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Abstract

Background: Experimental and clinical evidence has pinpointed a critical role for matrix metalloproteinase-2 (MMP-2) in
ischemic ventricular remodeling and systolic heart failure. Prior studies have demonstrated that transgenic expression of the
full-length, 68 kDa, secreted form of MMP-2 induces severe systolic failure. These mice also had unexpected and severe
mitochondrial structural abnormalities and dysfunction. We hypothesized that an additional intracellular isoform of MMP-2,
which affects mitochondrial function is induced under conditions of systolic failure-associated oxidative stress.

Methodology and Principal Findings: Western blots of cardiac mitochondria from the full length MMP-2 transgenics,
ageing mice and a model of accelerated atherogenesis revealed a smaller 65 kDa MMP-2 isoform. Cultured cardiomyoblasts
subjected to transient oxidative stress generated the 65 kDa MMP-2 isoform. The 65 kDa MMP-2 isoform was also induced
by hypoxic culture of cardiomyoblasts. Genomic database analysis of the MMP-2 gene mapped transcriptional start sites
and RNA transcripts induced by hypoxia or epigenetic modifiers within the first intron of the MMP-2 gene. Translation of
these transcripts yields a 65 kDa N-terminal truncated isoform beginning at M77, thereby deleting the signal sequence and
inhibitory prodomain. Cellular trafficking studies demonstrated that the 65 kDa MMP-2 isoform is not secreted and is
present in cytosolic and mitochondrial fractions, while the full length 68 kDa isoform was found only in the extracellular
space. Expression of the 65 kDa MMP-2 isoform induced mitochondrial-nuclear stress signaling with activation of the pro-
inflammatory NF-kB, NFAT and IRF transcriptional pathways. By microarray, the 65 kDa MMP-2 induces an innate immunity
transcriptome, including viral stress response genes, innate immunity transcription factor IRF7, chemokines and pro-
apoptosis genes.

Conclusion: A novel N-terminal truncated intracellular isoform of MMP-2 is induced by oxidative stress. This isoform initiates
a primary innate immune response that may contribute to progressive cardiac dysfunction in the setting of ischemia and
systolic failure.
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Introduction

Matrix metalloproteinases play a central role in many forms of

cardiovascular disease, including valvular disease, ischemia/

reperfusion injury, compensatory hypertrophy, post-infarction

remodeling and systolic heart failure (Reviewed in [1,2]). The

human matrix metalloproteinase (MMP) gene family is comprised

of multiple members with a remarkable diversity of structure,

function and regulation. The current nomenclature of this gene

family is based on the preferred extracellular matrix molecules

cleaved by each enzyme. The gene family has been divided into

subgroups consisting of interstitial collagenases (MMP-1,-8,-13),

the stromelysins (MMP-3, -10, -11), the matrilysins (MMP-7,-26),

the membrane-type MMPs (MT-MMP1-6) and the gelatinases

(MMP-2, -9). The proteins share several distinguishing features,

included a conserved modular structure, secretion in an inactive

zymogen form and dependence on zinc for catalytic activity.

From this diverse group it has become increasingly evident that

a specific metalloproteinase, MMP-2, is of central pathophysio-

logic and therapeutic importance in cardiovascular disease [1,2].
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The primary mRNA transcript for MMP-2 encodes a protein with

an apparent molecular mass of 68 kDA consisting of a short N-

terminal signal sequence for ER/Golgi/secretory vesicle process-

ing, a propeptide domain which maintains enzymatic latency, and

a highly conserved zinc-binding catalytic domain in conjuction

with hemopexin and fibronectin domains important for binding to

extracellular matrix substrates. Enzymatic latency is maintained by

the ‘‘cysteine switch’’ mechanism, in which a cysteine residue in

the prodomain sequence PRCGVN is folded over the zinc-

containing catalytic site. Classical proteolytic activation in the

extracellular space is a complex process resulting from the

interaction of the latent MMP-2 with MT1-MMP/TIMP2

complexes on the cellular surface, resulting in cleavage of the

prodomain and acquisition of enzymatic activity [3,4].

Until recently, nearly all studies had focused on the extracellular

actions of MMP-2 in the genesis of cardiac dysfunction. This

appeared reasonable in view of the above described structure of the

molecule, with the typical features of a secreted protein. Coker, et al.

[5] provided the first evidence for the existence of intracellular

MMP-2. Isolated left ventricular cardiomyocyte preparations were

cultured for short periods and evaluated for MMP-2 secretion.

Surprisingly, immunofluorescence staining of the isolated cardio-

myocytes revealed prominent MMP-2 staining within the myocyte

in a pattern consistent with both sarcomeric and sarcolemmal

localization. Subsequently, the Schulz laboratory published a

pivotal paper showing physical association of latent, full-length

68 kDa MMP-2 with the cardiac sarcomere [6]. A direct interaction

with sarcomeric troponin I was demonstrated and the authors

provided evidence for MMP-2-mediated troponin I degradation

following acute ischemia/reperfusion (I/R) injury. As reported,

[7,8,9], activation of latent full length 68 kDa MMP-2 in the setting

of I/R injury is mediated by the nonproteolytic action of reactive

oxygen and nitrogen species to open the cysteine switch.

We have reported on the phenotype of cardiac-specific

transgenic mice expressing a constitutively active, full-length

(68 kDa) isoform [10]. Our initial hypothesis was that cardiac

expression of active MMP-2 would primarily affect the structure

and composition of the cardiac extracellular matrix. While there

was a significant increase in cardiac extracellular matrix in these

mice, the most remarkable phenotypic findings related to

contractile abnormalities and severe systolic dysfunction. In

addition, ultrastructural studies demonstrated cardiomyocyte

myofilament lysis and mitochondrial structural abnormalities.

Furthermore, these mice did not respond to ischemic precondi-

tioning in isolated heart preparations and exhibited unanticipated

abnormalities in mitochondrial morphology, mitochondrial respi-

ration, lipid peroxidation and recovery of contractile function

following ex vivo ischemia/reperfusion injury [11]. These findings

suggested that specific mitochondrial abnormalities were induced

by MMP-2 expression. Given these observations, we hypothesized

that a second intracellular MMP-2 isoform may exist which affects

cardiomyocyte structure and function, in part through interactions

with mitochondria. In this report we provide a detailed

characterization of a novel intracellular, N-terminal truncated

65 kDa isoform of MMP-2 generated by oxidant stress which

activates a pro-inflammatory, pro-apoptotic innate immune

response.

Results

Detection of a Mitochondrial-Associated 65 kDa MMP-2
Isoform in Three Murine Models of Cardiac Injury

We recently reported that hearts from mice expressing a

constitutively active full-length 68 kDa MMP-2 transgene exhib-

ited a number of abnormalities, including systolic dysfunction and

fibrosis, coupled with mitochondrial structural and functional

defects [10,11]. Interestingly, as these mice aged and developed

systolic dysfunction there was a large increase in endogenous (i.e.

non-transgene) MMP-2 expression [10]. Western blots of isolated

cardiac mitochondria detected a 65 kDa MMP-2 protein not

derived from the epitope-tagged MMP-2 transgene and not

present in age-matched litter mate controls (Figure 1, I., A). These

observations generated the hypothesis that a previously undetected

intracellular MMP-2 isoform induced within the context of the

failing ventricle could contribute to the observed mitochondrial

defects.

To exclude the possibility that artifacts arising from aberrant

MMP-2 transgene expression or transgene transcript processing

were responsible for the observed 65 kDa MMP-2 protein, we

performed Western blots of cardiac mitochondria-enriched

preparations from ageing mice. We also examined cardiac

mitochondrial preparations from a murine model of cardiovascu-

lar disease within a non-MMP-2 transgenic context. The

mitochondrial isolation procedures used generate highly enriched

preparations of mitochondria with minimal cytoplasmic or

endoplasmic reticulum contamination (Figure S1). As an impor-

tant technical note, (see Methods), the 65 kDa MMP-2 isoform

was present in very limited amounts (,1–5 ng/200 mg mitochon-

drial lysate). We used an affinity capture technique to exploit the

selective binding of the fibronectin-like domains of the MMP-2

protein to immobilized gelatin [10]. Due to the large MMP-2

binding capacity of immobilized gelatin, this technique quantita-

tively captures all ambient MMP-2 protein present in cellular

fractions. Using this approach it is not possible to use conventional

Western blot protein loading controls.

