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Evaluating Quality Improvement Interventions: 

Strengthening Causal Inference with Observational Data 

Priya April Prasad 

Abstract 

As innovations in healthcare delivery systems and electronic medical records (EMR) data capture 

develop, the methods employed to evaluate interventions disseminated to improve the quality and 

efficiency of patient care should evolve as well.  Healthcare quality improvement (QI) interventions can 

be evaluated at the level of the individual or the group and a key initial step in designing an evaluation 

plan is to determine the desired level of inference.  Before data are even collected, a comprehensive 

analytic plan should be developed to accurately measure outcomes and exposures, taking into account the 

source, fidelity, and complexity of the data available for inclusion and the assumptions that must be 

fulfilled when assessing the effect of the intervention.  Through my dissertation work I have explored 

these themes and how they relate to the development of a responsible QI evaluation in three separate 

domains.    

The first chapter of my dissertation focuses on assessing the effect of an intervention at the 

individual level to identify and manage sepsis, a syndrome which causes significant morbidity and 

mortality.  In a retrospective cohort study of adults discharged from the University of California San 

Francisco (UCSF) Medical Center with severe sepsis or septic shock between 2012 and 2014, the 

adjusted risk of mortality was estimated using Poisson regression for a binary outcome variable and an 

adjusted number needed to treat (NNT) was calculated.  The analysis revealed that the UCSF sepsis 

bundle was associated with a 31% decreased risk of in-hospital mortality across hospital units (adjusted 

incidence rate ratio 0.69, 95% Confidence Interval (CI) 0.53, 0.91) after robust control for confounders 

and risk adjustment and the adjusted NNT of 15 (CI 8, 69) provides a reasonable and achievable goal to 

observe measureable improvements in outcomes for patients diagnosed with SS/SS. 

In the second chapter of my dissertation, I review the causal inference framework and how it 

relates to the evaluation of quality improvement interventions that use aggregate outcome and exposure 
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data in the setting of interrupted time-series analysis.  The reader is presented with an analysis plan 

diagram along with detailed guidance on how to design a robust quality improvement evaluation.  The 

manuscript focuses on the different strategies that can be employed when modeling the effect of an 

intervention measured at the group level and the reader is presented with a concrete example from a 

multidisciplinary intervention implemented at UCSF Medical Center to decrease the use of packed red 

blood cell transfusions. 

 The third chapter of this work focuses on developing a metric to measure timely access to 

ambulatory specialty care.  Using data from nearly 60,000 patients who sought primary care at UCSF 

Medical Center between 2013 and 2015, I explored associations between population-level weekly 

ambulatory specialty care access defined three ways and the rate of population-level weekly poor health 

outcomes, including emergency department visits, inpatient encounters, and mortality. Specialties of 

interest included cardiology, hematology, neurology, otolaryngology and head and neck surgery, and 

urology.  Based on unadjusted Poisson analysis, there were correlations identified between poor outcomes 

and timely access to care in some specialties and the results provide a springboard for future exploration 

of metric performance and adjustment. 

 As a body of work, my dissertation illustrates the breadth of the field of healthcare QI, providing 

evidence to support the continued evolution of robust methods for evaluation of interventions that will 

improve the quality, safety, and value of healthcare delivered nationally and globally.  
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Chapter 1: Relationship between a sepsis intervention bundle and in-hospital mortality among 

hospitalized patients: a retrospective analysis of real-world data 

 

Priya A. Prasad, Erica R. Shea, Stephen Shiboski, Mary C. Sullivan, Ralph Gonzales,  

and David Shimabukuro 
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INTRODUCTION 

Sepsis is a systemic response to infection which can lead to tissue damage, organ failure, and 

death. The incidence of severe sepsis has increased in recent years in the United States
1
 while the 

mortality has decreased and ranges from 15% to 30%
1,2

.   

In 2001, Rivers et al. demonstrated significant reduction in septic shock mortality through the use 

of early goal-directed therapy
3
.  Based on these findings, in 2002 the Surviving Sepsis Campaign (SSC) 

was formed to increase sepsis awareness among clinicians and to provide evidence-based guidelines on 

sepsis control and management.  The SSC, in collaboration with the European Society of Intensive Care 

Medicine (ESICM), created a standardized bundle of interventions to manage sepsis early in the illness 

course and tested it worldwide
4
.  The University of California, San Francisco (UCSF), received funding 

from the California Delivery System Reform Incentive Program to deploy an intervention bundle similar 

to the SSC and track bundle compliance among the patients diagnosed with severe sepsis or septic shock 

(SS/SS). 

While data from randomized controlled trials demonstrate the protective effect of the SSC’s 

resuscitation bundle
5
, the aim of our study was to explore the relationship between in-hospital mortality 

and a minimally invasive SS/SS bundle within a retrospective observational cohort.  Using methods 

developed for the robust analysis of observational data, we provide evidence supporting the practical 

application of a quality improvement initiative to address outcomes related to SS/SS.  
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METHODS 

Study Population 

Subjects were adult patients (age ≥ 18 years) discharged between January 1, 2012 and December 

31, 2014 and who received an International Classification of Diseases, 9th Revision (ICD-9) diagnosis 

code of Severe Sepsis (995.92) or Septic Shock (785.82) at UCSF, a quaternary care academic medical 

center.  Patients were excluded if they were admitted with a “Do Not Resuscitate/Do Not Intubate” 

(DNR/DNI) order, if their status changed to DNR/DNI at any time between admission and within a day of 

sepsis presentation, or if they were transferred from another institution with SS/SS present on admission 

(POA) or developed SS/SS within 24 hours of admission. If a subject had multiple admissions with a 

diagnosis of SS/SS during the study period, each discharge was included independently in the analysis. 

Major Study Definitions 

SS/SS time of presentation: 

Time of SS/SS presentation was defined as the time at which two signs of systemic inflammatory 

response syndrome (SIRS)
6
 and one sign of organ failure in the presence of a known or suspected 

infection were identified through chart review. Chart abstraction entailed an extensive review of provider 

progress notes and nursing documentation, along with vital sign and laboratory data. All cases were first 

reviewed by a registered nurse quality analyst. Complex cases were escalated to the medical director of 

the Sepsis Program and/or the emergency department (ED) physician champion for further review. 

Furthermore, the cases found to be non-compliant were sent to the front-line teams for feedback and 

review. 

Bundle compliance: Elements of the intervention bundle appear in Table 1. Of note, the UCSF bundle did 

not include measurement of central venous pressure or central venous oxygen saturation through a central 

venous catheter.  Compliance with each bundle element was assessed starting from the time of SS/SS 

presentation based on medical record review.  Bundle compliance was represented as a binary variable 

indicating that all eligible elements were satisfied (i.e. care was considered bundle compliant), In 

addition, individual bundle elements were evaluated to investigate impacts on mortality. 
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Mortality: In-hospital mortality was determined through manual chart abstraction. 

Data collection 

Data on bundle compliance, discharge disposition, and demographics were collected using the 

UCSF electronic medical record (EMR). Clinicians (nurses and physicians) conducted a standardized 

chart review of every study subject to confirm SS/SS diagnosis and determine the time of SS/SS 

presentation.  

The Vizient Clinical Database/Resource Manager (CDB/RM) was used to identify subject 

comorbidities based on administrative data. Vizient membership includes 117 not for profit academic 

hospitals and more than 300 affiliated community hospitals in 42 US states. Approximately 110 academic 

hospitals and 190 affiliate community hospitals participate in the CDB/RM. Elements extracted included 

diagnosis codes with POA designation, procedure codes, admission/discharge severity of illness and risk 

of mortality calculated using 3M’s APR-DRG groupers, and Medicaid/Medicare as primary or secondary 

payor.  

Immunocompromised status and malignancy were identified using Vizient service lines 

(Appendix A).  End stage renal disease (ESRD) (ICD-9 585.6) and congestive heart failure (CHF) (ICD-9 

428.0) POA were identified using ICD-9 codes. SS/SS was counted as POA if the time of presentation 

based on manual symptom review was within 24 hours of hospital admission or ED triage time, 

whichever was earlier. The study was approved by the UCSF Committee on Human Research, received a 

waiver of documentation of informed consent, and adheres to the EQUATOR guidelines. 

Statistical analysis 

Chi-squared tests were used to evaluate associations between the in-hospital mortality outcome, 

bundle compliance, and other categorical variables describing demographic and admission characteristics 

(Table 2).  Differences in the distribution of patient age between groups defined by the bundle compliance 

and in-hospital mortality variables were summarized using medians and interquartile ranges (IQR) and 

with Mann-Whitney rank-sum tests.  Multiple predictor regression models were constructed to identify 

independent risk factors for in-hospital mortality. Models included the bundle compliance indicator 
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variable and adjusted for additional predictors with marginal associations with the outcome significant at 

the p< 0.20 level. For ease of interpretation, we elected to use Poisson regression for the in-hospital 

mortality outcome with robust standard errors
7
 as the exponentiated regression coefficients from this 

approach have an adjusted IRR interpretation. Fitted models were also used to estimate the marginal risk 

difference comparing mortality risk in the two bundle compliance groups, as well as the number needed 

to treat (NNT) to save one life.  

A propensity score model was developed to relate bundle compliance to confounders of the 

association with in-hospital mortality.  Categorical variables for quintiles of propensity score were then 

generated and the degree of balance achieved by the estimated scores in the distribution of confounders 

between those who were bundle compliant and those who were bundle non-compliant was assessed. We 

then graphically compared the distributions of propensity scores between groups to assess the degree of 

balance and overlap. As a confirmatory analysis, we included the propensity score quintiles as categorical 

variables in the Poisson regression to obtain the marginal risk ratio and risk difference for the estimated 

effect of bundle compliance on in-hospital mortality.  Finally, we used the estimated propensity scores to 

define inverse probability of treatment weights and incorporated them into the Poisson regression to 

obtain the marginal risk ratio and risk difference for the estimated effect of bundle compliance on 

mortality.
8
 

We explored potential interactions between bundle compliance and other predictors included in 

the adjusted regression model.  We performed stratified analyses by diagnosis code status using separate 

regressions as the two included sepsis codes reflect distinct disease processes and we wanted to identify 

whether the bundle differentially affected these two populations.   

