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Exponential separation of Res(k) and Res(k + 1)

Sam Buss and Russell Impagliazzo and Nathan Segerlind

January 10, 2002

Abstract

For each k � 1, we give a famiily of unsatis�able sets of clauses which have polynomial

size Res(k + 1) refutations, but which require Res(k) refutations of 2

n

�

k

. This improves the

superpolynomial- separation between resolution and Res(2) given by Bonet and Galesi to expo-

nential. As a corollary, we obtain an exponential separation between depth 0 Frege and depth 1

Frege, improving upon the superpolynomial separation given by the weak pigeonhole principle.

1 Introduction

The central question of propositional proof complexity is \Given a propositional proof system,

can we show that there are tautologies which require large proofs in that system?" This problem

has consequences for both algorithm analysis and complexity theory. Many algorithms for

problems such as graph coloring and independent set work by implicitly generating derivations

in certain proof systems, see [21] and [4]. Lower bounds for their corresponding proof systems

yield lower bounds for the running times of these algorithms. In the seminal work of Cook and

Reckhow, [8], it is shown that there is a proof system which has a polynomial size proof for

every tautology if and only if NP equals coNP.

It seems that before we are able to prove lower bounds for arbitrary systems, we should

be able to prove lower bounds for particular, familiar systems such as the elementary textbook

propositional proof systems: the Frege systems. Unfortunately, Frege systems yet seem resistant

to our e�orts for proving lower bounds, so we narrow our attention to Frege proofs in which the

lines of the proofs are restricted to a weak circuit class.

The popular resolution proof system can be viewed in this way, it is essentially a Frege

refutation system in which every line of the proof is a clause. The �rst resolution bounds, for

the propositional pigeonhole principle, were shown by Haken, [11], and improved by Buss and

Tur�an in [7]. More recent advances in this technique have used the methods of relationships

between random restriction and width, [3], as well as and size-width trade-o�s, [5].

There has also been progress for bounded-depth Frege systems: the method of random re-

strictions used in circuit complexity to prove lower bounds for bounded depth circuits with

unbounded fan-in AND and OR gates ([9], [12], [2]) can also prove size lower bounds for proof

systems which use such bounded-depth formulas ([20], [13]). However, the techniques for study-

ing the �ne structure of bounded-depth circuits have not been as successful for studying the �ne

structure of bounded-depth Frege proofs.

Despite the random restriction techniques of [12] which established an exponentials separa-

tion between depth d circuits and depth d + 1 circuits, researchers have yet been able only to

establish only superpolynomial, not exponential, separation between depth d and depth d + 1
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Frege systems. Moreover, there has been little understanding of how bottom fan-in a�ects the

abilities of a proof system. Little has been known even for augmentations of resolution which

allow the formation of conjunctions of a small number of literals.

Extensions of resolution which allow the formation of small conjuncts, called Res(k) systems,

have been studied implicitly algorithmic work and explicitly in proof theoretic work. The

graph 3-coloring algorithm of Beigel and Eppstein, [4] can be viewed as generating Res(2)

derivations because it branches on conjunctions of two variables. Res(k) systems have also

received theoretical attention in the work of [1], [15].

Our main theorem is an exponential separation between resolution which allows k-conjuncts

and resolution which allows (k + 1)-conjuncts.

The sets of clauses we use to obtain the separations are based on the following combinatorial

fact: For a �nite, undirected graph G, it is impossible to put a partial order on the vertices of

G so that every vertex is preceded by one of its neighbors. These are modi�ed versions of the

GT

n

tautologies used by Goerdt,[10], and Bonet and Galesi, [6]. The di�erences are that we do

not require the order to be linear, and that we require each node to have a predecessor which

is adjacent to it in the given graph. The important properties about these principles, which

we call \graph ordering principles" and write as \GOP(G)", where G is a �xed graph, are that

for certain graphs they have polynomial size resolution refutations but require linear positive

width.

From this starting point, we replace the variables of theGOP (G) principles with k-conjunctions

of new variables and obtain principles we call GOP

k

(G). If the degree of G is low, it turns out

that the GOP (G) principle will have low width and the GOP

k

(G) principle will therefore have

small size. However, refuting it while allowing only width k � 1 conjuncts requires exponential

size.

Theorem 1 For every k, there exists a family of graphs so that for su�ciently large n, the sets

of clauses GOP

k+1

(G) have size n

O

(1)

, require size 2

n


(1)

refutations in Res(k), but have size

n

O

(1)

refutations in Res(k + 1).

