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Abstract

We study the e®ect of privately informed traders on measured high frequency price
changes and trades in asset markets. We use a standard market microstructure frame-
work where exogenous news is captured by signals that informed agents receive. We
show that the entry and exit of informed traders following the arrival of news accounts
for high-frequency serial correlation in squared price changes (stochastic volatility) and
trades. Because the bid-ask spread of the market specialist tends to shrink as indi-
viduals trade and reveal their information, the model also accounts for the empirical
observation that high-frequency serial correlation is more pronounced in trades than
in squared price changes. A calibration test of the model shows that the features of
the market microstructure, without serially correlated news, accounts qualitatively for
the serial correlation in the data, but predicts less persistence than is present in the
data.

“We thank Lawrence Harris, Bruce Lehman, Steve LeRoy, Charles Stuart, and seminar participants at
University of Aarhus, University of Arizona, University of California at Santa Cruz, University of California
at San Diego, Econometric Society Winter Meetings, Federal Reserve Bank of Kansas City, Federal Reserve
Bank of San Fransisco, and University of Texas, for comments and suggestions. All errors are our own.
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1 Introduction

The arrival of news is widely thought to have an important impact on asset prices. Despite
such widespread belief, surprisingly little is known about the exact linkage between news and
the intertemporal regularities that characterize many asset prices. Perhaps the most pro-
nounced intertemporal regularity is positive serial correlation in squared price changes, de-
tected via stochastic volatility (SV) and generalized auto-regressive conditional heteroskedas-
ticity (GARCH) models, which has important implications for option pricing and conditional
return forecasting. Empirical speci cation of SV and GARCH models vary widely in the
literature, which suggests a need for theoretical guidance. We therefore derive the proper-
ties of transaction price changes from a standard microstructure model that incorporates
the random arrival of news. In particular, the model replicates three features of the high
frequency data: serial correlation in trades and squared price changes, and serial correlation
in trades which is more persistent than serial correlation in squared price changes. We then
test implications of the model. In particular, we derive that the market microstructure,
without serial correlation in news, qualitatively accounts for the serial correlation in hourly
squared IBM stock prices, albeit with less persistence. Our results therefore provide a theo-
retical explanation (and guidance) for much of the recent empirical results on the volatility
of “nancial assets.!

We derive the properties of prices and trading behavior at the level of individual trans-
actions from a repeated version of the asymmetric information model of Easley and O'Hara
(1992). With some probability informed traders receive a private signal, or private news. Be-
cause uninformed (liquidity) traders are also in the market, private news is not immediately
revealed by the trade decisions of the informed. The specialist, who clears trade, accounts
for adverse selection when setting the bid and ask. As trade occurs, the specialist uses
Bayes rule to update beliefs, and so the bid-ask spread declines as informed traders reveal
their information through trade. We show that the bid-ask spread bounds the variance of
transaction price changes. Because the bid-ask spread is dynamic in response to the special-
ist's learning, transaction price changes are neither independent nor identically distributed.
In particular, transaction price changes have autocorrelated conditional heteroskedasticity
(although not of GARCH form).

We assume that news arrivals are serially uncorrelated and so focus on the learning
dynamics that result from information-based trade. Of course certain events may lead to
serially correlated news; adding serial correlation into the exogenous news arrival process

1Bollerslev, Engle and Nelson (1993) provide a survey of GARCH models; Ghysels, Harvey and Renault
(1996) provide a survey of SV models.



would augment the correlation that arises from the learning dynamics alone.> Perhaps
surprisingly, we show that information-based trade alone (without serially correlated news)
accounts for high frequency SV and two important related features of asset prices.3

The importance of private information as a determinant of asset price volatility is sup-
ported by French and Roll (1986), who conclude that revelation of private information
(rather than public information or pricing errors) drives stock price changes. The entry and
exit of informed traders after the arrival of private information is a key component of our
explanation. First, the arrival of private news causes informed traders to enter the market,
increasing the number of trades relative to calendar periods in which no private news exists.
As the informed continue to trade until their information is fully revealed, informed traders
enter and exit for stretches of calendar time. This behavior induces serial correlation in the
number of calendar period trades (as well as trading volume), a feature documented by many
authors (Harris, 1987; Andersen, 1996; Brock and LeBaron, 1996; Goodhart and O'Hara,
1997 page 96 provides a survey). Second, because the squared price change is determined
by the number of trades in the calendar period and the variance of the price innovation
for each trade, positive serial correlation in trades leads to SV. Because transaction prices
have SV, the SV in calendar periods is not an artifact of discrete sampling. Third, because
the bid-ask spread bounds the variance of trade-by-trade price innovations, the declining
bid-ask spread reduces the serial correlation in squared price changes without a®ecting the
serial correlation in trades. Thus serial correlation is more pronounced for trades than for
squared price changes, also a well-known feature of the data (Harris, 1987; Andersen, 1996;
Steigerwald 1997).4 This third feature has proven to be a puzzle that is dixcult to solve
with traditional models that do not examine the properties of transaction price changes.®

We also derive other volatility related testable implications of the market microstructure
model. In general, if the probability that the information advantage of informed traders is
not eliminated between adjacent calendar periods increases, then informed traders are more
likely to remain in the market in adjacent calendar periods. Thus the increase in trades
and squared price changes resulting from the presence of informed traders is more likely to

2Engle et al. (1990) “nd some evidence of serial correlation in public news; although serial correlation in
public news does not necessarily imply serial correlation in private news.

SFurther, information-based trade can account for the positive contemporaneous relation between squared
price changes and trading volume, which is the focus of the economic models of Epps (1975) and Tauchen
and Pitts (1983).

4Similarly, Tauchen, Zhang, and Liu (1996) report that a price change has more persistent e®ects on
volume than on squared price changes.

5In the analysis of Clark (1973), Gallant, Hsieh and Tauchen (1991), and Andersen (1996) the magnitude
of stochastic volatility is determined by, and so is proportional to, the correlation of trades or trade volume.



remain in adjacent calendar periods, increases the magnitude and persistence of the serial
correlation in trades and squared price changes. For example, we derive that the magnitude
and persistence of the serial correlation in trades and squared price changes increases as
the sampling frequency increases, because the information advantage of the informed is
more likely to remain between adjacent hours than adjacent days. We also derive that
the magnitude and persistence of the serial correlation in trades and squared price changes
increases in markets where trade by the informed accounts for a relatively small proportion
of the total trades.

We then test implications of the model using hourly IBM data (" Itered of time of day
and day of the week e®ects). The high frequency IBM data has all three empirical features
of interest: serial correlation in trades and squared price changes, and the serial correlation
in trades is more persistent. We calibrate the model to match certain moments of the IBM
trade data. The tted model has all three features of interest, although the persistence in
trades is one day in the model rather three weeks in the data and the persistence in squared
price changes is on the order of minutes in the model as opposed to one or two days in the
data. An alternative calibration matches the persistence of the data, but then the magnitude
is smaller than in the data.