All analyses were conducted using Stata 13 (College Station, TX). 

RESULTS 

Study cohort 

During the three year study period there were 69,582 adult discharges and 1,844 discharges with 

an ICD-9 code for SS/SS at UCSF (incidence of 27 per 1,000 discharges).  Of those, 1,029 discharges 
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(956 unique patients) met the inclusion criteria for bundle compliance assessment. Those who were 

excluded from assessment were more likely to have expired at discharge (35% v. 18%, p <0.00001) and 

were statistically significantly older (median 66 years v. 64 years, p=0.0001).  All patients had the severe 

sepsis code documented and 446 patients also had the septic shock code documented. The majority of 

patients presented with SS/SS in the ED (703, 68%), followed by the ICU (137, 13%), acute care units 

(128, 12%), and transitional units (61, 6%). 

Relationship between bundle compliance and in-hospital mortality 

Among the 1,029 study subjects, 742 were bundle compliant (72%). Those who were bundle 

compliant were less likely to die based on bivariable analysis (14% v. 27% mortality, p<0.0001)(Figure 

1).  There were 181 total subjects (18%) who died during the study period with a median time to death of 

9 days (IQR 4 to 20 days), with no significant difference in time to death between those who were bundle 

compliant or non-compliant (median of 9 days versus 10 days, respectively, p=0.3065). Factors 

marginally associated with in-hospital mortality upon bivariable analyses can be found in Table 2.  

Overall bundle compliance was significantly associated with decreased mortality on bivariable analysis. 

Further, all individual bundle elements except vasopressor administration were also significantly 

associated with decreased in-hospital mortality in the bivariable analysis.  

The adjusted risk of in-hospital mortality was an estimated 31% lower among those who 

experienced complete bundle compliance compared to those who did not (IRR 0.69, CI 0.53, 0.91), when 

controlling for SS/SS presentation in the ED, SS/SS POA, age, admission severity of illness and risk of 

mortality, Medicaid/Medicare payor status, immunocompromised host status, and CHF POA (Table 3).  

The adjusted marginal risk difference was 6.8% (CI 1.4%, 12.1%) and the adjusted NNT was 15 (CI 8, 

69). 

There were no significant issues of balance or overlap identified when mean values of propensity 

scores within propensity score quintiles were compared between those who were bundle compliant and 

bundle non-compliant (Table 4).  In addition, no significant areas of overlap were identified with a 

graphical comparison of the distributions of propensity scores between groups (Supplemental Figure 1), 
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indicating that our adjusted estimates were adequately supported by the data collected. When propensity 

score quintiles were included in the Poisson regression as categorical variables, the marginal IRR was 

0.70 (CI 0.53, 0.93) and the marginal risk difference was 6.6% (CI 1.2%, 12.0%). When propensity scores 

were included in the Poisson regression as inverse probability of treatment weights, the marginal IRR was 

0.72 (CI 0.53, 0.98) and the marginal risk difference was 5.8% (CI 0.07%, 11.6%). 

There was no statistically significant difference in the relationship between in-hospital mortality 

and the bundle among patients documented with the severe sepsis code alone (adjusted IRR 0.73, CI 0.46, 

1.17); however, there was a trend towards a decreased risk among those who had the septic shock code 

documented and received bundle compliant care (adjusted IRR 0.72, CI 0.52, 1.01).  

There were no statistically significant interactions (p<0.20) identified between bundle compliance 

and the other factors in the multivariable model.  Of note, there was no statistically significant interaction 

between bundle compliance and sepsis POA (interaction term p = 0.686). 

Other Factors Independently Associated with Mortality in the Study Cohort 

 Patients who presented with SS/SS were significantly less likely to die (adjusted IRR 0.55, CI 

0.32, 0.92) when compared to those who developed SS/SS after hospital admission (Table 3).  Age was 

also a significant predictor of mortality in the study cohort (adjusted IRR 1.13 per 10 year increase in age, 

CI 1.03, 1.24). 

DISCUSSION 

Based on observational data from a retrospective cohort of SS/SS patients who received care at 

UCSF, complete bundle compliance with a minimally invasive sepsis intervention bundle was associated 

with a 31% decreased risk of in-hospital mortality, the adjusted in-hospital mortality risk difference 

between those who did and did not experience complete bundle compliance was 6.8% (CI 1.4%, 12.1%), 

and the adjusted NNT to save one life was 15 individuals (CI 8, 69).  In addition, those who had an SS/SS 

diagnosis POA experienced a 45% decreased risk of in-hospital mortality after controlling for 

confounders.  
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Our findings demonstrate that those who experienced complete compliance with a sepsis care 

bundle implemented as a quality improvement initiative were less likely to expire, which is important in 

the setting of poorly-understood epidemiological trends in SS/SS incidence and mortality.  The increasing 

incidence of severe sepsis has been accompanied by steadily declining mortality rates but it remains 

unclear how much of the decline in mortality is due to improved sepsis recognition and treatment versus 

the effect of increased coding capture which floods the severe sepsis denominator with less severely ill 

patients
9,10

.  At our institution the incidence of ICD-9 coded SS/SS was 27 per 1,000 discharges.  Angus 

et al. identified 3 cases per 1,000 population and 2.26 cases per 100 hospital discharges when utilizing 

infection and organ failure ICD-9 codes
11

. 

Results of the IMPreSS trial of 1,794 ED and ICU patients showed that sepsis bundle compliance 

led to 36% lower odds of in-hospital mortality when controlling for ICU admission, sepsis code status, 

location of diagnosis, APACHE II score, and country (odds ratio 0.64, CI 0.47, 0.87)
4
. The findings from 

our study are comparable but include data from all hospital units. The SSC found that compliance with all 

resuscitation measures was associated with a 21% decrease in odds of in-hospital mortality when 

controlling for Sepsis Severity Score and participation in a sepsis resuscitation bundle awareness 

campaign
12

.  The results from the evaluation of our bundle which did not include monitoring of central 

venous pressure or central venous oxygen saturation through a central venous catheter are consistent with 

those published in other trials that have questioned the benefit of goal-directed therapy
13-15

.  

Our study’s adjusted NNT is larger than those reported in previous analyses.  Cardoso et al. 

calculated an NNT of 6 among a cohort of ICU patients in Portugal
16

 while Otero et al. combined data 

from several different sepsis control programs to calculate a summary NNT of 5 with individual programs 

reporting NNTs between 3 and 11
17

.  The strength of our NNT is that it was calculated using 

observational data from all hospital units, not just ICUs or EDs, which provides evidence to support the 

use of sepsis care bundles in broader hospital settings. 

SS/SS POA was associated with a decreased risk of in-hospital mortality in our cohort, which is a 

novel finding that warrants further study. In addition, we did not identify a significant interaction between 
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bundle compliance and SS/SS POA.  There have been two other recent studies which have examined 

differences in patient outcomes when SS/SS is POA versus hospital-acquired (HA) and report findings 

consistent with our work.  Page et al. found patients with HA sepsis had a greater risk of inpatient 

mortality than patients with community acquired sepsis.
18

 Similarly, Jones et al. found HA sepsis was 

associated with a higher mortality than POA sepsis
19

. While prior studies utilized administrative POA 

indicators to determine sepsis status, time of SS/SS presentation and SS/SS POA status was calculated 

based on clinician review. When comparing manual review of dates as the gold standard to the 

administrative SS/SS POA flag in our dataset, we found that the sensitivity of the administrative flag was 

96% and the specificity was 73%, a discrepancy that may have led to the differences in findings in 

previous studies. 

 It is unclear why SS/SS POA survival is significantly improved compared to HA SS/SS. The 

majority of patients with SS/SS POA present in the ED where teams are generally more experienced with 

sepsis recognition and had access to critical resources and treatment protocols. We were unable to 

ascertain blood culture results in our sepsis cohort but another potential explanation to explore is whether 

the pathogen mix differs in virulence between those who present to the hospital with sepsis and those who 

develop it in an inpatient unit which could have implications for antibiotic stewardship and development 

of antimicrobial protocols applied in different clinical settings. 

Although every attempt was made to minimize bias and confounding in this observational study, 

our findings should be interpreted with some limitations in mind. This is a single center study which may 

not be generalizable in other settings and populations. Based on the workflow of the UCSF electronic 

record, mortality status was known at the time of compliance evaluation leaving the evaluation 

susceptible to bias.  However, the bundle elements were timestamp-driven which makes it unlikely that 

data collection would be affected by outcome status.  While chart reviews were conducted for all subjects 

coded with SS/SS, it is unknown how many SS/SS shock patients were missed because of documentation 

that was not sufficient to code them as such. Previous studies found severe sepsis patients identified via 
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coded data are more severely ill than severe sepsis patients whose records do not include the codes
20

.  The 

Vizient database was used to query ICD-9 diagnosis and procedure codes, as well as admission severity 

of illness and risk of mortality that are based on the 3M APR-DRG groupers.  If there were any 

inconsistencies in coding of ICD-9 diagnoses present on admission, severity of illness and risk of 

mortality scores may have been affected.  Our study excluded 815 patients who were either transferred to 

UCSF with SS/SS POA and may or may not have received bundle elements at an outside institution or 

DNR/DNI because elements of the intervention bundle may not have been consistent with patients’ goals 

of care. Therefore, our results may not be generalizable to the transfer and DNR/DNI population. While 

an adjusted sensitivity analysis of the relationship between bundle compliance and mortality could not be 

conducted due to limitations in the data, the unadjusted IRR for bundle compliance would be 0.38 (95% 

CI 0.31, 0.46) if all were counted as bundle non-compliant and if all were counted as bundle compliant, 

the unadjusted IRR for bundle compliance would be 1.03 (95% CI 0.83, 1.27).  Finally, we also elected to 

analyze each discharge independently therefore if there was an effect of clustering at the patient level we 

did not include it in our models. 

