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. INTRODUCTION

This work describes a signal processing technique
for imaging of point scatterers from step-frequency
inverse synthetic aperture radar (ISAR [1, 2]) data.
The point scatterers are assumed to form a target that
is moving with respect to a stationary radar. The radar
transmits towards the target a sequence of pulses at
different frequencies and receives the corresponding
returns. From the radar returns, our technique yields
the accurate estimates of the locations of the point
scatterers.

The traditional method for target imaging from
ISAR data is the fast Fourier transform (FFT) method
[1]. The FFT method is known to yield poor resolution
if the “aperture” spanned by the collected data is
not large enough. In the ISAR applications, large
aperture data set (or large time-interval data set) often
contains large distortions caused by the moving target.
To reduce the (often unknown) motion distortions,
it is desired to obtain the target image from a small
aperture data set. Given a small aperture data set, the
FFT method cannot yield a high resolution image. We
present here a new method called the matrix pencil
(MP) method which can cope with a small aperture
data set and yield a high resolution image. The
computation of this method is also efficient compared
with other available high resolution methods.

This paper is organized as follows. In Section II, a
model of the ISAR data is established. In Section III,
the MP method is developed. In Section IV, a noise
sensitivity analysis of the MP method is shown. In
Section V, simulation results are provided.

Il. THE ISAR DATA MODEL

The following assumptions are made throughout
this paper.

Assumprion 1: The (rigid) target consists of
point scatterers, and the reflection coefficient of each
scatterer is a (complex) constant.

Assumption 2. The target is far away from the
radar.

With the above two assumptions, each narrowband
pulse received by the radar (after being normalized by
the transmitted signal) can be represented by complex
envelope:

I
50,f) = Za,- exp (—jc%wf(d + x;co80 — y; sinﬂ))
i=1
)]

where 6 denotes the angle position of the target

(see Fig. 1) which is assumed to be constant during
the (very short) interval of each pulse, f the carrier
frequency of each narrowband pulse, a; the reflection
coefficient of the ith scatterer, / the total number of
point scatterers, ¢ the wave velocity, d the distance
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Fig. 1. Coordinates of moving target with respect to radar.

Fig. 2. Grid on which step-frequency ISAR data is located.

between the radar and the target, and (x;,y;) the
coordinates of the ith point scatterer.

The imaging objective here is to find 4; and (x;,y;)
from s(6, f) available on a given set of sample points
of 8 and f. Finding q; is relatively an easy task once
(xi,yi) are available because f(#, f) is a linear function
of g;. But finding (x;,y;) from s(8,f) is much more
difficult. To make the problem simpler, we further
assume the following.

Assumption 3: The distance between the target
and the radar is known so that the phase due to the
distance can be suppressed from s(6, f).

Assumption 4: For each angular position of the
target, a sequence of narrowband pulses at the carrier
frequencies f,, = fL + mAf form=0,1,.... M -1
are transmitted by the radar, and the corresponding
returns are received.

Assumption 5: The target takes the angular
positions 6, = n A6 for n =0,1,..., N - 1.

The above assumptions imply that the measured
ISAR data is a sampled Fourier transform of the
target reflection function, i.e., sampled on the polar
coordinates as shown in Fig. 2. To make the ISAR data
structure even simpler, further restrictions are imposed
on the radar as follows.

Assumption 6: The frequency interval M Af is
much smaller than the middle frequency fo = f; +
(M -1)Af/2.

Assumption 7: The angular interval N A8 is much

5 cannot be met if the target is continuously rotating
(rather than in the stepped format). But for simple
analysis these two assumptions are used until Section
V where a continuously rotating target is considered.

By combining assumptions 37, a simple analysis
can transform (1) into

I
s(m,n) = Eb,- exp(j2n frim + j27 f,;n)

i=1
1
= bipl'q’ @
i=1
where
b; = a;exp (—j-tlx;fl,) 3)
fi=—2afx 0
2
hi = ZfolAdy; &)
Pi = exp(j2n fxi) ®
g = exp(j2m fyi)- ™

The model shown in (2) is simply a sum of 2-D
(two-dimensional) complex sinusoids with the 2-D
frequencies at (fy;, f;i). Note that Af and A6 must
be such that —0.5 < f,; < 0.5 and —0.5 < f;; < 0.5 to
avoid phase ambiguity. Since (x;,y;) can be uniquely
obtained from (f.;, fy;) by using (4) and (5), we discuss
the estimation of (f, f;:) only.

