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ABSTRACT OF THESIS 

 

Inverting Visual Stimulus Paradigm and Minimal Electrode Set Improve P300 

Speller Performance and Practicality 

by 

 

Aniket Deshpande 

Master of Science in Bioengineering  

University of California, Los Angeles, 2014 

Professor Nader Pouratian, Chair 

 

This thesis describes two studies aiming to enhance the speed, accuracy and 

practicality of the P300 Speller. The first study introduces the Inverting paradigm, 

which is based on the hypothesis that a modification in the visual stimulus 

paradigm in order to increase the stimulus saliency and strength might enhance the         

physiological response and hence system performance. The second study compares 

Speller performance using a minimal four electrode set, versus the 32 and six 

electrode sets previously used and described in literature. The Inverting paradigm 
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significantly improved Speller speed and accuracy, along with an increase in the 

physiological response. The minimal electrode set maintained comparable levels of 

performance and hence increased the system practicality.  
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CHAPTER ONE: AN INTRODUCTION TO BRAIN-COMPUTER 

INTERFACES 

 

I. Brain Computer Interfacing 

A Brain Computer Interface (BCI) uses signals from the human brain as control signals for 

controlling an external computer or an actuator. These signals may be acquired using various 

modalities – the most common ones being EEG, ECoG or single unit recordings. Some other 

modalities that are also used are fMRI, magnetoencephalography (MEG), or Near Infrared 

Spectroscopy (NIR).  

The overview of a BCI system can be summarized using the following block diagram (Fig. 1). 

 

Fig. 1: Block Diagram of a BCI system 

The first stage of the system typically consists of signal acquisition. The signals usually have 

very low amplitudes, to the order of tens to hundreds of microvolts. The thermal noise in the 

system also has amplitudes comparable to the signals of interest. This necessitates amplification 
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and filtering of the signal acquired. Amplification may be done in two stages, with the first stage 

meant for providing a reasonable buffering between the electrodes and the filtering stage, and the 

second stage for providing a large gain to amplify the signals to a range such that the signals may 

be appropriately passed onto an analog to digital convertor, without any wastage of resolution or 

possible saturation. Filtering is used to get rid of high frequency noise from thermal sources, 

EMG and activity from other devices, power line noise, and low frequency drift from the 

electrode electrolyte contact, movement artifacts and eye movements. The ADC converts these 

analog signals to digital values, which can be passed on to a computer.  

Since brain signals are collected from several channels, and at a considerable length of time, it is 

often necessary to down sample the data with respect to time or channels. This, possibly along 

with further filtering for any new noise introduced by the system, such as quantization noise, is 

done in the digital domain.  

The third stage of the system includes feature extraction and classification. This enables the 

system to make decisions based on the signal acquired. In the feature extraction step, those 

features or patterns within the signal that help in making a distinction between two or more of 

several end goals, are extracted. The classification step makes use of these features to come to a 

decision as to which particular class the signal belongs to, based on how similar the features are 

to a particular class.  

The output obtained from the feature classification process initiates an appropriate action, which 

may be the motion of a robotic arm or typing a character on a computer screen. This also serves 

as a feedback mechanism for the user, who can then make any modifications if required.  
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II. Acquisition Modalities: 

a. Electroencephalography (EEG): 

EEG detects summed electrical activity along the scalp, by measuring the voltage difference 

between any two points on the scalp. Such two points, between which the voltage difference is 

measured, are referred to as a channel, and an EEG may be comprised of as many as 256 such 

channels. Usually, the voltage difference is measured with respect to a common ground which is 

located on the ear lobe or mastoids, and re-referenced to another point on the scalp or to the 

spatial average of all the voltages. The ground is not connected to the mains ground, for safety 

reasons. Hence, it has to be on the body. Also, it is kept on the head, either at the earlobes or 

mastoids to avoid noise from any other electrophysiological sources, such as ECG or EMG. 

Often, a right leg driver circuit is used that drives any common mode noise back into the ground 

on the body. The electrodes are placed in a standardized pattern over the scalp, usually in the 

International 10-20 system. Fig. 2 shows a subject using EEG.  

 

Fig. 2: Subject using EEG 
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There are several reasons behind the popularity of EEG as a signal acquisition modality for BCI 

systems. Mainly, it is the fact that EEG is non-invasive. Being non-invasive vastly widens its 

scope of use. It is also relatively more convenient to use, not being as bulky as other systems, 

even though it does require a considerable setup time. Also, compared to other modalities, EEG 

is cost effective. Since electrical potentials are being measured, EEG has a very good temporal 

resolution. It is subject friendly in the sense that it does not expose the subject to large magnetic 

fields or radiation.  

EEG also has several limitations. Since the electrical signals have to pass through the cranial 

thickness, the signal strength obtained is very low. Signal amplitudes are to the order of tens of 

microvolts, making them comparable to the ambient noise levels. Further, the skull filters out 

frequencies higher than about 100 Hz. EEG has a poor spatial resolution, in centimeters [1]. It is 

difficult to localize the signal source to a narrow region of interest. Some degree of spatial 

averaging can be said to occur inherently, due to the spread of electric potential to neighboring 

electrodes. Since the brain surface is not flat, but is lined with gyri and sulci, only some patches 

on the brain surface may be parallel to the scalp surface. These surfaces have neurons that are 

perpendicular to the scalp surface. Only such surfaces can produce dipole moments between two 

electrodes over the scalp surface, further reducing the scope of activity visible to EEG [2].   
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b. Electrocorticography (ECoG): 

 

Fig. 3: ECoG [3] 

ECoG (Fig. 3) measures electrical potentials from the brain by directly placing electrodes on the 

cerebral cortex. A part of the skull is surgically opened for this purpose. The use of ECoG is 

primarily limited because of this invasive nature; however, it is comparatively less invasive than 

insertion of electrode arrays into brain tissue which penetrate the blood brain barrier. In terms of 

signal quality, it is clearly better than EEG in terms of SNR – since the signal amplitude is about 

50-100µV compared to 5-20µV offered by EEG [1], and spatial resolution which is in 

millimeters for ECoG [1]. Higher frequencies are not lost since there is no filtering through the 

skull and a bandwidth of up to 200Hz is achieved [1]. EEG or MRI may often be used to narrow 

down to a certain region of the brain, before craniotomy is performed to expose that area of the 

cortex. This also implies the specificity of the tasks for which ECoG is used.   

c. Intracortical recordings: 

Intracortical recordings employ electrodes implanted up to a small depth into the brain cortex. 

This offers better spatio-temporal resolution compared to the semi-invasive and non-invasive 

methods discussed earlier [4], due to the fact that the electrodes being closer to individual 
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neurons averages signals from fewer number of neurons in space and at any time. Apart from 

being able to record better resolved local field potentials, these electrodes can record single unit 

activity. Single unit activity is nothing but the recording of individual action potentials from 

single neurons. Intracortical recordings have a frequency bandwidth of up to 1 kHz for LFPs 

whereas individual action potentials can be above 1 kHz [4]. The rate of firing of these action 

potentials is used by the brain to encode various features, for example in the motor cortex it may 

be used to encode velocity, force, etc. These firing patterns can be used as a control signal for 

external applications with a greater level of detail than non-invasive methods which utilize the 

overall activity of a large group of neurons [4].  

