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Histogram-based models on 
non-thin section chest CT predict 
invasiveness of primary lung 
adenocarcinoma subsolid nodules
Anastasia Oikonomou   1, Pascal Salazar2, Yuchen Zhang3, David M. Hwang4, 
Alexander Petersen   5, Adam A. Dmytriw3, Narinder S. Paul3,6 & Elsie T. Nguyen3

109 pathologically proven subsolid nodules (SSN) were segmented by 2 readers on non-thin section 
chest CT with a lung nodule analysis software followed by extraction of CT attenuation histogram and 
geometric features. Functional data analysis of histograms provided data driven features (FPC1,2,3) 
used in further model building. Nodules were classified as pre-invasive (P1, atypical adenomatous 
hyperplasia and adenocarcinoma in situ), minimally invasive (P2) and invasive adenocarcinomas (P3). 
P1 and P2 were grouped together (T1) versus P3 (T2). Various combinations of features were compared 
in predictive models for binary nodule classification (T1/T2), using multiple logistic regression and 
non-linear classifiers. Area under ROC curve (AUC) was used as diagnostic performance criteria. Inter-
reader variability was assessed using Cohen’s Kappa and intra-class coefficient (ICC). Three models 
predicting invasiveness of SSN were selected based on AUC. First model included 87.5 percentile of 
CT lesion attenuation (Q.875), interquartile range (IQR), volume and maximum/minimum diameter 
ratio (AUC:0.89, 95%CI:[0.75 1]). Second model included FPC1, volume and diameter ratio (AUC:0.91, 
95%CI:[0.77 1]). Third model included FPC1, FPC2 and volume (AUC:0.89, 95%CI:[0.73 1]). Inter-reader 
variability was excellent (Kappa:0.95, ICC:0.98). Parsimonious models using histogram and geometric 
features differentiated invasive from minimally invasive/pre-invasive SSN with good predictive 
performance in non-thin section CT.

Lung cancer is the leading cause of mortality from cancers worldwide1. Adenocarcinomas are the most common 
type of lung cancer2. In 2011, the International Association for the Study of Lung Cancer (IASLC), the American 
Thoracic Society, and the European Respiratory Society introduced a new system of classification for lung adeno-
carcinomas, separating histological findings into 3 categories: pre-invasive lesions including atypical adenoma-
tous hyperplasia (AAH) and adenocarcinoma in situ (AIS), minimally invasive (MIA) and invasive pulmonary 
adenocarcinoma (IPA)3. This classification has significant prognostic and treatment implications for patients 
since AIS and MIA usually show very slow growth on follow up (FU) CT and a favorable prognosis as opposed 
to IPA that does not3.

On chest CT, lung nodules that appear “ground glass” (GG) or “subsolid” have a higher risk of malignancy 
than an incidentally detected solid nodule and 75% of subsolid nodules (SSN) are adenocarcinomas4. The current 
Fleischner guidelines recommend that SSN with solid component ≥6 mm or increasing solid component should 
be considered highly suspicious for lung adenocarcinoma5–7. However, about a third of SSN are pre-invasive that 
could be managed with close FU or completely treated with limited surgical resection, with excellent 5-year sur-
vival of up to 100% (curative resection)8,9. Furthermore, some patients have multiple SSNs and develop new SSNs 
during surveillance. Fleischner guidelines provide management recommendations based on the most suspicious 
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appearing nodule(s) based on visual assessment. However, this is a subjective decision and it is also possible that 
a pure GGN transforms into MIA or IPA over time and pure GGNs may contain an invasive component, which 
cannot be perceived visually. It is therefore critical to identify noninvasive and objective methods to differentiate 
SSN representing invasive adenocarcinoma requiring aggressive surgical treatment, from pre-invasive nodules 
that could remain under surveillance.

Published studies regarding SSN classification were based mostly on thin-slice CT images ≤1.25 mm that may 
not be routinely used in many institutions mainly due to the large number of images reconstructed, requiring 
increased time for radiology review and demands on storage capacity for imaging servers. Moreover, lung can-
cer screening studies may be performed with thicker slice reconstruction (up to 2.5 mm) according to the ACR 
recommendations10,11.