As far as the authors know, this is the �rst separation between Res(k) and Res(k + 1) for

k � 2, and it improves upon the previous separation of [1] between Res(1) and Res(2), which

was superpolynomial but not exponential.

As a consequence of our separation between Res(1) and Res(2) we obtain an exponential

separation between depth 0 versus depth 1 Frege.

Theorem 2 The principles GOP

2

(G) require exponential size depth-0 Frege proofs, but have

polynomial size depth-1 Frege proofs.

The separation given by the weak pigeonhole principle, cn into n, is not of exponential

quality. The weak pigeonhole principle for cn into n has size n

O

(log n)

proofs in depth 1 Frege,

[19], [16], but it requires size 2


(n)

proofs in depth 0 Frege, [11], [7], [3]. These bounds are

consistent with the possibility that depth 0 Frege might be able to simulate a size S depth 1

Frege proof with size 2

2

O

(

p

log S)

.

A likely consequence of our separation is the possibility of improving the superpolynomial

separation between depth d and depth d+1 Frege to an exponential separation. In [14], Krajicek

shows that the weak-pigeonhole principle for depth d Sipser functions requires requires size 2

n


(1)

to refute in detph d Frege, but has size n

O

(log n)

proofs in depth d+1 Frege. As in the preceding

paragraph, this separation is not of exponential quality. An investigation of the proof reveals

that the cause of this shortcoming is the quasi-polynomial upper bound for the weak pigeonhole

principle.

It is our belief that the techniques of [14] and [12] can be adopted to establish that the

GOP

2

principles in which every variable is replaced by a depth d Sipser function provide a truly

exponential separation between depth d and depth d+ 1 Frege.
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Conjecture: There are tautologies �

n

of size n

O

(1)

which have n

O

(1)

size proofs in depth d+1

Frege but which require 2

n


(1)

size proofs in depth d Frege.

Section 2 de�nes the proof systems we are studying and our notational conventions. Section

3 de�nes the CNFs for which we prove the separation, section 4 gives the upper bounds and

section 5 gives the lower bounds.

The proof of the lower bound builds upon the familiar idea of \prove a width lower bound,

apply a random restriction and, if the proof is small, obtain a narrow proof" used in [3]. For

clauses, it usually works out that if the clause contains a large number of variables, then it

is satis�ed with very high probability because the events of each literal being satis�ed are

independent. For k-DNFs, this is not the case. Distinct terms may share variables, and therefore

the probability of satisfying a large k-DNF may be bounded away from 1. However, such

correlation allows us to make use of the distributive rule to simplify the k-DNF into a relatively

small number of (k � 1)-DNFs. This relation between the likelihood of satisfaction and the

number of (k � 1)-DNFs in a formulas expansion is the crux of our proof because it allows to

determine either a DNF was very likely satis�ed or its expansion into clauses did not make the

proof very much larger. With this knowledge in hand, we can expand the Res(k) proof into a

resolution proof, apply a random restriction and obtain a narrow resolution proof, contradicting

the width lower bound for resolution.

2 Proof Systems

A literal is a variable or its negation. When l is a literal we write :l for the opposite literal

of l, not the syntactic object obtained by prepending l with the negation symbol. In this

interpretation, ::X is the variable X.

A term is a conjunction of literals. We will view these as sets of literals, so that for two

terms T

1

and T

2

, T

1

^ T

2

= T

1

[ T

2

. A DNF is a disjunction of terms, which we view as a set of

terms, so that F

1

_ F

2

= F

1

[ F

2

. A k-DNF is a DNF whose terms are each of size at most k.

De�nition 2.1 Res(k) is the refutation system whose lines are k-DNFs and whose inference

rules are:

cut:

A _ l B _ :l

A _ B

weakening:

A

A _ l

AND-introduction, for 1 � j � k:

A

1

_ l

1

: : : A

j

_ l

j

A

1

_ : : : _ A

j

_

V

j

i=1

l

i

AND-elimination, for 1 � i � j � k:

A _

V

j

i=1

l

i

A _ l

i

We de�ne the size of a refutation �, s(�), to be the number of subformulas appearing in it,

although this is clearly polynomially related to an optional notion of refutation size, the number

of symbols appearing in �. The width of a refutation �, w(�), is the maximum number of

variables appearing in a line of �. We are concerned with this measure primarily for resolution

refutations, in which case it is equal to the maximum number of literals in a line of � because,

without loss of generality, no clause may contain a variable and its negation.

