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The past decade has seen a burgeoning of research and development in soft­
ware environments. Conferences have been devoted to the topic of practical en­
vironments, journal papers produced, and commercial systems sold. Given all the 
activity, one might expect a great deal of consensus on issues, approaches, and tech­
niques. This is not the case, however. Indeed, the term "environment" is still used 
in a variety of conflicting ways. Nevertheless substantial progress has been made 
and we are at least nearing consensus on many critical issues. 

The purpose of this paper is to characterize environments, describe several im­
portant principles that have emerged in the last decade or so, note current open 
problems, and describe some approaches to these problems, with particular em­
phasis on the activities of one large-scale research program, the Arcadia project. 
Consideration is also given to two related topics: empirical evaluation and technol­
ogy transition. That is, how can environments and their constituents be evaluated, 
and how can new developments be moved effectively into the production sector? 

1 A Characterization of Software Environments 

A common thread that runs through the literature on software environments is 
that the purpose of environments is to support the user in some software develop­
ment or maintenance activity. Sometimes this activity is highly constrained and 
well defined, such as constructing syntactically correct source code. Other envi­
ronments have broader scope, but are highly restrictive in the order of events that 
are permitted. Still other environments are simply collections of tools and data 
management facilities that are believed to be helpful in a broad arena of software 
evolution activities. 

Thoughtful consideration of this notion of "supporting the user" yields some 
important insights. First, if the activities that an environment supports are not 
precisely and unambiguously described, it is difficult for potential users to assess 
whether their needs will be met. Second, the facilities provided by an environment 
may be so loosely structured that they could support a variety of activities, but 
if all structuring and composition is solely the end user's responsibility, for which 
no automated support is provided, then undue burden is placed upon the user. 
It is likely that such an environment will be used to support only the simplest 
and smallest activities. Third, clearly specifying and supporting a specific activity 
may not be enough. Change to virtually any software development or maintenance 
activity is inevitable. Users will wish to incorporate new tools and development 
methodologies. If the environment's structure is closely entwined with the original 
activity, then accommodating change may be difficult and costly, or not possible at 
all. 

In our estimation, therefore, a useful environment will 

• support clearly and precisely defined activities, 
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• mechanize the structuring and composition of support functions, and 

• accommodate changes and personal preferences. 

Such notions of usefulness could be applied to any software system, however, 
and environments must be distinguished from large, multi-option tools if the term 
is to have any useful meaning. Significantly we believe that this distinction cannot 
be made for some early so-called programming environments. We therefore offer 
the following definitions of next generation software environments. 

An environment consists of two parts: a :fixed part and a variant part. The 
aspects of an environment that are prone to change, such as the tool set, are encap­
sulated in the variant part. The unchanging mechanisms necessary to ensure the 
integrity, extensibility, :flexibility, and integration of the environment are in the :fixed 
part. We believe this division is a critical separation of concerns. In contrast, envi­
ronments like Interlisp [TM81] and Smalltalk [GR83rmake no distinction between 
fixed and variant part, or even between the environment and the software developed 
within the environment (to the point where the software can run nowhere except 
within the environment - they are inextricably bound). 

More specifically, the variant part consists of the evolving set of data objects 
(such as specifications, programs, and test data) along with rigorous, detailed de­
scriptions of software development or maintenance activities, which we term "pro­
cess programs" [Ost86] [Ost87]. These activities are defined in terms of individual 
specific operators, which correspond to the classical notion of tools. These opera­
tors can themselves be modeled as process programs (if not actually implemented 
as such), and are correspondingly in the variant part too. 

The fixed part, which can also be termed the environment infrastructure, con­
sists of all the mechanisms necessary for the automated interpretation of process 
programs. Specifically, it consists of a language for writing process programs, an 
agent that enables interpretation of process programs, including mechanisms for 
managing persistent objects, and facilities for providing interfaces to the human 
user. The fixed part also encapsulates assumptions regarding its underlying ma­
chine. That is, it may make use of an operating system, a storage manager, and so 
forth. These assumptions are also components of the infrastructure. The compo­
nents of the infrastructure that are active entities are shown in Figure 1. 

The user may initiate action by making a request for support of some activ­
ity. The request is passed along, through the user interface management system, 
to the process program interpreter. Assuming that the request is well formed, the 
interpreter initiates a series of actions, executing the process specified by the user. 
This execution will involve invoking operators upon operands - both of which are 
managed by the "object manager" component. Examples of operators include lex­
ers, parsers, code generators, debuggers, test data generators, and specification and 
design language processors. Examples of operands include source code, executable 
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- = "makes a request upon" 

Figure 1: The active entities of an environment infrastructure with the "makes a re­
quest upon" relationship shown between them. The variant parts of an environment 
are not shown. 
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modules, test data, specifications, designs, management data, symbol tables, vari­
. ous internal representations of programs, designs, system generation directives (e.g., 
make files), and intermediate analysis results. 

Of course many of the operators will themselves be processes that cause ad­
ditional actions to occur. Note that the entities belonging to the variant part of 
the environment, such as tools and data objects, are managed by this part of the 
infrastructure - they are called into action at appropriate times and do their work 
- but they are not themselves components of the infrastructure. 

There are, of course, operations in a software process that can only be performed 
by people. In essence, the mundane aspects of processes are automated in this view 
of environments, while the creative aspects are performed by creative agents -
people. Accordingly the interpreter may issue a request for an operation to be 
performed by the user, passing the request through the user interface management 
system. 

The user interface management system may directly request services of the ob­
ject manager for storage of windows and depictions of objects. Finally, the under­
lying machine provides services for each of the other three automated components 
of the infrastructure. 

In short, the infrastructure is a virtual machine for the interpretation of process 
programs. 

Clearly we are burying many of the critical and interesting technical issues inside 
the process interpretation system and the object manager. The subsequent sections 
of this paper, which are organized around the entities shown in Figure 1, will clarify 
and elucidate the ideas suggested here. The notions of software processes, process 
programming languages, and the interpretation of process programs are considered 
first, in Section 2, as they are central to our view of environments. These are followed 
by discussions of object management in Section 3, the user interface management 
system in Section 4, the underlying machine in Section 5, and then the two related 
topics of empirical evaluation and technology transition in Sections 6 and 7. 

2 Software Process Definition and Interpretation 

2.1 Software Processes 

Perhaps the most striking feature of the e~vironment architecture described here 
is that it empowers users to rigorously specify their software products and product 
types and rigorously and explicitly specify alterable process programs to guide in 
the development and maintenance of these products. Previous environment archi­
tectures have exploited only primitive notions of explicitly specified products and 
processes. They have supported relatively fixed processes and products, often speci­
fied only implicitly. Moreover, the user's freedom to specify the process supported or 
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the type of product produced by the environment was generally sharply restricted. 
For instance, some previous environments have been aimed at supporting the 

development and maintenance of software specifications and designs. Systems such 
as PAISLey [ZS86], RSL/REVS [BBD77], SARA [EFRV86], Data Flow Diagram 
Designs [War86], Jackson System Development [Cam86], and USE [WPSK86], are 
examples of such previous environments. While certainly valuable for their intended 
purposes, each of these systems provides support for the creation of a relatively 
narrow range of software objects by relatively restrictive and inflexible processes. 
Specifically, they guide users to the development of design or specification objects 
in a particular fixed discipline and format, which is usually pictorial or graphical. 
For example, RSL/REVS is organized to strongly aid users in creating, analyzing, 
and maintaining designs as hierarchies of graph structures that are heavily anno­
.tated. In such environments, the exact structure of the objects and their pictorial 
representations vary from one system to another. In some cases the user is able to 
tailor and adapt these software object types. Invariably, however, these adaptations 
can be made only within a narrow range. For example, users of such environments 
may be able to select the specific fields to be incorporated into a design node, but 
only from a given fixed list of fields and types. 