Despite its advantages, intracortical recording has several drawbacks as well. It requires surgery 

to be able to access the cortex and electrodes that could perform chronically. However since the 

electrodes are inserted in brain tissue, the tissue response causes the electrodes to fail eventually 

due to lack of electrical contact caused by deposition of glial cells. The figure below (Fig. 4) 

shows the three different recording sites described thus far.  

 

Fig. 4: a. Scalp (EEG), b. Subdural (ECoG) and c. Intracortical recording sites [4] 



7 
 

d. Other Modalities:  

A few other modalities, which are based on the hemodynamic response of the brain, such as 

fMRI (functional Magnetic Resonance imaging) (Fig. 5b) or fNIR (functional Near Infrared 

Spectroscopy), may also be used for brain signal acquisition. Whenever a certain population of 

neurons is active, more amount of oxygen is demanded by that portion of the brain. This results 

in a greater blood flow to that area, which can be detected using these modalities. These 

modalities have the advantage of being non-invasive. Although MRI is bulky, expensive, time 

consuming and exposes the patient to high magnetic fields, fNIR has the advantages of being 

portable, affordable and safe [3]. However, the hemodynamic response is a slow one and hence 

these techniques have poor temporal resolution. Further, these techniques only tell us about how 

much activity is present in the brain and where. It does not inform about the nature of this 

activity, for example the frequency content of the signal, whether the neuronal population is 

firing synchronously or asynchronously, occurrence of event related potentials or other temporal 

events of interest. For these reasons, their use for BCI applications is very limited.  

MEG (Fig. 5a) or magnetoencephalography may also be used to acquire information about the 

magnetic activity of the brain. However, the instrumentation required for this purpose is highly 

non-portable and expensive. Also, it is much more susceptible to noise, and its use in a BCI 

system is not very practical.  
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Fig. 5: a. MEG [5] and b. fMRI [6] 

III. Use of EEG signals in BCI applications: 

We discussed electroencephalography, as a technique to acquire brain signals for BCI. Let us 

now elaborate upon the electroencephalogram, or the EEG signal itself and its components which 

can be used as control signals for a BCI system. EEG has a frequency range of 0.1 Hz to 100 Hz. 

Certain frequency bands within this range are biologically relevant and hence have special 

nomenclatures for identification.  

Human EEG was invented by the German scientist, Hans Berger (1873–1941) [7], [8]. Berger 

recorded the first EEG in the mid-1920s, and also was the first to describe alpha waves, now also 

known as Berger waves [8]. Fig. 6 shows the first recorded human EEG by Hans Berger. Alpha 

waves are associated with mental and physical relaxation during wakefulness, and tend to appear 

on the closure of eyes. These waves lie in the frequency band of 8Hz to 13Hz, over occipital sites 

[9]. Alpha rhythm is suppressed during attention, and visual or mental effort [9]. Mu waves are 

nothing but alpha waves, observed in the sensorimotor cortex when limbs are relaxed. These may 
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be thought of as the alpha waves corresponding to motor function. Similar to the alpha waves, 

mu waves are suppressed during movements.  

 

Fig. 6: First recorded human EEG. The lower graph is a 10Hz calibration signal, while the upper 

one is a recording from Hans Berger’s young son. [8] 

As the wave frequency increases, the amplitudes tend to decrease; thus the lowest frequency 

bands have highest amplitudes. Fig. 7 shows the frequency spectrum of an average EEG signal. 

 

Fig. 7: Frequency Spectrum obtained from average EEG signal 

Theta waves, observed from 4Hz to 7Hz are indicative of relaxation, meditation, drowsiness, and 

sleep. Delta waves, between 0 to 4Hz, are observed during slow wave sleep, otherwise called 

deep sleep in adults and also normally seen in babies.  
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Beta waves, 13Hz to 30Hz are observed during alertness or thinking and mental concentration. 

Gamma band consists of frequencies between 30Hz to 100Hz, and is known to occur during 

activation of motor functions along with a suppression of beta.  

Apart from these frequency bands, there are other signals encountered in the EEG, such as Event 

Related Desynchronizations (ERDs), Event Related Synchronizations (ERSs), and Event Related 

Potentials (ERPs), which includes Evoked Potentials (EPs). These are utilized for BCI 

applications.  

ERDs and ERSs, referred together as EEG reactivity, may be understood as the variation 

(decrease or increase respectively), in percent power of a particular frequency band over a 

certain time period, related to an internal or external event. This variation is with respect to a 

non-event time period as a reference.  It is temporally, and usually spatially limited; and may 

occur in anticipation of or in response to an event.  

An example of EEG reactivity would be pre-movement alpha ERD and post-movement beta 

ERS. Patients with neurological disorders may show differences in their EEG reactivity to 

certain tasks, compared to normal subjects [10]. Thus, EEG reactivity may be used in 

neuroprosthetic applications or in the diagnosis of neurological disorders.  

Event Related Potentials are temporally bound activities of neuronal populations, seen in the 

form of positive or negative going peaks, occurring in response to an external stimulus or 

internal event at a particular amplitude and latency. The latency of each kind of ERP is more or 

less fixed, and hence it is convenient to name these potentials based in their polarity and latency. 

For example, a negative going potential observed 100ms after a stimulus would be called N100. 

Different types of ERPs respond to different kinds of stimuli. ERPs have small amplitudes, 
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which are comparable to the background activity. However, because of their fixed latencies, 

averaging can be performed over several stimuli to extract the ERPs from the signal.  

 

Fig. 8: Average P300 signal in microvolts versus time in milliseconds  

IV. P300 Signal: 

The P300, as the name suggests, is an ERP with a positive going peak at around 300ms 

following a stimulus. It was first reported in November 1965, by Sutton et al [11]. P300 is 

elicited in response to an oddball stimulus, which is a target stimulus which occurs with a low 

probability amongst other non-target high probability stimuli. An average P300 signal is shown 

in Fig. 8. P300 amplitude varies directly with stimulus relevance and attentional resource 

allocation, while and inversely with stimulus probability, and is usually observed with a stronger 

amplitude at parietal sites.  

The P300 was popularized since the 1980s for possible use in lie detection. In a typical 

interrogation scenario, say for example a crime related investigation; a suspect would be 

presented with an oddball task. This oddball task would consist of low probability stimuli, highly 
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relevant to the specific crime, interspersed between generic high probability stimuli, relatively 

irrelevant to the crime. This way, only a subject with knowledge about the specific details of a 

crime scene would be able to distinguish between the two kinds of stimuli, and attach special 

relevance to those related to the crime, thus eliciting P300 responses upon the presentation of 

such stimuli. This test is also known as the guilty knowledge test.  

In 1988, Lawrence Farewell and Emanuel Donchin first described the P300 speller as a 

communication aid for ALS patients [12]. The P300 speller that was first described by Farewell 

& Donchin, and has been conventionally used, consists of a 6x6 matrix of gray characters on a 

black screen. The user attends to a specific character that is to be typed, as all rows and columns 

flash in random order. This character is called the attended or target character. Whenever a row 

or column flashes, all the characters in that particular row or column change color from gray to 

white for a short duration and then change back to gray. When the attended character flashes, it 

acts as a low probability or oddball stimulus amongst several other high probability group stimuli 

and is also relevant to the user. This causes a P300 response to be elicited, whenever the attended 

character flashes. The visual interface described here is known as the Row-Column (RC) 

flashing paradigm and is most commonly used in P300 speller systems. It is often used as the 

golden standard while performing comparative studies for new paradigms. Fig. 9 shows a 

screenshot of the P300 Speller user interface with the RC flashing paradigm.  