3



An optional de�nition of Res(k) would be to allow cuts on conjunctions as follows:

A _

V

j

i=1

l

i

B _

W

j

i=1

:l

i

A _ B

We call this proof system Res

�

(k), however, such refutations can be simulated by Res(k)

with only a

O

(k) factor increase in the size. To do this, replace each such cut by at most k

applications of the AND-elimination rule to obtain the formulas A_ l

1

; : : : A_ l

j

, and then cutt

these with the formula B _

W

j

i=1

:l

i

to derive A _B.

3 Graph Ordering Principles

De�nition 3.1 Let G be an undirected graph. For each vertex u of G, let N(u) denote the set of

neighbors of u in G. For each ordered pair of vertices (u; v) 2 V (G)

2

let there be a propositional

variable P

u;v

.

The graph ordering principle on G, GOP (G), is the following set of clauses:

� For all u; v; w 2 V (G), if u precedes v and v precedes w then u precedes w:

P

u;v

^ P

v;w

! P

u;w

� For each u 2 V (G), u does not precede itself

:P

u;u

� For every u 2 V (G), one of u's neighbors in G precedes u:

_

v2N(u)

P

v;u

Notice that for a graph G on n vertices with maximum degree d � 3, the principle GOP (G)

consists of

O

(n

3

) many clauses each of width at most d.

The principles hard for Res(k) are obtained by starting with the GOP (G) principles and

replacing each variable by a conjunction of k+1 new variables. These principles can be expressed

as CNFs by the application of the distributive rule.

De�nition 3.2 Let C be a clause in the variables X

1

; : : : X

N

.

Let X

1

1

; : : : X

1

N

; : : : X

k

1

; : : : X

k

N

be new variables.

The k-substitution of C, S

k

(C) is de�ned to be the k-DNF obtained by making the substitution

of

V

k

j=1

X

j

i

for each X

j

:

S

k

(C) = C

"

X

i

 

k

^

j=1

X

j

i

;:X

i

 

k

_

j=1

:X

j

i

j 1 � i � N

#

The expanded k-substitution of C, E

k

(C) is the set of clauses obtained by applying the

distributive rule to S

k

(C) as follows:

E

k

(C) = f

w

_

i=1

l

i

j S

k

(C) =

w

_

i=1

T

i

; l

i

2 T

i

g

We write GOP

k

(G) for the expanded k-substitution of GOP (G):

GOP

k

(G) =

[

C2GOP (G)

E

k

(C)

Notice that if G is a graph on n vertices with maximum degree d � 3, then GOP

k

(G) is set

of at most

O

(k

d

n

3

) many clauses of width at most kd.
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4 The Upper Bounds

Theorem 3 For each k, and every G with n vertices and degree at most d � 3, GOP

k

(G) has

a Res(k) refutation of size

O

(kn

3

+ k

d+1

).

Proof:

The construction of the proofs has three steps. First, we construct the resolution refutation

for GOP (G), this is then used to construct a Res

�

(k) refutation of fS

k

(C) j C 2 GOP (G)g,

which can be transformed into a Res

�

(k) refutation of GOP

k

(G), which in turn can be trans-

formed into a Res(k) refutation of GOP

k

(G).

To construct the resolution refutation of GOP (G), we iteratively derive the formulas

W

n

i=l

P

i;j

for each j; l. The clauses

W

n

i=1

P

i;j

are weakenings of the hypotheses. Let l range from 1 up

to n. At stage l, we have

W

n

i=l

P

i;l

and the hypothesis :P

l;l

, so we can derive

W

n

i=l+1

P

i;l

. For

j 6= l, we combine

W

n

i=l+1

P

i;l

with the transitivity axioms to obtain :P

l;j

_

W

n

i=l+1

P

i;j

, which

is resolved with

W

n

i=l

P

i;j

to obtain

W

n

i=l+1

P

i;j

. When we �nally derive P

n;n

, it is resolved with

the hypothesis :P

n;n

to obtain the empty clause. This refutation has size

O

(n

3

).

Because resolution refutations can have their weakening inferences removed with no ill e�ect

on the size, see lemma 17 in the appendix, there is a weakening-free resolution refutation � of

GOP (G) of size

O

(n

3

).

