autoimmune diseases, there is 

considerable interest in learning how to harness and manipulate the immune 

system. Moreover, drugs with functions elsewhere in the body may act on immune 

cells in unexpected ways, increasing susceptibility to infection. Additionally, there 

can be vast difference both between and within individuals depending on when 

cells were collected and profiled36. The ability to study the variety of immune cells 

that circulate through the body and how each responds in kind to different 

perturbations in high throughput is therefore critical to gaining a deep 

understanding of the immune system. 

         As more is learned about how chromatin organization dictates cell states, the 

idea of weaponizing epigenetic reprogramming to fight disease and reverse ageing 

has gained considerable traction. To this end, many small molecule inhibitors 

targeting epigenetic remodeling enzymes have entered clinical trials, and early 

signs suggest some success in combating certain leukemias and lymphomas37–39. 

Proteolysis targeting chimeras (PROTACs) are a more recent class of drug that 

catalyze proteasome-mediated degradation – rather than inhibition – of their target 

by linking it to an E3 ubiquitin ligase40. Degradation and inhibition, while both acting 

to limit the core enzymatic function of a target enzyme, can lead to quite different 

cellular responses. These differences are still poorly understood but can have a 

significant effect on the efficacy and toxicity of compounds. 



 32 

Sample multiplexing approaches minimize reagent costs and improve single-cell 

genomics data quality through doublet detection and batch effect minimization. Beyond 

these benefits, multiplexing techniques provide the flexibility to execute experimental 

designs that are sufficiently controlled and statistically powered to derive robust 

conclusions. For example, high-throughput chemical screening experiments that require 

large numbers of individual samples (i.e., doses, replicates, and controls) are infeasible 

using most standard single-cell genomics workflows but become possible with the use of 

sample multiplexing approaches11,41. 

 

MULTI-ATAC empowers high sample throughput and 

reproducibility  

To explore its utility for high-throughput single-cell genomic chemical screens, we 

used MULTI-ATAC to analyze the impact of perturbing the activity of 3 key epigenetic 

remodeling complexes (e.g., PRC2, SWI/SNF, and p300/CBP) with matched small 

molecule inhibitors and PROTACs in human PBMCs (Fig. 4.1; Table 4.1). Specifically, 

we measured immune perturbation responses to the EZH2 inhibitor EPZ-6438 and 

PROTAC MS177, the SMARCA2/4 inhibitor BRM014 and PROTAC AU-15330, and the 

p300/CBP inhibitor GNE-781 and PROTAC dCBP-1 all in the context of T-cell activation 

with anti-CD3/CD28 tetrameric antibodies. Each drug was assayed at 3 doses (10nM, 

100nM, and 1µM) in quadruplicate along with DMSO +/- anti-CD3/CD28 antibody 

controls, for a total of 96 unique samples. Following 24 hours in culture, nuclei were 

isolated, labeled with MULTI-ATAC barcodes, and pooled for transposition prior to paired 
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scATAC-seq and scRNA-seq profiling using the 10x Genomics Multiome platform (Fig. 

4.1).  

Following next-generation sequencing, we performed quality-control filtering and 

MULTI-ATAC sample demultiplexing (Fig. 4.2), resulting in a final dataset of 14,233 cells. 

We recovered on average 148 ± 87 nuclei per tissue culture well and 609 ± 135 nuclei 

per drug dose, with many drugs exhibiting clear dose-dependent epigenetic 

reprogramming (Fig. 4.2). After unsupervised clustering and differential gene expression 

analysis, we identified the expected immune cell types including T cells (naïve, CD4+ and 

CD8+ memory, and Tregs), B cells, NK cells, and myeloid cells (monocyte and DC; Fig. 

4.3). Notably, a subset of treatments elicited such strong epigenetic and transcriptional 

responses that precluded linkage back to the subtype of origin (Fig. 4.3).  

The technical limitations and costs of single-cell sequencing methods typically bias 

study design against the inclusion of multiple biological and technical replicates. As a 

consequence, differential expression and accessibility analysis methods often treat 

individual cells as replicates or create pseudo-replicates from within individual samples, 

tactics which have been shown to increase the rate of false discoveries42,43. In contrast,  

using sample multiplexing to include dose regimes and true experimental replicates 

allows for more powerful statistical analyses that protect against artifacts (Fig. 4.4), all 

increasing confidence in hypotheses emerging from experiments without increasing costs 

or significantly complicating workflows. We used these features of the dataset to identify 

high-confidence activation- and drug dose-responsive marker features for T and myeloid 

cells by fitting a linear regression model to the average expression or accessibility of each 

feature per replicate (Fig. 4.5, Fig. 4.6). 
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Effect sizes between treatments varied greatly; immune activation (particularly of 

T cells) almost exclusively upregulated the accessibility and expression of thousands of 

genes, whereas the SWI/SNF degrader AU-15330, SWI/SNF inhibitor BRM014, and 

p300/CBP degrader dCBP-1 mostly elicited the opposite response (Fig. 4.5, Fig. 4.6). Of 

note, many of the peaks that were downregulated by these drugs overlapped with the set 

of peaks remodeled by immune activation, predominantly reversing or inhibiting the 

increase in accessibility (Fig. 4.7). Additionally, a large fraction of these downregulated 

peaks was significantly enriched for enhancer regions relative to their upregulated 

counterparts, particularly in myeloid cells (Fig. 4.7). In contrast, the smaller subset of 

upregulated peaks for these drugs showed a significant enrichment for CTCF binding 

sites (Fig. 4.7). Myeloid cells were particularly sensitive to this effect, perhaps in part 

because a greater fraction of the accessible chromatin in these cells was associated with 

annotated distal enhancer regions (Fig. 4.7). Because CTCF acts to insulate regions of 

the genome as topologically-associated domains to promote enhancer-gene interactions, 

the concurrent loss of enhancer accessibility and increase in CTCF site accessibility may 

reflect a mechanism by which these drugs impact 3D chromatin organization. 