In addition, these design and specification support environments attempt to 
lead the user through specific procedural processes that are intended to expedite the 
creation of designs and improve the chance that the resulting designs are well formed 
and in compliance with the guidelines of the design or specification methodology 
being supported. Accordingly, such environments are often either indifferent or 
overtly hostile towards attempts to create design objects of new or different types, 
or to follow development procedures that have been devised by the user. From 
our perspective, these environments contain "hard coded" object specifications and 
processes (which they effectively support). They are not hospitable to user attempts 
to make significant alterations to such processes or design object specifications. 

There are also other environments whose goals are aimed more at supporting 
the development of code. Environments such as Interlisp [TM81], Arcturus [ST84], 
and Cedar [Tei85] integrate facilities to support the creation of code in specific 
languages. They support such common activities as editing, parsing, debugging, and 
documentation. These environments assume that user activities can be uniformly 
and smoothly integrated by viewing them as examination and transformation of 
a single uniform representation of one product - code or a representation of the 
code. In Interlisp all software products, as well as the procedures and tools used to 
create them, are considered to be instances of lists. In Arcturus, software products 
and the commands used to manipulate them are all instances of Ada code. As long 
as the user's activities are effectively modeled in these ways, these environments 
provide strong support. As the user seeks to model software products and processes 
as objects of different types, support from these environments falters and becomes 
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awkward. 
Similarly, intelligent editors such as the Cornell Program Synthesizer [TR81], 

Integral-C [Ros86], Gandalf [HN86], and Mentor [DHKL84] are all effective in in­
tegrating user activities, but only over a restricted range. Here, the integration 
rationale is that user activities all revolve around a parsed representation of code in 
a specific language. Experience has shown that this representation supports many 
user activities more effectively than a textual representation of the code. Shifting 
focus from text to an internal representation, however, does not solve the problems 
posed by restricting users from being able to create and manipulate software ob­
jects of types of their own creation using explicit processes of their own creation. 
Structure editors implicitly assume that users are concerned with a few types of 
objects. 

In all of these cases the effectiveness of the support tools is drastically reduced 
when the process that the user wishes to carry out is not anticipated by the environ­
ment. In the case of code synthesis using environments such as Mentor or Interlisp, 
when the user attempts to execute process steps operating on object types not re­
lated to code, such as tests, support is weak. In the case of a design environment, 
when the user attempts to stray beyond the supported methodology, or attempts 
to carry out such processes as coding or testing, support similarly is weak. The 
objective here is not to criticize specific systems, but to point out that the value of 
any environment is closely related to its abilities to support all the user's activities. 

Support for only limited, pre-determined processes is particularly disturbing in 
view of the observation that there is currently little consensus about what consti­
tutes adequate software products and effective software processes, and that products. 
and processes must therefore be expected to vary from user to user, from location 
to location, and from time to time. The most effective process architecture for a 
spread-sheet application, for example, will be different from the most effective pro­
cess architecture for developing a complex command-control-communications sys­
tem. Similarly, project schedule, budget, personnel, reliability, or portability con­
straints will strongly condition the most effective choice and sequencing of major 
process activities. Just as the programming of a software product is more effective 
when preceded by product requirements analysis, architecture definition, and design 
activities, so will be the programming of one's software lifecycle process. 

Many observers believe that progress towards understanding what constitutes 
adequate products and effective processes can only follow from experimentation 
with alternatives. We believe that the best way to facilitate such experimentation 
is to enable users to easily yet rigorously describe software products and processes 
in ways that are convenient and effective and to support the rapid interpretation 
of processes in terms of software tools and procedures. From our perspective it is 
clear that this is tantamount to the creation of environments in which the variant 
part - i.e., the product specifications, process descriptions and set of operators -
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Operations Performed 
by People 

~ == "relies on" 

· Projects 

Process Programs 

Process Program 
Interpreter 

Operations Performed 
by Machines Operands 

Figure 2: The relationship of process programs to the projects they support and to 
the mechanisms that implement them. 

is specifiable by the user, and in which the environment exploits this specification 
to fashion user support, utilizing components from the fixed part. 

2.2 Process Programming Languages 

In this section we discuss some key details of how process programs should be used 
to enable users to flexibly specify how they wish to have machine resources applied 
to the support of their activities. Figure 2 shows the relationship of process pro­
grams to the projects they support and the operations and operands that implement 
them. We see that projects are to be directly supported by specifications of how 
they are to be carried out, where these specifications are to be captured by process 
programs. Process programs rely upon a process program interpreter to carry out 
their commands. This interpreter is responsible for translating the specifications 
embodied in the process program into operations on operands. As indicated in 
Figure 2, some of the operators upon which the interpreter relies are executed by 
computing devices, but others are executed by humans. An important aspect of 
process programming is that it is a vehicle for indicating which activities are to be 
carried out by humans and how these activities are to be coordinated with activities 
carried out by computing devices. We believe that one of the most important ob­
jectives of software engineering is to orchestrate the way in which humans, support 
software systems, and machines are to be coordinated to isolate and specify prob-
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lems, to attack their solution and to determine the degree to which these activities 
have been successful or need to be modified. These activities are neither completely 
mechanical and automatable, nor completely spontaneous and indefinable. Rather 
they must be a careful blend of these approaches. We believe that this blend can 
best be specified and communicated by expressing it in a concrete form - namely 
the process program. 

Early Precedents and Lessons All software projects have as their goal the 
creation and/or modification of software products. They work towards this goal 
by carrying out software operations on software operands. Thus, at the most basic 
level, process programs must be viewed as vehicles for specifying the coordination 
of such operations. It is worthwhile to observe that even operating system control 
languages can be viewed as primitive process programming languages. Language 
processors and system facilities are legitimate operators and the files managed by 
the operating system's file system are the operands. The user issues commands 
to the operating system and it effects the requested operations. Thus, command 
files or scripts are primitive process programs, using the operating system command 
language as the process programming language. 

It is important to observe that these primitive process programs are used to 
indicate the ways in which human operations are to be coordinated with software 
operations. For example, users employ operators incorporated into tools, such as 
browsers, to help them carry out (human) selection operations. Selected objects are 
then used as operands to subsequent software operators, such as edit and compile. 
As another example, users often carry out standard sequences of operations at cer­
tain fixed times during software projects. They may invoke scripts to automatically 
compile new code, or automatically check consistency of new code with support li­
braries. These scripts orchestrate the interaction between machine operations (e.g., 
compiling and checking) and human operations (e.g., creating code). In this way, 
the scripts are small but good examples of process programs. 

Scripts have also been used to automatically create new objects and maintain 
certain types of consistency between new and existing objects. For example, scripts 
are used to automatically recompile source code when support libraries have been 
changed, or to recreate executables when source code has been changed. The Make 
system in Unix [Fel79] is an example of a capability whose goal is to facilitate 
the creation of powerful scripts of just this sort, through the use of a terse and 
precise notation. Clearly this notation is a process programming language, albeit a 
primitive one. 

Current Issues and Needs Operating system command languages and Make 
can be used to write process programs, but they lack the power needed to effectively 
program large and complex processes. One of their most basic and significant de:fi-
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ciencies is their lack of facilities for defining software objects as instances of types. 
Our ideas about the need for an object typing facility, and the way in which it 
should be provided, are elaborated more fully in the next section. Suffice it to say 
here that typing offers a powerful vehicle for organizing not just the basic objects to 
be managed in a software project, but also for defining and organizing the operators 
- both human and machine executable - to be employed by the project1 . 

Going further, we believe the next basic capability that a process programming 
language must support is specification of the order in which operators are to be 
applied to operands. Many operating system command languages incorporate some 
:flow of control operators, but these are generally quite primitive, often consisting 
only of basic looping and alternation constructs. In fact it seems that paucity of 
control :flow e:xpressive power may well be the weakest aspect of most operating 
system command languages. 