In conclusion, we found that a simple sepsis resuscitation bundle was associated with a decreased 

risk of in-hospital mortality within a cohort of SS/SS patients at UCSF.  Given the changing 

epidemiology of SS/SS and the demonstrated effectiveness in randomized controlled trials as well as 

observational studies like ours, future work should focus on determining the attributable cost and length 

of stay saved by patients who experience complete compliance with sepsis intervention bundles.  In 

addition, the contribution of each bundle element to the risk of mortality should be assessed with rigor in 

real-world settings to target resources towards interventions which will be most efficient at improving 

care in all corners of the world. 
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Table 1.1. University of California San Francisco sepsis resuscitation bundle elements 

Intervention Bundle Element Specifications 

Lactate Level Blood lactate level drawn 

Blood Culture Blood culture drawn prior to initiating antibiotics 

Antibiotic Administration a) Initiation of broad spectrum antibiotics within 3 hours of sepsis 

presentation in the Emergency Department 

OR 

b) Initiation of broad spectrum antibiotics within 1 hours of sepsis 

presentation in an Inpatient Hospital Unit 

Fluid Administration If the patient was hypotensive or had a lactate level >4 mmol/L, 

starting an intravenous fluid bolus  

Vasopressor Administration If the patient remained hypotensive following fluid administration, 

starting an intravenous vasopressor 
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Table 1.2. Bundle, demographic and clinical characteristics of 1,029 patients diagnosed with severe 

sepsis or septic shock (SS/SS) stratified by mortality status  

 

Characteristic Alive 

(n=848) 

Died 

(n=181) 

p-value 

Bundle Compliance Elements 

Perfect bundle compliance (binary) 638 (75%) 104 (58%) <0.0001 

Lactate compliant 793 (94%) 156 (86%) 0.001 

Blood culture compliant 792 (93%) 154 (85%) <0.0001 

Antibiotics compliant 758 (89%) 134 (74%) <0.0001 

Fluids compliant, if applicable 

(n=705) 

521 (92%) 118 (84%) 0.004 

Vasopressors compliant, if 

applicable (n=445) 

294 (86%) 94 (91%) 0.158 

Admission Characteristics 

Age at admission (median, IQR) 63 (52, 73) 67 (56, 79) 0.006 

Male gender 473 (56%) 97 (54%) 0.591 

White race 403 (48%) 85 (47%) 0.891 

Admission severity of illness   0.001 

     Minor or Moderate 100 (12%) 24 (13%)  

     Major 341 (40%) 47 (26%)  

     Extreme 407 (48%) 110 (61%)  

Admission risk of mortality   <0.0001 

     Minor 59 (7%) 11 (6%)  

     Moderate 110 (13%) 32 (18%)  

     Major 300 (35%) 30 (17%)  

     Extreme 379 (45%) 108 (60%)  

Medicaid/Medicare (primary or 

secondary) 

705 (83%) 160 (88%) 0.079 

SS/SS present on admission 664 (78%) 102 (56%) <0.0001 

Immunocompromised status   0.009 

     None 752 (89%) 157 (87%)  

     Malignancy 37 (4%) 17 (9%)  

     Other immunocompromised 

condition 

59 (7%) 7 (4%)  

End stage renal disease present on 

admission 

37 (4%) 11 (6%) 0.321 

 

Congestive heart failure present on 

admission 

117 (14%) 39 (22%) 0.008 

SS/SS diagnosis in emergency 

department 

613 (72%) 90 (50%) <0.0001 
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Table 1.3. Poisson models for independent risk factors for death in a cohort of severe sepsis or 

septic shock (SS/SS) patients who had bundle compliance assessed 

 

Variable Risk of Death 

IRR (95% CI) 

with binary bundle 

compliance exposure* 

Compliance with all eligible bundle elements 0.69 (0.53, 0.91) 

SS/SS present on admission 0.55 (0.32, 0.92) 

Age scaled by 10 years  1.13 (1.03, 1.24) 

Admission severity of illness  

     Minor or Moderate REF 

     Major 1.00 (0.59, 1.71) 

     Extreme 1.62 (0.84, 3.14) 

Admission risk of mortality  

     Minor REF 

     Moderate 1.44 (0.78, 2.68) 

     Major 0.72 (0.33, 1.55) 

     Extreme 1.37 (0.62, 3.01) 

Medicaid as primary/secondary payor 1.27 (0.82, 1.96) 

Immunocompromised status  

     No immunocompromise REF 

     Malignancy 1.41 (0.88, 2.24) 

     Other immunocompromised condition 0.71 (0.40, 1.26) 

Congestive heart failure present on admission 1.31 (0.96, 1.78) 

SS/SS presentation in the emergency 

department 

0.78 (0.46, 1.31) 

*IRRs and 95% CIs estimated with Poisson regression and assumed robust variance. 
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Table 1.4. Mean values of covariates included in the bundle compliance propensity score model 

stratified by compliance status and propensity score quintile 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

SS/SS POA 

Non-compliant 0.107 0.55 1 1 1 

Compliant 0.141 0.646 1 0.994 1 

Age in years 

Non-compliant 64.1 60.7 63.3 63.3 52.3 

Compliant 60.8 61.6 66.2 67.7 62.7 

Admission Severity of Illness 

Non-compliant 1.08 1.35 1.72 1.14 1.3 

Compliant 1.36 1.43 1.55 1.13 1.41 

Admission Risk of Mortality 

Non-compliant 1.62 2.1 2.59 2.59 2.18 

Compliant 1.93 2.21 2.24 2.53 2.25 

Immunocompromised  

Non-compliant 0.273 0.3 0.438 0 0.0455 

Compliant 0.271 0.52 0.15 0 0.0165 

Congestive Heart Failure POA 

Non-compliant 0.19 0.262 0.156 0.0313 0 

Compliant 0.212 0.331 0.26 0 0.00549 

In Emergency Department at Time of Presentation 

Non-compliant 0 0.3 1 1 1 

Compliant 0 0.496 1 1 1 

Medicaid/Medicare Payor 

Non-compliant 0.76 0.9 0.75 0.813 0.864 

Compliant 0.729 0.874 0.746 0.891 0.956 

 

  



18 
 

Figure 1.1. Study population for the evaluation of a sepsis resuscitation bundle at the University of 

California, San Francisco (UCSF) 
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Figure 1.2. Propensity Scores in Bundle Compliant and Bundle Non-Compliant Subjects 
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Chapter 2: Applying causal inference methods to quality improvement initiatives implemented  

at the group level: Narrative review of a research methodology 

 

Priya A. Prasad, Steven Shiboski, and Ralph Gonzales 
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INTRODUCTION 

Increased attention has been paid in the recent literature to conducting observational studies with 

an eye towards causal inference and strengthening internal validity.  Causal inference methods emphasize 

the requirement for clear statement of assumptions needed to draw causal inferences from existing data. 

The causal inference framework has allowed a more precise language to evolve to describe factors that 

may confound and mediate the relationship between exposure and outcome, particularly when exposures, 

outcomes and covariates are being measured over time.
1
  By encouraging investigators to explore these 

issues prior to performing a study, appropriate analyses can be specified in the design stage of an 

evaluation.  

The goal of this work was to provide a review of causal inference methodology and its 

application to the evaluation of quality improvement (QI) interventions using interrupted time-series 

analyses (ITSA) for evaluations where data are only available at the aggregate level and no patient or 

individual level data are available, no individual aggregate outcome and exposure data are collected.  In 

addition to a review of literature on causal inference and ITSA, we provide a real world example 

illustrating the concepts discussed, evaluating the effects of an intervention applied at a group level aimed 

at decreasing packed red blood cell (PRBC) transfusions. 

SUMMARY OF RELEVANT LITERATURE 

Historically, it has been challenging to publish evaluations of QI initiatives in the peer-reviewed 

literature because the methods used often vary from those traditionally applied when studying the etiology 

of disease and the findings of QI studies are perceived to be unique to the institution under evaluation.
2
 

Because it is imperative that QI evaluations are designed to provide robust evidence on the utility of 

interventions, QI leaders and stakeholders have developed the SQUIRE guidelines.  These guidelines 

provide frontline clinicians and local champions with tools to effectively design and present work that is 
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both internally valid and allows the investigator to assess the causal relationship between the intervention 

and the outcome of interest.
3
   

Causal Inference and Quality Improvement 

In QI evaluation, the ultimate goal is to show that there is a causal relationship between the 

interventions implemented and the outcomes that are observed in the target population.  The causal effect 

of an intervention for a particular individual or unit of analysis is defined as the contrast between the 

outcomes observed in the presence and absence of intervention. In the causal inference framework, both 

outcomes are referred to as “potential” or “counterfactual” but only one of them is actually observed. 

Because the causal effect is typically not observable at the individual level, an intervention effect is 

summarized as the average causal effect, defined as the difference between population average potential 

outcomes with and without the intervention.
1
  

Assumptions required for causal inference with observational data 

Under specific assumptions, estimates from observational studies match causal effects. To derive 

valid causal effect estimates from observational data, we must assume that the treatment is consistently 

defined and that there is no interference or contamination in outcomes between units of observation. 

Another key assumption is that potential outcomes are independent of intervention assignment. Another 

name for this condition is exchangeability : the potential outcomes for treated units are exchangeable with 

the potential outcomes of untreated units, even though the actual outcomes of treated and untreated units 

may differ.  Exchangeability is generally satisfied in randomized controlled trials, but is more of a 

concern for observational studies, including most QI evaluations. In these situations, a weaker version of 

exchangeability must apply for valid causal inference: intervention assignment is conditionally 

independent of the potential outcomes conditional on the values of observed confounding covariates. The 

weaker version of exchangeability implies that valid inference can be drawn when all confounders are 

correctly and fully accounted for.  As a result, investigators need to ensure that all such variables are 

identified during the design stage, measured during the data collection phase, and controlled for in 
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analyses. A final practical requirement for valid estimation of causal effects is that the distribution of 

variables controlled for in the analysis should be overlapping in the intervention and non-intervention 

groups. If this assumption is not satisfied, estimated effects may be due in part to extrapolation where few 

data exist, affecting the credibility of results.
1, 4

 

When it seems impossible to fully account for all potential confounders, an alternative approach 

is to contrast the unit of intervention against itself, and let each unit serve as its own control, for example, 

in a pre-post comparison.  In this setting, the exchangeability assumption relates to the unit’s outcomes 

change after intervention only due to the introduction of the intervention.  When multiple observations are 

available leading up to the introduction of the intervention and afterwards, this is referred to as an 

interrupted time-series analysis (ITSA).   