 

Epigenetic perturbations elicit drug- and cell-type specific effects 

We next analyzed the differential impact of drugs targeting the same complex by 

direct inhibition or degradation. To visualize the overlapping and varied impacts of these 

drugs on immune cells we developed a two-dimensional scoring system that decomposed 

the drug effects into two components reflecting influences on immune activation versus 

all other effects on chromatin accessibility (Fig. 4.8, Methods). We then used this scoring 
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system to compare PROTAC-inhibitor pairs across a 3-order of magnitude dose regime 

(Fig. 4.8). The analysis revealed divergent responses in distinct immune cell populations 

linked to both drug target and mechanism of action. For example, we found that SWI/SNF 

disruption was highly dose-responsive and that equimolar treatments with either the 

PROTAC AU-15330 or inhibitor BRM014 elicited similar responses in T and myeloid cells 

(Fig. 4.8, center). By contrast, the PROTAC dCBP-1 produced a much stronger response 

in both T and myeloid cells than the inhibitor GNE-781 from which it is derived, supporting 

previous findings about the potency of p300/CBP degradation over inhibition44 (Fig. 4.8, 

right). Finally, we observed a cell-type-specific ‘bell-shaped’ dose-response pattern in T 

cells treated with the EZH2 PROTAC, MS177, where the 100nM dose induced increased 

activation before dropping back down at 1µM (Fig. 4.8, left). This result was not observed 

in cells treated with the EZH2 inhibitor EPZ-6438, which exhibited little overall phenotype. 

Notably, this trend coincides with a set of “amplified” activation-associated peaks noted 

for this drug in T cells, lending credence to this scoring metric (Fig. 4.7).  

To further contextualize these results, we investigated drug-specific effects on 

immune cells using pathway analysis. We ranked genes by the strength and direction of 

their response to drug treatment (both in terms of accessibility and RNA expression) and 

performed gene set enrichment analysis45 on the ranked lists (Fig. 4.9). As expected, 

terms related to immune activation and differentiation were downregulated specifically in 

the dCBP-1, AU-15330, and BRM014 samples that also exhibited the greatest inhibition 

of immune activation. Notably, many of these same terms were upregulated in MS177-

treated T cells (Fig. 4.9), underscoring that this drug may uniquely amplify the activation 

state of the cells.  
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 Of the gene sets upregulated by MS177 in T cells, the most significantly enriched 

is TNFα signaling via NF-κB. In aggregate, these genes exhibited a dose-dependent 

increase in RNA expression relative to positive controls in both T cells and myeloid cells, 

whereas their gene accessibility only increased noticeably in T cells (Fig. 4.10). We 

hypothesized that this deviation between RNA and ATAC data was due to myeloid cells 

having higher baseline expression and gene accessibility of these genes relative to T 

cells (Fig. 4.10). To test this notion, we profiled the accessibility of NF-κB binding sites 

genome-wide and observed that while MS177 treatment increased the accessibility of 

these sites in T cells, in myeloid cells these sites were highly accessible at baseline and 

insensitive to treatment despite the increase in target gene expression (Fig. 4.11).  

Beyond cell-type-specific chromatin remodeling near NF-κB binding sites, 

hierarchical clustering of MS177 and activation marker peaks in T cells revealed that most 

MS177-responsive peaks seemed to cluster into three main groups (Fig. 4.11, brown, 

purple, blue): two that increased in accessibility sharply with MS177 dose and were 

unrelated to activation, while the third included activation-associated peaks and reached 

maximum accessibility at the 100 nM dose and dropped thereafter, mirroring the 

activation score analysis. These peak sets were strongly enriched with binding sites for 

NF-κB family members, AP-1 family members, and other transcription factors critical to T 

cell function (Fig. 4.11)46. To better ascertain which exact transcription factors may drive 

the response to MS177, we looked specifically at factors whose RNA expression and 

motif accessibility both increased in response to MS177 treatment. This analysis 

highlighted a variety of genes involved in T-cell activation, differentiation, and exhaustion 

such as NFKB1, NFAT5, STAT5A, HIVEP2, and IKZF1 (Fig. 4.11)47–50. 
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We next sought to characterize the epigenomic and transcriptomics responses to 

SWI/SNF and p300/CBP inhibition in human PBMCs. While SWI/SNF- and p300/CBP-

targeting drugs largely decreased both chromatin accessibility and gene expression 

relative to activated controls (Fig. 4.5, Fig. 4.6), these samples exhibited enrichment for 

gene sets associated with type I interferon signaling, the innate immunity pathway largely 

responsible for mounting early responses to pathogenic infection (Fig. 4.9)51–53. In 

particular, the SWI/SNF-targeting drugs AU-15330 and BRM014 demonstrated a clear 

and dose-dependent increase in both the expression and accessibility of interferon-

stimulated genes (ISGs) and upstream regulators, irrespective of cell type (Fig. 4.10). 

