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Original Article

Comparison of Surgical and Cadaveric
Intestine as a Source of Crypt Culture in
Humans

Andrew Scott1, Barbara Olack2, Joshua D. Rouch1, Hassan A. Khalil1,
Brent A. Kokubun1, Nan Ye Lei1, Jiafang Wang3, Sergio Solorzano3,
Michael Lewis4, James C.Y. Dunn5, Matthias G. Stelzner1,6,
Joyce C. Niland2, and Martı́n G. Martı́n3,7

Abstract
Human small intestinal crypts are the source of intestinal stem cells (ISCs) that are capable of undergoing self-renewal and
differentiation to an epithelial layer. The development of methods to expand the ISCs has provided opportunities to model
human intestinal epithelial disorders. Human crypt samples are usually obtained from either endoscopic or discarded surgical
samples, and are thereby exposed to warm ischemia, which may impair their in vitro growth as three-dimensional culture as
spheroids or enteroids. In this study we compared duodenal samples obtained from discarded surgical samples to those
isolated from whole-body preserved cadaveric donors to generate in vitro cultures. We also examined the effect of storage
solution (phosphate-buffered saline or University of Wisconsin [UW] solution) as well as multiple storage times on crypt
isolation and growth in culture. We found that intestinal crypts were successfully isolated from cadaveric tissue stored for up
to 144 h post-procurement and also were able to generate enteroids and spheroids in certain media conditions. Surgical
samples stored in UW after procurement were sufficiently viable up to 24 h and also allowed the generation of enteroids and
spheroids. We conclude that surgical samples stored for up to 24 h post-procurement in UW solution allowed for delayed
crypt isolation and viable in vitro cultures. Furthermore, in situ, hypothermic preservation in cadaveric duodenal samples
permitted crypt/ISC isolation, and successful culture of spheroids and enteroids from tissues held for up to 6 days post-
procurement.
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Introduction

In vitro intestinal epithelial cell (IEC) culture methods have

significantly enhanced our understanding of epithelium biol-

ogy and have served as a source for high-throughput screen-

ing for drug discovery and toxicology. In addition, these

stem cell-based methods are being used to model mono-

genic, epigenetic, inflammatory, and infectious intestinal

disorders in a dish, and may one day be used as novel cell

or tissue replacement therapy to treat various intestinal

diseases1,2.

Crypt base columnar cells (CBCCs) are the rapidly

cycling intestinal stem cells (ISCs) continuously undergoing

self-renewal and differentiation into the various epithelial

lineages of the gut. Specifically, goblet, enteroendocrine,

Paneth, Tuft, M cells, and enterocytes are six differentiated

epithelial lineages that arise from ISCs3. Various subepithe-

lial lymphoid, endothelial, mesenchymal, and other cells

form an important niche contributing soluble factor, required

for self-renewal and differentiation during homeostatic and

injured conditions3. Within the in vitro setting, these soluble

factors are added exogenously to support ISCs expansion

and differentiation on various extracellular matrices, includ-

ing Matrigel and collagen4–8.

Canonical Wnt signaling provided by Wnt3a and R-

spondin is crucial to ISC proliferation and self-renewal4,6,7.

Moreover, exogenous epidermal growth factor (EGF) also

promotes ISC proliferation, while the bone morphogenetic

protein inhibitor, Noggin, enables the maintenance and pas-

sage of intestinal enteroids and spheroids in vitro4,7,9–11. In

addition, the use of glycogen synthase kinase-3 inhibitor

(GSKi) increases the efficiency of enterosphere formation,

and the Rho-associated protein kinase (ROCK) inhibitor (Y-

27632), which attenuates anoikis, is an important additive

that improves proliferation and stabilization of the cul-

ture11,12. The use of these exogenous factors when culturing

crypts in vitro leads to the generation of enteroids and spher-

oids in vitro2,3.

Isolated human intestinal crypts containing ISCs can be

reliably obtained from small intestinal samples. Tissue typi-

cally is derived from discarded samples from patients under-

going either surgical resection or endoscopic biopsies1,2,13.

Although intestinal epithelium can be isolated from procured

surgical tissue, it may be subjected to prolong warm ische-

mia, diminishing crypt quality and quantity, and impairing

the generation and growth of spheroids and enteroids14,15.

Furthermore, the availability and timely acquisition of sam-

ples are affected by institutional, surgical/endoscopic, and

pathology practices, which may impact the length of time

that it takes to transfer the specimens from the clinical to the

research setting.