Interrupted Time-Series Analysis 

QI interventions are often implemented at the group level at a particular time rather than 

randomized within individuals, limiting information about intervention effects to before/after 

comparisons of outcomes. In addition, outcome, exposure, and covariate data for QI evaluations are often 

only available in an aggregate group-level form. ITSA is a common method used to analyze the resulting 

data, quantifying the effect of the “interruption” by comparing average outcomes observed before and 

after the intervention.
5
 In its simplest form, a time-series involves repeated measurements of an outcome 

within a unit of analysis (i.e., individuals, clinical units, hospitals, facilities) over time.
6, 7

  Figure 2.1 

provides a plot of the time-series from our real-world example. Key elements of an ITSA include 

assessment of the pattern the effect takes (level and slope), how well the pattern holds moving forward in 

time, and whether there is an immediate effect following the interruption.
8
  There are strengths of ITSA 

for QI evaluation and research.  First, by modeling observed outcomes prior to and following the 

intervention, one can account for underlying secular and cyclical trends
6, 9, 10

 and ITSA methods can be 

applied in situations where only aggregate data exist.
7, 9

 ITSA provides an intuitive display of data for 

policy makers and administrators as well.
7
  A phenomenon to consider with ITSA is autocorrelation, 

where neighboring values of the outcome may be more highly related than those farther apart in time.  
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Ignoring autocorrelation when present can lead to spurious inferences about intervention effects from 

resulting analyses.
6, 9, 11

 

Causal Inference and ITSA: Assumptions and Causal Quantities  

 Given that detailed descriptions of requirements for valid inferences from ITS designs are 

provided in a number of references,
6, 8, 12, 13

 we provide a brief summary here.  Adapting the counterfactual 

framework for causal inference introduced above to apply to an ITSA design requires that the key 

assumption of exchangeability holds, even though outcomes observed in the absence and presence of the 

intervention are separated in time. In particular, ITSA approaches assume that potential outcomes can be 

estimated using the trajectory of the observed data prior to the implementation of the intervention.
12

 

Another major assumption which allows for formal inference to be drawn from ITSA results is the 

stationarity of the distribution of the outcome.  An outcome is stationary if its distribution is the same 

regardless of the point in time at which we elect to observe it, a concrete example being white noise.  By 

ensuring stationarity of the data, there can be some element of replication in a time series which allows 

for formal causal inference.
6
 As mentioned above, assumptions of autocorrelation should also be 

considered when appropriate.   

One of the advantages of ITSA is that it is possible to account for the effects of the passage of 

time in the estimation of causal quantities. By adding nuance to the interpretation of the average causal 

effect, the average treatment history effect that can be calculated in an ITSA takes into account the effect 

of the treatment at a given time but also the effect of the treatment at lagged values of time.  The 

contemporaneous effect of treatment can also be derived and can be considered the “blip effect.” The 

measure of contemporaneous effect of treatment would allow the investigator to determine the immediate 

effect of switching all individuals from no treatment to treatment at a specified time.
13

  

Time-dependent confounding in time series studies 

 An area of recent focus in epidemiologic research has been on how to handle a special case of 

confounding where the confounder is a risk factor for the outcome and a predictor of subsequent 
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exposure, a phenomenon called time-dependent confounding (TDC).
4
 Studies in pharmacoepidemiology 

often involve TDC because the effects of drug treatment may be dependent on time and factors associated 

with the outcome may be affected by previous drug treatment as well.  In these situations, marginal 

structural models can reliably estimate the causal effects of time-varying exposures when a system 

includes TDC that are affected by prior treatment.
14

 Although it is beyond the scope of the present paper, 

methods have been developed to incorporate TDC into ITSA.
13

 

Threats to Validity in ITSA 

 Similar to other analytic approaches for data from observational studies, ITSA does have some 

internal and external threats to validity.  Because satisfying the assumptions for causality in this setting 

can be difficult, critics suggest that ITSA and other quasi-experimental study designs are subject to biases 

and confounding that are not present in randomized controlled trial designs and the causal claims made 

from ITSA should be interpreted with caution.
15

 Frameworks that apply to ITSA stipulate that an 

intervention is merely a potential cause of the effect, therefore its use as a justification for causal 

inference has been called into question
16

 as there could be other causes and unmeasured confounding that 

are unaccounted for in the analysis, particularly when only a single group is followed before and after an 

intervention.
17

  Other potential threats to validity in single group ITSAs include instrumentation bias, 

where the method for ascertaining the outcome may change during the study period, and selection bias if 

the characteristics of the single group change over the study period.  Several of these threats could be 

addressed by including a control group in the analysis.
8, 17

 

Real-World Example: Effect of an Intervention to Decrease Packed Red Blood Cell Transfusions 

For the remainder of this work we will use a real-world example to illustrate the analytic approaches 

presented.  Following is a description of this example. 

Description of the intervention:  

The Caring Wisely “Transfuse One” intervention was implemented at the hospital service level in 

October 2013 in three hospital units: Orthopedics, Neurosurgery, and Hospital Medicine (excluding 
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Hematology-Oncology) services at the University of California at San Francisco, an academic medical 

center.  The intervention included a physician, nurse and trainee education and awareness campaign that 

included updated practice guidelines and recommendations from the American Association of Blood 

Banks.  A tree map showing the transfusion volume and mean pre-transfusion hemoglobin levels for 

hospital services and individual physicians was developed to demonstrate to target audiences how 

services compared with one another. 

Data Collection and Analysis 

The RBC transfusions team proposed to reduce total RBC transfusions by at least 5% for adult non-

intensive care unit patients over the course of one year, with a focus on transfusing one unit at a time 

based on pre-transfusion hemoglobin levels.  Aggregate outcome data were collected over a 2-year 

period, from July 1, 2012 to June 30, 2014. Non-intervention hospital units that served adult patients were 

included as the comparator group for the intervention.   We considered two outcomes of interest: the 

count of total PRBC units transfused to determine the overall effect of the intervention at the level of the 

hospital and the average PRBCs transfused per discharge to determine the effect the intervention had over 

the hospital census to control for changing patient volume.  The primary exposure of interest was the 

“Transfuse One” intervention.  Additional data elements included median patient age, proportion of 

patients who were male and proportion of patients with a primary payor of Medicaid/Medicare, measured 

averaged across the intervention units.  All analyses were conducted in Stata 13 (College Station, TX).  

Details of the statistical analysis appear throughout the remainder of the manuscript and the study will be 

referred to as the “CW-PRBC Evaluation.” 

Developing an Analysis Strategy Using Aggregate QI Data 

In order to draw causal inference from observational data in any type of analysis the final analytic 

model must be correctly specified, meaning that outcomes, exposures, and covariates are appropriately 

defined.  The following sections provide a summary of proposed steps that should be taken when 

developing an analysis plan for a QI evaluation that involves allocating an intervention at a group level. A 

schematic for the development of an analysis plan can be found in Figure 2.2.  For the following 
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discussion, one must assume that an intervention is applied at the group level, the outcome is measured at 

the group level and the outcome is measured over time.  It should be noted that, while multiple unique 

situations may fall outside of the scope and inclusion of the diagram, Figure 2.2 is meant to provide a 

general guide for the analysis plan. 

Defining the outcome of interest and covariates 

The primary and secondary outcomes in a QI evaluation study will drive the analysis plan and ultimately 

the utility of the evaluation.  First the broader outcome of interest should be considered, such as 

utilization or satisfaction and should take into account the target audience.  While often the availability of 

data is the factor which dictates the outcome selected, when there are options available an investigator 

should consider measures that will be directly affected by the intervention and measures for which there is 

the ability and the statistical power to detect a change.
18

    The investigator should then sketch a causal 

model for the effect of the intervention on the broad outcome that includes all covariates thought to have 

an effect on the system under study in order to address the assumptions of no unmeasured confounding 

required for causal inference.
14, 18

   

Application to the CW-PRBC Evaluation: In our study, the outcome of interest was both total PRBC 

units transfused (count) and mean PRBC units transfused per discharge (continuous). 

Specifying a model for analysis based on the type of outcome 

Once the investigator identifies the primary outcome, a statistical model based on the distribution of the 

outcome data can be selected to analyze the time series. 

Continuous outcome data:  Linear regression is used with continuous data and allows the investigator to 

observe how the average value of the outcome varies with the manipulation of other variables. The 

assumptions of linear regression include that average outcomes are linearly related to predictors, and that 

the errors are independent and follow a standard normal distribution with constant variance.
1
 Alternate 

versions of the standard linear model that account for longitudinal outcome measures
19

 such as the 

autoregressive integrative moving averages (ARIMA) model (discussed in detail below) and random 

effects regression are also potential candidates to consider in this setting.  
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Count outcome data:  Poisson and negative binomial regression models apply to outcomes that can be 

expressed as counts, such as car accidents, number of hospitalizations, or number of PRBC transfusions, 

as in our real-world example.  Both models typically assume that the logarithm of the average outcome is 

a linear function of the predictor variable(s) of interest. While the Poisson model specifies equality for the 

outcome mean and variance, this is relaxed in the negative binomial model, making the latter preferred in 

situations where overdispersion is suspected.
20

  Integer-valued autoregressive (INAR) Poisson regression 

is another modeling strategy that is useful when the mean of the counts is low and it is necessary to 

control for serial correlation of data, which may occur when the time scale used is cut into shorter 

intervals, such as days or weeks.
21

   

Binary/categorical outcome data: Logistic regression is the most common regression model used for 

binary outcomes, and in the case of rare outcomes (e.g. outcome odds <0.10, the estimated odds ratios 

may provide a close approximation to the relative risk.
22

  Logistic regression output is easily interpretable 

and is present in standard statistical packages.
1
 Logistic regression techniques have been extended to 

cover analyses of ordinal outcome data, such as answers to scaled survey questions,
23

 as well as nominal, 

non-ordered categorical outcome data, such as sites of infection.
24

  Poisson regression can also be applied 

to binary outcomes and yields coefficients that have a relative risk interpretation, provided that robust 

standard errors are used for inference.
25

 

Application to the CW-PRBC Evaluation: In our example, we elected to model the total PRBC units 

transfused using Poisson regression for count outcomes and the mean PRBC units transfused per 

discharge with linear regression for continuous outcomes. 