Most SSN will be discovered incidentally on chest CT performed for various clinical indications and the 
protocol may not routinely include thin high-resolution images through the SSN. This study presents a predic-
tive modeling approach combining individual morphologic and data-driven CT-attenuation features to classify 
invasiveness of lung adenocarcinoma using routine non-thin section chest CT images reflecting “real world” 
applicability on routine chest CT.

Results
The parameters for CT acquisition techniques, patient characteristics and nodule locations did not show 
significant differences between the two groups (Table 1). The median and IQR of the geometric and CT 
attenuation-based predictors are presented in Table 2. The results of the univariate analysis with AUC values, sen-
sitivity, specificity, and optimal threshold (using the Youden index for optimality criteria) are listed in Table 3. CT 
attenuation features showed higher classification performances with high CT attenuation features such as Q.875 
(AUC 0.87), while geometric features such as volume showed lower AUC values (0.74). Multivariate analysis of 
the main predictors did not reveal significant interaction or non-linearity (all p-values with test >0.05) (Fig. 1).

Functional analysis of the CT attenuation curves.  Separate data driven predictors related to the sub-
solid nodule CT attenuation histogram were extracted from the histograms using the functional principal com-
ponent (FPC) analysis. The FPC analysis revealed two main modes of variations among CT attenuation profiles 
in the dataset (Fig. 2). The FPC1 plot shows a transition from a nodule with mostly low attenuation (10th per-
centile - blue curve) to more heterogeneous curve profiles (purple, red and brown curves) ending with highly 
heterogeneous curves including higher attenuations (90th percentile - green curve). The FPC2 plot shows another 
independent type of variation where a moderately high attenuation profile reversed from low attenuation to high 
attenuation dominant. This variation of CT attenuation is not associated with heterogeneity change. Both FPCs 
explain up to 86.9% of the variation for the nodule CT attenuation curves. The lesion CT attenuation curves can 
be visualized in a 2D scatterplot using only their FPC1 and FPC2 (centered) coordinates, together with their 

Characteristic T1 (AAH/MIA) T2 (IPA)

CT Acquisition

CT mA (median & IQR) 50 (87) 50 (110)

CT kV (median & IQR) 120 (15) 120 (15)

Reconstructed slice thickness (nr nodules)

2.5 mm 1 0

3 mm 37 47

5 mm 18 6

Patient characteristics

Gender (male/female) 11/44 14/39

Age, years (median & IQR) 64 (13) 67 (15)

Smoking history (with/without) 47/11 38/18

Nodule location (nr nodules)

LUL 18 15

LLL 9 6

RUL 17 20

RLL 9 8

RML 2 3

Lingula 1 1

Pathologic subtype (nr nodules)

All 56 53

AAH* 3 —

AIS* 24 —

MIA* 29 —

IPA* — 53

Table 1.  CT parameters, patient characteristics and tumor properties of T1 and T2 groups.
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invasiveness class according to pathology; T1 and T2 (Fig. 3). This plot shows a good visual separation of the 
tumor types based on these two components: higher values of FPC1 are associated with most of the invasive 
lesions, that is, more heterogenous higher attenuation curves. In contrast, FPC2 presents a less obvious separation 
pattern of points with invasive lesions. These two FPC components were used in the predictive models for SSN 
classification.

Nodule Classification performance based on invasiveness.  Three best final linear logistic regression 
models to predict invasiveness of the SSN were selected based on AUC performances and model parsimony 
(Table 4). The first model used the two CT attenuation-related predictors - Q.875 and IQR - and two geometric 
predictors - volume and diameter ratio. The predictive classification performance using the cross-validation gave 
AUC 0.89 (95%CI:[0.71 1]) and accuracy 81.0% (95%CI:[58.1 94.6]). Mean absolute calibration error was 0.096.