The appropriate character can be selected by detecting which row and column elicited the P300 

response. However, in order to be able to do so, the P300 response has to be averaged across 

several flashes to have a good signal to noise ratio. Also, all other rows and columns must flash 

every time the row and column of interest have flashed, to maintain the low probability of the 

target stimulus. This makes the process of typing something useful with the P300 speller, very 
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time consuming and tedious. Further, as the time required to type something is increased, it 

results in more fatigue for the user possibly causing a poorer performance.  

 

Fig. 9: Screenshot of a P300 Speller User Interface 

Several techniques may be used to detect the P300 wave from the signal. These techniques may 

or may not require prior training data. One such example of detection techniques is cross-

correlation. Cross-correlation uses a generalized template which has characteristics similar to the 

expected wave. This template is compared to the signal at all points across the entire length of 

the signal to obtain correlation values. In case the expected feature – P300 wave in this case, is 

present in the given signal, the correlation values will increase for particular signal duration. The 

template for the purpose of comparison may be produced by using any conventional shape 

similar to the wave, such as half a sine or triangular wave, or it may be produced by averaging 

time windows of a signal known to contain the feature of interest. Here, the first case would not 

require any prior training set but the latter would probably give better results. The Woody 
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adaptive filter draws a middle path between these methods. It uses a half sine or triangular wave 

as a template to begin with, but adapts the template to be the average of detected features using 

the first iteration and continues this process till there is no further increase in the correlation.  

Another technique used very often is a classifier based on discriminant analysis. A classifier is an 

algorithm that uses a set of training data consisting of pre-defined target characters to extract 

features from the EEG signal. Features are sets of data points from the EEG signal within a fixed 

time window, and from a fixed set of scalp sites. It then assigns weights to these features based 

on which set of features distinguish the best between target and non-target characters. When 

detection or training is performed, the new EEG signal is compared against such distinguishing 

features to indicate whether the signal corresponds to a target or non-target stimulus. This is 

known as supervised classification, since the classifier is already presented with the response a 

target stimulus is expected to produce in a particular subject. Thus, a classifier training session 

needs to be performed prior to the actual use of the P300 speller for communication purposes. 

This further multiplies the overall time required for the use of the system.  

An example of discriminant analysis commonly used for P300 Speller applications [13] is the 

Stepwise Linear Discriminant Analysis (SWLDA). SWLDA progressively adds most significant 

features to the feature set and eliminates the least significant ones, using a process of forward 

selection and backward elimination. Another procedure used for feature selection is the Pearson 

Correlation method . In this method, features are observed independently for correlation with the 

labeled outputs and weights are assigned to the features based on the value of the correlation 

coefficient. This study also utilizes the Naïve Bayes classifier apart from SWLDA, which takes a 

probability based approached to classification and selects an output class once the probability of 
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that class crosses a threshold value. A few other techniques used for classification are Support 

Vector Machines, Neural Networks, and Fischer’s Linear Discriminant.  

 

V. Amyotrophic Lateral Sclerosis and the use of BCI: 

Brain Computer Interfaces provide an alternate way of communication, ambulation and 

interaction with the physical environment to patients suffering from neuromuscular diseases such 

as stroke, paralysis, and Amyotrophic Lateral Sclerosis.  

At any given point in time, it is estimated that as many as 30,000 Americans may be suffering 

with Amyotrophic Lateral Sclerosis; and approximately 5,600 are diagnosed with it each year 

[14]. 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease is a motor neuron 

disease causing muscle weakness and atrophy due to degeneration of upper and lower motor 

neurons. Degeneration of the motor neurons causes inability to control muscles, and this in turn 

weakens the muscles further, due to lack of use. Progressively, the ability to initiate and control 

all voluntary movement is lost [15]. 

As a result, there are several patients suffering from ALS, who have lost the ability to control 

their physical environment, actuate physical movements or communicate with the outside world. 

However, they usually have normal cognitive function and are fully conscious.  

Apart from ALS, there could be patients suffering from stroke, paralysis, or spinal cord injury, 

whose ability to make voluntary movements is either lost completely or compromised. In case of 

patients who have some degree of residual functionality, control signals may be tapped from 
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spinal cord, nerves, muscles, eye movements, breathing, etc. Several prosthetic devices utilize 

muscle signals or peripheral nerve signals for amputees. However, in case of patients with 

complete loss of voluntary movement, accessing brain signals directly becomes necessary.  
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CHAPTER TWO: IMPROVEMENTS TO THE P300 SPELLER 

 

I. Introduction: 

The field of Brain Computer Interfacing has greatly progressed in the last fifteen years. This 

progress has largely been because of the surge of cost effective and increasingly powerful 

computer hardware, and advances in software that enable making sense of vast amounts of EEG 

data in real time [16].  

Since Farewell & Donchin first described the P300 Speller in 1988, there have been several 

attempts at improving the P300 Speller. These attempts have largely focused on overcoming 

various drawbacks of the original system, such as low speed and accuracy, adjacency distraction, 

double flash errors [17], fatigue effects, etc. The main objective of these efforts however, is to 

improve the speed and accuracy of the system. There have been different approaches taken 

towards this goal, and several groups have implemented and tested modifications to the speller 

paradigm. Some groups have worked towards improved classifier algorithms. Krusienski et al 

[18] compared five established classifiers for offline performance and practical concerns. They 

reported Fisher’s Linear Discriminant (FLD), and Stepwise Linear Discriminant Analysis 

(SWLDA) to have the best overall performance and implementation characteristics, with 

SWLDA having an added advantage by eliminating insignificant features [18]. Speier et al [13],  

integrated language information by adding Natural Language Processing with a Naïve Bayes 

Classifier and a trigram model and showed significant improvements.  

With respect to the visual interface design, one approach has been to alter the arrangement of 

flashing combinations in order to overcome some of the system’s drawbacks or classify targets 
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with less input and hence increased speed. In 2010, Townsend et al [19] introduced the 

Checkerboard paradigm (CBP) in order to prevent errors due to distraction caused by the 

simultaneous flashing of adjacent characters and consecutive flashing of the same character. The 

checkerboard avoids flashing rows and columns, but flashes pseudo-randomly arranged flash 

groups [20] such that directly adjacent characters would never be flashed simultaneously. It also 

ensures that there are at least six flashes between two repeating flashes of the same character 

[20]. The Five Flash paradigm was developed by the same group based on the previously 

described CBP, in order to reduce the number of sequences required for character detection. Shi 

et al [17], describe the sub-matrix based paradigm (SBP). The SBP divides the matrix into four 

sub-matrices, and one letter from each sub-matrix is randomly selected as a flashing group 

during one flash, independent of previous groups. A sequence is completed when each character 

has flashed once. Not only does this method prevent adjacency errors, but it also reduces target 

character probability.  

Another approach is to make changes to the flashing paradigm that would enhance the signal-to-

noise of the P300 waveform. This is different from altering the flashing combinations, in that the 

basic RC paradigm may remain the same, however the visual parameters of the interface may be 

changed. Yang Liu et al [21], describe several paradigms involving variations of visual 

parameters specific to the stimulus presentation. They compared the traditional RC paradigm 

with novel paradigms such as translation or rotation motion, zoom in or zoom out, and 

transformation of texture or sharpness, of each character during its presentation as a stimulus. 