Selecting an inference strategy  

After selecting an appropriate model, variability of resulting estimates needs to be assessed to allow valid 

inferences. A number of alternate approaches for this have been proposed
1
 , and below we discuss those 

most applicable to ITSA:  

Autoregressive integrative moving averages model for autocorrelation (ARIMA):   
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When autocorrelation is confirmed and there are enough time points at which the continuous outcome is 

measured, a formal approach to time-series modeling may be employed with the ARIMA model.  The 

ARMAX model, an extension of the ARIMA model, allows the investigator to include covariates. 

Developed by Box and Jenkins,
26

 the ARIMA model allows the investigator to control for trend as well as 

seasonality.  The underlying assumption of an ARIMA model is that errors are normally distributed.
21

  

There are three elements that must be specified in an ARIMA model: the order of autocorrelation 

observed in the data, the level of differencing required to achieve stationarity, and the order required for 

the moving averages portion of the model.
27

  The general rule of thumb for ARIMA modeling is that there 

should be 20 observations pre-intervention and 20 observations post-intervention but the investigator 

should ensure that complete cycles that are appropriate to the system being evaluated are represented 

within the range of observations recorded.
28

  Other references note that 100 repeated measurements are 

necessary to draw the appropriate inference from ITSA.
8
 Although ARIMA modeling has traditionally 

been used for count outcomes in ITSA, the assumption of normal distribution of errors is often violated.
21

  

Newey-West: Newey-West standard error estimates provide a robust alternative to ARIMA methods to 

account for autocorrelation, and apply to of the family of generalized linear models, (e.g. linear 

regression, Poisson regression, etc.).
29

 

Robust: Robust standard errors are used when an investigator is unsure if the modeling strategy selected 

accounts correctly for the correlation structure of the data under study.  After estimates are computed 

using the default correlation structure of the model, the within-subject residuals of the observed data are 

used to calculate robust standard errors.  These robust standard errors will be valid if all other aspects of 

the model are properly specified and the sample is adequately large.
1
 

Clustered: Clustered standard errors should be used when there is more than one event per subject or unit 

of observation.
1
 Clustered standard errors should be used in situations where the clusters are small in size 

and when there are several clusters of data, otherwise the cluster variable should be analyzed as a fixed 

effect or standard errors should be bootstrapped.
30
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Boostrap: Bootstrap standard errors provide an alternative to other approaches when methods have not 

been developed to calculate standard errors for a particular model, or if the underlying assumptions of a 

selected model are clearly violated.
1
 

Application to the CW-PRBC Evaluation: In our study, we elected to take a conservative approach and 

used robust standard errors for both the Poisson model of log mean PRBC units transfused and the linear 

model of mean PRBC units transfused per discharge. 

Selecting a strategy to model the effect of the intervention 

Given the nature of implementing unit-wide QI interventions, instead of viewing the intervention itself as 

a treatment in the classical sense it is often more appropriate to view time as the primary exposure of 

interest in the analysis.  While time can be incorporated into the model in several different ways, we 

propose three options: a pre-post intervention indicator, an interaction between the pre-post indicator and 

continuous time, and restricted cubic splines.   

Pre-post intervention indicator: In the event that the investigator expects an immediate and sustained 

effect of the intervention, an indicator could be created specifying a period prior to the intervention 

(“pre”) and a period following the intervention (“post”).  Using a pre-post indicator the effect of the 

intervention would be averaged during each period and if graphed over time would look like a step down 

at the point of intervention, in the absence of any other covariates.   

Interaction between pre-post indicator and time: By including the pre-post intervention indicator in the 

model as well as incorporating it into an interaction term with continuous time, it is possible to track 

whether time modifies the effect of the intervention. This strategy allows the investigator to incorporate 

both a jump in the rate of the outcome (discontinuity) and a change over time.  

Restricted cubic splines: Splines can be used if the investigator would like to allow for flexibility in the 

effect of the intervention over time.  Splines permit heterogeneity of the effect of time on the outcome.
13

  

Cutpoints (knots) can be placed at pre-specified time-points within the distribution of the predictor and 

the effect of the predictor is modeled as cubic polynomials between knots.  Beyond the final knot the 
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effect of the predictor is constrained to be linear.  The relationship between the outcome and the predictor 

is smoothed at the knots.
31

 

Application to the CW-PRBC Evaluation: Our analysis modeled the effect of the intervention with all 

three strategies in the Poisson model of log mean PRBC units transfused using robust standard errors and 

the linear model of mean PRBC units transfused per discharge using robust standard errors. 

Drawing causal inference from the specified model 

Once all assumptions outlined above have been met and the model of outcome, exposure and covariates 

has been properly specified, it is possible to draw causal inference from the resulting effect estimates.   

RESULTS OF THE CW-PRBC EVALUATION 

There were 14,712 discharges during the baseline period of July 2012 through September 2013 

and 9,030 discharges during the intervention period of October 2013 through June 2014.  Demographic 

characteristics appear in Table 2.1. Discharges with Medicaid/Medicare as the payor were more common 

during the intervention period (p<0.0001).   

Among the intervention hospital units, the log mean count of PRBC units transfused was 

significantly lower during the intervention period when compared to the baseline period (IRR 0.87, 95% 

CI 0.77, 0.97) when controlling for proportion male and proportion Medicaid/Medicare, if the effect of 

the intervention was modeled using the pre-post intervention indicator (Table 2.2, Figure 2.3).  However, 

when the effect of the intervention was modeled using the pre-post intervention indicator and time 

interaction as well as time modeled as a restricted cubic spline, there was no difference in the log mean 

count of PRBC units transfused when comparing the intervention period to the baseline period. 

Among the intervention hospital units, 0.09 fewer PRBC units were transfused per discharge 

during the intervention period when compared to the baseline period (95% CI -0.15, -0.03) when 

controlling for proportion male and proportion Medicaid/Medicare, if the effect of the intervention was 

modeled using the pre-post intervention indicator (Table 2.3, Figure 2.3).  When the effect of the 

intervention was modeled using the pre-post intervention indicator and time interaction, 0.003 fewer 

PRBC units were transfused per discharge during the intervention period when compared to the baseline 
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period (95% CI -0.004, -0.001) but the interaction term was not significant.  When time was modeled as a 

restricted cubic spline, there was no difference in the mean PRBC units transfused when comparing the 

intervention period to the baseline period. 

Although the log mean count of PRBC units transfused during the intervention period was no 

different than during the baseline period in the non-intervention units using all three modeling strategies 

for the effect of the intervention, patients on Medicaid/Medicare received significantly more blood than 

those who were not, regardless of modeling strategy (Table 2.2). For each 10% increase in the proportion 

of patients discharged as Medicaid/Medicare as the primary payor, the log mean count of PRBC units 

transfused increased 7.68 times (95% CI 1.83, 31.36) when controlling for the effect of the intervention 

and the proportion male, based on the model including the pre-post intervention indicator and time 

interaction.  In addition, for each 10% increase in the proportion of patients discharged as 

Medicaid/Medicare as the primary payor, the mean PRBC units transfused per discharge increased by 

1.63 units (95% CI 0.55, 2.70) when controlling for the effect of the intervention and the proportion male, 

based on the model including the pre-post intervention indicator and time interaction (Table 2.3). 

DISCUSSION 

In this manuscript we provided a summary of the relevant literature on the application of the 

causal inference framework to the evaluation of QI interventions, presented a schematic for the 

development of an analysis plan for QI evaluations that involve measurement of aggregate outcomes over 

time, and used a real-world example to illustrate the development of an ITSA analysis plan.   

There are some important reasons to utilize aggregate data models.  Aggregate data are more 

easily gathered and can be cost-effective, particularly in resource-limited settings.  Aggregate data 

analyses are also most appropriate if the effect of an intervention is being assessed at the level of the 

group and individual level comparisons will not be made. For example, if a quality improvement 

intervention is deployed at the level of the unit then it may be most appropriate to evaluate the effect of 

that intervention at the unit level.  However, if the goal is to apply an intervention to an individual and 

draw inference about the effect of the intervention in that individual, as is the case in most epidemiologic 
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studies, aggregate data models may be subject to the ecological fallacy where the conclusions drawn from 

the group-level data may not be generalizable at the individual level.  There have been modeling 

strategies developed to address the issue of ecological fallacy in aggregate data, including the two-phase 

design and the hybrid design.
32

 

When it comes to selecting an approach to model the effect of the intervention, the investigator 

must think critically about the inference that is expected to be drawn from the result. As we have 

described, often a binary pre-post indicator variable is used to model the effect of the intervention.  While 

this is an intuitive strategy, there could be statistical limitations to this approach.  By forcing the effect of 

the intervention to be averaged across the pre- and post- time periods, the granularity in the rate of the 

outcome over the course of the baseline and intervention periods may be lost.
28

  In addition, secular trends 

are ignored and any effect that is observed is assumed to be due to the intervention, which could lead to 

over or under-estimations of the intervention effect.  Adding an exchangeable control group which 

exhibits similarities to the intervention population and conducting between-group analyses of the outcome 

could make the pre-post evaluation more robust but it can be challenging to identify the appropriate 

control group.
33

  While our real-world example did include a comparator group in the analysis, it was 

comprised of all units that did not participate in the intervention so the inferences that can be drawn from 

our results are limited. In situations where the investigator believes that time modifies the effect of the 

intervention, using interactions between the intervention and time or modeling time as a spline may be 

more appropriate and allow for greater flexibility and nuance to be reflected in the intervention effect 

estimates.   

