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ABSTRACT OF THE DISSERTATION 

Mobile Positioning and Mapping With 
Range Sensor Aided Differential GPS/Inertial Navigation System 

 
by  

Haiyu Zhang 

Doctor of Philosophy, Graduate Program in Electrical Engineering 
University of California, Riverside, December 2014 

Dr. Matthew J. Barth, Co-Chairperson 
Dr. Jay A. Farrell, Co-Chairperson 

 

Traditional positioning solely using GPS has been shown to be inadequate for 

more advanced Intelligent Transportation System (ITS) applications. Accurate and 

reliable mapping also requires a highly accurate and reliable positioning system. 

Integration of GPS and an Inertial Measurement Unit (IMU) is a promising method in 

terms of improving accuracy. When GPS signal are unavailable to reset IMU errors, 

range sensors, e.g., RADAR and LiDAR which can measure distance and angle to road 

side landmarks by actively emitting power and measuring reflected signals, serve as a 

good complement to guarantee accuracy. In addition, the advancement in 3D LiDAR 

technology makes the mobile mapping system very handy because it does not require 

lane closures or time-consuming human surveying, thereby saving both time and money. 

In this dissertation, a novel automotive RADAR-aided Differential GPS/INS 

system is presented. The RADAR measurement model is analyzed, and proper types of 

landmarks are investigated and verified. The residue and corresponding error models are 

also analyzed. Two separate mathematical models are proposed for integration with 
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GPS/INS in an Extended Kalman Filter (EKF) architecture. Experiments in a controlled 

environment are described and the results illustrate significant improvement of 

positioning accuracy when the RADAR detects landmarks, data association is successful, 

and RADAR measurements are used to update the EKF estimates. 

 In the second part of the dissertation, a 3D LiDAR-based Mobile Mapping 

system is presented. The overall system architecture on both hardware and software are 

demonstrated. An intersection stop bar extraction algorithm based on image processing is 

then described in detail with intermediate results demonstrated as images. The results of 

the algorithm are the accurate position of the endpoints of each stop bar in a global 

coordinate frame.  
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Chapter 1  Introduction  

In the past decade, an increasing number of driving assistance technologies have 

stepped out of theoretical articles, and have become real products. With the ultimate goal 

of releasing human from tedious driving experiences, various intermediate driving 

assistance systems have been developed, and fully automated vehicles are soon becoming 

a reality. At the macro level, various intelligent transportation areas have been explored 

to optimize traffic as a whole. Within all these systems, vehicle positioning plays an 

indispensable and fundamental role.  

Thanks to the first successful Global Navigation Satellite System (GNSS) -- 

Global Positioning System (GPS), people tossed away paper maps and are enjoying 

guidance from their personal GPS navigation devices. However, GPS alone provides 

limited accuracy (~3m level) in open sky conditions. Such accuracy is adequate to simply 

guide driving at a macro level (i.e., which route to take), but cannot meet the ever-

increasing requirements of new advanced ITS applications. In general, there are several 

aspects of the positioning systems that are of vital importance: 

• Accuracy 

• Availability – The ability to operate in all driving conditions 

• Cost 

An affordable, accurate, continuously available and reliable positioning system 

will have significant impact on roadway safety, through safety related driving assistant 
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systems such as lane-departure warning system, early collision warning system, collision 

avoidance system, and curve over-speed warning system. With the help of connected 

vehicle technology, a better positioning system will also have positive impact on 

mobility, through applications such as traffic signal phase and timing (SPaT), advanced 

navigation systems, congestion warning systems, speed recommendation systems, etc. 

Lastly, energy consumption and emissions could also be improved for individual vehicles 

and as an overall transportation system primarily through the mobility applications. 

Currently, vehicle navigation systems typically rely on GNSS alone. To achieve 

the required levels of availability and reliability necessary for advanced applications, the 

positioning solution will soon be achieved by integrating GNSS receivers with high-rate 

sensors such as Inertial Measurement Unit (IMU) and wheel encoders (or brake pulses). 

However, this method still could not solve the availability problem because when GNSS 

signals are unavailable, the accumulation of high rate sensor error through the numeric 

integration process would make accuracy unacceptable in a short period of time (minutes) 

[3]. This dissertation provides a survey of popular aiding sensors and signals to help 

solve this problem, and then focuses on one promising sensor – automotive RADAR, 

demonstrating a method to integrate RADAR with a GPS/IMU system. Another vital 

component to a positioning system is a mobile mapping system and the mathematics to 

support it; this is also be described in detail. 
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1.1 Problem Statement 

1.1.1 Vehicle Localization using RADAR-Aided GPS/INS 

The major focus of this research is to design an affordable, accurate continuously 

available vehicle positioning method. Even though accuracy down to centimeter level can 

be achieved with Carrier-Phase Differential GPS [4], it is hard to guarantee this accuracy 

in all situations. According to [5], positioning accuracy has three levels: road level, lane 

level and within-lane level (or where-in-lane level). Road-level accuracy is adequate to 

determine which road the vehicle is on. Lane-level accuracy needs to be able to identify 

which lane the vehicle is on, which requires the error is smaller than 0.5m. Within-lane-

level accuracy requires the positioning error be smaller than 0.1m. As such, this research 

focuses specifically on “where-in-lane” accuracy vehicle positioning systems.  

The ability to be continuously available requires that the positioning system has 

some high-rate sensor that could provide continuous measurements without relying on 

external signals which will be intermittently available. Also, most target applications 

require the vehicle state estimate at a high-rate and high-bandwidth, much higher that is 

 

Figure 1.1 Aided navigation scheme [3] 
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achievable by an aiding sensors alone (e.g., GNSS, vision, etc.). Finally, these systems 

require state information (i.e., velocity, acceleration, attitude, angular rate) that could 

only be computed from aiding sensors by differentiation, which is a problematic numeric 

process. Therefore, future vehicle positioning systems will require that the measurement 

from a high-rate sensor be integrated through the vehicle kinematic model to generate a 

vehicle state prediction, while the aiding sensors that relying on external reference signals 

or reference objects provide low-rate measurement to correct the state prediction. The 

most common high-rate systems are Inertial Navigation Systems (INS) and wheel-

encoder-based dead-reckoning systems [6]. GPS/GNSS represents the most common 

category of aiding sensors. These aiding systems rely on external electromagnetic signals 

to some known reference (GPS satellites in this case), and output some measurements 

that are related to the spatial relationship to the references. The integration of GPS with 

INS has been well established, as described in [6].  

 Unfortunately, a GPS/INS system sometimes has limited availability in some 

areas, such as dense urban areas (e.g., an “urban canyon”). In such areas, the high-rate 

sensor by itself will only keep acceptable accuracy for short periods of time. A typical 

MEMS IMU can maintain 20cm of accuracy for up to 10 seconds without aiding sensors 

[3]. Meanwhile, there are abundant existing natural and artificial landmarks and other 

locally available electromagnetic signals especially in dense urban areas. Many aiding 

sensors have been investigated such as video cameras, RADAR, LiDAR, Cellular Signal, 

WiFi, etc. [3]. A brief comparison of different aiding sensors/signals is listed in the 

following table. 
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Table 1-1 Comparison of popular Aiding Sensors 

Aiding Sensor Type Infrastructure Requirements 

GPS, Differential GPS, Carrier-
Phase DGPS GNSS Satellites, Ground base station 

GLONASS, Galileo, BeiDou GNSS Satellites, Ground base station 

Computer Vision Feature Based Existing roadway feature 

LiDAR Feature Based Existing roadway feature 

RADAR Feature Based Existing roadway feature 

Pseudolite Ground based Radio Signal Pseudolite transmitters 

Cell Phone Ground based Radio Signal Existing cellular station 

Packet Radio (WiFi, DSRC) Ground based Radio Signal Existing Access Points 

Other Radio Carrier Signal 
(AM/FM Radio, TV) Ground based Radio Signal Existing Transmitter 

Infrastructure 

 

A detailed review of different sensors and their method for aiding navigation is in 

Chapter 2. In this research, we focus on automotive RADAR, since the use of affordable 

automotive RADAR with GPS/INS has not yet been well developed. This research tries 

to solve the following aspects of the problems to integrate automotive RADAR with the 

GSP/INS system: 

• Feasibility: Are RADAR measurement suitable for integration with GPS/INS? 

• RADAR Feature Selection: What feature/landmarks are suitable for RADAR in 

the sense of cost, availability and performance? 

• Feature measurement model: How can we integrate RADAR measurement with 

GPS/INS mathematically? Specifically, how can the residual be formed from 

available information in real-time? 
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• Verification of the system performance: In a real-world experience, does the 

system performance meet our expectation? 

 

1.1.2 Roadway Feature Mapping 

One essential part of making the aforementioned positioning system possible is a 

roadway spatial information database, or in general, a digital map. Roadway features for 

aiding sensors are part of this database. Examples of such roadway features include and 

are not restricted to stoplights, lane-markers, curbstones, light poles, building facets close 

to the road, etc. The database stores the spatial information of the roadway features as 

well as other properties according to the needs of different sensors. However, the use of 

the roadway spatial information database is not restricted to storing features for aiding 

sensors. Many ITS applications need such a database. For example, a vehicle speed 

recommendation system would not only need the position of the vehicle, it also need to 

know the roadway properties such as road grade and the shape of the current road. In 

short, the database provides a reference to the aided-positioning system and other ITS 

applications. 

 In a broad sense, the term mapping refers to the procedure of building up this 

roadway spatial information database. Traditionally, people use aerial photogrammetry 

or terrestrial surveying to build up maps. There are some shortcomings for these 

methods that render them unsuitable and time-consuming for extensive feature 

mapping. Aerial photogrammetry could hardly handle the surveying of 3D objects, 

which are a major part of the roadmap spatial information database, and are often 
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used as features for aiding sensors [7]. Further, it is also typically costly and time 

consuming. Manual terrestrial surveying could handle a variety of objects of 

interest, but it also takes much time and manpower so that it is not well suited for 

the fast-changing environments [8]. On the other hand, automated mobile mapping 

is becoming an increasingly popular method.  

 A mobile mapping system typically consists of a moving platform, a navigation 

system and mapping sensors. The moving platform could be a land vehicle, marine 

vessel, or an aircraft. In this document, a land vehicle is chosen as the moving platform. 

The navigation system is the Carrier-Phase DGPS/INS system described in Chapter 4, 

providing accurate position and orientation information of the vehicle during the entire 

surveying period. The mapping sensor in this particular research is the Velodyne 3D 

LiDAR, which provides 3D point clouds in an egocentric coordinate frames. This 

research focuses mainly on the processing of the LiDAR point cloud to extract some 

roadway features of interests, and result in the spatial parameters of these suitable 

features. 

 

1.2 Key Contributions 

There are several key contributions of this research. 

• A new automotive RADAR aided DGPS/INS system has been developed. It is 

based on existing DGPS/INS positioning systems, with the key contribution being 

the integration of RADAR into the system. Specifically, 1) the preferable 
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mounting position with respect to GPS and IMU has been tested and determined; 

2) the RADAR measurement has been analyzed on selected landmark features 

and the measurement model for two different feature types has been developed for 

integration with GPS/INS using an Extended Kalman Filter (EKF); and 3) the 

performance of the system has been tested to prove the correctness and 

effectiveness of the developed model.  

• In addition, a novel roadway feature extraction algorithm has been developed. The 

roadway spatial data are collected using the DGPS/INS system that includes an 

integrated Velodyne 3D LiDAR. The algorithm processes the LiDAR point cloud 

data, converts all point coordinates to a uniform global coordinates, and then 

extracts two selected road features of interest: namely, intersection stop bars and 

road curbs. 

1.3 Dissertation Organization 

This dissertation is organized as follows. 

Chapter 2 describes the background of the two major projects in this dissertation, 

providing a review of related work in aided navigation and mobile mapping, 

identifies the shortcomings of the current methods, and motivates the selection of the 

methods in this research. 

Chapter 3 demonstrates the system setup, on both hardware and software, and 

introduces the two major sensors used in this dissertation – RADAR and Velodyne 

LiDAR. 
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Chapter 4 describes the proposed method to integrate RADAR and DGPS/INS system 

for lane-level navigation, including features selection, mathematical models and field 

test results and analysis. 

Chapter 5 describes the methods to process point cloud data collected the 3D LiDAR 

based mobile mapping system, and the algorithms to reliably extract roadway 

features. 

Chapter 6 provides a summary of the work in this dissertation, and provides directions 

to future work. 
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Chapter 2  Background and Related Work 

2.1 Aided Positioning System 

As described in Chapter 1, aided positioning systems are a promising way to 

providing affordable, accurate and continuously available vehicle position. In the system 

demonstration in Figure 1.1, the aided positioning system has three major components -- 

the high-rate sensor, the aiding sensor and the data fusion algorithm. For ground vehicle 

positioning systems, the most popular high-rate sensors are either wheel-encoders or 

IMUs. The output of either a wheel-encoder or IMU reflects the ego motion. With the 

integration of the high-rate sensor output through a vehicle kinematic model, the vehicle 

position and attitude can be estimated, but any sensor noise and bias would degrade the 

accuracy with time. The most widely applied aiding sensor for outdoor vehicle 

positioning systems is GPS and advanced GPS (DGPS and CP-DGPS). Both GPS 

integrated with wheel encoders and IMUs have been thoroughly investigated, and some 

examples can be seen in [4, 6, 9-12]. Further, a large amount of effort has been put into 

data fusion algorithms. The most popular and simplest to implement algorithm is the 

Extended Kalman Filter (EKF) and its derivatives [4, 13-15]. Other popular algorithms 

include Unscented Kalman Filter (UKF) [13, 15, 16] and particle filters [17, 18]. The 

comparison of these major algorithms can be found in [19]. It is not a major concern of 

this research to compare the performance of different filters, so the EKF was selected as 

the data fusion algorithm in the aided positioning system in Chapter 4 due to its 
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simplicity and good performance. Further, raw GPS measurements (pseudo-range, 

Doppler, and carrier-phase) are integrated with the GPS/INS directly in a tightly coupled 

architecture, because it has better robustness and overall accuracy over a loosely coupled 

architecture. The reason is that in areas where GPS reception could be marginal, the 

loosely coupled architecture may not receive a minimum of four satellites to solve 

position and velocity and thus could not be used to correct INS drifts [20]. 