Figure 1, panel I., B, shows a representative Western blot for

MMP-2 of mitochondria-enriched preparations isolated from 4

and 12 month old wild type CD-1 mice. No MMP-2 signal is

present in the 4 month mitochondria preparations, while a clear

signal is present in the mitochondria preparations from 12 month

old mice. The apparent molecular mass of the MMP-2 band in the

mitochondria preparations is 65 kDa and clearly migrates faster

than purified recombinant MMP-2, which has an apparent

molecular mass of 68 kDa. We also examined mitochondria-

enriched preparations from hypomorphic ApoER61h/h/SR-BI

KO mice. These mice express very low levels of ApoE, and

coupled with the knockout of the SR-B1 scavenger receptor, are a

reproducible model of accelerated coronary atherogenesis and

myocardial infarction when placed on a high fat diet for thirty days

[12]. While a 65 kDa MMP-2 isoform was not detected in the

mitochondria-enriched fractions from mice maintained on a

normal diet, (Figure 1, Panel I., C), it was readily detected, along

with a less abundant 62 kDa isoform, in the mitochondria-

enriched fractions of mice maintained for 30 days on the

atherogenic diet. We did not detect MMP-2 bands of apparent

molecular mass of 68 kDa (i.e. full length MMP-2) in these

mitochondrial preparations. (Figure S2 shows a representative

mitochondrial fraction from these mice showing a 65 kDa MMP-2

band run in parallel with the recombinant 68 kDa full length

MMP-2 control.)

Transient Oxidative Stress Induces the 65 kDa MMP-2
Isoform in Vitro

Both normal ageing and myocardial infarction are associated

with increased oxidative stress [13,14]. This suggested to us that

the truncated 65 kDa isoform of MMP-2 was possibly generated as

a consequence of reactive oxygen species production. Therefore,

we established an in vitro cellular model using cardiomyoblast

Intracellular MMP-2 and Innate Immunity
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H9C2 cells to determine the potential effects of transient oxidative

stress on formation of the 65 kDa MMP-2 isoform. We established

a two-step method to induce graded degrees of mitochondrial

stress generated by transient inhibition of oxidative phosphoryla-

tion (OxPhosI) [15]. Lower levels of OxPhosI were induced by

incubating cells in DMEM lacking D-glucose and sodium pyruvate

for 15 minutes, thereby depriving the cells of substrates required

for mitochondrial respiration. Higher levels of OxPhosI were

induced by including the mitochondrial Complex III inhibitor

antimycin A (2 mM) and 2-deoxyglucose (5 mM) in the medium

for 15 minutes. Thereafter, the cells were washed and cultured in

complete medium for 24 to 72 hours. Western blots for MMP-2

were performed on mitochondria-enriched fractions.

As shown in Figure 1, panel II., incubation in mitochondrial

respiration substrate-free medium for 15 minutes followed by

return to complete medium was sufficient to induce synthesis of

the 65 kDa MMP-2 isoform, which was readily detected at

24 hours and unchanged by 72 hours. Addition of the Complex

III inhibitor antimycin A, in combination with 2-deoxyglucose,

increased the levels of the mitochondria-associated 65 kDa MMP-

2 isoform. Thus, a transient period (15 min) of graded inhibition of

mitochondrial respiration, with subsequent ROS generation, leads

to graded increases in synthesis of a 65 kDa MMP-2 isoform

associated with mitochondria.

Mechanism of 65 kDa MMP-2 Isoform Generation by
Hypoxia

Protein sequence diversity arising from an individual gene is

most frequently accomplished by means of alternative transcript

splicing [16]. As detailed in the Discussion section, there is no

genomic database evidence for alternative MMP-2 transcript

splicing as a mechanism for the generation of a 65 kDa isoform.

Tsuchihara, et al. [17] and Yamashita, et al. [18] have reported

on the massive genome-wide physical mapping of transcriptional

start sites, including 330 million tags generated by sequencing the

59-ends of capped cDNA’s from 31 cell types and 100 million tags

from cells cultured under normoxic and hypoxic conditions

(DataBase of Transcription Start Sites, DBTSS). Examination of

the DBTSS identified a cluster of mapped transcriptional start sites

(TSS) located in the 39 end of the first intron of the MMP-2 gene,

including TSS induced by culture under hypoxic conditions

(Figure 2, panel I.)

As depicted in Figure 2, panel I., transcription from the first

intron skips the first MMP-2 exon which encodes the M1 amino

acid of the full length 68 kDa MMP-2 protein. Transcription

initiating within the 39-end of the first MMP-2 intron generates a

mRNA transcript in which the first methionine is located at M77.

Cobalt (NCBI) multiple sequence alignment of the human MMP-2

coding sequence and 21 MMP-2 homologues (ranging from Pan

troglodytes to Xenopus laevis) indicated the absolute conservation of

three in-frame AUG’s encoding methionines at M1, M77, and M96

within the first 100 residues of the MMP-2 protein. Comparison of

the RNA sequences flanking each AUG to the Kozak consensus

sequence gccRccAUGG indicated that M77 and M96 conform to

acceptable sequences for ribosomal initiation of protein synthesis

and are conserved in all sequenced homologues of MMP-2

(Figure 2, panel II. aligns the human and murine MMP-2 Kozak

consensus sequences).

Sequence analysis of all deposited MMP-2 transcripts in the

NCBI database identified several mRNA transcripts encoding the

65 kDa MMP-2 isoform, which directly, and independently,

confirms the existence of the 65 kDa MMP-2 isoform as a discrete

transcriptional product. Sequence BAE87867 from a cDNA

library made from macaque brain and testes encodes the

Figure 1. Detection of a truncated MMP-2 isoform in mito-
chondrial-enriched fractions from murine hearts and cardio-
myoblast H9C2 cells. I. A. Western blot analysis for MMP-2 expression
in mitochondrial-enriched fractions from left ventricles of four and
twelve month old wild type CD-1 mice (n = 4 for each group). MMP-2
bands with apparent molecular masses of 65 kDa are detected in the
mitochondrial fractions from the twelve month old mice, but not in the
fractions from four month old mice. (rMMP-2: recombinant full-length
68 kDa MMP-2 protein). I. B. Western blot analysis of mitochondrial-
enriched fractions from left ventricles of hypomorphic SR-BI KO/
ApoER61h/h mice fed a normal diet or a high fat atherogenic diet for 30
days (n = 3–4). MMP-2 bands of 65 kDa and 62 kDa are detected in the
mitochondrial fractions of mice fed an atherogenic diet. (Figure S2
shows a mitochondrial fraction run in parallel with recombinant 68 kDa
MMP-2). II. In vitro model of transient inhibition of oxidative
phosphorylation (OxPhosI). Partial OxPhosI was induced by incubation
for 15 minutes in mitochondrial substrate glucose/pyruvate-free DMEM
as detailed in Methods, followed by restoration in complete medium.
More complete OxPhosI was induced by inclusion of antimycin A (2 mM)
and 2-deoxyglucose (10 mM) in substrate-free medium. Westerns blots
of mitochondrial-enriched fractions were performed at 24, 48 and
72 hours following OxPhosI. The 65 kDa MMP-2 isoform was detected
in the mitochondria-enriched fractions from the H9C2 cells subjected to
partial inhibition of OxPhosI and this was increased in the fractions from
cells subjected to more complete OxPhosI with antimycin A and 2-
deoxyglucose. (rMMP2: recombinant full-length 68 kDa MMP-2).
doi:10.1371/journal.pone.0034177.g001

Intracellular MMP-2 and Innate Immunity
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65 kDa MMP-2 isoform. Sequence BAG 63035 from a cDNA

library of human mesenchymal stem cells treated with trichostatin

and 5-azacytidine also encodes the 65 kDa isoform, consistent

with epigenetic activation of a latent MMP-2 alternative promoter.

Based on the length of the 59UTR’s of these transcripts it is

possible to precisely localize the transcriptional start sites of these

two transcripts to the 39 region of the first intron of the MMP-2

gene (Figure 2, panel I.), confirming the observations obtained

with the DBTSS analysis detailed above.