It should be noted that the assumptions made
above are similar to those in [1], and hence the model
shown in (2) is similar to that used in [1]. But in [1],
the target is assumed to be spatially bandlimited
(i.e., the target is smooth). Here, we are treating a
target that consists of point scatterers which are not
bandlimited in spatial frequency. Although the 2-D
FFT technique proposed in [1] can be applied here,
it has poor resolution because the data aperture can be
very small under assumptions 6 and 7.

In the next section, a high resolution method for
estimating (f:, f}:) is developed based on the model
shown in (2).

. THE MATRIX PENCIL METHOD

The first step of the MP method is to form the
enhanced matrix:

smaller than one. So S8 Sm-x
L 81 S - Sm-x#
The last two assumptions imply that the sampled S. = ®
region (wedge) shown in Fig. 2 becomes approximately
rectangular. It should be noted that assumptions 4 and Sx_1 S Sam-1
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where {S,; m =0,1,---,M — 1} are defined by

s(m;0) s(m;1) s(m;N — L)
S — s(m; 1) s(m;2) s(m;N—-L+1)
sm;L-1) s(m;L) s(m;N - 1)

)

Note that we have introduced the two integers K and
L in the above two equations. The integer K may be
called the moving window length in the m (or f;)
direction, and L the moving window length in the n
(or fy) direction. The conditions which need to be
satisfied by K and L will be given later.

By using the above decompositions, we can show [3]
that if*

IT+1<K<M-I+1
{ shs 19)

T+1<L<N-I+1

then rank(E.) = I, rank(E,) = I and hence rank(S,) =
1 which implies

_{>o
g; = 0

Because of the above property, the third step of the
MP method is to choose such I that o; for i > I are
negligible compared with o; for i < I

Because of (20), (16), and (10), we know that

for i<I

i>I’ (20)

for

The second step of the MP method is to compute range(S,) = range(E,) = range(U,) (21)
the singular value decomposition (SVD) of S,:
where
S = UsvH (10) U, = [“1,“2’"-:“]]' (22)
where U = [uy,u,...,up] consists of the left singular ~ Then it follows that range(E,) is orthogonal to
vectors, V = [v1,V2,...,Ymin] consists of the right range(U,), ie.,
singular vectors, and T = diag(cy,05,. ..Onin) consists
of the (descending) singular values; min is the range(Ec) L range(U,,) )
smaller one of the column and row dimensions of where
8., i.c., min(KL,(M — K + 1)(N — L + 1)). Note Uy = [0741,0742,..., Upjp]- 24
that the right singular vectors are not required by
the MP method. Therefore, one can simply use the From (17) we know that
cigendecomposition of the Hermitian matrix S,SH Ec = [e(fr1, f51),e(fe2s fy2)s - s @(fors fy1)] (25)
which can be decomposed into US2U.
To relate the SVD to the data structure shown in where
(2), we use (2) in (9) to yield [1 1
S, = Q.BPZQ, €5} 9
where L1
1 1 1 q;
Di
ql q2 e q /i
Q= 12) pidi
L-1  _L-1 _  L-1
o & e(fesfy) = | 101
B = diag(b1,b,,...,bs) (13) Pig;
P, = diag(ps, p2,....pr) (14)
1 q q{v -k K-1
1 g @t b
= . (15) Pl
1 ... gN-L
qr qr ’ K- lq L-1
Then using (11) in (8) yields R
r1 1
S. =E.BE, (16)
_ Pi qi
where =i |® (26)
Q. K-1 L1
Q.P, LD; q;
E. = (17)  in which @ denotes the Kronecker product. Combining
Q.p5-! —_—
*This condition combines that for E; and E; as defined in (28) and
E: =[Q,P:Q,,-- ,PQ"KQ,]. (18)  (30) to be of the rank 2.
HUA ET AL.: IMAGING OF POINT SCATTERERS FROM STEP-FREQUENCY ISAR DATA 197
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(23) and (25) yields that for i = I +1,I +2,...,min,
ule(fui, fyi) = 0.