Apart from GPS, many sensors have been investigated as aiding sensor for a 

GPS/INS positioning systems. The following sections present an overview of different 

aiding sensors that are categorized based on the physical signal and the measurement 

methods. What is worth noticing is that a single sensor usually falls into a single physical 

signal category, but may use multiple measurement methods. 

2.1.1 Categorization According to Physical Signal 

2.1.1.1 Global Navigation Satellite Systems 

GNSS is the most mature and accurate method to determine a vehicle’s position in 

a global coordinate frame [21]. It relies on a constellation of satellites that orbit the earth. 

The satellites broadcast coded radio signals to the earth, and the receiver measures the 

Pseudo-Random Noise Sequence from the satellite to determine the propagation time. In 

advanced GNSS systems (Differential GNSS and Carrier Phase GNSS), a base correction 

station sends correction messages to the receiver to compensate common-mode errors. 

With GNSS alone, the system needs at least four satellite signals to solve for the 3-

dimensional receiver coordinates and the receiver clock offset. In this category, the 
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physical signal is the radio frequency coded signal from which various observables are 

extracted, and the reference stations are the orbiting satellites. 

2.1.1.2 Ground-Based Radio Signal Positioning 

Similar to GNSS, ground-based systems also broadcast radio frequency signals. 

The radio signals may be specified for positioning purposes, such as pseudolite [22]. A 

pseudolite emits a signal that mimics the GNSS satellite but its transceiver sits on the 

ground to assist positioning in areas where GNSS signals are unavailable. Radio signals 

that majorly serve other purposes (i.e. Signals of Opportunity) could also be utilized for 

positioning such as cellular signal [23, 24], digital TV [25, 26], AM/FM Radio [27-29], 

WiFi [30, 31] and Dedicated Short Range Communications (DSRC) [32]. The 

measurement methods and related work of the sensors are discussed in section 2.1.2. 

2.1.1.3 Feature-Based Positioning 

In contrast to radio signal based positioning, feature-based sensors rely on local 

natural or artificial structures (e.g. road infrastructure, roadside buildings, and other 

vehicles). The sensor collects the emitted or reflected spatial wavelength in the visible 

and/or non-visible spectrum, and measures the spatial relationship (i.e. distance, angle) to 

the source object. Active feature-based sensors emit electromagnetic signals, and collect 

the reflected signal to take measurements. RADAR, LiDAR, Sonar and some active 

cameras are good representatives. Passive feature-based sensors do not emit power 

actively, but collect either reflected spectrum on the structure coming from other sources, 

or the spectrum emitted from the signal. The light signal that a normal camera can receive 
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comes from either the sunlight, or other illumination sources (e.g. road lights, vehicle 

head lights). Infrared camera could generate images based on the emitted infrared from 

objects.  

The feature-based sensors are naturally good complements to GPS/INS 

positioning systems. These egocentric sensors do not rely on external reference stations 

thus require minimum infrastructure cost, and the features they rely on are mainly local 

features which do not suffer from signal blockage. In GNSS occluded areas, feature-

based sensors could play an important role to guarantee positioning accuracy. In these 

positioning systems, the feature positions need to be known a priori. The sensor data are 

grouped, filtered, and features are extracted based on corresponding models, and then 

associated with the known features, and the residual is then integrated with the INS.  

The most popular feature-based sensors are cameras, RADAR and LiDAR.  

Cameras provide ample information about the feature it detects such as shape, 

angle, color, texture, etc. Many computer vision algorithms are available to extract 

features from single or a series of images. Further, the cost of a camera system is 

considerably lower in comparison to RADAR and LiDAR. As a result, camera-based 

positioning/localization systems have gained a lot of attention not only in the vehicular 

positioning area, but also in robotics [33]. Due to the ample information cameras could 

provide, it is possible to use the changes between consecutive camera images to estimate 

the position and orientation change of a robot [34] which is called visual odometry. In 

such cases, the camera does not focus on a single specific features, but processes clusters 

of different features together. Similarly, the Visual Inertial Odometry (VIO) combines 
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camera streams with inertial sensors to estimate motion in unknown environment [35]. 

For vehicle positioning, the existing natural or artificial features that are significant to 

extract from the images are most suitable, for example, LED lights [36] and stop lights 

[37]. 

LiDAR measures the distance by illuminating the targets with laser light and then 

analyze the reflected signal. LiDAR has a very small beamwidth thanks to the 

characteristics of lasers, and thus provide a good distance measurement accuracy and 

angle discrimination. Before automotive industry, LiDAR was popularly used as a sensor 

to build high accuracy maps. Further, LiDAR is also widely used in Robotics for absolute 

positioning or Simultaneous Localization and Mapping (SLAM). The features commonly 

used in a positioning system by a 2D LiDAR are created by the intersection of LiDAR 

scanning plane with common shapes, such as points (e.g. corners), arcs (e.g. cylinder 

trees or poles), lines (e.g. plain walls or side of buildings). Popular 2D LiDARs use a 

rotating mirror to accomplish the scanning, and the angular resolution could reach 0.2º 

(e.g., the Sick LMS500 LiDAR [38]) thus preserving accurate shape information of the 

targets. As an example, a straight line from the intersection of LiDAR plane with building 

face could be used as a feature to aid positioning in [39]. Aside from the modeled 

features, the raw detections in each cycle as a group of point clouds could form patterns 

and be matched with known 3D map of the world to calculate absolute position or 

integrate with INS [40]. This method is especially useful for 3D LiDAR because each 

scan forms a 3D cloud point with plenty of information to carry out map matching. 

The details of the RADAR sensor and related work are discussed in Section 2.2. 
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2.1.2 Categorization According to Measurement Method 

2.1.2.1 Proximity Based 

Among all measurement methods, the proximity based approach is the simplest 

yet coarsest. It is mostly applied with ground based radio signal positioning. The signal 

transmitted from the service station could only serve limited range, so when the receiver 

obtains signals from the stations, its location is registered as the closest station location, 

and the error could be as large as the station’s serving radius. The accuracy could be 

 

Figure 2.1 Cell-ID based positioning method. For the simplest method, the cell phone 
will use the coordinate of Base Station 7 (BS7) as its coordinates, and its error radius is 
the radius of BS7’s cell (the center cell in blue color). The position of the cell phone 
could also be the centroid of BS1 BS5 BS6 BS7.  
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improved when signals from multiple stations are received, in which case the receiver 

position could be estimated as the centroid of the transmitting stations [41].  

In a grid of transmitters, the accuracy is bound by the corresponding grid size. 

Increasing the spatial density of the transmitter grid could improve the accuracy. 

However the cost of the transmitter and of deployment will increase dramatically. In 

certain scenarios where the single transmitter is inexpensive such as a RFID transponder, 

and the working area is limited (e.g. in limited road areas), this method could be a simple 

feasible way [42]. Another example of the proximity based measurements is the coarse 

positioning using Cell-ID in cellular networks [43]. 

 

2.1.2.2 Signal Travel Time Based 

The idea behind travel time based approaches is simple. The distance between the 

positioning device and the reference station can be calculated by multiplying propagation 

time 𝑡!" with carrier signal velocity 𝑣! in the propagation medium.  

𝑑!" = 𝑡!"𝑣! 

The resolution and accuracy of the propagation time measurement decides the 

ranging accuracy, and then decide the final positioning accuracy. Essentially, both 

LiDAR and RADAR use the round-trip travel time to calculate distances. In the tightly-

coupled aided positioning architecture, the raw distance measurements to reference 

stations (either transmitter antenna or signal reflector) are used. In a loosely-coupled 

architecture, the position is solved by the sensor alone. To solve for receiver position, 

multiple direct or indirect distance measurements could be used. The corresponding 
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positioning algorithms are Time of Arrival (ToA) and Time Difference of Arrival 

(TDoA). 

Time Of Arrival (TOA) algorithm utilizes direct distance measurement between 

the signal transmitter and positioning device. It requires that the transmitter and receiver 

have synchronized clocks so the signal travel time can be simply calculated as the time 

difference between transmission and receiving. GPS pseudo-range measurement is 

essentially a TOA measurement. To solve 3D position with TOA measurements alone or 

in a loosely-coupled architecture, at least three TOA measurements from different 

reference transmitters are required given all transmitters and receivers have synchronized 

clocks. Each measurement defines a sphere centered at the transmitter location and whose 

radius is the measured distance. In an ideal condition, three spheres would intersect on a 

 

Figure 2.2 TOA based positioning (Triangulation) method. Each TOA measurement 
forms a sphere (as the circle in the figure), and the intersection is the solution. 



18 
 

single point, and that is the receiver location (Figure 2.2). GPS, WiFi based positioning 

[44] and custom radio positioning devices (Cricket [45], Active Bat [46], Locata [47]) are 

examples that use TOA method. 

Time Difference Of Arrival (TDOA) approach calculates the propagation time 

difference between the positioning device and two reference stations or between two 

reference stations and the device. This method requires synchronized clocks in all 

reference stations but not necessarily in the positioning device. The time difference 

measurement could be carried out at the base station side or at the positioning device 

side. The time difference can be converted to travel distance differences, so each TDOA 

measurements define a hyperboloid in 3D space, and position could be solved as the 

 

Figure 2.3 TDOA method. Each TDOA measurement forms a hyperboloid (as a 
hyperbola in the figure) and the intersection is the solution.  
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intersection of a triple set of TDOA measurement hyperboloids (Figure 2.3). Again, for a 

tightly-coupled architecture, the raw TDOA measurement is integrated separately. 

Examples of this technology could be WiFi-based positioning [48], cellular networks 

[49], signal of opportunity [50], AM Radio [51], and Digital TV [52]. 

 

2.1.2.3 Angle Based 

The angle-based approach measures the direction of the signal with respect to 

some egocentric coordinate frame. For example, some RADAR sensors (e.g. Delphi ESR 

RADAR) uses an antenna array to measure the direction of the reflected RADAR wave. 

Directional antenna could also take similar Angle Of Arrival (AOA) measurements. A 

typical camera can be used to take two separate (horizontal and vertical) angle 

measurements on every object that is captured on its optical sensor. LiDAR and RADAR 

also provide angle measurements besides distance measurements. The position of the 

device can be calculated with at least two AOA measurements. Radio signal based AOA 

positioning does not require complicated clock synchronizations, but its positioning 

accuracy is limited by the angle measurement accuracy, and at far distance, even small 

angle measurement error could cause significant positioning error. In addition, multipath 

propagation of the radio signal also largely affects angle measurement accuracy. In 

practice, hybrid systems are more feasible, and AOA measurements are usually used as 

an assisted measurement to TOA or TDOA systems [53-55].   
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2.1.2.4 Signal Strength Based Methods 

During propagation in the air, radio signals strength is affect by several factors, 

including propagation distance, atmosphere conditions, signal frequency, terrain etc. With 

known emitting power and measured received signal strength, the propagation distance 

can be estimated with a signal attenuation model. However, the model is complicated due 

to large number of factors and inaccurate due to the variation of those factors, which 

result in inaccurate distance estimate based on the model. Another major positioning 

method using signal strength is fingerprinting. It is an empirical approach, which does 

not rely on distance measurement from signal attenuation model, but instead depend on a 

signal strength map. In an environment with abundant signal sources, the signal strength 

of the signal from different sources varies with locations. So the first stage of 

fingerprinting based positioning is calibration, which means building up the connection 

between received signal strengths and locations. The fingerprinting approach is especially 

attractive for indoor positioning, because the environment is limited in size, and there are 

usually abundant signal sources (e.g. WiFi, cellular, radio). Another major advantage is 

that fingerprinting does not need any modification to the infrastructure, which is very 

important for WiFi based system in which TOA/TDOA measurements need significant 

hardware changes. The positioning accuracy using fingerprinting is greatly improved 

compared to signal strength – distance based positioning [56].   
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Table 2-1 Comparison of Aiding Sensor Measurement Methods 

 

2.2 Review on RADAR Related Work 

RADAR as a detection and ranging sensor has been under development ever since 

its emergence in early 20th century [57]. Various types of RADAR have been developed. 

Target tracking is the RADAR’s basic objective, in which the knowledge of targets’ 

distance, bearing, speed etc. is provided. For example, in military applications, RADARs 

have been widely used to detect and track targets such as missiles, airplane sand vessels. 

In addition, RADAR is also used to locate precipitation when observing RADAR echos 

of clouds. Another branch of RADAR – Synthetic Aperture RADAR (SAR) could 

provide detailed terrain images when mounted on aircraft that fly above the terrain, and 

thus is widely used for remote sensing and mapping of the surface of both the earth and 

other planets [58]. 

Aiding Sensor Measurement Method 

GNSS TOA 

Pseudolite TOA 

Camera AOA 

Stereo Camera/TOF camera TOA 

RADAR TOA, AOA 

LiDAR TOA, AOA 

Cellular  TOA, TDOA, AOA, Fingerprinting 

WiFi TOA, Fingerprinting, RSSI 

DSRC TOA 

Radio, DTV TOA, TDOA, Fingerprinting 
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In addition to object tracking, RADAR could also be used to aid navigation. For 

example, RADAR altimeters are widely equipped in airplanes for take-off/landing 

navigation support [59]. RADARs have also been customized to different application 

scenarios. For example, Synthetic Aperture RADAR (SAR) images could be matched 

with known terrain map to aid inertial measurement based aircraft navigation [60, 61]. 

RADAR’s measurements to known landmarks makes it a good complement to inertial 

navigation solutions in various applications, such as mining machine navigation [62], 

train positioning [63], and indoor navigation [64, 65].  

In the past few decades, advances in digital electronics and antenna design have 

made compact yet capable automotive RADAR possible. Such compact automotive 

RADAR is still capable to take range, range rate and angle measurement up to a hundred 

meters which is necessary for many advanced driver assistant and safety applications. 