To the best of our knowledge, a comparison of intestinal

samples procured from cadaveric organ donors and dis-

carded surgical samples has not been previously described.

Candidates for organ donations undergo organ preservation

via full-body fluid replacement with infused hypothermic

preservation fluids16,17. As a result, tissues have limited

warm ischemic time and the cellular metabolic deterioration

rate is significantly reduced, potentially improving the qual-

ity of isolated crypts16. Cadaveric samples can be shipped

beyond local research facilities to areas that may be lacking

direct access/supply of samples, and in most cases the entire

duodenum can be made available.

In this study, we explored various storage times of cada-

veric and surgical duodenal samples and evaluated the pre-

servative effects of UW solution on the storage of these

samples. In addition, we documented the results of crypt

isolations from these tissues and measured the effects of

different additives to the culture media on the generation

of enteroids and spheroids.

Materials and Methods

Surgical and Cadaveric Intestinal Sample Procurement

Human surgical samples (n ¼ 6) were obtained from dis-

carded surgical specimens from pancreatico-duodenectomy

following pathologic evaluation by the Department of

Pathology staff at UCLA. Surgical samples were obtained

from patients who did not undergo either radiation or che-

motherapy, and only the healthy appearing section of the

bowel was used for crypt isolation. Prior to crypt isolation,

surgical samples were stored in either phosphate-buffered

saline (PBS) or University of Wisconsin (UW) preservation

solution for up to 6 days at 4�C .

Cadaveric samples (n ¼ 5) were obtained from the Texas

Organ Sharing Alliance through an agreement with the

Scharp-Lacy Research Institute (Aliso Viejo, CA, USA) and

received en bloc small bowel with pancreas and spleen18.

Preservation was achieved by the introduction of chilled UW

solution in sufficient volume (4 to 6 l of chilled solution) into

the major vascular channels (the abdominal and thoracic

aorta, portal vein, and pulmonary artery) to wash out the

blood and achieve moderate cooling to 32�C (10) into the

major vascular channels. The pancreas with attached duode-

nal section was then removed from the body and transferred

to sterile back-tables where the organs were then placed in

fresh sterile solutions, double-bagged, and buried in melting

ice in transport containers for dispatch to the Scharp-Lacy

Research Institute. Duodenal samples were then dissected

from the head of the pancreas. The duodenum was then

opened and washed/flushed with 1% chlorhexidine. The

lumen was filled with UW preservation solution and multi-

ple smaller segments of the duodenum were created by tying

off *4 cm segments using polypropylene suture, and stored

at 4�C in UW preservation solution for up to 6 days. Indi-

vidual segments were used for crypt isolation at time inter-

vals between 12 and 144 h post-procurement.

Intestinal Crypt Isolation

Both surgical and cadaveric samples underwent crypt isola-

tion at 12, 24, 48, 120, and 144 h post-procurement. Surgical
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and cadaveric samples underwent crypt isolation using meth-

ods that had previously been optimized using surgical sam-

ples1,13. A method based on exposure to 8 mM EDTA (Cat#

E6758-100G; Sigma, St. Louis, MO, USA) and dithiothreitol

(Sigma) chelation was used for crypt isolation as described1.

Crypt yield was determined by counting the number of

crypts per gram tissue using an inverted light microscope.

Isolated crypts were suspended in basic media (Advanced

Dulbecco’s Modified Eagle Medium [ADMEM]/Ham’s F12

[Invitrogen, Carlsbad, CA, USA] with 2 mM GlutaMAX, 10

mM HEPES [Invitrogen], and 1� antibiotic-antimycotic

[Invitrogen]).

Initial Intestinal Crypt Culture and Subculture

Surgical and cadaveric crypts were suspended within Matri-

gel (BD Biosciences, San Jose, CA, USA) at a concentration

of 100 crypts per 25 mL of Matrigel. At time points greater

than 24 h, the detection of full-sized crypt diminished and

was variable. Therefore, we suspended to our best estimation

*100 crypts per 25 ml, but solutions contained numerous

single cells from and usual crypt fractions were used when

intact crypts were not isolated. Crypts were then plated into

48-well Nunclon Delta-treated cell culture plates (Thermo

Scientific, Waltham, MA, USA).