Interestingly, other early attempts at rigorously expressing software process have 
focused directly on these aspects. Most ~otable among these attempts have been 
efforts to use diagrammatic representations to depict the major features of large­
scale software processes. In this work, principal software processes were represented 
by boxes, and :flow of control relations among them were represented by arrows. 
The "Waterfall Model" of software development relied upon this device in an early 
attempt to represent an overall software development process [Roy70]. Almost im­
mediately, software process modelers attempted to use these pictorial representa­
tions to also show other relations such as data :flow or process hierarchy. Even later 
work attempted to simultaneously show diagrammatic representations of many key 
relations among a variety of types of software objects. In order to do this, data 
objects were differentiated from process objects by making distinctions between the 
shapes of the boxes representing them. Distinctions among relations were made by 
defining different shapes of arrowheads and different colors and shapes of arrows to 
represent these different relations. Some examples of such more advanced diagram­
matic process representations are ETVX boxes [RRJC85], SADT diagrams [RJ77) 
and Software Development Graphs [Bjo87). 

Inevitably these efforts are limited by the fact that there are arbitrarily many 
valid relations among the large number of software objects required to adequately 
describe software processes, and that different users may at different times wish to 
study various combinations of them. Creating one single diagram containing all 
of these relations is hardly a solution, as such a diagram is so complicated as to 
confound all understanding. Creation of a single internal representation capturing 
all of the complex relations in a software process, and then relying upon tools to 
draw specific diagrams ("views") upon request, seems to be a plausible solution to 

11n either case, the semantics of operations can be formally defined using, for example, pre­
and post- conditions. These conditions, in turn, utilize the accessing primitives that participate in 
defining the object types. 
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this dilemma. We believe that a process program, written in a suitable language, is 
the appropriate device for representing this. 

Thus, we see that software practitioners have used operating system command 
languages as primitive programming languages to program micro-level processes. 
These languages are too primitive to support effective expression of large and com­
plex software processes. At the same time, modelers have attempted to portray 
these large and complex processes with diagram systems that have been unable 
to clearly and precisely express all of the facets and details of true software pro­
cesses. They have been thwarted in their attempts for the same reason - namely 
the lack of a language that is suitably expressive. Thus two diverse and important 
currents both point towards the same basic problem - the need to define a process 
programming language. 

Characteristics of a Process Programming Language We have already 
noted that software process programming requires the ability to define a wide va­
riety of software object types, and that this is best supported by powerful data 
typing and relationship mechanisms. (The issues here are addressed in depth in 
Section 3.) Moreover, support for controlling the procedural :flow inherent in soft­
ware processes must also be provided. Our early attempts to construct process 
programs for realistic software processes have convinced us that the range of con­
trol fl.ow operators required is quite broad. Clearly iteration, alternation, selection, 
and procedure invocation are required in order to accurately portray the way in 
which software processes are carried out. In addition such control fl.ow capabilities 
as parallel execution and exception handling seem essential. 

Turther consideration of how to enable specification of fl.ow of control raises 
the deeper issue of whether an imperative model is the most appropriate linguistic 
paradigm. to use in process programming. Although many aspects of many kinds of 
software process seem to be inherently procedural and algorithmic, there are other 
software activities that defy simple algorithmic description and suggest that the 
declarative paradigm is much more appropriate. Design creation is an example of 
such an activity. 

In design creatiorl the goal is to create a design specification. Often (e.g., in 
the case of the Software Cost Reduction methodology [PC86]), it is quite possible 
to specify the goal object - namely a complex structure of carefully prescribed 
design elements - but it is not clear how to give complete procedural details on 
how to construct it. In such cases it is often reasonable to create rules that guide 
and constrain activities, such as the selection of good candidates for design elabo­
ration, or that can intelligently raise issues about apparent inconsistencies among 
design elements. Thus some aspects of design seem to be rule-based. Other aspects, 
such as the orderly elaboration of details of design elements and their correlation 
with each other, are much more procedural. This suggests that a process program-
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ming language might ideally be a language that combines procedural and rule-base 
paradigms. 

Furthermore, our early work indicates that an important aspect of software 
processes is that they often create other processes that are executed later on. For 
example, test planning is a process whose goal is the creation of another process that 
is to be executed at some future point in the execution of the software development 
process. During test planning, the test plan is created as a software object. This 
may entail such subactivities as development of test cases, encoding of algorithmic 
strategies for the systematic execution of the test cases, and development of proce­
dures for capturing test results. Much later in the development process, after code 
has been developed, this test plan object must be "executed." This entails treating 
the test plan object as a process, rather than an operand. This passive/active na­
ture of some software processes points to the desirability of a language such as Lisp 
in which code and data are freely interchangeable. 

In the Arcadia project we are experimenting with software process programming 
languages. In our earliest efforts we are coding process modules in a variety of 
language paradigms, attempting to arrive at a more precise set of requirements for 
this language. 

3 Object Management 

An environment user's primary objective is to create and/or maintain a software 
product. No matter what process program might be used in creating and maintaining 
it, a software product will be a very complex and highly interrelated collection of 
objects. Those objects will be of widely different kinds, ranging from source code 
and executable modules to documentation and test plans. Each kind of object will 
have an associated set of applicable operations, but operations applicable to one kind 
of object will generally not be appropriate for use with other kinds. This suggests 
that an environment's fixed part should provide support for managing typed objects 
and a rich set of relationships among them. 

As Figure 1 indicates, the object management system will be a major compo­
nent of the Arcadia environment infrastructure. It will be responsible for managing 
objects in two distinct classes: the components of the software products being pro­
duced by users of the environment, and the tools and information structures that 
constitute the environment itself. From the process programming perspective, the 
former can be viewed as the (input and output) data manipulated by a process 
program while the latter are the operators and internal data structures of the pro­
cess program. (As previously noted, an object can move back and forth between 
categories during its lifetime.) 

The object management system will provide the underlying mechanism on which 
the data management capabilities of a process programming language and a pro-
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cess program interpreter can be constructed. A particular process programming 
language might present its users exactly the same object management capabilities 
that the environment's object management system provides, as an assembly lan­
guage presents its users exactly the same data types provided by the underlying 
machine. It seems equally likely, however, that a process programming language 
might offer a different view of objects than that provided by the environment's ob­
ject manager. In either case, the properties of the object management system will 
influence the data management aspects of an environment's process programming 
languages. 

Most environment builders have had to rely on a traditional file or database 
system for storing the objects associated with their environment. It is our belief, 
however, that a much richer set of capabilities for controlling object creation, access 
and organization is essential to an environment. In particular, a suitably powerful 
object management system will enhance the environment's support for change, its 
integration, its support for software reuse and its support for cooperative work by 
multiple developers. 

Work on environments during the last decade has revealed four important areas 
of concern that must be addressed by an object management system. These are: 

• type systems; 

• relationship sytems; 

• object persistence; and 

• concurrent and distributed object management. 

Each poses interesting problems. The capabilities sought in each of these areas and 
the problems we foresee are discussed below. 

Type systems As indicated above, we view a type system as the primary mecha­
nism for describing and maintaining objects. The object manager should be able to 
enforce the type system, hiding the internal structure of typed objects behind well­
defined interfaces and strictly controlling the operations that can be performed on 
those objectS. If all objects are instances of abstract data types, it is easier to share 
objects or to change their implementations. Thus, basing the object management 
system on a typing system that fully supports data abstraction will contribute to 
environment flexibility and software reuse. 

Current approaches to object management in environments fall far short of pro­
viding full support for typed objects. Typically the components of a product are 
treated simply as files [Fel79] and tools are viewed as operators applicable to the 
contents of those files. Usually in such systems, only a predetermined and limited 
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number of different kinds of components (e.g., source file, object file) and opera­
tions (e.g., compiler, linker) are available. The Odin subsystem of Toolpack [C086] 
improved on this simple view by using file name extensions as a weak form of typing 
mechanism for files. It also allowed users to define which tools could operate on 
or produce files of various types. The System Modeller, developed as part of the 
Cedar system [LS83a] used the term "object" for referring to the files containing 
product components, but did not treat the objects as instances of abstract types. 
The Common APSE Interface Set (CAIS) [CAI85] defines a system model with 
three kinds of nodes-file, structural, and process-but does not treat those nodes 
as typed objects. While clearly improving on the simple use of files, all of these sys­
tems provide only partial support for typed objects. Meanwhile, work on support 
for typed objects within the traditional database community [SR86,CDF*86,ZW86], 
while encouraging, is still in its primitive stages and far from providing the :flexibility 
and power needed for object management in a software development environment 
[Ber87]. Recent work on rich type systems, particularly in the context of object­
oriented languages [Mey86], is also encouraging, but also still in its infancy. No 
consensus has yet emerged on a desirable and appropriate set of features for such a 
type system. 