The results of our real-world analysis showed that the conclusions drawn from the data were 

significantly different depending on the analytic strategy that was employed to model the effect of the 

intervention. When the pre-post intervention indicator was used to model the effect, there was a 

significant decrease in the total PRBC units transfused and the mean PRBC units transfused per discharge 

between the baseline and intervention periods.  However, when an interaction with time was included or 

time was accounted for using restricted cubic splines, there was no significant intervention effect; the 
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observed rates of PRBC transfusion in our study were no different than what would have been expected 

from the baseline trend.  

 ARIMA models and other formal time-series methods should be considered when there is 

confirmed autocorrelation between data points.  In addition, these methods should only be considered 

when there are a sufficient number of outcome measurements to identify the model which is affected by 

the amount of error present in the data, the effect of periodicity, and the number of lags that should be 

accounted for in the analysis.
8
 

 A major issue that comes up in quasi-experimental designs such ITSA is clustering at varying 

levels.  As mentioned earlier in this manuscript, while it is possible to account for clustering in the 

standard error calculation or to include the clustered variable in the model as a fixed effect if the cluster 

sizes are large, another strategy to employ is a mixed effects model.  A mixed effects model includes both 

random effects and fixed effects and is useful in situations where longitudinal repeated measures data are 

available for analysis.  As an example, in our study, while our outcome was measured on the aggregate 

group level of the intervention units, there were multiple discharge attendings that provided care for 

multiple patients over the study period. Standard models are only able to accommodate clustering at one 

level, when more than one level of clustering is identified, mixed effect models are required. 

Beyond ITSA, there are other study designs that can be considered when an intervention is being 

applied at the level of the group. Cluster-randomized trials involve randomization of exposure at the 

community level. Benefits of community-level randomization are maximized in situations where the 

number of intervention groups randomized is large and analyses should account for clustering.
34

  While 

the internal validity afforded by conducting RCTs is attractive, it may be impractical to implement some 

of these strategies in a healthcare system where providers regularly communicate, leading to potential 

contamination between experimental and control groups. Issues of contamination could exist whether we 

randomize at the provider or practice level.  Additionally, accounting for clustering could make the 

analysis more cumbersome to carry out and the required sample size for the study may be prohibitive, 

causing additional analytic complications.
35

  The use of a stepped-wedge design can improve the internal 
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validity of a quasi-experimental design.  In this design, each observational unit receives the intervention 

after a baseline period of observation but the implementation of the intervention is randomly staggered 

over time.  This methodology is particularly appropriate when an intervention is efficacious in one 

population and is being implemented within other populations to assess effectiveness of the program at 

the population level. Additionally, the analysis of data from a stepped-wedge design is quite flexible 

because each observational unit contributes control and intervention observations so between and within-

group comparisons can be made and more complex inferences can be drawn from the data
36

. By ensuring 

that there are multiple observation units, multiple observations before and after intervention, and by 

staggering the implementation of the intervention over time, investigators can maximize inferences drawn 

from the data.
35, 36

 

 We have outlined an algorithm to developing a correctly specified model when data are available 

in aggregate and inferences are to be drawn at the group level and have guided the reader through the 

application of the algorithm to a QI evaluation. As described above with real data from the CW-PRBC 

Evaluation, the approach taken to model the effect of the intervention had a significant impact on the 

conclusions that could be drawn from the analysis and investigators should be vigilant about 

appropriately incorporating the effects of time and baseline trends in evaluations. In conclusion, using our 

algorithm in conjunction with the guidance provided within the text, we believe investigators can develop 

QI evaluation plans which are robust and hypothesis-driven, particularly when modeling the effect of the 

intervention.   
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Table 2.1. Demographic characteristics of discharges during baseline and intervention periods 

  

 Intervention Units Non-Intervention Units 

Characteristic Baseline 

(7/12-9/13) 

n = 14,712 

Intervention 

(10/13-6/14) 

n = 9,030 

p-

value* 

Baseline 

(7/12-9/13) 

n = 14,145 

Intervention 

(10/13-6/14) 

n = 8,484 

p-

value* 

Age in years 60 (46, 71) 60 (46, 71) 0.8838 49 (33, 62)  49 (33, 63) 0.528 

Male gender 7,316 (50%) 4,575 (51%) 0.161 5,719 (40%) 3,335 (39%) 0.095 

Medicaid/Medicar

e 

9,338 (63%) 6,021 (67%) <0.000

1 

6,701 (47%) 4,084 (48%) 0.265 

*Within-group p-value 
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Table 2.2. Model Estimates for Total PRBC Units Transfused 

 

Intervention  

Modeling 

Covariate Intervention 

IRR (95% Robust CI) 
Non-Intervention 

IRR (95% Robust CI) 

Pre-post indicator Intervention Indicator 0.87 (0.77, 0.97) 0.97 (0.85, 1.09) 

Proportion Medicaid/Medicare 0.53 (0.15, 1.86) 3.65 (0.92, 14.48) 

Proportion Male 2.09 (0.63, 6.95) 3.01 (0.60, 15.04) 

Pre-post indicator-

Time Interaction 

Intervention Indicator 0.99 (0.99, 1.00) 1.00 (0.99, 1.00) 

Intervention indicator x time 0.99 (0.99, 1.00) 1.00 (0.99, 1.00) 

Proportion Medicaid/Medicare 0.83 (0.19, 3.57) 3.91 (0.94, 16.36) 

Proportion Male 1.74 (0.53, 5.71) 2.99 (0.58, 15.36) 

Restricted Cubic 

Spline 

Baseline spline  0.87 (0.73, 1.04) 1.04 (0.85, 1.28) 

Intervention spline  1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 

Proportion Medicaid/Medicare 0.54 (0.15, 2.00) 4.04 (0.99, 16.34) 

Proportion Male 2.07 (0.65, 6.67) 3.23 (0.66, 15.89) 
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Table 2.3. Model Estimates for Mean PRBC Units Transfused per Discharge 

 

Intervention  

Modeling 

Covariate Intervention 

Mean PRBC Units 

Transfused per 

Discharge 

(95% Robust CI) 

Non-Intervention 

Mean PRBC Units 

Transfused per 

Discharge 

(95% Robust CI) 

Pre-post indicator Intervention Indicator -0.09 (-0.15, -0.03) -0.03 (-0.14, 0.07) 

Proportion Medicaid/Medicare -0.23 (-0.93, 0.46) 1.02 (-0.19, 2.22) 

Proportion Male 0.30 (-0.40, 1.00) 0.40 (-1.09, 1.88) 

Constant 0.56 (-0.02, 1.15) 0.27 (-0.52, 1.06) 

Pre-post indicator-

Time Interaction 

Intervention Indicator -0.003 (-0.004, -0.001) 0.00003 (-0.003, 0.002) 

Intervention indicator x time -0.001 (-0.004, 0.002) -0.003 (-0.008, 0.002) 

Proportion Medicaid/Medicare 0.24 (-0.54, 1.03) 1.12 (-0.13, 2.36) 

Proportion Male 0.18 (-0.50, 0.89) 0.40 (-1.12, 1.92) 

Constant 0.41 (-0.18, 1.00) 0.23 (-0.63, 1.09) 

Restricted Cubic 

Spline 

Baseline spline  -0.09 (-0.18, 0.004) 0.06 (-0.11, 0.23) 

Intervention spline  -0.0001 (-0.005, 0.004) -0.005 (-0.01, 0.002) 

Proportion Medicaid/Medicare -0.22 (-0.96, 0.51) 1.15 (-0.09, 2.38) 

Proportion Male 0.30 (-0.39, 0.99) 0.49 (-0.97, 1.95) 

Constant 0.56 (-0.04, 1.17) 0.17 (-0.61, 0.95) 
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Figure 2.1. Total PRBC units transfused by week between July 1, 2012 and June 30, 2014 including 

the baseline linear trend (red) extrapolated through the intervention period (green dashed) 
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Figure 2.2. Analysis plan diagram for a QI evaluation allocating an intervention at a group level 
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Figure 2.3. Interrupted time-series analysis of the effect of an intervention to decrease packed red 

blood cell transfusions at the University of California San Francisco Medical Center with varying 

intervention modeling strategies employed 

 

 
Legend: Figures 2.3a-c include graphs of total PRBC units transfused at the group level by study week.  

Figures 2.3d-f include graphs of mean PRBC units transfused per discharge at the group level.  Graphs a 

and d model the intervention with a pre-post intervention indicator which would allow for assessment of 

change in outcome level between the baseline and intervention periods, graphs b and e model the 

intervention using a pre-post intervention indicator-time interaction which would allow for assessment of 

change in the outcome level as well as slope comparing the baseline to the intervention period, and graphs 

c and f model the intervention through a restricted cubic spline for time as a proxy for intervention and 

allows for assessment of difference in slope between the baseline and intervention periods. 
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Chapter 3: The effect of timely access to ambulatory specialty care on healthcare outcomes:  

a population level analysis 

 

Priya A. Prasad, Lydia Zablotska, Steven Shiboski, Ralph Gonzales, and Nathaniel Gleason 
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INTRODUCTION 

As the proportion of the United States population aged over 65 years grows and the Affordable 

Care Act expands medical coverage, focus has been drawn to improving access for both primary and 

specialty care services. 
1, 2

  It is estimated that by 2025, the demand for primary care services will increase 

by 14% and the need for specialty care services will grow by 15 to 30% depending on the specialty and 

the state.
1
  In an effort to bridge these gaps in access to ambulatory specialists, innovations in care 

delivery, such as telemedicine, have evolved.
3, 4

 

While prior research has demonstrated that geographical access to ambulatory specialty care 

affects the rate of health outcomes,
5
 little is known about whether timely access to ambulatory specialty 

care impacts measurable patient outcomes. Institutions often strive to offer patients access to ambulatory 

specialty care within a short window of referral, but determining a meaningful metric of access time can 

be challenging because of scheduling workflow and patient preferences.
6
 

The goal of our study was to develop various metrics to define specialty care access time and to 

explore potential associations between these metrics and poor patient outcomes, including emergency 

room visits, hospitalizations, and mortality, all stratified by specialty.  We hypothesized that decreased 

access would correspond to an increased rate of poor outcomes. 

