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Management, Integration, and Mining of Tumor Data 

by 

Clinton L. Cario 

Abstract 

 
  

Genomics is expected to soon overtake astronomy, particle physics, and even YouTube as 

the biggest creator of digital information (1). Analysis of this information has already led to 

important and ground breaking discoveries relevant to our health, but ongoing work will require 

creative solutions to the multitude of challenges arising from this volume of data. Practically 

speaking, one such challenge comes from determining what data should be collected and how it 

is to be managed. As cohort sizes in population based studies grow into the hundreds of 

thousands, practical issues about collection, storage, and filtering have begun to come more into 

focus. Additionally, frameworks that seamlessly integrate disparate datasets and also allow for 

flexible analysis will be required. Finally, as technical challenges and limitations arise, new 

analytical approaches and designs will have to be considered.  

 This dissertation work was comprised of three projects relating to these questions as 

approached from the perspective of a bioinformatician. These projects describe the development 

of new software and methods for sample management, data integration and analysis, and design 

strategies to improve signal in noisy data.  

 The first chapter of this dissertation consists of background material relating to the 

projects, including a description about the state of prostate cancer genomics, the development of 
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biomarkers for its detection, and an exploration of a promising new biomarker, cell-free DNA 

(cfDNA). It also includes a discussion about some of the overarching questions of my PhD.  

 The second chapter describes a web based sample management system, called Samasy. 

Born out of necessity, this tool addresses a very practical issue of sample subsetting that is often 

required of resequencing studies. Samasy was used to facilitate the selection of 16,600 samples 

from a much larger cohort of 54,000 while preserving ethnicity and age balance among cases and 

controls. This tool integrates with liquid handling systems and provides a visually intuitive 

interface for plate/sample management and batch sample transfer execution.  

 The third chapter details Orchid, a framework designed to make machine learning of 

cancer variant data easy and extendible. It does so by integrating a variety of biological 

annotations (or features) and simple somatic tumor data available from large repositories like the 

The Cancer Genome Atlas (TCGA) or the International Cancer Genome Consortium (ICGC). 

This tool supports an efficient data store, MemSQL, that allows for very fast retrieval and 

filtering, and extends the popular python pandas and scikit-learn packages to facilitate machine 

learning of this data.  

 Finally, the fourth chapter outlines the creation of a custom targeted sequencing panel for 

prostate cancer that was designed for screening tumor variants in cfDNA. Building upon the 

power of Orchid, we detail how machine learning on whole genome prostate tumor datasets can 

be used to rank mutations by likelihood of being found in a patient with few mutations, or in 

other words, involved in early state disease. This ranking was used to build a targeted sequencing 

panel for detection of tumor-derived cfDNA variants. This panel was then validated and applied 



 viii 

to a cohort of nine UCSF prostate cancer patients with multiple tumor foci that were collected at 

time of Radical Prostatectomy (RP).  

 Taken together, the information described in this dissertation provides tools and 

methodologies for the analysis of germline and somatic variants in prostate and other cancers. It 

also attempts to further technological development of cfDNA as biomarker for the detection or 

monitoring of diseases like cancer.  
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Chapter 1  

Background 

The State of Prostate Tumor Genetics 

Approximately 1 in 7 men are diagnosed with prostate cancer in their lifetime, making it 

the second leading cause of cancer death in the United States. In 2015, there will be an estimated 

220,800 new diagnoses and 27,540 deaths resulting from the disease (2). Although widespread 

screening with prostate-specific antigen (PSA), digital rectal examination (DRE), and early 

treatment of localized cancer have improved both detection and 5-year survival rates for early-

stage disease, overall survival has not changed significantly over the past 10 years (3). In 

addition to the human costs associated with the disease, economic burden has been estimated at 

close to 10 billion dollars per year in the US alone (4).  

Prostate cancer is highly heterogeneous, with pronounced variability in both pathology 

and outcome (5). More than 90% of men are diagnosed with localized or regional disease, for 

which 5-year survival is close to 100%. Among the remaining men diagnosed with aggressive 

metastatic disease, prognosis is much poorer (28.2% 5-year survival) (3). Pathological 

heterogeneity further complicates diagnosis; multiple tumor foci with different histological and 

genomic features are often found within a single gland, and many same-stage histologically 

identical tumors result in vastly different course of disease (6). Because of this, there is great 

incentive to better understand the molecular mechanisms underlying prostate cancer’s 

development and progression, and especially the genetic components that contribute to 

heterogeneity (7,8). 



 2 

Moving towards these goals, much work has been done to identify significant somatic 

mutations that arise during tumorigenesis (9). Biochemical and sequence analyses have revealed 

some 22 common variants in prostate cancer, including fusions of TMPRSS with ETS family 

members (10), a potential “gatekeeper gene” NKX3.1 (11), hypermethylation of GSTP1 (12), 

and copy number (CNVs) or single nucleotide variants (SNVs) in PTEN, P53, AR, CDKN1B, 

SPOP, and IL-6 (5,13,14). The process of somatic variant discovery is driven primarily by large-

scale tumor/normal sequencing efforts which have identified thousands of genetic variants in 

tumors of all types (15). These sequencing projects are now standard practice, shifting the 

challenge away from data collection to the task of separating biologically meaningful mutations 

that drive tumorigenesis (“drivers”) from those that are simply artifacts of an unstable and 

mutated tumor genome (“passengers”). To this end, several statistical and computational 

algorithms have been developed to find genes with higher than expected mutation rates (16,17), 

to analyze predicted functional effects of mutations (18-21), and to exploit interaction networks 

of protein pathways to infer relevant disrupting mutations (22,23). Despite these efforts, results 

are often inconsistent. Additionally, little has been done to address the somatic mutations falling 

outside of coding regions that still may have functional importance (e.g., enhancers or 

promoters) (15). Recently, data repositories like The Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium (ICGC) have emerged to provide valuable resources 

for researchers needing large sample sizes to generate robust signal and who wish to implement 

more sophisticated tools like machine learning (24,25). 

The Potential of cfDNA 

With the increasing knowledge of genetic alterations that occur within a tumor, and 

especially of alterations that are diagnostic, predictive, or associated with actionable therapy, 
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clinical implications are coming into sharper focus. Assessing the genetic structure of a tumor 

requires that it be sampled, and traditional biopsy has several unfortunate limitations. First, 

biopsies are invasive and sometimes difficult to obtain. Second, they represent single snapshots 

in time, making measurement of tumor dynamics difficult. Finally, biopsies are inherently 

subject to sample bias and potentially miss tumor heterogeneity (26). One fairly recent and 

potentially transformative technology has risen that could address all of these concerns: cell-free 

DNA, or cfDNA, a subcategory within “liquid biopsy”.  

Cell-free DNA was first discovered in 1948, but its clinical utility in cancer was not fully 

realized until 1989 when tumor specific alterations were found in circulation (27). Since then, 

cfDNA has been recognized for its use in a diverse set of clinical scenarios, among them prenatal 

testing (28-30), measurement of transplantation rejection (31,32), observation of cellular injury 

(eg. myocardial infarction (33)), and in detection and monitoring of tumors (34,35). 

Previous studies have analyzed cfDNA in a variety of cancer types and contexts (36-38). 

It has been used in screening (39), disease subtyping (40,41), detection of resistance 

mutations/residual disease (42-44), and real-time monitoring of treatment response (45-47). The 

bulk of research has attempted to quantify cfDNA levels in correlation with clinical measures 

(39,48,49) or to look for the presence of known variants within the cfDNA pool (38,50,51). 

Several groups have specifically explored cfDNA’s usefulness in prostate cancer. In a 

2010 review, Ellinger noted more than a dozen studies suggesting it’s diagnostic and prognostic 

potential for prostate cancer (52). Other studies have explored its virtue as a biomarker (53-55), 

its ability to measure treatment response following chemotherapy (56), and have associated 

mutations within cfDNA and differential response to treatment in metastatic castration-resistant 
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prostate cancer patients (57). Compared to other cancers, however, the role of cfDNA in prostate 

cancer is largely underexplored. 

Despite the great promise of cfDNA in oncology, there are a few crucial issues that 

ground expectations. CfDNA is found at levels consistently detected in most patients, however, a 

very small fraction of molecules typically originate from the tumor (often < 1.0%) of patients 

with cancer (34). The issue is further complicated by large variation within tumor type and 

patient (58). Another issue is identifying variants for which to look. Mutations in driver genes 

and other variants are not universally present in high proportions of patients with some cancer 

types. One solution is to ignore specific variants altogether and instead use whole genome 

sequencing to cast a wide net. Unfortunately, owing to the rarity of tumor fragments in the 

cfDNA pool, extremely deep sequencing is often needed (>>10,000X), inflating cost of whole 

genome sequencing (WGS) to intractable levels. Balancing the cost and depth-of-coverage 

extremes is a hybrid approach whereby a modest number of candidate genes is selected from a 

list of drivers for mutational profiling (a “selector” or “targeted capture library”). One such 

approach, called CAPP-Seq, has been successfully developed and employed to broadly detect 

patient-specific mutations in a non-small-cell lung carcinoma (NSCLC) cohort (59). However, 

sequencing error and a bias toward capturing only coding regions limit this approach. 

Overarching Dissertation Questions 

My dissertation work leverages methods of somatic driver mutation identification for the 

purpose of generating a prostate cancer specific targeted sequencing panel to probe cfDNA, and 

uses this information to discover tumor mutations within a cohort of UCSF patients. This 

research has potential for creating diagnostic, prognostic, and predictive tools for use in a clinical 

setting, and revolves around two core questions: 
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1. Can novel tumor-specific driver variants be identified for prostate cancer using 

machine learning models trained on public cancer data (e.g. from ICGC)? 

2. In a UCSF prostate cancer patient cohort, can a targeted sequencing panel from 

discovered driver mutations be used to successfully identify mutations in cfDNA 

isolated from blood, and how do they compare with sequence results from primary 

tumor tissue? 

Exploring the first question in a bit more in depth, algorithms that attempt to discern 

driver from passenger mutations fall into three broad categories, focused on finding A) genes 

with mutations rates above baseline, B) mutations that are predicted to impact protein function, 

or C) sets of mutations affecting similar biological pathways (15,60) . Examples of machine 

learning algorithms applied specifically to cancer, such as CHASM (a random forest 

classifier)(61), ParsSNP (Expectation Maximization/Neural Net)  (62), and the methods of Chen 

et al. and Tan et al. (Support Vector Machines; SVMs) also exist  

(24,63). In Chapter 4, I propose a SVM-based approach with genome-wide coverage, a 

richer feature set, and more training data than previous models. The goal was to use this model to 

rank and prioritize mutations for a targeted sequencing panel. The mathematical framework of a 

SVM is shown in Figure 1.1. 

 CfDNA from prostate cancer patients was also collected and prepared for sequencing 

using Unique Molecular Identifiers (UMIs) to reduce downstream sequencing noise and improve 

detection power. The panel was then applied to these samples and processed using standard 

workflows to assess performance of the capture library by looking at variant coverage across 

patients (i.e., number of detectable variants per patient).   
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Figure 1.1: A Support Vector Machine (SVM)  

Legend: A SVM finds the optimal hyperplane (defined by normal vector w and intercept b) that 
maximizes the margin between the hyperplane and classes of data points (M). Here, Whole 
Genome Sequence data from prostate cancer patients in the ICGC data repository were used for 
training. The classification features f, encoded by the vector x, included genome annotations 
gathered from various biological databases on the Internet.  
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Chapter 2 

Samasy: An Automated System for Sample Selection and Robotic Transfer. 

Introduction 

Over the past few years the number of samples included in genomic and other ‘omic projects 

has exponentially increased. Such growth allows for teasing apart the complexities of polygenic 

disease and the effects of less common measures (e.g., rare variants) (64-66). For example, large-

scale cohort studies such as the UK Biobank now include genetic and phenotype information on 

500,000 individuals (REF), and other enormous cohorts are underway or planned. As another 

example, the number of samples included in genome wide association studies (GWAS) of 

schizophrenia has increased more than 10 fold in just 5 years via consortia efforts, which has 

resulted in the discovery of more than 100 novel genetic associations (67). This trend in 

increasing numbers of samples is expected to continue into the foreseeable future, raising 

practical considerations regarding how to effectively and efficiently scale projects.   

One such consideration is that of sample management, which includes the storage, transfer, 

and tracking of samples (68). To address storage, a common, affordable, and convenient solution 

is the 96-well plate. This format also facilitates sample transfer through a grid-like layout. 

However, for large cohorts sample transfer is both laborious and error prone unless automated 

liquid handling robots like the Beckman Biomek is available and utilized (69,70). As far as 

record-keeping, many research groups depend on spreadsheets (e.g. Microsoft Excel), which 

work in principal but quickly become unwieldy at large scale and are difficult to use for tracking 

the transfer of thousands of samples across various batches. Addressing the need for information 

technology in a laboratory setting, many Laboratory Information Management Systems (LIMS) 

have been developed, and some have achieved a comprehensive scope in capability (71,72). 
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However, these systems are growing in complexity, tending to become harder to install, 

configure, and use. In response, some simple and easy-to-use, but niche, web-based software 

tools have been developed for high throughput sample processing (73,74). Standing in contrast to 

both of these system design paradigms, Samasy was developed with the goal of being both easy-

to-use and general in applicability.  