Nowadays, automotive RADAR sensors have been equipped in a large number of 

vehicles ranging from mid-class to luxury cars. The most popular application for existing 

automotive RADAR application is Adaptive Cruise Control (ACC) [66], in which, 

relative position/velocity information measured by RADAR is used to keep a safety 

distance. Further, low cost RADAR units are also installed around vehicles to provide 

information about the surrounding environment, so that drivers could receive warnings on 

potential accidents. More specifically, examples on automotive RADAR applications 

include Adaptive Cruise Control, Pre-Crash Control, Blind Spot Detection, Lane 

Departure Warning, Stop and Go Control, and parallel parking. [67]. 
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In comparison with other popular aiding sensors like cameras and LiDAR, 

RADAR has several advantages due to its special radio frequency. Passive sensors such 

as cameras rely highly on the illumination condition of the environment, which makes it 

unable to work under direct sunlight, or at night. The characteristics of laser make it 

possible to work regardless of environmental illumination, but still suffer from obstacles 

like dust, rain, snow or fog that often happen in outdoor environments [68]. In 

comparison, the performance of RADAR sensor is significantly less affected by these 

conditions, which makes it very important complement for outdoor positioning 

applications [69]. Further, compared with LiDAR, the power consumption of RADAR is 

also smaller. In addition, due to mass production and application of automotive RADAR, 

the price is more affordable for civilian uses. 

Since the beginning of World War II, navigation systems containing RADAR 

have been extensively used. There are mainly two categories of RADAR sensors 

involved in positioning and navigation systems depending on the form of output. And 

each has a set of methods to aid navigation. 

2.2.1 Imaging RADAR  

Imaging RADAR outputs images of the detection area, which is similar to a 

camera. There are two major branches of imaging RADAR, SAR RADAR and 

Frequency Modulation Continuous Wave (FMCW) Imaging RADAR. The theory behind 

SAR RADAR is beyond the scope of this document and could be found in textbooks (e.g. 

[70]). SAR RADAR is usually mounted on an airborne platform and high-resolution 

terrain images can be generated while the carrier flies over. Another class of imaging 
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RADAR is FMCW imaging RADAR. This type of RADAR is mostly seen in maritime 

applications.  

 In essence, the imaging RADAR outputs are very similar to camera images, such 

that camera based localization algorithms in the Robotics field can be used for reference. 

Based on how RADAR images are processed to aid localization, the positioning systems 

can be categorized as follows. 

• Ego-motion based integration: Sensor position and attitude change based 

methods use RADAR image to estimate the change of sensor position and attitude 

by computing changes in consecutive RADAR images. Landmarks or other 

significant RADAR features are detected, associated among consecutive RADAR 

images, and then the amount of changes in image coordinates is converted to 

sensor pose changes. If sensor position is purely estimated based on this method, 

it is called RADAR Odometry since it comes from Visual Odometry [71]. 

RADAR image distortion from rotating RADAR sensor on a high-speed carrier 

platform can also be used to estimate platform velocity and movement. The result 

could also be used as RADAR Odometry [72]. Fourier-Mellin transform is used 

in [73] to estimate ego-motion between images without selecting features. 

Besides, the sensor movement between consecutive images could also be used as 

an external sensor observation in an aided positioning architecture. For example, 

in [74], InSAR system calculates the consecutive SAR images on the ground, 

analyze the land topography, and estimate air-vehicle motion during consecutive 

images, and the motion estimation is integrated with INS.  
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• Absolute position based integration: Another way of utilizing RADAR Image is 

by extracting landmarks from image and associate with known surveyed 

landmarks or simply matching the RADAR Image with known ground map, and 

the position and attitude residues are used to determine sensor position. In SAR 

images, the features could be prominent objects univocally marks the land, or 

simply a small part of the SAR images [60]. This method requires a database or a 

map that is built a priori. This type of SAR sensor output can be integrated with 

INS [61], or INS/GPS [75] using the integration algorithms mentioned in section 

2.1 to achieve better positioning accuracy. The existing such systems focus 

mainly on airborne SAR RADAR because the RADAR image view-point is 

mainly single birds-eye view and is easy for comparing with database image 

maps. The complicated ground vehicle environment poses bigger challenges for 

this approach. 

2.2.2 Feature Positioning RADAR 

Besides imaging RADAR, another type of RADAR output the relative position 

measurement to the targets with detectable RADAR cross-section (effective reflective 

area). The measurements usually include the range, range rate, angle, reflectivity etc. 

These measurements are the combination of TOA, AOA, and signal strength 

measurements. The measurement and corresponding errors are modeled and integrated 

with other encoder or IMU as a positioning system. Similar RADAR measurements are 

also used in SLAM [76, 77]. Both natural features [78] and artificial features (RADAR 

reflectors [15, 79], indoor structures) are common reference targets. In the existing 
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proposed systems, 2D vehicle kinematic model with EKF are common to integrate with 

wheel encoder, steering angle and/or gyro. The 2D world assumption is adequate where 

the operation environment is limited and the surface is flat. However in practice, the fact 

that outdoor vehicles usually operate on large areas that invalidates the 2D assumption. In 

Chapter 4, a low cost ACC RADAR aided GPS/INS positioning in 3D is proposed to 

overcome the problems. 

 

2.3 Review on Road Feature Surveying with Mobile Mapping Systems 

2.3.1 Mobile Mapping Systems 

Road Feature Surveying used to be carried out by remote sensing images, such as 

camera or SAR images from satellites or aircraft, or by human surveying. With the 

advances in GNSS based positioning systems, mobile mapping systems (MMSs) have 

emerged and gained a lot of attention. One of the first mobile mapping systems by Ohio 

State University consists of a code GPS receiver integrated wheel encoder and gyro as 

navigation component, and stereo camera as mapping sensor [80]. Back then, the 

mapping accuracy is restricted by both a geo-referencing component and the mapping 

sensor accuracy. In the past decade, both have had significant improvements. The use of 

Carrier-Phase Differential GPS and a high-precision IMU results in centimeter-level 

accuracy and is common in many contemporary mobile mapping systems [7]. 

Meanwhile, mapping sensors have also gained significant advancement. Video cameras 

with much higher resolution have become popular and affordable, and LiDAR has 

become compact and cost effective enough to be widely applied in MMSs.  
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According to the imaging unit in use, MMSs can be characterized as camera 

based systems (e.g. GPSVision[81], VISAT™[82], KiSS™[83] and GI-EYE™[84]) and 

LiDAR based systems. The MMS using LiDAR as the main mapping sensor is the most 

recent development. The characteristic of laser used in LiDAR as range measurement 

carrier results in LiDAR capability of providing more data points with exceptional 

accuracy over traditional data capture methods [7]. Commercial systems have emerged 

since 2005, such as SITECO Road Scanner [85], TOPCON IP-S2 [86], TRIMBLE Mx8 

[87], etc. Contemporary MMSs usually utilizes expensive dual-frequency CP-DGPS, and 

fiber optic gyro based IMU to guarantee centimeter of positioning accuracy. Both 2D and 

3D LiDARs and various kinds of cameras are integrated to provide accurate and ample 

measurements.  

Typically in systems using 2D LiDAR, multiple LiDARs are mounted at different 

angles and/or around the vehicle perimeter to capture more of the surroundings (e.g. 

Figure 2.4). As described in Section 2.2, each LiDAR scanning plane intersects with the 

3D environment, and the measurement is the distance to the intersection at each angle on 

the scanning plane. When the vehicle carrying the MMS moves, the road environment is 

intersected along several lines, which finally results in a 3D point cloud around the 

vehicle route (Figure 2.4). In 3D LiDAR based systems, the mounting of LiDAR is more 

flexible because 3D LiDAR (such as Velodyne HDL-64E) has multiple vertical beams 

that scans in parallel so that a single spin could build up 360° panoramic 3D point clouds. 

In this document, a VELODYNE 3D LiDAR and Ladybug panoramic camera 

based MMS is described in Chapter 5. In our solution, the vehicle trajectory accuracy is 
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guaranteed by offline smoothing of all carrier-phase and code GPS and IMU 

measurements, which relieves the requirement of high precision IMU but still guarantees 

centimeter accuracy.  

 
  

 

 

Figure 2.4 StreetMapper™ mobile mapping system [2]. 2D LiDARs are mounted at 
different angles to capture different parts of the environment. The LiDAR scanning 
plane intersects with the environment to generate a set of points, and multiple scans 
could create a 3D point cloud. 
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2.3.2 Road Feature Extraction Algorithms 

Land vehicles equipped with MMS are very suitable for road feature extraction. 

While vehicle drives around targeted road areas, LiDAR could collect dense and accurate 

data points of the road environment. The LiDAR detections are time-tagged, so that in 

post-processing, LiDAR data points in egocentric coordinate frames could be converted 

to global coordinate frames by referring to the vehicle trajectory at the time tag. This 

procedure is also called LiDAR point registration. In this way, both 2D and 3D LiDAR 

could generate a dense 3D point cloud. The accuracy of the resulting 3D point cloud is 

determined by both LiDAR measurement accuracy and the positioning component 

accuracy.  

After data collection and data registration, road features with specific shapes and 

laser reflectivity could be extracted. Such features include but not limited to road 

boundaries, various road markers (e.g. lane markers, turn signs, speed limits, pedestrian 

crossings), roadside infrastructure (e.g. trees, light poles, traffic signs), railroad 

crosswalks, manholes, and curb stones. Based on characteristics of the targeted road 

features, various algorithms are developed. In general, there are three major categories of 

processing methods. 

The first category of algorithms usually applies to road surface feature extraction, 

such as lane markers, pedestrian crossings, intersection stop-bars, etc. The 3D point cloud 

is filtered by certain criterion such as height or vertical connectivity to remove non-

surface points, and a birds-eye view of the point cloud around road surface is generated. 

The aforementioned features usually have significantly larger laser reflectivity than 
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surrounding surfaces, so that in intensity birds-eye image, such features often stand out 

from background. Image processing algorithms could be applied to the projected 2D 

image to extract the features. The flattened 2D images could be generated using laser 

reflectivity, height, and other calculated properties. Examples can be found in [88-90]. 

In the second category, the 3D point cloud is processed directly. Points in the 

point cloud are clustered, segmented, and identified based on the properties of the 

targeted feature. 3D pattern matching is also applicable in this category, such as in [91], 

the pole along the road is extracted by matching the point cloud to a kernel which 

consists of a center region where laser points exist, and a rejection region where laser 

point should not exist. Sometimes, vertical slices of the point cloud are generated and 

used to identify features with significant height properties [92, 93]. For example, road 

curbs usually have a vertical height change of 15-40cm from the near-flat road surface.  

In the third category, features could be roughly extracted in single LiDAR scans, 

and then results could be converted to global frame and aggregated for further processing.  

Because each 3D LiDAR scan already forms a 3D point cloud, some features could be 

extracted locally in the single scan in LiDAR coordinate frames, then converted to global 

coordinate frames and do further processing. One example is road curb extraction using 

this method. Curb candidates could be extracted in each single scans first, and all 

candidates are aggregated in global coordinate frame, filtered and connected to create the 

curb line [94]. In [95] and [96], 2D LiDAR single scan on the road are used to detect 

obstacles or road edges, and then global curb models are used to connect and filter the 

candidates.  
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Chapter 5 focuses on one specific road surface feature – intersection stop-bars. 

The methods to extract other road surface features such as arrows, lane markers could be 

applied, but the different characteristics of the stop-bars require additional processing to 

reliably extract them.  

2.4 Coordinate Systems 

There are several Cartesian coordinate systems used to represent objects’ spatial 

coordinates and attitudes in this document that are shared by both positioning system and 

mapping system as follows. 

• Earth-Centered Earth-Fixed Frame {E}, is used as the global coordinate frame on 

the Earth. It is centered at the center of mass of the Earth. Its x-axis points to the 

prime meridian and z axis points to the north. It is fixed with the earth surface, 

and thus could be used to represent the unique location on Earth surface. 

• Local Tangent Frame {G}, is represented as the green rectangle in Figure 2.6. It 

is determined by fitting a tangent plane to the geodetic reference ellipse at a 

point of interest [6]. The origin of {G} is fixed to a point on the Earth surface 

such that it could be used as a global reference frame. 

• Body Frame {B}, is defined as the coordinate frame attached to the vehicle. In 

this document, the axes of the body frame coincide with the IMU’s coordinate 

frame. According to the mounting of IMU with respect to the vehicle, the x axis 

of the body frame points roughly to the vehicle’s heading direction, the z axis 

points down, the y axis is defined according to right hand rule of the Cartesian 

coordinates. 
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• Sensor Frame, is the coordinate frame to represent all sensor detections and is 

fixed with the sensor itself. In Figure 2.5, {R} is the sensor frame for RADAR. 

The transformation relationship among coordinate frame {A} and {B} is 

represented by translation vector 𝐓!"!  which is the vector from origin of {A} to the 

origin of {B} described in {A}, and the rotation matrix 𝐑!!  which is the rotation matrix 

from {A} to {B}. Special relationships or details will be described when used. 
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Figure 2.6  LLA, ECEF and Local Tangent (NED) Frames 

 

Figure 2.5  Spatial relationship among ECEF frame {E}, Local Tangent Frame {G}, 
body frame {B} and Sensor frame (Radar as an example) {R} 



34 
 

 

Chapter 3  Hardware Setup 

3.1 Overview 

The hardware part of the positioning and mapping system used in this research 

has four components. The carrier vehicle is a Nissan Altima sedan. The sensors are 

mounted on a steel plate which is then mounted on the roof of the vehicle. The data 

collection and real-time positioning computer is a low-profile PC located in the trunk 

running the Ubuntu 12.04 operating system. The GPS antenna is mounted closely on the 

IMU box to reduce the level-arm effect. The power system is comprised of two 12-volt 

batteries which provides 12v DC power to sensors and 110v AC power to the computer 

through inverter. The vehicle alternator charges the batteries when the engine is running.  

 

Figure 3.1 Sensor platform.  
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 The sensor platform is illustrated in Figure 3.1. On the top of the platform is the 

IMU and GPS receiver, which is in the black box. Some of the sensors on this platform 

are not used in this document, but has been used in other research articles [37, 39]. In 

Chapter 4, the Delphi RADAR, GPS and IMU is used. In Chapter 5, the whole mapping 

system includes the Velodyne LiDAR, Ladybug Panoramic Camera, GPS and IMU, 

however the Ladybug camera is not used in this document.  