Further, these different paradigms were tested using two transformation modes – the impulse 

mode, in which each character immediately returns to its original standard state after stimulus 

presentation and the step mode, in which each character stays in its oddball or stimulus state until 
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the next one acts as stimulus. No particular paradigm studied by Liu et al was found to be 

consistently better across all subjects, and they recommended using subject specific stimuli. 

Takano et al [22] compared the RC paradigm to two other paradigms consisting of blue colored 

characters that turned green during stimulus. Since the RC paradigm in which gray characters 

turn white during stimulus, it may be viewed as an increase in luminance of the characters rather 

than transformation of color. Takano and colleagues have thus referred to the RC paradigm as 

the luminance paradigm, and the other two are - the isoluminance chromatic paradigm which 

changes color from blue to green during stimulus without any change in the luminance, and the 

luminance and chromatic paradigm which increases luminance along with changing color from 

blue to green. They observed significantly better results using the luminance and chromatic 

paradigm and suggested that neurons in certain brain regions specialized to process color and 

luminance information might be responsible for the improvements. Salvaris & Sepulveda [23] 

varied and compared several aspects of stimulus presentation, such as keeping a static white 

background for the entire grid for the normal as well as stimulus state, small and large inter-

symbol distance paradigms, small and large symbol paradigms, and so on. Although the static 

white background paradigm consistently outperformed other paradigms, the improvement was 

statistically significant compared only to the worst performing paradigm.  

There may be further enhancements possible to the signal to noise ratio of the ERPs, which may 

reduce the number of flashing sequences required for classification, making communication 

faster. The strength of the P300 ERP increases with a decrease in the probability of occurrence of 

the stimulus. Thus, increasing the saliency of the stimuli might enhance the P300 response. 

Similarly, increasing the strength or intensity of the stimuli may also cause the P300 response to 

be enhanced. Sugg and Polich [24] investigated the use of varying intensities of auditory stimuli 
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for eliciting a P300 response, and reported significant increases in the P300 amplitude with an 

increase in the intensity of the auditory stimuli. Li and colleagues [25] reported increases in 

mean P300 amplitude and significant increase in speller accuracy with the use of greater 

luminosity contrast stimuli. Thus, modifications made to the visual paradigm, with increased 

saliency and strength of the stimuli as objectives may improve the P300 response.  

Likewise, increasing the saliency, strength and luminance of the stimuli may improve the visual 

evoked component of the ERP as well. Krusienski et al [26] performed an online study to 

describe the use of additional scalp locations, other than the standard P300 scalp locations (Fz, 

Cz, Pz) exclusively used until then. Other groups had previously shown improved classification 

accuracy using posterior locations with offline studies [27]. They found, that using the occipital 

sites PO7, PO8 and Oz along with the traditional scalp locations resulted in significant 

improvement in the classifier performance. Their study highlights the importance of the visual 

component in the classification process of the P300 speller.  

It is implicit from the designs of the novel paradigms introduced by the previous studies 

mentioned here, that an attempt was made towards increasing the saliency and strength of the 

stimuli, possibly so with an end goal of enhancing the P300 response and the visual component. 

For example, Liu et al [21] described stimuli involving character motion and character size 

transformation. These stimuli might have had greater saliency and strength since the oddball 

state is more obviously different from the normal state. It also might have increased the 

luminance of the stimuli in increasing the character size. The paradigms suggested by Salvaris & 

Sepulveda also indicate similar changes that might improve the salience, strength and luminance 

of the signal.   
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A.  STUDY ONE: MODIFYING THE VISUAL INTERFACE 

I. Methods 

a. The Inverting Paradigm: 

We hypothesized that increasing the intensity, luminosity and salience of the stimulus, thereby 

increasing the strength of the visual component of the system and enhancing the P300 response, 

might increase the speed and accuracy of the P300 speller system. A novel flashing paradigm is 

described here, in which the black background around the symbol changes to white and the gray 

symbol turns black. Thus, the stimulus is more intense, luminous and salient than before. In 

order to test this paradigm, it was compared against the traditional RC paradigm reported by 

Farewell & Donchin [12]. The system was tested online, and further offline testing was 

performed using two different classifiers to verify the results [13]. 

Chapter One introduced the conventionally used RC paradigm. The RC paradigm only consists 

of the intensification of the row/column which is flashing, from gray to white and back. Thus, 

the interface background remains as is and is not involved in stimulus presentation. However, 

since the background comprises of a relatively large area over the screen compared to the 

characters, it may be utilized in order to produce a stronger stimulus. The method proposed is the 

RC paradigm with an inversion in the grayscale of the letter versus its background instead of the 

simple highlighting of the letter in the traditional RC paradigm (Fig. 10a). Henceforth, these will 

be referred to as Non-Inverting and Inverting paradigms, respectively. In the inverting paradigm, 

as long as a row/column is not flashing, it has a black background and a gray letter – exactly the 

same as in the case of non-inverting paradigm. However, when a row/column flashes, its 
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background changes to white and the letter becomes black (Fig. 10b). Hence the background 

intensifies instead of the characters, giving greater luminance and a more salient stimulus than 

before since the variation from the normal state to oddball state is larger.  

a 

 

b 

 

Figure 10: Screenshots of a stimulus presentation using Non-Inverting (a) and Inverting 

Paradigms (b) 

b. Data Collection: 

Data was collected from 15 healthy volunteers, consisting of 11 male and four female 

undergraduate and graduate students (age range 17 to 30 years), having perfect or corrected to 

perfect vision. Recording was done using 32 electrodes (Fpz, Fz, FC1, FCz, FC2, FC4, FC6, C4, 

C6, CP4, CP6, FC3, FC5, C3, C5, CP3, CP5, CP1, P1, Cz, CPz, Pz, POz, CP2, P2, PO7, PO3, 

O1, Oz, O2, PO4, PO8) with the left or right earlobe as ground. A pair of 16 channel g.tec USB 

biosignal amplifiers was used for amplification, digitized at 256Hz and filtered between 0.1 and 

60Hz, while BCI2000 software system for BCI research was used for data acquisition and 

stimulus presentation. The number of sequences used was ten that is, for every character there 

were 12 flashes (six rows and six columns) repeated ten times. An ISI of 125ms was used 

between two stimuli.  
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Experiments were performed with the objective of comparing the effects and results produced by 

the Inverting paradigm to the Non-Inverting paradigm, comprising of a training session to train 

the classifier algorithm and testing in which subjects used the trained classifier to type series of 

characters with the speller. An experiment with one subject thus consisted of ten words of 

training, with five words for each paradigm, and then ten words of testing with five for each 

paradigm. All of these were randomly chosen five lettered words (Table 1). Which paradigm was 

presented first, was alternated for every subject. Given this method, the set of words for training 

and evaluation sessions remained constant for all subjects, while the words within these sessions 

were interchanged between flashing paradigms.  

AVOID JUICE UNITS MINUS NOTED 

MIXED NIGHT DAILY SCORE GIANT 

BEING MAJOR HOURS SHOWN PANEL 

FIRST BLOCK CLEAR GIVEN AFTER 

Table 1: Target words used in the experiment 

The experiment consisted of copy spelling and visual feedback during testing. Copy spelling 

implies that the subjects were presented with words on the screen, which they were expected to 

type rather than having them choose the words for themselves. In cases where the classifier could 

not generate feature weights for online testing, the experiment was continued without any visual 

feedback so as to complete data collection for a set of twenty words.  