The second model uses one functional CT attenuation-based predictor - FPC1 - and two geometric pre-
dictors - volume and diameter ratio. The cross-validated predictive classification performance was AUC 0.91 
(95%CI:[0.77 1]), accuracy: 81% (95%CI:[58.1 94.6]). Mean absolute calibration error was 0.102.

Parameter (median & IQR) T1 (AAH/MIA) T2 (IPA) Total (Mann-Whitney test)

Geometry

Volume, mm3 1129 (2218) 3459 (5754) P < 0.0001

Minimum Diameter, mm 12 (5) 15 (10) P = 0.0016

Maximum Diameter, mm 16 (7) 25 (14.25) P < 0.0001

Mean Diameter, mm 14 (6) 20 (14) P < 0.0001

Max/min Diameter Ratio 1.37 (0.40) 1.67 (0.57) P = 0.0002

Consolidation Ratio 0.29 (0.47) 0.76 (0.43) P < 0.0001

CT attenuation - parametric

Mean, CT HU −639 (169) −442 (225.5) P < 0.0001

SD CT HU 168 (70) 250 (58) P < 0.0001

Skewness CT HU 0.56 (0.43) 0.26 (0.68) P < 0.0001

Kurtosis CT HU 3.22 (1.30) 2.53 (0.80) P < 0.0001

CT attenuation - non-parametric

Q.50 CT HU −663 (172) −462 (286) P < 0.0001

Q.75 CT HU −555 (230) −246 (336) P < 0.0001

Q.875 CT HU −463 (236) −98.25 (279) P < 0.0001

IQR CT HU 197 (105) 348 (137) P < 0.0001

CT attenuation - Functional Principal Components

FPC1 CT HU 0.315 (0.433) −0.246 (0.40) P < 0.0001

FPC2 CT HU −0.0012 (0.242) 0.080 (0.291) P = 0.1473

Table 2.  Geometric and CT attenuation parameters of T1 (AAH/MIA) and T2 (IPA) groups. Median (Inter-
Quartile Range).

Parameter AUC P-value Sensitivity Specificity Best Threshold

FPC1 CT HU 0.88 [0.80 0.93] P < 0.0001 77.4% 89.3% >0.072

SD CT HU 0.88 [0.81 0.94] P < 0.0001 90.6% 76.8% >197.85

Q.875 CT HU 0.87 [0.79 0.93] P < 0.0001 77.4% 87.5% >−258

IQR CT HU 0.87 [0.79 0.93] P < 0.0001 75.5% 87.5% >297

Q.75 CT HU 0.86 [0.78 0.92] P < 0.0001 81.1% 80.4% >−401.5

Consolidation Ratio 0.84 [0.76 0.91] P < 0.0001 69.8% 89.3% >0.625

Mean CT HU 0.84 [0.76 0.90] P < 0.0001 81.1% 80.4% >−543

Q.50 CT HU 0.83 [0.74 0.89] P < 0.0001 73.6% 80.4% >−566

Kurtosis CT HU 0.78 [0.69 0.85] P < 0.0001 67.9% 82.1% ≤2.70

Maximum Diameter 0.76 [0.67 0.84] P < 0.0001 62.3% 82.1% >22

Skewness CT HU 0.74 [0.65 0.82] P < 0.0001 58.5% 85.7% ≤0.306

Volume (log) 0.74 [0.66 0.83] P < 0.0001 54.7% 85.7% >3.11

Mean Diameter 0.74 [0.65 0.82] P < 0.0001 66.0% 78.6% >17

Diameter ratio 0.71 [0.61 0.79] P < 0.001 60.4% 73.2% >1.57

Minimum Diameter 0.68 [0.58 0.76] P = 0.0008 52.8% 82.1% >14

FPC2 CT HU 0.58 [0.48 0.67] P < 0.157 33.96% 89.29% >0.157

Table 3.  Main parameters and ROC-AUC performances - Reader 2.

https://doi.org/10.1038/s41598-019-42340-5
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The third model uses two functional CT attenuation-based predictors - FPC1 and FPC2 - and one geomet-
ric predictor - volume. In cross-validated classification AUC was 0.89 (95%CI:[0.73 1] and accuracy 81% 
(95%CI:[58.1 94.6]). Mean absolute calibration error was 0.089.