As we focus on the properties of transaction price changes, we are implicitly modeling
high-frequency calendar periods. Several researchers propose alternative explanations for
stochastic volatility at lower frequencies. Timmerman (2001) shows rare structural breaks
in the dividend process and incomplete learning generate ARCH and SV e®ects in an asset
pricing model. Shorish and Spear (1996) show how moral hazard between the owner and
manager of a rm generates serial correlation in squared price changes in an asset pricing
model. Den Haan and Spear (1998) show how agency costs and borrowing constraints give
rise to wealth e®ects that yield serial correlation in squared interest rate changes. Ser-
ial correlation in such models does not arise from the trading process, since the \no trade"
theorems hold.® While dividend-based models provide an important step by directly explain-
ing stochastic volatility at low frequencies, these models cannot account for the stochastic
volatility found in nearly all "nancial assets at high frequencies. In contrast we explain how
news (say about the dividend process) generates high-frequency serial correlation through
the trading process.

Section 2 presents an overview of the asymmetric information microstructure model. In
Section 3 we derive basic properties of transaction price changes. Section 4 contains our

SHu®man (1987) generates trade using an overlapping generations framework. However, Hu®man's model
generates transitory negative serial correlation in both asset price and trading volume, which is inconsistent
with the features described above.



results on the serial correlation of calendar period trades and price changes and Section 5
contains the empirical test of the model.

2 Model Overview

We work with the asymmetric information microstructure model of Easley and O'Hara
(1992), which is derived in turn from Glosten and Milgrom (1985). In contrast to Easley
and O'Hara, we assume that if news is not present, then the informed are inactive (Easley
and O'Hara assume that the informed act as uninformed). The results are not qualitatively
sensitive to the behavior of the informed when private news is absent. We also consider
multiple information periods in which the news arrival process is independent and identically
distributed. We use a standard model in order to show that standard models of the market
microstructure can account for the persistence puzzle described in the introduction.

The information structure of the market is as follows. Informed traders learn the true
share value with positive probability before trading starts, while the specialist and un-
informed traders do not learn the true share value before trading starts. We de ne the
interval of time over which asymmetric information is present to be an information period.
At the beginning of each information period informed traders receive the signal Sy, where
m indexes information periods. At the end of each information period the realization of the
random dollar value per share, V,,, becomes public information and all traders agree upon
the share value. We assume V,, takes one of two values v, < vy, with P(V, =v ) = %.
We assume v, and vy, are bounded from below by v, > 0 and above by vy, < 1 for
all m and are public information at the end of information period m j 1:We also assume
0 <t < 1 so that adverse selection is present in the market.

The signals received by informed traders at the start of an information period are inde-
pendent across information periods and identically distributed. Therefore, serial correlation
in trades and squared price changes generated by the model does not require serial corre-
lation in the underlying news process. The signal S,, takes the value sy if the informed
receive the high signal and learn Vi, = vn,,, S if the informed receive the low signal and
learn Vi, = v,,,, and s if the informed receive the uninformative signal and hence, no private
information. The probability that the informed learn the true value of the stock through
the signal is |, so the probability that S, takes the value s, is £

The signal completely determines the trading decisions of the informed. Conditional
on receiving the uninformative signal, informed agents do not trade by assumption. If
informed traders receive signal s, then informed traders always sell as long as the specialist
is uncertain that the true value is v, . If informed traders receive signal sy, then informed



traders always buy as long as the specialist is uncertain that the true value is vy, .

All traders and the market specialist, are risk neutral and rational. To induce uninformed
rational traders to trade, some disparity of preferences or endowments across traders must
exist. We let 1; be the rate of time discount for the ith trader. As in Glosten and Milgrom
each individual assigns random utility to shares of stock, s, and current consumption, c, as
IsV,,+c.” We set ! = 1 for the specialist and informed traders. Three types of uninformed
traders exist, those with I = 1, who have identical preferences and do not trade, those with
I =0, who always sell the stock, and those with ' = 1., who always buy the stock. Among
the population of uninformed traders, the proportion with ' =1 is 1 j ", the proportion
with I = 1 is (1 j °)", and the proportion with I = 0 is °". The value of ! completely
determines the trading decisions of the uninformed, which thus do not depend on the bid
and ask.

Traders arrive randomly to the market one at a time, so we index traders by their order
of arrival. The probability that an arriving trader is informed is ® > 0. A trader arrives,
observes the bid and ask, and decides whether to buy, sell, or not trade. Let C; be the
random variable that corresponds to the trade decision of trader i. Then C; takes one of
three values: cp if the ith trader buys one share at the ask, A;; cg if the ith trader sells
one share at the bid, B;; and cy if the ith trader elects not to trade. The assumption that
informed traders arrive randomly and trade at most one share is perhaps strong given the
information advantage, but can be viewed as a simpli cation of a more complex model in
which a pooling equilibrium exists where informed traders (or perhaps a single informed
trader) mimic the both the timing of arrival and size of trades of the uninformed (see for
example La®ont and Maskin, 1990 or Goodhart and O'Hara, 1997 page 94).

Because the specialist and the uninformed have the same information set, they have
the same learning process. In what follows, we simply refer to the learning process for the
specialist, noting that the same process applies to the uninformed. After the action of the
trader, the specialist revises beliefs about the signal received by informed traders, and thence
about the true value of a share. The sequence of trading decisions is public information.
Let Z; be the publicly available information set prior to the arrival of trader i + 1. After
the ith trader has come to the market, the specialist's belief that informed traders received
a high signal is P (Sm = snjZi) = vyi: Correspondingly, the specialist’s belief that informed
traders received a low signal is P (Sm = s.jZi) = Xi: By construction, the specialist's belief
that informed traders received an uninformative signal is P(S,, =SojZi) =11i X; i Yi- The
action of each trader, even the decision not to trade, conveys information about the signal

"Because Vy, is realized at the end of the information period, Vi, is the random share value used to
construct a trader's utility at the end of an information period.



received by informed traders.

The specialist sets a bid and ask, which are the prices at which he is willing to buy
and sell, respectively, one share of stock. The bid and ask are determined so that the
specialist earns zero expected pro ts from each trade. The zero expected pro t condition
is an equilibrium condition, which arises from the potential free entry of additional market
specialists should the bid and ask lead to positive expected pro ts for the specialist. The
quoted prices set the specialist's expected loss from trade with an informed trader equal to
the specialist’s expected gain from trade with an uninformed trader:

Ve + (1§ ®)" (i °)E (VimiZiz).

A &t @i A1) '

where E (VmjZi;1) = Xij1Vim + VYiitVem + (1§ Xij1 i Yig1) EVm. In parallel fashion

_ ®X; itVim T (1 i ®) "E (ijziil) .
®xij1+ (1§ ®"° '

Bi

It is straightforward to show that learning is consistent, that is, the bid and ask converge
to the strong-form excient value of a share, which re®ects both public and private infor-
mation. Hence the bid-ask spread, which re®ects the specialist's uncertainty about private
news, converges to zero as private information is revealed through trade. Because transac-
tion prices are between the bid and ask, transaction prices also converge to the strong-form
ezxcient value of a share.