We directly confirmed the activity of the hypoxia-induced TSS

in the first MMP-2 intron reported in the DBTSS. Cardiomyo-

blast H9C2 cells were cultured overnight in either 95% or 1% O2,

followed by gelatin affinity capture of mitochondrial lysates and

Western blot analysis for MMP-2. As depicted in Figure 2, panel

III., culture under hypoxic conditions generated the 65 kDa

MMP-2 isoform, as predicted.

Initiation of MMP-2 translation at M77 generates an N-terminal

truncated (NTT) isoform with a predicted molecular mass of

65 kDa; initiation of translation from M96 generates an N-terminal

truncated isoform with a predicted molecular mass of 62.5 kDa.

These conform to the relative molecular masses of the mitochon-

dria-associated MMP-2 depicted in Figure 1. The N-terminal

truncated MMP-2 isoform lacks the signal sequence directing

extracellular secretion. Analysis of the crystal structure of MMP-2

indicates that loss of the first 76 amino acids eliminates two of the

three alpha helices that constitute the prodomain which maintains

the latency of pro-MMP-2 (Figure 3, I., ref. 4). Specifically, a

disulfide bridge between Cys60 and Cys65 is absent, as are

prodomain-stabilizing internal hydrogen bonds [4,19]. The M77res-

idue is immediately downstream of the Asn66-Leu67 MT1-MMP

cleavage site which generates active MMP-2 by destabilizing

prodomain structure (Figure 3, I) [20]. Thus, the N-terminal

truncated MMP-2 protein is intracellular and has intrinsic

proteolytic activity due to disruption of the prodomain structure.

We confirmed the proteolytic activity of recombinant N-terminal

truncated MMP-2 by gelatin zymography (data not shown).

In Vitro Analysis of 65 kDa MMP-2 Isoform Cellular
Trafficking

To directly test the hypothesis that a truncated transcript

lacking the initiator methionine would encode a 65 kDa MMP-2

protein, we used a pcDNA3.1 plasmid expressing a MMP-2 cDNA

construct starting at base pair +81 relative to the ATG encoding

M1 of the full length MMP-2 protein. The native Kozak consensus

sequence flanking amino acid M77 (aagAagA+229TGc) was not

modified. Transient transfections of cardiomyoblast H9C2 cells

with plasmids encoding either the full length 68 kDa MMP-2 or

the truncated 65 kDa MMP-2 were performed. Cytosolic and

mitochondria-enriched fractions were prepared and analyzed by

Western blot for MMP-2 and for markers of cyotosol (LDH),

endoplasmic reticulum (KDEL) and mitochondria (Complex IV).

Representative results are shown in Figure 4, panel I. Minimally

Figure 2. Database-mapped alternate transcriptional start sites in first intron of MMP-2 gene-activation by hypoxia. I. Schematic
diagram of the MMP-2 gene. The full length 68 kDa protein is encoded by a transcript generated by the canonical transcriptional start site (TSS)
located in the 59 flanking region of the MMP-2 gene. M1 is located within the first exon. Mapped alternate TSS’s are located in the 39 end of the first
intron and are induced by hypoxia or epigenetic stress (arrows). Transcripts generated from these TSS encode a 65 kDa MMP-2 protein beginning at
M77 located within the second exon. Boxes below intron I denote chromatin structures characteristic of a poised promoter and histone marks
characteristic of promoter (H3K4me3) and enhancer (H3K4me1) elements from the ENCODE project. Solid boxes above the gene sequence denote
mapped DNAse hypersensitivity (DHS) sites. II. The N-terminus of the MMP-2 gene contains three in-frame Kozak consensus sequence capable of
translational initiation. The canonical Kozak consensus sequence is displayed with the accompanying consensus sequences flanking the human and
murine sequences encoding M1, M77, and M96. III. Experimental confirmation of hypoxia-mediated activation of the alternate TSS in the first intron of
the MMP-2 gene. Cardiomyoblast H9C2 cells were maintained in 95% or 1% O2 for 14 hours, followed by Western blot analysis of mitochondria-
enriched fractions. The 65 kDa MMP-2 isoform is detected in fractions isolated from H9C2 cells subjected to hypoxia.
doi:10.1371/journal.pone.0034177.g002

Intracellular MMP-2 and Innate Immunity
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detectable amounts of full length 68 kDa MMP-2 protein were

present within the cyosolic fractions of H9C2 cells transfected with

an expression plasmid encoding the full-length 68 kDa MMP-2

protein and none was detected within the mitochondria-enriched

fraction. Cells transfected with the NTT-MMP-2 cDNA expres-

sion plasmid contained a 65 kDa MMP-2 protein present in both

the cytosolic and mitochondria-enriched fractions in a ratio of

approximately 3-4:1.

To exclude the possibility that the intracellular 65 kDa MMP-2

isoform is derived from aberrant processing, proteolytic or

otherwise, of the full-length 68 kDa MMP-2, we transfected

H9C2 cells with the cDNA’s encoding either the full-length

68 kDa MMP-2 or the 65 kDa NTT-MMP-2 isoforms and

examined the extracellular (conditioned medium) and mitochon-

dria-enriched compartments (Figure 4, panel II). Full-length

68 kDa MMP-2 protein was readily detected in the extracellular

(secretory) compartment, but not within the mitochondria-

enriched fractions. In contrast, the 65 kDa NTT-MMP-2 protein

was not present in the extracellular compartment but was present

within the mitochondria-enriched fractions.

These experiments demonstrate that the native, non-modified

Kozak consensus sequence flanking M77 is sufficient to serve as a

translation initiation site and that the sequence +81 to +229 bp is a

functional 59 UTR. In some experiments we detected small

amounts of a MMP-2 band with an apparent molecular mass of

62 kDa, suggesting that the Kozak consensus sequence flanking

M96 is only weakly utilized in the presence of an intact M77 Kozak

sequence. Equally important, these experiments demonstrate the

selective cellular trafficking of the full-length and N-terminal

truncated MMP-2 isoforms and indicate that there is no significant

overlap in the cellular fates of these proteins. These studies also

indicate that approximately one-third of the 65 kDa MMP-2

protein derived from transfection of the NTT-MMP2 cDNA into

cardiomyoblast H9C2 cells is associated with mitochondria.

Analyses using graded digitonin extraction of isolated mitochon-

dria are consistent with localization of the 65 kDa MMP-2 protein

within the mitochondrial intermembranous space (data not

shown).

The 65 kDa N-Terminal Truncated MMP-2 Protein
Activates Acute Stress Signaling Cascades

Zaidi, et al. [21], first described ‘‘retrograde’’ calcium signaling,

i.e. mitochondrial-to-nuclear signaling, initiated in response to

mitochondrial DNA damage. Subsequent studies demonstrated

that uncoupling of oxidative phosphorylation led to the release of

mitochondrial calcium with activation of calcineurin/NFAT

(Nuclear Factor of Activated T cells) and NF-kB signaling

cascades [22,23]. We postulated that MMP-2-mediated proteolysis

of discrete mitochondrial proteins could trigger activation of the

transcription factors, NFAT, NF-kB or interferon response factors

(IRF1/7), and thereby induce nuclear gene transcription.

We transiently transfected H9C2 cells with luciferase reporter

constructs containing concatenated response elements for inter-

feron response factors (IRFs), NF-kB or NFAT. The cells were

cotransfected with a control expression plasmid or with increasing

concentrations of the N-terminal truncated MMP-2 cDNA. As

shown in Figure 5, panel I., transfection of the N-terminal

truncated MMP-2 cDNA resulted in significant increases in

luciferase reporter activity for all three transcription factors in a

concentration-dependent manner. The relative increases were

ranked NFAT.NFkB..IRF. These experiments indicate that

the 65 kDa N-terminal truncated MMP-2 can activate stress

signaling, particularly by NFAT and NFkB.

To determine if the activation of mitochondrial-to-nuclear

signaling by N-terminal truncated MMP-2 were dependent on

MMP-2 proteolytic activity, H9C2 cells were subjected to

OxPhosI in the presence or absence of 50 mM of the selective

MMP-2 cyclic peptide inhibitor, CTTHWGFTLCGG [24]. As

anticipated, OxPhosI stimulated both NFAT and NFkB signaling.