Models using the following predictors showed comparatively lower classification performances and thus were 
discarded; minimum diameter, mean diameter, maximum diameter, mean (HU), skewness CT HU, kurtosis CT 

Figure 1.  Feature vs. log-odd linearity plot for CT attenuation features: Q.875 (left) and IQR (right) and log odd 
for the invasive lesion class.

Figure 2.  Variation plot for GGO CT density. Left: First mode of variation (FPC1 CTHU). Right: second mode 
of variation (FPC2 CT HU). Red curves correspond to the mean curves in the nodule data sample.

https://doi.org/10.1038/s41598-019-42340-5


5Scientific Reports |          (2019) 9:6009  | https://doi.org/10.1038/s41598-019-42340-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

HU, Q.50 and Q.75, consolidation ratio. Only SD-CT HU could replace IQR in model 1, however no significant 
performance difference was identified.

Other clinical parameters such as age, gender, upper lobe location and smoking history showed poor perfor-
mances during the univariate analysis and thus were excluded from the final model. Non-linear classifiers such as 
SVM did not improve the classification performances and were excluded from the final selection.

Inter-reader variability of nodule classification performance.  The effect of inter-reader variability in 
the manual correction of lesion segmentation was assessed using model 1 (Table 4). The inter-reader variability 
was excellent with the Cohen’s Kappa concordance coefficient between each reader predicted class on the testing 
dataset being 0.95 (95%CI bootstrapped: [0.83 1]) and the intraclass correlation coefficient (ICC) on each reader 
predicted probabilities being 0.98 (95%CI:[0.96 0.99]).

Discussion
Conventionally, research on lung nodule classification has been focused on identifying the most efficient imaging 
biomarkers and optimal cut-off thresholds after linear measurements, visual assessment or lesion segmentation. 
The ultimate goal is to provide more efficient practical decision-making tools such as lung nodule scoring or 
reporting systems12 to help with risk prediction models for malignancy or degree of invasiveness. In contrast 
with this approach, machine learning focuses on the highest classification performances, using advanced classi-
fiers with larger feature sets from segmentation13. In these models, the interpretation of the individual features 
is secondary. Results are based on predictive classification performances measured on an independent dataset. 
Some of these studies based on texture analysis and thin section CT (≤1.25 mm) have shown promising results in 
differentiating invasive from pre-invasive lesions that present as part-solid or pure GGN14–16.

Recently, considerable excitement followed the advances in deep learning and convolutional neural networks 
(CNN) allowing very high performances on lung nodule classification17,18 using the ‘LIDC-IDRI’ lung nodule 
database (mean reconstructed slice thickness: 1.74 mm)19 and smaller private datasets20 with AUC performance 
in lung nodule classification for malignancy well above 0.90. Additionally, CNNs learn features from the data 
avoiding the burden of manually finding efficient ones in the images and without lesion segmentation. However, 
deep learning has its own limitations: large datasets of pathology labeled CT cases are needed. Despite active 
research17, the interpretability of the CNN models is very limited giving the user no explanation on the classifi-
cation result. If no segmentation is needed, current programs usually need a selection of a 3D volume of interest 
to restrict the computation.

Figure 3.  FPC1-FPC2 plot with GGO type and their marginal density distributions.

Model (Multiple Logistic Regression)
AUC 
[95%CI]

Accuracy 
[95%CI]

Sensitivity 
[95%CI]

Specificity 
[95%CI]

Model 1: Q.875 + IQR + Volume + Diameter Ratio

Repeated 10-fold CV 0.89 [0.75 1] 81.0% [58.1 94.6] 80.0% 90.9%

Model 2: FPC1 + Volume + Diameter Ratio

Repeated 10-fold CV 0.91 [0.77 1] 81.0% [58.1 94.6] 80.0% 81.8%

Model 3: FPC1 + FPC2 + Volume

Repeated 10-fold CV 0.89 [0.73 1] 81.0% [58.1 94.6] 80.0% 81.8%

Table 4.  Predictive performances for subsolid nodule classification.

