UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Grounding Word Learning Across Situations

Permalink

https://escholarship.org/uc/item/00n6r0px

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors

Gabbard, Ryan Lichtefeld, Jacob A Beser, Deniz et al.

Publication Date

2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Grounding Word Learning Across Situations

Ryan Gabbard

University of Southern California, Information Sciences Institute, Waltham, Massachusetts, United States

Jacob Lichtefeld

University of Southern California, Los Angeles, California, United States

Deniz Beser

University of Southern California, Los Angeles, California, United States

Joe Cecil

USC Information Sciences Institute, Waltham, Massachusetts, United States

Mitch Marcus

University of Pennsylvania, Philadelphia, Pennsylvania, United States

Sarah Payne

University of Pennsylvania, Philadelphia, Pennsylvania, United States

Charles Yang

U Penn, Philadelphia, Pennsylvania, United States

Marjorie Freedman

USC Information Sciences Institute, Marina Del Rey, California, United States

Abstract

Word learning models are typically evaluated as the problem of observing words together with sets of atomic objects and learn-ing an alignment between them. We use ADAM, a Python software platform for modeling grounded language acquisition, to evaluate a particular word learning model, Pursuit (Stevens, Gleitman, Trueswell, & Yang, 2017),under more realistic learning conditions (see e.g. Gleitman and Trueswell (2020) for review). In particular, we manipulate the degree of referential ambiguity and the salience of attentional cues available to the learner, and we present extensions to Pursuit which address the challenges of non-atomic meanings and exploiting attentional cues.