Inclusion of the MMP-2 inhibitor blocked OxPhosI-induced

NFAT and NF-kB transcriptional activation, indicating that N-

terminal MMP-2 proteolytic activity is required for this process

(Figure 5, panel II.).

The 65 kDa N-Terminal Truncated MMP-2 Mediates
Proteolysis of Inhibitory IkB-a

NF-kB is complexed with members of the IkB family to

maintain NF-kB in an inactive state [25,26]. Cytokine activation

triggers phosphorylation of IkB proteins, resulting in ubiquitina-

tion and proteasomal degradation. This allows free NF-kB to

translocate to the nucleus and initiate transcription. Cogswell, et

al. [27] localized NF-kB and IkB-a within mitochondria in

association with the inner mitochondrial membrane. NF-kB was

Figure 3. N-terminal domain MMP-2 homologies and structural
analysis. I. Amino acid homology of human and mouse MMP-2 N-
terminal domains. There is a high degree of amino acid homology
within this domain, including conservation of methionine residues at 77
and 96 relative to the first translational start site. The methionine at
position 5 in the human sequence is not conserved. M1, M77, and M96

are conserved in all genomic MMP-2 sequences extending to Xenopus
leavis. Arrows denote MMP-14 (MT1-MMP) activating cleavage site at
N66/L67 and MMP-2 autocatalytic cleavage site at K79/F78. II. Predicted
structure of N-terminal truncated MMP-2: Overall and detailed view of
human MMP-2 structure (NCBI PDB code 1CK7). Yellow: N-terminal
region deleted in the NTT-MMP-2 protein; magenta: remnant of
propeptide present in the NTT-MMP-2 protein; green: catalytic domain;
blue: hinge region; pink: hemopexin domain; red spheres: zinc atoms.
Deletion of the MMP-2 prodomain exposes the catalytically active zinc
and generates the active enzyme.
doi:10.1371/journal.pone.0034177.g003

Intracellular MMP-2 and Innate Immunity
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subsequently shown to directly interact with the adenine

nucleotide translocator (ANT) and regulate mitochondrial gene

expression and apoptosis [28]. Non-proteasomal degradation of

IkB-a, with activation of NF-kB, has been described as well

[29,30]. To determine if the N-terminal truncated MMP-2

degrades IkB-a, we isolated mitochondria from H9C2 cells

subjected to OxPhosI or following transfection with the N-

terminal truncated MMP-2 cDNA, followed by Western blot

analysis for IkB-a. The results of these studies are shown in

Figure 5, panel III. Both OxPhosI and transfection with the N-

terminal truncated MMP-2 cDNA resulted in appearance of IkB-

a degradation products. In separate experiments we confirmed

that recombinant MMP-2 degrades IkB-a present in isolated

mitochondria (data not shown).

The 65 kDa N-Terminal Truncated MMP-2 Induces an
Innate Immune Response Transcriptome

As detailed above, the 65 kDa N-terminal truncated MMP-2

activates NFAT, NF-kB and IRF transcriptional factors, key

components of the innate immunity transcriptional network. To

determine the specific gene ontologies regulated by these

transcription factors we performed a genome-wide transcriptional

analysis of H9C2 cells transfected with the 65 kDa N-terminal

truncated MMP-2 cDNA and compared these to the gene

ontologies regulated by transfection with the full length 68 kDa

MMP-2 cDNA. Controls were transfected with an empty

pcDNA3.1 expression plasmid as detailed in Methods. The results

of these studies are summarized in Tables S1, S2, and S3. Using

stringent conditions of analysis 36 annotated transcripts (from a

target total of 10 K) were up-regulated by 65 kDa N-terminal

truncated MMP-2, while 28 annotated transcripts were down-

regulated. Twenty-seven of the N-terminal truncated MMP-2 up-

regulated transcripts could be assigned to ontologies with 2 $

components, while only twelve N-terminal truncated MMP-2

down-regulated transcripts could be assigned to ontologies with 2

$ components. Only six annotated transcripts were significantly

up-regulated by transfection of H9C2 cells with the full-length

MMP-2 construct. There were no clear ontologies in this group

and no overlap with the transcripts up-regulated by N-terminal

truncated MMP-2.

Five discrete ontologies could be assigned to the N-terminal

truncated MMP-2 up-regulated transcripts (Table S1). The largest

ontology consisted of viral stress induced genes and included ten

components, including OAS1A, OAS1B, OASL1, IFIT1-3, and

PRKRA. These genes are central components of a primary innate

immune response and initiate cellular defense mechanisms, and

also promote apoptosis [31].

The N-terminal truncated MMP-2 cDNA also induced the

innate immune response transcription factors IRF7, STAT2,

IFP35 and the transcriptional cofactor PARP14. Four critical

innate immunity chemokines/cytokines were induced by N-

terminal truncated MMP-2, including CXCL1 and CXCL10,

CLL2 (MCP-1) and IL6.

Transcripts down-regulated by N-terminal truncated MMP-2

included five genes associated with resistance to apoptosis or

oxidative stress, including BCLX (Bcl-xL) and HSPD1 (heart

shock protein-1, chaperonin, Table S2). Heat shock protein-1 is a

mitochondrial chaperone that induces resistance to stress-induced

apoptosis, while Bcl-xL is one of the most important anti-apoptotic

factors induced in response to cellular stress [32,33]. Also noted is

the down-regulation of five transcripts, encoding components of

the contractile apparatus, including troponin I and myosin light

chain-2.

Thus, NTT-MMP-2 induces transcription of a discrete gene

ontology set comprised of primary innate immune response genes,

pro-inflammatory cytokines and chemokines. Pro-apoptotic ontol-

ogies were upregulated, while anti-apoptotic ontologies were down

regulated. The results of the microarray data for transcripts up-

Figure 4. Selective cellular trafficking of 68 kDa and 65 kDa MMP-2 isoforms in model H9C2 cells. I. Relative distributions of 68 (FL) and
65 kDa MMP-2 (NTT) isoforms in cytosolic and mitochondrial fractions following transient transfection with the respective expression plasmids. The
quality of the cytosolic and mitochondrial fractions was assessed by Western blots for KDEL (endoplasmic reticulum), CIV (Complex IV, mitochondrial
matrix) and LDH (lactate dehydrogenase, cytosol). A faint band of the 68 kDa MMP-2 isoform is present in the cytosolic fraction of cells transfected
with 68 kDa MMP2 cDNA, but not in the mitochondria-enriched fraction. The 65 kDa MMP-2 isoform is present in both the cytosolic and
mitochondrial fractions of cells transfected with the NTT-MMP-2 cDNA with a ratio of approximately 3:1. The mitochondrial fractions did include
faintly detectable KDEL bands, consistent with the presence of the mitochondria-associated endoplasmic reticulum in the preparation. II. H9C2 cells
were transiently transfected with an empty pcDNA3.1 expression plasmid (-) or expression plasmids encoding either the 68 kDa (Full Length) or N-
Terminal Truncated 65 kDa MMP-2. Western blot of the extracellular (conditioned medium) fraction revealed the 68 kDa FL, secreted isoform of
MMP-2, while the NTT isoform was not detected. The FL 68 kDa isoform was not detected in mitochondria-enriched fractions, while the 65 kDa NTT
isoform was present in this fraction.
doi:10.1371/journal.pone.0034177.g004
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regulated by transfection with the N-terminal truncated MMP2

cDNA were validated by PCR analysis (Figure S3).

In stark contrast to the results obtained with the N-terminal

truncated MMP-2, transfection of H9C2 cells with the full-length

MMP-2 cDNA resulted in the significant induction of only six

annotated transcripts and no discrete ontologies with two or more

components (Table S3A). Six annotated transcripts were signifi-

cantly down-regulated by transfection with the full-length MMP-2

cDNA and no discrete ontologies were identified (Table S3B). The

physiologic significance of the full-length MMP-2 regulated

transcripts is unclear.

