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Abstract

The thin plate spline (TPS) is an effective tool for modeling coordinate transformations that has been applied
successfully in several computer vision applications. Unfortunately the solution requires the inversion of a p X p
matrix, where p is the number of points in the data set, thus making it impractical for large scale applications.
In practical applications, however, a surprisingly good approximate solution is often possible using only a small
subset of corresponding points. We begin by discussing the obvious approach of using this subset to estimate a
transformation that is then applied to all the points, and we show the drawbacks of this method. We then proceed to
borrow a technique from the machine learning community for function approximation using radial basis functions
(RBFs) and adapt it to the task at hand. Using this method, we demonstrate a significant improvement over the naive
method. One drawback of this method, however, is that is does not allow for principal warp analysis, a technique for
studying shape deformations introduced by Bookstein based on the eigenvectors of the p X p bending energy matrix.
To address this, we describe a third approximation method based on a classic matrix completion technique that allows
for principal warp analysis as a by-product. By means of experiments on real and synthetic data, we demonstrate the
pros and cons of these different approximations so as to allow the reader to make an informed decision suited to his

or her application.

I. INTRODUCTION

The thin plate spline (TPS) is a commonly used basis function for representing coordinate mappings from R?
to R2. Bookstein [3] and Davis et al. [5], for example, have studied its application to the problem of modeling
changes in biological forms. The thin plate spline is the 2D generalization of the cubic spline. In its regularized
form the TPS model includes the affine model as a special case.

One drawback of the TPS model is that its solution requires the inversion of a large, dense matrix of size p X p,
where p is the number of points in the data set. Our goal in this paper is to present and compare three approximation
methods that address this computational problem through the use of a subset of corresponding points. In doing so,
we highlight connections to related approaches in the area of Gaussian RBF networks that are relevant to the TPS
mapping problem. Finally, we discuss a novel application of the Nystrom approximation [1] to the TPS mapping
problem.

Our experimental results suggest that the present work should be particularly useful in applications such as shape

matching and correspondence recovery (e.g. [2], [7], [4]) as well as in graphics applications such as morphing.

II. REVIEW OF THIN PLATE SPLINES

Let v; denote the target function values at locations (x;, y;) in the plane, with ¢ = 1,2,...,p. In particular, we
will set v; equal to the target coordinates (x},y;) in turn to obtain one continuous transformation for each coordinate
(see fig. 1 for a simple example.) We assume that the locations (z;,y;) are all different and are not collinear. The

TPS interpolant f(x,y) minimizes the bending energy

1= [[ Gt 282, + 73 dady
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Fig. 1. Simple example of coordinate transformation using TPS. Let’s consider two sets of points for which we assume the correspondences
to be known (a). The TPS warping allows a perfect alignment of the points and the bending of the grid shows the deformation needed to bring
the two sets on top of each other (b). Note that in the case of TPS applied to coordinate transformation we actually use two splines, one for the
displacement in the x direction and one for the displacement in the y direction. The displacement in each direction is considered as a height map
for the points and a spline is fit as in the case of scattered points in 3D space. And finally the two resulting transformations are combined into a

single mapping.
and has the form

fley) = ar+asr+ay+ Y wl (| (zi,0:) — (2,9)])

i=1

where U(r) = r?logr (fig. 2). In order for f(z,y) to have square integrable second derivatives, we require that
P
Z w; =0 and
i=1
p p
Zwi:pi = Zwiyi =0.
i=1 i=1

Together with the interpolation conditions, f(z;,y;) = v;, this yields a linear system for the TPS coefficients:

K P w v
= (D
PT O a 0

where K;; = U(||(z,v:) — (zj,y;)]), the ith row of P is (1, z;,v;), O is a 3 x 3 matrix of zeros, ois a 3 x 1
column vector of zeros, w and v are column vectors formed from w; and v;, respectively, and « is the column vector
with elements a1, a, a,,. We will denote the (p + 3) x (p + 3) matrix of this system by Lj; as discussed e.g. in [7],

L is nonsingular. If we denote the upper left p x p block of L~! by L, 1, then it can be shown that

Iy ochLglv =wlKuw .
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Fig. 2. The thin plate spline radial basis function U (r) = 2 log r.