Specifically, we observed upregulation of terms and genes pertaining to antiviral response 

and detection of foreign RNA and DNA (Fig. 4.12, Fig. 4.13). In line with these results, 

we observed that these drugs induce concurrent increases in expression and motif 

accessibility for transcription factors involved in interferon signaling, notably IRF7 and 

STAT2 (Fig. 4.12). Finally, other upregulated terms related to transcription, splicing, and 

DNA-nucleosome interactions, all of which exhibited increased accessibility without a 

corresponding increase in RNA expression (Fig. 4.12). Among these dysregulated genes 

were the replication-dependent histones — for instance, the HIST1 gene cluster on chr6 

showed a dose-dependent increase in accessibility that was most pronounced in the 

SWI/SNF-targeting drugs (Fig. 4.14). While the cause of this is unknown, one possible 

explanation is that SWI/SNF inhibition in particular prevents expression of genes 

necessary for progression through the cell cycle54,55.  
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Discussion 

 To demonstrate the scope of experimental designs made possible by MULTI-

ATAC, we performed a 96-plex drug screen of epigenetic inhibitors and degraders in 

human immune cells. Single-cell drug assays are typically challenging and expensive to 

perform due to the inherently high number of samples, and researchers must often 

compromise either the number of replicates or the number of doses assayed. The facility 

of MULTI-ATAC barcoding and pooled transposition means the number of samples one 

can assay is limited primarily by the nuclei isolation step and the number of unique MULTI-

ATAC barcode sequences one has. With MULTI-ATAC we were able to include both a 3 

order-of-magnitude dose regime as well as four replicates for each dose of 6 different 

drugs. This enabled downstream analyses that are robust to technical and biological 

variation between replicates without inflating p-values from treating each cell as an 

individual replicate.  

 Analysis of the drug responses revealed numerous drug-, target-, and cell type-

specific effects. Most apparent was the differential response to the EZH2 degrader 

MS177 and inhibitor EPZ-6438. Specifically, we found that the EZH2 inhibitor EPZ-6438 

showed little impact on the transcriptomes and epigenomes of the cells in culture at any 

dose. This is likely because the primary mechanism of clearance of H3K27me3, the 

repressive histone modification catalyzed by EZH2/PRC2, has been shown to be 

replicative dilution56. We would therefore expect that a longer culture period and multiple 

population doublings would be required for EPZ-6438 to start exhibiting effects.  

By contrast, the EZH2 degrader MS177 very potently altered the T and myeloid 

cells, inducing increased expression and/or accessibility of NF-κB associated genes and 
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motifs. NF-κB signaling is a known contributor to signaling downstream of TCR activation, 

which partially explains the augmented T cell activation exhibited by the 100 nM dose of 

MS177. The mechanistic relationship between MS177 treatment and NF-κB signaling is 

not yet understood; however, several avenues for further investigation are evident from 

the data. For instance, a pair of studies have demonstrated direct physical interactions 

between EZH2 and NF-κB factors that contribute to transcriptional regulation 

independently of methyltransferase activity57,58. NF-κB pathways invoke degradation of 

downstream mediators as part of the signaling cascade; therefore, one hypothesis is that 

MS177 amplifies NF-κB signaling activity by concomitantly degrading a negative NF-κB 

regulator associated with EZH2. Another notable finding regarding MS177 treatment is 

the upregulation of the IKZF1/Ikaros and IKZF3/Aiolos transcription factors, which are 

important regulators of lymphocyte function and development. Intriguingly, these proteins 

have been identified as neo-substrates of the CRBN ubiquitin ligase that is recruited by 

MS17744,59–62, and Ikaros has been shown to both associate with PRC2 and mediate T 

cell exhaustion through repression of AP-1, NFAT, and NF-κB target genes50,63. Taken 

together, it is possible that MS177 exerts these effects through off-target degradation of 

IKZF1/IKZF3, leading to upregulation of downstream targets related to T cell activation. 

The drugs targeting the SWI/SNF nucleosome remodeling complex and p300/CBP 

histone acetyltransferases primarily seemed to inhibit lymphocyte activation and led to 

variable decreases in both chromatin accessibility and gene expression. Despite this, two 

groups of gene sets exhibited pronounced upregulation during pathway analysis. Genes 

related to cell cycle and RNA processing became more accessible but were not 

upregulated transcriptionally; simultaneously, a pronounced type I interferon response 



 40 

was induced. Multiple studies have demonstrated that epigenetic dysregulation can 

stimulate a type I interferon response through the de-repression of human endogenous 

retrovirus (ERV) and other retrotransposons, and that this is likely to contribute to age-

related inflammation and disease64–67,67–72. More recently, mutations, deficiencies, and 

perturbations of several different SWI/SNF-family proteins have been shown to induce 

cell-intrinsic type I interferon responses in cancer cells that can improve the response of 

tumors to immune checkpoint blockade67,69,73–75. In these studies, interferon signaling is 

traced back to numerous mechanisms including ERV expression, R-loop formation, and 

excess cytoplasmic ssDNA production, with both DNA- and RNA-sensing pathways 

implicated.  Depletion of H1 linker histones has also been shown to induce interferon 

signaling, providing a possible link to issues with cell cycle progression76–78. The breadth 

of evidence supporting a more general mechanism linking innate immune activation to 

perturbed chromatin organization indicates this to be an exciting area for future 

investigation.  
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Figures 
 

Table 4.1 - Drugs used in epigenetic drug screen 

Drug Target Type Catalog # 
MS177 EZH2 (PRC2) PROTAC MedChemExpress #HY-148333 
EPZ-6438 EZH2 (PRC2) Inhibitor SelleckChem #S7128 
AU-15330 SMARCA2/4 (SWI/SNF) PROTAC MedChemExpress #HY-145388 
BRM014 SMARCA2/4 (SWI/SNF) Inhibitor MedChemExpress #HY-119374 
dCBP-1 p300/CBP PROTAC MedChemExpress #HY-134582 
GNE-781 p300/CBP Inhibitor SelleckChem #S8665 

 

 

  

Figure 4.1 - Epigenetic drug screen experimental design 

Diagram of how each of two replicate 96-well plates were seeded with PBMCs and cultured with or without 

drugs and anti-CD3/C28 antibodies. 
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Figure 4.2 - Successful recovery of 96 drug treatment and control samples 

A. UMAP embedding of MULTI-ATAC barcode counts from 1 of the 3 libraries generated, colored by 

which of the 96 samples each cell was classified to.  