In Silico Analysis of Promoters of N-Terminal Truncated
MMP-2 Regulated Transcripts

We examined 2 kb of the proximal promoters of the 20 genes

most up-regulated by transfection of H9C2 cells with the N-

terminal truncated MMP-2 cDNA for the frequency of cognate

binding sites for the transcription factors IRF1/7, NFAT and NF-

kB and compared these data with the frequency of identical

binding sites in the proximal promoters of 20 randomly selected,

non-responsive genes. The results of this analysis are summarized

in Figure 6, I. The proximal promoters of N-terminal truncated

MMP-2 up-regulated genes contained 3.4562.54 IRF binding

sites as compared to 1.9561.47 binding sites in the nonresponsive

promoters (P,0.03, n = 20 for each group). There were

6.2563.13 NFAT binding sites in the responsive promoters, while

4.1663.0 NFAT sites were present in the nonresponsive

promoters (P,0.04, n = 20 for each group). NF-kB binding sites

were significantly more frequent in the responsive promoters as

compared to the nonresponsive promoters (5.1565.1 vs.

1.2161.32, P,0.002, n = 20 for each group). The total number

of transcription factor binding sites (sum of IRF 1/7, NFAT and

NF-kB binding sites) was 7.5563.7 in the nonresponsive

promoters and 14.866.9 in the responsive promoters (P,0.01).

NFAT and NF-kB binding sites were generally present on the

same set of responsive promoters, while the IRF 1/7 binding sites

in the responsive promoters were primarily present on a second,

discrete set of genes.

NTT-MMP Promotes IRF7 Nuclear Localization
The transcriptional activity of IRF7 is affected both by absolute

protein levels but more importantly by phosphorylation and

nuclear translocation [34]. Nuclear extracts from control H9C2

cells transfected with the empty pcDNA3.1 expression vector and

nuclear extracts from cells transfected with the N-terminal

truncated MMP-2 cDNA were prepared. We probed these

extracts for IRF7 by Western blot analysis. Nuclear extracts from

the macrophage cell line RAW 264.7 stimulated with endotoxin

were used as positive controls. As shown in Figure 6, II., IRF7

protein was below the levels of detection in the control H9C2

nuclear extracts, but was readily detected in the nuclear extracts of

H9C2 cells transfected with the N-terminal truncated MMP-2

cDNA. There was no change in the nuclear concentrations of the

control IRF1 protein.

Discussion

The 65 kDa MMP-2 Isoform is a Discrete Functional Entity
The principal finding of this study is the identification of a novel

intracellular N-terminal truncated 65 kDa isoform of MMP-2 that

activates an innate immune response. The 65 kDa MMP-2

isoform is structurally and functionally distinct from the sarco-

meric latent full length 68 kDa MMP-2 isoform described by

Schulz and colleagues [7–9]. The N-terminal truncated MMP-2

isoform is not present under basal conditions and is generated

under conditions of oxidative stress both in vitro and in vivo. The

cellular trafficking of the N-terminal truncated isoform is clearly

distinct from the full length MMP-2. The N-terminal truncated

isoform is present in both the cytosol and mitochondrial fractions.

The MMP-2 protein does not include a canonical mitochondrial

targeting sequence and the precise mechanism whereby a

proportion of the 65 kDa isoform enters mitochondria remains

Figure 5. The N-terminal truncated MMP-2 and activation of
stress-signaling cascades. I. H9C2 cells were transfected with
increasing concentrations of the NTT-MMP-2 expression plasmid, along
with luciferase reporter plasmids for NFAT, NF-kB and IRF (interferon
response factor). NTT-MMP-2 enhances inflammatory transcriptional
signaling in a concentration-dependent manner (*P,0.05). II. Transient
OxPhosI induces activation of NFAT and NF-kB signaling: dependence
on MMP-2 activity. H9C2 cells were transfected with NFAT and NF-kB
luciferase reporter plasmids and subjected to transient OxPhosI as
detailed in Materials and Methods, in the presence or absence of the
cyclic peptide MMP-2 inhibitor, CTTHWGFTLCGG (25 mM). III. NTT-MMP-
2 degrades mitochondria-associated IkB-a. H9C2 cells were subjected
to either transient OxPhosI or transfected with the NTT-MMP-2
expression plasmid. Thereafter the mitochondria were isolated,
solubilized and Western blots performed for NF-kB inhibitory IkB-a.
Degradation peptide fragments denoted with arrow.
doi:10.1371/journal.pone.0034177.g005
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to be explored. As recently reviewed, there are additional

mechanisms, including chaperone proteins, that regulate mito-

chondrial protein import that do not require a N-terminal

targeting sequence [35]. Heat shock protein 90 is an important

intracellular chaperone associated with transport of client proteins

to the mitochondria and has been recently shown to physically

interact with MMP-2 [36,37]. This awaits direct experimental

verification, but suggests that MMP-2 may enter mitochondria as

a client protein of specific cellular chaperones.

Mechanisms of 65 kDa MMP-2 Isoform Generation
We considered several potential mechanisms for the generation

of the 65 kDa isoform. Firstly, physiologic processing of the

68 kDa proenzyme takes place in the extracellular space and has

been fully characterized [4,19,20]. Pro-MMP-2 (68 kDa) is

secreted and forms a complex on the cell surface with MT1-

MMP and TIMP2. MT1-MMP cleaves the Asn66-Leu67 bond in

the MMP-2 prodomain, followed by autocatalytic cleavage to

generate the 62 kDa active extracellular MMP-2 protein. The

transfection studies detailed in Figure 4 clearly demonstrate the

separate cellular targeting pathways of full-length 68 kDa MMP-2

vs. the 65 kDa isoforms. Finally, it was not possible to generate a

65 kDa MMP-2 protein by transfection with the cDNA encoding

the 68 kDa isoform.

In terms of alternative splicing, the European Bioinformatics

Institute Alternative Splicing and Transcript Diversity (ASTD)

database (www.ebi.ac.uk/astd) assembled a total of seven human

MMP-2 transcripts (including the full-length reference transcript).

One transcript has a slightly shorter 59UTR and would be

predicted to encode the full-length MMP-2 protein. Five

transcripts are extensively truncated at the C-terminus, presum-

ably due to premature termination of transcription, and all encode

putative proteins of less than 50 kDa in size.

A third mechanism for the generation of protein diversity results

from the activation of alternative promoters. This is frequently

coupled with the use of alternative translational start sites, thereby

generating N-terminal truncated protein variants. A recent

bioinformatic analysis of the human transcriptome indicates that

N-terminal in-frame methionines associated with functional Kozak

consensus sequences are not rare and employment of this

mechanism is responsible for the N-terminal modification of

several key regulatory proteins, including p53, c-myc, osteopontin

and renin, among others [38–41].

Role of the First Intron in the Expression of the 65 kDa
MMP-2 Isoform

We have previously reported that the first intron of the MMP-2

gene plays a critical role as a regulator of MMP-2 transcription

following in vivo ischemic injury [42]. We demonstrated that the

first intron has an enhancer function and was required for

increased MMP-2 transcription mediated by NFATc2 binding to

the 39 region of the intron. Analysis of physically mapped MMP-2

transcriptional start sites and deposited MMP-2 transcripts

encoding the 65 kDa MMP-2 isoform identify the first intron of

the MMP-2 gene as an alternative promoter, as well. Based on the

ENCODE project epigenetic mark and chromatin structure

analyses, [43], the first intron of the MMP-2 gene includes

DNAse hypersensitivity sites, chromatin structures consistent with

a poised promoter and the histone marks, H3K4Me3 and

H3K4Me1, characteristic of active promoters and enhancers,

respectively (Figure 2, panel I.).

A recent genome-wide study of the effects of hypoxia on

activation of alternative promoters identified a hypoxia-inducible

alternative MMP-2 promoter localized to the 39 region of the first

intron [17]. We directly confirmed this observation within the

context of hypoxic H9C2 cells. Hypoxia, or accompanying redox

stress, can promote genomic DNA demethylation, thereby

permitting activation of intragenic (intronic) alternative promoters

[44,45]. Yamashita, et al. [18] provided a quantitative assessment

of the relative transcript abundance of the full length and 65 kDa

MMP-2 isoforms in a variety of adult and fetal tissues and cell

lines. The transcript encoding the 65 kDa MMP-2 isoform was not

detected in templates derived from adult tissues, but was detected

in fetal heart templates and templates from cultured fetal lung

fibroblasts cultured under hypoxic conditions. In the current study,

we employed the H9C2 cardiomyoblast cell line which is derived

from embryonic rat heart [46]. Taken together, these observations

suggest that expression of the 65 kDa MMP-2 isoform may be a

component of the fetal gene re-expression program characteristic

of cardiac hypertrophy and failure [47].