We now show that the set of formulas S

k

(�) = fS

k

(C) j C 2 �g is a Res

�

(k) refutation

of fS

k

(C) j C 2 GOP (G)g. Consider resolution inference

A_X

u;v

B_:X

u;v

A_B

. The formula

S

k

(A_X

u;v

) has the form S

k

(A)_

V

k

i=1

X

i

u;v

, the formula S

k

(B_:X

u;v

) has the form S

k

(B)_

W

k

i=1

:X

i

u;v

and the formula S

k

(A _ B) has the form S

k

(A) _ S

k

(B). The number of lines of

S

k

(�) equals the number of lines in �, and the substitution increases the size of each line by at

most a factor of

O

(k), so S

k

(�) has size

O

(n

3

).

For a clause C of width w, we can derive S

k

(C) from E

k

(C) by a sequence of

O

(k

w

) many

AND-introduction inferences. Because the width of the GOP (G) clauses is at most d, we

can derive S

k

(GOP (G)) from GOP

k

(G) with a sequence of

O

(k

d

) many AND-introduction

inferences, and then refute S

k

(GOP (G)) with a Res

�

(k) refutation of size

O

(n

3

). Therefore,

there is a size

O

(n

3

+ k

d

) Res

�

(k) refutation of GOP

k

(G).

Because Res

�

(k) refutations can be converted into Res(k) refutations with at most

O

(k)

factor of increase in the size, there is a

O

(kn

3

+ k

d+1

) size Res(k) refutation of GOP

k

(G).

5 The Lower Bounds

The primary result of this paper is the proof that Res(k) requires exponential size to refute the

GOP

k+1

(G) principles for certain graphs with small maximum degree.

Theorem 4 Let k be given. There exists a constant �

k

> 0, and a family of graphs G on

n vertices (for n su�ciently large) with maximum degree

O

(log n) so that Res(k) proofs of

GOP

k+1

(G) require size 2

n

�

k

.

There are three steps to the lower bound proof. First, we show a width lower bound for

resolution refutations of GOP (G) for certain graphs. Second, we carefully expand Res(k) refu-

tations into resolution refutations. Finally, we apply a random restriction which satis�es wide

lines with very high probability, thereby obtaining a narrow resolution refutation to some smaller

instance of the tautology, contradicting the resolution width lower bound. The di�culty is of

course that the expansion of a Res(k) refutation into a resolution refutation may increase the

size by an exponential factor. We handle this by choosing the expansion and the restriction in

such a way that if a formula were to contribute too many formulas upon expansion, then with

very high probability the random restriction satis�es it.
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The parameter relating the number of (k � 1)-DNFs needed to express a k-DNF to the

likelihood of it being satis�ed by our random restrictions is the \k-covering number" of a DNF.

De�nition 5.1 Let F be a k-DNF, and let S be a set of literals. If every width k term of F

contains a literal of S, then we say that S is a k-cover of F .

The k-covering number of F , c

k

(F ), is the cardinality of the smallest k-cover of F .

The de�nition is motivated by the use of the distributive law. Because (A ^ B) _ C is

equivalent to (A_C)^ (B _C), we can convert a k-DNF into a set of (k� 1)-DNFs by making

the transformation that replaces each

V

k

i=1

l

i

by l

1

or

V

k�1

i=1

l

i

. A priori, the size of such a

translation is exponential to the number of k-terms in the formula. However, if c

k

(F ) is small,

we can do better. By use of the distributive law, it is easy to see that if F is a k-DNF, then F

is equivalent to the conjunction of 2

c

k

(F )

many (k � 1)-DNFs, see de�nition 5.7 for details.

If F is a k-DNF with a large cover number, it contains many literal-disjoint k-terms. If we

were to independently assign a random value to each variable, the term satisfaction events would

be independent, and F would be satis�ed with very high probability. However, because we wish

to reduce the tautology to a smaller instance which is di�cult to to refute, we do not assign

values to each variable independently, but randomly partition the vertices of the graph and then,

for each pair of disconnected vertices u; v, we make an assignment to X

1

u;v

; : : : X

k+1

u;v

which sets

at least one of the X

i

u;v

's to 0. Any k-term will have a non-zero chance of being satis�ed by

such an assignment. Independence between the term satisfaction events is more di�cult. If the

sets of vertices underlying the terms were disjoint, we would have total independence, but this

often does not happen, and we require some machinery from extremal set theory.

The proof of the lower bound appears in four parts. In subsection 5.1 we establish the

width lower bound for resolution refutations of the graph-ordering principles. In subsection 5.2,

we de�ne a distribution on assignments to the variables of GOP

k+1

(G) and show that if F

has a large k-cover number, then F is very likely satis�ed by these restrictions. In subsection

5.3, we show that we can iteratively apply the expansion to transform a Res(k) refutatation

into a resolution refutation. Finally, in subsection 5.4, we prove the lower bounds for Res(k)

refutations of GOP

k+1

(G).