Thus, one major object management research issue is: What kind of type system 
is needed to describe the objects populating a software development environment? 
The type system needs to be :flexible and powerful enough to capture the relevant 
properties of environment objects. Tools, processes, and perhaps even types them­
selves need to be treated as typed objects. Once the capabilities of the type system 
are clearly delineated, suitable mechanisms for realizing those capabilities must be 
found. While there are many intriguing proposals for type mechanisms, it is not 
clear which of these (e.g., single vs. multiple inheritance, specification vs. repre­
sentation inheritance, generics, static vs. dynamic binding) form a compatible set 
providing the capabilities needed for environments. 

Relationship systems Closely related to the ability to precisely define and main­
tain the typed objects in the environment is the ability to capture and maintain the 
relationships among those objects. Much environment work in the last ten years 
has focused on mechanisms for describing, reasoning about, or exploiting relation­
ships among objects. Examples of relationships include those connecting various 
versions of a module, or those between the modules constituting a configuration, or 
those between a module and all the others that it calls, or those joining activities in 
a work breakdown structure. Examples of tools that reason about or exploit rela­
tionships among objects include revision control systems [Tic82], automated system 
building tools [Fel79], call graph analyzers, and work activity management systems 
[GLB*83]. 

Explicitly indicating the relationships among an environment's tools and infor-
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mation structures should make it easier to modify the environment since the effect 
of changes can be determined. Moreover, capabilities that rely on relationships, 
such as inference and derivation, will enhance environment integration by allowing 
users to interact with the environment at a high level, leaving the intermediate 
steps to be automatically determined. Generic relationship capabilities will also 
enhance integration by providing a uniform set of capabilities across different kinds 
of relationships. 

A weakness in previous work is that there has been no systematic treatment 
of the numerous and complex relationships that exist among environment objects. 
The CAIS notions of primary and secondary relationships (also found in the node 
structure of the ALS [Tha82]), Odin's derivation graphs, and the system models of 
Cedar represent important starting points. The concept of configuration threads 
found in DSEE [LRPC84) and the relationship capabilities for module interconnec­
tion languages provided by INTERCOL JTic79) are additional examples of partial 
treatments specialized to one class of relationships. 

Thus, another important object management research question is: What are 
suitable primitives and constructors for defining the relationships needed in en­
vironments? It is not clear whether the diverse relationships needed in software 
development can be captured in a single model or not. Moreover, how should the 
relationship structure and the type system interact? Associated with the relation­
ship system is a set of capabilities, such as consistency checking, derivation tracking, 
and inferencing. Work needs to be done on identifying these capabilities and in ex­
ploring how generic such capabilities can be. For example, can generic consistency 
checking tools applicable to the relationship structure subsume the specialized con­
sistency analyses associated with interface control or configuration management? 
Another important concern is when and how such capabilities are initiated. Some 
must be requested by the environment user, either directly or via an executing pro­
cess. Others can be more effective if triggered by resulting events. Thus, support for 
"active" objects or daemons that are triggered by process or user-specified events 
in the environment is needed. 

Object persistence The object manager must be able to preserve the compo­
nents . of software products and the constituents of software environments for ar­
bitrary periods of time. Moreover, it should preserve both the structure and the 
restrictions on how these objects can be manipulated that are imposed by the type 
system. Under such a scheme, the traditional distinction between primary and 
secondary storage representations of objects is hidden within the typed object ab­
straction. This can free both environment users and environment builders from 
concern about distinctions between internal and external representations of objects 
and conversions between those representations. Thus, the object manager should 
support persistence, enabling objects to continue to exist beyond the lifetime of any 
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of the tools that manipulate them and preserving the integrity of their types and 
relationships to other objects. 

Current approaches to persistence, based on files or databases, require explicit 
action by the tools. Using a file system, a tool must take responsibility for converting 
the internal form of an object to an acceptable (e.g., linear) external form and, when 
needed, converting it back. There are few restrictions to assure that the type of an 
object is not violated (e.g., that its contents are not altered using an editor while 
it resides in the file) or changed (e.g., that a stack is not read back as an array). 
Using a database system, the tool must make calls on the database to explicitly 
store and retrieve information. Current databases provide support for only a limited 
number of types, so once again the tool must provide the conversion algorithms and 
there is no guarantee of type integrity. There has been some interesting work on 
.merging database support into programming languages [ABC*83,CLF86,0SD86], 
although implemented prototypes have been very restrictive about the supported 
types [ABC*83] or the underlying program model [CLF86]. 

Thus, an important issue that must be addressed by the object manager is: How 
should persistence be provided for arbitrarily complex, typed objects? To permit 
maximum flexibility in the creation of objects and their relationships, the persistence 
of an object should be a property orthogonal to all other object properties. It is not 
clear how persistence should be recognized in a program (e.g., declared as part of 
the type or explicitly requested with the instantiation of an object) or how invisible 
persistence can be (e.g., no need to explicitly "commit" or "linearize" objects). 
Supporting a rich type system and providing an invisible line between memory and 
secondary storage raise challenging problems. 

Concurrent and distributed object management To allow multiple users to 
work conveniently on the same software development project requires support for 
concurrent and distributed object management. Assuming a network of worksta­
tions, di:ffere~t members of a development project may simultaneously be invoking 
the same or different tools to operate on one or more of the same objects. Thus, 
the object manager must be able to mediate concurrent usage of objects and to 
maintain consistency of both the objects and their relationships. Ideally, the object 
manager should make the distributed nature of the object base and the concurrent 
access to its objects invisible to users and tools in the environment. 

A variety of approaches for handling distribution and concurrency have emerged 
from programming language [ALR83] [Hoa78] [LS83b] and file system and database 
research [HM85] [WPE*83] [SHN*85). Unfortunately no single model for dealing 
with these issues is universally accepted within one of these domains, let alone for ob­
jects that move between them. Moreover, some of the more popular approaches are 
ill-suited for use in an environment object management system. Locking schemes, 
for example, typically apply to entire objects and do not permit concurrent access 
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to disjoint subsets of an object's components, which may be a frequent occurrence 
in an environment. Transactions schemes generally presuppose relatively short du­
ration transactions, while a software developer's transactions (e.g., update a source 
program) may last for days or weeks. The rollback approach to conflict resolution 
is also of questionable value in an environment. 

Thus, one of the major problems facing object management is: What are ap­
propriate constructs for expressing distribution and concurrency constraints and 
what underlying mechanisms must be provided to support these constraints? It is 
not clear what storage management primitives need to be provided to adequately 
capture the distribution and concurrency needs of an environment. As with types, 
relationships, and support for persistence, the appropriate descriptive notations 
must be developed as well. Also, where should the desired concurrent/distributed 
behavior be described - in the tools that create the actual instances of the objects, 
in the abstract data types that define the objects, or in the process programs that 
describe how the objects are to co-exist within the environment? 

Arcadia Approaches As indicated above, much work has previously been done 
on problems related to object management. That work, however, has generally been 
directed toward solving individual problems, leading in some cases to incompatible 
solutions, and has not yet resulted in consensus on the appropriateness of those 
solutions. Moreover, much of the work has been oriented toward domains other 
than software development. 

The approach to developing an object management system that is being taken 
in the Arcadia project is therefore one of synthesis and extension. In particular, we . 
are initially looking to programming language technology for guidance in the design 
of a type system and the expression of distribution and concurrency constraints, 
and initially looking to database technology for guidance in the design of mecha­
nisms for persistence, relationships, change, and distribution. It is clear that some 
new solutions are still required to satisfy the special needs of software development 
environments. To sharpen our understanding of these needs, we are examining pro­
cess programs for a wide variety of activities, examining a wide variety of tools that 
would make use of the object management system, and reflecting on our experience 
building Odin and Keystone [CHOW85], which can be viewed as primitive object 
management systems. We are also developing formal models, as we have previously 
done for module interface relationships [WCW86], for describing and evaluating the 
various capabilities intended for inclusion into the object management system. 