As a case-in-point, we undertook a large-scale re-genotyping project that required subsetting 

16,600 samples from a cohort of 54,000 samples in a manner that preserved ethnicity and age 

balance among prostate cancer cases and controls (Emami, et. al. in preparation). To address the 

aforementioned sample management issues, and because sample transfer was originally planned 

to be done by hand, we developed Samasy, a visual web-based sample management system for 

96 well plates with support for automated robotic transfer. By Integrating Samasy with a 

Beckman Biomek, we were able to reduce the number of technician hands-on hours 

approximately 10-fold (Eunice Wan, University of California Institute for Human Genetics 

Genomics Core Facility, personal communication) while also decreasing the likelihood of 

numerous sample transfer errors (e.g. pipetting volume, well/plate mix-up, misspecified robotic 

well assignments, operator error, etc.). To verify the validity of Samasy’s database, batch 

algorithm, and robotic transfer file generation feature, we performed a sample transfer 

demonstration using 6 ‘Source’ plates, 1 ‘Control’ plate, and 2 ‘Destination’ plates with colored 

wells, and observed successful volume transfer with no errors (Supplemental Figure 2.1).  

Results 

We designed Samasy in a user-friendly manner, making installation simple in as little as 3 

steps, import of large datasets straight-forward through a drag and drop interface, and tracking of 

samples visually intuitive. Samasy can visualize plate and sample data several different ways: 1) 
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as a searchable, sortable, and filterable table; 2) conceptually in a 96-well plate format with 

samples color coded based on user defined attributes (e.g. age, ethnicity); 3) in batch mode, 

reflecting plate and sample layout on a transfer platform; or 4) as grouped attribute histograms 

showing sample distribution per plate or batch. Additionally, sample transfer batches can be 

imported, viewed, and used to generate sample transfer files for automated systems (a Biomek 

sample transfer script is included). Samasy also provides a convenient REST API for data access, 

allowing integration for other uses, transfer systems, and customizations should the user find it 

necessary.  

Samasy is implemented on a modified LAMP (Linux/ Apache/ MySQL/ PHP) software 

stack, consisting of Ubuntu, a Nginx web server, a SQLite3 database, and the Ruby-based 

Sinatra web framework. Only Ruby and Sinatra are required; Samasy code can run on other 

operating systems, with or without Nginx, and use any storage database. It is capable of running 

on commodity hardware and requires very little memory (less than 512Mb). 

Samasy can be installed in as little as three commands in a terminal (see code repository at 

https://github.com/wittelab/samasy), and data files are easily imported using a drag-and-drop 

wizard that starts automatically when the interface is first launched. The wizard will also check 

the integrity of each data file and provide help screens describing file formats. Afterward, the 

wizard creates an administration account, which allows a privileged user to import batch 

information and destroy data within the database. The administration user can also create, 

modify, or destroy additional administration or unprivileged accounts. 

To import data into the interface, several types of headered tab-delimited flat files 

(exportable by Excel) are used. The original dataset file should consist of three required columns 
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SampleID, PlateID, and Well, and any number of user-defined sample parameters (e.g., age, 

ethnicity). SampleID and PlateID columns can be any alphanumeric text but the Well should be 

specified like ‘C7’. The second type of flat file is the data dictionary, which defines possible 

sample values and maps coded data (if exists) to corresponding real labels (e.g., 0 to ‘male’, 1 to 

‘female’). This file has three required columns, Attribute, Code, and Value, where Attribute 

specifies the corresponding column header in the data file, Code the encoded value for a sample 

(e.g., 0), and Value the actual sample label (e.g., ‘male’). Finally, the batch file(s), used to 

specify well transfer mappings, can be provided. There are five required columns for this file, 

BatchID, Source Plate, Source Well, Destination Plate, Destination Well, and one optional 

column Volume. The interface itself will produce a robot file, which is similar to a batch file but 

readable by sample automation platforms. For Biomek machines, the platform layout and 

transfer script is provided transfer script in the biomek folder. Example files are located in the 

example folder in the code repository. Samasy is capable of guessing the datatypes of attributes, 

first trying numeric types (integers or floats) before defaulting to character strings. 

Once data has been imported and a user has logged in, plate, sample, and batch information 

can be visualized. A Views drop-down menu switches between Samples (Figure 2.1), Plate 

(Figure 2.2), Batch (Figure 2.3), and Distribution (Figure 2.4) view modes. In the Plate and 

Batch views, there is an additional Color By drop-down menu that allows sample wells to be 

color coded by sample parameters. Search and Well Legend panels are shown to the left of these 

two views. In the Batch view, robot files can be downloaded and batches can be marked as 

completed, updating sample locations in the database. Robot files can be uploaded to the biomek 

machine and used to transfer samples when plates are loaded as shown in the web interface and 

as specified in the biomek transfer file (see biomek folder). Finally, in the Distribution view, 
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sample attributes across a plate or batch can be viewed as histograms, with the option of 

grouping sample by another attribute (e.g., to view the distribution of sex after grouping by 

ethnicity). Distributions can use ordinal or numeric data, and numeric data will be binned if a 

large range of values exists.  

Discussion 

While Samasy is designed with broad use in mind, it currently only supports the 96-well 

plate format and many studies store samples in denser plate formats, like the 384-well plate. 

Despite this limitation, many studies--including those undertaking DNA genotyping or 

sequencing--require volumes not amicable to these denser formats. Additionally, archival and 

retrospective samples are often stored in 96-well plates. 

In conclusion, we have developed Samasy, a simple-to-use and intuitive web-based 

application to improve and optimize sample management, visualization, and transfer encountered 

by large-scale studies utilizing 96-well plates. Starting with only sample files and (optionally) 

data dictionaries, Samasy will generate a database to visualize plates and samples across 

provided parameters. Samasy will also accept sample transfer batches, provide batch views, 

transfer information and history, and ‘robot files’ to perform automated sample transfer with 

robotic platforms. We believe this application will serve as a useful tool for future studies 

requiring large-scale sample management, especially those involving genotyping or re-

sequencing. 

  



 12 

Figure 2.1: Samasy sample table view showing sortable and searchable sample attributes.  

Legend: To quickly find sample information, a search box is provided that will fuzzy match 
values in any attribute field. Additionally, attributes can be sorted ascendingly or descendingly. 
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Figure 2.2: Plate view that shows sample locations within a 96 well plate. 

Legend: Wells can be clicked to access sample attribute data from the database, including to 
which batches they belong. Wells are color coded by an attribute of interest using the interface 
menu. 
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Figure 2.3: Samasy batch view. 

Legend: Plates within a batch are shown in a layout reflecting a robotic transform staging area, 
and plates are color coded by 'source' and 'destination' status. Wells are colored according to the 
attribute of interest, and well border indicates whether a sample transfer through this batch has 
occurred. 
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Figure 2.4: Samasy distribution view. 

Legend: Sample attribute distributions can be displayed as histograms by plate or batch. If 
desired samples can also be grouped as series for distribution comparison between series class. 
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Supplemental Figure 2.1: Sample transfer verification. 

Legend: A sample transfer demonstration was performed using 6 sample ‘Source’ plates, 1 
‘Control’ plate, and 2 sample ‘Destination’ plates with Samasy’s batch import and view features. 
Source samples consisted of water dyed with blue, black, gold, and green food coloring that were 
randomly (non-randomly for plate 4) plated on ‘Source’ plates. An additional ‘Control’ plate 
consisting of water samples dyed red was also included. A batch file was imported to map 
‘Source’ and ‘Control’ samples to ‘Destination’ plates to produce the patterns indicated in the 
figure. Using the Samasy interface, the robotic transfer file was then generated and executed by a 
Beckman Biomek liquid handler, resulting in successful sample transfer with no errors. 
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Chapter 3 

Orchid: a novel management, annotation and machine learning  
framework for analyzing cancer mutations 

 

Introduction 

Cancer is a complicated disease driven largely by genomic alterations. To better 

understand and characterize the genetic architecture underlying carcinogenesis, thousands of 

tumor genomes have been sequenced. This work has detected a large number of somatic 

mutations, gleaning meaningful biological insight such as identification of functional driver 

mutations in dozens of genes like KRAS, APC, P53, PI3K, SMAD4 (9) that are involved in 

many cancers. 

A key challenge in the analysis of tumor genomes is how to interpret mutations with 

uncertain function. This is further complicated by the fact that many mutations may have no 

relevant function, but arise simply as artifacts of an unstable and mutated tumor genome (i.e., as 

passengers). To address these issues, several statistical and computational algorithms have been 

developed that attempt to prioritize or annotate mutations by finding genes with higher than 

expected mutation rates (16,17), by analyzing predicted functional effects of mutations (19) (20), 

and by exploiting interaction networks of protein pathways to infer relevant disrupting mutations 

(22,23).  

Recently a new class of methods inspired by machine learning paradigms have emerged 

that determine ‘deleteriousness’ of mutations in both general and cancer-specific contexts. These 

consist of models trained in evolutionary conservation (75,76), protein sequence, domain and/or 

structural information(18,21), and parsimonious analysis of a broad range of tumor datasets (62).  
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Despite successful applications, there remain limitations to such statistical and machine 

learning approaches. For one, few methods annotate or score mutations that fall outside of 

coding regions despite the known regulatory importance of many intergenic bodies (e.g., 

enhancers, promoters, transcription factor binding sites, or microRNAs)(15). There are also 

issues with the collection, parsing, and integration of tumor and annotation information that is 

scattered across dozens of databases and in a variety of formats, many of which are not suited for 

high-throughput analysis. Finally, methods that can score variants at a base-level resolution tend 

to be general in what they predict (e.g., evolutionary conservation), making more refined 

predictions difficult (e.g., likelihood of being a prostate cancer driver mutation).  

To address some of these issues, we developed orchid, an open source tumor mutation 

management and machine learning analysis framework. Orchid makes the management, 

annotation, and analysis of tumor mutations more programmatically elegant and computationally 

efficient by integrating mutation data with popular databases and python-based numeric and 

machine learning frameworks. Orchid is capable of accepting a wide assortment of feature types 

and is agnostic to the desired classification task, making it easy to build a variety of models 

quickly. Furthermore, it accepts and annotates mutations from any region of the genome, 

allowing for the analysis of non-coding mutations.  

To demonstrate orchid, we applied it to the task of inferring cancer tissue-of-origin based 

upon copy number information and simple somatic mutations found in the genomes of 12 tumor 

types. This application highlights the value of orchid in generating models that can potentially be 

used in the diagnosis of metastatic tumors from which primary tumor cannot be located (called 

“cancers of unknown primary” or CUPS), which represent 2-4% of all cancers(77), or in 

identifying tissue-of-origin from mutations found within cell-free DNA (cfDNA). 
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Methods 

We created an open-source mutation management and modeling software package called 

orchid which consists of the orchid-db script for loading and annotating mutations into a 

MySQL-like database system, and orchid-ml, a python module that interfaces with the popular 

python numeric analysis library, pandas (http://pandas.pydata.org/), and with scikit-learn 

(http://scikit-learn.org/), a python framework for machine learning. Orchid has the ability to 

parse raw data in various common formats and can be used to generate annotated tumor 

mutational databases and models in as little as ten lines of code. A diagram of the orchid 

workflow is shown in (Figure 3.1). 

Orchid-db 

To build a tumor mutational database for subsequent supervised machine learning tasks, 

we first downloaded and collected raw tumor variants calls, copy number information, and 

metadata for multiple tumor types as well as variant annotation data from several biological 

databases. For tumor data, we choose to make use of the International Cancer Genome 

Consortium (ICGC) given its extensive collection of tumor data across dozens of studies and 

tissue types. For annotation data, we hand selected biological features to represent a broad range 

of functional genomic annotations, prioritizing genome-wide annotation datasets when available. 

Data was populated into a MySQL or MemSQL database (Supplemental Figure 3.5) using the 

orchid software running on either a 2013 MacPro (OSX Sierra) or a PBS Cluster (Red Hat Linux 

v6.6). A MemSQL version of this database is available for public use; please see 

https://github.com/wittelab/orchid. 

From the ICGC data portal, we selected patients from release 25 with genome wide 

simple somatic mutation and/or copy number tumor data that were publically available (non 
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PCAWG), for a total of 3,604 individuals. We then excluded outliers by removing those 

individuals whose tumors had less than 10 or more than 30,000 mutations. Finally, we excluded 

tissues with fewer than 80 tumors and randomly sampled 80 from the remaining, resulting in 960 

tumors from twelve cancer types (Bladder, Blood, Bone, Brain, Breast, Esophagus, Head and 

neck, Pancreas, Prostate, Skin, Stomach, and Uterus). In total, 3,489,978 mutations were 

populated into the database with tissue means ranging from 281 for Bladder to 15,202 for 

Esophagus (Supplemental Figure 3.1). Conceptually, we grouped this data into two levels of 

specificity for analysis: 1) the mutational level -- where real mutations found within patients of a 

single tumor type are compared to mutations that might occur by chance through careful 

simulation; and 2) the tumoral level -- where real mutations from patients (either of the same 

tumor type of different tumors) are compared to each other. Possible classification outcomes (i.e. 

labels) are ‘observed’ (or ‘real’) and ‘simulated’ for mutational level classifications, and any 

patient-level stratifier (e.g. tumor tissue-of-origin, stage, aggressiveness) for the tumoral level. 