3 Transaction Price Changes

To understand the behavior of transaction price changes implied by the model, we st
present a simple expression for the price change associated with each possible trade decision.
Following the decision of trader 1, the price of the stock is its expected value conditional on
public information. The resultant price change from the decision of trader i is

Ui = E (VmiZi) i E (VmiZi;1):

For example, if trader i elects to buy the stock at the ask, then the transaction price is
E (VmiZ) = A;. (The equality between the conditional expected value of the stock and
the ask is ensured by the equilibrium condition that governs quote setting, which implies



Ai = E (VmjZi;1; Ci = ca)). Werefer to fU;g; , as the sequence of transaction price changes,
noting that a transaction occurs even if a trader elects not to trade.?

The information content of trade decisions, which depends on the history of trades and
the parameter values, drives transaction price changes. To provide insight, we present
simple expressions for each of the three possible values for U;, one corresponding to each of
the possible trade decisions. If C; =cp, then E (ViWjZi) = A;, and

— ®yii1
P (Ci = CAjziil

Ui ) Vim i E (VmiZizd)]:

The price change that results from a trade at the ask is the price change that would result if
the specialist knew the trader was informed vy, i E (VinjZi;1), multiplied by the specialist's
likelihood of such a trade with an informed trader If C; = cg, then E (VmjZi) =

PG =cAIZi )"
B; and

P (Ci = CBjZiil)

Ui Vi, T E (VmiZi;in)]:

Finally, if C; =cy, then

®(1 i Xiil i Yiil)EVm+(1 i ®)(1 i ")E(ijziil)
®LixipniVii)+Qi®@i")

E(VmiZi) =

and

Ui = ® (1§ Xij1 i Yii1)
' P (Ci=cnNjZi)

Even the decision not to trade conveys information and results in a transaction price change
that is not zero.

In general, the expected value of the stock following a decision not to trade lies within
the bid-ask spread. As a result, decisions to trade at the bid or the ask generally convey
more information than do decisions not to trade. (For the rst trade in an information
period, trades at the bid or ask must convey more information, because tyo = (1 j ) Xo
which implies B; < E (VmjZo; C1 =c¢cn) < A1). However, it is possible to have parameter

[EVm i E (Vm]Zi;1)]:

81n empirical work, U; is not observed if either trader i or trader i j 1 elects not to trade. Econometricians
therefore typically use the bid, ask, midpoint between the bid and ask, or last trade as a proxy for the
unobserved transaction prices. Alternatively, estimates of the microstructure parameters could be used to
construct a proxy. Our results on calendar period aggregates are virtually unchanged if a proxy replaces U;
on no trade decisions, because all measures respond to information in a similar fashion.



values and a trade history for which a decision not to trade conveys the most information.
For example, if " is nearly one and ® is nearly zero, then no trade decisions are rare and
are most often made by informed traders, which implies E (VnjZi;1;Ci = cn) = A (if
E (VmjZi;1) < EVm). For this reason we introduce the e®ective bid-ask spread

Ai i Bi = maxfAi; E[VmjZi;1; Ci = cn]g i minfBi; E[VmjZi;1; Ci = onlg;
which is the di®erence between the maximum price change and the minimum price change.

We are now able to establish the statistical properties of transaction price changes
fUigi 1

Theorem 1: Transaction price changes satisfy:
1. E(UijZi;1) = 0 and E (UijS, & sp) & 0
2. E (UhUijZiil) =0forh<i

3.¢c A iB; 2. E (U3Zi;1) - A B; 2With c - %:

4. A; i B; ¥ 0atan exponential rate.

Proof: See Appendix.

The rst two parts of Theorem 1 deliver the traditional results that, with respect to pub-
lic information, transaction price changes are mean zero and serially uncorrelated. Further,
informed traders who are active anticipate transaction price changes that move in a system-
atic way in response to the °ow of private information. Since transaction price changes have
nonzero conditional variance, Parts 3 and 4 of Theorem 1 together imply that the e®ective
bid-ask spread drives the variance in U; and induces heteroskedasticity.® As the specialist
becomes certain of the true value of the share, the bid and ask converge to the true value of
the share and E (U?jZ;;;) ¥ Oasi ¥ 1.

The declining bid ask spread induces autocorrelated conditional heteroskedasticity and
therefore serial correlation in squared transaction price changes. The di®erence in variance
between information periods with and without news also induces serial correlation in squared
transaction price changes, since transactions in which private information is present (and
thus high variance) are most often followed by transactions in which private information
is still present. In the next section, we derive the serial correlation properties of both
transaction level and calendar period data.

9Hausman, Lo and MacKinlay (1992) ~nd that the bid-ask spread is positively related to the variance of
transaction price changes.



4 Serial Correlation Properties

To formally link the e®ects of individual trader decisions to the behavior of prices and
trades measured at calendar period intervals, we rst de ne how arrivals (economic time)
are aggregated into calendar periods. Let each information period contain k > 0 calendar
periods. For example, if an information period lasts one day, as in Easley, Kiefer and
O'Hara (1993), then for data from the New York stock exchange (which is open for 6.5
hours) each information period contains thirteen 30 minute calendar periods. A calendar
period, which is indexed by t, contains ~ trader arrivals, which as above are indexed by
i. Transaction level properties are therefore the special case ~ = land k = ¢: In general,
we show serial correlation exists at both the transactions and calendar period data. A
data sample, from which the serial correlation properties of calendar period quantities are
estimated, consists of a large number of information periods. Because the information
arrival process is independent over time, the k calendar measurements corresponding to one
information period are independent of the k calendar measurements corresponding to any
other information period. The sequence of calendar measurements is not itself generated by
a stationary process.

Transaction Level and Calendar Period Trades

Let the number of trades in period t be I:: Because ~ traders arrive each period, I; takes
integer values between 0 and ~ and so I, is a binomial random variable. The parameters
are ~, the number of possible arrivals, and the probability of trade at each arrival. The
probability of a trade depends on the signal, so:

Ij(Sm&sg) » B(;®+"(1ij®);
j(Sm=s0) » B(;"(1i®):

Unconditionally,

Ell] = *=pha+QiWh )
Var[ld = °*=pef+ (1§ W5 +H(L i W (1 i 20); &)
where the subscripts 0 and 1 indicate conditioning on Sy = Sp and Sm, & So, respectively.

Given this structure for the number of trades in a calendar period, we derive the serial
correlation properties of flg, ;.

Theorem 2: If 0 < r <k and 0 < u < 1, then I;, and I, are positively serially
correlated. If r _ k, then I¢;r and I; are uncorrelated. Further for all r > 0, the correlation

10



between I¢;r and I is given by:

Ca i) ©@) K minrk)”
l) = 02 k

Corr(lg;r;

©)

Proof: See Appendix.

Because of the nonstationary process generating trades, it may seem surprising that
the correlation in I; is not expressed as a function of time. To understand why, note that
when connecting calendar period measurements to the data generating process, we do not
know in which past calendar period the process began. Consider an information period that
corresponds to one day for which news potentially arrives at the beginning of the day. As
news could just as likely have arrived at any calendar period in the day, we do not want our
calendar period implications to depend on an arbitrary assumption about news arrival. To
avoid such dependence, we consider t to be randomly sampled, so that I; is equally likely to
correspond to any calendar period in the day. The serial correlation in I is then independent
of time.