B. Overview of nuclei recovered per replicate well of each drug. 

C. UMAP embedding of the ATAC data generated in the Multiome experiment, colored by the drug 

each cell was treated with.  

D. UMAP embeddings for each drug and controls showing dose-dependent shifts in epigenetic state.  
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Figure 4.3 - Major and minor cell type annotation using known markers 

Canonical markers were assessed in terms of chromatin accessibility scores and RNA expression and used 

to annotate clusters as B cells, T cells (CD4+, CD8+, NK, and Treg), and Myeloid cells (Monocyte, DC). 

Several of the higher drug doses pushed cells into states that couldn’t be traced back to subtypes, and 

were annotated as such. For T and Myeloid populations, cells that clustered with resting control/DMSO(-) 

cells were annotated as Naïve/Unstimulated. 
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Figure 4.4 - Inclusion of replicates protects against experimental variability 

A. Control replicates were clustered by the correlation of their centroids in the LSI dimensionality 

reduction and were found to cluster according to the sides of the plates (left vs right) they derived 

form.  The mechanism behind this effect is not clear but could be linked to variable lysis or culture 

conditions. 

B. Cells from the left and right side of each plate differed significantly across various quality control 

metrics. 

C. Plate side seemed to be captured predominantly in LSI4, so this component was excluded from 

subsequent steps. This did not impact any downstream marker analyses, only visualization via 

UMAP and cell subtype annotation via clustering.   
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Figure 4.5 - Replicate-aware marker feature calculation by linear regression 

A. Representative peak (left) and gene (right) showing how average accessibility (or 

expression) per cell type and replicate were used to calculate drug- or activation-responsive 

markers by fitting of a linear regression model.  

B. Activation and MS177 treatment predominantly increased chromatin accessibility and gene 

expression, whereas treatment with drugs such as AU-15330, BRM014, and dCBP-1 largely 

had the opposite effect.  
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Figure 4.6 - Heatmaps of all T and Myeloid cell marker features 

All features with a statistically significant linear regression fit (p < 0.01, Log2FC > 1) to immune activation 

or drug dose replicates. 
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Figure 4.7 - Characterization of marker peaks 

A) A large portion of marker peaks in AU-15330, BRM014, and dCBP-1 reflect inversions of 

activation-associated chromatin accessibility changes. MS177 uniquely seems to further 

increase the accessibility of peaks already associated with T cell activation.  

B) Overlap of up- and downregulated peaks with FANTOM5 enhancer set. P-values represent 

results from two-sided Chi-squared proportion tests. 

C) Overlap of up- and downregulated peaks with CTCFSDB CTCF binding site database. P-values 

represent results from two-sided Chi-squared proportion tests. 

D) UMAP embedding of the per-cell fraction of fragments that overlap with distal enhancers from 

the CCRE database. 

E) Non-drugged myeloid cells exhibit a greater fraction of fragments coming from distal enhancers 

relative to T and B cells. Student’s t test. 
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Figure 4.8 - Two-component drug response scoring 

The X-axis scores each drug dose by its relative activation compared to controls using 

activation-associated marker gene scores, while the Y-axis scores each drug dose on the 

accessibility of drug-responsive marker genes not associated with activation. Solid lines show 

the dose-response trajectory of inhibitors, whereas dashed lines show the trajectories of 

PROTACs. Inset values show the number of drug-responsive marker genes used to generate 

the Y-axis scores. See Methods for more details. 

Figure 4.9 - GSEA of drug-responsive genes 

Gene set enrichment analysis (GSEA) for each drug and cell type of marker genes based on 

accessibility (A) or expression (B), ordered by statistical significance and direction of linear relationship 

with dose. Statistically significant terms (p.adj. < 0.01) are colored by normalized enrichment score 

(NES). 
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Figure 4.10 - Gene set expression & accessibility as a function of dose 

Expression or accessibility of every gene in each given Hallmark gene set, averaged by cell type, drug, and 

dose. Values are calculated as either the log2-fold-change compared to activated controls (A), or scaled to 

the mean value of the activated controls (B), and plotted as a function of dose. Trendlines plotted per drug 

via LOESS smoothing with span = 1.5. 

Figure 4.11 - MS177 increases NF-κB signaling 

A. MS177- and activation-responsive marker peaks in T cells were hierarchically clustered into 

7 groups for downstream motif enrichment analysis. Heatmap shows Z-scaled median 

accessibility values across replicates for each condition.  

B. Significantly enriched TF motifs (p.adj. < 0.01) across 3 clusters of MS177-responsive peaks 

in T cells (see A.). Heatmap colored by -log10(p.adj.). 

C. NF-κB motif footprinting in control and MS177-treated T and myeloid cells. 

D. Correlation of TF motif accessibility and TF RNA expression. Axes represent increasing 

statistical significance of negative/positive relationship with MS177 or EPZ-6438 dose. Solid, 

annotated points are statistically significant (p < 0.01) in both modalities. 
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Figure 4.12 - Upregulation of Type I Interferon response by SWI/SNF perturbation 

A. Fraction of Halllmark Interferon Alpha Response gene set upregulated in accessibility and/or 

expression across any cell type.  