https://doi.org/10.1038/s41598-019-42340-5
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The predictive modeling approach followed in this study integrates known lung nodule geometric features 
and two types of CT attenuation features: classic a priori features such as median CT attenuation and data-driven 
features discovered from CT attenuation histograms using an original functional data analysis. This data-driven 
features discovery reduces the burden of guessing more arbitrary CT attenuation inherent features of the nodule. 
It also offers a useful insight on the CT attenuation variation inside the lung nodule dataset.

Our results show that models with no more than a couple of CT attenuation features (either quantile-based 
or FPC) and geometric features (volume and diameter ratio) can differentiate invasive from minimally invasive/
pre-invasive SSN with good predictive performance (AUC: 0.89–0.91, accuracy: 81%) and acceptable perfor-
mances on predicted probabilities (mean absolute error <10%) even in non-thin section images.

The best CT attenuation features in our multiple logistic models were the 87.5th percentile, the interquartile 
range (25–75%) and FPC1, while the best geometric feature was the nodule volume. This result is consistent with 
the previous studies showing the role of nodule heterogeneity (expressed either in texture-related features or in 
CT attenuation histogram features) and nodule high CT attenuation for SSN classification using thin-slice CT 
(0.625–1.0 mm). Li Q et al. reported AUC 0.824 for 100th percentile combined with maximum diameter in a 
logistic regression model for discriminating pre-invasive from invasive lesions in pure GGN21. Using 1.25 mm 
slice CT, Ikeda et al. found 75th percentile to better differentiate AAH from BAC (AUC: 0.852) (currently classified 
as AIS). In the same study, the mean CT attenuation outperformed the 75th percentile in discriminating adeno-
carcinoma from BAC and AAH (AUC 0.871 versus 0.81)22. Son et al. found that 75th percentile measurement 
associated with the entropy measurements can help to differentiate invasive adenocarcinoma from pre-invasive 
lesions (AIS or MIA) with AUC 0.78 (0.71–0.85)23. Yagi T et al. reported that the 90th percentile together with 
entropy were independent differentiators of PIA from AIS-MIA with an area under the curve 0.9024. Using radi-
omics with 57 morphologic and texture-based features and Support Vector Machines (SVM), Li M et al. found 
GGN classification accuracy of 0.88 with thin slice datasets (1.25 mm)11. 87.5th percentile and 75th percentile are 
both related to the high CT attenuation and showed a very high correlation (0.99) in our analysis (Fig. 4). IQR 
on CT attenuation can be interpreted as reflecting the nodule tissue heterogeneity. The FPC1 quantifying the first 
mode of variation of the CT attenuation curves combined with volume and diameter ratio gives the most accurate 
model with predictive AUC 0.91. This performance level is comparable to Dey et al. results in ‘MoDenseNet’ deep 
neural network (AUC 0.90) using dataset of similar size (147 nodules)20.

High FPC1 values are simultaneously associated with higher attenuation and higher nodule heterogeneity, 
while high FPC2 values are mostly linked to increased CT attenuation. These findings are consistent with Son’s et al.  
results using alternative texture-based features of nodule increased heterogeneity, namely increased entropy and 
reduced uniformity, to differentiate AIS and MIA from IPA23. FPCs on CT attenuation histograms are attractive 
alternatives to the a priori attenuation-based features because of their performances in predictive models and 
because they can be automatically extracted from CT attenuation histograms with minimal prior knowledge 
(such as curve smoothness). They also allow exploratory analysis of the modes of variation of the CT density 
curves in the datasets (Fig. 2). A similar functional data analysis has previously been proposed to classify hyper-
plastic from adenomatous colon polyps based on optical near-infrared spectra acquired on colonic biopsies25.

The consolidation ratio AUC was the lowest (0.84) among the density related predictors in the univariate 
analysis and slightly reduced the predictive accuracy when combined to other predictors. Therefore, other density 
related predictors such as FPC1 or IQR were used in the final models.