This property implies that one can use the following
2-D spectrum to find the 2-D frequencies (fyi, fyi):

1

P(fo.fy) = =& .

) S Wlelf
This spectrum has higher resolution than the 2-D FFT
as used in [1] because the peak positions of P(fs, fy)
are quaranteed by (27) (in the noiseless case) to be the
true scatterer positions. But the computation required
to obtain the 2-D frequencies (fyi, fyi) from the 2-D
spectrum is often an excessive burden [4, 5].

To develop a computationally efficient way, we

define the following:

(27

28

E; = E, with the last L rows deleted (29)
E; = E, with the first L rows deleted (30
U; = U, with the last L rows deleted (€28)
U, = U, with the first L rows deleted. (32)
Then it follows from (21) that
U =ET (33)
U, = ET (34)

where T is a nonsingular squarc matrix. Applying (17),
we have
Uz — pUy = (E2 - pE))T

= Ey(Pa— pD)T (35)

where 1 is the identity matrix with proper dimension.
This equation implies [7] that p; for i = 1,2,...,1
are the generalized eigenvalues of the MP U; — pU,
ie., Up — pU; decreases its rank by one if and only if
P = pi, provided that (19) is satisfied.

To study g; for i = 1,2,...,1, we first define the
shuffling matrix:
rp (1) |
pT(1+L)

p (1 +(K-1)L)
P’ (2)
p’(2+L)

pT(2+ (K~ 1)L) ©6)

pY(L)
pI(L+L)

LpT(L + (K - 1)L)]

198

where p7 (i) is the 1 x KL vector with one at the ith
position and zero everywhere else. Then the shuffled
matrix E, = P,E, of E. can be written as (see (17))

P,
Pch
E=|" 37
P.Q;
where
1 1 -1
n p2 - pI
Pc = DY (38)
pEt pFt o pft
Qu = diag(q1,92,---,91)- (39
Similar to (29)-(32), we define
Ej = E. with the last K rows deleted (40)
E, = E/, with the first K rows deleted (41)
U} = P,U, with the last X rows deleted  (42)
U} = P, U, with the first K rows deleted.  (43)
Then we have, similar to (35),
Uy - qU; = E(Qs— gDT. (44)

This equation implies [7] that ¢; for i =1,2,...,I are
the generalized eigenvalues of the MP Uj — qUj.
Based on the above analysis, the fourth step of the
MP method is to form Uy, U, U}, and U} according
to (31), (32), (42), and (43), respectively, and then
obtain the estimates of p; and g; by computing the
generalized eigenvalues of Uz — pUy and U5 — gUj,
respectively. The generalized eigenvalue problem can
be solved in a number of ways [6]. But the simplest
way is to compute the cigenvalues of (UYU)~1U{'U,
and (UFU1)~1UHU, [8] for p; and g;, respectively.
The fifth step of the MP method is to convert p;
and ¢; to fy; and fy; according to (6) and (7), i.c,,

1
fui = 5 Imflog(p:)) (45)

1

fyi = 5=Im{log(g:)] (46)

The sixth (i.e., final) step of the MP method is to
have the cstimated f,; and f,; correctly paired. An
efficient pairing technique is to use (28), e.g., for each
i, choose j such that P(f,;, fy;) is maximum.

It is important to note that the MP method
becomes more robust to noise when the enhanced

matrix S, is replaced by the expanded matrix:
Sefb = [SnPPS:] (47)

where * denotes the conjugation, and P, is the
permutation matrix with ones on the cross diagonal
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axis. In the following two sections, only the expanded
matrix is used. (The analysis of S.rs leading to the
above shown steps of the MP method would be
similar.)

Also note that the conditions (19) on X and L
are sufficient for the MP method to yield the exact
esitmates of (f., f,;) in the noiseless case. Both K and
L affect the noise sensitivity greatly, which is shown
next.

IV. NOISE SENSITIVITY

In this section, we consider the noise sensitivity of
the MP method. In particular, we discuss the effect
of X and L on the noise sensitivity and compare the
noise sensitivity with the Cramer-Rao lower bound
(CRB) [9].