One design that we are considering provides a functional layering of the desired 
capabilities. At the lowest level are facilities for such things as storage manage­
ment, concurrency control, and transaction management. The next level supports 
the basic concept of types, essentially defining the type system provided by the 
object manager. Above that are primitives for realizing object relationships. The 
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capabilities for revision control, partitioning of objects into libraries, and the like, 
appear at the highest level. All of this together provides the. basis on which type 
systems for process programming languages can be implemented. 

We intend to build successively more sophisticated prototypes of the object man­
agement system. This activity will be facilitated by the recent trend in database 
research toward the development of database toolkits [SZR86,Ber87,Spe87,CDF*86]. 
These toolkits provide basic, low-level capabilities such as storage management, con­
currency control, and transaction management. The idea is to provide a foundation 
upon which to build higher-level capabilities, such as those for typing and relation­
ships. The obvious benefit of using such a foundation is the ability to experiment 
with alternative higher-level structures without having to construct instances of the 
lower-level facilities for each such alternative. These toolkits are intended to be 
"general purpose" and we intend to experiment with prototypes of the toolkits to 
ensure that our particular needs can be satisfied. ·· 

Until database toolkits become available, we are building prototypes that ex­
amine particular aspects of object management. Three significant examples of this 
are a relationship management system, an application generator called Graphite 
[CWW86], and a storage system for our internal representation of programs, Iris 
(see Section 7). The relationship management system is intended as a vehicle for 
exploring the suitability of various automated constraint-satisfaction and inferenc­
ing techniques in the domain of process programming. In particular, it provides a 
general framework for specifying goals in terms of relationships over objects, and 
mechanisms, such as backward and forward chaining, for reasoning about the satis­
faction of those goals. Graphite is being used to investigate issues in the specification 
of types, insulating tools from changes to those types, and hiding details of how in­
stances of those types are made persistent. The class of types that Graphite focuses 
on is attributed graphs, since it is clear that this particular class is important in 
a software development environment. For instance, one of our uses for attributed 
graphs is to internally represent programs. The third example is also concerned 
with attributed graphs since the purpose of the storage system prototype is to in­
vestigate issues in the persistence of such graphs. In particular, we are using the 
storage system prototype to study techniques for achieving efficient access to subsets 
of attributes by exploiting locality of reference. 

4 Interface with the Human User 

The user interface management system is the third major component of an environ­
ment's fixed part. We consider it here, discussing first the characteristics of good 
interfaces that an environment should exhibit. Some outstanding problems are then 
noted. The remainder of the section addresses various specific approaches to the de­
sign of user interface management systems, including separating tool functionality 
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from interaction properties, the use of abstract depictions in managing the display, 
and techniques to aid in achieving uniformity. 

Characteristics of good interfaces Broad consensus exists on the qualities 
which distingish good user interfaces for software environments. Uniformity (or 
consistency) reduces the difficulty of learning new activities and moving between 
activities. The direct manipulation interaction paradigm, using graphics and point­
ing devices, increases the communication bandwidth between tool and user. Per­
missive (or non-preemptive) interfaces allow the user to interleave activities in a 
natural way. 

Uniformity reduces the number of details a human user must remember, and 
increases skill transfer between activities. A uniform interface makes the same set 
of operations available everywhere they make sense, and allows the user to spec­
ify an operation in the same manner wherever it is available. Interpreter-based 
programming environments made significant early progress toward uniformity by 
unifying the command language and programming language of the environment. 
More recently, editor-based programming environments have provided a uniform 
set of commands for manipulating program source code, blurring the distinction 
between editing, compiling, and debugging. Limited progress has been made in 
providing a uniform interface across a wider variety of activities, mostly by impos­
ing informal standards (like the Macintosh user interface guidelines [Ins85]) and 
providing a toolkit of reusable components (scrollbars, menus, and the like). 

Direct manipulation, or more precisely the illusion of directly manipulating a set 
of objects, requires a rich visual representation of state. This visual representation 
unburdens the users' short-term memory, replacing recall tasks with easier recogni­
tion tasks. (Menus serve a similar purpose with respect to remembering commands). 
Objects are referred to with a pointing device and through implicit pointing (e.g., 
cursor position.) Changes in the representation provide immediate confirmation of 
user actions. The basic principles of direct manipulation are applicable to character 
displays, but modern bitmapped workstations are capable of richer visual represen­
tations of state. Pioneering work in the application of graphics to programming and 
software engineering include the Incense debugging system [Mye83], the Balsa algo­
rithm animation system [BS84), and the Pecan programming environment [Rei85). 

Permissiveness is an essential aspect of direct manipulation, too seldom achieved 
in current systems. A permissive interface allows the user to choose the next action, 
arbitrarily interleaving interactions with each object depicted on the screen. The 
converse of permissiveness is preemption. A preemptive interface imposes an order 
on user actions. The prompt/input paradigm of gathering input is a classic example 
of preemption. 

Window systems are primarily a means of limiting preemption. Windows grafted 
onto a conventional system in the form of multiple virtual terminals provide a 
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minimal degree of permissiveness, sufficient for the user to temporarily escape from 
the control of a single application. The multiple views of Pecan [Rei85] and the 
Pi debugger [ Car86] hint at the richer interaction possible when each tool may 
coordinate several threads of control. 

Outstanding problems Uniformity becomes both more important and harder 
to maintain as the scope of an environment grows. A large, extensible environment 
will contain tools contributed by a diverse community of developers and users. Both 
the toolset and interaction techniques can be expected to evolve during the lifetime 
of the environment. A critical problem, then, is decoupling the human interface 
from tools so that each may evolve independently. Providing a set of reusable com­
ponents is helpful, but may not be enough by itself. The Sun View facilities [Sun86], 
for instance, encourage similar visual appearance across tools, but they are not much 
help in establishing consistent interpretati?ns of mouse and keyboard actions within 
windows managed by tools. The interface between interaction and tool functionality 
(in the application domain) is the most troublesome interface in modularizing inter­
active graphics programs. Because graphics toolkits deal entirely with the graphical 
domain, they do not help clean up this interface. 

The problem becomes apparent when one notes that other tools, as well as 
human users, may use a tool component. A good human interface is generally not a 
good tool interface. An all-purpose interface, like Unix character streams, is unlikely 
to be satisfactory in either role. Thus, in current Unix-based systems, the set of 
tool-usable tools is quite disjoint from the set of interactive tools. It is difficult, for 
instance, to use a screen-oriented editor or a spreadsheet program as part of a pipe 
or shell script. 

Techniques and approaches User interface management systems (UIMS) is an 
active area of research, outside the context of software environments research as 
well as within it. The following paragraphs discuss current approaches to separat­
ing application functionality from interaction facilities, managing the display, and 
establishing a uniform interface to all the functions supported by an environment. 
The design of the Chiron user interface subsystem of Arcadia is briefly presented 
as an example of a system that brings together several threads from current user 
interface research. 

Separating functionality and interaction. Several current approaches to 
direct manipulation interfaces carefully separate the application domain (or model) 
from the presentation domain (or view). A tool manipulates objects in an appli­
cation domain. An encapsulated tool component (sometimes called the controller) 
maintains consistency between objects in the two domains, so that the presentation 
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domain accurately reflects the state of application objects and the application do­
main properly responds to user activity in the presentation domain. We see this as 
a key separation. 

In "editor" environments supporting a narrow set of objects and functions, a tool 
component may map the central application data structure (typically a parse tree) 
to the presentation don:i.ain. Separation of concerns between application domain 
and presentation domain is achieved, but at the cost of requiring all environment 
facilities to operate on the shared data structure rather than a variety of data 
structures suited to different applications. Environments of wide scope require a 
more flexible scheme. 

The Incense debugger [Mye83] introduced the notion of artists to maintain the 
depictions of each particular type of application data. Each artist encapsulates 
information about a particular application data type, and how it should be repre­
sented. Since this information is encapsulated in individual artists, outside of any 
shared user interface infrastructure, tools are not forced to share a common repre­
sentation or data model for application objects. This is important, but raises the 
question of associating artists with types. 