The tissue-of-origin application presented in this paper represents classification of tumoral-level 

data.  

We collected, downloaded, and curated mutational annotation from 15 biological 

databases and annotation tools (Supplemental Table 3.1; http://wittelab.ucsf.edu/orchid). These 

features include functional annotation (SnpEff, (78)); cancer gene network presence (KEGG, 

(79)); phylogenetic conservation (phylop, (80)); location within snoRNA and microRNA regions 

(wgrna, (81)); locations within predicted enhancers, promoters, and transcription start sites 

(segmentation, (82, 83); rfecs, (84); dbsuper, (85); encode, (86)); locations within DNAse I 

hypersensitivity sites (dnase, (87)); trinucleotide contexts (88); assorted composite scores 
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(funseq2, (89); cadd, (75); dann, (76)); and various other measures (targetscans, (90); remap, 

(91); gwas, (66)).  

There are a wide variety of suitable biological annotations and file types that can serve as 

mutation features. We therefore designed our annotation software tool to be flexible in the file 

formats it accepts. Features in tabix, bed, or wig file formats can be added to the modeling 

process with no modification while other formats can be integrated with minimal effort—namely 

by converting to bed format or by providing orchid with UNIX awk commands to pre- and post-

parse feature lookup data.  

All annotation and mutational data is based on genome coordinates from human reference 

sequence version GRCh37 (hg19).  Data should be in the same coordinate system for database 

population. For convenience, GRCh38 (hg38) coordinates are also provided in our publically 

accessible database.  

Orchid-ml 

Orchid-ml exists as a standalone python module that can be imported into any python 

script. To load, transform, model, and visualize mutation data, we designed the MutationMatrix 

object, an extension of the pandas DataFrame object. Transformations of the data include 

loading, encoding, imputing, feature scaling, and feature selection. Modeling consists of 

selecting a prediction label and running orchid’s built-in support vector machine (SVM) or 

random forest (RF) wrapper functions or any of the scikit-learn classifiers. Finally, visualization 

produces ROC curves, confusion matrices, and other performance metric tables. 

We implemented several functions to load and encode data as a MutationMatrix. The 

first, load_mutations(), will take a MySQL connection string for a database populated by orchid-



 22 

db and load all (or a desired subset of) mutations and their basic associated metadata 

(chromosome, position, donor_id, sequence, etc.). The second, load_features(), will import all 

(or a desired subset of) annotation features. Finally, encode() will transform categorical features 

into numeric values so they can be properly modeled. This is accomplished through the 

specification of encoding strategies given as a dictionary to the function (strategies={feature: 

strategy}). Choices for strategy are ‘one-hot’, ‘binary’, ‘label’, or ‘rarity’ (i.e. a feature value’s 

frequency). Alternatively, or if not specified, orchid will use a one-hot encoder. 

In some situations, it may be desirable to aggregate mutational level data to the tumoral 

level to compare tumor mutational profiles with each other. For this purpose, we created the 

collapse() function to aggregate feature values within each patient (i.e. tumor) using feature 

median or mean values. In practice this is can be done with any grouping column by passing the 

column name as the ‘by’ parameter. Collapsing should be performed after encoding has occurred 

but before normalization.    

Most machine learning algorithms require numeric, non-missing, feature-scaled data for 

effective learning. With orchid-ml, one can specify strategies for imputation and scaling using 

the set_normalize_options() function which takes parameters 'nan_strat’ and 'scaler_strat' to 

respective missing and scaling strategies. Imputation strategies include setting all unknown 

feature values to 0 ('zero'), or to the feature mean ('mean'), median ('median'), or most frequent 

('most_frequent') values. Feature scaling is performed using a min-max scaler (‘mms’), where 

feature values are transformed to a [0, 1] range based on the minimum and maximum values or a 

z-score based method (‘standard’), where feature values are subtracted by their mean and divided 

by their unit variance. We used orchid-ml’s default values for normalization, ‘median’ and 

‘standard’, unless otherwise stated. 
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Classifiers with a large numbers of features can potentially begin to model noise specific 

to the training dataset (a.k.a. overfitting), which decreases overall performance and classification 

generalizability. To avoid this pitfall, we employ a feature selection method that reduces feature 

number to a desired subset size—generally one-tenth the number of training examples. This is 

accomplished through orchid-ml’s select_features() function. This function normalizes, shuffles, 

and divides data into training and testing sets in a 75:25 ratio. Next, it trains a user-specified 

model (or by default a random forest) with training data and accuracy is assessed in test data. 

Then, for each feature, it shuffles the feature values, remodels the data, and then compares the 

resulting accuracy to the original model to generate an error percentage for that feature. It repeats 

this process 50 times and reports mean error percentages for each feature. The specified top 

number of features whose permutation caused the largest decrease in model accuracy are 

retained for subsequent modeling. 

To model tumor data, orchid-ml first requires a label column to be set with the 

set_label_column(column_name) function. This flags one of the data columns in the 

MutationMatrix for use as class labels during supervised learning and test prediction. Orchid-ml 

can then perform modeling with the svm() or random_forest() function, which interface with 

scikit-learn’s sklearn.ensemble.RandomForestClassifier and sklearn.svm.SVC modules, 

respectively. The Mutation Matrix() is also compatible with other sk-learn classifiers. For 

random forest models, we set default values of max_features=‘auto’, max_depth=None, 

min_samples_split=2, and min_samples_leaf=1. For support vector machine models, we set the 

kernel default to ‘linear’, C=1.0 and probability=True. Orchid-ml uses default scikit-learn values 

for all other parameters, but a user can pass custom sklearn parameter value pairs through orchid. 

To estimate model stability, orchid performs k-fold cross-validation (k=10 by default) and 
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reports mean accuracy and standard deviation. Optionally, it will also permute class labels, 

remodel data, and report accuracy for comparison with a null model, which has an expected 

accuracy equivalent to randomly guessing a class (that is 1/C where C is the number of classes). 

This ‘sanity check’ helps ensure no systematic bias—such as large class imbalance—is falsely 

contributing to classification accuracy. Modeling can also be performed with custom train/test 

sizes by specifying the proportion of samples to withhold for testing. 

Orchid-ml includes several functions for visualizing data and reporting model 

performance. These functions depend on the python modules seaborn 

(https://seaborn.pydata.org/), matplotlib (https://matplotlib.org/), and sci-kit learn. Orchid has the 

ability to generate dendrograms of mutations clustered by both feature and sample in the form of 

the show_dendrogram() function and can also easily generate performance metric reports 

(print_report()); display confusion matrices (show_confusion_matrix()); draw violin plots to 

compare classification probability distributions (show_confidence_plot(); Supplemental Figure 

3.3); show Receiver Operating Characteristic (ROC) or Precision-Recall (PR) curves 

(show_curves(); Supplemental Figure 3.4); and indicate feature importance for classification 

(show_feature_importances()). The orchid code repository provides further documentation on 

each of these.  

Application of Orchid: Tissue of Origin Dataset 

We first downloaded whole-genome sequencing data from ICGC and biological 

annotation features as described, populating data into the multi25_20170710 database (see 

repository). Next, we used orchid-ml to load mutations and features, encode ordinal features, and 

collapse mutations by patient tumor using mean feature values (this is accomplished with 

orchid_ml’s load_mutations(), load_features(), encode(), and collapse() functions respectively). 
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This resulted in a total 960 tumor tissue profiles. From these profiles, we imputed missing data 

with a ‘median’ strategy, normalized the entire matrix with the ‘mms’ min/max transformation, 

and selected the 20 most-performant features as described. Model performance was then 

assessed with 10-fold cross validation and label permutation. Finally, a predictive model was 

generated with 65% of the data, and tissue predictions were made in the remaining 35%. 

Results 

Orchid 

To facilitate the task of machine learning on tumor mutational profiles, we created 

orchid, an open-source software framework to efficiently annotate, manage, and model tumor 

mutations on a genome-wide scale. A user can begin with mutational data from ICGC or in VCF 

format and annotation feature data in various formats, and then use orchid to import, manage, 

annotate, and model data. Orchid is divided into two components, orchid-db, which loads and 

annotates mutations into a database system (e.g. MySQL or MemSQL), and orchid-ml, a python 

module that facilitates machine learning using the popular scikit-learn framework. 

Orchid-db 

We designed orchid-db to efficiently process, parse, and transform raw data into a 

structured MySQL-like database to maximize subsequent access speed and analysis. Mutation 

and feature data can be imported individually using two orchid-db subcommands (populate and 

annotate), or simultaneously, in parallel, with the workflow management tool, nextflow (v. 0.17; 

https://www.nextflow.io) (92). For the latter option, we provide the make_database shell script 

to control nextflow execution through a single configuration file that specifies data locations and 

processing options. Nextflow is capable of executing seamlessly on a desktop machine, on a 
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cluster, or in cloud environments (Amazon, DNANexus, Docker, Singularity, Apache Ignite, 

PBS, SGE, SLURM), and can interface with a local or remote SQL-like database system. Orchid 

specifically supports software compatibility with a performant, distributed, in-memory database 

system, MemSQL (http://www.memsql.com/) making the import of tens of millions of mutations 

and hundreds of feature annotations possible on the order of a few hours (see supplemental 

materials for a details).’ 

Orchid-ml 

We also developed orchid-ml, a python module that interfaces with orchid-db data and 

provides convenience functions for machine learning of tumor variant data. Our module extends 

the pandas DataFrame class object into a MutationMatrix that adds support for importing, 

encoding, and subsetting tumor mutation data from the database produced by orchid-db. Our 

modeling functions use the scikit-learn framework for machine learning due to its flexibility, 

excellent documentation, and large variety of algorithms. Additionally, orchid-ml is capable of 

visualizing data and model performance that generate plots with seaborn and matplotlib. 

Once populated in the database by orchid-db, data is easily accessed and modeled with 

orchid-ml. A typical workflow is summarized as follows:  

1. Specify access to the database generated by orchid-db with a SQL connection string. 

2. Load mutations and features either in their entirety or by a desired subset (e.g., by tumor). 

3. Encode categorical features using default or user-defined strategies (e.g., one-hot). 

4. Optionally collapse mutations by tumor (e.g., by averaging). 

5. Set a prediction label and select features. 

6. Model data with any of the scikit-learn machine learning algorithms. 
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For convenience, random forest and support vector machine functionality is built directly 

into orchid-ml, automatically performing data normalization, train/test splitting, cross-validation, 

and label permutation for null model generation. Orchid-ml visualization functions can be used 

to assess performance and explore relationships within the data; these include mutation 

dendrograms, feature weight boxplots, class prediction and confusion matrix heatmaps, receiver 

operating characteristic (ROC) curves, and Precision Recall (PR) curves. 

Application of Orchid: Tissue of Origin 

To demonstrate orchid’s ability to facilitate machine learning with biologically relevant 

classification tasks, we applied a classification model used to determine tissue-of-origin from 12 

tissues. The code for this task is provided as a jupyter notebook (http://jupyter.org/) in the orchid 

software repository.  

For this application, we prepared data as described in Methods and randomly sampled 

100 tumor profiles for visualization with orchid-ml’s show_dendrogram() function, using 

complete linkage hierarchical clustering on both features and tissues. This was done to assess 

segregation of tumor profiles by feature groups, and to see if patterns emerged that correspond to 

biology of underlying tissue type (Figure 3.2). 

From this we observed a small amount of tissue level grouping with particular feature 

combinations differentially driving segregation. For example, cancers of the stomach, uterus, 

head and neck, and bladder appeared to show increased mutation burden in transcribed regions 

(Figure 3.2A), and conversely lower mutation burden in repressed regions (Figure 3.2E) of 

encode cell lines. For head and neck cancer, mutations were of higher frequency and enriched in 

both the G [T>A] G trinucleotide context and 3’UTR regions (Figure 3.2B). Upon cross 
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referencing the ICGC data portal, we noted the very common chr7:140453136 C [A>T] C 

mutation in the 3’UTR region of BRAF, representing 44% of patients, as potentially driving this 

signal. Finally, when considering the V, D, J and C immunoglobulin biotype features, separation 

of blood cancers was observed (Figure 3.2C and 3.2D). We also clustered the full 960 tissues on 

just tissue-of-origin an observed similar patterns (Supplemental Figure 3.2), as well as 

additional trinucleotide signatures that corresponded to those previously reported by Alexandrov 

et.al (88).  

Next, we modeled these profiles using a random forest classifier. First, we first employed 

feature selection to guard against overfitting by reducing the number of features from 339 to 20 

using the permutation method described in Methods. Of the retained features, their permutation 

caused an increase of between 2.5% and 5.2% in classification error. Ten of the twenty most 

important features were trinucleotide context features, four were transcript biotypes, and two 

were related to cancer pathways. The remaining retained features were the modifier impact 

category, Nhlf enhancer, HeLa-S3 transcription, and CADD. From this reduced dataset, we 

performed 10-fold cross validation with a random forest classifier using orchid_ml’s 

random_forest() function. The resulting models had a mean accuracy for tissue classification of 

0.94 +/- 0.02. To help ensure systematic artifacts such as class label imbalance were not driving 

signal accuracy, orchid was used to re-train the models after permuting training labels, and the 

expected null performance was observed (accuracy = 0.08 ± 0.09; expected = 0.08). Finally, the 

random_forest() function was called to build a predictive model using a randomly subset 

population of patients (n=624; 65%), while the remaining were withheld for testing (n=336; 

35%). For this final model, we plotted the feature weights on a per-tissue basis (Figure 3.3A), 

showing that several features were particularly useful for classifying just one of the tissue types 
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(e.g. IG variable segment for blood and many of the C>T trinucleotide context features). We also 

used orchid-ml’s show_curves() function to produce ROC curves in a one-vs-rest fashion for 

each tissue (Figure 3.3B). Tissues have an AUC range between 0.80 (brain) and 0.98 (bone). 