Many empirical studies focus on the correlation structure for one market at di®erent
frequencies (e.g., comparing ve minute intervals with hourly intervals). Because the data
are gathered from the same market on the same asset, the number of trader arrivals in an
information period, ¢ = k”, is constant even though both k and ~ depend on the sampling
frequency. To understand the e®ect changing the frequency of observation has on the corre-
lation, we substitute the formulas for the mean and variance of a binomial random variable
and ~ = & into (3) to express the correlation (for r < k) as

"k (=Rl § p)e? |
Kk "Qi®Li"QLi®+W[(1i®)1i27)+®¢c=k) 1 iwl

and take the derivative with respect to k. As we decrease the frequency of observation
we simultaneously decrease k and increase ~, yielding two countervailing e®ects on the
correlation. The decrease in k reduces the serial correlation while the increase in = increases
the serial correlation. Because the magnitude of the e®ect of a change in k on the correlation
diminishes as r increases, it is for long lags that we would most likely see the serial correlation
in trades decline as we move from ~ve minute data to hourly data.

As the driving source of the serial correlation is the impact of trade by the informed, serial
correlation persists only as long as the information advantage lasts. Liquidity parameters
such as ~, the proportion of informed traders ®, and other parameters a®ect the magnitude
of the serial correlation. To understand how the parameters individually in®uence the serial
correlation in trades we calculate comparative static e®ects.

Corr(lg;r; 1) =

11



Corollary 3: For 0 <r <k and 0 < p < 1 the correlation between l¢;r and It is
decreasing in r, increasing in k, increasing in © and increasing in ®.

Proof: The results follow from di®erentiation. m

The results in Corollary 3 imply certain patterns of serial correlation in trades across
markets. Increasing the proportion of informed traders magni es the impact of informed
traders and increases the correlation.’® In similar fashion, an asset for which the public
realization of the news occurs rather slowly (a larger value of k), will be more impacted
by the entry and exit of informed traders leading to more pronounced correlation. For a
market with greater liquidity in the form of a larger value of ~, the increased number of
traders also magni es the impact of informed traders and increases the correlation. An
interesting implication is that serial correlation in trades exists in both liquid and illiquid
markets, which provides a theoretical ground for the empirical serial correlation in illiquid
markets found by Lange (1998).

Next, consider the relationship between ™ (the fraction of uninformed who trade) and
the serial correlation in trades. If " is small (precisely, if " < Zi(%%), then virtually all trades
are by informed traders and increasing " dilutes the informed traders and reduces the serial
correlation in trades. If ® is large (precisely if ®u _ %), then increasing " increases the
variation in trades across information periods and increases the serial correlation in trades.
In similar fashion, increasing the frequency of news p increases the correlation if " is large
and p is small (precisely " > % and g < %). Because good and bad news are symmetric
with respect to the decision of whether or not to trade, the serial correlation is una®ected
by changes to ° or +.

Transaction Level and Calendar Period Squared Price Changes
Let P¢ be the price at the end of period t. The period-t price change is
<
¢P = Ui: (4)

i=(tj1) +1

Transaction price changes thus drive calendar price changes. Note that calendar price
changes are equivalent to transaction price changes for ~ = 1. From Section 3, we know
that the information content of a trade decision depends on the preceding sequence of trade

10Changes to each parameter a®ect both the covariance and the variance, so the relative eRects determine
the sign of each derivative. For example, as ® increases there is a greater increase in trading in response
to news, which increases the covariance. The variance may also increase, but because the informed trade
identically at least one of the conditional variances (°p; ©;) that combine to form the variance must decrease,
and the increase in the covariance dominates.

12



decisions. As a result, the conditional variance of each U; depends on the path of trades and
so analysis of the mixture process (4) does not yield straightforward analytical results for
the correlation of (CP,)>.

To make analysis of the correlation of (¢Pt)2 tractable, we introduce an approximation
tonthe mixture progess. If period t is the rst period following the arrival of news, then
E (¢P)%jSm &S, = %;. Because trade decisions that occur shortly after the potential
arrival of news contain more information than do later decisions, the expected squared price
change for later periods declines, %; > %j+1 for j = 1;:::k j 1. If the informed are inactive,
then the variance of, calendar period;price changes is driven by the random decisions of the
uninformed and E (¢P)?jSym =Sy = %o. Thus, we assume the information advantage
of the informed persists until the information period ends, while for information periods
without informed traders the uncertainty is quickly resolved, % > %o. Because observation
t is equally likely to correspond to any of the calendar periods in an information period, the
unconditional expectation of calendar period squared price changes is

h i
E (CP)” =pk+ (L i 1) Y%;

P
where f =+ 1, %.
Given this structure forgthe squared price change in a calendar period, we derive the
serial covariance of (CP)? -

>

Theorem 4: For 0 < r < k, the covariance between ((l:Ptir)2 and (¢Pt)2 is

1 kot 2§i<f , X
Efu Qi G4 i%)Gher i )+ G i %) P 1 %) U G i %) Fac i Y100

j=1 j=1 =1
Forr=1;k j 1, if
Ve = W+ (1§ W) %o;

then
h X N
Cov (CPt;r) 5 (CPy)” . O:

Proof: See Appendix.

As in the covariance of calendar period trades, the covariance of calendar period squared
price changes is zero if r _ k. To determine the sign of the covariance at the longest lag,
r =k i 1, we compare the magnitude of the conditional covariances (which are positive and

13



given by the rst term in brackets) with the magnitude of the covariances of the conditional
means (which are negative and given by the remaining two terms in brackets). The suzcient
condition for positive serial covariance (and thus GARCH and SV) ensures that expected
squared price changes are abowve their unconditional mean if the informed are active and
below their unconditional mean if the informed are inactive. As a result, if (¢P;)? is above
the unconditional mean, then ((l:Pti,r)2 also tends to be abowve the unconditional mean for
r =k j 1, and so prices have stochastic volatility.

Persistence Puzzle
If U? is assumed to be homoskedastic, then the covariance of calendar period squared price
changes is driven exclusively by the covariance in calendar period trades, and the persistence
in the covariance in trades should be matched by the persistence in the covariance in squared
price changes. The heteroskedasticity in U2 that arises from the movements in the expected
bid-ask spread breaks this persistence link. The variance of U; declines in response to the
information revealed through trade, causing the serial covariance in squared price changes
to decline, but not a®ecting the serial covariance in the number of trades. Hence stochastic
volatility is less persistent than is the serial correlation in trades.

We rst obtain an analytic result for the simpli ed structure of Theorem 4. Because the
persistence of both the stochastic volatility and the serial correlation increases with k, the
relative persistence depends on k.

Proposition 5: Let % > p¥x+ (1 j 1) %o and % j %j+1 =Aforall j =1:::k j 1. Then
for0<r <k,

2(k i 2)(k +3) > 3u(20 j 11k + k?) (5)
implies the covariance, and hence the correlation, of calendar period squared price changes
decays more rapidly than the covariance of calendar period trades.

Proof: See Appendix.