B. Correlation of TF motif accessibility and TF RNA expression. Axes represent increasing 

statistical significance of negative/positive relationship with AU-15330 or BRM014 dose. Solid, 

annotated points are statistically significant (p < 0.01) in both modalities.  

C. Gene sets determined to be upregulated by SWI/SNF perturbation through GSEA of RNA and 

Gene Score linear regression markers. Type I Interferon gene sets are upregulated in both 

modalities, whereas gene sets related to chromatin organization and RNA processing are only 

upregulated in accessibility but not expression. 
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Figure 4.13 - Type I Interferon pathway genes up-regulated by SWI/SNF perturbation 
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Figure 4.14 - SWI/SNF perturbation increased accessibility of replication-dependent histone genes 

A. All histone genes – ordered by genomic location – colored by the direction and significance of their 

response in gene score/accessibility to increasing drug dose.  

B. Coverage plot of the HIST1 locus on chromosome 6 where most replication-dependent histone 

genes are located shows significant increases in accessibility, particularly for AU-15330 and 

BRM014 but also dCBP-1. Smoothing window for plotting = 1000 bp.   
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Methods 

Cell culture 

 Cryopreserved PBMCs were thawed in a 37˚C water bath before gently 

transferring to a 50mL conical vial and adding 10x volume (10-20mL) of RPMI 1640 

culture media. Cells were pelleted at 400rcf, 4˚C, for 4 minutes, before resuspending in 

RPMI 1640 media supplemented with 10% fetal bovine serum and 1% penicillin-

streptomycin and seeding in an ultra-low attachment 10cm culture dish. PBMCs were 

allowed to incubate at rest for 24 hours prior to subsequent experimental steps. K562 and 

Jurkat cells were thawed in a 37˚C water bath, plated at 1M/mL, and cultured for several 

passages in RPMI 1640 media, supplemented with GlutaMAX, 10% fetal bovine serum, 

and 1% penicillin-streptomycin. All cells were incubated at 37˚C, 5% CO2. 

 

Nuclei isolation 

 Unless noted otherwise, cell suspensions were first washed once with chilled PBS. 

500k cells per sample were aliquoted into 1.5mL Eppendorf tubes and pelleted at 300rcf, 

4˚C, for 4 minutes. Cells were resuspended in 100 µL of chilled Lysis Buffer (10 mM Tris-

HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 Substitute, 

0.01% Digitonin, 2% BSA in nuclease-free water), mixed, and incubated 5 minutes on ice. 

Then, 1 mL Wash Buffer (10 mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-

20, 2% BSA in nuclease-free water) was added and mixed. Nuclei were pelleted at 500rcf, 

4˚C, for 4 minutes and then resuspended in chilled PBS.  
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MULTI-ATAC barcoding 

Unless noted otherwise, MULTI-ATAC barcode complexes were assembled by 

combining LMO Anchor, barcodes, and BE primer in a 2:1:2 molar ratio in nuclease-free 

water. We found that including excess LMO Anchor and BE Primer improved barcode 

capture (data not shown). Isolated nuclei were adjusted to a concentration of 750-1000 

nuclei per µL. Assembled barcode complex was added to each nuclei suspension at 

10nM, 25nM, or 50nM labeling concentration, followed by mixing by vortex pulse or 

pipette and incubation on ice. After 5 minutes, LMO Co-Anchor was added at twice the 

concentration of the full barcode complex (to account for excess LMO Anchor), mixed, 

and incubated another 5 minutes on ice. Barcoding was quenched by addition of 1.2mL 

2% BSA in PBS. Barcoded nuclei were pelleted at 500rcf, 4˚C, for 4 minutes, then 

resuspended in 100-200µL 2% BSA in PBS for counting and pooling with other samples. 

 

Multi-donor pilot experiment 

Three distinct vials of PBMCs from different donors and vendors were thawed and 

cultured as described previously. After 24 hours, each batch of PBMCs was divided into 

multiple 500k cell aliquots for nuclei isolation as described previously. Isolated nuclei from 

each donor were concentrated to 7.5k nuclei/µL, from which 4 µL were added to PCR 

strip tubes containing 26 µL of transposition mix (15 µL 2X Tagment DNA Buffer, 5.9 µL 

PBS, 0.3 µL 10% Tween-20, 0.3 µL 1% Digitonin, 1.5 µL Tagment DNA Enzyme 1, 3 µL 

nuclease free water). The tubes were incubated at 37˚C in a thermocycler for 1 hour. 

Transposed nuclei were barcoded as described before except that barcode complexes 

were assembled at 1:1:1 molar ratio. Both barcode complex and LMO Co-Anchor were 
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added at a final concentration of 25 nM. Barcoded, transposed nuclei from each donor 

were then pooled and resuspended to a density of 1k/µL in ATAC Buffer B before 

proceeding with scATAC-seq library generation with the 10x Genomics Single Cell ATAC 

v1.1 kit. 

 

Parallel vs pooled transposition batch effect experiment 

Nuclei were isolated from K562 and Jurkat cells, counted, and pooled at equal 

numbers. 9 aliquots were drawn from this pool for MULTI-ATAC barcoding as described 

previously. These 9 aliquots were diluted to 200 nuclei/µL, 1k nuclei/µL, or 3k nuclei/µL, 

and then 9 parallel transpositions were set up, combining 10 µL of each nuclei mixture 

with 20 µL transposition mix (15 µL 2X Tagment DNA Buffer, 0.3 µL 10% Tween-20, 0.3 

µL 1% Digitonin, 1.5 µL Tagment DNA Enzyme 1, 2.9 µL nuclease free water). 