To observe whether consistent tissue misclassifications were present, we generated a 

confusion matrix using orchid-ml’s show_confusion_matrix() function (Figure 3.3C). For this 

analysis, we assigned each tumor profile the tissue with the highest predictive probability and 

compared the predicted tissues with their actual types. Tissues most often confused as others 

(False Negative Rate) include pancreas, prostate, and uterus, while bone, head and neck, and 

stomach were rarely confused. Likewise, tissues were often confused as prostate, brain, and 

breast (False Discovery Rate), but not as often as blood, skin, uterus, esophagus. Interestingly, 

we also found that while some tissue types were confused in bi-directional manner (e.g. breast ⇔ 

prostate) others were not (e.g. pancreas ⇒ breast).  

Discussion  

To better aid the analysis of tumor genomes, we present orchid, a powerful mutation 

management and machine learning framework. We also demonstrate orchid’s ability to 

determine with high accuracy tissue-of-origin from tumor mutation data, which may have 

potential use in diagnosing tumors of unknown origin and for screening cfDNA. To our 

knowledge, orchid represents the first cancer mutation analysis framework with an in-memory 

database data storage, parallelization/cluster support, and integration with python numeric 

analysis and machine learning modules.  

While orchid does not represent the first software to annotate mutations or produce 

mutation profile models within machine-learning, it does offer some advantages over other 
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methods. For one, it has the ability to quickly integrate new biological features by employing a 

flexible parsing system with parallel processing support for both a desktop machine or cluster. 

Secondly it allows seamless integration with existing python analysis workflows and provides 

functionality for basic machine learning tasks within the scikit-learn ecosystem. Finally, it 

provides many convenience functions to aid the visualization and analysis models. 

Despite these advantages, orchid has a few limitations when compared to other software 

tools designed to model tumor mutations. For one, it’s design centers around the analysis of 

simple somatic mutations and copy number variation data, and some cancers are largely driven 

by biological mechanisms of higher order genetic architecture, such as gene fusions (e.g. prostate 

cancer TMPRSS:ERG), large-scale structural rearrangements, epigenetic and gene expression 

changes. Nevertheless, the analysis of such mechanisms could be incorporated in future versions 

of orchid. Secondly, due to dependence on the scikit-learn ecosystem, some popular machine 

learning algorithms (e.g., neural networks) are not available for analysis or are not as fully 

featured as in other frameworks. And finally, orchid makes use of copy number variation data on 

a very granular mutational level, potentially missing important associations that could be seen 

when such data is analyzed over larger genomic regions.  

With regard to our application of orchid to classify tumor tissue-of-origin, it is important 

to note that related methods have been previously developed. In particular, Snyder et al. used a 

novel nucleosome footprint window protection score to demonstrate correlation with patterns of 

protection and pathological states such as cancer (93). Likewise, Marquard et al. developed 

TumorTracer to classify tissue-of-origin with 85% accuracy across 6 primary sites using both 

somatic point mutation as well as copy number information (94). Orchid was able to achieve 

slightly a better accuracy of 94% among 12 tumor types, improving upon these initial methods.  
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While the tissue-of-origin task demonstrates one potential use of orchid, it is possible to 

model other types of data. For example, one can use orchid to generate a set of null, simulated 

mutations in conjunction with observed mutations to see if a particular feature set can be used to 

distinguish between the two classes, or even to assign a probability of class membership. This 

follows a similar strategy used by several driver/passenger and other base-level scoring tools 

(62,75,76,89) and has application in developing models for mutation prioritization for the design 

of custom sequencing panels for cancer detection.  
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Figure 3.1: Diagram of the orchid workflow.  

Legend: The make_database shell script builds a database of annotated cancer mutations from 
raw source data using the orchid_db populate and annotate subscripts and can be run on a single 
computer or in a cluster environment. Afterwards, data can be quickly imported and analyzed 
with machine learning algorithms using orchid_ml. 
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Figure 3.2: A tumor mutational profile dendrogram.  

Legend: Patient mutation values were averaged over all features and labeled with the tissue-of-

origin. The orchid-ml show_dendrogram() function was then used to generate a clustered 

heatmap. A) and E) Fairly strong separation of stomach, head and neck, bladder, and uterus 

tissues based on encode cell line transcribed regions was observed. B) In head and neck cancers, 

a frequent, G [T>A] G context, 3’UTR mutational signal was present. C) and D) Blood cancers 

showed separation from other tissues based on the V,D,J, and C immunoglobulin biotype 

features. 
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Figure 3.3: The models performance.  

Legend: A) The twenty most important features for classification were selected using 
orchid_ml’s select_features() function and plotted on a per-tissue basis after modeling. B) The 
true positive vs false positive classification rates for each tissue are plotted in a one-vs-rest 
fashion. The dashed diagonal line indicates random classification. The macro average over all 
models is shown and a heavy dashed line and Area Under the Curves (AUCs) are given in 
parenthesis for each tissue. C) A matrix indicating classification predictions from the tissue 
model. Rows labels are actual tissues and columns labels are tissues predicted by our model. 
True positive counts can be found along the diagonal, and of the remaining, false positives are 
along columns, and false negatives are along rows. 
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Supplemental Table 3.1: A table of features used to annotate tumor mutations.  

Legend: This table gives list of feature classes used in modeling with orchid, including links to 
feature websites and file downloads are located at http://wittelab.ucsf.edu/orchid. 

Feature Description  

aa_class_change Twenty six amino class change categories (e.g. Positive => Aromatic) 

cadd; cadd_raw 
Combined Annotation Dependent Depletion scores  

(c-scores and raw values) 

consequence_type snpEff consequences (e.g. nsSNP, 5’UTR, etc…) 

context The trinucleotide context as per Alexandrov et. al. 

copy_number segment mean log2 copy number values, averaged over ICGC donors  

dann Deep Artificial Neural Network (deleteriousness)  

dbsuper Super enhancers (any cell type) 

dnase Encode DNASE I Hypersensitivity distal and proximal (any cell type) 

encode Encode enhancer, promoter histone marks (distal and proximal; any 
cell type) 

frequency Number of donors sharing this mutation 

funseq2 Somatic mutation variant prioritization (deleteriousness) 

gwas Boolean presence of GWAS Annotated SNPs  

impact Four SNPEff predicted functional impact categories (Modifier, Low, 
Moderate, High) 

kegg_cancer_gene Boolean presence/absence within a cancer pathway 
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Feature Description  

kegg_pathways Biological cancer pathway membership (22 pathways) 

phyloP Primate evolutionary conservation score (deleteriousness) 

remap ChIP-seq analysis of regulatory elements 

rfecs Random Forest Enhancer / Chromatin States (11 cell types) 

segmentation  ChromHMM and Segway genomic state predictors  

targetscans miRNAs sites 

transcript_biotype Transcript biotype as reported by SNPEff (35 categories) 

wgrna Whole Genome RNA predicted binding site (any) 
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Supplemental Figure 3.1: A violin plot of mutational burden. 

Legend: Mutational burden across the 12 tumor types used to generate the tissue-of-origin 
model is shown. Each tissue class consists of 80 tumors. 
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Supplemental Figure 3.2: Full cluster plot of all 960 tumor mutational profiles used for 
tissue-of-origin classification.  

Legend: The 339 features are shown across columns and individual tumors across rows. Tumor 
labels are indicated as greyscale labels. Due to the density of the plot, feature and tumor labels 
are omitted. The data is normalized between using a min-max scaling transformation.   
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Supplemental Figure 3.3: An example of an orchid-ml confidence plot. 

Legend: This plot shows tissue-of-origin positive vs false negative probability distributions for 
each tissue as a split violin plot. These violin splits can be generated with data from any 
combination of False Positive, False Negative, True Negative, True Positive, Negative, or 
Positive values. 
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Supplemental Figure 3.4: Plots of tissue specific ROC curves. 

Legend: Plots showing mean individual tissue ROC curves over 5-fold cross validation ± 1 
standard deviation. The AUC of the mean curve is also shown. These curves can be produced 
using the show_roc_curves(separate=True, show_folds=False) function call. 
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Supplemental Figure 3.5: Comparison between MySQL and MemSQL. 

Legend: Times for database population, annotation, and loading into the orchid-ml framework 
were compared between MySQL and MemSQL using the same set of data. This was repeated 
three times, and overall time in seconds is reported as boxplots.  

 

Notes:  

MemSQL is a modern in-memory distributed relational database system which is built to 
scale easily with very large datasets. Its syntax is almost identical to MySQL and connection is 
ODBC-compatible. Internally data is stored in-memory as rows and on-disk as colums. For 
transactional workloads, such as referencing individual variants from a large set, the in-memory 
row store provides fast and efficient lookup. MemSQL can be installed on commodity hardware 
(a quad core machine with 8GB RAM). More information about MemSQL, including hardware, 
software, and network requirements can be found in the MemSQL documentation: 

https://docs.memsql.com/introduction/latest/how-memsql-works/ 

https://docs.memsql.com/installation/v5.8/system-requirements/ 
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To compare the difference in performance between MySQL and MemSQL, we populated 
a test database from 1 million annotated prostate mutations from the International Cancer 
Genome Consortium (ICGC). Performance was compared for orchid’s three most database 
intensive processes: population, annotation, and loading (into orchid-ml) and by measuring mean 
access time over three trials. MemSQL is significance faster for all three of these tasks, which is 
more pronounced for even larger datasets (not shown).   
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Chapter 4 

A machine learning approach to optimizing cell-free 

DNA sequencing panels in prostate cancer 

Introduction 

Stroun et. al. first reported the presence of cell-free DNA (cfDNA) in the plasma of 

patients with cancer in 1989, and by 1994 tumor derived KRAS mutations were confirmed in the 

cfDNA of patients with pancreatic cancer using allele specific PCR primers (95). Since then a 

flurry of research has been conducted to explore potential oncological applications of cfDNA, 

including early detection, monitoring residual disease, and recurrence following treatment 

(47,96-98). Many of these efforts have been met with success, as demonstrated by the FDA’s 

approval of the first liquid biopsy test: a qPCR based test called cobas that can detect 42 

mutations in the EGFR gene using the cfDNA from patients with Non-Small Cell Lung Cancer 

(NSCLC).  

Despite some promising initial results, there are still many challenges for cfDNA as a 

biomarker (37). One of the most important limitations, especially in the context of variant 

detection, is the weak signal-to-noise ratio of circulating tumor of ctDNA to cfDNA derived 

from healthy tissue. Often, ctDNA represents much less than 1% of the total cfDNA fraction 

(34). To circumvent this issue, two strategies have been developed. The first focuses on probing 

a single mutation or a small number of genomic locations and utilizes qPCR or Unique 

Molecular Identifiers (UMIs) coupled with sequencing to reach sensitivities required for 

detection (51,99,100). The second approach uses targeted sequencing (or possibly even whole 

exome sequencing) to expand the breadth of genomic coverage thereby increasing the likelihood 

of detection through multiple independent sampling. Both of these strategies have trade-offs. For 
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example, qPCR based methods have high sensitivity but require a priori or patient-specific 

knowledge of mutation locations. In some cancers, like prostate, this can be especially 

problematic as even the most common driver mutations exist at frequencies too low to be of 

clinical utility (101). Targeted sequencing can be used for broader patient coverage and de novo 

discovery, but at the cost of reduced sensitivity or greater risk of false positives.  

We propose a solution that leverages strengths of both approaches while minimizing their 

weaknesses. This is done through several strategies: 1) generating a medium-sized (2.5Mb) 

targeted sequencing panel, but instead of including coding regions of entire genes, focusing on 

small (~350bp) regions of the genome that are most likely to harbor mutations; 2) incorporating 

mutations from non-coding regions that may have important regulatory effects; 3) selecting 

candidates for inclusion on the panel by a machine learning model trained on actual tumor data, 

and optimized to detect driver-like mutations; and 4) using UMIs to suppress technical errors 

induced by sequencing. Here we present this novel approach to building a targeted sequencing 

panel and its validation, and then demonstrate its performance in comparison with other 

conventional panels for screening cfDNA mutations that were somatically validated using 

matched tumor/normal data from multiple foci of prostate cancer patients. 

Methods 

Model Training Data 

Prostate tumor variant data from the International Cancer Genome Consortium (ICGC; 

https://icgc.org), release 23, was obtained to build a classification model and rank mutations for 

inclusion on a custom hybrid capture panel. Using the ICGC Data Portal Advanced Search tool, 

‘Prostate’ tissue was subsetted from Primary Site; ‘WGS’ from Donor Analysis Type; and then 
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‘Simple Somatic Mutation’, ‘Copy Number Somatic Mutation’, and ‘Clinical Data’ data was 

downloaded and extracted. Data was then imported into a MemSQL database using the 

make_database.sh script from our previously described orchid software (102).  All feature data, 

available at the orchid website (http://wittelab.ucsf.edu/orchid), was also included in database 

population. Copy number information was preprocessed using the parse_cnv.sh script in the 

orchid repository before import.  