The fraction of letters correctly detected during this testing was the basis of the comparative 

performance analyses performed later. This is referred to as the online testing and was performed 

on two thirds of the subjects.  
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This was followed by offline analysis combining the training and testing data, in order to find 

trends in the data that were not apparent in the online results.    

c. Data Analysis:  

BCI2000 was used for online testing and MATLAB (version 7.10, MathWorks, Inc., Natick, 

MA) was used for offline testing, which was done using 10-fold cross-validation. BCI2000 used 

Stepwise Linear Regression for classification, and a fixed value of 10 trials was used. Offline 

analysis was performed using the SWLDA and Naïve Bayes classifiers [13].  

c.1 SWLDA Classifier:  

Classification was performed using stepwise linear discriminant analysis (SWLDA) to identify 

differences in response to attended vs. non-attended stimuli [13]. The signal from a particular 

electrode is composed of voltage level values at several time points. Each of these different time 

points is treated as features or variables, with the voltages as values. SWLDA extracts features 

from the signal, which help in discriminating the signals for target stimuli from non-target 

stimuli. Extraction of the most significant features also serves to reduce the data size. It does so 

by a process of forward selection, in which most significant features are added to the classifier 

and backward elimination, in which the least significant features are removed. Thus, the entire 

data stream is not used in decision making unlike in other methods such as covariance. It also 

outputs a feature weight vector, which suggests the relative importance of the signal features in 

discrimination of the targets and non-targets. The feature vector and feature weight vector are 

created using the training data set. Each new flash is assigned a score, which is indicative of its 

proximity to the attended class. This score   
  is calculated as the dot product of the feature 

weight vector, w, with the feature vector,   
  (for every flash i and every target character t),  
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  ( 1 ) 

   

This function, which is used to calculate the score, is known as the discriminant function. In 

order to validate the discriminant function, a portion of the data is used to generate the function 

and the other portion is used to test it. This is known as cross-validation. Similar testing is done 

during an online session to determine which character is being attended.  

At the end of a flashing sequence, each character is assigned a score, which is the sum of all 

scores for flashes containing that character. The character corresponding to the highest score is 

selected. Thus, the score for each possible next character is given as the sum of scores for flashes 

containing that character: 

 (  )   ∑   
 

       
 

 

(2) 

                                                       

c.2 Naïve Bayes Classifier:  

While the SWLDA classifier assigns scores to each character and selects the character with the 

highest score by the end of total number of sequences, the Naïve Bayes classifier takes a 

different approach. It still assigns scores to each character after every round of a sequence (a 

sequence is when all rows and all columns have flashed once, and consists of 12 flashes in all), 

but does not wait for the total number of sequences to exhaust. Instead, the Naïve Bayes 

classifier assigns probabilities to the signal based on the score and selects the character once a 

threshold probability is reached. These probabilities represent the chance that the stimulus is an 

attended one. Probabilities are assigned to each character, and the character that reaches 

threshold first is selected.  The scores were assumed to have a normal distribution and hence the 
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probability density functions for the score given an attended or unattended character were 

calculated as: 
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where,      
       

 , are the means and variances respectively for attended and non-attended 

stimuli.  

Thus, we know the probability of a particular score given an attended or non-attended character. 

Hence, using Bayes theorem we can calculate the probability of a particular character being 

attended given its score. Assuming conditional independence between flashes given the current 

attended character, the posterior probability is given as,  
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Once a predetermined threshold probability is reached or the maximum number of flashes is 

reached, the character with maximum probability is selected [13].  

Further, this classifier used a corpus of words from the English language in order to assign bias 

probabilities to letters depending on the previous letters chosen and letters most likely to make a 

word. This way, knowledge about the language is utilized for making more efficient predictions 

about the characters to be typed. Sets of three letters are compared with each word in the corpus. 

The probability of the next character being ‘x ‘ is the number of times it appears following the 
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previous two characters divided by the number of times the previous two characters appear 

consecutively in the corpus. In this case, the prior probabilities are calculated as, 

 
 (  |         )  

 (            )

 (         )
  

( 4 ) 

 

Where,  (            ) is the number of occurrences of the string ‘            in the corpus 

[13].  

For the offline analysis, this threshold probability was varied and the information transfer rate 

and accuracy calculated for each threshold. This was done for every subject and the threshold 

with the highest ITR was selected for that particular subject.  

d. Evaluation:  

The information transfer rate (ITR) is derived from the bits per symbol, B, which is calculated 

as: 

 
               (   )     

   

   
 

( 5 ) 

 

Where N is the total number of characters in the matrix, P is the selection accuracy, given by the 

ratio of correct selections to total trials. Also, the selection rate (in selections per minute) is given 

as the inverse of the average selection time,  

 SR = 
  

              
 ( 6 ) 
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Where, 3.5s is the gap between flashes, 0.125s is the time taken by every flash, 12 is the number 

of flashes in each set, and ‘a’ is the average number of sets of flashes. The information transfer 

rate, in terms of bits per minute, can be calculated as the product of bits per symbol, B and the 

selection rate, S. The ITR was obtained separately for inverting and non-inverting paradigms, in 

order to use it as a comparison metric.  

Paired t-tests are used to evaluate differences in the performance between paradigms. 

III. Results:  

a. Offline Results:  

Offline analysis was performed on the data using SWLDA and Naïve Bayes classifiers. The 

Inverting paradigm showed significantly improved results independent of which classifier was 

used (Table 2).  

Using the SWLDA (original) classification methodology, ITRs significantly improved when 

using Inverting vs. Non-Inverting paradigm (27.59 vs. 21.23, p=0.0002). Likewise, using Naïve 

Bayes classification, use of the inverting flashing paradigm significantly improved performance 

compared to non-inverting paradigms (41.70 vs. 34.57, p=0.0002) ). Overall, using a Naïve 

Bayes classifier and an inverting paradigm on average doubled ITRs compared to the original 

SWLDA non-inverting paradigms traditionally used in p300 spellers (41.70 vs. 21.23). Only one 

subject (J) showed a decrease in ITR from non-inverting to inverting using SWLDA classifier by 

0.77%.  The same subject showed an increase in ITR by 7.52% using the Naïve Bayes classifier.   

As mentioned earlier, the order in which inverting and non-inverting trials were performed was 

randomized in order to minimize the effect of a practice effect. Out of the 15 subjects, 7 
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performed inverting before non-inverting, while 8 performed non-inverting first. The average 

increase in ITR for inverting versus non-inverting was 7.12 bits per minute for the Naïve Bayes 

classifier. For those who performed inverting first, the average ITR increase was 6.49 bits per 

minute (standard deviation = 6.16); while for those who performed non-inverting first, it was 

7.68 bits per minute (standard deviation = 5.46). The difference in the ITR increases was not 

significant between the subjects who performed non-inverting first versus those who performed 

inverting first in either of the classifiers (p value = 0.69). Thus, the order of paradigm 

presentation did not have a significant effect on the amount of ITR improvement.  

Subject SWLDA Non-

Inverting  

SWLDA 

Inverting 

Naïve Bayes 

Non-Inverting 

Naïve Bayes 

Inverting 

A 29.02 32.92 45.69 52.47 

B 18.05 20.72 27.88 37.02 

C 17.12 31.59 26.11 42.83 

D 12.85 16.98 24.44 29.81 

E 16.57 20.62 32.09 35.26 

F 25.67 35.70 45.76 46.21 

G 3.83 6.28 8.77 10.14 

H 16.10 25.67 27.86 41.33 

I 31.59 32.92 48.89 52.57 

J 25.38 24.61 37.12 39.92 

K 20.89 30.29 33.98 46.11 

L 31.41 48.30 44.33 62.75 

M 37.15 43.59 54.90 57.87 

N 17.83 21.77 33.38 37.97 

O 15.04 21.95 27.34 33.18 

Average 21.23 27.59 34.57 41.70 

p value 0.000187 0.000228 

Table 2: Offline results for inverting and Non-Inverting trials using the SWLDA and Naïve 

Bayes classifiers. 
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Figure 11: Accuracy versus number of sequences for Non-Inverting (dashed lines) and Inverting 

(solid lines) using offline analysis. 