Simultaneously, the same ratios of each of the 9 barcoded aliquots were combined and 

45 µL of this mixture was added to 90 µL of transposition mix. The 9 parallel transposition 

tubes and 1 pooled transposition tube were all incubated at 37˚C in a thermocycler for 1 

hour, after which the parallel tubes were pooled. Both barcoded, transposed nuclei 

suspensions were then counted and resuspended to a density of 1k nuclei/µL in a 1:2 

mixture of 1X Nuclei Buffer and ATAC Buffer B before proceeding with scATAC-seq 

library generation with the 10x Genomics Single Cell ATAC v2 kit. 

 

Multiome pilot experiment 

Mouse hepatocytes were isolated by a two-step perfusion technique. Briefly, 

mouse was anesthetized by isoflurane (Piramal Critical Care). Mouse liver and heart were 
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exposed by opening the abdomen and cutting the diaphragm away. The portal vein was 

cut and immediately the inferior vena cava was cannulated via the right atrium with a 22-

gauge catheter (Exel International, 26746). Liver was perfused with liver perfusion 

medium (Gibco, 17701038) for 3’ and then with liver digest medium (Gibco, 17703034) 

for 7’ using a peristaltic pump (Gilson, Minipuls 3). Pump was set to 4.4 mL/min and 

solutions were kept at 37°C. After perfusion the liver was dissected out, placed in a petri 

dish with hepatocyte plating medium (DME H21 [high glucose, UCSF Cell Culture Facility, 

CCFAA005-066R02] supplemented with 1x PenStrep solution [UCSF Cell Culture Facility, 

CCFGK004-066M02], 1x Insulin-Transferrin-Selenium solution [GIBCO, 41400-045] and 

5% Fetal Bovine Serum [UCSF Cell Culture Facility, CCFAP002-061J02]) and cut into 

small pieces. Liver fragments were passed through a sterile piece of gauze. Hepatocytes 

were separated from non-parenchymal cells by centrifugation through 50% isotonic 

Percoll (Cytiva, 17-0891-01) solution in HAMS/DMEM (1 packet Hams F12 [GIBCO, 

21700-075], 1 packet DMEM [GIBCO, 12800-017], 4.875 g sodium bicarbonate, 20 mL 

of a 1M HEPES pH 7.4, 20 mL of a 100X Pen/Strep solution, 2 L H2O) at 169 g for 15’. 

Isolated hepatocytes were frozen in BAMBANKER (GC LYMPHOTEC, CS-02-001) and 

stored at -80°C. 

On the day of the experiment, frozen hepatocytes were thawed, washed with PBS 

(Gibco, 10010-023) and fixed in 1% PFA (Electron Microscopy Sciences, 15714-S) for 10 

min at RT. Fixation was quenched by addition of glycine (125 mM final concentration) and 

washed with cold PBS supplemented with 1% BSA (Sigma, A1953). Hepatocytes were 

next permeabilized by resuspending 0.5 million fixed cells in 100 μL of lysis solution (0.5% 

n-Dodecyl β-D-maltoside, 45 mM NaCl, 10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 10% 
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dimethylformamide, 1U/µL Protector RNase inhibitor [MilliporeSigma, 3335399001]) and 

incubated on ice for 5 minutes. Permeabilization was stopped by adding 1 mL of wash 

buffer (45 mM NaCl, 10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 1% BSA, 1U/µL Protector 

RNase inhibitor [MilliporeSigma, 3335399001]). Next, fixed, permeabilized cells were 

barcoded with both MULTI-seq and MULTI-ATAC reagents. LMO Anchor was assembled 

into complex with MULTI-seq barcodes (2:1 ratio) or with MULTI-ATAC barcodes and BE 

primer (2:1:2 ratio). Cells were divided into 5 aliquots, two were labeled with MULTI-ATAC 

barcodes as described, two were labeled with MULTI-seq barcodes following the same 

protocol, and the fifth aliquot was left unlabeled as a control. All 5 aliquots were pooled, 

resuspended in 1X Nuclei Buffer and adjusted to 5k cells/µL for processing with the 10x 

Genomics Single Cell Multiome ATAC + Gene Expression v1 kit. 

 

Multiome epigenomic drug screen 

PBMCs from a single donor were thawed and cultured as described. After resting 

for 24 hours, non-adherent cells and media were transferred to a 50 mL conical vial. Pre-

warmed TrypLE was added to culture dish and incubated 2 minutes at 37˚C to lift 

remaining cells before also transferring to conical vial. Cells were pelleted at 400rcf, RT, 

for 4 minutes, and resuspended in PBS to count and assess viability. After, cells were 

resuspended in media (RPMI 1640, 10% FBS, 1% Pen/Strep) to 1k cells/µL. 192.5 µL of 

cell suspension were deposited into each well of the outermost 6 columns of two 96-well 

ultra-low attachment round-bottom plates. To each well was then added 2.5 µL of 80X 

drug-media solution or 2.5 µL of DMSO-media solution, and 5 µL of ImmunoCult anti-

CD3/CD28 antibodies or equivalent volume of PBS. All wells were gently pipette-mixed 
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5X with a multichannel p200 set to 150 µL. Plates were returned to the incubator and 

cultured 24 hours.  