Union of Existing and Frequency Comparison Panels 

To benchmark performance of the orchid generated mutation panel in detecting tumor 

variants, two other panel designs were explored. The first, “Union of Existing”, consisted of 

coding regions from the aggregated set of 530 genes found from four clinically available cancer-

specific targeted sequencing gene panels (Supplemental Table 1). This was generated by 

intersecting gene hg19 coordinates (as queried through Ensembl Biomart at 

http://feb2014.archive.ensembl.org/) with the SeqCap EZ Exome v3 capture panel to include 

only exons (n=9,470). These regions were then randomly downsampled to match the size of the 

orchid generated panel (n=7,034). The second comparison panel, “Frequency”, was queried from 

the ICGC prostate release 23 database. In this case, all mutations present in more than one donor 

were considered ± a 175 bp window to match the orchid panel region sizes (n=5,824 regions). 

In Silico Analysis 

We assessed the orchid panel’s potential performance using an in silico analysis of tumor 

foci DNA and matched cfDNA. We whole exome sequenced multiple tumor foci and a normal 

tissue control sample from 5 prostate cancer patients who underwent radical prostatectomy, and 

called somatic variants (see Initial Cohort Sample Extraction). We also extracted patient matched 

cfDNA and exome sequenced it at 200X followed by variant calling (see cfDNA Extraction and 
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Sequencing). Next, we generated in silico capture probes for the orchid panel by expanding the 

genomic coordinates of panel mutations by ± 175 bp (the mode size of cfDNA molecules). 

Tumor and cfDNA variants were intersected with this generated panel and the two comparison 

panels described above.  

Hybrid Capture Probes 

We designed and ordered Custom MyBaits™ hybrid capture probes targeting the final 

corrected set of mutations, ± 175 bp and tiled 3X through Arbor Biosciences 

(https://arborbiosci.com; 16 reaction; catalog 300116). This targeted capture panel was then 

applied by Arbor Biosciences to library prepped cfDNA samples from Study Sample Patients.  

cfDNA Extraction and Sequencing 

Between 10 and 20 mL of whole blood was collected from a cohort of prostate cancer 

patients at time of radical prostatectomy or during treatment for metastatic cancer. Blood was 

first spun at 1,900 g for 10 minutes and collected plasma was respun at 16,000 g for 10 minutes 

to remove any residual cell debris. Samples were then processed using the Qiagen Circulating 

Nucleic Acid Kit (Catalog # 55114), double eluted with 40 uL of Qiagen Elution Buffer (EB) for 

80 uL total and run on the Agilent Bioanalyzer with High Sensitivity DNA chips (Catalog # 

5067-4627) to assess concentration and fragment size distribution. Next, for samples meeting a 

10 ng threshold, the Zymo Clean and Concentrator Kit (Catalog # 4013) was used to concentrate 

DNA into 10 uL of distilled water and resulting samples were library prepped using the UMI 

tagging Rubicon ThruPLEX Tag-Seq 48S kit (Catalog # R400585) following kit 

recommendations for final PCR amplification (7-11 cycles). After AMPure XP bead cleanup 

(Catalog # A63881) samples were bioanalyzed for quality control and either sent for sequencing 

directly (for Initial Cohort samples) or sent to Arbor Biosciences for hybrid capture (for Study 
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samples) using the orchid generated panel. In cases where multiple sequencing strategies were 

used, or when DNA yield was less than required for sequencing, reamplification for 3 cycles was 

performed followed by AMPure cleanup and bioanalyzer. Samples were sent for sequencing 

with a target depth of either 200X for whole exome sequencing (Initial Cohort) or 2,500X (or 

~90 Million reads) for panel captured samples (Study).  

Sequencing data analysis was performed using either a hisat2/connor/freebayes workflow 

(Initial Cohort) or the Curio Genomics (www.curiogenomics.com) web platform (Study). 

Default parameters were used with the exception of connor (consensus frequency threshold of 

0.6, min family size threshold of 3, umi distance threshold of 1) and freebayes (min alternate 

fraction of 0.01, min alternate count of 3). For samples run on the Curio platform the following 

parameters were used: 1) Alignment UMI demultiplexing with a 6 UMI and 100 max stem 

length, 2) Variant calling with the orchid panel genome feature, 75% family threshold, 2 base 

hamming distance, and minimum family size of 4 reads, and 3) Filtering with a minimum quality 

of phred 30, 2 family minimal coverage, and rare allele frequency between 0% and 20%. In some 

cases, when mentioned, stricter filtering was applied during cfDNA variant analysis. Parameters 

for this analysis were the same as above except 1) 10 family minimal coverage and 2) 100 total 

family minimal coverage.   

Tumor/Normal Sample Extraction and Sequencing 

For Initial Cohort samples, multiple tumor tissue foci and a normal tissue control samples 

(seminal vesicle or whole blood if not available) from 5 stage 1 or 2 prostate cancer patients who 

underwent radical prostatectomy were collected and processed with the Qiagen DNeasy Blood 

and Tissue Kit (Catalog # 69504). Samples were sent for whole exome sequencing at 200X. 
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Tumor normal variant calling was performed using the bcbio GATK workflow 

(https://github.com/bcbio/bcbio-nextgen).  

For Study samples, multiple tumor foci and a normal tissue control samples (seminal 

vesicle or whole blood if not available) from 9 stage 1 or 2 prostate cancer patients who 

underwent radical prostatectomy were collected and processed with the Qiagen DNeasy Blood 

and Tissue Kit. Samples were sent for whole exome sequencing at 40X. Tumor normal variant 

calling with then performed with the SpeedSeq workflow (103) using a minimum of 5% allele 

fraction somatic variant calling. Additional filtering was applied to variants where mentioned.  

Results 

Training Data 

To develop a machine learning model for generating a prostate cancer specific targeted 

sequencing panel that detects tumor mutations in cfDNA, we first downloaded whole genome 

mutation and copy number data from prostate cancer patients the International Cancer Genome 

Consortium (ICGC) data portal (see Methods). In addition, we collected more than 300 genome 

annotation features as previously described (102). Using the orchid software developed by our 

lab, we populated this information into a MemSQL database (102). In total, data from 550 cancer 

patients (274 with copy number information), 1,717,507 mutations (1,588,558 single base 

substitutions, 66,202 insertions ≤ 200 bp, and 90,255 deletions ≤ 200 bp), and 339 features was 

included in the database.  

For training labels, we defined two classes of mutations by dividing the prostate cancer 

patients into two groups (n=275 each) based on their number of mutations: 1) Driver Enriched 

(DE), consisting of mutations from men with a lower mutational burden, and 2) Passenger 
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Enriched (PE), consisting of mutations from men with a greater burden (Figure 1A). The cutoff 

used to classify patients into DE and PE groups (675 mutations) was chosen to create two equal 

sized groups. We chose this classification strategy because tumors with few mutations are 

generally earlier in the carcinogenic process, and the corresponding mutations are more likely to 

drive disease (or be biologically relevant). In contrast, tumors with many mutations are usually at 

a later stage of cancer, or have compromised DNA maintenance machinery, and the 

corresponding mutations have greater likelihood of representing an artifact of unstable genome 

maintenance (62). This classification scheme was also reflective of our desire to create a panel 

for early, localized prostate cancer. With these two classes defined, to reduce the computation 

complexity we randomly downsampled the data to a total of 16,334 unique mutations while 

preserving the original DE:PE mutation ratio (0.026).  

Initial Modeling and Performance 

To guard against overfitting, we used orchid’s feature selection method to reduce the 

number of features from >300 to 20 and performed 10-fold cross validation with a linear support 

vector classifier (SVC) to generate a DE predictive model. A ROC curve of model performance 

in the test sets is given in Figure 1B, indicating a 0.76 (± 0.12) classification accuracy. 

Additionally, we observed classification probabilities across all test cases and discovered strong 

model ‘confidence’ in its predictions, tending to call mutations as PE or DE with high probability 

and at rates reflective of the unbalanced DE:PE ratio (Figure 1C). 

Feature Selection and Significance  

We then visualized feature weights used for classification of mutations as being drivers 

versus passengers (Figure 1D). In this figure the sign and magnitude of features define a vector 

orthogonal to the hyperplane that maximizes the margin between DE and PE classes. Since the 
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dot product of this vector with mutation vectors form the basis for class assignment in a linear 

SVC, these weights can give insights into the predictive model. For example, we observed 

segregation by ChromHMM functional genomic segmentations of ENCODE cell-lines (82). In 

some cases, reciprocal functional states within a cell-line appeared to help classify mutations in 

opposite directions (e.g. K562: Repressed ➡ DE, Transcribed ➡ PE; HUVEC: Repressed ➡ 

DE, Transcribed ➡ PE). As another example, for mutations classified as DE, a higher scaled 

CADD score was predictive, indicating mutations tended to be highly deleterious. In contrast, for 

mutations classified as PE, a positive raw CADD feature indicated these mutations appeared 

simulated-like deleterious, which could correspond to genomic instability of late-stage disease 

(75). Curiously these features were in opposite directions, perhaps explained in part by the 

compressed PHRED-like scoring used for the scaled CADD score.  

We also noticed other patterns with potential biological explanations, including that 

coding mutations classified as DE tended towards preserving amino acid chemical properties 

(Unchanged AA feature). This suggests that PE classified coding mutations alter amino acid 

chemical properties through a variety of the other possible mechanisms (e.g., aliphatic ➡ 

aromatic, polar ➡ neutral, polar ➡ aliphatic), which could occur later in disease progression. 

Finally, we observed that mutations in bases with high ‘deleteriousness’ scores (i.e., related to 

strong evolutionary conservation), including cancer-specific scores like FunSeq2 and copy 

number, were particularly useful for classification PE mutations; this further suggests genomic 

instability of late-stage disease.  
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Mutation Ranking 

We then used the selected features to build a new linear SVC with all downsampled data 

and applied it to the full ICGC dataset to score DE probability for all prostate cancer mutations. 

Mutation distances from the fit hyperplane were then used to rank them. Those with the greatest 

magnitudes in the DE direction ranked highest (i.e., the most “driver like”), and were further 

considered for inclusion on a targeted sequencing panel.  

Standardizing Mutation Scores 

We annotated the candidate DE mutations with associated gene information, if available, 

using SNPEff (78) functional impact information and transcript length from the UCSC genome 

database. We then binned genes according to their length, and the number of mutations per gene 

was visualized (Figure 2A). As one might expect, longer genes had more candidate mutations 

(Pearson’s correlation = 0.20, p=6.03e-39). Such candidates, however, could be over represented 

on a panel if they had marginal individual scores but strong gene-level annotations. To address 

this issue and to increase diversity on the panel, we implemented a corrective standardization 

(Supplemental Figure 1) and applied it to the distance scores of mutations (Figure 2B). This 

standardization reduced to the Pearson’s correlation between gene length and number of 

candidate mutations to 0.05 (p=0.0015). Mutations that were non-coding or without gene 

annotation were unaffected by this method. After applying the standardization, the top 7,034 

mutations were then selected for the panel. This panel represented 0.41% of the total number of 

potential mutations. 

Panel Composition 

Once our standardized panel was established we plotted hyperplane distances for the 

7,034 mutations against their logged rank (Figure 2C). The top 5 coding mutations are labeled 
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with their corresponding genes, all of which are involved in cancer (104-106).  While the most 

highly ranked genes were coding, many non-coding genes were also included on the panel 

(~18%). 

In comparison with random prostate tumor mutations, our panel was enriched for general 

cancer (p=4.18e-228) and prostate cancer genes (p=1.19e-61). In addition, our panel was 

significantly enriched for regions associated with regulation of cellular response to growth 

factors (p=2.68 e-4), MAP kinase activity (p=8.66e-8), and Integrin signaling (p=1.74e-13) 

among others (107-109) (Enrichr; http://amp.pharm.mssm.edu/Enrichr/). A table of consequence 

mutations is shown in Figure 2D. A majority of coding mutations were classified as high or 

moderate impact, including 50 induced stop gains and 3,386 missense mutations. 

For non-coding mutations, we discovered significant enrichment for several 

general/prostate cancer transcription factor binding sites (Supplemental Figure 2), including 

BRD4 (e=329), CTCF (e=254), FOXA1 (e=188), MYC (e=181), and AR (e=159), and a 

microRNA involved in angiogenesis (mir-126) (91,107) (ReMap; http://tagc.univ-mrs.fr/remap/). 

In silico Analysis 

We then compared how well our panel detected somatic variants in relation to two other 

panels: 1) the union of four existing sequencing panels (Fluxion Biosciences, Foundation 

Medicine, Guardant Health, and UCSF 500; Supplemental Table 1); 2) and a frequency-based 

panel (most common mutations; see Methods). We first assessed the panels’ ability to identify 

somatic variants in 5 prostate cancer patient’s primary tumors. Orchid’s panel detected more 

variants than the two other panels across all patients (Figure 3A), and these differences were 

statistically significant for patients P0014 and P0023 (p=0.043 and p=0.017 in comparison with 
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the union-existing panel; p=0.011 and 0.014 in comparison with the frequency panel, 

respectively; from T-test). The second scenario assessed how well the panels detected variants 

found in both the patient’s cfDNA and their matched primary tumor foci. Again the orchid panel 

performed better than the other two other panel approaches, detecting more variants for 4 out of 

the 5 patients (all p<5x10-7), where the fifth patient only had a single tumor focus (Figure 3B).  