Multiple inheritance in a type system provides a powerful mechanism for as­
sociating artists with application data types. The annotation mechanism of Loops 
[SBK86] [SB86] can be used to trigger an artist whenever an application object 
is manipulated. Lisp object systems [BKK*86,Moo86,BDG*87] provide a similar 
capability with method-mixing in multiple inheritance. Conceptually, an artist is 
"wrapped around" an existing data type, as illustrated in Figure 3, so that the old 
interface (available operations) shows through the new. 

Managing the display. Current approaches to user interfaces generally inter­
pose an intermediate level of representation between application objects and their 
concrete depiction on the screen (Figure 4). This abstract depiction serves several 
purposes. It is generally more convenient for an artist to manipulate a structured 
description of a display than a lower-level representation, especially if the structure 
of the abstract depiction reflects the structure of the depicted object. Also, manip­
ulating a portion of the abstract depiction can result in efficient incremental update 
of the display, provided the rendering agent is able to determine which portions of 
the concrete depiction may be affected by the change. 

More importantly, an abstract depiction can be used as a basis for input cor­
relation, relating an input action (e.g., mouse click) with a particular application 
object. Window systems provide input correlation down to the window level, but 
not within windows. This is sufficient for menus and scrollbars, which can be de­
signed so that each choice lies in its own window, but not sufficient for general 
diagrammatic depictions of software objects. An abstract depiction level managed 
by the environment can perform input correlation to the level of individual picture 
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Figure 3: An artist is logically "wrapped around" an abstract data type. The 
application (or model) object is encapsulated in an abstract data type, with visible 
operations fold, spindle, and interrogate. Each of these operations "show 
through" the artist, in the sense that the artist exports operations with identical 
signatures and semantics, except that the presentation object (or view) is updated as 
a side effect. Operations which do not change the application object (interrogate, 
in this diagram) are simply re-exported without change; additional operations on 
the presentation object (planarize, colorize) may be added. 
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Figure 4: The most difficult part of interactive graphics programming is maintaining 
the association between application objects and their depictions. When a structured 
intermediate representation (an abstract depiction) is interposed between applica­
tion objects and their depictions, this task can b~ considerably simplified. The 
system can maintain the relationship between the abstract and concrete depictions, 
and associate input events with particut~ components of the abstract depiction. 
The artist that created that particular component can then be notified; it need only 
maintain the relationship between high-level graphical objects and the application 
objects they depict. 



elements. 

Approaches to uniformity. Centralized interpretation oflow-level input can 
be used to achieve a basic level of uniformity. For instance, if the lexeme select is 
bound to a single click of the leftmost mouse button, then the application will receive 
the event select, rather than a raw key click, when the button is pressed. Binding of 
lexemes to raw events should always be under control of the user, rather than the 
tool builder. Techniques adequate for administering this level of interpretation are 
well known (e.g., the TIP tables of Cedar). Central administration can also guar­
antee consistent interpretation of a small set of "global" commands, for instance, 
terminating a tool. Anyone who has attempted to kill an unfamiliar Unix program 
with keyboard incantations will appreciate the importance of such guarantees. 

Reusable components are a complementary approach to promoting uniformity. 
Application-independent components, such as scrollbars, are already in common use. 
Clean encapsulation of interaction facilities makes it feasible to provide reusable 
components for data abstractions in a particular application domain (e.g., Petri 
nets), as well. Since artists are associated with abstract data types, the path of 
least resistance for tool developers is to reuse an artist for all interactive tools 
dealing with a particular data abstraction. 

Arcadia approach to user interface. The Chiron user interface subsystem 
of Arcadia is characterized by artists bound to abstract data types through a type 
inheritance mechanism, a simple diagram-oriented abstract depiction, concurrency 
between and within tools, and support for uniformity across tools. 

Since abstract data types are key to modularizing tool fragments in Arcadia, 
Chiron uses type inheritance to bind artists to objects. An artist inherits appli­
cation functionality and adds new state (a depiction) and new operations (e.g., 
planarize, colorize). It also manages side effects to the new state from existing 
operations (i.e., updating the display when the object changes). Chiron provides 
a diagram-oriented 2 ! D hierarchical display model, including nested and overlap­
ping windows. Artists manipulate this abstract depiction. Chiron maps it into the 
concrete depiction, typically a bitmap. 

Chiron emphasizes concurrency between and within tools. Each depicted object 
may have its thread of control, and each may independently maintain its depiction 
and react to user actions. In addition, a rendering agent maintains the concrete 
depiction concurrently with manipulations of the abstract depiction (subject to 
interlocks on the latter), and input proceeds concurrently with output. Additional 
detail on Chiron can be found in [YTT87]. 
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5 Capabilities of the Underlying Machine 

All aspects of environments described above must ultimately rest on some set of 
underlying machines. Whether an environment can successfully and readily be im­
plemented atop a particular set of machines depends on how closely the needs of the 
former can be matched with the capabilities of the latter. One issue, for example, is 
the mapping between the environment's notion of execution (of tools, for example) 
and the model of execution supported by the underlying machine. Another similar 
example is the mapping between the environment's object management mechanism 
and the storage structures (both primary and secondary) of the underlying ma­
chine. The mapping of the user interface management system to an underlying 
window system interface was briefly discussed in the preceding section. Here we 
limit our attention to supporting parallelism within an environment and supporting 
a distributed environment. 

In our estimation, the underlying machine must provide good features for ex­
ploiting and controlling parallelism. Early operating systems, such as Unix, pro­
vided this capability via the notion of operating system process. An important ob­
jective of their definition is to protect users from one another - providing :firewalls. 
While :firewalls are certainly necessary, always binding protection to the concept of 
parallelism prevents effective sharing of data, tool integration, and exploitation of 
true hardware parallelism. It imposes a sequential view of tools and programming 
on developers. 

We see a critical need for operating systems and underlying hardware to provide 
multiple threads of control within a single virtual address space. This capability, 
sometimes called "lightweight processes" [SZBH86], allows truly concurrent tools to 
operate on shared objects. This can be exploited effectively in the interface to the 
human user and in many tool designs. It is also necessary for good data collection in 
support of the evaluation of environments, a topic discussed in the following section. 
This is because data collection, regarding the performance of a tool or development 
process, can occur silently and unobtrusively, not degrading the performance of the 
activity being monitored. Operating systems should also provide asynchronous I/ 0 
primitives, to avoid restricting parallelism within a tool. 

Turning now to the topic of distributed environments, we believe that future en­
vironments must be designed to support multi-person teams of developers utilizing 
a local-area network. Moreover, compreheiisive, large, industrial-quality environ­
ments should not make any assumptions regarding the physical proximity of the 
developers. In particular, wide-area persistent object management facilities must 
be provided, enabling cross-country sharing and co-development of objects. 

One of the most promising developments in operating systems, which offers 
the potential for providing many of the capabilities just described, is the Mach 
operating system being developed at CMU [Ras86]. The Arcadia Project is currently 

26 



evaluating Mach for use as its underlying operating system. 

6 Measurement and Evaluation of Environments 

Software environments are intended to reduce the cost of software development and 
maintenance and to increase the quality of the resulting software. It is not enough 
to just propose software environments or build prototypes, however. The effective­
ness of software environments needs to be measured and evaluated. Environments 
incorporate a diverse set of components, such as user interface facilities and analy­
sis tools, support numerous kinds of objects, and apply to a wide range of problem 
domains. Hence the evaluation criteria, or software metrics, need to be tailored to 
cost and quality indicators for the particular environment components, objects, and 
application areas. Moreover, software environments need to be evaluated in a mul­
tiplicity of situations: developers with different expertise levels, different software 
error profiles, and so forth. 

Though the need for measurement and evaluation of software environments is 
apparent, there are several pertinent open problems. One problem relates to how 
software environments should be evaluated: approaches have ranged from "single 
observation" studies [WHBK86] to more systematic approaches [Sel85]. Another 
problem is that there has been no unifying system to support the processes of spec­
ifying, collecting, and analyzing software metrics. Yet another problem is whether 
evaluation mechanisms should be incorporated into the software environment ar­
chitecture (such as is being done in Arcadia) or supported in a stand-alone system 
(e.g., TAME [BR87]). 