If information persistence is moderate (precisely if k - 32), then (5) is satis ed for all
U. Alternatively, if the news is not too frequent (precisely u - %), then (5) is satis ed for
all k. Part 4 of Theorem 1 implies the decline in the variance of U; is exponential, hence
Proposition 5, which assumes linear decline in calendar period squared price changes, likely
understates the di®erence in persistence between trades and squared price changes.
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5 Empirical Results

To see how well the predictions of the microstructure model accord with the data, we turn
to analyses of transaction data for IBM from the New York Stock Exchange (NYSE). From
the NYSE Trades and Quotes (TAQ) database, we study IBM transactions on the NY SE for
the year 2000. We " Iter the trade data to remove trades that were recorded out of sequence,
canceled, executed with special conditions, or recorded with some other anomaly. Because
of certain institutional details, occasionally large trades are broken up into a sequence of
smaller trades, all at the same price (see Hasbrouck (1988)). In order to avoid misidentifying
these sequences of same sided trades as bursts of informed trades, we aggregate all trades
recorded within ~ve seconds of each other without an intervening price change or quote
revision.!!

The data are further Itered to remove time stamps outside of the oxcial trading hours
of the NYSE (9:30 AM to 4:00 PM). Finally, the rst half-hour of each trading day is
removed in order to avoid modeling the market opening of the NYSE, which is characterized
by heavy activity following the morning call auction. As Harris (1987), Engle and Russell
(1998), and many other authors have noted, the rst half-hour of trade exhibits substantially
di®erent properties than the rest of the day.

We analyze hourly totals for each of the 252 trading days in the year. The (hourly)
average number of trades is 331 with an average squared price change of 0.91. As noted
by previous authors (e.g. Harris (1987)) exchange data exhibits periodic features, which
we remove as these features likely arise from sources of trade not captured by the model.
In addition to day-of-the-week e®ects, we must remove any diurnal pattern. The hourly
data exhibit a U-shaped pattern, with higher transaction activity and volatility at the start
and end of the day. In addition, the number of trades on the NYSE exhibits a signi cant
decline during the lunch period. We capture the U-shaped diurnal pattern for squared price
changes with a quadratic function in hours. To capture the lunch e®ect in the number of
trades, we replace the quadratic function for hours with a linear spline, the middle part of
which captures the slow period of trade around the lunch hour. The periodic features are
estimated to be (parentheses enclose the t-statistics)

TtP = 429:2 +19:0 Mo+ 11:3 Tug+ 20:6 Wee+ 12:3 The+ 19:3 Hot
(63:4) (3:6) (2:2) 4:1) (2:4) (2.0

i (52%72) He+ (5124]5 (He i 3) ¢t Lt %98()) (He i 4) AL

11wWe use quotes only from the NYSE (Blume and Goldstein (1997) “nd that the NYSE quote determines
or matches the national best quote about 95 percent of the time). \We also " Iter the quote data to remove
recording anomalies.
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3

P
¢P = 2:0 + 0:2 Mo+ 0.1 Tuet 0 Weei 0:1 Thet 0:1 Hoy
(7:4) (0:9)

i 0:9 H+ 0:1 th,

) (5:5)
where superscript P indicates predicted value, Moy, Tuy, Weg, and Thy, are day-of-the-week
indicator variables, and Ho; is an indicator variable that takes the value 1 if the succeeding
trading day is a holiday or if the market closes early (the days prior to July 4 and after
Thanksgiving end at noon). Next, H; takes the integer value corresponding to the hour
of the day (1 for the rst hour, 6 for the last hour) and L and AL are indicator variables
equal to 1 for all hours after 12 p.m. and 1 p.m., respectively. To see how the lunch e®ect
is captured, hourly trades decline by 56 each hour until 1 p.m., hourly trades from 1 to 3
p.m. are roughly unchanged from the noon hour, and hourly trades rise by about 120 from
the previous hour during the last hour of trading. As is immediately apparent, the diurnal
e®ects are more substangjal for this data than the daily e®@,cts In what follows we work
with the adjusted series Tt j TP + 429:2; (¢P?) j (¢P2)"

Figure 1 contains the autocorrelatlon functions for adjusted hourly trades and squared
price changes.*? The trade correlation remains signi~ cant for more than three weeks (ninety
trading hours). The squared price change correlation, which appears to die away within
one or two days (although there are several signi cant correlations at longer lags), does not
appear to be proportional to the trade correlation. These results are certainly consistent
with the literature and the implications of the microstructure model.

Another common way to capture the correlation in squared price changes is to model
the volatility with a GARCH model. For hourly squared price changes, the estimates of
the GARCH model are (standard errors in parentheses)

3 '_

¢P, = 0:.02+ Hf upr;
0:02)
P — o .H3P'1:2P1T2 P .
He = %-:915) + %:88 Hiin U 808% Hiq
The signi cant coezcient on the ARCH term (the estimated coezcient of 0.88 in the equa-
tion for the scale) indicates that stochastic volatility is a statistically signi cant feature of
the hourly data.
To obtain predicted serial correlation properties of the model, we must assign parameter
values to the model. The standard method in the literature is to use maximum likelihood
estimation (ML) to obtain model parameters from the probabilities of trade (for example

?Results are unchanged if squared returns are used in place of squared price changes.
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Easley, Kiefer, O'Hara and Paperman (1996)). However, the ML estimator is constructed
with an assumed information period length, a critical parameter for the persistence of the
serial correlation. Ideally, a method of moments estimator could be constructed to estimate
the length of an information period using the trade auto-covariance moments. However,
construction of such an estimator involves a number of dixculties and is thus beyond the
scope of this paper. Therefore, we instead calibrate the model to match certain moments
in the trade data. In particular, we set p so that the mean number of trades in the model
match the mean number of trades in the data and " to maximize the rst order serial
correlation in trades (which is approximately equal to the rst order serial correlation in
the data). The number of trader arrivals ~ is then set so that the variance of trades in
the model matches the variance of trades in the data (the ML estimator also signi cantly
underestimates the variance of trades), given ® = 0:05. In general, the model is consistent
either with a large number of trader arrivals and low probability of trade (® and ™) or the
reverse. As is commonly done with ML, we set the probability that an uninformed trader
trades at the ask and the probability of good news equal to 0.5. We examine both k = 6,
in which an information period is one day, as is commonly assumed in ML, and k = 90, so
that the persistence in serial correlation in trades matches the data (note that increasing k
does not change the time required for private information to be incorporated into the share
price through informed trade, but instead increases the time between the arrival of private
news and the public announcement of private news).

k " U ® - + °
6]10:17]0:48]0:05]|2304| 05105
90]0:17]10:48]0:0112304]| 05|05

Table 1. Calibrated Parameters and alternative speci cation.

Given the estimated parameter values, the predicted trade moments may be computed
according to Theorem 2 (see the proof of Theorem 2). Table 2 compares a variety of trade
moments predicted by the model to the data.

The model, given an information period of k = 6 hours, does a reasonable job matching
the magnitude of serial correlation in trades. However, the model predicts the correlation in
trades lasts for only 6 hours, which is inconsistent with persistence of 90 hours observed in the
data. Hence it may be the case that the time between the arrival of private information and
the public announcement of the private information, the length of an information period, is
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moment El; Varli | Corr (l¢;1; 1) | Corr(le;2; It) | Corr (It;50; 1)
Sample Moment | 429:00 | 3658:03 0:76 0:51 0:20
Model, k =6 429:24 | 3661:98 0:75 0:60 0
Model, k =90 400:42 | 463:34 0:283 0:280 0:127

Table 2: Moments of the Market Microstructure Model and IBM Data.

longer than commonly assumed. While misspecifying the length of an information period has
no bias on estimates of uninformed behavior, it does bias estimates of informed behavior. In
particular, if information periods are assumed to be one day, when in practice information
periods last longer than one day, then ML overestimates the impact of informed trade
relative to uninformed trade. As depicted in Table 2, increasing k to 90 and decreasing
® to 0.01 matches the persistence in trades but underestimates the variance in trades and
overestimates the magnitude of the serial correlation at lower lags, since the model predicts
a linear decline when in fact the decline in the IBM data appears more geometric.