The nodule volume and diameter ratio are the best geometric predictors of lesion invasiveness when combined 
in our final models even though their univariate performance (AUC 0.74 and 0.71 respectively) is slightly lower 
than the best geometric feature, namely the maximum diameter (AUC 0.76). This finding was in agreement with 
other studies that identified tumor size as independent predictor of invasiveness. Chae HD et al. reported that 
larger mass and lower kurtosis was an independent predictor of invasiveness in subsolid nodules and in their 
study, mass performed better than volume and diameter14. Hwang et al. found good classification performances 
(AUC 0.96) in pure GGN > 5 mm using logistic regression with both nodule mass and texture-related features 
(entropy, homogeneity), although on a small dataset with only 11 IPA15. Eguchi T et al. found that the combina-
tion of increased tumor size and increased CT attenuation could predict invasiveness in pure GGOs26. In another 
study, maximum diameter and 100th percentile were independent predictors of invasiveness in pure GGOs21. In 
our study, volume and ratio of maximum to minimum diameter were included in the final predictive models for 
differentiating PIA from MIA-AIS-AAH. The ratio of maximum to minimum diameter reflects more the unique 
morphology and geometry each tumor as opposed to one dimension only. Another study showed that apart 
from volume and diameter, the irregular border of a GGO nodule as opposed to round or oval shape is an inde-
pendent predictor of invasiveness27. The small number of predictors, the good linearity between predictors and 
the logit-transformed probability (log odds) of the tumor invasiveness (Fig. 2), the lack of significant interaction 
between the main features and the inherent noise due to the dataset variability (various kVP, slice thicknesses, 
noise levels) make the multiple linear logistic regression competitive compared to less interpretable classifiers 
such as SVM, which in our study did not demonstrate favorable results.

The inter-reader agreement was excellent. This confirms the high level of reproducibility of the technique 
used, which was also enabled by the automated segmentation of the nodules and the limited need for manual 
correction.

This study presents several limitations. First, the retrospective study design may have introduced a selection 
bias because we only included study subjects who underwent surgical resection because nodule histopathology 
was used as the reference standard. Second, CT studies were obtained with two different CT scanners and slightly 
different scanning protocols, which may have affected the CT attenuation. However, the majority of the studies 
were performed with slice thickness comparable to the American College of Radiology (ACR) LDCT protocol 
recommendations for lung cancer screening and the comparison of patient characteristics and acquisition param-
eters did not reveal significant differences between SSN classes10,11. The overall number of nodules is relatively 
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small but comparable and larger than many other studies14–16,21,22,24,26,27. Predictive classification performance was 
thus established in a limited number of cases for both training and testing. Nevertheless, our reported predictive 
performances using cross-validation can be considered as safe estimates even though larger-scale prospective 
cohort studies on SSN classification are needed to validate these results. Finally, our feature set did not include 
texture-based metrics such as entropy despite positive results in previously published lung nodule classification 
studies. The large variability of acquisition, the voxel anisotropy and different slice thicknesses are a known chal-
lenge for texture-based features28. More importantly, automated texture extraction may not be as available as a CT 
histogram in clinical practice.

In conclusion, the good performance achieved by the proposed classifying technique could provide radiolo-
gists a second-read option for reliably assessing the aggressiveness of SSN and to improve interobserver agree-
ment. Predicting the malignancy risk could also provide the surgeon with confidence in choosing the optimal 
therapeutic option with closer CT surveillance or sublobar resection reserved with those with more concerning 
features13. Predictive models could be enhanced in the future by integrating proteomics, epigenetic and genetic 
markers available in non-invasive tests29,30.