Figure 6. In silico analysis of promoters of genes upregulated
by NTT-MMP-2. The frequency of cognate DNA binding motifs for IRF,
NFAT and NF-kB present in 2 kb of the 20 transcripts most up-regulated
by NTT-MMP-2 and of 20 randomly chosen transcripts not modified by
NTT-MMP-2 were determined by database analysis. Horizontal bars
depict the mean of each data set. II. Western blot for IRF7 and IRF1 of
nuclear extracts prepared from H9C2 cardiomyoblast cells transfected
with a control pcDNA3.1 plasmid (CON), cells transfected with the
pcDNA3.1 NTT-MMP2 expression plasmid (NTT-MMP2) and an IRF7 and
IRF1 positive control nuclear extract prepared from LPS-stimulated
macrophage RAW264.7 cells. Transfection of NTT-MMP2 cDNA induces
IRF7, but not IRF1, nuclear localization.
doi:10.1371/journal.pone.0034177.g006
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Activation of Nf-kB and NFAT Signaling and Expression of
a Pro-Inflammatory, Pro-Apoptotic Transcriptome

We determined that transient generation of redox stress was

associated with activation of NF-kB and NFAT signaling cascades,

an event dependent upon MMP-2 enzymatic activity. Direct

demonstration that the 65 kDa isoform activates inflammatory

signaling cascades was provided by transfection studies using the

65 kDa MMP-2 cDNA. One potential explanation for the

activation of these signaling cascades is provided by the studies

demonstrating that mitochondrial IkB-a is degraded by MMP-2,

thereby freeing NF-kB for transport to the nucleus. Given the

finding that the 65 kDa MMP-2 isoform was also present in the

cytoplasm, it is conceivable that NF-kB activation takes place in

this compartment as well.

Microarray analysis revealed that the 65 kDa MMP-2 isoform

induced a remarkably focused set of innate immunity gene

ontologies, the promoters of which were highly enriched in

binding sites for NFAT and NF-kB. These gene ontologies have

been primarily reported in association with viral infection and

generally promote apoptosis and recruitment of inflammatory

cells. The 29–59-oligoadenylate synthetases (OAS1A/B, OASL1)

synthesize 29,59-linked phosphodiester bonds to polymerize ATP

into adenosine oligomers and thereby activate latent RNAse L

[31,48]. Active RNAse L degrades both viral and cellular RNA’s,

including intact cellular 28S rRNA, resulting in inhibition of viral

and cellular protein synthesis, with consequent growth inhibition

and cellular apoptosis.

The interferon-induced proteins with tetratricopeptide repeats

1–3 (IFIT1–3) interfere with ribosomal assembly and block

interaction with eIF3 subunits, thereby inhibiting translation of

viral and cellular proteins [49]. IFIT proteins also inhibit protein

translation via interaction with eukaryotic elongation factor-1A

[49]. Protein kinase, interferon-inducible double stranded RNA-

dependent (PRKRA) is a serine/threonine kinase that phosphor-

ylates the eIF2a translation initiation factor in response to stress

signals, thereby arresting viral and cellular protein synthesis [50].

PRKRA activation subsequently leads to cellular growth inhibition

and apoptosis. Adenosine deaminase RNA-specific (ADAR) is an

RNA-specific editing enzyme that converts adenosine to inosine

with RNA and is involved in editing of specific pre-mRNA

transcripts affecting a number of cellular processes, including the

balance between pro- and anti-apoptotic factors [51,52].

The 65 kDa MMP-2 upregulated IRF7, which is the master

regulator of type-I interferon-dependent immune responses and

exerts transcriptional control over a large set of pro-inflammatory

genes [34]. STAT2 is critically involved in the signal transduction

of several pro-inflammatory signaling cascades.

Upregulated chemokines and cytokines included chemokine (C-

X-C motif) ligand-1 (CXCL1) and chemokine (C-X-C motif)

ligand-10 (CXCL10), which are chemotactic for neutrophils and

monocyte/T cells, respectively. Chemokine (C motif) ligand-2

(MCP-2, monocyte chemotactic protein-1) is one of the most

studied factors leading to cardiovascular disease and plays a major

role in myocarditis, ischemia/reperfusion injury and cardiomyo-

cyte death [53–55]. IL6 plays a significant role in the induction of

cardiomyocyte hypertrophy and inflammatory signaling and is a

predictor of outcome in clinical heart failure [56,57].

The in vitro experiments support a model whereby N-terminal

truncated MMP-2 generated by redox stress or hypoxia triggers

pro-inflammatory signaling cascades by NF-kB, NFAT and

to a lesser extent IRF. This stress signaling lead to the trans-

activation of a discrete set of genes linked to the innate immune

response.

Relationship of N-Terminal Truncated MMP-2 to Other
MMP-2 Isoforms

MMP-2 plays multifaceted roles in cardiac disease and the

current study adds yet another, and unexpected, level of

complexity. The experimental and clinical evidence supporting a

major role for MMP-2 in cardiac disease, is well documented

[1,10,11,58–63]. In these investigations the emphasis has been on

the presumed extracellular actions of MMP-2. The present study,

in conjunction with the reports of Schulz and colleagues, [6–9],

strongly support the concept that the intracellular activities of

discrete MMP-2 isoforms may also be of great pathophysiologic

importance.

Figure 7 is a schematic which places the various MMP-2

isoforms expressed by cardiomyocytes into their respective cellular

contexts. As depicted in the upper panel, ‘‘classical’’ extracellular

MMP-2 is translated from a full length mRNA transcript and is

exported to the extracellular space via secretory vesicles in the

latent, or inactive, form. MMP-2 activation occurs through the

proteolytic removal of the inhibitory prodomain, most commonly

performed by MT1-MMP complexed with TIMP2. Active MMP-

2 thereafter participates in the turnover of extracellular matrix

components and basal laminae.

As shown in the middle panel, intracellular full length latent

MMP-2 is translated from a full length mRNA transcript. As

recently reported [64], a fraction of the newly synthesized protein

escapes from the secretory apparatus and localizes to cardiomy-

ocyte sarcomeres, where it remains in a latent, or inactive, form.

Ischemia/reperfusion injury generates reactive oxygen species and

peroxynitrite which open the cysteine switch. This generates active

MMP-2 in which the inhibitory prodomain no longer covers the

zinc-containing catalytic site. Active MMP-2 then degrades

sarcomeric proteins, resulting in impaired contractility.

The lower panel summarizes the distinctive features of the

65 kDa N-terminal truncated MMP-2 isoform which clearly

distinguish it from the MMP-2 forms discussed in the upper and

middle panels. The 65 kDa MMP-2 isoform is not found under

basal conditions. Redox stress induced by hypoxia or ischemia/

reperfusion injury activates a latent promoter in the first intron of

the MMP-2 gene, generating a truncated mRNA transcript

encoding the N-terminal truncated 65 kDa MMP-2 isoform. This

isoform lacks the secretory signal sequence and inhibitory

prodomain and is present in the cytosol and mitochondrial as an

active enzyme. The 65 kDa MMP-2 isoform degrades inhibitory

IkB-a, thereby activating NFkB/NFAT mitochondrial-nuclear

stress signaling with induction of an innate immunity transcrip-

tome.