 

3.2 Automotive RADAR Sensor 

The RADAR sensor used in this dissertation is Delphi Electronically Scanning 

RADAR (ESR), which is widely applied in the Adaptive Cruise Control (ACC) module 

in many passenger vehicles (e.g. Volvo s60). Due to mass production and advanced 

digital electronics design, it is available at low cost (around $1000). This RADAR 

operates on 77GHz frequency, which is within the regulated frequency band by the 

Federal Communications Commission. Due to the fact that the wavelength of 77GHz 

RADAR is 3.89 millimeters, this type of RADAR is also called millimeter-wave 

 
Figure 3.2 Delphi ESR Radar 



36 
 

RADAR. The millimeter wave has superior penetrability through fog, smoke and dust 

and it can also provide good spatial resolution and high accuracy. The angle measurement 

is carried out by converting the phase difference of received signals on its antenna array. 

This prevents the unreliability of mechanically scanning RADAR.  

The Delphi’s multimode ESR combines simultaneous long-range and short-range 

modes. The long-range mode could reach up to 174 meters with at horizontal azimuth 

angle of 20°, while the mid-range mode covers up to 90° of Field Of View (FOV) at a 

maximum of 60 meters. The stated range measurement noise is smaller than +/- 0.25m 

and the angular measurement noise is within +/- 1.0°.  

The RADAR is connected to a3. local CAN bus, and with the computer through a 

CAN-USB converter. Each RADAR cycle consists of 64 detections, and all detections are 

 
Figure 3.3 Radar detections are converted to 2D coordinates, and plotted on a birds-
eye view. The yellow rectangle represents the Radar sensor. The red dashed lines 
represent the horizontal FOV. Each Radar detection is reported with an ID. In the 
original ACC Radar firmware, if an object appears in multiple cycles, it would be 
tracked and its ID will stay the same.  
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sent as serialized CAN messages. The RADAR is operating at 20Hz, and the detection of 

each cycle is collected, processed and sent at the next cycle, so that the typical delay is 

50ms.  

The RADAR measurements consists of ID of object, range, range rate and angle. 

The RADAR coordinate frame is defined on its detection plane, on which the x-axis 

points to the front and y-axis to the right (Figure 3.3). In this dissertation, only range and 

angle are used, and the i-th measurement can be converted to RADAR coordinates with 

the following equation.  

𝑥!
𝑦! = 𝑑! cos𝛽!

𝑑! sin𝛽!
, 

where 𝑑!, 𝛽! are the distance and angle of the i-th measurement. 

 

3.3 Velodyne LiDAR  

The 3D LiDAR used in this dissertation is the Velodyne HDL-64E LiDAR. It is 

mounted under the GPS antenna to prevent the intervention of GPS signals. The LiDAR 

has 4 groups of 16 laser emitters and 2 groups of 32 laser receivers (Figure 3.4). A single 

shot of measurements consists of 64 vertically aligned laser range measurements 

distributed on a 26.8º of vertical FOV. Each of the 64 single LiDAR measurements 

comprises distance and intensity, while the angle of the detection is calculated according 

to the current rotation angle of the housing and the fixed angle of the laser. 
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The LiDAR coordinate frame is illustrated in Figure 3.4. Z-axis is the spinning 

axis of the LiDAR housing, while the X-axis is fixed to point to the front. In an ideal case 

where laser emitters and receivers are aligned perfectly, the measurement of a single laser 

could be converted to Cartesian coordinates within the coordinate frame illustrated in 

Figure 3.4 using the following equations: 

 
𝑥!
𝑦!
𝑧!

=
𝑠!𝑅! cos 𝛿! sin 𝜀
𝑠!𝑅! cos 𝛿! cos 𝜀
𝑠!𝑅! sin 𝛿!

, (1) 

where: 

𝑠! is the distance scale factor for laser i; 

𝑅! is the raw distance measurement from laser i to the reflected object; 

𝛿! is the angle of laser i’s direction with respect to the x-y plane; 

𝜀 is the rotation angle of the housing with respect to the x-z plane. 

 

Figure 3.4 Velodyne HDL-64E [1]  
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In practice, several offset and calibration parameters are involved in the 

conversion. This conversion was carried out based on the offsets, the calibration 

parameters and equations are provided by the manufacturer. This calibration procedure is 

not described here. 

The Velodyne LiDAR spins at 10 cycles per second. All LiDAR data is 

transferred to the computer via Ethernet connection, and time-tagged with the received 

GPS time for data registration. A typical LiDAR cycle of 360º of 3D measurements is 

illustrated in Figure 3.5. The level of brightness represents the intensity of reflected 

signal returned by the LiDAR. The advantage of the 3D LiDAR is that it not only 

preserves the spatial structure of the environment, but also discriminates highly reflective 

objects. In this dissertation, the bright stop-bars are of interest. 
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Figure 3.5 Point cloud intensity image of one 360º cycle. The center of the image is 
the LiDAR sensor on the test vehicle. Shapes like road curbs, trees, vehicles and 
building facets can be easily identified by the human eye in such images. Highly 
reflective objects are also identifiable such as lane markers and stop-bars. 
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Chapter 4  RADAR/DGPS-aided INS 

4.1 Introduction 

In this chapter, a real-time automotive RADAR aided DGPS/INS positioning 

system is proposed, where both GPS and RADAR sensor are tightly coupled with an 

IMU. A standard Extended Kalman Filter (EKF) is implemented to integrate sensors to 

provide continuous vehicle pose estimation. In this case, the high-rate IMU provides six 

degree-of-freedom (DOF) inputs to the vehicle kinematic model, while pseudo-range 

 

Figure 4.1  A bird’s-eye view of the overall positioning scenario in urban canyon. Tall 
buildings along the roads could block GPS signals, leaving only satellites in the front 
or in the behind as receivable. Radar will measure relative position of roadside 
landmarks, and update the vehicle position estimate.  
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measurements from GPS and RADAR measurements are then integrated to update 

vehicle state estimates. An illustrative scenario is shown in Figure 4.1. In such roadway 

scenario, the RADAR sensor could use relative position of point features (e.g. traffic 

signs) and pole features (e.g. light poles) to assist position estimation. In section 4.2, the 

vehicle kinematic model, GPS measurement model, and RADAR measurement model, 

and error analysis model will be presented. In section 4.3, experiments that simulates 

general roadway scenario are then presented, with analysis to prove the effectiveness of 

automotive RADAR as complement to GNSS. 

4.2 Methodology 

4.2.1 Sensors Arrangements 

On the sensor platform, the IMU/GPS is mounted on the top of upper panel to 

prevent blockage of GPS signals, while the IMU coordinate frame is used as the vehicle’s 

body coordinate frame. The RADAR sensor is mounted on the lower panel, facing 

forward, so that the x-axis of the RADAR coordinate frame roughly coincides with the x-

axis of the IMU. The mounting position, attitude and sensor FOV are illustrated in Figure 

4.2. In this study, the IMU provides 6 Degree Of Freedom (DOF) measurements. Its 

measurement model is described in Section 4.2.2.1. The GPS receiver provides 

measurements of pseudo-range, Doppler and carrier-phase. The carrier-phase 

measurement aided INS can attain centimeter-level accuracy, and thus is used as a 

ground-truth to demonstrate the performance of the proposed system. 

 In this study, the origin of the local tangent frame {G} is chosen as the antenna 

position of our own GPS base station. The experiments are taken in the vicinity of the 
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GPS base station. The state of the vehicle includes the position, velocity and attitude of 

the body frame {B} with respect to {G}. 

4.2.2 DGPS/INS System 

4.2.2.1 Inertial Measurement Unit 

The six Degree of Freedom Inertial Measurement Unit (IMU) measures the three-

dimensional specific force 𝒂!  by accelerometer and rotational rate 𝝎!   by gyroscope. 

They are modeled as:  

 
𝒂! = 𝒂! !" − 𝒈! + 𝐛!! + 𝐧! !

𝝎! = 𝝎! !" + 𝐛!! + 𝐧! !,
 (2) 

where 𝒂!"!  and 𝝎!"
!  are defined as the acceleration and angular rate vectors of the 

body frame {B} with respect to the inertial frame {i} described in {B}, and they are used 

in the following kinematic equations. The vector 𝐮 𝑡 = 𝒂!"! 𝑡 ! 𝝎!"
! 𝑡 ! !

 is the 

input to the vehicle kinematic models. The IMU biases are modeled as random walk 

processes 

  𝐛! ! = 𝐧! !" , 𝐛! ! = 𝐧! !", (3) 

where the power spectral densities of 𝐧! !" and 𝐧! !" are positive definite matrices 𝐐!" 

and 𝐐!", respectively. 
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4.2.2.2 Vehicle Kinematic Model – What the nature does 

The state of the vehicle 𝐱!!  is the state of the IMU frame (i.e. {B}) with respect 

to the global frame {G}. The states abide by a set of differential equations known as the 

kinematic model, 

 𝐱! ! 𝑡 = 𝑓 𝐱! ! 𝑡 ,𝐮(𝑡) . (4) 

Specifically, the set of equations is 

 
𝐩! ! = 𝐯! !

𝐯! ! = 𝐑 𝒂! !" − 2 𝛀! !" 𝐯! !!
!

𝐑!! = 𝐑!! 𝛀! !" − 𝛀! !" ,
 (5) 

 

Figure 4.2. Sensor Arrangement.  
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where the state vector of the vehicle is 𝐱! = 𝐩!!! 𝐯!!! 𝜽!!! !! , including 

position 𝐩!! , velocity 𝐯!!  and an equivalent representation of the rotation matrix 𝐑!! , 

either in Euler angles or quaternions form which is represented as 𝜽!! . The skew 

symmetric matrix 𝛀 spanned from vector 𝝎 = 𝜔! 𝜔! 𝜔! ! is defined as  

 𝛀 = 𝝎× =
0 −𝜔! 𝜔!
𝜔! 0 −𝜔!
−𝜔! 𝜔! 0

. (6) 

In Equation (5), the vector 𝝎! !" that spans 𝛀! !" is the angular rate of the ECEF 

frame with respect to an inertial frame described in {B}, and similarly 𝝎! !" which spans 

𝛀! !" is the true angular rate vector of {B} with respect to some inertial frame. The 

acceleration and angular rate vectors are described with respect to the inertial frame. 

Because the ECEF is not a strict inertial frame, its autorotation rate 𝝎! !" is modeled in 

the kinematic equations. 

External sensors such as GPS, LiDAR, RADAR, camera provide measurements 

to the observables of the system. The measurement model is a function of the system 

states 𝐱! 𝑡!  and additive measurement noise. 

  𝐳 = ℎ 𝐱! 𝑡! + 𝐧!, (7) 

where 𝐧! is the measurement noise vector and its covariance is the positive definite 

matrix R. 

4.2.2.3 Mechanization Model – What the navigation system does 

The navigation system maintains the estimated state vector of the vehicle and the 

estimate of IMU biases. The augmented state vector is  
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   𝐱!= 𝐩! !
!        𝐯! !

!        𝛉! !
!      𝐛! !

!      𝐛! !
! !

, (8) 

where xB  is vehicle states reported by the navigation system. The state vector is 

continuously estimated by numerically integrating the following equations as the 

mechanization equations  𝐱! 𝑡 = 𝑓 𝐱! 𝑡 ,𝐮 𝑡 : 

  

𝐩! ! = 𝐯! !

𝐯! ! = 𝐑!! 𝒂! !" − 2 𝛀! !" 𝐯! !

𝐑!! = 𝐑!! 𝛀! !" − 𝛀! !"

𝐛! ! = 𝟎!×!
𝐛! ! = 𝟎!×!.

 (9)  

The system input 𝐮 𝑡  is the estimated acceleration and angular rate vectors 

calculated from the IMU raw measurements with the following equations 

  𝐮 𝑡 =
𝒂! !"

𝝎! !"
=

𝒂! + 𝐑 𝒈!!
! − 𝐛!!

𝝎−! 𝐛!! . (10) 

Similarly, the navigation system also predicts the external sensor measurements 

using the same measurement model (7), but replacing the true system state with the 

estimated state. The measurement prediction equations are 

    𝐳 = ℎ 𝐱! 𝑡 , (11) 

where the measurement noise term is assumed  

4.2.2.4 Error Analysis 

In EKF framework, besides state estimation, the probabilistic distribution of the 

estimated states is also estimated. This is directly related to the error analysis. Error states 

are defined as 𝛿𝐱 = 𝐱− 𝐱, which in detail is, 𝛿𝐱 = 𝛿𝐩 𝛿𝐯 𝝆 𝛿𝐛! 𝛿𝐛! ! . The 
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symbol 𝝆 a 3×1 vector representing the attitude error in local tangent frame. The time 

propagation of the error states is  

  𝛿𝐱 = 𝑓 𝐱! ! 𝑡 ,𝐮(𝑡) − 𝑓 𝐱! ! 𝑡 ,𝐮(𝑡) , (12) 

The error state propagation model linearized around 𝐱! ! 𝑡  and 𝐮(𝑡) 

 𝛿𝐱 = 𝐅𝛿𝐱+ 𝐆𝐧, (13) 

where 𝐅 = !"
!𝐱 𝐱!𝐱,𝐮!𝐮

, 𝐆 = !"
!𝐧 𝐱!𝐱,𝐮!𝐮

  and the noise vector 𝐧 = 𝐧!! 𝐧!! 𝐧!"! 𝐧!"!
!

.
. 

The detailed derivation of matrix F and G can be found in Section 11.6 of [6],  

𝐧!, 𝐧!represent measurement noise processes of the accelerometer and gyro respectively 

and 𝐧!", 𝐧!" are already described in Section 4.2.2. The IMU noise vectors are modeled 

as Gaussian white noise processes, and their power spectral densities are positive definite 

matrices 𝐐! and 𝐐!. 

A discrete form of the propagation equations needs to be used in practical 

implementations. The IMU measurements are sampled at 1/𝑇 frequency, the states are 

also propagated at the same frequency. The discrete time transition matrix is 𝚽 = 𝑒!". 