Materials and Methods
Subjects.  The study was approved by the research ethics board of a single institution institution and patient 
consent was waived due to the retrospective nature of the study. All methods were performed in accordance with 
the relevant guidelines and regulations. SSN with adenocarcinoma diagnosis were identified according to the 
two following methods: first a search of the pathology database containing all lung resections performed at our 
institution from January 2013 to August 2016 took place. Secondly, patients were identified from the electronic 
medical record and radiology information system of our institution using the following search terms: “adeno-
carcinoma”, “subsolid”, “part-solid” and “GG” under the search for “CT chest procedure” from January 2013 to 
September 2017. Patients were included in the study if there had been a biopsy or resection demonstrating ade-
nocarcinoma spectrum disease lesions and the pathology was recorded. Patients were excluded if non-contrast 
CTs were unavailable or if there were multiple nodules of different pathology in the same lobe creating uncer-
tainty during radiology-pathology correlation. An experienced subspecialty pulmonary pathologist (15 years of 
experience in pulmonary pathology) reviewed the pathologic specimens and confirmed the pathology diagnoses 
according to the new adenocarcinoma classification. Cases were recruited in chronological order until there were 
more than 109 cases for pre-invasive, minimally invasive and invasive lesions. Pre-invasive lesions included AAH 
and AIS according to the new classification3. Minimally invasive adenocarcinoma was defined as a small solitary 
adenocarcinoma (≤3 cm) with a predominantly lepidic pattern and ≤5 mm invasion in greatest dimension in any 
one focus. IPAs were defined as containing an invasive component >5 mm including subtypes such as lepidic, 
acinar, papillary, solid, or micropapillary predominant adenocarcinoma3.

Clinical and demographic characteristics of the patients including age, sex, smoking history and lung loca-
tion were recorded from the electronic patient data (Table 1). The study population consisted of 93 patients 
with 109 SSN pathologically proven and classified as AAH, AIS, MIA and IPA3. The nodules were categorized 
as pre-invasive (P1), minimally invasive (P2) and invasive adenocarcinomas (P3). P1 included AAH and AIS 

Figure 4.  Correlogram for main features. Colored cells correspond to significant correlation test (test for 
Pearson’s correlation based on Fisher’s Z transform).

https://doi.org/10.1038/s41598-019-42340-5
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(n = 27), P2 included MIA (n = 29) and P3 included invasive adenocarcinomas (n = 53). All nodules were surgi-
cally resected.

Chest CT Image Acquisition.  All CT studies were performed without intravenous contrast medium using 
one of the 2 scanners in a single institution (Aquilion One 64 and 320 detector row CT, Canon Medical Systems, 
Otawara, Japan). The CT studies were completed using dose modulation with the following technical parameters: 
100–135 kVp, 80–120 mAs; 1–3 mm slice reconstruction, gantry rotation time 0.35 seconds and standard field of 
view 35–40 cm. All images were reconstructed using a standard kernel with a slice thickness of 1–3 mm (Table 1).

The last CT prior to the date of surgery or biopsy was selected for analysis. CT studies were done in supine 
position and during full inspiration. The median interval period between the CT study and the date of surgery 
was 73 days (IQR: 45 days). The median time interval between the biopsy and the resection for all nodules was 49 
days (IQR: 73 days). All CT images were anonymized and transferred as DICOM images for analysis on a Vitrea 
workstation (Vital Images, Minnetonka USA).

CT morphologic analysis.  The CT morphologic analysis of the SSN was done in 2 steps: segmentation of 
the nodules followed by calculation and extraction of the features.

GGO Segmentation.  Two chest radiologists with 12 and 16 years of experience respectively, independently eval-
uated each nodule while blinded to the pathology. The SSNs were segmented using an automated GGN probe of 
commercial software, Vitrea v7.3. The single-click lung nodule automated segmentation method was applied, 
and a ROI was automatically drawn after clicking in the centre of the nodule. Manual correction of the contour 
of the nodules was performed whenever necessary by the 2 independent readers so that the region of interest was 
delineated around the contour of each nodule as demonstrated by the increased density on each sequential CT 
slice that the nodule was visible. Vessels were excluded from the region of interest wherever possible (Figs 5, 6).