The following day, cells were gently pipette mixed to resuspend and then pelleted 

at 400rcf, 4˚C, for 5 minutes. Media was carefully aspirated and pellets were resuspended 

in 100 µL 2% BSA in PBS, before transferring cells to a set of new 96-well ultra-low 

attachment round-bottom plates on ice. To recover remaining adhered cells, 100 µL of 

pre-warmed TrypLE was added, followed by 2 minute incubation at 37˚C, and transfer of 

the full 100 µL to the new plates on ice. 100 µL from each well was aliquoted into a new 

set of standard 96-well round-bottom plates and pelted at 400rcf, 4˚C, for 5 minutes. 95 

µL were carefully removed from each well. Then pellets were resuspended in 45 µL chilled 

lysis buffer (10 mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% 

Nonidet P40 Substitute, 0.01% Digitonin, 1 mM DTT, 1 U/µL Protector RNase inhibitor 

(MilliporeSigma, 3335399001), 1% BSA in nuclease-free water) and pipette-mixed 3X. 

Lysis was allowed to proceed 2.5 minutes, with the timer being initiated after addition of 

buffer to the first column. At the end of incubation, 150 µL wash buffer (10 mM Tris-HCl 

pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1 mM DTT, 1 U/µL Protector RNase 

inhibitor (MilliporeSigma, 3335399001), 1% BSA in nuclease-free water) was added 

without mixing. Plates were pelleted at 600rcf, 4˚C, for 5 minutes, after which 195 µL of 

supernatant was carefully removed and discarded. 

Pellets were resuspended in 95 µL chilled PBS, after which 50 µL of one of each 

96 unique pre-assembled 75 nM MULTI-ATAC barcode complexes (2:1:2 molar ratio) 

was added to each well and gently pipette-mixed, for a final labeling concentration of 25 

nM. Plates were left on ice for 5 minutes, before addition of 50 µL of 200nM LMO Co-
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Anchor, gentle pipette-mixing, and another 5 minutes on ice. Plates were pelleted at 

600rcf, 4˚C, for 5 minutes, before aspirating 195 µL of supernatant and resuspending 

each well in 195 µL chilled 2% BSA in PBS to quench labeling.  

100 µL from each well were pooled by row, pelleted, and resuspended in 50 µL 1X 

Nuclei Buffer for counting. The row pools were merged together, adjusted to 3-5k 

nuclei/µL, and processed with the 10x Genomics Single Cell Multiome ATAC + Gene 

Expression v1 kit. 

During analysis, we noted a significant separation in the UMAP embedding 

between cells originating from the left and right side of the 96-well plates they were 

cultured and lysed in. Deeper inspection of the data revealed that LSI component 4 

seemed to capture the bulk of this variance. Additionally, marker analysis between 

matched “left-side” and “right-side” cells predominantly showed differences in promoter 

accessibility (data not shown), which correlates with slight but statistically significant 

differences in QC metrics. Therefore, this variance was deemed to likely be a technical 

artifact from either culture or lysis, and this component was excluded from downstream 

embedding. Importantly, this decision primarily affected visualization and did not influence 

later marker analyses. 

 

scATAC-seq library preparation 

Unless otherwise noted, pooled, barcoded nuclei were transposed and 

subsequently processed into scATAC-seq libraries according to manufacturer’s 

recommendations (10x Genomics), with only minor modifications. Briefly, at step 3.2o, a 

1 µL aliquot is taken from each individual library to be used in producing accompanying 
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MULTI-ATAC barcode libraries. This left only 39 µL to be carried into the subsequent 

Sample Index PCR reactions (step 4.1), where we also exchanged the SI-PCR Primer B 

with an equivalent volume of a 100 µM SI-PCR-B primer with the same sequence, ordered 

separately (IDT).  

 

Multiome library preparation 

Barcoded nuclei or fixed permeabilized cells were transposed and subsequently 

processed into paired single-cell GEX and ATAC libraries according to manufacturer’s 

recommendations (10x Genomics), with only minor modification. Briefly, after Pre-

Amplification PCR (step 4.2) completed, a 1 µL aliquot was taken from each PCR reaction 

to be used in producing accompanying MULTI-ATAC barcode libraries.  

 

MULTI-ATAC barcode library preparation 

1 µL aliquots from each scATAC-seq or Multiome library preparation were taken 

at the appropriate step (see above) and incorporated into a PCR reaction with 2.5 µL 

10µM SI-PCR-B primer, 2.5 µL TruSeq-# indexing primer, 26.25 µL Kapa HiFi HotStart 

ReadyMix, and 17.75 µL nuclease-free water. The reaction was run with the following 

protocol: 1. 95˚C/5:00, 2. 98˚C/0:20, 3. 67˚C/0:30, 4. 72˚C/0:20, 5. repeat steps 2-4 x13, 

6. 72˚C/1:00, 7. 4˚C/hold. Afterwards, 100 µL SPRIselect were added, pipette-mixed 10x, 

and incubated 5’ at RT. Tubes were placed on a magnet rack and beads washed with two 

successive additions of 200 µL fresh 80% EtOH, with 30” pauses between. EtOH was 

aspirated and libraries were eluted from beads for 2’ at RT in 20 µL Buffer EB. 
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MULTI-seq barcode library preparation 

MULTI-seq barcodes were prepared for the Multiome Pilot Experiment similarly to 

as described previously1, with minor modifications. 10 µL of Pre-Amplification SPRI 

Cleanup product (step 4.3p of Multiome protocol) were transferred into a fresh PCR strip 

tube, to which 40 µL Buffer EB were added. 30 µL SPRIselect reagent (0.6X) were added, 

pipette mixed, and incubated 5’ at RT. Strip tube was placed on a magnet rack, and the 

supernatant containing MULTI-seq barcodes was transferred to a fresh 1.5 mL tube. 130 

µL SPRIselect (3.2X) and 90 µL fresh isopropanol (1.8X) were added to this supernatant, 

mixed, and incubated 5’ at RT. After placing on magnet rack and discarding supernatant, 

MULTI-seq library preparation was carried on from step 15 as normal.   