Detailed derivation can be found on Section 3.5.5 of [6]. The propagated covariance is  

 𝐏!! = 𝚽𝐏!!!!! 𝚽!! + 𝐐! . (14) 

Similar to state estimation error, the measurement residue is defined as 𝛿𝐳 = 𝐳− 𝐳. The 

linearized residue model is computed as 

 𝛿𝐳 = 𝐇𝛿𝐱+ 𝐧! , (15) 

where 𝐇 = !!
!𝐱 𝐱!𝐱𝒌

! is also computed at every time instant 𝑡!.  

 The residue covariance 𝑠 is computed as 
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 𝐒! = 𝐇!𝐏!!𝐇!! + 𝐑, (16) 

where 𝐏!! is the propagated state covariance, 𝐑! is the measurement covariance matrix. 

The Kalman gain and state update equations are 

 
𝐊! = 𝐏!!𝐇!!𝐒!!!

𝐱!! = 𝐱!! + 𝐊!𝛿𝐳!
𝐏!! = 𝐈− 𝐊!𝐇! 𝐏!!.

 (17) 

4.2.2.5 GPS Measurement Model 

The use of GPS measurements with IMU in a tightly-coupled architecture is 

summarized in this section. Detailed analysis and derivation of GPS measurement models 

and error sources are presented in Chapter 8 and 11 of [6]. In this section, only the key 

equations are described.   

Typically, low-cost single frequency (L1) GPS provides three types of 

observables (pseudo-range, Doppler, and carrier-phase signals) where direct line-of-sight 

exists between GPS receiver antenna and the satellite vehicle. The pseudorange between 

the GPS receiver antenna 𝐩 and the ith satellite vehicle 𝐩!"!  comprises both actual distance 

𝐩− 𝐩!"! !
 and the receiver clock offset term Δ𝑡!, and is described as 

 𝜌 𝐩,𝐩!"! = 𝐩− 𝐩!"! !
+ 𝑐Δ𝑡!, (18) 

where c is the speed of light in vacuum. 

 The pseudorange and Doppler measurement models are 

 
𝜌! = 𝜌 𝐩,𝐩!"! + 𝑐Δ𝑡! + !!

!!
𝐼!! + 𝑇!! + 𝐸! +𝑀!

! + 𝑛!!

𝜆𝐷!! = 𝐔!"! 𝐯! − 𝐯!"! + 𝑐Δ𝑡! − 𝑐Δ𝑡! + 𝑛!! .
 (19) 
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The pseudorange measurement equation contains several error sources, in which 

Δ𝑡! is the satellite clock error; 𝐼!!  and 𝑇!!   are atmospheric errors; 𝐸! is the ephemeris error; 

𝑀!
!  is the multipath error; 𝑛!!  is the pseudorange measurement noise. The Doppler 

measurement is treated as the instantaneous relative velocity between satellite vehicle and 

receiver antenna. In the Doppler measurement equation, 𝜆 is the carrier wavelength; the 

vector 𝐔!" = (𝐩− 𝐩!"! )/ 𝐩− 𝐩!"!   is the unit vector pointing from the satellite vehicle to 

the receiver antenna; 𝐯!  and 𝐯!"!   are velocity of the receiver and ith satellite vehicle 

respectively; 𝑛!!  is the Doppler measurement noise. Differential GPS methods could 

eliminate common mode errors  Δ𝑡! , 𝐼!! ,𝑇!!   and  𝐸!. The receiver clock error Δ𝑡! could be 

eliminated using double differencing methods. Linearized measurement equations of 

pseudo-range and Doppler measurements using the double differencing method are 

 𝐇! =
𝐔! !!
! − 𝐔! !"

! 𝟎 𝟎 𝟎 𝟎
𝟎 𝐔! !!

! − 𝐔! !"
! 𝟎 𝟎 𝟎

, (20) 

where subscript 0 represents the satellite index at the highest elevation.  

Satellite signals will only reach the receiver directly when the line-of-sight 

between the receiver and satellite is unobstructed. Consequently, when the GPS receiver 

antenna is in an urban areas -- especially where buildings, trees and other obstacles block 

signals from lateral directions -- only signals from satellites along the road will be 

received. In such situations, GPS can maintain accuracy of the position vector along, but 

not perpendicular to the roadway. 
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4.2.3 RADAR Processing 

As is demonstrated in Section 3.2, the Delphi ESR RADAR provides three 

separate measurements, range, range rate and angle. In our system, the range 𝑑 and angle 

𝛽 are integrated. The measurement model of the ith RADAR detection 𝐳! = 𝑑! ! 𝛽! ! ! 

is 

 
𝑑! ! = 𝐩! !

! + 𝑛! = ( 𝑥! !)! + ( 𝑦! !)! + 𝑛!

𝛽! ! = atan2 𝑦! ! , 𝑥! ! + 𝑛! ,
 (21) 

where [𝑛! ,𝑛!] is the vector measurement noise process which is modeled as independent 

Gaussian white noise whose covariance is the diagonal matrix 

 𝐑 =
𝜎!! 0
0 𝜎!!

 (22) 

The vector 𝐩! !
! = 𝑥! ! , 𝑦! ! ! is the sensor frame egocentric 2D coordinate of 

the intersection of the object with the RADAR FOV plane. The RADAR detection is 

based on the total reflective intensity, so for large objects, the RADAR detections are 

hardly dense enough to show the boundaries, and sometimes when the objects are far 

away, the sparse RADAR detection results on the objects could hardly identify the shape 

of the objects. Based on RADAR’s specific characteristics, two types of landmarks that 

could be identified and measured comparatively more accurate are selected and modeled. 

The point and pole feature measurement models are described below. 
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4.2.3.1 Point Feature Model 

The position of the ith point landmark 𝐩! !
! ∈ ℝ! describes the north, east and 

down coordinate of the point feature in local tangent frame. Due to beam forming width 

of RADAR pulse, its FOV plane is not an ideal plane but has a 4º vertical field-of-view. 

The point feature will be detected if it is within the vertical field-of-view. 

The landmark position in {R} is obtained by transforming its global position 

using RADAR’s extrinsic calibration parameters 𝐓! !", 𝐑!!  and vehicle’s true states 𝐩! !, 

𝐑!!  

 𝐩! !
! = 𝐑!! 𝐑!! 𝐩! !

! − 𝐩! ! + 𝐓! !" . (23) 

 The predicted measurements in the EKF update stage come from the predicted 

landmark position 𝐩! !
!  which is calculated using the equation 

 

 𝐩! !
! = 𝐑!! 𝐑!! 𝐩! !

! − 𝐩! ! + 𝐓! !" ,  (24) 

where 𝐩! !
!  is known a priori. 

Although the RADAR FOV has a vertical extent, it does not measure the actual 

angle in the vertical direction, so when the point feature is within the RADAR’s detection 

plane, we consider the third dimension of the landmark position in {R} as 0. 

The predicted measurements 𝐳! are calculated by 

 𝑑! ! = 𝐩! !
!

!
= 𝑥! !! + 𝑦! !!

𝛽! ! = atan2 𝑦! ! , 𝑥! ! .
 (25) 
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where 𝑥! !  and 𝑦! !  are the first two dimensions of 𝐩! !The linearized measurement 

matrix H for Equation (15) is  

 𝐇 = 𝐀   𝐑!!    𝐑!! −𝐈 𝟎 𝐓! !"× 𝟎 𝟎  (26) 

 𝐀 =

𝐞! !∙ 𝐩! !
!

𝐩! !
!

𝐞! !∙ 𝐩! !
!

𝐩! !
! 0

! 𝐞! !∙ 𝐩! !
!

𝐩! !
! !

𝐞! !∙ 𝐩! !
!

𝐩! !
! ! 0

, (27) 

where the vector 𝐓! !" is the vector from the origin of {B} to 𝐩! !
!  described in {G}: 

 𝐓! !" = 𝐩! !
! − 𝐩! ! . (28) 

and 𝐞! = 1 0 0 !! , 𝐞! = 0 1 0 !! . 

4.2.3.2 Vertical Line Feature Model 

A vertical line feature represents a straight pole-shaped landmark which is fixed 

to the ground. The vertical line feature can be described by a fixed point on the line 𝐩! !" 

and a vector along the line 𝐯! !" that represents the direction. The description of the line 

in {R} relates to that in {G} with the following equation 

 
𝐩! !
! = 𝐑!! 𝐑!! 𝐩! !

! − 𝐩! ! + 𝐓! !"

𝐯! !
! = 𝐑!!    𝐑!!    𝐯! !

! .
 (29) 

To predict the measurements, the predicted line description in {R} is obtained by 

replacing 𝐩!!  and 𝐑!!  in the equation above with the estimated vehicle states 𝐩!!  and 

𝐑!! . The detection point 𝐩!!  is the intersection of this (geodetic frame vertical) line and 

the RADAR FOV plane, which can be written as 

 
𝐩!! = 𝐩! !

! + 𝑠   𝐯! !
!

0 = 𝝅! ∙ 𝐩!! ,
 (30) 
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where 𝒔 ∈ ℝ  is the (unknown) distance between 𝐩!!  and 𝐩! !
! , the vector 

𝝅 = 0 0 1 !!  is the normal vector to the RADAR FOV plane in {R}. Equation (30) 

describes the constraint that 𝐩!!  is on the line and the constraint that 𝐩!!  is also on the 

RADAR detection plane. Eliminating the unknown variable s in  (30), we calculate 𝐩!!  

as 

 𝐩! ! = 𝐩! !
! − 𝐯! !

! 𝝅! ∙ 𝐩! !
!

𝝅! ∙ 𝐯! !
! . (31) 

The predicted intersection point can be calculated using estimated terms 𝐩! !
!  and 

𝐯! !
!  in (31) 

 𝐩! ! = 𝐩! !
! − 𝐯! !

! 𝝅! ∙ 𝐩! !
!

𝝅! ∙ 𝐯! !
! . (32) 

According to (30), 𝐩!!  has the form of 𝑥!! 𝑦!! 0
!
. The measurement prediction 

is calculated by replacing 𝐩! !
!  with 𝐩!!  in Equation (25). 

The measurement matrix for the ith landmark is 

 𝐇 = 𝐅!×!𝐃!×!𝐂!×!" (33) 
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𝐅!×! =
𝜕𝐳!

𝜕 𝐩! ! 𝐩!! ! 𝐩!!
=

𝐞! ! ∙ 𝐩! !

𝐩! ! !

𝐞! ! ∙ 𝐩! !

𝐩! ! !

0

− 𝐞! ! ∙ 𝐩! !

𝐩! ! !
!

𝐞! ! ∙ 𝐩! !

𝐩! ! !
! 0

𝐃!×! =
𝜕 𝐩! !

𝜕 𝐩! !
!

𝜕 𝐩! !

𝜕 𝐯! !
!

𝐩! !
! ! 𝐩! !

! , 𝐯! !
!! 𝐯! !

!

= 𝐈−
𝐯! !
!    𝝅! !

𝝅! ! 𝐯! !
! 𝐈 −𝐈

𝝅! ∙ 𝐩! !
!

𝝅! ∙ 𝐯! !
!

𝐂!×!" =

𝜕 𝐩! !
!

𝜕𝐱
𝜕 𝐯! !

!

𝜕𝐱 𝐱!𝐱

=
− 𝐑!! 𝟎 𝐑!! 𝐓! !"× 𝟎 𝟎
𝟎 𝟎 𝐑!! 𝐯! !

!× 𝟎 𝟎
,

 

where I and 0 matrices in C!×!" are 3×3 identity matrix and zero matrix; the vector 𝐓!"!  

is defined in the same way as in point feature models, and it is also calculated via (28). 

The detailed derivation of Equation (26) and (33) can be found in Appendix A. 

4.2.3.3 Feature Detection   

Unlike LiDAR, which needs only a small effective reflective area, the automotive 

RADAR used in our experiments requires a minimum RADAR Cross Section (RCS) of 

0.1m2 at a short distance (≤50m). The RADAR RCS is affected by the RADAR 

wavelength, object geometry and material composition and angular orientation of the 

object [97]. Accordingly, RADAR could detect pedestrians within 50 meters. 

Consequently, there are an abundance of existing objects on real roads that could be 

detected by the RADAR and be used to aid positioning. 

 In Figure 4.4, a camera is installed next to the RADAR, which is fixed on a metal 

plate on roof of the carrier vehicle. Both the camera and RADAR point forward along the 
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moving direction of the carrier vehicle. Figure 4.4(a) shows the result where road signs, 

tree trunks, and light poles are clearly detected in the RADAR GUI. The detected objects 

are very common along real roads. However, when the objects of interest (landmarks) are 

surrounded by other reflective objects, the RADAR could not reliably determine the 

exact position of those landmarks. For example, when the light pole is surrounded by tree 

crowns, the RADAR will return a cloud of points around the pole as in Figure 4.4(b). 

Further, RADAR does not return detailed characteristics of the target, which also 

increases the difficulty of target identification and data association. As a result, we found 

that roadside landmarks need to be of proper size, neither too large that would generate 

many RADAR detections nor too small that could not be reliably detected by RADAR. 

Road signs (points) and light poles (lines) are two good landmark examples because they 

usually have high reflectivity, and are seldom surrounded by clusters of objects. Road 

signs could be considered as point like features, and light posts could be considered as 

line features, and more specifically, lines that are perpendicular to the ground plane. 

 In the experiment, an omnidirectional RADAR reflector is used as a point feature. 

The reflector is Davis Instruments Echomaster™ RADAR reflector [98]. It is composed 

of three orthogonal round aluminum planes whose diameter is 11.5 inch. The planes form 

a total of 8 corner reflectors. The orthogonal planes could reflect RADAR beams from all 

directions back on the exactly opposite direction.   
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(a) 

 

(b) 

Figure 4.4 (a) shows what Radar detects on a cluster of objects. The tree crowns return 
too many objects that are close to each other, which makes the identification of single 
object very difficult. (b) shows some existing objects on real roads that are good as 
landmarks, including road signs, tree trunks and light poles.  