 

Subjects using the Naïve Bayes classifier with inverting flashing show a rise in average accuracy 

to approximately 95% in about 4 sequences (Fig. 11). Non-inverting flashing using Naïve Bayes 

achieves less than 90% accuracy in the same number of flashes. 

For the inverting paradigm using Naïve Bayes, nine subjects reached 100% accuracy. On an 

average, these nine subjects took 2.56 flashes to reach 100% accuracy, the lowest number of 

flashes being 0.98 (subject L). In case of the non-inverting paradigm, four subjects reached 

100% accuracy, taking an average of 2.45 flashes. The lowest number of flashes in this case 

were 1.43 (subject M).   
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b. Online Analysis:  

Online analysis was performed on 10 out of the 15 subjects. There was an increase in the average 

accuracies between non-inverting and inverting from 82% to 91.2%, which approached statistical 

significance (p=0.078). One subject (J) performed poorly with Inverting versus Non-Inverting. 

Six subjects performed better with Inverting compared to Non-Inverting, while three others 

remained constant. Two of these three, reached 100% accuracy with both the paradigms. Non-

Inverting paradigm had only these two subjects reaching 100%, while Inverting had three others 

as well. The worst performer achieved accuracies of 40% and 72% respectively with Non-

Inverting and Inverting paradigms.  

 Non-Inverting  Inverting  

 Accuracy (%) ITR Accuracy (%) ITR 

A 88 13.05 92 14.13 

B 80 11.10 80 11.10 

C 40 3.64 72 9.33 

F 84 12.04 100 16.77 

I 92 14.13 100 16.77 

J 92 14.13 76 10.20 

L 100 16.77 100 16.77 

M 100 16.77 100 16.77 

N 76 10.20 100 16.77 

O 68 8.51 92 14.13 

Average 82 12.03 91.2 14.27 

Table 3: Accuracies and Information Transfer Rates for online trials. 

c. Waveform Analysis:  

The EEG data was also analyzed to be able to visualize the average physiological responses 

observed for each paradigm. Windows of 600ms following target and non-target stimuli were 

separately averaged across trials and subjects, and such averages were obtained for each 

electrodes site. The average P300 responses across subjects show an increase in amplitude with 

the Inverting paradigm versus the Non-inverting in all electrodes (Fig. 12).  
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Five subjects with a large amount of noise were excluded from the averaging process.  This 

exclusion was done prior to taking the grand averages of the data, by visually inspecting similar 

time-windowed averages and standard deviations for individual subjects, across all trials. Two 

criteria were used for exclusion, presence of unusually high values of DC drifts and standard 

deviation in the averaged data. The DC drift was observed in all channels within the five 

excluded subjects, although in varying amounts. 

a. 

 

b. 

 

c. 

 

Figure 12: Average differences between target and non-target responses for Inverting (solid) and 

Non-Inverting (dashed) signals at the Pz, Cz, and Oz sites (a, b, and c respectively). 

Peaks in average amplitude at roughly 300ms in response to target characters were observed at 

all electrode sites. The difference in amplitude in response to target versus non-target characters 

for the Inverting paradigm shows a roughly 1µV higher amplitude compared to those for Non-

Inverting (Fig. 12). The occipital electrode shows a distinct negativity at about 200ms for the 

Inverting paradigm.   

d. Classifier Analysis:  

The offline results were also analyzed with respect to the scores assigned to target and non-target 

stimuli by the Naïve Bayes classifier for non-inverting versus inverting paradigms. These scores 

are indicative of how close a new signal is to the attended (target) class; the higher the score, the 

greater is the certainty of it belonging to the attended class. A paired t-test was performed for the 

differences between average target and non-target scores, for non-inverting versus inverting 
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paradigms, across all fifteen subjects. The inverting paradigm was found to have a significantly 

higher score (p = 0.00094) difference between target and non-target as opposed to non-inverting 

paradigm. 

Fig. 13 shows the normal distributions obtained by averaging the normal distributions for the 

scores of each subject for the target stimuli, using the Non-Inverting and Inverting paradigms. As 

can be seen from the figure, the average normal distribution for the target scores with the 

inverting paradigm is farther away from zero, than that for the target scores with the non-

inverting paradigm.  

 

Fig. 13: Averaged normal distributions of target scores across all subjects for non-inverting 

(broken lines) versus inverting (solid lines) paradigms 

Further, analysis was also performed on the feature weight vectors generated by the BCI2000 

online classifier for non-inverting and inverting paradigms. Feature weight vectors were 

averaged across subjects and all electrode sites. The averaging was performed across electrode 

sites and not just subjects, because the classifier discards redundant weight information between 

electrodes and hence looking at individual electrodes might not have revealed the complete 

picture. Naturally, only those subjects were included for which the classifier could generate 
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feature weight vectors. These averaged vectors indicate which features were mainly used by the 

classifier in discriminating between target and non-target stimuli.  

The vectors generated for each of the paradigms were similar –showing a peak at 300ms, except 

the one for the Inverting paradigm shows a negative peak at about 200ms (Fig. 14).  

 

Figure 14: Feature weight vectors from the BCI2000 online classifier averaged across subjects 

and electrode sites for inverting (solid) and non-inverting (dashed) paradigms 

IV. Discussion: 

Using inverting flashing with the P300 speller as opposed to a non-inverting paradigm, results in 

practical improvements in ITR, which are further amplified by using a Naïve Bayesian classifier. 

Improved ITRs are accomplished by eliciting higher amplitude evoked response which improved 

classification accuracy and ITRs. The average ITR observed using the conventional method that 

is SWLDA classifier with Non-Inverting paradigm, almost doubled with the use of the Naïve 

Bayes Classifier used with the inverting paradigm. Each of the classifiers showed increases in 

the average ITR of 30.18% for SWLDA, and 20.59% for the Naïve Bayes classifier.  
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Online testing was only performed on ten of the fifteen subjects, since the BCI2000 classifier 

could not generate feature weight vectors for the other five. In the case of these subjects, data 

was acquired without providing visual feedback. Several of the subjects on whom online testing 

was performed, reached accuracies close to or up to 100% with both the paradigms. Half the 

subjects reached 100% accuracy using the Inverting paradigm, while two of those reached 100% 

using Non-Inverting. This might have caused a ceiling effect, which could have been the reason 

behind not reaching statistical significance for performance differences in the online analysis. 

Such a ceiling effect was not present in the offline analysis because the number of sequences that 

yielded the maximum ITR was selected for each subject regardless of the accuracy provided.  

The ITRs and accuracies achieved in this study, using the conventional non-inverting paradigm, 

have been comparable to those of similar studies in the past, using the traditional row column 

paradigm introduced by Farewell & Donchin [12]. The average ITRs using SWLDA and Naïve 

Bayes classifiers offline respectively, with the non-inverting paradigm were, 21.23 bits/minute 

and 34.57 bits/minute using ten sequences of flashes. Speier et al. [13], reported average ITRs 

for SWLDA and Naïve Bayes to be 22.07 bits/minute and 33.15 bits/minute respectively, using 

15 sequences of flashes for every character. They also reported an offline accuracy of 82.97% for 

the SWLDA classifier, which was 82% for non-inverting online in this study. Townsend et al. 