5.1 Width Lower Bound for Resolution

We show that for certain graphs, G any resolution refutation � of GOP (G), has w(�) = 
(n).

Our proof follows that of Bonet and Galesi showing that the GT

n

tautologies require high

width, [6]. A crucial step of their proof suggested the graph property we use to guarantee high

width: at one point two vertices are chosen from su�ciently large sets, and because they work

with complete graphs, there is an edge joining the two vertices. We cannot work with a complete

graph, because GOP

2

(K

n

) contains more than 2

n

many clauses, so we need low-degree graphs

with the property that su�ciently large sets are joined by an edge.

De�nition 5.2 Let G be an undirected graph. We say that G is a s-neighborly if between every

pair of disjoint sets of vertices, A;B � V (G) with jAj; jBj � s, there exists an edge joining A

and B.

We now show that resolution refutations of GOP (G) require large width when G is a con-

nected graph so that even its small sets are neighborly.

Lemma 5 If G is a connected graph of n vertices that is s-neighborly, then every resolution

refutation of GOP (G) contains a clause of width

n�3s

6

.

Proof:

We begin by de�ning the \measure" of a clause. A critical truth assignment is an assignment

to the variables of GOP (G) which forms a total order on V (G). For each v 2 V (G), let

C

v

:=

W

u2N(v)

P

u;v

, and for each I � V (G), C

I

:=

V

v2I

C

v

. Let C be a clause. The measure

6



of C, �(C), is the minimum cardinality of a set I � V (G) so that for every cta �, if � j= C

I

then � j= C.

We can now show that �(fg) = n. Suppose otherwise, and let I be a subset of V (G) with

jIj � n� 1. Choose one vertex v

0

2 V (G) n I and let � be a total order which arises by taking

a depth-�rst search of G starting with v

0

. Clearly � j= C

I

but � 6j= fg.

Because every clause of GOP (G) has measure either 0 or 1, the empty clause has measure

n and the measure is subadditive, we can choose a clause C of � so that

n

3

� �(C) �

2n

3

.

Suppose for the sake of contradiction that w(C) <

n�3s

6

.

Let I be a minimal subset of V (G) so that for every critical truth assignment �, if � j= C

I

then � j= C. Let J = V (G) n I. Notice that jIj; jJ j �

n

3

.

Let S be the set of vertices mentioned by literals of C. By assumption, jSj < 2

�

n�3s

6

�

=

n�3s

3

. Therefore, jI n Sj �

n

3

�

n�3s

3

= s. Similarly, jJ n Sj � s. Because G is s-neighborly, we

may choose u 2 I n S and v 2 J n S so that fu; vg is an edge of G.

Let � be a critical truth assignment so that � j= C

Infug

but � 6j= C

u

and � 6j= C. Let � be

the critical truth assignment which arises by moving v to the front of �. For w 2 I; w 6= u,

� j= C

w

because every predecessor of w in � is a predecessor of w in �. For u, � j= C

u

because

� j= P

v;u

. However, � 6j= C because � 6j= C and no variable mentioning u or v appears in C.

Therefore, � j= C

I

but � 6j= C, contradiction to the choice of I.

5.2 Random Restrictions and Cover Number

We use the following distribution on random partial assignments to satisfy k-DNFs with high

cover number. The intended meaning is that we randomly partition the graph into 4k many

pieces. To do this we randomly color the graph, and then between vertices u and v of distinct

color classes, we choose an assignment X

1

u;v

; : : : X

k+1

u;v

which makes

V

k+1

i=1

X

i

u;v

false.

De�nition 5.3 Let k � 1 be given. Let G be a graph. The distribution P

k+1

(G) on partial

assignments � to the variables of GOP

k+1

(G) is de�ned as follows:

Select a random coloring of V (G) by 4k many colors, c

�

: V (G)! [4k].

For each (u; v) 2 V (G)

2

, let �

�

u;v

be chosen uniformly among 0; 1 assignments to X

1

u;v

; : : : ; X

k+1

u;v

such that for at least one i, �

�

u;v

(X

i

u;v

) = 0.

The partial assignment �, and an auxilliary total assignment, �

�

, are de�ned as follows:

� =

[

(u;v)2V (G)

2

c

�

(u)6=c

�

(v)

�

�

u;v

�

�

=

[

(u;v)2V (G)

2

�

�

u;v

Our �rst lemma, which we state without proof, is that if a restriction corresponds to deleting

edges of G to obtain G

0

, then applying that restriction to GOP

k+1

(G) results in GOP (G

0

).