 

 

Figure 4.3 Davis Instruments Echomaster™ Radar reflector. Three perpendicular 
aluminum plane forms 8 corner reflectors.  
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4.2.3.4 Feature Association 

The purpose of feature association is to build up the optimal correspondence 

between RADAR measurement and the features with known position. For many sensors 

that could provide additional information about the feature besides position, data 

association problem could be relatively simple. For example, in camera images, feature 

shape, color, texture, etc. could be used to identify objects [37]; in LED based navigation, 

the ID of the LED could be transmitted to the receiver by blinking at certain coding [36]. 

However, the RADAR feature association problem is more difficult, because the 

automotive RADAR detection provides no additional information than relative sensor 

frame position to distinguish and identify its detections. For example, in Figure 4.4, all 

RADAR detections are identically perceived as a point disregarding the size, shape or 

reflectivity. 

Known mapped feature positions and direction vectors are stored in a database 

(for the simple experiment in this dissertation, they are stored in a list), which are 

projected onto RADAR coordinate frame using Equation (24) and (32). Those features 

that are out-of-sight of RADAR FOV and detectable range are filtered out. This 

estimation could reduce unnecessary computational cost. 

After the initial filtering, the landmark features that are potentially detectable by 

the RADAR are matched with detections using the Mahalanobis Distance gating 

algorithm [99]. Intuitively, the detection that is closest to the projected feature position 

should be associated with it. However, the Euclidean distance ignores the special 

probability distribution of measurements. When features are projected into RADAR 
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coordinate frame, their position covariance is also estimated. According to the EKF 

algorithm, the position is assumed to be a Gaussian distribution whose mean is the 

projected position, and the covariance 𝐒 is calculated from Equation (16).  

At any time instant 𝑡!, the ith predicted landmark position in RADAR frame is 

denoted as 𝐳!!" , and the corresponding covariance matrix is denoted as 𝐒𝒌𝒊 . The jth 

detection reported from RADAR is denoted as 𝐳!
!". The Mahalanobis distance is defined 

as 

 𝑑!
!" = 𝐳!

!" − 𝐳!!" !
= 𝛿𝐳!

!"!𝐒!"!!𝛿𝐳!
!" (34) 

where 𝛿𝐳!
!" is the residue between 𝐳!

!" and 𝐳!!" and is calculated using 𝛿𝐳!
!" = 𝐳!

!" − 𝐳!!". 

The Mahalanobis distance of each potential match 𝐿! ,𝑀!  is calculated. Two criterions 

are defined to validate the match. 

1. The squared Mahalanobis distance is smaller than a threshold 𝛾. 

2. For each landmark, only one RADAR detection satisfies the first criterion. 

The threshold 𝛾 defines a gating area {𝐳:𝑑! ≤ 𝛾}. Based on the Gaussian distribution 

assumption, the squared Mahalanobis distance follows 𝜒!-distribution with 2 degree of 

freedom [100]. The threshold is chosen using inverse cumulative 𝜒!-distribution such 

that the probability that the feature detection falls into the gating area is 0.99. There is 

one problem with this simple gating method. When multiple detections fall into the 

gating area, the correct match may not necessarily be the one with smallest Mahalanobis 

distance. This is especially true when detections are dense in small areas. If a false match 

was considered to be the correct one, the false residue would be introduced into the EKF 



59 
 

system, and due to the Bayesian estimation characteristic, the error will affect all the state 

estimation accuracy after it is introduced. So in this dissertation, we reject those features 

for witch multiple detections exist in the gating areas. Besides, we choose features that 

are isolated from other RADAR detectable objects to reduce this problem.  

More sophisticated methods that take into account the joint probability of multiple 

features at once can be found in [101]. This is useful when multiple features could be 

detected at once. The relative position of multiple features could be considered a 

constraint to eliminate some false association. By using these methods, it may not be 

necessary to use the second criterion described above, and thus features could be utilized 

more efficiently. On the other hands, all these methods require additional computer 

resources. It would be a good future area to explore to determine the best data association 

method for automotive RADAR measurements. 

 

4.3 Experiments 

This section presents the experiments that are designed to validate the concepts 

and algorithms presented above. The platform in Figure 3.1 is mounted rigidly on top of 

the test vehicle. The IMU sensor used on that platform is a MEM’s device that provides 

measurements at 200Hz. The Delphi RADAR has its internal filtering and tracking 

programs disabled to provide raw range and angle measurements. The RADAR has 90º 

horizontal Field-Of-View (FOV), and 4º vertical FOV. The RADAR could report at most 

64 detections at 20Hz, but we use the measurement to update EKF estimates at 1Hz.  
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The claimed accuracy is 0.1m of range measurement and 0.3º, but according to 

our test, we set the standard deviation of range measurement noise as 0.2m and angle 

measurement noise as 0.6º based on the statistics from field tests. The GPS receiver in the 

experiments could provide both pseudorange, Doppler and carrier-phase measurements. 

The carrier-phase aided INS system calculates the vehicle’s trajectory with an accuracy 

better than 10 centimeters [102], so its position estimates are used as ground truth to 

verify the proposed system positioning accuracy. In our system, the carrier-phase 

measurements could be disabled leaving only Doppler and pseudorange measurements to 

aid INS to mimic the typical DGPS/INS positioning system. Such a system is used for 

comparison to prove the accuracy improvement with RADAR aiding. The positioning 

algorithm is implemented on a computer with an Intel Core 2 Duo P8600 using POSIX 

multithreading architecture, such that the calculation of any single sensor data would not 

cause delay to other sensors and IMU integrations. In the experiment, all raw sensor 

measurements including IMU, GPS and RADAR are logged with the corresponding time-

tags, such that the raw data can be reprocessed off-line by different estimation algorithms. 

In this way, the performance of aiding algorithms could be compared. 

In the following sections, two parking lot experiments are presented to validate 

the point feature and pole feature aided DGPS/INS system respectively. In a typical 

roadway environment, the features are along the roadside. So in the experiments, the 

vehicle will drive towards the landmarks and pass it to mimic the real world scenario. 
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4.3.1 Point Feature 

In this experiment, the omnidirectional RADAR reflector demonstrated in Figure 

4.3 is mounted on a very thin tripod, and placed in an empty parking lot as a point feature. 

The center of the reflector is surveyed via Trimble 5700 differential GPS with an 

accuracy of less than 3cm. The surveyed position is 

𝐩! !
! = 2826.302 −994.854 60.245 !. 

 At startup when the vehicle is stationary, the position and velocity of the vehicle 

is directly observable via GPS measurements. The yaw angle is unobservable while 

stationary, but will become observable and be initialized when the vehicle starts moving. 

 

Figure 4.5 Vehicle trajectory in NED frame is estimated with CPGPS/INS system.  
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The roll and pitch are initialized using average IMU measurements and the direction of 

the gravity vector according to Section 10.3 in [6]. When the vehicle starts maneuvering, 

the attitude and IMU bias errors become observable and calibrated by EKF. 

 The north and east coordinates of the vehicles trajectory in local tangent frame is 

demonstrated in Figure 4.5. When the vehicle starts up heading west, the pseudorange, 

Doppler and RADAR aiding are all enabled. When the yaw is estimated to subdegree 

level, the Doppler aiding is turned off at about 30s. The vehicle then drives towards the 

reflector. The RADAR aiding is involved while the data association is successful from 

113.8s to 126.5s, which is the red portion in Figure 4.5. The reflector is on the right side 

of the vehicle trajectory to mimic the typical position of a roadside landmark.  

 The RADAR measurement residues are demonstrated in Figure 4.6. The residue 

is only available when data association is carried out, so that the plots show the residues 

from 113.8s to 126.5s. In the residue plots without RADAR aiding, the residue standard 

deviation decreases at integer seconds, because GPS measurements updates happened at 

1Hz that corrects accumulated IMU error within the second. In the residue plots with 

RADAR aiding, the standard deviation change happens when RADAR measurement 

updates the EKF estimate. As is mentioned above, the RADAR measurement occurs at 

20Hz, but only update the state vector at 1Hz, and in the program, the RADAR 

measurement update is chosen to happen at 0.7s after each GPS 1pps signal. What is 

worth noticing is that, the RADAR measurement is much more accurate than GPS aiding 

measurements, so that the GPS pseudorange measurements have little improvement on 

the standard deviation. The state error increases within each second due to integrated 
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effects of IMU noises and biases For the DGPS/INS system, this error decreases at 

integer second when GPS updates the system, while in RADAR aided DGPS/INS system, 

the state error decrease mostly happen when RADAR measurement updates the states.  

In the position error comparison, it can be seen that both North coordinate and East 

coordinate errors drastically decreases when RADAR aiding is available, while Down 

coordinate receiver no improvement. This is because the RADAR FOV plane is 

approximately parallel to the North-East plane, and the RADAR measures the 2D relative 

position of landmark and RADAR itself. This fact makes the North and East position 

observable when RADAR measurements are integrated, and thus reduces the North and 

East positioning error. The Down position is unobservable, such that it receives no 

improvements. The standard deviation comparison also shows the same effect. Both 

North and East position standard deviation are bounded to be smaller than 0.3m, while 

the Down position standard deviations in both systems are almost the same.  Luckily, the 

lane-level accuracy requirements does not pose strict accuracy requirements for down 

coordinates, so the results proves that the proposed system could satisfy the lane-level 

accuracy requirement. 
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Figure 4.6 The comparison of Radar measurement residues without and with Radar 
aiding shows significant decrease of residue amount, and decrease of predicted residue 
standard deviation. 
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Figure 4.7 The use of Radar aiding effectively reduces the position error in North and 
East direction, and also improves the confidence level of the accuracy of the 
positioning estimation in North and East direction.  
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4.3.2 Vertical Line Feature 

The experiment using vertical line feature is also carried out on the same parking 

lot. A metal light pole is surveyed and used as the vertical line feature. The point on the 

line feature and the direction vector are  

𝐩! !
! = 2802.922 −994.965 60.245 !

𝐯! !
! = 0 0 1 !  

 In this experiment, the vehicle starts by driving north, then make a left turn. When 

the yaw is estimated to subdegree level, the Doppler measurement is disabled at the black 

square in Figure 4.8. The RADAR aiding is always enabled, but only effective when the 

 

Figure 4.8 Vehicle trajectory in NED frame is estimated with CPGPS/INS system.  
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pole feature is detectable and data association is successful. The effective region is also 

colored in red from around 51s to 65s. 

 The residue plot shows similar results as those in point feature aided positioning. 

When the RADAR aiding is disabled, GPS pseudorange alone causes significant 

positioning error. From 60.3s to 65s, the range measurement residues failed the 

Mahalanobis test, so that no more residues can be plotted. In comparison, when RADAR 

aiding is enabled, accurate estimate can be maintained, so that the data association test 

are successful all the time. In the position error comparison plot, the results also shows 

error decrease in both North and East direction, so are the standard deviations. Though 

the down coordinate error is reduced, but the standard deviation remains roughly the 

same, which also results from the fact that Down position is unobservable with the 2D 

RADAR measurements. The standard deviations for both North and East positions are 

less than 0.3m, which also satisfies the lane-level accuracy. 

4.4 Summary 

This Chapter presents the tightly-coupled automotive RADAR aided DGPS/INS 

system.  Two types of RADAR features are selected and modeled separately. The EKF 

update models are created, and tested through experiments. With properly surveyed 

RADAR features, the RADAR aided DGPS/INS system could reach lane-level accuracy.  
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Figure 4.9 Range and angle measurement residues of DGPS/INS system are compared 
with those of Radar aided DGPS/INS system.  
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Figure 4.10 The position error and standard deviation comparison with and without 
Radar aiding. The results proves the effectiveness of vertical line feature measurement 
model. 
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Chapter 5  Road Feature Mapping with Mobile Mapping 

Platform 

5.1 Introduction 

Currently, popular digital maps have limited accuracy and inadequate road 

features which are the prerequisites for Advanced Driver Assistance Systems (ADAS), 

Vehicle Assist and Automation (VAA) systems, and many more ITS applications that 

have emerged in the past few years. The vehicle needs to estimate its accurate position, 

and find itself on an accurate map, before it could determine its location in lane as in lane 

departure warning systems. Accurate location of intersection road features are required to 

estimate the precise arrival time to intersections which is the fundamental information in 

Intelligent Intersection Control systems and Eco-Speed Recommendation Systems [103].  

This chapter presents a general framework of Mobile Mapping System, including 

the data collection and storage, accurate vehicle trajectory estimation, local point cloud 

generation and feature extraction. The offline trajectory optimization based on smoothing 

is briefly described. After the general description, we will focus on the extraction on 

intersection stop-bars. A robust extraction and estimation algorithm based on image 

processing is presented later. Intermediate results are also presented in each section.  

In the following sections, the results are based on a dataset surveyed on El 

Camino Real from (37.380535N, 122.073444W) to (37.429970N, -122.151744W) near 

Mountain View and Palo Alto in California. It is a 5.6 miles road section, which contains 

more than 30 well-structured intersections. We drove the Altima with the terrestrial 
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mobile mapping system described in Chapter 3 on the test field once on each direction. 

The data collection was carried out in the mid-night to prevent the traffic, which could 

seriously block LiDAR beams. Pseudorange, Doppler and carrier-phase measurements 

and the 1 pulse per second (1PPS) time from the dual frequency GPS receiver, Velodyne 

LiDAR data as well as 200Hz IMU measurements were logged using a uniform time 

reference. The differential GPS correction messages came from the nearby RTCM Ntrip 

station and were also logged using the same time reference.  

 

5.2 Offline Processing System Overview 

The logged raw data are processed using three major blocks as shown in Figure 

5.1.Raw GPS, IMU, LiDAR and/or Camera measurements are input to the offline 

processing system. The data preparation block is the common step for all road feature 

extraction algorithms. In this block, the vehicle trajectory is estimated by smoothing the 

whole log of GPS and IMU measurements. Then the raw LiDAR data are calibrated with 

the factory parameters, filtered by distance, converted to global coordinate frame using 

the optimized vehicle trajectory and extrinsic parameters with respect to IMU. Finally, 

the time-series of LiDAR point clouds are stored into 151m by 151m blocks based on the 

North and East coordinates. The second block generates the bird’s eye view intensity 

image of selected intersection regions and then enhances the intensity image using 

Morphological operations. In the third block, image processing algorithms are utilized on 

the intensity image to extract the stop bars as straight lines and then find the ends of each 

stop bar. 
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5.3 Data Preparation 

5.3.1 Vehicle Trajectory Smoothing 

The first fundamental step for all mobile mapping systems is the acquisition of an 

accurate mobile platform trajectory. Most commercial systems rely on a real time 

positioning solution by integrating GPS with IMU or Dead Reckoning using EKF, similar 

to the system described in Chapter 4. Post processing kinematic solutions (PPK) of GPS 

post processing could provide most accurate positioning accuracy in the popular MMS 

systems. Besides, commercial systems also utilize expensive IMUs for most accurate 

positioning. 