Extraction of imaging features.  Analyzed features for each nodule included geometric and CT attenuation 
parameters. The geometric parameters were automatically generated after nodule segmentation including: (1) 
volume expressed in log scale, (2) minimum diameter, (3) maximum diameter, (4) mean diameter and (5) lesion 
irregularity index expressed as the maximum to minimum diameter ratio (Table 2). Each nodule density histo-
gram was automatically created via Vitrea software and exported as.csv file. Further processing was performed 
using custom tools developed in R statistical programming environment31. For each nodule, CT attenuation 
histogram parametric and nonparametric features were computed. Parametric features included mean, stand-
ard deviation, skewness and kurtosis and non-parametric features included quantile-based values for higher 
lesion CT attenuation; Q.875 (at 87.5 percentile), Q.75 (at 75% percentile), Q.50 median (at 50% percentile) and 
IQR mean (Inter-Quartile Range) (Table 2). Additionally, consolidation ratio expressed as max consolidation 
(mm)/max tumor diameter (mm) was computed32. These features were preselected for their putative predictive 
values based on the existing literature on SSN classification. Besides this conventional approach, an alternative 
data-driven functional analysis of the CT attenuation histograms was performed to extract relevant features 
directly from the curves without a priori knowledge25,33–36. Two functional principal components (FPC) explain-
ing most of the variation in our sample of CT attenuation histograms (Table 2) were added to our list of predictors 
for subsequent model building.

Statistical analysis.  For the purpose of this study we grouped pre-invasive (P1, AAH/AIS) and minimally 
invasive (P2, MIA) together as T1 (n = 56) given their similar survival rates and PIA (P3) as T2 (n = 53)16. Variable 
selection was performed on the nodule features from the segmentation using the univariate variable importance 
based on ROC-AUC performance (Table 3). Highly correlated variable groups were visualized using a correlo-
gram with Pearson correlation and highly correlated variables with lower performances were discarded (Fig. 4).

A functional data analysis was performed on the CT attenuation curves to visualize their main modes of 
variation in the nodule population and to extract data-driven CT attenuation features for tumor classifica-
tion. Original CT histograms were converted in smooth curves defined between −1000 HU and 500 HU using 
Ramsey’s method for frequency distributions33. Two FPC explaining 86.9% percent of the variation between CT 
attenuation curves were selected following Petersen & Müller’s FPC method for frequency distributions using the 
R-library “fdadensity”37. The two resulting FPC (FPC1 and FPC2) are non-correlated new variables related to the 
variation of the CT attenuation curves presented in the result section.

In a multivariate analysis, the linearity assumptions and the presence of interaction for the main predictors in 
logistic regression models were tested using non-linear regression plots, ANOVA and Wald tests38. Performances 
of the baseline features in binary nodule classification (T1/T2), were assessed using the following models: mul-
tiple (linear) logistic regression and non-linear classifiers including support vector machines (SVM) with radial 
kernel and polynomial kernel. SVM fast tuning was performed using repeated (100 times) 10-fold cross valida-
tion on the training sample using the R-library ‘Caret’ with multicore parallelization39. The predictive perfor-
mance of the classification models was assessed using a repeated 10-fold cross-validation (100 repeats). The area 
under the ROC curve (AUC) was used as diagnostic performance criteria. Accuracy, sensitivity and specificity 
were also computed. Besides the evaluation of predictive accuracy, calibration of the classification models was 
assessed to verify the validity of the predicted probabilities using the bootstrapped calibration curves for logistic 
models with Harrell’s method38.

The 2 groups of datasets that were generated by each reader separately were assessed for inter-reader variabil-
ity using Cohen’s Kappa coefficient and intra-class coefficient (ICC) on the predicted tumor classes and probabil-
ities. A two-sided p-value less than 0.05 was chosen to indicate a statistically significant difference.
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Figure 5.  Subsolid nodule with 10 mm solid component and surrounding ground-glass attenuation in a 60-year 
old non-smoking woman found to have minimally invasive adenocarcinoma at resection.

Figure 6.  Segmentation analysis of the subsolid nodule demonstrated in Fig. 5, shows the volume and 
histogram that spans a wide range of attenuation values.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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