Crypts were treated with one of five types of media con-

ditions. Common to all six conditions included the follow-

ing: basic medium (see before), 1 mM N-acetylcysteine

(Sigma), 1� N2 supplement (Invitrogen), 1� B27 supple-

ment (Invitrogen), 100 ng/ml recombinant murine Noggin

(PeproTech, Rocky Hill, NJ, USA), 50 ng/ml recombinant

murine EGF (PeproTech), and 1 mg/ml recombinant human

R-spondin-1 (R&D Systems, Minneapolis, MN, USA). This

medium consisting of EGF, Noggin, and R-spondin was

labeled ENR.

In addition to 10 mM ROCK inhibitor (Sigma), four out of

five conditions included an additional combination of the

following: (1) 50% intestinal subepithelial myofibroblast

conditioned medium (ISEMF-CM); (2) 10 nM prostaglandin

E2 (PGE2); (3) 10 nM PGE2 and 50% L-Wnt3A conditioned

medium (Wnt3a-CM); (4) 5 mM GSKi (CHIR99021; Stem-

gent, Cambridge, MA, USA), and Wnt3a-CM.

Culture medium was replaced with fresh medium every 2

days until cultures were either fixed for histological analysis

or subcultured. Growth and generation of spheroids and

enteroids were assessed using inverted light microscopy.

Surgical and cadaveric crypt cultures at each time interval

were subcultured after 7 days in initial culture. Generated

spheroids and enteroids within the Matrigel were digested

using TrypLE (Life Technologies, Carlsbad, CA, USA) at

37�C for 3 to 5 min. TrypLE was then quenched using 10%
fetal bovine serum (FBS) in ADMEM/F12 and structures

were mechanically split into small clusters of cells using a

syringe. In a 1:2 or 1:3 split, cell cluster was resuspended in

25 ml of fresh Matrigel and treated with the media conditions

as listed earlier.

ISEMF-CM was isolated from ISEMFs cultured for 7

days in DMEM/low glucose/GlutaMAX (Invitrogen), 10%
FBS (Invitrogen), 1� antibiotic-antimycotic (Invitrogen),

0.25 U/ml insulin (Sigma), 20 ng/ml recombinant murine

EGF, and 10 mg/ml transferrin (Sigma)1,10. Conditioned

media were then collected at day 7 for culture use.

L-Wnt3a-CM was prepared as previously described19.

Histologic Assessment

Portions of surgical and cadaveric duodenal samples were

fixed in 10% formalin and embedded in paraffin. Serial 5 mm

sections were cut and prepared for hematoxylin and eosin

staining.

RNA Analysis

Messenger RNA (mRNA) was isolated from cadaveric and

surgical cultures using RNeasy Mini Kit (Qiagen, Valencia,

CA, USA). Reverse transcriptase polymerase chain reaction

(RT-PCR) was performed to determine the expression levels

of genes of interest, using Taqman Gene Expression Assays

(Applied Biosystems, Carlsbad, CA, USA) for caudal type

homeobox 2 (CDX2), mucin 2 (MUC2), defensin (DEFA5),

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH),

as previously described1,13. RT-PCR reactions were per-

formed on a Prism 7900 HT Sequence Detection System

(Applied Biosystems). Cycle numbers were analyzed

according to the comparative CT method, using GAPDH as

the internal calibrator and human intestinal crypts as the

reference tissue1.

Statistical Analysis

Two-tailed independent student’s t-tests were used to com-

pare results, and associated p-values are reported with an

alpha level set at 0.05.

Results

Histological Assessment of Cadaveric and
Surgical Samples

We assessed the epithelial architecture of cadaveric and

surgical samples using standard histology (Figure 1), and

quantified the number of intact crypts per microscopic

high-power field (HPF) (Figure 2). We observed that cada-

veric samples had preservation of intestinal epithelium along

the crypt and villus axis for up to 6 days (144 h) post-

procurement (Figures 1A and 2). In contrast, surgical sam-

ples stored in PBS solution had a significant reduction in

epithelial layer preservation and the number of crypts per

HPF when stored beyond 12 h post-procurement (Figures 1C

and 2). Specifically, surgical samples stored in PBS beyond

12 h resulted in massive epithelial cell lysis (Figure 1C, and

data not shown). We tested the ability of UW solution to

preserve the integrity of the epithelial layer of surgical
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samples at various time intervals. The epithelial layer and

the number of intact crypts per HPF of surgical samples

processed within 12 h of procurement were not influenced

by the use of either UW or PBS storage solutions (Figures

1B, C and 2). However, in contrast to surgical samples stored

in PBS solution, the use of UW preservation solution signif-

icantly improved the intestinal epithelial layer and the

retention of crypt abundance beyond 12 h post-

procurement (Figures 1B and 2). Moreover, with the excep-

tion of 48 and 120 h, there were no significant differences in

the number of crypts per HPF when comparing cadaveric

samples and surgical samples stored in UW solutions (Figure

2). Our findings suggest that in addition to using cadaveric

samples, the use of UW solution has an important role in

preserving the crypt–villus architecture of surgical samples

beyond 12 h.