Panel Performance:  cfDNA Variant Detection 

After confirming that our machine learning panel improved upon the union-existing and 

frequency based panels, we ordered hybrid capture probes for our regions of interest, which 

totaled ~2.5Mb. We then sequenced 9 patients with multiple prostate tumor foci and normal 

tissues @ 40X WES. Matched cfDNA was also collected from these patients at time of radical 

prostatectomy, extracted, and targeted sequenced with our panel at 2,500X. We then assessed 

how well our panel performed in detecting variants that were also somatically found within 

patient tumors (Figure 4A). The orchid panel detected tumor variants in all patients, ranging 

between 3 (S083) and 119 mutations (S041). The allele frequency of detected variants ranged 

between 0.2% to 20% (the default germline threshold used in the curio analysis), though the 

majority of variants were at frequencies >1%, the theoretical threshold at 2,500X sequencing.  

To see how our panel would perform at greater sequencing depths and in healthy patients, 

we compared strictly filtered cfDNA variants from 4 patients that were sequenced at 5,000X to 

those observed when their sequence data was downsampled to 2,500X. On average, 2.5 times as 

many variants were detected with deeper sequencing. These results suggest that the orchid panel 

performance will directly improve with increasing sequencing depth. Finally, we extracted 

cfDNA from 20 healthy volunteers, applied the orchid panel, and sequenced at 2,500X. When 

compared to the cfDNA of 28 prostate cancer patients sequenced at the same level, we observed 
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significantly fewer variants than in the prostate cancer patients (p < 6.0e-5; Supplemental Figure 

3). This suggests that our panel could be used to specifically detect variants in prostate cancer 

from those found at low frequency in clones of blood cells (i.e., the Clonal Hematopoiesis of 

Indeterminate Potential or CHIP effect (110)). 

Discussion  

Our machine learning approach allows for designing an optimal targeted sequencing 

panel for tumor-derived cfDNA. We used prostate cancer data from ICGC and twenty 

biologically relevant genome annotation features to train a classification model, which then 

ranked candidate mutations for a panel. Furthermore, our panel outperformed two alternatives—

one generated from a combination of several existing panels, and one based on tumor mutation 

frequencies—as assayed with an in silico screen to detect tumor-derived cfDNA mutations. 

Applying our panel to prostate cancer patients showed that it was able to detect tumor-derived 

cfDNA mutations in every patient, and indicated a significantly increased detection rate when 

compared to healthy controls. Based on our results, the sensitivity of the panel should scale at 

least linearly with increased sampling depth.  

When training our machine learning model, we made several design choices that could be 

further optimized in the future. Foremost, we used a linear SVC classifier and trained a model 

with 76% classification accuracy. While SVCs allow for interpretability of features used in 

classification and are generally a robust model type, other (perhaps more accurate) classifiers 

could have been used instead (e.g. random forest, neural net). However, accuracy is also 

impacted by noise inherent to our training labels (i.e. driver/passenger mutation hypothesis), 

which reflects the uncertainty of assigning accurate biological function to any given mutation in 

cancer datasets. Other labeling schemes or the employment of continuous class labels may have 
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been used as an alternative. Finally, to reduce overfitting, we used a standard feature selection 

method that does not necessarily reduce correlation among features. Depending on 

computational time, future models could use more sophisticated algorithms that take feature 

correlation into account. 

Another consideration when using methods described here relates to cfDNA as a 

biomarker itself. The most important of these is the physical limit to the number of molecules 

obtained using conventionally available blood volumes (5-20 mL). From our experience in 

prostate cancer, this equates to ~20 ng of DNA, ~100 billion molecules, or a maximum genome 

coverage of ~5,400X. Further complicating this issue is library preparation protocols with 

multiple cleanups (losing molecules) and amplification steps (introducing false positives), which 

makes mutation detection by sequencing difficult, especially in tumor tissues like prostate where 

mutation rate is lower relative to other tissues. While the use of UMIs ameliorates the issue, 

clearly more starting material (blood) is needed. Improvements in hybrid capture probe design, 

or multiplexing of targeted amplicons is also required. And finally, specificities of cfDNA based 

assays must improve to accommodate high background mutation rates induced by the CHIP 

effect.  

In conclusion, we have developed a novel model to rank coding and non-coding 

mutational hotspots for inclusion on a targeted sequencing panel. We show how this panel 

compares to two other panel design paradigms and demonstrate its performance in detecting 

actual tumor-derived cfDNA variants. This provides a useful strategy for broad—yet sensitive—

future panel design for mutation detection in cfDNA isolated from cancer patients.  
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Figure 4.1: Modeling simple somatic mutations.  

Legend: A) We divided ICGC prostate cancer donors into two classes, Driver Enriched (DE) or 
Passenger Enriched (PE), based on the number of somatic mutations in their tumors and labeled 
their mutations accordingly. B) After modeling with a linear Support Vector Classifier (SVC), 
we generated a ROC curve of DE classification. Accuracy was 76% +/- 12%. C) We visualized 
classification probabilities for test mutations. The model predicts fewer DE mutations and 
classifies both classes with high confidence. D) We show model feature weights for both classes. 
Several features, including those in ENCODE gene segments annotation were useful for 
classifying both DE and PE variants. 
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Figure 4.2: Generating a targeted sequencing library for hybrid capture of DE mutations.  

Legend: We generated a candidate panel consisting of probes targeting the ~7,000 highest 
ranked DE mutation loci. A) We binned genes represented by candidate mutations into 10 groups 
based on length and show the distribution in number of mutations. Gene length correlated with 
the number of mutations on the panel (Pearson’s correlation = 0.20, p=6.03e-39). B) We 
employed a distance standardization to mutation hyperplane distances to increase gene diversity 
on the panel. After standardization the correlation between gene length and number of mutations 
decreased significantly (Pearson’s correlation = 0.05, p=0.0015). C) We plotted the hyperplane 
distances of retained mutations after standardization against logged mutation rank. Mutations are 
labeled as coding (green) or non-coding (grey). We labeled the top 5 coding mutations with their 
corresponding genes. D) We show a table of panel mutation consequence types and counts, 
colored by impact severity (red=high, orange=moderate, yellow=low, blue=modifier). 
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Figure 4.3: Panel performance using in silico capture cfDNA.  

Legend: Five patients with multiple prostate cancer tumor foci, normal tissue DNA, and matched 
cfDNA were whole exome sequenced at 200X-fold coverage. Discovered variants were compared 
to three in silico capture panels: 1) Our orchid generated panel, 2) A panel consisting of genes on 
any of 4 clinically used panels (union-existing), and 3) A panel consisting of all mutations in the 
ICGC prostate cancer dataset with a frequency > 1. A) The log number of somatic mutations called 
from patient foci are shown (purple) in comparison with those also present on the three panels. 
Orchid detected significantly more mutations in patients P0014 and P0023 (p=0.043 and p=0.017 
in comparison with the union-existing panel; p=0.011 and 0.014 in comparison with the frequency 
panel, respectively, using a T-test) B) The log number of tumor mutations also found in cfDNA 
are shown (green) in comparison with the three panels. Orchid detected significantly more 
mutations in all cases. 
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Figure 4.4: Variant detection using the Orchid generated targeted sequencing panel.  

Legend: A) Nine patients with multiple tumor foci and normal tissue DNA were whole exome 
sequenced at 40X-fold coverage. Matched cfDNA was sequenced at 2,500X after targeted 
capture using the orchid generated panel. The number of detected variants (i.e., both somatic and 
present in cfDNA) and allele frequency distribution are shown. B) For four patients, cfDNA was 
sequenced at 5,000X with the targeted capture panel. Changes in the number and distribution 
frequency of detected variants are shown, demonstrating an increase in the number of detected 
raw variants at higher sequencing depth. 
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Supplemental Figure 4.1: Distribution of gene transcript lengths and scale factors for 
normalization.  

Legend: A) A histogram of transcript lengths of genes associated with ranked mutations is 
shown. B) Gene lengths after standardization C) Due to the long tail of the distribution of 
standard scores, a tanh transform was used to compress scores between a -1 to 1 range. D) The 
tanh transformed scores were reversed and multiplied to mutation distance values, effectively 
down-weighting values of mutations in long genes and up-weighted values of short genes. 
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Supplemental Figure 4.2: Transcription Factors Enriched on the Orchid Panel.  

Legend: All non-coding regions on the orchid panel were submitted to the Remap server to 
predict transcription factor enrichment using 10% overlap with our regions. Shown here are top 
10 most enriched transcription factors and their enrichment factors. Most of these are associated 
with the regulation of cancer, and in some cases, prostate cancer.  
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Supplemental Figure 4.3: CHIP effects and cfDNA in healthy patients. 

Legend: CfDNA from twenty-eight prostate cancer patients (19 with localized prostate cancer 9 
with metastatic disease) and 20 healthy volunteers was sequencing at 2,500X after targeted 
capture using the orchid panel. The distribution in the number of variants per million reads is 
shown. The number of variants in cancer patients is significantly higher than in healthy 
volunteers (p-values < 6.0e-5) using a T-test. 
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Supplemental Table 4.1: List of existing panel genes. 

Legend: Below is the list of genes from 4 combined cfDNA gene panels that were used for the 
‘union existing’ panel design in this publication. Genes listed were found from online published 
material and come from the following panels: 

1. UCSF 500: 
http://labmed.ucsf.edu/labmanual/db/resource/UCSF_CCGL500_REQUISITION_FORM_2016_
withGeneList.pdf 

2. Fluxion Biosciences:  
https://support.fluxionbio.com/hc/en-us/article_attachments/214690287/_634-0042_-
_Spotlight_59_Data_Sheet_RevA.pdf 

3. Foundation Medicine: 
https://www.foundationmedicineasia.com/dam/assets/pdf/FOne_Current_Gene_List.pdf 

4. Guardant Health:  
http://www.guardant360.com/img/G360MicroSite73GenePanel.jpg 

 

Note: These panels assess other types of tumor variants beyond simple somatic mutations 
(including amplifications and gene fusions) and cannot be compared directly to the orchid 
generated panel for this reason. This list was compiled as a consensus representation of the genes 
involved in cancer and suggestions a reasonable starting point for defining a targeted sequencing 
panel.  