[19], reported an ITR of 19.85 bits/minute for the RC paradigm which is similar to the non-

inverting paradigm used here. Fazel-Rezai et al. [28] reported an accuracy of 85% using the RC 

paradigm with 12 sequences of flashes.  

The occipital electrode Oz shows a distinct negative peak at about 200ms for the inverting 

paradigm (Fig. 12c). A similar peak was observed with the inverting paradigm for other occipital 

sites as well. It is possible that this peak might be an N200 ERP. N200 is a negative going ERP 
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elicited by an oddball stimulus, often observed together with P300 [29]. In case of visual stimuli, 

it is known to occur in posterior sites [29]. Kaufmann et al. observed a third of subjects 

controlling a P300 BCI achieve higher discrimination with an N200 at occipital sites than with 

P300 at centro-parietal sites [30].  Liu et al [31] also reported negative going dips at about 200ms 

in the SWLDA classifier for certain paradigms such as translation and rotation of characters. The 

feature weights found by the SWLDA classifier in our study show a similar negative going peak 

at about 200ms for the inverting paradigm and not for the non-inverting paradigm (Fig. 14). 

Apart from the increased amplitudes of the P300 response, this could be a possible explanation 

for the improved performance with the inverting paradigm.  

There was only one subject who showed decreased performance with the Inverting paradigm. 

This decrease was by 28% in ITR for the online method; whereas it was 0.78% in ITR for offline 

analysis using the SWLDA classifier.  This subject had long and dense hair, making electrode 

contact difficult especially at posterior sites. During the experiment, the raw signal showed 

increasing levels of noise in parietal and occipital electrodes compared to frontal and central 

ones.  Poor contact at occipital sites might have hurt the Inverting paradigm more because of the 

hypothesized larger visual component. The greater decrease in online compared to offline, may 

be because online has a smaller sample size, of 25 letters (five words of five letters each) – 

giving an accuracy of 4% for every correct letter. Offline analysis on the other hand, had a larger 

sample size due to cross validation.   

The threshold probabilities used for the Naïve Bayes classifier were optimized for every user 

individually, by selecting the threshold with the highest ITR for each subject. Thus, the threshold 

used for every subject was different. Regardless of this, the average accuracies achieved with the 
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inverting paradigm were still higher for every different number of sequences and hence for every 

threshold probability as opposed to those for non-inverting (Fig. 11).  

a. Prior Similar Work: 

Previous studies have tried to change the stimulus presentation or graphical display, but could 

not show either significant improvements or consistency across subjects. Nevertheless, these 

studies showed that changes to the visual stimulus can produce considerable increments in the 

ITRs and accuracies.  Liu et al [31] experimented with several paradigms, and reported improved 

results with rotation of characters for some subjects and zoom in or zoom out for others. Any 

single paradigm was not found to be consistently better across subjects.  They suggested the 

necessity to explore more paradigms in an online system. Salvaris and Sepulveda [23] also 

demonstrated various paradigms, and consistent best performance was achieved using a 

paradigm in which the entire background covering the grid was white and kept static as the 

symbols changed from gray to black during stimulus. None of the paradigms described in the 

study, showed performances significantly different from each other except for the best (white 

background) and the worst (small symbol size) performers.  

b. Limitations and Future Directions: 

While the improvement described here are practical and applicable, further improvements are 

still possible. Combining some other visual paradigms with the Inverting paradigm, such as the 

zoom in, zoom out or the color method shown by Liu et al [31] can possibly result in superior 

results. Lu and colleagues [32] had shown optimal inter stimulus intervals and flashing timings, 

which were used in this study. These same parameters may or may not be optimal for the 

inverting paradigm, and studies done by Lu may be repeated with the inverting paradigm. 
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Using Inverting paradigm with colors other than black and white during the flashing of stimuli 

may add to the level of contrast and hence further increase the visual aspect of the paradigm. 

Paradigms using gray scale values intermediate to black and white may be considered and 

compared for performance.   

This study is limited in that all the subjects were healthy individuals, with normal to corrected 

vision. Further, the users only perform copy spelling, in which words are presented to be typed. 

Using copy spelling, subjects don’t have the freedom to type words of their choice. If given such 

a choice, the word selection could be better randomized and the subject might be more motivated 

to type the word; also, it would better approximate the practical application of the speller. 

Subject gaze was not monitored for motion in order to focus on the target character, nor were the 

subjects instructed not to alter gaze. In practical use of the speller, the patient may not be able to 

alter gaze and any dependency of the paradigm on gaze would be problematic. Future work may 

include gaze monitoring to ensure that consistent results are still obtained without needing the 

user to shift gaze towards the target character.  
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B. STUDY TWO: MODIFYING THE ELECTRODE SET 

I. Introduction: 

The signal acquisition for implementing the P300 Speller BCI system using EEG as a modality is 

done with 32 electrodes over the scalp (Fpz, Fz, FC1, FCz, FC2, FC4, FC6, C4, C6, CP4, CP6, 

FC3, FC5, C3, C5, CP3, CP5, CP1, P1, Cz, CPz, Pz, POz, CP2, P2, PO7, PO3, O1, Oz, O2, PO4, 

PO8), in several studies including study one. Electrode gel has to be applied or injected into each 

of these electrode locations for conduction. Further, each of the electrodes may have to be 

connected over an electrode cap individually prior to each experiment. This adds greatly to the 

total experiment time including the volunteer’s time, not just the experimenter’s. Some of this 

time may be contributing towards fatigue and general lowering of interest of the volunteer. The 

computational time and effort for selecting and weighting features from the electrode set is also 

increased. Overall, the use of a large number of electrodes is cumbersome, causes practical 

difficulties, increases experiment time, and may be prohibitive to the development of wearable, 

portable headsets.  

Krusienski et al [26] have studied the use of four different electrode set layouts and compared 

their performances. This study recommended a six electrode set consisting of central and 

posterior sites – Fz, Cz, Pz, Oz, PO7 and PO8. However, the sets that were compared in this 

study were chosen empirically and were not optimized or minimalized by comparing with other 

sets. Speier and Pouratian [33] conducted a more systematic study which utilized Gibbs sampling 

in order to narrow down on to electrode sets found to best classify the EEG signals. Electrode 

sets starting from one and up to five electrodes were compared to the six electrode set proposed 

by Krusienski et al and also to the full 32 electrode set. One, two and three electrode sets 
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produced ITR values significantly lower compared to the 32 electrode set. Using the four 

electrode set (PO7, PO8, POz, Oz) also produced ITR values significantly lower compared to 32 

electrode set, however it was still effective. The five electrode set (PO8, PO7, POz, Oz, CP2) 

produced ITR values not significantly different from either the 32 electrode set or the six 

electrode set. The study concluded that the electrode set can be reduced to four electrodes while 

still achieving clinically significant results. Neither of these studies performed online analysis to 

verify offline results.  

The present study is further incremental to the previous studies and includes online experiments 

to support the offline results obtained by comparing electrode sets generated using Gibbs 

sampling [33]. The figure below (Fig. 15) shows the three electrode sets compared in this study. 