Crypt Isolation from Cadaveric and Surgical Samples

Using methods standardized for surgical samples13, cadave-

ric crypts were successfully isolated from samples 12 to 144

h post-procurement (Figure 3). However, when comparing

cadaveric to surgical samples, we found that the number of

crypts per gram tissue isolated from cadaveric samples

was highly variable, and resulted in significantly fewer

crypts than those isolated from surgical samples that are

routinely isolated in our laboratory <6 h post-procurement

(mean + SD: 2,044 + 1,441 vs. 12,350 + 1,520, p¼ 1.3�
10�6; Figure 3).

As the cadaveric sample post-procurement time increased

beyond 12 h, the number of crypts remained significantly

low. We found that starting at 24 h post-procurement, the

isolated cadaveric crypts were increasingly fragmented with

longer post-procurement time, losing their structural integ-

rity during the isolation process, and resulted in a mixture of

Fig. 1. Histological assessment of cadaveric and surgical samples.
Representative hematoxylin and eosin images of intestinal cross-
sections demonstrating the crypt/villus architecture of (A) cadave-
ric and (B) surgical samples stored in UW solution; and (C) surgical
samples stored in PBS solution for 12 (1), and 144 (2) h post-
procurement.
UW: University of Wisconsin; PBS: phosphate-buffered saline.

Fig. 2. Presence of crypts in intestinal samples from 12 to 144 h
post-procurement. Graph demonstrates the presence of intestinal
crypts in cadaveric and surgical intestine. At the time of procure-
ment, surgical samples were placed in UW solution and PBS solu-
tion. yp < 0.05 when cadaveric samples were compared to surgical
samples stored in UW solution. *p< 0.05 when cadaveric samples
were compared to surgical samples stored in PBS solution. zp <
0.05 when surgical samples stored in UW solution were compared
to surgical samples stored in PBS solution.
PBS: phosphate-buffered saline; UW: University of Wisconsin.
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partially undamaged crypts and single cells. As a result, it

was difficult to accurately assess the number of crypts iso-

lated per gram beyond 24 h post-procurement (Figure 3).

Spheroids and Enteroids Generated from Crypts of
Cadaveric and Surgical Samples Following Short-Term
Procurement

We investigated the ability of cultured crypts isolated from

either cadaveric or surgical samples stored in UW solutions

and processed 12 h post-procurement to generate spheroids

and enteroids in an in vitro setting after 7 days in culture. We

found that ENR supported enteroidal structures growth of

both cadaveric and surgical samples after 7 days in culture

(Figures 4, 5 and Figure S1). In the other three media con-

ditions (i.e., ISEMF-CM, PGE2, and GSKi/Wnt3a-CM),

cadaveric and surgical samples generated both spheroid and

enteroids structures after 7 days in culture (Figures 4, 5 and

Figure S1). Spheroid structures generation in cadaveric cul-

tures using ISEMF-CM were more abundant than crypts

isolated from surgical cultures supported with the same

media (p ¼ 0.016) (Figure 4). The number of enteroids from

crypts generated from both cadaveric and surgical samples

were similar (Figures 4 and 5) (p ¼ 0.37). This demonstrates

that cadaveric crypts can be reliably cultured using various

supportive media, similar to surgical samples procured at

this earliest time point.

Fig. 3. Crypt isolation in cadaveric and surgical samples. Graph
represents cadaveric and surgical crypts isolated per gram of
mucosa. Cadaveric crypt isolation was performed from 12 to 144
h post-procurement. Surgical crypt isolation was performed <6 h
post-procurement. *p < 0.05 when isolated cadaveric crypts were
compared to the number of isolated surgical crypts. Error bars ¼
standard error of the mean (SEM).