ABL1 ERRFI1 MPL SMC1A 
ABL2 ESPL1 MRE11A SMC3 
ACVR1 ESR1 MSH2 SMO 
ACVR1B ESR2 MSH3 SNCAIP 
AJUBA ETS1 MSH6 SOCS1 
AKT1 ETV6 MTOR SOS1 
AKT2 EWSR1 MUTYH SOS2 
AKT3 EZH1 MYB SOX10 
ALK EZH2 MYBL1 SOX2 
AMER1 FAM46C MYC SOX9 
APC FANCA MYCL SPEN 
APOBEC3G FANCC MYCN SPOP 
AR FANCE MYD88 SPRED1 
ARAF FANCF MYH9 SPRY1 
ARFRP1 FANCG NAV3 SPRY2 
ARHGAP35 FANCL NBN SPRY4 
ARID1A FAT1 NCKAP5 SPTA1 
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ARID1B FAT3 NCOA2 SRC 
ARID2 FBXW7 NCOA3 SRSF2 
ARID5B FGF10 NCOR1 SS18 
ASH2L FGF14 NF1 STAG2 
ASXL1 FGF19 NF2 STAT3 
ASXL2 FGF23 NFE2L2 STAT4 
ATF1 FGF3 NFKBIA STAT6 
ATM FGF4 NFKBIE STK11 
ATR FGF6 NIPBL SUFU 
ATRX FGFR1 NKX2-1 SYK 
AURKA FGFR2 NOTCH1 SYNE1 
AURKB FGFR3 NOTCH3 TADA1 
AXIN1 FGFR4 NPM1 TBX3 
AXIN2 FH NRAS TCEB1 
AXL FLCN NSD1 TCF7L2 
BAP1 FLT1 NT5C2 TERT 
BARD1 FLT3 NTRK1 TET2 
BCL2 FLT4 NTRK2 TFE3 
BCL2A1 FOXA1 NTRK3 TFEB 
BCL2L1 FOXL2 NUP93 TGFBR2 
BCL2L12 FOXO1 NUTM1 TLR4 
BCL2L2 FOXP1 OR5L1 TMPRSS2 
BCL6 FRS2 PAK1 TNFAIP3 
BCOR FUBP1 PAK3 TNFRSF14 
BCORL1 FUS PALB2 TOP1 
BLM FYN PARK2 TOP2A 
BRAF GAB2 PAX3 TP53 
BRCA1 GATA1 PAX5 TRAF3 
BRCA2 GATA2 PAX7 TRAF7 
BRD4 GATA3 PAX8 TRIM28 
BRIP1 GLI1 PBRM1 TSC1 
BTG1 GLI2 PDCD1LG2 TSC2 
BTK GNA11 PDGFB TSHR 
C11orf30 GNA13 PDGFRA TSHZ2 
CALR GNAQ PDGFRB TSHZ3 
CARD11 GNAS PDK1 TSLP 
CBFB GPC3 PHF6 TTYH1 
CBL GPR124 PHOX2B TYK2 
CBLB GRIN2A PIK3CA U2AF1 
CCND1 GRM3 PIK3CG USP7 
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CCND2 GSK3B PIK3R1 VEGFA 
CCND3 H3F3A PIK3R2 VHL 
CCNE1 H3F3B PLAG1 WHSC1 
CD274 HDAC4 PLCB4 WISP3 
CD79A HDAC9 PMS1 WRN 
CD79B HEY1 POLD1 WT1 
CDC42 HGF POLE XBP1 
CDC73 HIF1A POLQ XPO1 
CDH1 HIST1H3B POT1 YAP1 
CDK12 HMGA2 POU3F2 YWHAE 
CDK4 HNF1A PPM1D ZBTB20 
CDK6 HOXB13 PPP2R1A ZFHX3 
CDK8 HRAS PPP6C ZFHX4 
CDKN1A HSP90AB1 PRDM1 ZMYM3 
CDKN1B HSPA2 PREX2 ZNF217 
CDKN2A HSPA5 PRKACA ZNF703 
CDKN2B ID3 PRKAG2 ZRSR2 
CDKN2C IDH1 PRKAR1A HER2 
CEBPA IDH2 PRKCA MEK1 
CHD1 IGF1R PRKCH MEK2 
CHD2 IGF2 PRKDC ERK2 
CHD4 IGF2R PTCH1 MAPK3 
CHD5 IKBKE PTCH2 ERK1 
CHEK1 IKZF1 PTEN NOCH1 
CHEK2 IKZF2 PTK2B FAM123B 
CIC IKZF3 PTPN1 EMSY 
CLDN18 IL2RB PTPN11 PD-L1 
CNOT3 IL7R PTPRB CRLF2 
COL1A1 INHBA PTPRD DAXX 
COL2A1 INPP4B PTPRK ERRFl1 
CRCT1 IPMK PTPRT FANCD2 
CREB1 IRF4 RAC1 FAS 
CREBBP IRS2 RAD21 GABRA6 
CRKL JAK1 RAD50 GATA4 
CSF1R JAK2 RAD51 GATA6 
CSF3R JAK3 RAD51C GID4 
CTCF JAZF1 RAD51D C17orf39 
CTNNA1 KAT6A RAF1 GLl1 
CTNNB1 KDM5A RARA HSD3B1 
CUL3 KDM5C RASA1 HSP90AA1 
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CUX1 KDM6A RASA2 IRF2 
CXCR4 KDR RB1 JUN 
CYLD KEAP1 RBM10 MYST3 
DCC KIT REL KEL 
DDIT3 KLF4 RELA MLL 
DDR2 KLHL6 RET KMT2C 
DDX3X KMT2A RHEB MLL3 
DDX41 KMT2B RHOA MLL2 
DGKH KMT2D RICTOR LMO1 
DICER1 KNSTRN RIT1 LYN 
DIS3 KRAS RNF43 MAGI2 
DNAJB1 LEF1 ROBO1 (MEK2) 
DNMT3A LIFR ROS1 MYCL1 
DOT1L LRP1B RPL10 NOTCH2 
DUSP2 LZTR1 RPTOR PD-L2 
DUSP4 MALAT1 RRAGC PIK3C2B 
DUSP6 MAML2 RRAS PIK3CB 
DYNC1I1 MAP2K1 RRAS2 PLCG2 
EBF1 MAP2K2 RSPO2 PMS2 
EDNRB MAP2K4 RSPO3 PRKCI 
EGFR MAP3K1 RUNX1 PRSS8 
EGR1 MAP3K2 RUNX1T1 QKI 
EIF1AX MAP3K5 SDHB RANBP2 
ELF3 MAP3K7 SDHD SDHA 
EP300 MAP3K9 SETBP1 SDHC 
EPCAM MAPK1 SETD2 TAF1 
EPHA2 MCL1 SF3B1 TERC 
EPHA3 MDM2 SH2B3 ZBTB2 
EPHA5 MDM4 SHH  
EPHA7 MED12 SIN3A  
EPHB1 MEF2B SLIT2  
EPOR MEN1 SLITRK6  
ERBB2 MET SMAD2  
ERBB3 MGA SMAD3  
ERBB4 MGMT SMAD4  
ERCC1 MITF SMARCA2  
ERCC2 MLH1 SMARCA4  
ERG MLH3 SMARCB1  

 



 67 

References 

1. Big Data: Astronomical or Genomical? Public Library of Science; 2015 Jul 
7;13(7):e1002195. Available from: http://dx.plos.org/10.1371/journal.pbio.1002195 

2. American Cancer Society. 8 ed. ACS Prostate Cancer.  

3. Seer Cancer Statistics. 8 ed. Seer Cancer Statistics.  

4. Roehrborn CG, Black LK. The economic burden of prostate cancer. BJU 
International. Wiley/Blackwell (10.1111); 2011 Aug 25;108(6):806–13.  

5. Barbieri CE, Bangma CH, Bjartell A, Catto JWF, Culig Z, Grönberg H, et al. The 
Mutational Landscape of Prostate Cancer. European Urology. Elsevier; 2013 Oct 
1;64(4):567–76.  

6. Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. 
Modern Pathology 2004 17:3. Nature Publishing Group; 2004 Mar 1;17(3):292–306.  

7. Boyd LK, Mao X, Lu Y-J. The complexity of prostate cancer: genomic alterations 
and heterogeneity. Nature Reviews Urology 2012 9:11. Nature Publishing Group; 
2012 Nov 1;9(11):652–64.  

8. Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: The Next 
Generation of Prostate Cancer Biomarkers. Sci Transl Med. American Association 
for the Advancement of Science; 2012 Mar 28;4(127):127rv3–127rv3.  

9. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. 
Cancer Genome Landscapes. Science. American Association for the Advancement of 
Science; 2013 Mar 29;339(6127):1546–58.  

10. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun X-W, et al. 
Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate 
Cancer. Science. American Association for the Advancement of Science; 2005 Oct 
28;310(5748):644–8.  

11. Bieberich CJ, Fujita K, He WW, Jay G. Prostate-specific and androgen-dependent 
expression of a novel homeobox gene. J Biol Chem. American Society for 
Biochemistry and Molecular Biology; 1996 Dec 13;271(50):31779–82.  

12. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ. Detailed methylation 
analysis of the glutathione S-transferase π (<i><b>GSTP1</b></i>) gene in prostate 
cancer. Oncogene. Nature Publishing Group; 1999 Feb 1;18(6):1313–24.  

13. Nelson WG, de Marzo AM, Lippman SM. Prostate Cancer Prevention. In: Cancer 
Chemoprevention. Totowa, NJ: Humana Press; 2005. pp. 185–203.  

14. Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev. Cold 



 68 

Spring Harbor Lab; 2000 Oct 1;14(19):2410–34.  

15. Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in 
sequenced cancer genomes: computational approaches to enable precision medicine. 
Genome Medicine 2014 6:1. BioMed Central; 2014 Dec 1;6(1):5.  

16. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, et al. 
MuSiC: identifying mutational significance in cancer genomes. Genome Res. 2012 
Aug;22(8):1589–98.  

17. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. 
Mutational heterogeneity in cancer and the search for new cancer-associated genes. 
Nature. Nature Publishing Group; 2013 Jul 11;499(7457):214–8.  

18. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A 
method and server for predicting damaging missense mutations. Nat Methods. Nature 
Publishing Group; 2010 Apr;7(4):248–9.  

19. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of 
amino acid substitutions and indels. de Brevern AG, editor. PLoS ONE. Public 
Library of Science; 2012;7(10):e46688.  

20. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous 
variants on protein function using the SIFT algorithm. Nat Protoc. Nature Publishing 
Group; 2009;4(7):1073–81.  

21. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, et al. Cancer-
specific high-throughput annotation of somatic mutations: computational prediction 
of driver missense mutations. Cancer Res. 2009 Aug 15;69(16):6660–7.  

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. 
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-
wide expression profiles. PNAS. National Academy of Sciences; 2005 Oct 
25;102(43):15545–50.  

23. Vandin F, Upfal E, Raphael BJ. De novo discovery of mutated driver pathways in 
cancer. Genome Res. Cold Spring Harbor Lab; 2012 Feb;22(2):375–85.  

24. Chen Y, Sun J, Huang L-C, Xu H, Zhao Z. Classification of Cancer Primary Sites 
Using Machine Learning and Somatic Mutations. BioMed Research International. 
Hindawi; 2015 Oct 11;2015(6):1–9.  

25. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. 
Nature Reviews Genetics 2015 16:6. Nature Publishing Group; 2015 Jun 
1;16(6):321–32.  

26. Holdhoff M, Schmidt K, Cancer RDOTN, 2009. Analysis of Circulating Tumor 
DNA to Confirm Somatic KRAS Mutations. academicoupcom.  



 69 

27. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic 
characteristics of the DNA found in the plasma of cancer patients. OCL. Karger 
Publishers; 1989;46(5):318–22.  

28. Lo YMD. Non-invasive prenatal diagnosis by massively parallel sequencing of 
maternal plasma DNA. Open Biology. Royal Society Journals; 2012 Jun 
1;2(6):120086–6.  

29. Brar H, Wang E, Struble C, Musci TJ, Norton ME. The fetal fraction of cell-free 
DNA in maternal plasma is not affected by a priori risk of fetal trisomy. The Journal 
of Maternal-Fetal & Neonatal Medicine. Taylor & Francis; 2012 Aug 23;26(2):143–
5.  

30. Bianchi DW, Parker RL, Wentworth J, Madankumar R, Saffer C, Das AF, et al. 
DNA Sequencing versus Standard Prenatal Aneuploidy Screening. 
http://dxdoiorg/101056/NEJMoa1311037. Massachusetts Medical Society; 2014 Feb 
26;370(9):799–808.  

31. De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, et al. 
Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant 
Rejection. Sci Transl Med. American Association for the Advancement of Science; 
2014 Jun 18;6(241):241ra77–7.  

32. Beck J, Bierau S, Balzer S, Andag R, Kanzow P, Schmitz J, et al. Digital Droplet 
PCR for Rapid Quantification of Donor DNA in the Circulation of Transplant 
Recipients as a Potential Universal Biomarker of Graft Injury. Clin Chem. Clinical 
Chemistry; 2013 Jan 1;59(12):clinchem.2013.210328–1741.  

33. Lou X, Hou Y, Liang D, Peng L, Chen H, Ma S, et al. A novel Alu-based real-time 
PCR method for the quantitative detection of plasma circulating cell-free DNA: 
Sensitivity and specificity for the diagnosis of myocardial infarction. International 
Journal of Molecular Medicine. Spandidos Publications; 2015 Jan 1;35(1):72–80.  

34. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin 
Oncol. 2014 Feb;32(6):579–86.  

35. LO YMD. Circulating Nucleic Acids in Plasma and Serum: An Overview. Annals of 
the New York Academy of Sciences. Wiley/Blackwell (10.1111); 2001 Sep 
1;945(1):1–7.  

36. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin 
Oncol. 2014 Feb 20;32(6):579–86.  

37. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. 
Clin Chem. Clinical Chemistry; 2015 Jan;61(1):112–23.  

38. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in 
cancer patients. Nat Rev Cancer. Nature Publishing Group; 2011 Jun 1;11(6):426–37.  



 70 

39. Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, et al. Quantification of 
free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol. 2003 
Nov;21(21):3902–8.  

40. Chan KCA, Jiang P, Zheng YWL, Liao GJW, Sun H, Wong J, et al. Cancer Genome 
Scanning in Plasma: Detection of Tumor-Associated Copy Number Aberrations, 
Single-Nucleotide Variants, and Tumoral Heterogeneity by Massively Parallel 
Sequencing. Clin Chem. Clinical Chemistry; 2012 Jan 
1;59(1):clinchem.2012.196014–224.  

41. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection 
of Chromosomal Alterations in the Circulation of Cancer Patients with Whole-
Genome Sequencing. Sci Transl Med. American Association for the Advancement of 
Science; 2012 Nov 28;4(162):162ra154–4.  

42. Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, et al. Genomic analysis of 
circulating cell-free DNA infers breast cancer dormancy. Genome Res. Cold Spring 
Harbor Lab; 2012 Feb;22(2):220–31.  

43. Siravegna G, Bardelli A. Genotyping cell-free tumor DNA in the blood to detect 
residual disease and drug resistance. Genome Biol. BioMed Central; 2014 Aug 
1;15(8):449.  

44. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-
invasive analysis of acquired resistance to cancer therapy by sequencing of plasma 
DNA. Nature. Nature Publishing Group; 2013 May;497(7447):108–12.  

45. Thierry AR, Messaoudi SE, Lopez-crapez E. Circulating Nucleic Acids in Early 
Diagnosis, Prognosis and Treatment Monitoring. Gahan PB, editor. Dordrecht: 
Springer Netherlands; 2015;5.  

46. Valtorta E, Misale S, Bianchi AS, Nagtegaal ID, Paraf F, Lauricella C, et al. KRAS 
gene amplification in colorectal cancer and impact on response to EGFR-targeted 
therapy. Int J Cancer. Wiley-Blackwell; 2013 Sep 1;133(5):1259–65.  

47. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating 
mutant DNA to assess tumor dynamics. Nat Med. Nature Publishing Group; 2008 
Sep;14(9):985–90.  

48. NO JH, KIM K, PARK KH, KIM Y-B. Cell-free DNA level as a prognostic 
biomarker for epithelial ovarian cancer. Anticancer Res. International Institute of 
Anticancer Research; 2012 Aug;32(8):3467–71.  