Summary and future directions
In this report we have defined a previously unrecognized

intracellular isoform of MMP-2 that is induced by hypoxia and

oxidative stress by activation of a latent promoter in the first intron

of the gene. We have recently extended the primarily in vitro

observations detailed in this study by completing an analysis of

transgenic mice with cardiac-specific expression of the N-terminal

truncated 65 kDa MMP-2 isoform (Lovett, et al., unpublished

observations). As predicted by the current studies, the mice

develop significant cardiomyocyte and ventricular hypertrophy

associated with progressive systolic failure, cardiomyocyte apop-

tosis and inflammatory cell infiltration. Further, the mice exhibit

increased injury following ischemia/reperfusion injury. Recent

degradomic analyses indicate that MMP-2, in contrast to MMP-9,

has an extensive (.200) number of discrete substrates, many of

which are intracellular [65,66]. Ongoing proteomic studies of the

N-terminal truncated MMP-2 transgenic mice may be expected to
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Figure 7. Schematic detailing the distinctive processing, localization and activation mechanisms of three known isoforms of MMP-
2. Upper Panel: The mRNA transcript for the full length 68 kDa MMP-2 protein is translated and the latent, enzymatically inactive MMP-2 protein is
processed through the Golgi and secretory vesicles to the extracellular space. Latent MMP-2 protein is activated by proteolytic cleavage, primarily by
MT1-MMP. This removes the inhibitory prodomain, yielding active 62 kDa MMP-2 protein in the extracellular space where the enzyme degrades
extracellular matrix components. Middle Panel: The mRNA for the full length 68 kDa protein is translated and a fraction of the synthesized latent
MMP-2 protein escapes the secretory pathway and localizes specifically to sarcomeric proteins, including troponin I. Transient redox stress, such as is
induced by ischemia reperfusion injury, generates reactive oxygen species and peroxynitrites which open the cysteine switch. This produces active
full length MMP-2 which degrades several components of the sarcomeric apparatus, leading to impaired contractility. Lower Panel: Hypoxia and
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provide new mechanistic insights into the pathogenesis of cardiac

disease, particularly in the setting of acute or chronic oxidant

stress.

Materials and Methods

Cardiac MMP-2 Western Blot Analyses
All murine studies were approved (protocol 09-053-03) by the

Animal Care Committee of the San Francisco VAMC Animal

Care and Use Committee (IACUC). This institution is accredited

by the American Association for the Accreditation of Laboratory

Animal Care (Assurance Number A3476-01). Freshly isolated

hearts were homogenized in 0.25 M sucrose, 10 mM HEPES, pH,

7.5, 5 mM EDTA and protease inhibitor cocktail at 4uC, followed

by centrifugation at 700 g for 5 minutes. The supernate was

centrifuged for an additional 5 minutes at 700 g and the supernate

centrifuged at 9000 g for 5 minutes to pellet mitochondria. The

mitochondrial pellets were washed twice in isolation buffer,

followed by a final wash in isolation buffer containing 75 mM

KCl. Mitochondrial-enriched pellets were homogenized in lysis

buffer (50 mM Tris/HCl, pH 7.4, 150 mM NaCl, 0.5% Triton

X-100, 0.5% CHAPS, 0.5% sodium deoxycholate, plus protease

inhibitor cocktail), sonicated briefly on ice and the supernate

collected after centrifugation at 10,000 g for 20 minutes. The

cleared mitochondrial extracts (150 mg protein/sample) were

incubated overnight at 4uC with 100 ml gelatin-Sepharose beads

(Sigma-Aldrich) in 500 ml 50 mM Tris/HCl, pH 7.4 to affinity

absorb MMP-2. Thereafter, the beads were washed three times in

binding buffer, followed by elution in an equal volume of 2 X

SDS-PAGE sample buffer. Protein electrophoresis was performed

with the NuPAGE Bis-Tris gel system with MOPS buffer

(Invitrogen). Western blots used murine monoclonal anti-MMP-

2 (Ab-3, Calbiochem) followed by HRP-conjugated goat anti-

mouse IgG (Zymed) and detection with ECL-Plus reagent.

Cell Culture, Induction of Graded Inhibition of Oxidative
Phosphorylation (OxPhosI), Hypoxia Treatment

Cardiomyoblast H9C2 cells were obtained from ATCC (Rock-

ville, MD) and maintained in DMEM supplemented with 4 mM

L-glutamine, 1.6 gm/L sodium bicarbonate, 4.6/L glucose and

10% fetal bovine serum (complete DMEM). Inhibition of oxidative

phosphorylation FIX was modified from the protocol of Cybulsky,

et al. [15]. For partial inhibition of oxidative phosphorylation,

H9C2 cells were incubated with DMEM lacking pyruvate and D-

glucose for 15 minutes at 37uC. Thereafter, the cells were washed,

given complete medium and cultured for an additional 24 to

72 hours, prior to cell fractionation. For more complete inhibition

of oxidative phosphorylation, washed H9C2 cells were incubated

in pyruvate/D-glucose-free DMEM containing 2 mM antimycin

A, an inhibitor of mitochondrial Complex III, and 2-deoxyglucose

(5 mM) for 15 minutes. Thereafter, the cells were washed and

incubated in complete DMEM for 24 to 72 hours, followed by

fractionation and Western blot analysis as detailed above.

To determine the effects of hypoxia, subconfluent cultures of

H9C2 cells were cultured in complete DMEM for 14 hours at 1%

O2 in a hypoxia chamber prior to harvesting, fractionation and

Western blot analysis as detailed below.

H9C2 Mitochondria/Cystosolic Fractionation
All steps were performed at 4uC in the presence of protease

inhibitor cocktail (Pierce). Cultures were washed in calcium/

magnesium-free PBS (CMF-PBS), harvested and pelleted in

CMF-PBS by centrifugation at 500 g for 10 minutes. The

cellular pellets were suspended in 10 mM NaCl, 1.5 mM MgCl2,

10 mM Tris/HCl, pH 7.5, for 10 minutes at 4uC, followed by

Dounce homogenization in 210 mM mannitol, 70 mM sucrose,

5 mM Tris/HCl, pH 7.5, 1 mM EDTA (XMS solution) plus

protease inhibitors (Pierce). The homogenate was centrifuged at

8006g for 20 minutes and the resulting supernate recentrifuged

twice using the same conditions. This supernate was then

centrifuged at 19,0006g for 15 minutes to pellet mitochondria,

which were subsequently washed twice with XMS under the

same conditions. The supernate from the first centrifugation step

was centrifuged at 100,0006g for 15 minutes to obtain a

cytosolic fraction. The respective fractions were analyzed by

Western blot for the cytosolic marker LDH, (goat-anti-LDH,

Abcam, 1 mg/ml), the endoplasmic reticulum marker, KDEL

(rabbit anti-KDEL, Abcam, 2 mg/ml) and the mitochondrial

marker, Complex IV (monoclonal murine IgG anti-Complex IV,

subunit 1, Molecular Probes, 0.5 mg/ml), followed by secondary

rabbit anti-goat-IgG-HRP (Zymed), goat anti-rabbit IgG-HRP

(Zymed) or goat anti-mouse IgG-HRP (Zymed), respectively.

Western blots for MMP-2 were performed using the gelatin

affinity capture technique detailed above.

Construction of N-Terminal Truncated (NTT) MMP-2
cDNA

The cDNA encoding the full-length human MMP-2 protein was

obtained from Origene. Using the full length MMP2 cDNA as a

template, NTT-MMP2 cDNA was generated with sense primer,

59-TGCAAGCTT-TTGTGCTGAAAGATACC39, and anti-

sense primer, 59-CCTCTAGACTCGAGCGGC-39. This gener-

ated an NTT-MMP-2 cDNA construct (cloned into pcDNA3.1,

Invitrogen) starting at base pair +81 relative to the ATG encoding

M1 of the full length MMP-2 protein. The native Kozak consensus

sequence flanking amino acid M77 (aagAagA+229TGc) was not

modified.

An NTT-MMP-2 protein positive control was generated by

transient transfection of the NTT-MMP-2 cDNA expression

plasmid into CHO cells (ATCC) using standard methodology. At

48 hours following transfection, CHO cells were lysed into 50 mM

Tris/HCl, pH 7.4, 150 mM NaCl, 0.5% Triton X-100, 0.5%

CHAPS, 0.5% sodium deoxycholate, plus protease inhibitor. The

NTT-MMP-2 protein was recovered by affinity chromatography

on gelatin-coupled Sepharose (Sigma) as reported [67]. A full-

length MMP-2 positive control protein was generated in a similar

fashion from CHO cell conditioned medium.