To approach the persistence puzzle for the general mixture model, we simulate the model
using the parameters from the calibration. Figure 2 depicts the simulated model (with
k = 6) serial correlation in hourly trades and squared price changes. The calendar period
price change is calculated with the last price associated with a trade in the calendar period.
Because ~ is large, all information is resolved in one calendar period with probability very
close to one. Hence the expected rst squared price change (%) is positive while the next
~ve squared calendar price changes are zero. Clearly then the model must predict negative
serial correlation for lags 1-5 and the positive serial correlation for lag 6 (it is straightforward
to calculate these moments analytically). Although the model does not match the hourly
squared price data very well, the model does predict quite a bit of positive serial correlation
at 5 minute and transaction level data. Thus the model predicts positive serial correlation
in squared price changes on the order of minutes and positive serial correlation in trades
for a few hours. Figure 3 shows the autocorrelation function for the simulated model with
k = 90. As noted above, the model captures the persistence in trades, but predicts a linear
decline. Squared price change correlations remain positive for about three or four hours,
which is close to the persistence of the data, although again the magnitude of rst order
serial correlation is smaller.

Although the calibrated model qualitatively matches the three key features of the data
either the persistence or the magnitude is quantitatively less in the model than in the data.
The persistence in the data for trades is a few weeks and one or two days for squared price
changes, whereas in the calibrated model the persistence is one day and a few minutes
respectively. Conversely, if the model is calibrated to match the persistence, the serial
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correlation in trades and squared price changes have about half the magnitude in the model
as in the data.

6 Conclusions

The possible presence of private information in an asset market leads to transaction price
changes that, while uncorrelated, are dependent and heterogeneous. The heterogeneity is
present in the conditional variance, which moves in accord with the bid-ask spread. As
trading reveals private information, the conditional variance of transaction prices declines
with the spread. As a result, transaction price changes have stochastic volatility.

Serial correlation in calendar period quantities, for trades and squared price changes, as
well as the persistence puzzle can also be explained by the arrival of private information.
Given that informed traders are trading in the current period, informed traders will most
likely trade in the following period, which generates serial correlation in trades. The serial
correlation in trades is positive and persistent. Serial correlation in trades generates serial
correlation in squared price changes. Given that the informed traders are trading, more
variance exists in squared price changes simply because more trades occur in a calendar
period. More trades implies that the price change is the sum of more random transaction
price changes, which in turn implies that price changes have greater variance. Because serial
correlation exists in trades, serial correlation exists in squared price changes. Howewer, there
is an additional e®ect on the serial correlation in squared price changes, the decline in the
bid-ask spread. All trades are at the bid or ask, hence expected price changes are bounded
by the bid-ask spread. The bid-ask spread declines as learning proceeds, which reduces the
variance and the persistence of the serial correlation in squared price changes. Given more
trades occur in a calendar period, most likely more trades occur in the next calendar period,
which implies higher variance in both periods. However, the trades in the second calendar
period are from a random variable with a smaller variance, due to the smaller bid-ask spread.
Hence the serial correlation is smaller and less persistent. We thus replicate the observed
empirical features of the data and explain the serial correlation through the entry and exit
of informed traders and the associated revelation of information in prices.

The correlation in calendar period quantities is not an artifact of aggregation; as trans-
action price changes themselves have stochastic volatility. Further, the stochastic volatility
in calendar period data arises without correlated news; the news arrival process we con-
sider is independent over time. Instead, the endogenous news revelation process over the
information period generates a persistent information advantage for the informed, leading
to di®erences in the number of trades on news versus no news periods. When information
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periods are aggregated together, serial correlation results. Because we presume no serial
correlation in the news arrival process, obtaining serial correlation at lower frequencies re-
quires a long information period. As a long information period may not be plausible for all
news arrivals, our results provide an explanation for high-frequency serial correlation and
indicate that other factors must play a role in low-frequency serial correlation.

We calibrated the model to obtain parameters for the model and compare the serial
correlation in trades and squared price changes in the tted model with that of high frequency
IBM data. We nd that the tted model qualitatively predicts all three features of interest,
although either the persistence or the magnitude is less than in the data. The assumed
length of an information period plays an important role in the results, however. Therefore, a
fruitful direction of future research might be to estimate the length of an information period
by exploiting the autocovariance moments in trades perhaps with a method of moments
estimator.

What information set should be used to form conditional expectations of (¢P,)?? The
above results indicate that prediction of the variance of price changes depends on prediction
of the entry and exit of informed traders. Speci cally, the conditional variance of stock
prices depends on the previous number of trades, but does so in a nonlinear way. This
~nding underpins recent models of stochastic volatility that are based on jump-di®usion
processes. Many of these models have a jump arrival rate that is constant through time.
Our work suggests that future models of stochastic volatility include a jump arrival rate
that varies through time, in response to innovations in the number of trades.

20



References

[1] Andersen, T., 1996, \Return \Volatility and Trading Volume: An Information Flow
Interpretation of Stochastic Volatility™ Journal of Finance 51, 169-204.

[2] Bollerslev, T, R. Engle and D. Nelson, 1993, \ARCH Models" in Handbook of Econo-
metrics, Volume 4, Amseterdam: North-Holland.

[3] Blume, M. and M. Goldstein, 1997, \Quotes, Order Flow, and Price Discovery" Journal
of Finance 52, 221-44.

[4] Brock, W. and B. LeBaron, 1996, \A Dynamic Structural Model for Stock Return
Volatility and Trading Volume™ Review of Economics and Statistics 78, 94-110.

[5] Clark, P., 1973, \A Subordinated Stochastic Process Model with Finite Variance for
Speculative Prices™ Econometrica 41, 135-159.

[6] Den Haan, W. and Spear, S., 1998, \Volatility Clustering in Real Interest Rates: Theory
and Evidence" Journal of Monetary Economics 41, 431-53.

[7] Easley, D., and M. O'Hara, 1992, \Time and the Process of Security Price Adjustment™
Journal of Finance 47, 577-605.

[8] Easley, D., N. Kiefer, and M. O'Hara, 1993, \One Day in the Life of a Very Common
Stock™ Review of Financial Studies 10, 805-35.

[9] Easley, D., N. Kiefer, M. O'Hara, and J. Paperman, 1996, \Liquidity, Information, and
Infrequently Traded Stocks™ Journal of Finance 51, 1405-1436.

[10] Engle, R., and Ng, V., and Rothschild, M., 1990, \Asset Pricing With a Factor-ARCH
Covariance Structure: Empirical Estimates For Treasury Bills” Journal of Econometrics
45, 213-37.