49. Kim K, Shin DG, Park MK, Baik SH, Kim TH, Kim S, et al. Circulating cell-free 
DNA as a promising biomarker in patients with gastric cancer: diagnostic validity 
and significant reduction of cfDNA after surgical resection. Annals of Surgical 
Treatment and Research. 2014 Mar 1;86(3):136–42.  



 71 

50. Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, et al. 
Quantitative and qualitative characterization of plasma DNA identifies primary and 
recurrent colorectal cancer. Cancer Letters. Elsevier; 2008 May 18;263(2):170–81.  

51. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, et al. Establishment 
of tumor-specific copy number alterations from plasma DNA of patients with cancer. 
Int J Cancer. Wiley-Blackwell; 2013 Jul 15;133(2):346–56.  

52. Ellinger J, Bastian PJ. Cell-Free DNA: A Novel Biomarker for Patients with Prostate 
Cancer? The Open Prostate Cancer Journal. 2010 May;3(1):57–62.  

53. Feng J, Gang F, Li X, Jin T, Houbao H, Yu C, et al. Plasma cell-free DNA and its 
DNA integrity as biomarker to distinguish prostate cancer from benign prostatic 
hyperplasia in patients with increased serum prostate-specific antigen. International 
urology and nephrology. 2013 Aug;45(4):1023–8.  

54. Delgado PO, Alves BCA, De Sousa Gehrke F, Kuniyoshi RK, Wroclavski ML, Del 
Giglio A, et al. Characterization of cell-free circulating DNA in plasma in patients 
with prostate cancer. Tumor Biology. 2013;34:983–6.  

55. Elshimali Y, Khaddour H, Sarkissyan M, Wu Y, Vadgama J. The Clinical Utilization 
of Circulating Cell Free DNA (CCFDNA) in Blood of Cancer Patients. International 
Journal of Molecular Sciences 2013, Vol 14, Pages 18925-18958. Multidisciplinary 
Digital Publishing Institute; 2013 Sep 13;14(9):18925–58.  

56. Kwee S, Song MA, Cheng I, Loo L, Tiirikainen M. Measurement of Circulating Cell-
Free DNA in Relation to 18F-Fluorocholine PET/CT Imaging in Chemotherapy-
Treated Advanced Prostate Cancer. Clinical and Translational Science. 
Wiley/Blackwell (10.1111); 2012 Feb 1;5(1):65–70.  

57. Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen 
receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic 
resistance in castration-resistant prostate cancer. Clin Cancer Res. American 
Association for Cancer Research; 2015 Feb 23;21(10):clincanres.2666.2014–324.  

58. Heitzer E, Ulz P, Geigl JB. Circulating Tumor DNA as a Liquid Biopsy for Cancer. 
Clin Chem. 2014 Nov;123.  

59. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An 
ultrasensitive method for quantitating circulating tumor DNA with broad patient 
coverage. Nat Med. Nature Publishing Group; 2014 May 1;20(5):548–54.  

60. Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational 
toolbox for mining cancer genomes. Nature Reviews Genetics 2015 16:6. Nature 
Publishing Group; 2014 Aug 1;15(8):556–70.  

61. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, et al. Cancer-
Specific High-Throughput Annotation of Somatic Mutations: Computational 



 72 

Prediction of Driver Missense Mutations. Cancer Res. American Association for 
Cancer Research; 2009 Aug 15;69(16):6660–7.  

62. Kumar RD, Swamidass SJ, Bose R. Unsupervised detection of cancer driver 
mutations with parsimony-guided learning. Nat Genet. Nature Publishing Group; 
2016 Oct;48(10):1288–94.  

63. Tan H, Bao J, Bioinformatics XZ, 2012. A novel missense-mutation-related feature 
extraction scheme for “driver”mutation identification. academicoupcom.  

64. Lindquist KJ, Jorgenson E, Hoffmann TJ, Witte JS. The impact of improved 
microarray coverage and larger sample sizes on future genome-wide association 
studies. Genet Epidemiol. 2013 May;37(4):383–92.  

65. Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. Rare and 
low-frequency coding variants alter human adult height. Nature. Nature Publishing 
Group; 2017 Feb 9;542(7640):186–90.  

66. Figueiredo JC, Stram DO, Haiman CA. The Impact of GWAS Findings on Cancer 
Etiology and Prevention. Current Epidemiology Reports. Springer International 
Publishing; 2014 Jul 3;1(3):130–7.  

67. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 
Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 
2017 Jul 6;101(1):5–22.  

68. Van Rossum T, Tripp B, Daley D. SLIMS--a user-friendly sample operations and 
inventory management system for genotyping labs. Bioinformatics. 2010 Jun 
30;26(14):1808–10.  

69. Andersen D, Rasmussen B, Linnet K. Validation of a fully automated robotic setup 
for preparation of whole blood samples for LC-MS toxicology analysis. J Anal 
Toxicol. 2012 May;36(4):280–7.  

70. Kong F, Yuan L, Zheng YF, Chen W. Automatic liquid handling for life science: a 
critical review of the current state of the art. J Lab Autom. SAGE PublicationsSage 
CA: Los Angeles, CA; 2012 Jun;17(3):169–85.  

71. Voegele C, Tavtigian SV, de Silva D, Cuber S, Thomas A, Le Calvez-Kelm F. A 
Laboratory Information Management System (LIMS) for a high throughput genetic 
platform aimed at candidate gene mutation screening. Bioinformatics. 2007 Sep 
15;23(18):2504–6.  

72. Thurow K, Göde B, Dingerdissen U, Stoll N. Laboratory Information Management 
Systems for Life Science Applications. Organic Process Research & Development. 
American Chemical Society; 2004 Nov;8(6):970–82.  

73. Ortiz L, Pavan M, McCarthy L, Timmons J, Densmore DM. Automated Robotic 



 73 

Liquid Handling Assembly of Modular DNA Devices. J Vis Exp. 2017 Dec 
1;(130):e54703–3.  

74. Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B. QuantPrime--a 
flexible tool for reliable high-throughput primer design for quantitative PCR. BMC 
Bioinformatics. BioMed Central; 2008 Nov 1;9(1):465.  

75. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general 
framework for estimating the relative pathogenicity of human genetic variants. Nat 
Genet. Nature Publishing Group; 2014 Mar;46(3):310–5.  

76. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the 
pathogenicity of genetic variants. Bioinformatics. 2015 Mar 1;31(5):761–3.  

77. Pavlidis N, Pentheroudakis G. Cancer of unknown primary site. Lancet. 2012 Apr 
14;379(9824):1428–35.  

78. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for 
annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: 
SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 
(Austin). Taylor & Francis; 2012 Apr;6(2):80–92.  

79. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. Oxford University Press; 2000 Jan 1;28(1):27–30.  

80. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral 
substitution rates on mammalian phylogenies. Genome Res. Cold Spring Harbor Lab; 
2010 Jan;20(1):110–21.  

81. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004 Jan 
1;32(Database issue):D109–11.  

82. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and 
characterization. Nat Methods. Nature Publishing Group; 2012 Feb 28;9(3):215–6.  

83. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS. Unsupervised 
pattern discovery in human chromatin structure through genomic segmentation. Nat 
Methods. Nature Publishing Group; 2012 Mar 18;9(5):473–6.  

84. Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J, et al. 
RFECS: A Random-Forest Based Algorithm for Enhancer Identification from 
Chromatin State. Singh M, editor. PLoS Comput Biol. Public Library of Science; 
2013 Mar 14;9(3):e1002968.  

85. Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and human 
genome. Nucleic Acids Res. 2016 Jan 4;44(D1):D164–71.  

86. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, 



 74 

Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 
Nature Publishing Group; 2015 Feb 19;518(7539):317–30.  

87. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The 
accessible chromatin landscape of the human genome. Nature. Nature Publishing 
Group; 2012 Sep 1;489(7414):75–82.  

88. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et 
al. Signatures of mutational processes in human cancer. Nature. Nature Publishing 
Group; 2013 Aug 22;500(7463):415–21.  

89. Fu Y, Liu Z, Lou S, Bedford J, Mu XJ, Yip KY, et al. FunSeq2: a framework for 
prioritizing noncoding  regulatory variants in cancer. Genome Biol. BioMed Central; 
2014;15(10):480.  

90. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target 
sites in mammalian mRNAs. Elife. eLife Sciences Publications Limited; 2015 Aug 
12;4:101.  

91. Griffon A, Barbier Q, Dalino J, van Helden J, Spicuglia S, Ballester B. Integrative 
analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory 
landscape. Nucleic Acids Res. 2015 Feb 27;43(4):e27–7.  

92. Di Tommaso P, Chatzou M, Floden EW, Nature PB, 2017. Nextflow enables 
reproducible computational workflows. naturecom 

93. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA Comprises 
an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell. Cell 
Press; 2016 Jan 14;164(1-2):57–68.  

94. Marquard AM, Birkbak NJ, Thomas CE, Favero F, Krzystanek M, Lefebvre C, et al. 
TumorTracer: a method to identify the tissue of origin from the somatic mutations of 
a tumor specimen. BMC Med Genomics. BioMed Central; 2015 Oct 1;8(1):58.  

95. Agah S, Akbari A, Talebi A, Masoudi M, Sarveazad A, Mirzaei A, et al. 
Quantification of Plasma Cell-Free Circulating DNA at Different Stages of 
Colorectal Cancer. Cancer Investigation. Taylor & Francis; 2017 Dec 15;35(10):625–
32.  

96. Sozzi G, Musso K, Ratcliffe C, Goldstraw P, Pierotti MA, Pastorino U. Detection of 
microsatellite alterations in plasma DNA of non-small cell lung cancer patients: a 
prospect for early diagnosis. Clin Cancer Res. 1999 Oct;5(10):2689–92.  

97. Tie J, Semira C, Gibbs P. Circulating tumor DNA as a biomarker to guide therapy in 
post-operative locally advanced rectal cancer: the best option? Expert Review of 
Molecular Diagnostics. Taylor & Francis; 2017 Oct 6;18(1):1–3.  

98. Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-F, et al. Analysis 



 75 

of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 
Massachusetts Medical Society; 2013 Mar 28;368(13):1199–209.  

99. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, et al. 
Noninvasive identification and monitoring of cancer mutations by targeted deep 
sequencing of plasma DNA. Sci Transl Med. 2012 May;4(136):136ra68.  

100. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and 
quantification of rare mutations with massively parallel sequencing. Proceedings of 
the National Academy of Sciences of the United States of America. 2011 
Jul;108(23):9530–5.  

101. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat J-P, et al. 
Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in 
prostate cancer. Nat Genet. Nature Publishing Group; 2012 May 20;44(6):685–9.  

102. Cario CL, Witte JS. Orchid: a novel management, annotation and machine learning 
framework for analyzing cancer mutations. Hancock J, editor. Bioinformatics. 2018 
Mar 15;34(6):936–42.  

103. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. 
SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat Methods. 
Nature Publishing Group; 2015 Oct;12(10):966–8.  

104. Miyata Y, Watanabe S-I, Matsuo T, Hayashi T, Sakai H, Xuan JW, et al. 
Pathological significance and predictive value for biochemical recurrence of c-Fes 
expression in prostate cancer. Prostate. 2012 Feb 1;72(2):201–8.  

105. Zhou J, Yang Z, Tsuji T, Gong J, Xie J, Chen C, et al. LITAF and TNFSF15, two 
downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene. 
Nature Publishing Group; 2011 Apr 21;30(16):1892–900.  

106. De Luca A, Sacchetta P, Nieddu M, Di Ilio C, Favaloro B. Important roles of 
multiple Sp1 binding sites and epigenetic modifications in the regulation of the 
methionine sulfoxide reductase B1 (MsrB1) promoter. BMC Mol Biol. BioMed 
Central; 2007 May 22;8(1):39.  

107. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: 
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC 
Bioinformatics. BioMed Central; 2013 Apr 15;14(1):128.  

108. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. 
Oncogene. 2007 May 14;26(22):3279–90.  

109. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and 
therapeutic opportunities. Nat Rev Cancer. Nature Publishing Group; 2010 
Jan;10(1):9–22.  



 76 

110. Hu Y, Ulrich BC, Supplee J, Kuang Y, Lizotte PH, Feeney NB, et al. False-Positive 
Plasma Genotyping Due to Clonal Hematopoiesis. Clin Cancer Res. 2018 Mar 22.  

 
 
 



 77 

Funding 

This work conducted in this dissertation was supported by the following funding sources:  

National Institute of Health (NIH) grants: CA088164 and CA201358 

The UCSF Goldberg-Benioff Program in Cancer Translational Biology  

Amazon Web Services 

Microsoft Azure Web Services. 

  



 78 

Publishing Agreement 

 

It is the policy of the University to encourage the distribution of all theses, dissertations, and 

manuscripts. Copies of all UCSF theses, dissertations, and manuscripts will be routed to the 

library via the Graduate Division. The library will make all theses, dissertations, and manuscripts 

accessible to the public and will preserve these to the best of their abilities, in perpetuity. 

 

I hereby grant permission to the Graduate Division of the University of California, San 

Francisco to release copies of my thesis, dissertation, or manuscript to the Campus Library to 

provide access and preservation, in whole or in part, in perpetuity. 

 

Author Signature ______________________________ Date ______________ 