METHODS 

Source Cohort 

The source cohort for this study was patients who sought primary and/or ambulatory specialty care at the 

University of California San Francisco (UCSF).  The UCSF primary care (UCSF PC) population was 

defined as patients who attended at least one in-person office visit in UCSF Primary Care between 

January 1, 2013 and December 31, 2015.   

Study Population 

The study population selected from the source cohort for the proposed analyses included members of the 

UCSF primary care source cohort who were either seen in a given specialty or received a referral order to 

the given specialty between January 1, 2015 and December 31, 2015.   



48 
 

Specialties of interest for evaluation of timely access 

We focused our analysis on five UCSF medicine specialties for which we believed it would be reasonable 

to identify an outcome that could be attributable to the referral within the year of referral.  These 

specialties included cardiology, hematology, neurology, otolaryngology and head and neck surgery 

(OHNS), and urology. 

Outcomes of Interest 

Emergency department visits for all causes as well as inpatient encounters for all causes occurring at 

UCSF were identified using hospital billing data.  All-cause mortality was ascertained from the electronic 

medical record (EMR). 

Access Time Definitions 

Definition #1: UCSF Primary Care Population new patient visit access time 

The median weekly new patient visit (NPV) access time was calculated using arrived new patient visits 

based on billing Evaluation & Management codes (99201-99205, 99241-99245, 99385-99387, and 

90791-90792) occurring between January 1, 2015 and December 31, 2015, matching visits to referral 

orders placed between July 1, 2014 and December 31, 2015 and occurring most proximally within 6 

months of the confirmed new patient visit.  Referral orders were no longer eligible for inclusion if they 

occurred greater than 6 months before a new patient visit to maintain consistency with the UCSF referral 

order authorization system.  Outcomes were tracked for patients in the UCSF PC population who either 

received a referral order or had an arrived office visit at the given specialty between January 1, 2015 and 

December 31, 2015. 

Definition #2: Total visits occurring in a specialty 

For this analysis, all specialty care visits arrived by members of the source cohort (UCSF PC and non-

UCSF PC patients), regardless of reason, were included from January 1, 2015 to December 31, 2015.  We 

calculated the access to specialty care as the total number of office visits occurring weekly in the given 

specialty (specialty-level variable).  The goal of this metric was to provide a global measure of visit 

access.  Our hypothesis was that during weeks where the visit counts were low, providers were either out 
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of office for personal reasons or for other commitments related to serving as a provider in an academic 

medical center.  Outcomes were tracked for patients in the UCSF PC population who either received a 

referral order or had an arrived office visit at the given specialty between January 1, 2015 and December 

31, 2015. 

Definition #3: Total UCSF primary care population new patient visits occurring in a specialty 

For this analysis, all arrived new patient specialty care visits for the UCSF PC population were included 

from January 1, 2015 to December 31, 2015.  We calculated the access to specialty care as the total 

number of new patient office visits occurring weekly in the given specialty (specialty-level variable).  The 

goal of this metric was to provide a global measure of new patient visit access.  Our hypothesis was that 

during weeks where the new patient visit counts were low, providers were either out of office for personal 

reasons or for other commitments related to serving as a provider in an academic medical center.  

Outcomes were tracked for UCSF PC population patients who received a referral order to the given 

specialty between January 1, 2015 and December 31, 2015. 

Data collection 

The electronic medical record (EMR) was queried to identify all arrived primary care visits, arrived 

specialty care visits, and referral orders placed by patient, date, and specialty.  Data collected for each 

primary care encounter included patient demographics (MRN, age, gender, race, ethnicity), encounter 

identification number, date, location, visit provider, payor, and the first five recorded ICD-9 discharge 

codes. Data collected for each specialty care encounter included patient demographics (MRN, age, 

gender, race, ethnicity), encounter identification number, date, location, specialty mapped based on 

encounter department (Epic DEP), visit provider, payor, and the first five recorded ICD-9 discharge 

codes.  Data collected for each referral order included patient demographics (MRN, age, gender, race, 

ethnicity), referral order identification number, date, referring department, referring provider, authorizing 

provider, specialty mapped based on description, and the first five recorded ICD-9 discharge codes 

associated with the referral order. Emergency department admissions, inpatient admissions, and total 

remittance were captured using billing data.  Because the data were collected for an ongoing quality 
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improvement initiative, the study received exemption from the UCSF Human Research Protection 

Program Institutional Review Board. 

Statistical analysis 

Our study was conducted using data aggregated at the level of the week and the specialty.  Population 

characteristics, weekly access using each definition, and weekly rates of outcomes were summarized 

using frequencies and proportions for count and categorical data and medians and interquartile ranges for 

continuous data.  Poisson regression was used to identify associations between our varying definitions of 

access and the count of the summary outcome measure, which included ED encounters, hospitalizations, 

and death.  Confidence intervals and p-values were derived using robust standard errors to account for 

any autocorrelation in the weekly time series or any other nuances in the observed distribution of 

outcomes. 

RESULTS 

Population characteristics:  

During the study period, there were 59,245 patients who attended at least 1 in person PC office visit 

included in the UCSF PC population, 33,834 patients who were in the UCSF PC Population and who 

received at least 1 specialty referral order or arrived for at least 1 specialty visit at UCSF in 2015 (access 

definition 1 and 2 population), and 26,111 members of the UCSF PC population patients who received at 

least 1 specialist referral order in 2015 (access definition 3 population).  Demographics of the populations 

appear in Table 3.1. 

Specialty level analyses of access time metrics 

Summaries for each of the access metrics and outcomes by population can be found in Table 3.2.  In 

addition, Figures 3.1-3.5 provide a graphical display of the weekly access measures and outcomes. 

Cardiology: Based on unadjusted Poisson models with robust standard errors, there was an association 

between median weekly access time and outcomes.  For each day increase in cardiology weekly NPV 

access time, the rate of outcomes in the population increased by .04% (p = 0.005) (Table 3.3).  There was 

no association between weekly outcomes and either total weekly visits or weekly new patient visits to 
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cardiology.  For each single visit increase in NPV in the previous week, the rate of weekly outcomes in 

the population in the current week decreased by 0.08% (p = 0.015) (Table 3.4). 

Hematology: Based on unadjusted Poisson models with robust standard errors, there was an association 

between median weekly NPV access time and outcomes.  For each day increase in hematology weekly 

NPV access time, the rate of outcomes in the population decreased by 0.03% (p < 0.001) (Table 3.3). 

There was no association between weekly outcomes and either total weekly visits or weekly new patient 

visits to hematology, nor was there an unadjusted association between outcomes and any of the lagged 

access definitions (Table 3.4). 

Neurology: Based on unadjusted Poisson models with robust standard errors, there was no association 

between weekly outcomes and weekly NPV access time, total weekly visits, or weekly new patient visits 

to neurology (Table 3.3). For each day increase in neurology weekly access time in the previous week, the 

rate of weekly outcomes in the population decreased by 0.04% (p = 0.025) (Table 3.4). 

OHNS: None of the unadjusted Poisson models with robust standard errors revealed a significant 

association between population outcomes and the current week’s access metrics (Table 3.3) or the 

previous week’s access metrics (Table 3.4).  

Urology: Based on unadjusted Poisson models with robust standard errors, there was an association 

between median weekly NPV access time and outcomes.  For each day increase in hematology weekly 

NPV access time, the rate of outcomes in the population decreased by 0.04% (p < 0.001) (Table 3.3). 

There was no association between weekly outcomes and either total weekly visits or weekly new patient 

visits to urology, nor was there an association between outcomes and any of the lagged access definitions 

(Table 3.4). 

DISCUSSION 

In this manuscript we have outlined three different strategies to measure access to specialty care 

at UCSF Medical Center including time from referral to new patient visit, total visits to a specialty, and 

total new patient visits to a specialty.  We then determined whether an association existed between the 

metrics and population level all-cause outcomes. 
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Our models revealed a few interesting relationships that warrant further exploration.  Results 

from our unadjusted analysis of the cardiology specialty showed that for each 10 day increase in median 

NPV access time, the rate of outcomes increased by 4%, a finding which supported our initial rationale 

that increased time between referral and visit would be associated with poorer patient outcomes.  When 

we included the lagged access metrics which represented the previous week’s access, we found that there 

was a decrease in the rate of population-level outcomes in the index week for each unit increase in the 

access the previous week in neurology for NPV visit access time and in cardiology for total NPVs.  One 

potential hypothesis for this finding is that staff and clinicians may prioritize scheduling patients who are 

at risk of a poor outcome quickly after periods of known poor access. 

Although little data exists relating patient outcomes to ambulatory specialty care access, studies 

have been published demonstrating that increased wait time until surgery is associated with adverse health 

outcomes and worsening of symptoms.
6
  Beyond the potential risk of adverse outcomes related to delayed 

access, studies have been published addressing additional consequences of longer wait times.  In a case-

control study conducted at Banner University Medical Center between March and October 2014, 

investigators found that the adjusted odds of missing a gastroenterology appointment increased by 14% 

for every 10 day increase in time between referral and scheduled appointment (per day, 95% CI 1.01-

1.02).
2
 The psychological toll that is placed on a patient during the time between referral and diagnosis 

has also been explored.  In studies of surgery wait time, uncertainty and powerlessness were also 

identified as consequences of poor access.
6
  

Our data show that the median weekly access time exceeded the UCSF institutional target of two 

weeks in all specialties evaluated except cardiology, findings which are not unique to our institution.  

Researchers at St. Paul’s Hospital in Vancouver, Canada found that the mean wait time from referral to 

GI office visit was 63 days and 59% of individuals who were referred to GI for endoscopy for colorectal 

cancer experienced wait times greater than the length recommended by the Canadian Association of 

Gastroenterology Wait Time Consensus Group.  When alarm signs for colorectal cancer were present, the 

mean wait time from referral to endoscopy was 86 days, much greater than the recommended 60 days.
7
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Improving access to care has become a priority for health systems in the US and abroad and with 

this increased attention, strategies have been developed to address gaps in timely access to specialty care.  