When there is noise in the specified values v;, one may wish to relax the exact interpolation requirement by

means of regularization. This is accomplished by minimizing

n

H{f] = Z(Uz — f(2i,9:)* + Al

i=1
The regularization parameter )\, a positive scalar, controls the amount of smoothing; the limiting case of A = 0
reduces to exact interpolation. As demonstrated in [9], [6], we can solve for the TPS coefficients in the regularized

case by replacing the matrix K by K + AI, where [ is the p X p identity matrix.

III. APPROXIMATION TECHNIQUES

Since inverting L is an O(p*) operation, solving for the TPS coefficients can be very expensive when p is large.
We will now discuss three different approximation methods that reduce this computational burden to O(m3), where
m can be as small as 0.1p. The corresponding savings factors in memory (5x) and processing time (1000x) thus
make TPS methods tractable when p is very large.

In the discussion below we use the following partition of the K matrix:

A B
K= 2
BT ¢
with A € R™*™, B € R"™*" and C' € R™*". Without loss of generality, we will assume the p points are labeled

in random order, so that the first m points represent a randomly selected subset.

A. Method 1: Simple Subsampling

The simplest approximation technique is to solve for the TPS mapping between a randomly selected subset of the
correspondences. This amounts to using A in place of K in Equation (1). We can then use the recovered coefficients
to extrapolate the TPS mapping to the remaining points. The result of applying this approximation to some sample
shapes is shown in Figure 3. In this case, certain parts were not sampled at all, and as a result the mapping in those

areas is poor.
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Fig. 3. Thin plate spline (TPS) mapping example. (a,b) Template and target synthetic fish shapes, each consisting of 98 points. (Corre-
spondences between the two shapes are known.) (c¢) TPS mapping of (a) onto (b) using the subset of points indicated by circles (Method 1).
Corresponding points are indicated by connecting line segments. Notice the quality of the mapping is poor where the samples are sparse. An
improved approximation can be obtained by making use of the full set of target values; this is illustrated in (d), where we have used Method 2
(discussed in Section III-B). A similar mapping is found for the same set of samples using Method 3 (see Section III-C). In (e-h) we observe

the same behavior for a pair of handwritten digits, where the correspondences (89 in all) have been found using the shape context method.

B. Method 2: Basis Function Subset
An improved approximation can be obtained by using a subset of the basis functions with all of the target values.
Such an approach appears in [10], [6] and Section 3.1 of [8] for the case of Gaussian RBFs. In the TPS case,

we need to account for the affine terms, which leads to a modified set of linear equations. Starting from the cost

function
- 1 o 2 A7, .
R[w,a]:§||1)—Kw—Pa|| —i—§w Aw

we minimize it by setting R/0w and IR/da to zero, which leads to the following (m + 3) x (m + 3) linear
system,
KTK+XA KTP | | w KTy 3
PTK PP a PTy
where KT = [A  BT], @ is an m x 1 vector of TPS coefficients, and the rest of the entries are as before. Thus
we seek weights for the reduced set of basis functions that take into account the full set of p target values contained

in v. If we call P the first m rows of P and I the first m columns of the p X p identity matrix, then under the
assumption PTw =0, Equation (3) is equivalent to
K+ P W v
PT O a o
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which corresponds to the regularized version of Equation (1) when using the subsampled K and PT in place of K
and PT,
The application of this technique to the fish and digit shapes is shown in Figure 3(d,h).

C. Method 3: Matrix Approximation

The essence of Method 2 was to use a subset of exact basis functions to approximate a full set of target values.
We now consider an approach that uses a full set of approximate basis functions to approximate the full set of target
values. The approach is based on a technique known as the Nystrom method.

The Nystrom method provides a means of approximating the eigenvectors of K without using C'. It was originally
developed in the late 1920s for the numerical solution of eigenfunction problems [1] and was recently used in [11]
for fast approximate Gaussian process regression and in [8] (implicitly) to speed up several machine learning
techniques using Gaussian kernels. Implicit to the Nystrdm method is the assumption that C' can be approximated
by BTA™'B,ie.

i-| A b )
BT BTA'B
If rank(K) = m and the m rows of the submatrix [A B are linearly independent, then & = K. In general, the
quality of the approximation can be expressed as the norm of the difference C' — BT A~! B, the Schur complement
of K.