Fig. 4. Total in vitro structures formed in 7 days from cultured crypts isolated from (A) cadaveric and (B) surgical samples stored in UW
solutions and processed 12 h post-procurement. Analysis shows *p < 0.05 when structures formed from cadaveric crypts were compared to
structures formed from surgical crypts in similar conditions. Error bars, SEM.
ENR: medium consisting of epidermal growth factor, Noggin, and R-spondin; ISEMF-CM: intestinal subepithelial myofibroblast conditioned
medium; GSKi: glycogen synthase kinase-3 inhibitor; PGE2: prostaglandin E2; UW: University of Wisconsin.
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Culturing of Crypts from Surgical Tissue Stored in UW
or PBS Solution

We assessed the ability to culture crypts isolated from sur-

gical tissue stored in either UW or PBS solution beyond the

initial time of procurement. Crypts isolated from surgical

samples stored in UW solution up to 24 h post-

procurement were cultured, and generated spheroid and

enteroidal structures when grown in GSKi/Wnt3a-CM or

ISEMF-CM (Figure 6A1-2). In contrast, surgical tissues

stored in PBS solution and procured in 24 h were incapable

of generating any enterosphere structures with either media

(Figure 6B1-2). However, crypts isolated from surgical sam-

ples 144 h post-procurement that were stored in UW, but not

PBS solution were only able to generate a few spheroidal struc-

tures in ISEMF-CM (Figure 6C and D1-2). Overall, our find-

ings suggest that beyond the initial procurement period, the

storage of surgical samples in UW solution has an important

role in preserving the ability to generate structures in vitro.

Fig. 5. In vitro structures formed in 7 days from crypts isolated from (A) cadaveric and (B) surgical samples at 12 h post-procurement.
Representative images of in vitro structures grown in various media for 7 days. Scale bar 500 mm.
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Spheroids and Enteroids Generated from Cadaveric
Samples Stored Between 12 and 144 h Post-
Procurement and Subculturing

We assessed the ability to culture crypts isolated from cada-

veric tissue beyond 12 h post-procurement in order to gen-

erate enterosphere structures. In vitro structures were

reliably generated from crypts isolated from cadaveric

samples 12 to 144 h post-procurement when grown in

ISEMF-CM, GSKi/Wnt3a-CM, or PGE2, but not ENR alone

(Figure 7 and Figure S1). However, we found that the ability

to generate structures with GSKi/Wnt3a-CM decreased sig-

nificantly after culturing crypts beyond 48 h post-

procurement (Figure 7).

Cell cultures generated from cadaveric crypts were

subcultured and propagated similar to cell cultures

Fig. 6. In vitro structures formed in 7 days from crypts isolated from surgical samples at 24 and 144 h post-procurement and stored in UW
(A/C) and PBS (B/D) solution. Crypts were cultured either with (1) ISEMF-CM or (2) GSKi/Wnt3a-CM. Scale bar 500 mm.
GSKi: glycogen synthase kinase-3 inhibitor; ISEMF-CM: intestinal subepithelial myofibroblast conditioned medium; PBS: phosphate-buffered
saline; UW: University of Wisconsin.

Scott et al 7



Fig. 7. In vitro structures of cadaveric samples up to 144 h post-procurement when grown in different media. (A–E) Cadaveric spheroids
cultured with ISEMF-CM for 7 days when procured between 12 and 144 h. (F–J) Cadaveric structures cultured with GSK1/Wnt3a–CM on
day 7 from 12 to 144 h post-procurement. Scale bar 500 mm.
ISEMF-CM: intestinal subepithelial myofibroblast conditioned medium; PBS: phosphate-buffered saline; UW: University of Wisconsin.
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generated from isolated surgical samples13. Here we

found that cadaveric structures generated from cells/

crypts isolated from tissues stored for even 144 h post-

procurement could be propagated with remarkable repro-

ducibility (Figure 8).

mRNA Assessment of In Vitro Enterosphere Structures

The phenotypic differentiation of cadaveric and surgical

cultures was assessed by RT-PCR (Figure S2). Cadaveric

cultures similarly expressed levels of CDX2, Mucin 2

(MUC2), and DEF5, which are indicative of small intest-

inal epithelium.

Discussion

In this study, we demonstrate that intestinal crypts can be

isolated from human cadaveric intestinal samples several

days post-procurement and cultured to form enterospheroi-

dal structures in culture. Moreover, we determined that the

use of UW solution on surgical samples isolated 1 day after

procurement preserves the ability to generate three-

dimensional epithelial structures in vitro.