A. Derivation of First-Order Perturbations

It is clear that the first-order perturbations in the
estimated f,; and f,; can be expressed by

Afui = €5 Re[w] + €I, Im[w]

Afyi = €l Re[w] + €loIm[w]

(48)
(49)
where w is the noise vector defined by
w(0;0) ]
w(0;1)

w(O; N ~1)
w(1;0)
w(l;1)
w(,N —1) (50)

w(M —1;0)
w(M -1;1)

[w(M - ;N - 1)

and €41, €42, €1, and €yi2 arc the noise sensitivity
vectors, In the following, we derive the detailed
expressions for these vectors, but since Af;; and A fri
can be treated symmetrically, we concentrate on Af,;.
From (45), it is clear that

Afyi = %Im [—Ap%] . (51)
Based on the fourth step of the MP method, we know
that Ap; is the perturbation in the ith generalized
cigenvalue of the MP U, — pUj. By applying the
theorem that “the SVD truncation does not affect the
first-order perturbations” as shown in [6], it can be

shown that Ap; is equal to the perturbation in the ith
generalized eigenvalue of the MP S, — pS; where

81 = 8.5, with the last L rows deleted (52)
S2 = S,¢, with the first L rows deleted. (53)
Then it follows [7] that
Api = P?(AS;?—S f’(;';’lsl)qx' 54)
where p; and q; are defined by
Pi'(S2—piS1) =0  p; € range(Sy) (3
(S2-piS1)gi =0  q; €range(ST).  (56)

To find p; and q;, we need to observe the following.
Using (16) in (47) yields

S.fs = E.B,E. 7
where
B, = diag({b1},[b2 |,..., |bs]) %)
E, = [B,Q,,E;Q;] %)

B, = diag[exp(jarg(b1)). exp(jarg(bz)), -- ., exp(jarg(b))]

(60)
E; =B,PX-1Q4 L (61)
Then it follows that
S1 =EaB.E, (62)
S2 =E»P4B,E, (63)
where
E.1 = E, with the last L rows deleted. 64)
Using (62) and (63) in (55) and (56) yields [7] that
pi'
2 + Hp \=-lgH
|~ E; = (EqEa)  Eg (65)
py
[91.92--,q/] = E} = EJ(E,E})~! (66)
where + denotes the pseudoinverse.
Using (65), (66), and (62) yields
piS1q; = [bil. (67)
Hence, (54) reduces to
Api = E%P?(ASZ—P:'ASI)‘U- (63)

To further simplify (68), it should be noted that
ASy = 8, with s(m, n) replaced by w(m,n) (69)
and

AS; = 8, with s(m, n) replaced by w(m,n). (70)
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Define two (K — 1)L x KL matrices:

(M)
(72)

P = [k 1yrxx-1nL.Ow-nixL]
Py = [Ok-1yx L Ik nyrxx-1L]

where O _1yrx 1 is the zero matrix with the given
dimension, and I(K_ NLx(K-1)L is the identity matrix
with the given dimension. Then we can write

AS) =P:AS,;p (73)
AS; = P,AS 5 (74)

-where
AS,fb = [AS,,PPAS:] 75)

AS, =S, with s(m,n) replaced by w(m,n). (76)
Using (73) and (74) in (68) leads to

1
Ap; = WP'H(PI, — PiP)AS fpq;
1
= (5P (B = PiP)(ASLP,AS . (77)
To express Ap; in terms of the noise vector w, we

first write
q’.
q; = [qf']

where both q and q have the dimension (M — K +
1)(N — L + 1) x 1. Then we can write

(78)

(AS.,P,A87)q; = Qiw + P,Q'w* ()

where Q} and Qf are determined by g/ and q/,
respectively, as follows. To define Qf, we first write

(o ]
9
q=|" (80)
-‘]fM-l(J
where
[ ‘Ifjo
q{.
=] 8D
4
| 4ijN-1L ]
Then we write
o Qi Qy—x
Q= o QY Uy _x
:0 Qx’l Q:{M—K
(82)
200

where
’
90 %ip dijv-L

' ' '
9ij0 9in qijiN-L

Q.{j =
q;jN—L
(83)

Note that in (82) and (83), zeros should be inserted
into the lower-left and upper-right triangles. Q} is
similarly defined as Q.