Given the m x m diagonalization A = UAUT, we can proceed to find the approximate eigenvectors of K:

. IS, ) ~ U
K=UAU", with U= )
BTUA!
Note that in general the columns of U are not orthogonal. To address this, first define 7 = UAY? g0 that K =
77T, Let QXQT denote the diagonalization of Z7Z. Then the matrix V = ZQ¥X /2 contains the leading
orthonormalized eigenvectors of K ,i.e. K= VEVT with VTV = 1.

From the standard formula for the partitioned inverse of L, we have

K '+ K 'pSsipTK-1 —K-1pS—!

L= . §=-PTK'P
S 1pTKg-1 S—1
and thus
w Ll (I+ K 'PS—1PTYK—1y
= [~ =
a 0 —S-1PTK—1y

Using the Nystrom approximation to K, we have K 1=vy T and

w=(I+VE'VIPST' PTyVE~V Ty
a=-S'PTvetvTy
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Fig. 4. Grids used for experimental testing. (a) Reference point set Si: 12 X 12 points on the interval [0, 128] X [0,128]. (b,c) Warped
point sets Sz and Sz with bending energy 0.3 and 0.8, respectively. To test the quality of the different approximation methods, we used varying

percentages of points to estimate the TPS mapping from S; to Sz and from S to S3.

with § = —PTVY~'VT P, which is 3 x 3. Therefore, by computing matrix-vector products in the appropriate
order, we can obtain estimates to the TPS coefficients without ever having to invert or store a large p X p matrix.

For the regularized case, one can proceed in the same manner, using
VEVT L AD" = V(S +A)TVT
Finally, the approximate bending energy is given by
wl Kw = (VIw)TS(VTw)

Note that this bending energy is the average of the energies associated to the x and y components as in [3].

Let us briefly consider what w represents. The first m components roughly correspond to the entries in w for
Method 2; these in turn correspond to the columns of K (i.e. K) for which exact information is available. The
remaining entries weight columns of K with (implicitly) filled-in values for all but the first m entries. In our
experiments, we have observed that the latter values of @ are nonzero, which indicates that these approximate basis
functions are not being disregarded. Qualitatively, the approximation quality of methods 2 and 3 are very similar,
which is not surprising since they make use of the same basic information. The pros and cons of these two methods

are investigated in the following section.

IV. EXPERIMENTS
A. Synthetic Grid Test

In order to compare the above three approximation methods, we ran a set of experiments based on warped
versions of the cartesian grid shown in Figure 4(a). The grid consists of 12 x 12 points in a square of dimensions
128 x 128. Call this set of points S1. Using the technique described in Appendix A, we generated point sets Sy
and S3 by applying random TPS warps with bending energy 0.3 and 0.8, respectively; see Figure 4(b,c). We then
studied the quality of each approximation method by varying the percentage of random samples used to estimate

the (unregularized) mapping of S; onto Sy and S3, and measuring the mean squared error (MSE) in the estimated
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Fig. 5. Comparison of approximation error. Mean squared error in position between points in the target grid and corresponding points in the
approximately warped reference grid is plotted vs. percentage of randomly selected samples used. Performance curves for each of the three

methods are shown in (a) for Iy = 0.3 and (b) for Iy = 0.8.

coordinates. The results are plotted in Figure 5. The error bars indicate one standard deviation over 20 repeated

trials.

B. Approximate Principal Warps

In [3] Bookstein develops a multivariate shape analysis framework based on eigenvectors of the bending energy
matrix Ly KL, " = L', which he refers to as principal warps. Interestingly, the first 3 principal warps always
have eigenvalue zero, since any warping of three points in general position (a triangle) can be represented by
an affine transform, for which the bending energy is zero. The shape and associated eigenvalue of the remaining
principal warps lend insight into the bending energy “cost” of a given mapping in terms of that mapping’s projection
onto the principal warps. Through the Nystrém approximation in Method 3, one can produce approximate principal

warps using ﬁ; L as follows:

L'=K*'+K'PS'PTK™!
=vy Wl yvevTpstPTysTyT
=VE +s VTIPS PTYETH VT

2 yAvT

where
A2yl 4+ WTps-1pTy s~ = wDWT
to obtain orthogonal eigenvectors we proceed as in section 3.3 to get
A=wEWw?
where W 2 WD/2Q3:1/2 and Q3Q7 is the diagonalization of DY/2W7 W D'/2. Thus we can write
Lyt =vwswrv?
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An illustration of approximate principal warps for the fish shape is shown in Figure 6, wherein we have used m =
15 samples. As in [3], the principal warps are visualized as continuous surfaces, where the surface is obtained by
applying a warp to the coordinates in the plane using a given eigenvector of ﬁ; ! as the nonlinear spline coefficients;
the affine coordinates are set to zero. The corresponding exact principal warps are shown in Figure 7. In both cases,
warps 4 through 12 are shown, sorted in ascending order by eigenvalue.