Approach to measurement and evaluation Software environments contain a 
range of components embodying innovative technologies. We believe the impact of 
these technologies should be assessed by conducting a series of controlled, empirical 
studies. The. intent of such studies is to characterize the usefulness of particu­
lar tools and to evaluate the effectiveness of a software environment as a whole. 
When properly carried out, the series of studies can capture several factors that 
may affect an environment and its components, such as expertise of programmers 
using the environment. The studies should focus on evaluation criteria that are 
customized to the purpose of an individual environment. Evaluation criteria may 
include the degree to which an environment supports rapid change of large software 
systems, extensibility of the tool set, alternate lifecycle models, programming-in­
the-large, reuse of previous work-products, object persistency, customization of the 
user interface, and transparency from the underlying operating system and machine 
architecture. Depending on the evaluation criteria, a series of empirical studies may 
incorporate in-depth, small group studies, and/or large scale experiments. In order 
for the results of the studies to be representative of large populations of potential 
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• An environment should support metrics that address a multiplicity of software quality, 
cost, and productivity factors. 

• An environment should support metrics that enable the measurement and evaluation 
of a wide variety of software objects and software processes. 

• An environment should support metrics that capture information related to the usage 
of human resources. 

• An environment should support metrics that capture information related to the 
changes and errors in software objects and processes. 

• An environment should support metrics that capture information from both the static 
and dynamic analyses of software objects and processes. 

• An environment should support metrics that apply to the multiple levels of inter­
human communication and orga'nization. 

• An environment should support metrics that apply to the multiple levels of organi­
zation of software tools and m-ethodologies. 

• An environment should support the data validation of collected metrics. 

• An environment should support the collection of both individual metrics and charac­
teristic metric sets. 

• An environment should enable the definition of new metrics in terms of algebraic 
combinations of metrics currently collected. 

• An environment should support the rapid analysis of and feedback from collected 
metrics. 

• An environment should support a natural interface between itself and statistical and 
graphical packages. 

Table 1: Sample guidelines for incorporating metrics into software environments. 

environment users, the studies need to use subjects with a wide variation of ex­
pertise, ranging from novices through highly experienced professionals. The use of 
sensitive statistical techniques, such as within-subjects, fractional factorial designs, 
takes into account both large variations in human performance, such as the 10:1 
differential noted in [Cur83], and interactions among the factors being compared. 

Drawing from earlier work in evaluating software technologies, we have devel­
oped several guidelines pertaining to the purposes, types, and scopes of metrics 
that are desirable [Sel87]. Some of the guidelines are shown in Table 1. The guide­
lines may be viewed as a first step toward articulating the measurement capabilities 
needed by software researchers and developers. They are intended to structure the 
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process of integrating measUiement. into environments, delineate the measUiement 
issues that affect environment builders, and be reusable across multiple environment 
projects. 

Application to Arcadia The approach in the Arcadia project is for a series of 
empirical experiments to characterize the environment's overall effectiveness. The 
studies will employ several evaluation criteria, such as those listed above, and nu­
merous scenarios regarding software creation and manipulation processes, software 
objects, and software developers. In the controlled studies, we intend to apply OUI' 

experience gained from conducting empirical evaluations in related areas [Sel86] 
[SBB87]. These studies will provide both feedback to the developers dUiing produc­
tion of the environment and valuable information for Arcadia users. 

The Arcadia environment architecture will support the specification, automated 
collection, and automated analysis of software metrics~in recognition of the need 
mentioned above. We are applying the guidelines of Table 1. We have investigated 
various approaches for determining which metrics to collect and have focused on 
the concept of characteristic metric sets. A characteristic metric set is defined as a 
concise collection of metrics that captUie distinct cost and quality factors [BS85]. 
The desirable properties of metrics include their being objective, automatable, and 
transparently calculable. 

We believe the most effective way to achieve these properties is to build the 
metric collection mechanisms into the environment's infrastructure. Our approach 
is to define a characteristic set of metrics for the environment as a whole and a 
characteristic set for each software object type. (Recall that all software objects in 
the environment are.instances of types, including those objects that house software 
process descriptions). The software metrics in the set are customized to meet the 
individual cost, quality, and productivity indicators of a particular object type. 
The metrics are viewed as accessing primitives to the types and may be inherited 
from other types. Daemons with programmable firing criteria are the vehicles for 
calculating the metrics; they aid in achieving the transparent calculation of the 
metrics. The mechanism here is very similar to the annotation concept described 
in FigUie 3. 

7 Development and Tech Transfer 

Several essential principles of technology transfer have emerged in the past few 
years. Among the most important are that (a) the introduction of new technology 
tends to raise uncertainty in the organizations that depend upon it, (b) the degree 
of uncertainty is generally proportional to the extent to which the new technology 
affects the members of the organizational structure, and ( c) difficulty in achieving 
effective technology transfer is proportional to the degree of unresolved uncertainty. 
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Software support environments affect most or all the members of projects, so to 
the extent that an approach to such environments is revolutionary, putting that 
approach into widespread use represents a challenge. Acceptance ofa dramatically 
new approach to environment technology can be enhanced by resolving or mitigating 
the uncertainties; there are several ways to do this. 

First among these is to guarantee that the environment really provides appro­
priate service to the project members throughout their period of dependence on it. 
To achieve appropriate service mandates some general properties of quality soft­
ware, such as robustness, adaptability, user-friendliness, and adequate support. In 
addition, it requires focussing on the high priority needs of the projects, such as 
achieving software development schedule compression and matching the user con­
text. This in turn requires that the developers of the new environment technology 
obtain practical feedback on its effectiveness before the projects adopt it. One im­
portant technique to achieve early feedback is to build the environment in stages 
and to use the early versions of the environment in the process of building later 
stages. This is a special case of iterative development that many environment de­
velopers :find extremely valuable. It must be augmented by techniques to achieve 
feedback from a more representative sample of potential users. This may include, 
for example, prototyping and incremental development in which such representa­
tive users exercise the early increments. In some cases, users' participation may be 
extended to include contributing to the specification and design of the environment 
capabilities. 

Acceptance of new technology requires more than a quality product, however. 
It also requires the perception of quality. There are many ways to establish that 
perception. A first step includes persuasion through such techniques as effective 
demonstrations, reasoned arguments, and macro- and micro-economic analyses sup­
ported by empirical measurements. These relatively indirect means must eventually 
give way to the direct means of experience. Testimony from satisfied users is a most 
powerful way to strengthen an emerging perception of quality. Ultimately, con­
vincing persuasion can only be achieved by the personal experience of using the 
environment directly. 

The accurate perception of quality is still not sufficient; certain "entry barriers" 
to acceptance must be minimized. For example, some new technologies, although 
they provide long term benefits or support difficult tasks very well, may make short 
term or simple tasks more complex and expensive. This can be a fatal entry barrier. 
So can comparatively high initial costs or very limited availability. Broad acceptance 
generally requires simple mechanisms for simple tasks, low entry cost, and broad 
availability when compared to alternate available technology. 

Finally, the new technology may not be accepted even where there is an accurate 
perception of quality and the entry barriers have been minimized. Frequently there 
is need for a champion within the organization to guide the acceptance of the new 
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technology through the maze of organizational roadblocks. 
The principles above suggest a number of ways in which technology transfer can 

fail to take place. 
An environment may simply not be good enough; it may fail to support the 

most important needs of its targeted user community or it may be maladapted 
to the context in which that community must work. It may improve the support 
of some users, but degrade the support for others. Unless the environment is a 
commercial product, it is unusual that provision for feedback in the design and 
development phase extends to representative users. In fact, in some cases, even the 
environment developers fail to use the environment in their own development efforts. 
The environment may not be sufficiently robust, user-friendly, or well supported. 