Using (79) in (77) and then (77) in (51) yields that

1 1 ’ "
e [;ipf*a’b — PiP)(Q +P,0, )] Re[w]

i !
dijo 4

_1 1 / 14
+ Zﬂ'lbilRe [EPF(Pb - piP)(Q; — P, Qi )] Imfw].

Co)

Hence, it follows that

1 1
T — __— —pH(P, - pP '+ P, QY 85
€xil 27r|b,[Im I:pz p; (Pb Pi !)(Qt PQ: )] ( )

1 1
T _ H
€xiz = 27l'|bi|Rc [El’i (P, — piP:)(Q; _PPQ;l)] . (86)
To obtain €,;; and €y, all we need to do is to
interchange p; and ¢;, M and N, and K and L
inherent in (85) and (86).
Assume that the noise vector w is white, ie.,

E{Re[w]Re[w]'} = o1 87
E{Imw]im[w]7} = 01 (88)
E{Re[w]Imw]T} =0 (89)
where E{ } denotes the expectation. Then the
variances of the perturbations Af; and Af); are
var(Afy) = o[l + llewal] (90
var(Afy) = o?[lleyall® + lleyizl ] 2y

where || || denotes the 2-norm. It is easy to show
(by observing (85), (86), (90), and (91)) that the
normalized perturbation variances, i.e., var(Af,;)SNR;
and var(Af,;)SNR; where SNR; = |b;[2/2¢% (SNR is
signal-to-noise ratio) are independent of the noise level
o and all the signal amplitudes |b;| for j = 1,...,1I.
More insights into the perturbation variances
remain to be found through analysis. In the following
subsection, we show some numerical results.

B. Numerical Results

Figs. 3(a)-(b) show the 3-D and 2-D plots of the
perturbation variance (in dB) of f,; versus the window
lengths K and L for the single scatterer case where
I=1, M =N =20, and arg(h,), f,1 and fy1 are
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Fig. 3. Normalized perturbation variance of f,; versus X and L
for single scatterer case. (a) 3-D plot. (b) 2-D plot.

arbitrary. From these two plots, we can see that the
optimum choices of XK and L are, respectively, K =
m/3orK=2M/3,andL=I+1orL=N—I+1;
the perturbation variance of f, is affected more by K
than L (and similarly the perturbation variance of f, is
affected more by L than K); and with proper choices
of K and L, the perturbation variance is very close to
the CRB.

Note that the CRB [9] was computed by assuming
that the additive noise is white Gaussian and the
unknown parameters are |b;|, arg(b;), f,; and f,; for
i=1,..,1

Figs. 4(a)-(b) show the 3-D and 2-D plots of the
perturbation variance (in dB) of f,; or fx2 versus K
and L for the two scatterers case where I =2, M =
N =20, arg(b;) = arg(hs) = 0, (fu1, f1) = (0.24,0.26)
and (fy2, f;2) = (0.26,0.24). Note that var(f,1)SNR;
has been found to be identical to var(fy2)SNR; for
this case. These two plots suggest that the boundary
values of K and L (i.e., the values close to I + 1 for
both K and L as well as those close to M — I +1
and N —I +1 for K and L respectively), should be
avoided.

Figs. 5(a)—~(f) show the 3-D and 2-D plots of the
perturbation variances (in dB) of f,1, fi2, and fi3 for
the three scatterers case where I =3, M = N = 20,
arg(by) = arg(by) = arg(bs) = 0, (fu1, 1) = (0.24,0.26),

_34 | window length L
L=3,4,...,19

L=19 7 .-

_50 ) 2 1 1 L 1 n
2 4 3 8 10 12 14 16 18 20
window length K

(b)

Fig. 4. Normalized perturbation variance of f;; or fy; versus K
and L for two scatterers case. (a) 3-D plot. (b) 2-D plot.

(fe2, fy2) = (0.26,0.24) and (f.s3, fy3) = (0.24,0.24).
These figures again suggest that the boundary values
of K and L should be avoided.

From the above numerical results (as well as
others not shown here), we conclude that the optimum
choices of K and L are generally data dependent,
but the choices away from the boundary values of K
and L are generally good. As a rule of thumb, one
can simply choose K = M /2 and L = N /2 for a good
noise sensitivity performance.