Members of our investigative team developed an electronic consult system at UCSF that is integrated into 

the electronic medical record workflow at UCSF.  The eConsult platform supports the work of both the 

PCP and the specialist and reduces the need for unnecessary specialty office visits which can be 

appropriately managed in primary care.  Based on our program evaluation, after implementation of the 

eConsult program at UCSF, referrals to specialty care for office visits decreased by 19% between the 

baseline (July 2011 through June 2012) and intervention periods (July 2012 through May 2013).
8
 

Telemedicine is another strategy that has been proposed to maximize the access to specialty care.  In a 

study of patients with head and neck cancer in the Veterans Health Administration (VHA) system, 

subjects were given the opportunity to select in-person surgery consultation or a telemedicine alternative 

which included biopsy at a remote location, review by experts of all aspects of the medical record at the 

Palo Alto Veterans Affairs, and a 30-minute audiovisual teleconference with the patient.  The 

telemedicine consultation option saved patients and the VHA over $19,000, 600 hours of travel, 14.5 

metric tons of carbon dioxide emissions, over 1,600 miles of travel per patient and $900 in travel 

expenses per patient.
9
  A recently proposed stepped wedge cluster randomized controlled trial will test the 

implementation of the Specific & Timely Appointments for Triage (STAT) program in 8 community and 

subacute outpatient settings in Australia and New Zealand.  The STAT method involves providers 

protecting weekly appointment times in their schedules to manage new referrals based on a review of 

current supply and demand.  The providers have the opportunity to prioritize new and follow-up cases 

based on the relative difficulty of management and triage is done at the point of care as opposed to 

through a complex triage system.
10

  One study showed that time from referral to first appointment was 4 

days fewer after implementation of the STAT method in an outpatient physiotherapy clinic.
11

  While 

implementation of innovations in care delivery has begun, it remains to be seen what affect these 

strategies will have on timely access to specialty care and the impact on patient outcomes.  
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There are limitations to our study.  We restricted our cohort to the UCSF primary care population 

under the assumption that these patients would be more likely to seek specialty care and experience 

outcomes of interest within the UCSF healthcare system.  However, it is possible that patients in the 

UCSF primary care population presented to institutions outside our system and these outcomes would not 

be included in our study.  The outcomes included were all-cause emergency department encounters, 

inpatient hospitalizations, and mortality.  With the current design we were unable to ascertain whether the 

outcomes were in fact related to the requirement for specialty access.  Our metric for NPV access time 

uses the time between referral order and arrived visit, with no-shows being excluded and there is no 

adjustment for patient rescheduling.  Because we wanted to perform a global assessment of the access 

metrics on population level outcomes, we did not adjust for any health system, specialty, provider or 

patient characteristics, which may leave our results subject to bias. 

Our manuscript provides a platform for describing our three access metrics but there is much 

future work to be done.  In addition to more formally assessing the performance of each of our access 

time metrics, next we will explore whether time modifies the effect of access on outcomes given that the 

data were collected over a one year period.  In order to control for cyclical and secular trends, additional 

years of data could be added and more traditional time-series analysis methods, such as autoregressive 

integrated moving average analyses, could be employed.  In addition, relevant confounders of the 

association between outcomes and access should be identified and included in these models to obtain a 

clearer picture of the true effect of timely access on outcomes.  And lastly, while our analysis approaches 

access and outcomes from the population level, it may be more relevant to study the effect of access at the 

individual level for future analyses.   
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Table 3.1. Characteristics of the UCSF Primary Care Population and the Cohorts Assessed for 

Outcomes to Explore Access Definitions 

 UCSF Primary Care 

Population* 

N=59,245 

Definition 1&2 

Outcomes Population
#
 

n=33,834 

Definition 3 Outcomes 

Population
$ 

n=26,111 

Age in Years (median, 

IQR) 

46.8 (33.4, 61.1) 51.1 (36.6, 64.1) 52.0 (37.9, 64.4) 

Male 24,328 (41%) 13,219 (39%) 10,554 (40%) 

Race    

   White 28,395 (48%) 16,848 (50%) 12,888 (49%) 

   Asian 12,459 (21%) 7,122 (21%) 5,375 (21%) 

   Black/African American 4,690 (8%) 2,907 (9%) 2,390 (9%) 

   Hawaiian/Pacific 

Islander 

1,203 (2%) 545 (2%) 437 (2%) 

   American Indian 127 (<1%) 77 (<1%) 62 (<1%) 

   Other 8,139 (14%) 4,548 (13%) 3,592 (14%) 

   Unknown 4,232 (7%) 1,787 (5%) 1,367 (5%) 

Hispanic ethnicity 4,842 (8%) 2,822 (8%) 2,254 (9%) 

 

*Patients with at least one visit to UCSF Primary Care between January 1, 2013 and December 31, 2015 
#
Members of the UCSF Primary Care Population who had at least one referral order or arrived visit to the 

specialty of interest during 2015. 
$
Members of the UCSF Primary Care Population who had at least one referral order to the specialty of 

interest during 2015. 
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Table 3.2. Summary of Access and Outcomes for Specialties of Interest  

 Average Median 

New Patient 

Visit Access 

Time in Days: 

Definition 1 

Average 2015  

Total Visits 

(Range): 

Definition 2 

Average 2015 

New Patient 

Visits  

(Range): 

Definition 2 

Average 

Outcomes 

(Range): 

Definition  

1 & 2 

Population
#
 

Average 

Outcomes 

(Range): 

Definition  

3 Population
$
 

Cardiology 28 (11,66) 294.3 (43,370) 19.5 (5,39) 47.5 (31,76) 19.7 (12,36) 

Hematology 52.5 (12,125) 345.7 (197,429) 4.6 (1,11) 16.4 (11,22) 8.2 (4,13) 

Neurology 38.0 (11,65) 581.7 (80,788) 22.2 (4,40) 45.8 (29,61) 29.1 (20,42) 

OHNS* 38.5 (9.5,85) 307.1 (79,417) 25.4 (1,41) 27.8 (15,42) 21.2 (11,34) 

Urology 32.3 (13,60) 302.7 (145,372) 17.5 (10,30) 24.8 (13,38) 13.3 (5,19) 

*OHNS, otolaryngology and head and neck surgery 
#
Members of the UCSF Primary Care Population who had at least one referral order or arrived visit to the 

specialty of interest during 2015. 
$
Members of the UCSF Primary Care Population who had at least one referral order to the specialty of 

interest during 2015. 
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Table 3.3. Poisson Regression Point Estimates for Relationship between Different Definitions of 

Access and Outcomes  

 New Patient Visit  

Access Time 

(IRR, 95% CI); p-value 

Total Visits 

(IRR, 95% CI); p-value 

Total New  

Patient Visits 

(IRR, 95% CI); p-value 

Cardiology 1.004 (1.001, 1.007); 0.005 1.001 (0.999, 1.001); 0.111 1.004 (0.996, 1.013); 0.328 

Hematology 0.997 (0.996, 0.999); 

<0.001 

1.000 (0.999, 1.001); 0.756 1.001 (0.971, 1.033); 0.933 

Neurology 1.001 (0.998, 1.005); 0.448 1.000 (1.000, 1.001); 0.332 0.995 (0.988, 1.002); 0.147 

OHNS* 1.001 (0.998, 1.004); 0.401 1.000 (1.000, 1.001); 0.156 1.005 (0.999, 1.012); 0.107 

Urology 0.996 (0.992, 0.999); 0.018 0.999 (0.998, 1.001); 0.310 0.998 (0.984, 1.012); 0.762 
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Table 3.4. Poisson Regression Point Estimates for Relationship between the Previous Week’s Access 

Defined Three Ways and Outcomes  

 New Patient Visit Access 

Time 

(IRR, 95% CI); p-value 

Total Visits 

(IRR, 95% CI); p-value 

Total New  

Patient Visits 

(IRR, 95% CI); p-value 

Cardiology 0.998 (0.993, 1.002); 0.427 1.000 (0.999, 1.001); 0.803 0.992 (0.986, 0.998); 0.015 

Hematology 1.001 (0.999, 1.003); 0.219 1.000 (0.999, 1.001); 0.721 0.990 (0.959, 1.022); 0.538 

Neurology 0.996 (0.993, 0.999); 0.025 1.001 (0.999, 1.001); 0.771 1.001 (0.994, 1.008); 0.772 

OHNS* 1.000 (0.997, 1.002); 0.768 0.999 (0.998, 1.000); 0.087 1.000 (0.992, 1.007); 0.994 

Urology 0.996 (0.991, 1.001); 0.136 0.999 (0.998, 1.001); 0.249 0.991 (0.974, 1.009); 0.346 
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Figure 3.1. Weekly Access and Population Outcomes for Cardiology, 2015  

i) Access Definition #1: Median Weekly Access Time 

 

ii) Access Definition #2: Total Visits 

 

iii) Access Definition #3: Total New Patient Visits 
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Figure 3.2. Weekly Access and Population Outcomes for Hematology, 2015  

i) Access Definition #1: Median Weekly Access Time 

 

ii) Access Definition #2: Total Visits 

 

iii) Access Definition #3: Total New Patient Visits 
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Figure 3.3. Weekly Access and Population Outcomes for Neurology, 2015  

i) Access Definition #1: Median Weekly Access Time 

 

ii) Access Definition #2: Total Visits 

 

iii) Access Definition #3: Total New Patient Visits 
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Figure 3.4. Weekly Access and Population Outcomes for Otolaryngology and Head and Neck 

Surgery (OHNS), 2015  

i) Access Definition #1: Median Weekly Access Time 

 

ii) Access Definition #2: Total Visits 

 

iii) Access Definition #3: Total New Patient Visits 
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Figure 3.5. Weekly Access and Population Outcomes for Urology, 2015  

i) Access Definition #1: Median Weekly Access Time 

 

ii) Access Definition #2: Total Visits 

 

iii) Access Definition #3: Total New Patient Visits 
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