The nature of the mapping problem does not require real time positioning 

solutions, such that offline post processing which may take more computation time is also 

viable. Smoothing is a non-causal operation on the data using past, present and future 

measurements to estimate the platform pose at each time. Compared to Filtering which 

only uses past and present measurement to estimate the present pose, Smoothing in nature 

has lower levels of uncertainty and greater accuracy. In this Chapter, a Smoothing And 

Mapping (SAM) algorithm from [104] is briefly described. It is an extension to the 

Square Root Smoothing and Mapping [105].  

 In this algorithm, the raw dual-frequency GPS measurements that includes 

pseudorange, Doppler and carrier phase and raw 6-DOF IMU measurements are used as 

input. The mathematical model of GPS and IMU measurements are the same as those 

described in Section 4.2.3.1 and 4.2.2.5. The system kinematic model and error model are 

also described in Section 4.2.2. The state of the system at each time step is defined in 
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Equation (8). The smoothing algorithm optimizes the trajectory over the entire driving 

period. The states, IMU measurements (as input) and GPS measurements (as observation) 

of the entire period is  

𝐱!:! = 𝐱!! 𝐱!! ⋯ 𝐱!!  

𝐮!:! = 𝐮!! 𝐮!! ⋯ 𝐮!!  

𝐳!:! = 𝐳!! 𝐳!! ⋯ 𝐳!! . 

The joint probability of 𝐱!:! and 𝐳!:! can be defined based on total probability 

rule as 

𝑃 𝐱!:! , 𝐳!:! = 𝑃 𝐱! 𝑃 𝐱! 𝐱!!!,𝐮!!! 𝑃 𝐳! 𝐱!

!

!!!

,
!

!!!

 

where 𝑃 𝐱!  is a priori on the initial state, 𝑃 𝐱! 𝐱!!!,𝐮!!!  is the vehicle kinematic and 

mechanization model in probability form, and 𝑃 𝐳! 𝐱!  is the GPS measurement model in 

probability form. According to Bayes’ rule,  

𝑃 𝐱!:! 𝐳!:! =
𝑃 𝐱!:! , 𝐳!:!
𝑃(𝐳!:!)

. 

The denominator is irrelevant to 𝐱!:!, such that the maximum likelihood estimate is  

𝐱!:! = argmax
𝐱

𝑃 𝐱! 𝐱!!!,𝐮!!! 𝑃 𝐳! 𝐱!

!

!!!

.
!

!!!

 

Given the assumption that state and observation noises follow Gaussian process, and 

working with log-likelihood, the maximum likelihood estimate can be transformed to  

𝐱!:! = argmin
𝐱

𝐱! −𝚽 𝐱!!!,𝐮!!! 𝑸𝑑
2 + 𝐳! − 𝐡 𝐱! 𝑹𝑘

2
𝑀

𝑖=1

. 
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It becomes a nonlinear least square problem and could be solved with 

numerical method. The detailed solution to this problem, and the solution of 

integer ambiguity to GPS carrier phase measurements can be found in [104]. 

5.3.2 LiDAR Preprocessing 

The raw LiDAR measurement of the ith of the 64 lasers is 𝑅! 𝛿! 𝜀 𝑖𝑛𝑡 !, 

which represents the raw distance, the angle of the ith laser with respect to LiDAR’s x-y 

plane, the rotation angle of the whole LiDAR housing and finally the intensity. The ideal 

transformation of the raw LiDAR measurement to the 3D coordinate in LiDAR 

coordinate frame is defined as Equation (1). In practice, the 64 laser emitter and receivers 

are not aligned in a vertical line, so that several calibration parameters are involved in the 

actual transformation. 

1. Horizontal rotation correction is the offset of the actual rotation angle of the ith 

laser from the whole LiDAR housing’s rotation angle. 

2. Vertical rotation correction is the offset of the actual vertical angle of the ith 

laser from the nominal vertical angle 𝛿!. 

3. Horizontal offset is the offset of laser measurement origin from z-axis in the 

x-y plane.  

4. Vertical offset is the offset of laser measurement origin from x-y plane in z 

direction. 

5. Distance offset is the bias of the ith laser’s raw distance measurement. 

In the LiDAR preprocessing block, the raw LiDAR measurements are converted 

to 3D Cartesian coordinates with the calibration parameters and methods provided by the 



76 
 

manufacturer. Before the transformation, a simple distance filter is applied to remove 

detections that are closer than 1m or farther than 75m from the LiDAR. The 3D 

coordinates are then passed into the next block to be transformed to global coordinate 

frames.  

5.3.3 LiDAR Coordinate Transformation 

The LiDAR points in LiDAR coordinate frame are stored as a list with the time 

reference when the laser point detection took place. To convert the LiDAR measurement 

to global coordinate frame, we need to find the corresponding vehicle pose of the specific 

laser detection. The pose is obtained by interpolation of the two states in the smoothed 

trajectory whose times are closest to the given LiDAR time step. The extrinsic calibration 

parameters between LiDAR and body frame are denoted as the translation vector 𝐓𝑩 !" 

and rotation matrix 𝐑𝑳𝑩 . The transformation equation is 

 𝐩!!! = 𝐑!! 𝐑!𝒌!
! 𝐩!!! − 𝐩! !

!! + 𝐓! !" , (35) 

where 𝐩!!!  is the position of kth LiDAR detection in LiDAR frame, 𝐩! !
!! is the position 

of the body frame at the time step of the kth LiDAR detection and 𝐑!𝒌!
!  is the rotation 

matrix that represents body frame’s attitude. 

 The preprocessed data of the entire run is around 4 gigabytes, which hardly fits 

the computer memory. It is partitioned to pieces of 40 megabytes which contains 1000 

cycles. Each partition is converted to global frame separately, and then passed into the 

next block. 
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Figure 5.2 The first plot (a) is the plot of the estimated north and east coordinates of 
the trajectory. The second plot (b) is the number of satellites above predefined 
elevation.  
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Figure 5.3 The first three rows are the smoothing results of the position, velocity and 
attitude in NED frame. The bottom three rows show the standard deviations of the 
position and velocity estimates. In general, the overall positioning standard deviation 
is below 2cm. If we refer to Figure 5.2(b), it can be seen that the large position 
standard deviation happens when the number usable satellites are low. 
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5.3.4 LiDAR Data Aggregation 

The LiDAR data in global frame from the previous block need to be stored into 

database or simply data files on hard drive, because different applications could 

implement different algorithms on these preprocessed data. Instead of using the whole 

trajectory of LiDAR data, the feature extraction algorithms usually process only small 

sections of data to fit the limited memory. The simple way of storing all LiDAR data into 

a single file has several disadvantages. Firstly, the file would be too large in size due to 

the large amount of LiDAR data, so that it could not easily be loaded into memory, and it 

also takes too long. Secondly, obtaining specific LiDAR point requires traversing the 

whole file, which requires unnecessary time cost. So a distributed storage architecture is 

designed and implemented in our system. 

To support the following procedures which extract the intersection region, the 

LiDAR data is stored into several non-overlapping blocks of data files. Each block 

contains all the LiDAR points that falls into the north and east boundaries of the block. In 

our system, each block is a box with infinite length along down-axis. The box covers 

151m by 151m region in North-East plane. The size of the box is selected such that the 

LiDAR points from each LiDAR scan cycle (full 360̊) would fall into at most four such 

blocks in the worst scenario to make reduce the memory usage. The index of each block 

is the coordinate of its North and East corner.  

The LiDAR points in the block can be simply stored as plane list. If the 

processing algorithms are based on 3D point cloud algorithms, the unstructured list is 

enough. In our algorithm, the next step requires the creation of a 2D bird’s eye view of 
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intersection, so a matrix like structure is selected. The 151m by 151m block is partitioned 

into 10cm by 10cm cells in North-East plane. Each cell stores a list of LiDAR points 

within the NE region. 

5.4 Intersection Image Generation 

5.4.1 Full Bird’s Eye View Image 

In this study, the intersection area is selected by clicking mouse on the full image. 

So this section describes the method to create the full bird’s eye image. 

After LiDAR data aggregation and storage, a 2D intensity image in bird’s eye 

view of the complete trajectory is built. In the previous step, the NED coordinate of each 

LiDAR point is stored in the block file. According to the definition of a local tangent 

frame, the origin of the local tangent frame is close to the test field. In this case, the 

North-East plane could be a rough approximation of the actual earth surface.  

The full image is created by merging images of each block file. The single image 

of each block file contains 1510 by 1510 pixels. In this step, the intensity of each pixel is 

the average intensity of all LiDAR points that falls into the corresponding 10cm by 10cm 

cells. The intensity of LiDAR detection is in the range from 0 to 255, which could be 

directly used as grayscale value in the image. The result of a single run along the test 

route is shown in Figure 5.4.  
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5.4.2 Intersection Region Image Generation 

The intersection region that needs to be processed is selected by detecting the 

mouse click position on the full image. The results of the selection are the lower and 

upper boundary in both North and East positions. Though the intensity image is already 

generated in the previous step, the focus for the intersection intensity image is on the road 

surface. The intensity image using average cell intensity did not filter out the above-road-

surface objects like trees and other vehicle and would introduce noises to the image. The 

method used here utilizes the fact that the accumulated LiDAR point cloud on the road 

surface should occupy the lowest dense layer of points in each cell. 

Before the operation, the LiDAR point cloud from different runs (in our 

experiment, two runs on both directions) are preprocessed and put into the same block 

files. In this way, the stored point cloud would have better coverage on both directions of 

the road surface. In the intensity image generation algorithm, the LiDAR points in each 

cell is sorted by their down coordinates. Then we traverse from the bottom point up to 

connect consecutive points with height difference smaller than a threshold. The threshold 

is chosen to be 5cm. Each connected cluster is defined as a layer, and the bottom layer 

has high probability to be the road surface layer. The intensity of the cell is represented 

by the median of the intensity of the bottom layer. The result is shown as Figure 5.5 (a). 

5.5 Stop Bar Extraction on Image 

This section describes the image processing algorithms to reliably extract stop 

bars on the intensity image generated from previous steps. The algorithm also uses the 

vehicle trajectory as an indicator of road area. In the following description, we define the 
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major direction as the direction of the vehicle trajectory, and minor direction as the 

direction perpendicular to the major direction. 

5.5.1 Stop Bar Extraction in Major Direction 

5.5.1.1 Image Masking using Trajectories 

The essence of the stop bar extraction is to detect straight lines with high intensity 

using the specific characteristics of the stop bars. One key characteristic of the stop bars 

in the major direction is that they are mostly perpendicular to the driving direction. 

However, the lane markers on the minor direction have very similar property. So the 

intensity image is firstly masked using the vehicle trajectory on both sides to remove the 

lane markers on the minor directions. The driving route of the mapping platform always 

crosses the stop bars in the major direction, so the intersection image is masked with the 

inflated trajectories in both directions. The masked image is shown as Figure 5.5 (b). 

5.5.1.2 Image Enhancing 

Unlike camera images which covers every pixel in the FOV, the LiDAR image 

created from Section 5.4.2 does not guarantee that every cell which is represented as 

pixels in the intensity image has LiDAR detection in it. The LiDAR scans in nature is 

sparse. This results in lots of wholes and jagged edges in the intensity image. Image 

enhancement is thus necessary.  

Image morphological operations and smoothing are common techniques for 

image enhancement. At this stage, Gaussian smoothing is applied to the intensity image. 

The resulting image is Figure 5.5 (c). 
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5.5.1.3 Rough extraction using Probabilistic Hough Transform 

It is difficult to extract edges of stop bars directly on the whole intersection 

image, because there are many other straight lines that has similar properties. So the idea 

is to roughly extract the stop bars first, and then fit straight lines in the affinity of the stop 

bars. Probabilistic Hough Transform from [106] is applied to do initial extraction. PHT 

algorithm is an efficient straight line voting algorithm. It detects and extracts straight line 

segments from binary image. There are three parameters in PHT algorithm, voting 

threshold, minimum line length and maximum line gap.  

The binary image is created by thresholding the grayscale image of masked 

intersection. The threshold is chosen to such that road surface is removed and bright stop 

bars are mostly reserved. After the initial step, 8 connected component labelling is 

applied to the image, and all connected components that has pixels smaller than 30 are 

removed. The binary image is shown as Figure 5.5 (d). 

The parameters of PHT algorithm are loosely chosen such that multiple line 

segments could be extracted on the stop bars. The line segments are filtered based on 

their angle, and clustered based on special proximity, in order to find one line segment on 

each stop bar. The PHT results before and after clustering are shown as Figure 5.5 (e) and 

(f). 

  



85 
 

    

                   
(a)                                                                     (b) 

                    
                 (c)                                                                      (d) 

                    
                            (e)                                            (f) 

Figure 5.5 (a) is the original image; (b) is the image masked by trajectories; (c) is the 
smoothed image of (b); (d) is binary image of (c); (e) shows the line segments of PHT 
algorithm overlaid on the original image; (f) shows the final line segments after 
clustering.  
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5.5.1.4 Single Stop Bar Edge Extraction 

The line segments detected with PHT does not guarantee accuracy or exact line-

ends. In this section, the algorithm to fit straight lines on both edges of each stop bar is 

described. To generate the edge image, some preprocessing needs to be done. One is 

image closing, and another is Gaussian smoothing. Image closing is a morphological 

operation that combines erosion and dilation. Image closing operation closes holes within 

the image, both on the dark surface area and the bright bar areas. The Gaussian 

smoothing is used to smooth the jagged edges of stop bars.  

After the image preprocessing step, a Canny edge detector is applied to the image. 