Selective Trafficking of Full Length-MMP-2 and NTT-
MMP-2

Subconfluent H9C2 cultures were transiently transfected for

48 hours in serum-free DMEM with control, empty pcDNA3.1

plasmid, the plasmid encoding full-length MMP-2 cDNA or the

NTT-MMP-2 plasmid (200 ng/ 60 mm dish). Mitochondrial

fractions were prepared as detailed above. The conditioned

redox stress activate a latent promoter in the first intron of the MMP-2 gene, thereby generating a N-terminal truncated mRNA transcript. The
translated 65 kDa MMP-2 isoform lacks the secretory sequence and inhibitory prodomain and is enzymatically active in the cyotosol and
mitochondria. The 65 kDa MMP-2 isoform activates NF-kB and NFAT mitochondrial-nuclear stress signaling, which induction of a pro-inflammatory,
pro-apoptotic transcriptome.
doi:10.1371/journal.pone.0034177.g007
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medium from the three study groups was collected and centrifuged

at 10,000 g for 20 minutes. The mitochondrial and extracellular

fractions were analyzed by Western blot for MMP-2 as detailed

above.

Luciferase Reporter Assays
Luciferase reporter plasmids containing concatenated enhancer

binding sites for the interferon response factor (IRF, pHTS-IRF),

Nuclear Factor of Activated T-cells (NFAT, pHTS-NFAT) and

NK-kB (pHTS-NF-kB) were obtained from Biomyx. Subconfluent

H9C2 cells were washed and transiently transfected with Fugene 6

using 200 ng/well of the pHTS-NFAT and pHTS-NF-kB

reporter plasmids. At 24 hours the H9C2 cells were subjected to

the full OxPhosI protocol, including antimycin and 2-deoxyglu-

cose. Controls were maintained in complete medium. Luciferase

activity (Luciferase Assay System, Promega) was measured after a

further 48 hours of culture in complete medium. The requirement

for MMP-2 activity for induction of luciferase activity was assessed

by inclusion of the cyclic peptide MMP-2 inhibitor,

CTTHWGFTLCGG (Calbiochem) at 25 mmol/l. Values are

given as means6SD of triplicate to quadruplicate measurements

of relative luciferase activity wherein controls are assigned a

luciferase activity of 100%.

To determine if N-terminal truncated MMP-2 induced

inflammatory signaling cascades in the absence of OxPhosI,

H9C2 cells were transiently transfected with 200 ng of the

respective pHTS reporter plasmids in the presence of increasing

concentrations of the NTT-MMP-2 pcDNA expression plasmid

(0-200 ng plasmid DNA/dish). Luciferase activity was determined

at 48 hours and expressed as detailed above.

Proteolytic Degradation of IkB-a
H9C2 cells were subjected to complete OxPhosI as detailed

above. After 48 hours mitochondria were isolated and Western

blots for Ik-Ba performed (rabbit anti-IkB-a IgG, Santa Cruz

Biotechnologies, 1:1000, followed by goat-anti-rabbit IgG/ECL-

Plus). H9C2 cells were also transiently transfected with NTT-

MMP-2 cDNA (200 ng/dish) followed by mitochondrial isolation

at 48 hours and Western blot analysis for Ik-Ba.

Microarray Analysis
Subconfluent cultures of H9C2 cells were transfected for

48 hours with a control, empty pcDNA3.1 plasmid, NTT-

MMP-2 pcDNA, or full-length MMP-2 pcDNA (200 ng plasmid

DNA/60 mm dish). RNA from six plates for each plasmid was

extracted with TRIzol, quality analyzed (Agilent 2100 Bioanaly-

zer) and pooled, followed by repeat quality analysis. Target RNA

was prepared with the MessageAmp cRNA amplification kit

(Ambion), quality assessed and hybridized with the 10 K Uniset

Rat microarray according to the manufacturer’s instructions

(Codelink Gene Expression System, GE Health Care). Microarray

data were normalized, transformed to the log2 (GenePix4000) and

analyzed with the GeneSifter software package (Geospiza). Data

analysis parameters included greater than 2-fold change in

expression level, a quality call of 1, a P value of ,0.01 and

correction for multiple comparisons using the Benjamini and

Hochberg algorithm.

PCR Validation of Microarray Results
RNA was prepared (TRIzol) from H9C2 cells 48 hours after

transfection with a control, empty pcDNA3.1 plasmid or after

transfection with NTT-MMP-2 pcDNA using the same conditions

detailed above and quality assessed with the Agilent 2100

Bioanalyzer. cDNA templates were generated by oligo-dT priming

(Transcriptor, Roche, Alameda, California). Polymerase chain

reactions were performed (Agilent 9800) and normalized to

housekeeping GAPDH transcript levels with the following primer

pairs:

GAPDH: 59-TGACATCAAGAAGGTGGTGAAGCAGGCAT-

39/59-CACCCTGTTGCTGTAGCCGTATTCATTGTCAT-3

OAS1: 59-caagcactggtaccaactgtg-39/59-CTCCAGGGCGTACT-

GTGG-39

OASL1: 59-CAGTCATTGAGCGCTTCGT-39/59-CTGCT-

GGGTCCAGGATAATG-39

IRF7: 59-CCCAAGGAGAAGAGCCTGAT-39/59-GCCTTC-

CAGATGTGTCTTGC-39

CXCL1: 59-CACACTCCAACAGAGCACCA-39/59-TGAC-

AGCGCAGCTCATTG-39

STAT2: 59-CACTTGAAGGATTGGAAGTTGA-39/59-GCG-

CCATTTGGACTCTTC-39

IFIT1: 59-CTTTGCTGAAATGCCACGTA-39/59-GGATCA-

CGAGAGCCATAAAGA-39

IFIT3: 59-GGAAGAACTGAGAAGATTAACTATGGA-39/

59-GGGAAATCGAT-GAGGTCTGA-39

IRF9: 59-AGGACCCAGTGTTCATGGAG-39/59-GGTGAGC-

AGCAGCGAGTAGT-39

In Silico Analysis of MMP-2 Regulated Promoters
Two kilobases of the proximal promoters of the twenty

transcripts most up-regulated by transfection with NTT-MMP-2

were retrieved. As controls, two kilobases of twenty randomly

selected, unregulated transcripts were also retrieved. The number

of consensus transcription factor binding sites for IRF7, NFAT

and NF-kB were determined in each promoter using the

Transcription Element Search System (www.cbil.upenn.edu/tess)

and the TRANSFAC v6.0 and JASPAR databases. Data are

expressed as the number of transcription factor binding sites/

promoter and compared using an unpaired t-test, with P,0.05

considered significant.

Western Blot Analysis of Nuclear IRF7 and IRF1
To determine if NNT-MMP2 induces IRF7 transcriptional

activation through induction of IRF7 nuclear localization, as

compared to control IFR1, H9C2 cells were transiently transfected

for 48 hours with 200 ng/dish control pcDNA3.1 plasmid or

NTT-MMP-2 pcDNA. Thereafter, H9C2 nuclei were harvested

using standard methodology, followed by Western blot for IRF7

using rabbit polyclonal anti-IRF7 antibody (Abcam Ab11980) or

rabbit polyclonal anti-IRF1 antibody (Abcam Ab26109). Nuclear

extracts from the murine macrophage cell line RAW264.7

(ATCC) were used as a positive control.

Supporting Information

Figure S1 Transmission electron microscopy of mito-
chondrial-enriched fraction from murine hearts dem-
onstrating a high degree of mitochondrial enrichment
with minimal membrane contamination. Membrane

fragments are mitochondrial-associated endoplasmic reticulum.

(X 15,000).

(TIF)

Figure S2 Western blot of mitochondrial fractions from
control (CON) and fat-fed (ATHERO) ApoER61h/h/SF-B1
KO mice. (rMMP2: recombinant 68 kDa MMP-2 protein).

(TIF)
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Figure S3 PCR-validation of microarray findings. Data

displayed represent means of triplicate determinations and

expressed as fold-change as compared to controls.

(TIF)

Table S1 Microarray transcripts and ontologies up-
regulated by NTT-MMP-2.
(DOCX)

Table S2 Microarray transcripts and ontologies down-
regulated by NTT-MMP-2.
(DOCX)

Table S3 Microarray transcripts and ontologies up-
regulated (A) and down-regulated (B) by full length
MMP-2.

(DOCX)
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