 

Fig. 15: The 32, six and four electrode sets [33] 

II. Data Collection: 

Data was collected from six healthy volunteers, males between the ages of 22 to 30 years with 

perfect or corrected to perfect vision. Each experiment consisted of training and testing. Training 

consisted of the standard sentence, ‘The quick brown fox jumps over lazy dogs’ broken into 

three parts with breaks in between. Testing was done in free mode, where the subjects were 
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allowed to use a sentence of their choice. Three testing sessions of five minutes each were 

performed for the three electrode sets in random order with the same sentence. All sentences 

were either terminated at five minutes or repeated in order to run until five minutes. The 

hardware used for the study was the same as the Inverted paradigm study. The Inverting 

paradigm was used for the visual stimuli and Naïve Bayes classifier was used for classification.  

III. Results: 

The four electrode set achieved a higher average accuracy of 70.36% compared to the six and 32 

electrode sets which achieved accuracies of up to 62.62% and 60.02% respectively. The 32 

electrode set had the fastest average selection rate (7.19 selections per minute) compared to the 

six electrode set at 6.32 selections per minute and four electrode set at 5.83 selections per 

minute. The ITR values for the 32, six and four electrode sets were found to be as 18.75, 16.97, 

and 18.72 respectively.  

Subject Selection Rate Accuracy ITR 

 
32 6 4 32 6 4 32 6 4 

1 9.90 7.44 6.84 68.75 56.76 41.18 26.45 14.62 8.03 

2 8.13 8.59 8.80 75.00 82.93 87.36 25.01 31.23 34.98 

3 10.33 5.08 7.32 91.11 88.00 100.00 44.23 20.44 37.82 

4 8.32 8.76 6.88 43.90 62.79 70.59 10.84 20.23 19.17 

5 5.95 2.66 3.35 72.41 15.38 75.00 17.30 0.56 10.31 

6 6.67 4.51 3.21 18.18 68.18 62.50 1.93 11.90 7.35 

7 3.87 3.52 3.46 40.00 30.77 46.15 4.35 2.56 4.88 

8 6.99 5.49 4.83 47.83 25.00 41.18 10.45 2.81 5.67 

9 6.04 6.76 5.49 75.00 88.00 100.00 18.59 27.19 28.40 

10 4.80 4.87 3.92 61.11 33.33 53.33 10.61 4.05 6.98 

11 6.65 8.20 5.72 64.00 87.50 77.27 15.83 32.70 18.47 

12 8.66 9.98 10.21 94.12 81.58 89.74 39.37 35.30 42.55 

Average 7.19 6.32 5.83 62.62 60.02 70.36 18.75 16.97 18.72 

 Table 4: Selection Rates, Accuracies and ITR values for online trials 
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Fig. 16: ITR values for individual subjects for 32, six and four electrode sets 

IV. Discussion: 

There were differences in the performances achieved using the three different electrode sets with 

respect to the accuracy and ITR values, however no statistical significance was found. P-values 

were calculated for each pair of the three electrode sets – 32 and six (0.62) six and four (0.47) 

and 32 and four (0.99). This indicates that using four electrodes might be clinically effective, 

without compromising on the performance.  

The approximate time taken to apply the four electrodes was about three to four minutes, for six 

electrodes it was about five minutes, and 20 to 25 minutes for the 32 electrode set including 

ground and reference. Thus a considerable amount of time was saved using the reduced electrode 

sets. There was however, no measure of how the reduced set up time might affect subject 

performance.  

This study further emphasizes the importance of the visual component in the P300 speller. The 

four electrode set consists of PO7, PO8, POz and Oz, all of which are posterior electrodes while 
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the central electrodes from the Krusienski electrode set, Pz, Cz and Fz are excluded. In spite of 

this, a comparable performance was achieved. It remains to be seen whether this affects the 

dependence of the speller on gaze.  

The average ITR values obtained in this study are comparable to the one obtained in the 

Inverting paradigm study, with online analysis – 14.27 bits/minute, as well as to other online 

studies reported in literature. The average ITRs achieved in this study using the 32, six and four 

electrode sets respectively were 18.75 bits/minute, 16.97 bits/minute and 18.72 bits/minute 

respectively.  

Krusienski et al [26], who described the six electrode set first, reported average accuracies of 

about 90% at a total of 15 flashes. In order to be able to fairly compare their results to those 

obtained in this study; we must first convert the percentage accuracy into an ITR value so that 

the number of flashes would also be taken into consideration. Krusienski et al used an 

intensification period of 100ms and an inter-stimulus interval of 75ms, with a 6x6 grid of 

characters. Thus, the 90% accuracy translates into an ITR of 13.9 bits/minute, which is close to 

the ITR achieved in this study using the six electrode set – 16.97 bits/minute.  

Townsend et al conducted an online study to compare the RC paradigm to other novel 

paradigms, and reported 19.85 bits/minute using the RC paradigm. Ryan et al [34] also 

performed online analysis in their study using the RC paradigm as a baseline and achieved an 

ITR value of 19.39 bits/minute.  

Subjects 5 and 6 performed poorly on electrode sets six and 32 respectively, possibly due to 

hardware issues. Except for these two, all other subjects were pretty consistent in performance 

across the different electrode sets, although there were a few subjects who performed relatively 
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poorly overall such as subjects 7, 8 and 10. Subject 3 was the best performer for 32 electrode sets 

(44.23 bits/min) while subject 12 was the best performer for the four and six electrode set (42.55 

bits/min and 35.3 bits/min respectively).  
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CHAPTER THREE: CONCLUSION 

 

The current P300 speller system suffers from several drawbacks which might be limiting its use 

and adherence by patients suffering from ALS and other neuromuscular disorders. The two 

studies performed and presented here sought to reduce a few important limitations of the system, 

namely the low speed and accuracy as well as the electrode requirements. Poor speed and 

accuracy is responsible for making the system slow and is self-propagating in the sense that the 

slow system speed might cause fatigue and loss of attention in the user causing more errors, 

while the need for correcting errors might make the process of typing slower. These issues can 

be a cause of frustration for the user whose sole means of communicating with the outer world is 

the speller system. Further, the requirement of a large number of electrodes can make the system 

cumbersome and difficult to use. The hardware setup time and maintenance can be inconvenient 

for both the caretakers and patients and may limit the system’s use.  

The first chapter introduced the Inverting paradigm which was a novel flashing paradigm meant 

to increase the saliency, strength and luminance of the system’s visual interface. Using the 

Inverting paradigm yielded significant improvements in the speed and accuracy of the system. 

This was possibly due to the brighter and more obvious flashing eliciting an enhanced P300 

response as seen from the average responses at all electrode sites. Also, an analysis of the 

classifier revealed an increase in the target scores for the Inverting paradigm and a change in the 

feature weight vector obtained using this paradigm.  

The cumbersomeness and setup time of the current system necessitated the use of a reduced set 

of electrodes. However, it was important to verify that the reduction in electrode number does 
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not heavily compromise on the system performance. The 32, six and four electrode sets were 

compared for performance in the second study. Reducing the number of electrodes to a four 

electrode set maintained comparable levels of speed and accuracy, while greatly reducing the 

setup time, effort and hardware requirement. 

The improvements achieved in these studies were on two fronts – enhancing the system 

performance by means of greater SNR and ITR, and increasing convenience of use for patients 

and caretakers. These improvements have largely enhanced the practicality of the system. Future 

studies may involve using the two systems together and also observing the gaze dependence of 

the system.  
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