 

Sequencing & library pre-processing 

All scATAC-seq and Multiome libraries were sequenced on NovaSeq 6000 SP, 

NovaSeq 6000 S4, or NovaSeq X 10B flow cell lanes according to manufacturer’s 

recommendations (10x Genomics). Briefly, for scATAC-seq (and Multiome ATAC) 

libraries, a minimum of 25,000 reads/nucleus was targeted. Multiome GEX libraries were 

targeted to a minimum 20,000 reads/nucleus. MULTI-ATAC and MULTI-seq barcode 

libraries were each sequenced to a target depth of at least 5,000 reads/nucleus. 

FASTQs from the Multiome pilot experiment were aligned with Cell Ranger ARC 

(v2.0.1) to a mm10 reference assembly modified as described previously79 to properly 

align mitochondrial reads. FASTQs from all other experiments were aligned with Cell 

Ranger ATAC (v2.0.0, v2.1.0) or Cell Ranger ARC (v2.0.1) to the refdata-cellranger-arc-

GRCh38-2020-A-2.0.0 reference assembly provided by 10x Genomics.  
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FASTQs from MULTI-ATAC and MULTI-seq barcode libraries were processed, 

aligned, and quality-controlled using deMULTIplex226 before downstream sample-

demultiplexing using the same software.  

 

scATAC-seq analysis pipeline 

All scATAC-seq experiments were processed through a similar analytical pipeline 

before performing ad hoc analyses pertaining to each experimental design. In brief, each 

fragment file output by Cell Ranger ATAC or Cell Ranger ARC was processed with 

ArchR20 to produce an Arrow file containing a TileMatrix and GeneScoreMatrix. Single or 

multiple Arrow files from the same experiment were accessed and manipulated through 

an ArchRProject, allowing quality-control filtering based on per-cell metrics like TSS 

enrichment and fragment counts. Iterative Latent Semantic Indexing (iLSI) was used to 

produce a dimensionality reduction from the TileMatrix, and then typically dimensions 2-

30 were used to generate a UMAP embedding for visualization purposes. The cell 

barcodes that passed QC were then fed into deMULTIplex2 and classified to their sample 

of origin utilizing the barcode counts tabulated from MULTI-ATAC reads. deMULTIplex2 

classifications were then integrated into the ArchR project, and the project was subset to 

keep only the high-quality singlets identified from the MULTI-ATAC data before repeating 

iLSI and UMAP embedding. Downstream analyses typically included peak-calling via 

MACS2, motif deviation scoring via ChromVAR, and cell type annotation via marker 

analysis. 
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PBMC donor genotypic demultiplexing 

A list of cell barcodes and a BAM file containing position-sorted read alignments 

were fed into cellsnp-lite to genotype each cell based on a master list of 36.6M SNPs 

from the 1000 Genomes project (minMAF = 0.1, minCOUNT = 20). The resulting VCF file 

contained the variants detected in each cell and was processed with Vireo to 

probabilistically determine the donor identity of each cell, or assign it as a doublet.  

 

Drug/activation scoring 

Because drugs in the Multiome drug screen were administered to PBMCs in the 

presence of immunostimulatory antibodies, we sought to isolate and quantitatively 

compare the effect of each drug dose on relative activation and all other drug-induced 

changes separately. To calculate the relative activation score, the accessibility of 

activation-associated marker genes for each cell type is aggregated by cell type and drug 

dose replicate. The mean aggregate value for resting control/DMSO(-) cells is then 

subtracted and then scores are normalized to the stimulated control/DMSO(+) cells. Thus, 

all drugs are scored by the same cell type-specific marker set and relative activation state 

can be compared. For the orthogonal drug score, we wanted to be able to compare paired 

inhibitors and PROTACs targeting the same enzyme. To do so, we selected the union 

marker set of each drug pair per cell type and excluded any markers that were involved 

in calculating the relative activation score. We then separately calculated the log2 fold-

change in accessibility of the up- and down-regulated markers in this set relative to 

stimulated control/DMSO(+) cells. The absolute values of these two “up” and “down” drug 

scores were combined into a weighted average according to the relative proportion of up- 
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or down-regulated markers in the set. The values plotted in Fig. 4A represent the average 

drug and ac tivation scores for all 4 replicates per drug dose. 

 

Re-analysis of published datasets 

 For each of the 12 published datasets re-analyzed in this study, available pre-

processed scATAC-seq data and metadata were downloaded from online repositories or 

as supplemental attachments in the form of fragment files, Seurat objects, or various per-

cell or per-sample spreadsheets. When transposition batch information was not directly 

annotated, it was deduced based on the methods, computational tools, metadata, and 

experimental design information provided by authors in the accompanying publication and 

published analysis code. 

 When fragment files were readily available, datasets were processed with the 

standard ArchR pipeline (iLSI, clustering, and UMAP embedding), and were filtered to 

either only include high quality singlets, or only include cell barcodes identified by authors 

in supplementary files. 

 

Statistical analysis and data visualization 

Statistical analysis and data visualization were performed in R (v.4.3.3). Single-

cell chromatin accessibility and gene expression analysis across all experiments utilized 

the R packages ArchR20, Seurat80, and Signac21. Statistical tests and p-values are 

indicated in the text, figures, and figure legends. 
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