V. SIMULATION RESULTS

It has been shown that for data satisfying the model
shown in (2), the MP method can yield the exact
estimates of the scatterer positions and it also has a
good noise sensitivity performance. In this section, we
test the MP method for data that does not satisfy (2)
but rather the more realistic model (1). To do the test,
we assume the following.

The target is continuously rotating at the speed
of 20 deg/s. For every 17.97 s, the radar transmits a
pulse at a stepped frequency. The stepped frequency
(in x-band) varies from 9 GHz to 9.24 GHz in 32 steps
(i.e., the step length is 7.81 MHz). The sequence of
such 32 pulses are repeatedly transmitted by the radar
towards the target for 32 times (sweeps). The distance

HUA ET AL.: IMAGING OF POINT SCATTERERS FROM STEP-FREQUENCY ISAR DATA 201
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Fig. 5. Normalized perturbation variances versus K and L for three scatterers case. (a) 3-D plot for fy. (b) 2-D plot for fi1.
(c) 3-D plot for fy;. (d) 2-D plot for fx2. (e) 3-D plot for fy3. (f) 2-D plot for fy3.

between the target and the radar is assumed to be a
known constant during the observation time so that
the phase due to the distance can be compensated
(i.e., set d = 0 in (1)). The scatterers in the target
are assumed to have identical reflection coefficients
(i.e., a; = 1) and form an angular shape as shown

in Fig. 8. (Note that (x;,y;) can be easily converted
from (fi:, fyi) by using (4) and (5).) Using the above
assumptions in (1), we obtained a 32 x 32 synthesized
ISAR data sct. Furthermore, a white noise was added
to the data and the SNR was —10 dB (ie, SNR; =
10log,,|ai[*/20% = —10 where |a;| is the amplitude of

the reflection coefficient and 202 the noise variance.).

Figs. 6(a)—(b) show the 3-D and contour plots of
the Fourier spectrum of the synthesized data set. The
scatterers are not very noticeable from the two plots.
This is because of the small aperture of the available
data set. Note that the split cllipses around each peak
position shown in the contour plot are due to the
sidelobes around each mainlobe as shown in the 3-D
plot.

Figs. 7(a)—(b) show the 3-D and contour plots of
the high resolution spectrum defined by (28). These
two plots clearly show the scatterers.

Fig. 8 shows the estimated scatterer positions
(marked by “0”) obtained by the MP method. Note

202 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO. 1 JANUARY 1993



(6

Fig. 6. Fourier transform of synthesized ISAR data. (a) 3-D plot
of 2-D DFT using synthetic ISAR data (SNR = —10 dB).
(b) Contour map of 2-D DFT using synthetic ISAR data
(SNR = -10 dB).

that the estimated scatterer positions are basically the
peak positions of the high resolution spectrum shown
in Fig. 7, but they were obtained by using the MP
method which is computationally much more efficient
than searching for peak positions in the high resolution
spectrum. The original scatterer positions are marked
by “x”. From this figure, we can see a deviation of the
estimated positions from the original. This deviation
appears to be a rotation of the target around its origin
(i-c., the upper right-hand corner of this figure). In
fact, we observed in our simulation that this rotation
was caused by the model errors between (1) and (2),
and the added noise caused little perturbations in the
estimated positions. However, when the SNR was
reduced to —15 dB, the pairing step in the MP method
failed and it produced a drastically different picture.

VI.  CONCLUSIONS

We have presented a computationally efficient
and high resolution method, i.e., the MP method,
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Fig. 7. High resolution spectrum of synthesized ISAR data.
(a) 3-D plot. Frequency spectrum using synthetic ISAR data
(SNR = —10 dB). (b) Contour map of frequency spectrum using
synthetic ISAR data.
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Fig. 8. Original and estimated scatterer positions. MP on synthetic
ISAR data (SNR = —-10 dB).

for localization of point scatterers in a moving target
from ISAR data. We have provided a noise sensitivity
analysis of this method and shown that its performance

HUA ET AL.: IMAGING OF POINT SCATTERERS FROM STEP-FREQUENCY ISAR DATA 203



is near optimum. We have also tested this method
using a relatively realistic synthesized ISAR data set
and shown that this method is fairly robust to model
errors. Based on the theory shown in this paper, the
application of this method to real life ISAR data
(like data from moving ships and flying aircrafts) is
currently under investigation.
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