Given a rank m Nystrom approximation, at most m — 3 principal warps with nonzero eigenvalue are avail-
able. These correspond to the principal warps at the “low frequency” end, meaning that very localized warps, e.g.

pronounced stretching between adjacent points in the target shape, will not be captured by the approximation.

C. Discussion

We now discuss the relative merits of the above three methods. From the synthetic grid tests we see that Method
1, as expected, has the highest MSE. Considering that the spacing between neighboring points in the grid is about
10, it is noteworthy, however, that all three methods achieve an MSE of less than 2 at 30% subsampling. Thus while
Method 1 is not optimal in the sense of MSE, its performance is likely to be reasonable for some applications, and
it has the advantage of being the least expensive of the three methods.

In terms of MSE, Methods 2 and 3 perform roughly the same, with Method 2 holding a slight edge, more so at 5%
for the second warped grid. Method 3 has a disadvantage built in relative to Method 2, due to the orthogonalization
step; this leads to an additional loss in significant figures and a slight increase in MSE. In this regard Method 2 is
the preferred choice.

While Method 3 is comparatively expensive and has slightly higher MSE than Method 2, it has the benefit of
providing approximate eigenvectors of the bending energy matrix. Thus with Method 3 one has the option of
studying shape transformations using principal warp analysis.

As a final note, we have observed that when the samples are chosen badly, e.g. crowded into a small area, Method
3 performs better than Method 2. This is illustrated in Figure 8, where all of the samples have been chosen at the
back of the tail fin. Larger displacements between corresponding points are evident near the front of the fish for
Method 2. We have also observed that the bending energy estimate of Method 2 (% Aw) exhibits higher variance
than that of Method 3; e.g. at a 20% sampling rate on the fish shapes warped using Iy = 0.3 over 100 trials, Method
2 estimates I to be 0.29 with o = 0.13 whereas Method 3 gives 0.25 and o = 0.06. We conjecture that this

advantage arises from the presence of the approximate basis functions in the Nystrom approximation.

V. CONCLUSION

We have discussed three approximate methods for recovering TPS mappings between 2D pointsets that greatly
reduce the computational burden. An experimental comparison of the approximation error suggests that the two
methods that use only a subset of the available correspondences but take into account the full set of target values

perform very well. Finally, we observed that the method based on the Nystrom approximation allows for principal
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warp analysis and performs better than the basis-subset method when the subset of correspondences is chosen
poorly.

Acknowledgments: The authors wish to thanks Charless Fowlkes, Jitendra Malik, Andrew Ng, Lorenzo Tor-
resani, Yair Weiss, and Alice Zheng for helpful discussions. We would also like to thank Haili Chui and Anand

Rangarajan for useful insights and for providing the fish datasets.

APPENDIX: GENERATING RANDOM TPS TRANSFORMATIONS

‘We now show how to produce a random TPS transformation with bending energy /¢ = v for a set of p reference
coordinates. The procedure consists of the following two steps: (1) find target values v such that vTL; lv=1,(Q)
compute the TPS coefficients using the formula w = L Ly,

Let L' be diagonalized as

-1 _ T
L' =UAU

¢From [3] and [7], we know that L ! is positive semidefinite with its three smallest eigenvalues equal to zero. This
fact must be taken account in the following step in which we transform a random vector to obtain v. We will assume

the eigenvalues along the diagonal of A are sorted in descending order, and we will also make use of the fact that

Iy = wl Kw = UTL;IKL;IQ) =vTL 1

p
Generate a random vector u. € RP, set its last three components to zero, and normalize it so that ||u|| = 1. Next,
compute
v=+wUAN
Observe that
vTLglv = vl AV2UTUAUTUA 20
2
= vull
= v

Finally, using the fact that

the desired random TPS coefficients are given by
w = vUA?y

Since Iy is unaffected by the affine terms, their values are arbitrary; we set translation to (0, 0) and scaling to

(1,0) and (0,1).
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