Canny edge detector is a commonly used algorithm to detect edges in a grayscale image. 

The algorithm can be found in many computer vision textbooks such as [107]. The 

thresholds are also loosely set to reserve more edges because only edges around the 

extracted stop bars would be used for line fitting. 

The edge image is masked with inflated stop bar line segments using bitwise and 

operation. A single stop bar extracted from PHT algorithm is inflated to 15 pixels in 

width. The results covers the whole stop bar region, but removes everything else. The 

result preserves only edges of the current stop bar with noise. One of the resulting edge 

images is shown in Figure 5.6 (a). Hough transform is a discrete voting algorithm for 

straight line extraction. In the edge image around a single stop bar, ideally, the Hough 

transform line detector would return two peaks in the Hough space. However, sometimes 

when two edges of one stop bar are close to each other, the Hough peak extractor would 
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result in false detection. So in our algorithm, the largest peak in the Hough space is 

selected. The straight line of the other edge is extracted by the following algorithm.  

 The straight line parameters of the edge that is already extracted is defined as a 

tuple 𝜌,𝜃 , where 𝜌 is the shortest distance from the origin to the line, and 𝜃 is the angle 

of the normal vector of the line. The edge image is correlated with straight lines with 

parameters 𝜌 + 𝜀,𝜃  where 𝜀 ∈ [−9.9,−9.8,… 0,0.1,… ,9.9]. The correlation calculated 

as the number of ones on the line. This kind of correlation could generate two peaks on 

the two edges of the stop bar which represent two parallel straight lines. The two peaks of 

the correlation curve is detected using continuous wavelet transform (find_peak_cwt 

function in Scipy library).  The correlation curve of Figure 5.6 (a) is shown as Figure 5.6 

(b). 

  

      
                           (a)                                                                     (b) 
Figure 5.6 (a) is the edges around one of the stop bars extracted from Section 5.5.1.3; 
(b) is the correlation plot.  
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5.5.2 Stop Bar Extraction in Minor Direction 

After the stop bars edges of the major directions are extracted, the original 

intensity image is masked using the extracted edges to remove lane markers in the major 

direction. Only the area between the stop bars on both sides of the intersection is kept. 

The result is shown in Figure 5.7. Then the same operations in Section 5.5.1 are applied 

to the masked intensity image. After all the stop bar edges are extracted, they are plot 

onto the original intensity image, as shown in Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 The intensity image is cropped with the stop bar in major direction. The 
area between stop bars on both sides are kept. The lane markers behind the stop bars 
are removed.  
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5.5.3 Endpoint Determination 

The results from Section 5.5.1 and 5.5.2 are straight lines with infinite length. Our 

target is the accurate representation of the stop bars, so the endpoints from the straight 

lines need to be determined. This section describes the algorithm that terminates the lines.  

The first step is the combination of edges. The extracted edges from the same stop 

bar are combined and averaged to obtain the straight line estimate of the stop bar itself. 

 

Figure 5.8 The results of the stop bar edge extraction are overlaid on the original 
intensity image. 
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The average straight lines are around the middle line of the stop bars, so most of the 

pixels along those lines have high intensity. This fact is utilized in the following steps. 

The second step calculates the intersections of all pairs of lines from the first step. 

The intersection points on a single line is sorted by the x or y coordinate. By connecting 

consecutive intersection points that are already sorted, a set of mutually exclusive line 

segments are generated. These line segments are guaranteed to be on certain stop bars. 

It can be seen from Figure 5.9 that some of the line segments generated from step 

2 are not actually on the image. We use the fact that an effective line segment should go 

through bright strips and both sides of the strip should be dark areas. A similar shift and 

correlate algorithm is applied. The algorithm is demonstrated in Figure 5.10. 

 

 

Figure 5.9 The extracted stop bar center lines are shown in red. The intersections are 
green dots.  
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The stop bar center line is shifted in the perpendicular direction for 

𝜀 ∈ [−5,−4.5,… 0,0.5,… ,4.5]. The intensities of the pixels on the shifted line segment is 

averaged, and recoded as y. The plot of 𝜀,𝑦  has different shape on and off the stop bar 

as shown in Figure 5.11. The average intensity on the stop bar would be large, and the 

average intensity off the stop bar would be small. So the correlation plot of the effective 

line segments has a hill like shape, while the plot of the invalid line segments have a 

random shape.  

 

Figure 5.10 Demonstration of shift and correlate algorithm. The yellow line represents 
the stop bar center line. The dashed red lines represents the lines shifted in the 
perpendicular direction.  
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To discriminate between these two conditions, a 2nd order polynomial is fitted to 

the plot. The polynomial coefficient of the effective stop bar has the following property 

(if we define the polynomial as 𝑦 = a𝑥! + 𝑏𝑥 + 𝑐: 

1. The coefficient a that defines the curvature is smaller than -1. The coefficient a 

of an invalid line segment is usually on the level of 0.01.  

2. The symmetry axis of the fitted parabola -- −𝑏 2𝑎 – is close to 0.  

If both conditions are satisfied, the line segment to be tested is identified as valid. 

After all segments are tested, the valid segments on the same straight line which shares 

common endpoints are merged together. The results are shown in Figure 5.12. 

 

 

 

  

                              (a)                                                                   (b) 

Figure 5.11 (a) is the correlation plot of the line segments not on the road surface. (b) 
is the correlation plot of the line segments on the road surface. 
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The end point of the stop bar center line is used to find the endpoint of stop bar 

edges. A line perpendicular to the centerline and passes through the endpoint intersects 

with both edges, and the intersections are considered as the endpoint of the stop bar 

edges.  

5.6 Summary 

This section provides a detailed description of our 3D LiDAR based mobile 

mapping system. The data collection, storage and processing subsystems are illustrated. 

Our system is unique in the positioning subsystem by estimating mapping platform 

trajectory using smoothing algorithm for carrier phase DGPS and IMU measurements. 

The storage of the vast amount of LiDAR point cloud data is challenging and is solved 

 

Figure 5.12 The extracted stop bar center lines after verification are shown in red. The 
intersections are green dots.  
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with a distributed storage system. An image processing based intersection stop bar 

extraction algorithm is proposed and verified with field test data. On a well-structured 

intersection, the proposed algorithm provides accurate and reliable extraction of stop bar 

edges. 
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Chapter 6  Conclusions and Future Work 

6.1 Conclusions 

The increasingly advanced and sophisticated driver assistance systems are built on 

a foundation of reliable and accurate vehicle positioning systems. Aided positioning is 

going to become an indispensable part of the future vehicle. Range sensors are now 

receiving increasing attention in the automotive industry.  

In this dissertation, we proposed a generic RADAR-aided Differential GPS/INS 

system. The system requires neither very expensive dual frequency GPS receiver, nor 

high-end IMUs, and the cost for the RADAR sensor is affordable for vehicles to equip. A 

simple and reliable EKF filter based sensor integration architecture is implemented. The 

RADAR measurements are tested, and suitable existing roadway landmarks are verified. 

The RADAR measurement model on the two types of landmarks we select are created. In 

the EKF framework, the residue and error states model of the two types of landmarks are 

derived. We then carried out experiments in a controlled environment to verify the 

proposed measurement model and the performance of the RADAR aided positioning 

system. It is shown that with RADAR aiding and a successful data association of 

measurements with known landmark positions, the absolute vehicle positioning error is 

bounded to be within 0.3m and the error standard deviation is also significantly reduced. 

Both landmarks modeled are proved to be working in the current experimental setups. 

Experimental results showed that our initial goal of building up accurate, reliable and 

highly available positioning system can be partially realized with the proposed system. 

The bounded positioning error proved that the accuracy of the system could be 



96 
 

guaranteed. The bounded positioning error standard deviation proved that the reliability is 

improved. However, the availability still highly depends on the availability of proper 

landmarks and the data association efficiency.  

In the second part of this dissertation, a mobile mapping system using a 3D 

LiDAR as perceptive sensor is described. The offline smoothing algorithm using dual 

frequency GPS and IMU measurements is briefly described (proposed by former 

researcher). This dissertation focuses on the processing of collected LiDAR data. The 

whole processing flow chart is illustrated. The accurate vehicle trajectory estimation 

algorithm and 3D LiDAR sensor create the possibility to extract road surface feature 

position accurately. The intersection stop bar has unique characteristics including shape, 

orientation, reflectivity and position in comparison with other landmarks. The proposed 

stop bar extraction algorithm takes into consideration of the unique characteristics, and 

could reliably extract not only the straight line parameters of such stop bars but also the 

ending positions. Though it is only one piece of the many roadway features we want to 

map accurately, it is a starting point, and an inspiration for more sophisticate and more 

widely applicable algorithms. 

6.2 Future Work 

In Section 4.2.3.4, we pointed out the difficulty of RADAR feature association 

due to the lack of landmark property information. Our current solution is to select those 

landmark features that are isolated from other detectable objects, and use a strict data 

association criterion to guarantee correctness. So one research topic worthy of effort is 

the best data association method for RADAR. Other than the simple data association 
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algorithm described in this dissertation, there are existing algorithms from the robotics 

field that consider the joint probability distribution of multiple landmarks to improve the 

successful rate. Another direction to solving this problem is to provide more information 

about the landmarks so that it could be identified and verified from the environment. It is 

possible to combine camera image with RADAR measurements to create a more reliable 

identification of the landmarks. The RADAR measurement could be transformed into 

camera image frame, and the vicinity of the RADAR detection could be identified via 

computer vision, such that it could be discriminated from other objects. If a more 

effective data association algorithm could be designed, then RADAR measurements 

could be utilized more efficiently. 

 In this dissertation, two types of landmark features are investigated. However in 

the actual roadway environment, there are many more features that are detectable by 

RADAR and potentially used to aid positioning. It is also worthy of effort to investigate 

the other types of landmarks and build up the mathematical model for them. 

 A third future work area is the automatic surveying of landmark features. In this 

dissertation, the landmarks were surveyed manually with a RTK GPS. It is time 

consuming such that it is impractical to survey the large amount of landmarks if the 

RADAR aided positioning technology is wide applied. The automatic surveying 

technology using mobile mapping systems is necessary to create large scale landmark 

databases. The 3D LiDAR based Mobile Mapping system in Chapter 5 has the potential 

to solve this problem. The rich spatial coverage of the 3D LiDAR make it possible to 



98 
 

extract those point and pole features as well as many other landmarks. The identification 

and extraction algorithms need to be developed to utilize the LiDAR point cloud data. 

 The stop bar extraction algorithm proposed in Chapter 5 has some limitations. 

One important limitation is that it still requires human interaction. The proposed 

algorithm does not identify intersection areas automatically. The frame-by-frame LiDAR 

point cloud may be used to identify intersections. In a local LiDAR point cloud, the 

intersection are still well structured and distinct area in that it has discontinued lane-

markers as well as road edges. We could extract road edges first and identify the 

intersection using discontinuity of road edges on both sides, and the existence of 

perpendicular bright marks. In this way, the human intervention could be prevented.  

 The algorithm relies highly on the high intensity of the LiDAR reflection on the 

stop bars. However, in practical environment, many stop bars may be worn out, or the 

paint material does not have significant reflectivity compared to the surrounding road 

surface. In such cases, the LiDAR point cloud alone could not identify the lane markers. 

Camera images in comparison could still capture the stop bars, because stop bars 

undetectable by cameras would neither be visible to human eyes. The integration of 

camera and LiDAR data would provide abundant information about the road way 

environment, and create more opportunities for feature mapping. 
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Appendix 

A. Derivation of Radar Measurement Model 

The relationship between the actual and estimated rotation matrix is defined as: 

 

 

 

 

A.1 Point feature 

The known landmark position is denoted as , which is surveyed and known as 

a priori. The landmark position can be converted to Radar frame {R} using  

 

The measurement model is defined in Equation 错误! 未找到引用源。 . 

The measurement residue is , so the linearized measurement matrix 

can be calculated as 

 

The Radar measurement is denoted as  

The relationship between scalar terms ,  and  is 
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, 

where  and . 

The first term in H can be calculated separately as 

 

 

So the combination of the two equations above results in 

 

The second partial derivate in H equation is derived with the following equations. 

 

The first term is the same as , the last term is the product of two error states, 

and are considered as 2nd order term, and is ignored in this derivation. 

Using the properties of cross products, the second term can be converted to  

 

So the error state equation is then converted to  
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where . 

Combining all the equations above, the H matrix is  

 

where 

. 

 

A.2 Pole feature 

For pole features, the first step to derive the measurement model is to solve the 

intersection point of the line and the Radar FOV plane. 

 A plane is described as  in {G}, which represents a unit normal vector 

and the shortest distance to the origin of {G}. 

All points  on the plane forms the set: 

. 

If described in {R}, the set is: 

. 
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A line in the 3D space is described as , which is a point on the line and 

a unit vector along the line representing the direction. So any point  on the line could 

be expressed as: 

, 

where scalar s is the distance from  to . 

 In our situation, the parameters of the Radar plane within {R} are 

 ,  

In {R}, the vector from radar origin to the intersection should be on the plane and 

also on the line, so the intersection  is subject to two constraints: 

 

. 

By substituting  into the second equation, we can solve for s, and by putting s 

back to the first equation,  is: 

. 

To convert  from {G} to {R}, we need the following equations: 

. 

Then if we have an estimate of the vehicle states, extrinsic calibration parameters 

of the Radar sensor, and the landmark (line feature) parameters described in global frame, 

we can estimate the position of intersection as: 

,
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where the line parameters are estimated as: 

. 

 The linearization can be described as a series of partial derivatives 

, 

where vector  represents the straight line parameters.  

 The relationship between the raw measurement vector z and the intersection point 

 is the same as that in the point feature model, so the first partial derivative has the 

same format 

. 

 The second partial derivative in the H matrix is 

. 

where 

, 

. 

 The common terms can be extracted out of the square brackets, resulting in  
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 The third partial derivative of the H matrix is 

, 

where  could be calculated using the same equation as that in the point feature 

model. 

. 

The derivation of   is 

. 

By moving  to the left of the equality sign, the equation becomes 

 

 By combining the equations above, we can reach the final form of  as 
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. 

 So finally, the linearized measurement matrix is 

 

 