[11] Engle, R. and Russell, J., 1998, \Autoregressive Conditional Duration: A New Model
for Irregularly Spaced Transaction Data™ Econometrica 66, 1127-62.

[12] Epps, T., 1975, \Security Price Changes and Transaction Volumes: Theory and Evi-
dence”™ American Economic Review 65, 586-597.

[13] French, D. and R. Roll, 1986, \Stock Return Variances: The Arrival of Information and
the Reaction of Traders™ Journal of Financial Economics 17, 5-26.

21



[14] Gallant, R., D. Hsieh, and G. Tauchen, 1991, \On Fitting a Recalcitrant Series: The
pound/dollar Exchange Rate, 1974-1983" in Nonparametric and Semiparametric Meth-
ods in Econometrics and Statistics, W. Barnett, J. Powell, and G. Tauchen eds., Cam-
bridge: Cambridge University.

[15] Ghysels, E., A. Harvey and E. Renault, 1996, \Stochastic Volatility" in Handbook of
Statistics, Volume 14: Statistical Methods in Finance, G. Maddala and C. Rao eds.,
Amsterdam: North-Holland.

[16] Goodhart, C. and M. O'Hara, 1997, \High Frequency Data in Financial Markets: Issues
and Applications™ Journal of Empirical Finance 4, 73-114.

[17] Glosten, L. and P. Milgrom, 1985, \Bid, Ask and Transaction Prices in a Specialist
Market with Heterogeneously Informed Traders™ Journal of Financial Economics 14,
71-100.

[18] Harris, L, 1986, \A Transaction Data Study of Weekly and Intradaily Patterns in Stock
Returns™ Journal of Financial Economics 16, 99-117.

[19] Hausman, J., A. Lo and A. MacKinlay, 1992, \An Ordered Probit Analysis of Trans-
action Stock Price Changes™ Journal of Financial Economics 31, 319-379.

[20] Hasbrouck, J., 1988, \Trades, Quotes, and Information,” Journal of Financial Eco-
nomics 22, 229-52.

[21] Hu®man, G., 1987, \A Dynamic Equilibrium Model of Asset Prices and Transaction
Volume™ Journal of Political Economy 95, 138-159.

[22] Kelly, D. and D. Steigerwald, 2001, \Private Information and High-Frequency Stochas-
tic Volatility™, web manuscript.

[23] La®ont, J. and E. Maskin, 1990, \The E=cient Market Hypothesis and Insider Trading
on the Stock Market" Journal of Political Economy, 98, 70-93.

[24] Lange, S., 1998. \Modeling Asset Market Volatility in a Small Market: Accounting for
Non-synchronous Trading E®ects,” Journal of International Financial Markets, Insti-
tutions and Money, 9, 1-18.

[25] Owens, J. and D. Steigerwald, 2003, \Inferring Information Frequency and Quality"
manuscript, U.C. Santa Barbara.

22



[26] Shorish, J. and Spear, S., 1996 \Shaking the Tree: An Agency-Theoretic Model of As-
set Pricing™ Technical Report 1996-E1, Graduate School of Industrial Administration,
Carnegie Mellon University.

[27] Steigerwald, D., 1997, \Mixture Models and Conditional Heteroskedasticity"” manu-
script, U.C. Santa Barbara.

[28] Tauchen, G. and M. Pitts, 1983, \The Price Variability-Volume Relationship on Spec-
ulative Markets™ Econometrica 51, 485-505.

[29] Tauchen, G., H. Zhang, and M. Liu, \Volume, Volatility, and Leverage: A Dynamic
Analysis™ Journal of Econometrics 74, 177-208.

[30] Timmermann, A., 2001, \Structural Breaks, Incomplete Learning, and Stock Prices "
Journal of Business and Economic Statistics 19, 299-314.

23



7  Appendix

Proof of Theorem 1

For the proof of Theorem 1, let Cy represent C; = cy in the conditioning information set.
Part 1. The expected price change from trader i, conditional on the public information
set Ziil is

E (UijZi;1) = > P (Ci = ¢jjZi;1) Ui(Ci = ¢j);
j=AB;N
which equals
®Yij1VHm + ®Xij1Vi, F® (D § Xij1 i Vist) EVm i ®E (VmjZi;1) =0
Because
P (Ci =cajSm & so) & P (Ci = cajZi)

for any nite i, price changes are not mean zero with respect to the information set of the
informed.
Part 2. Let h and i be distinct values with h < i,

E (UnUijZi;1) = Un ¢ [E (VmiZi;1) i E (VmjZi;0)] =0
Part 3. Recall E (U?jZi;1) equals
P(Ci =ca)(Ai i E(VmiZi;1))* +P(Ci = ca)(Bi i E (VmiZi;1))?
+P(C; = cn)(EVmiZi;Chl 1 E (VmJZiil))z:
The upper bound for the conditional variance is

3

E UfiZi;i - P(Ci=ca)Ai i E (VmiZi;))*+P(Ci =cg)(Bi i E (VmiZi;1))?
+P (Ci = tN)(E[VimjZi;1;Cn]) 1 E (VmjZij1))
[P(Ci =ca) +P(Ci =cn)l (Ai i E (VmiZi;1))?
+[P(Ci = cg) + P(Ci = cn)I(Bi i E (VmiZi;1))?
(A. i E (VmiZi;1))* + (Bi i E (VmiZi; 1))
(Al i E(ijZ“l)) i (Bii EMVmZ; 1))

= A||B
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where the rst inequality follows from the de nition of A; and B; and the fourth inequality
follows from B; - E[VyjZi;1] - Ai. Note that the unconditional variance is immediately
obtained from Jensen's inequality

3 - 3 -

EU2-E A iB - EAjEB; :

To obtain the lower bound for the conditional variance we consider three cases. For each
case we consider the set T;, which has three elements: jA; § E (VmjZi;1)],1Bi i E (Vm]Zi;1)]
and JE[VmjZi;1;CN]) i E(VmiZi;1)j. Let Py =P (Ci =cj). If minT;i = jAi i E (VmjZi;1)],
then

E U3Zi;1 . (Pa+Pn)(Ai i E(VmjZi;n))? +Pe(Bi i E (VmjZi;1))?
3 )
Pe(Pa+Pn) Aii Bi ;

=

where the second inequality follows from Lemma 1.1, which is proven below. If minT; =
iBi i E (VmiZi;1)i, then
a .
E U3Zi;1

e

PA(Ai i E (VmiZi;1))® + (Pe + Pn) (Bi i E (VmiZi;1))?
Pa(Pe +Pn) Aiil B %

£

where the second inequality follows from Lemma 1.1. If min Ti = JE[VmjZi;1;CnN]) i E (VmjZi; 1)),
then

3 -

E UZZiii . Pa(Aii E(VmjZii1))? + (P + Pn) (E[VmjZi;1; Cn] i E (VmiZiz1))?
3 "2
Pa(Ps+Pn) Aii Bi

=

where the second inequality follows from Lemma 1.1.
The unconditional variance thus satis es:

3 - 3 -

minfPa (Ps + Pn):Pa (Pa +Pn)JE A 18 ~ - E UZ

Hence ¢ = minfPA (Pg + Pn) ; Ps (Pa + Pr)g, which by direct analysis is maximized at
PA == PB == %

Part 4. The proof follows logic in Easley and O'Hara (1992). Full details are contained
in Kelly and Steigerwald (2001). [

Lemma 1.1:Let ¢ 2 [0;1]. For any pair of real numbers a and b

c(lijc)(@a+h)?-ca?+(1jc)b?
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Proof. The left side of the inequality is c(1 j ¢) (a + b? + 2ab), which when subtracted
from both sides converts the inequality to

0-cta?+(Lijc)b?j2c(ijc)ab=[caij (1ic)bf:

Proof of Theorem 2

The proof is a straightforward calculation of the correlation. By de nition, the covariance
is

COV(Itir; It) = E(Itirlt) i Eltir¢E|t.