The benefits of an effective new technology may never be accepted. In many 
cases, new environment technology is not pushed beyond a minimal stage of visibil­
ity and awareness. In particular, very fe'w empirical studies have been conducted 
to evaluate software environments and to characterize their usefulness in a vari­
ety of problem domains. The failure to provide convincing economic arguments 
based on such data has certainly doomed many attempts to involve particular user 
communities with environments beyond the demonstration stage. Thus, effective 
environments may not be acknowledged as such in many organizations. 

Approach to Development and Technology Transfer in Arcadia The ap­
proach to environment development and technology transfer within the Arcadia 
project spans several issues. The Arcadia consortium is developing running versions 
of its environment, dubbed Arcadia-N, with N being the version number. Once the 
Arcadia-1 prototype version is available, we will develop future environment versions 
using Arcadia-1. This accomplishes several purposes: it allows first-hand insights 
into the benefits and limitations of the environment, it enables the use of Arcadia 
analysis tools on the environment itself, and it gives an example of a large sys­
tem maintained by the environment. Since the initial analysis tools will analyze 
Ada programs, we are writing the environment itself in Ada. In order to facilitate 
wide distribution and portability of the environment, it will use the X window sys­
tem (SG86] and run on commonly available graphics workstations, such as Sun's. 
We intend for the environment to encapsulate its dependencies on specific operat­
ing systems and underlying hardware, which. is a natural compromise between too 
much emphasis on portability (e.g., early Toolpack) and not enough (e.g., Cedar). 
The environment will include tool-building tools to assist in the generation and 
customization of new tools. 

The project goals encompass a wide range of concerns, such as extensibility, 
integration, and portability, but it is important to note that the primary focus is 
on the underlying software research issues highlighted throughout this paper. In 
particular, the consortium does not intend to deliver a production-quality version 
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of the environment. Our plans call for a separate organization to build such a system 
and provide user support. 

The commercial members of the Arcadia consortium, TRW and Incremental 
Systems Corporation, are taking the lead in our technology transfer effort. Our 
technology transfer plan spans all the principles mentioned earlier. We plan, for 
example, multi-phased empirical studies to evaluate the effectiveness of the envi­
ronment and constituent tools in a variety of problem areas. One of the studies 
will examine the use of Arcadia in a large-scale software project, most likely taking 
place at TRW. We also plan to identify champions within development organiza­
tions to help catalyze the adoption of the environment. Industrial affiliates of the 
consortium may also contribute to the technology transfer role. 

Two specific ways in which we are seeking to make the prototype environments 
useful to a wide community are through providing operators supporting Ada lan­
guage processing and providing a process program incorporating the Spiral Model 
of software development. Each of these is discussed briefly below. 

Operators for Ada Language Processing Initial releases of Arcadia environ­
ments will have operators in them that are of interest to the broad community of 
Ada software developers. Rather than describe the process programs Arcadia will 
support, we briefly describe here some of the operators and operand types being 
produced that have use in many such process programs. 

A common internal representation for representing Ada programs is essential 
to this set of operators. It must be simple so that it is clearly understood by the 
designers of the various tools and components and so that it is not burdensome to 
use. By its very definition, a common internal form is used by various tools and is 
indeed a medium of communication (at least among the front end components) and 
cannot, therefore, include tool-specific information. Instead, there must be simple 
and efficient support for management of tool specific information. A well designed 
common internal form facilitates tool development and promotes efficiency within 
the environriient. 

The basic components for a "front-end" for Ada language processing are a lexical 
analyzer, a parser, and a semantic analyzer. Interfaces to each of these components 
must be carefully designed to allow substitution and reuse of components. It seems 
quite likely, for instance, that there will be at least two semantic analysis compo­
nents: one for Ada and one for additional restrictions. The Ada version will include 
exactly those semantic restrictions imposed by the Ada language [ALR83]. The 
second can impose additional restrictions imposed by a particular project or orga­
nization, such as a ban on goto statements or required local exception handling for 
all locally defined exceptions. 

Such a front end can be used alone - to process Ada text into an internal form 
- or in combination with other component sets. For instance, a print component 
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can be added to make a pretty printer. The components that compose code gener­
ation, along with those for library management, linking and loading, and run time 
facilities can be added to make a compiler. Components for editing and holophrast­
ing can be added to the print component and the front end components to make 
an incremental semantic editor2 • An interpreter can be composed from previously 
defined components with the addition of components that perform semantic actions 
corresponding to operators in an Iris tree (the internal form used by this set of oper­
ators) and an interpreter driver. In one interpreter effort, the semantic actions can 
include compiled code, symbolic interpretation or interpretation of the Iris structure 
[EZ86]. Components for interpretation, loading and linking and debugging can be 
added to the editing components and the front end to make an interactive debugger. 
The possibilities are numerous. The same front end components will be used by 
tools of various types throughout the environment. 

The reuse of the front end components leads to reuse of objects as well. Once 
the front end has been invoked on a particular piece of Ada source text, say for 
compilation, there is no reason for the front end to be re-invoked as part of an 
invocation of the pretty printer, interpreter, debugger, or other analysis tools that 
might exist. The objects that are reused include not only the Iris trees themselves, 
but also additional information that is generated by components, but which is not 
common enough to be part of Iris. 

A Process Program for the Spiral Model Another aspect of our technology 
transfer effort concerns process programming. As described earlier, the Arcadia 
project is developing an environment in which support for the specification of soft­
ware processes is facilitated through use of a process programming language. Early 
users of Arcadia-1 will be provided with modular software process programs as well 
as tools for the modification of these process programs and addition of new ones. 
Our intent is to encourage early users to experiment with software processes and to 
precipitate consensus about the nature of effective software processes. In the Arca­
dia project, we have been investigating process architecture issues and approaches, 
including the conceptual framework of the Spiral Model of the software lifecycle 
[Boe85] [BB86]. The risk-driven nature of the Spiral Model allows a project to 
configure its process architecture around its major sources of risk. For example, a 
prototype-intensive process may be used to address user interface uncertainty risks; 
a design-to-cost or design-to-schedule process may be used to address risks of not 
meeting tight budget or schedule constraints. We have done some initial work in 
expressing the Spiral Model as a process program, and have incorporated spiral­
model risk management concepts in the development plan for Arcadia-1. We plan 
to further elaborate the Spiral Model in the context of process programming, and 

2 An incremental semantic editor includes full semantic analysis (i.e. type checking and overload 
resolution) at each editing step. 
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to incorporate automated aids for .software risk management into Arcadia-1. 

8 Summary and Conclusion 

The current flurry of activity in environments and in software process specification 
is exciting. A proper focus for environments - supporting the user's multiple, 
complex activities - is being reemphasized at a time when some pertinent sub­
technologies are maturing. This paper has presented definitions that are useful in 
categorizing and assessing developments in environments, and has attempted to 
separate some key concerns. In so doing, a number of emerging principles and im­
portant open problems have been identified and some promising research directions 
described. 

One key distinction is between an environment's :fixed infrastructure and its vari­
ant part. As part of the infrastructure, a user interlace management system provides 
conununication between humans and executing software processes. These processes 
are described in a formal process progranuning language and are interpreted by a 
process program interpreter. Mundane, automatable activities are handled directly; 
creative activities are performed by creative agents: people. A key component of the 
automated interpreter is an object management subsystem, whose typing system, 
relationship system, persistence scheme, and facilities for distributed and concurrent 
object management, support the constructs of the process programming language. 
Having process progranuning as a key part of the concept makes the environment 
an active agent, rather than a purely reactive one. 

In our estimation, progress on the various fronts of environment research is now 
tied to realistic prototype development, empirical evaluation, and technology trans­
fer. Prototypes are needed to validate concepts, generate feedback, and provide 
demonstrations that new environment technologies are useful to large development 
teams tackling large development activities. To be fully convincing, and to gen­
erate as much insight as possible, realistic prototypes must be subjected to well­
designed empirical evaluation. Carefully planned technology transfer activities are 
then needed to ensure that the sought-after benefits are fully realized. 

The Arcadia consortium has been formed to do research in environment ar­
chitectures. We are attempting to make major strides in the development of the 
fundamental technologies, develop prototypes, conduct careful empirical studies, 
and move the technology to industrial practice. 
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