In vitro models utilizing nontransformed epithelial cells

are being broadly used to study ISCs and epithelial cell

function during homeostatic and diseased states, and hold

promise for stem cell-based transplantation1,13,19,20. Most

in vitro intestinal epithelial models for spheroid or enteroid

Fig. 8. Passing of in vitro structures isolated from cadaveric samples procured at 12 and 144 h when grown in ISEMF-CM. (A–C) Cadaveric
structures cultured from crypts at 12 h post-procurement, and passage 0, 1, and 2 at 7 days in culture. (D and E) cadaveric spheroids
cultured from crypts at 144 h post-procurement, and passages 0, 1, and 2 at 7 days in culture. Scale bar 500 mm.
ISEMF-CM: intestinal subepithelial myofibroblast conditioned medium.

Scott et al 9



structures generated from crypts of the small or large

bowel1,13,10. The majority of intestinal samples used to iso-

late crypts are obtained from either endoscopic biopsies or

discarded bowel specimens from surgical patients1,20. How-

ever, the quality of these specimens may be variable given

the uncontrollable exposure to long periods of warm ische-

mia that occur during the harvesting process. Therefore,

exploring additional reliable sources and methods to sustain

crypts and ISCs is an important goal of the field of stem cell

therapy.

Warm intestinal ischemia results in the depletion of ade-

nosine triphosphate (ATP) and other metabolic energy prod-

ucts due to the deprivation of oxygen21. During warm

ischemic times, hypoxanthine accumulates from the deple-

tion of ATP, leading to oxidative stress. Oxidative stress is

associated with the generation of reactive oxygen species

(ROS), neutrophil-induced bowel tissue damage, and the

release of cytotoxic proteins into the extracellular fluid, lead-

ing to cellular death21,22. ROS not only result in direct cel-

lular injury but also necrosis from the peroxidation of

cellular membrane lipids14,23–25. Lipid peroxidation can

impair the function of cellular surface and internal mem-

branes and their associated enzymes and receptors22.

Hypothermic preservation is a feature common to both

preservation modalities. Organs are typically cooled by

infusing chilled isotonic fluid by major vessels (the abdom-

inal or thoracic aorta, portal vein, or pulmonary artery

depending on the organ of interest), and washing out the

blood while achieving significant cooling (10 to 15�C)

before harvesting the organs26.

The benefit of hypothermic preservation is slowed meta-

bolism and significantly decreased warm ischemia time16,17.

Decreasing the temperature within the tissues by 10�C
diminishes the metabolic rates by approximately a factor of

2, although it does not halt it entirely16,17,23. During hypother-

mic preservation, tissues experience acidosis due to the

increased accumulation of intracellular lactic acid. Disrup-

tions in osmoregulation result in decreased oncotic pressure,

causing expansion of interstitial space, edema, and cellular

swelling from the decreased activity of Na-K-ATPase (result-

ing from a decrease in ATP) leading to the accumulation of

intracellular sodium and water25. The utilization of preserva-

tion solution ameliorates cold ischemic effects16,17.

UW solution was developed to mitigate the deleterious

effects of cold ischemia27. Its components have been well

characterized in enhancing hypothermic preservation. Ion

ratios of Naþ/Kþ and Ca2þ/Mg2þ in UW solution prevent

expansion of the interstitial space, edema, and cellular swel-

ling, by diminishing the passive diffusion of ions at low

temperatures. Stabilization of osmoregulation is achieved

by the addition of hydroxyethyl and raffinose, which elevate

the intracellular osmotic pressure. Lactobiotine is a metabo-

lite in UW that prevents cellular edema and acidosis, and is

further obviated by the buffered solution in UW. Although

hypothermic preservation decreases the generation of ROS,

cold ischemia does result in the generation of some ROS

through depletion of ATP. Glutathione adenosine and allo-

purinol serve to increase ATP synthesis and reduce oxidative

cellular damage27.

As shown in this study, crypts could be used to grow

epithelium using cadaveric duodenum samples up to 144 h

post-procurement. We also found that the use of preservation

solution, UW—compared to PBS in surgical samples—led

to histological crypt preservation for up to 144 h. Storing

surgical samples in PBS for 24 h resulted in necrotic degen-

eration (Figures 1 and 2). This result was in stark contrast to

both cadaveric and surgical samples stored in UW, which

showed preservation of intestinal epithelium and crypt base

cells up to 144 h post-procurement. Although the crypt mor-

phology of samples preserved in UW solution appeared

viable in situ, we had poor recovery of intact crypt structures

from the UW-preserved cadaveric samples. It should be

noted that the methods used for crypt isolation were standar-

dized procedures developed for surgical samples and were

not specifically modified for cadaveric samples. To continue

the use of UW-preserved cadaveric donors in future research

projects, further development and improvements of crypt

isolation techniques may be prudent.