If r _ k, then the independence of the signal process implies that I;, is independent of
It, so E (It;r It) = Elt;r ¢ El; and the covariance is zero.
For all calendar periods on information period m
E[liSm&s] = 11 ="(@+"(1j®);
ElldSm==s] = %=""(119);

Var[lijSm&s) = °7="[@+"1i®)ILi®Li";
Var[liSm=s) = °%4=""1i®[1i "(11i0):
If r < k and I¢;r and I; are measured on the same information period the conditional
expectation of (I¢;.1¢) is
i+ (Li W23
which occurs with probability Kki Second, if I¢;r and I are measured on consecutive
information periods then the covariance is zero since information events are independent
across trading days. Because the process for calendar period trades is stationary, El¢;r
equals El;. As noted in the text
Ele=pt+ Qi p) o

SO

Cov(lgrl) = HEL i W) (1§ o)

= n(l i W) @)%
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Combining the two possible cases for r relative to k yields

C 2!
HA i w) @) XL r<k
0 r _ k

=

Cov(lg;r; lt) = (6)

Combining the covariance and variance of Iy given by (2) gives the desired correlation.
Because all terms are positive for r <k, the correlation is positive. ]

Proof of Theorem 4

h i
We derive Cov (¢Ptir)2; (¢Pt)2 for r = 1 and k = 3. Derivation of the covariance for
general r and k follows similar logic. Let N = j if t j 1 is the j* calendar period in an
information period. Then for j =1;2;3:
h i
E (¢P;)°IN =] =+ (L i W%
and
8 i
=E (ﬂf]Pm)sz =j+1 forj=12
2 E (GP;1)?jN =1 forj=3

h i
E (¢P)’IN =j =

Because N is equally likely to take each value,
h i
E (CP)” =g+ (L i W) %!

The covariance equals the conditional covariance plus the covariance of the conditional
means. The conditional covariance is
1% n_h ) . i h . i h . io
3. E(@Pu) (CPY) IN =) i E (¢P;) IN =] E (¢PYIN =] |
i=1
which from the formulae for the expected calendar period squared price change given the
value of N equals

= (%o + (L i 18] § (W + (1§ 1)%o) (W + (1§ W) %) + 3
15 (WY + (1§ W) %] 1 (e + (1§ 0)%) (W + 1 i W)¥%)+ ~
3z MWl + (1 W) %%l + (1 i Wk + Qi W%Wli =

- i (We + (1 i p)%o) (We + (1 1 W) Yo) ”

This expression simpli es to
1
3 (L i WG i %) i %) + (Y i %0) (Giz i Yo)l: (Ad.2)
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The covariance of the conditional means is
n3

, b , i3 , h i
E E(CPt;1)" i E (CP;;1)" N E(CPy)” i E (CP)JN

which equals

) n3 ) h ). _i'3
P(N=j) E(®Pt1)" i E (CP;1) N =]
j=1

Note
h i
E(CP;1)° i E (CP;)°IN=j =pu®s i %);

and

h . C

E(CP)’ i E (CPY N =] =
vl v ] H(Pz i Y1) forj=3

Thus, the covariance of the conditional means is
2

Combining (A4.2) with (A4.3) yields the formula.

Proof of second assertion: From the condition in the theorem, for all j,

Y = Wi+ (1§ W)%o;
or.
Qi WG i %) > uu i %)

Hence from the covariance formula:

kST kot
COV(CPZ GPE ) > 1 (T i %) 1 %) + 1 (T i %j+r) Tk i %) +

Jj=1 j=1
x

L (ki %) Tk i Yairg)
i=1

bkt X
= U@ i Y0) Fcd %) ¥ Fic i %) O i Yacirsj)

i=1 i=t
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W3 i %eg) for j =1;2

“?[(%3 P Y) (he i %) + (R i %) (B i %)+ (B i %) (s i Yol

i’o

h i
E(¢P)° i E (GPy)°jN =]

(A4.3)



(@) 1
X XK X
= Ui %)@ Ti %) i Tki W)A+H Tei %)Ti i Yacir+y)

X X
= iHTk i Yo) (i W) U i ) (T 1 Yacirsg)
=1 =1
X
= b % i Ta)Cire i %o);

j=1
which is clearly positive for r = 1. The covariance is positive for all k for r = k j 1, because:
kil K kil
b i T)Chi+r i %) =1 b i TadHj+a 1 %) 0 By i T)hj+a 1 Y%0);
=1 =t j=i+l
in which i is the largest integer for which %; > ¥. Hence:

S ksicd
U (% 1 7k)Chj+r i %o) + 1 (Y 1 Ti) Ghj+1 i %o) =
j=1 j=i+1

P e ki
o Gy 1 7)) G i o) + 1 (% 1 Tk) Chiva T Yo)
j=1 j=i+l
kil
= (Y1 i %) Oy i Vi) = U1 i Y%0) Tk 1 Ya) > Om
j=1
Proof of Proposition 5
For calendar period trades, let = =u(1 j p)(®)?, then:

COV['til; I i Cov [Itiz; 4] — .Lll;_l —

jTE2
Cov [l;1; 1] "l kil

=

so the covariance in trades declines by a factor of k—fl Thus for the covariance in squared
price changes to decline faster, we must show:

h i h i
Cov (GPy;1)*;(CPy)® i Cov (CPy;2)"; (GPy)° 1
L H >

Cov (GPg;1)?; (GPY)? Kil @
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Because Condition 1 holds for period k, Proposition 5 implies the covariance is positive for
r = 1. Hence the Equation (7) holds if and only if:

h i
(CPe;2)°; (CPY° (8)

h i
(K i 2)Cov (CPy;1)°;(CPy)* > (k i 1)Cov
Since % = %41 + A, we have:
% = I+ (K i JA;

which in turn implies:

D 4 ) A
Tk = Y + A (kiJ)=%k+E(ki1)
=1

Substituting these facts and the formula for the covariance into (8) and performing some
tedious algebra, we see that (8) holds if and only if

2(k i 2)(k +3) > 3u(20 j 11k + k?):
Or:
2(k i 2)(k+3)>3uk j 23)k j 87)m
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8 Figures

Autocomelation In Trades and Squared Price Changes: Houry 18R Data, Year 2000
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Figure 1: Serial Correlation Properties of 2000 IBM Data.
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FAutocomelation In Trades and Squared Price Changes: Simulated hodel
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Figure 2: Calibrated model, k = 6.
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Figure 3: Calibrated Model, k = 90.
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