UW storage of surgical samples for 24 h allowed isolation

of viable crypts and the generation of both spheroids and

enteroids, as seen after 7 days of culture (Figures 1A and

6). However, neither spheroids nor enteroids could be found

after culturing crypts from surgical samples that were previ-

ously held for 144 h post-procurement in UW (Figure 1C).

While hypothermic preservation was standardized for all

cadaveric donors, none of the surgical samples underwent

hypothermic preservation. This leads us to conclude that

storage in preservation solution alone is insufficient to allow

intact crypt isolation and culture beyond 24 h after procure-

ment. These study results imply that the UW preservation

solution should be introduced to the duodenal samples via

vascular means, at a cellular level, in order to achieve the

most successful in vitro generation of spheroids and

enteroids.

We conclude that hypothermic preservation with the use

of infused UW solution decreases cellular death of the intest-

inal crypts, thus permitting isolation and culture of crypts 12

to 144 h post-procurement. The decrease in the total number

of crypts isolated in cadaveric samples when compared to

surgical samples may be linked to prolonged exposure to

preservation solution23,24. We observed that crypts isolated

beyond 24 h began to slowly lose their structural integrity

when processed for crypt isolation. By 144 h, crypt isolates

consisted mainly of single-cell suspensions, which negated

our attempts to quantify crypt units, and to standardize the

number of crypt equivalent units to add to each well.

Previous studies have shown that cells exposed to preser-

vation solutions for prolonged periods experience dysregu-

lation of junctional proteins, resulting in loss of cell-to-cell

adhesion and cytoskeleton disruption; this fact may have

contributed to our findings23,24. Moreover, crypt isolation

techniques are optimized for surgical samples and not

10 Cell Transplantation



cadaveric samples, suggesting that this technique may be too

rigorous for the preserved cadaveric samples1,2,13. Although

the presence of formed crypts decreased as we approached

144 h, isolated crypts/cells at later time points treated with

CM supported spheroid and enteroid growth (Figure 7).

Previous studies also have demonstrated that single cells

from CBCCs can generate intestinal enteroids11. We demon-

strated that spheroids could be generated reliably from cada-

veric crypts and from crypts dissociated into single cells at

later time points, up to 144 h post-procurement. However,

crypts dissociated into single cells from cadaveric samples

beyond 48 h post-procurement showed only marginal gen-

eration of enteroids.

We have been able to demonstrate the generation of

enteroids and spheroids from cadaveric samples using a

variety of media conditions, and found that cadaveric

cultures behaved similarly to surgical cultures1,10.

Furthermore, spheroids and enteroids generated from

cadaveric samples could be subsequently subcultured in

a similar manner and with the same reproducibility as

surgical samples from 12 to 144 h post-procurement. In

general, cadaveric and surgical cultures expressed intest-

inal cell lineage on mRNA analysis. The use of GSKi/

Wnt3a-CM promoted the generation of enteroids, which

have more differentiated cell types, in both cadaveric and

surgical samples1,10. When compared to surgical cultures,

cadaveric cultures had lower expression of mRNA tran-

scripts, indicative of advanced differentiation. We postu-

late that prolonged exposure to preservation solution

decreases the ability to generate and express differen-

tiated cell types/markers in vitro.

We conclude that hypothermic preservation of infused

cadaveric intestine permits isolation of cells/crypts for up

to 7 days after procurement. In vitro cadaveric cultures read-

ily form spheroids and enteroids comparable to standard

cultures from surgical samples. Although enteroid formation

and growth decrease after 48 h, spheroids are reliably gen-

erated from cells/crypts up to 144 h post-procurement.

Furthermore, cadaveric structures can be subcultured and

amplified from samples initially cultured from 12 to 144 h

post-procurement. Although the use of UW solution pre-

serves intestinal architecture and the crypt base when

assessed in situ, its use did not yield increased number of

isolated crypt isolation beyond 24 h. This study demonstrates

that the use of cadaveric intestine represents an excellent

alternative source of crypts, which can be used for in vitro

culture on intestinal epithelium.
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