Lemma 6 Let G be a graph. Let � 2 P

k+1

be given. Let G

0

be the graph induced by deleting

edges of G that are bichromatic under c

�

.

GOP

k+1

(G) �

�

= GOP

k+1

(G

0

)

Formulas with high cover number contain many literal-disjoint terms, but the events of

term satisfaction are not necessarily independent. Consider the following example with literals

X

1

u;v

; X

1

v;w

; X

1

u;w

. If X

1

u;v

is falsi�ed, and X

1

v;w

is falsi�ed, then u and w are more likely to

receive the same color, so X

1

u;w

is less likely to be satis�ed. To obtain independence, we apply

some extremal set theory to the sets of vertices involved with the terms.

7



De�nition 5.4 Let X

i

u;v

be a variable. The underlying pair of X

i

u;v

is fu; vg.

Let T be a term. The set of vertex pairs of T , P

T

, is de�ned to be

P

T

= ffu; vg j fu; vg is the underlying pair of a variable in Tg

The set of vertices of T , S

T

, is de�ned to be

S

T

=

[

P

T

We use the notion of a sun
ower to obtain statistical independence between the term sat-

isfaction events. The precise formulation we use is a version of the Erd�os-Rado lemma that

appears in [18].

De�nition 5.5 A (p; l) sun
ower is a collection of sets P

1

; : : : P

p

, so that for each i; 1 � i � p,

with each jP

i

j � l and for all 1 � i < j � p; 1 � i

0

< j

0

� p, P

i

\ P

j

= P

i

0

\ P

j

0

.

Theorem 7 Let l be given. Let Z be a family of M distinct sets, each with cardinality � l. Z

contains a (p; l) sun
ower where p �

�

M

l!

�

1

l

.

De�nition 5.6 Let T

1

; : : : T

t

be a set of terms.

We say that the terms are su�ciently independent if the following conditions hold:

1. The family of sets fS

T

i

j 1 � i � tg forms a sun
ower with core C.

2. For each i, each fu; vg 2 P

i

, either u 62 C or v 62 C

Notice that the sets P

T

i

; 1 � i � t; are disjoint as a consequnce of this de�nition.

Lemma 8 Let F be a k-DNF. F contains a su�ciently independent set of

�

c

k

(F )

(2k)!(2(k+1)(2k)(2k�1))

k

�

1

2k

�

16k

2

(k + 1) many terms.

Proof:

Set s = c

k

(F ). F contains a set of s many literal-disjoint k-terms, T

1

; : : : T

s

. It is quite

possible that S

T

i

= S

T

j

for some i 6= j, however, a set of � 2k many vertices can be the

underlying set of at most (2(k + 1)(2k)(2k � 1))

k

many di�erent k-terms. Therefore, there is a

sub-collection of of

s

(2(k+1)(2k)(2k�1))

k

many terms whose underlying sets of vertices are distinct.

Because the underlying sets of vertices have size at most 2k, we can apply the sun
ower

lemma, and �nd s

0

=

�

s

(2(k+1)(2k)(2k�1))

k

(2k)!

�

1

2k

many terms whose sets of underlying vertices

form an (s

0

; 2k) sun
ower. We rename these terms T

1

; : : : T

s

0

.

Let C be the core of the sun
ower S

T

1

; : : : S

T

s

0

. Consider pairs of vertices fu; vg � C.

There are no more than 4k

2

many pairs in [C]

2

, and each such pair is the underlying pair of

exactly 4(k + 1) many literals. Therefore, there are at most 4(k + 1) � 4k

2

= 16k

2

(k + 1) many

literals whose underlying vertices are both in C. The terms T

1

; : : : T

s

0

are literal-disjoint,

so each such literal appears in at most one term, and when we remove all terms containing

these literals, we obtain a su�ciently independent set of terms of size s

0

� 16k

2

(k + 1) =

�

s

(2(k+1)(2k)(2k�1))

k

(2k)!

�

1

2k

� 16k

2

(k + 1).

Lemma 9 Let F be a k-DNF which contains contains t su�ciently independent terms.

Pr

�

[F �

�

6= 1] �

�

1�

1

2

k

2

+3k

�

t

8



Proof: Let T

1

; : : : T

t

be the su�ciently independent terms of F . Let C be the core of the

sun
ower S

T

1

; : : : S

T

t

.

Let � be a partial assignment chosen by the distribution P

k

.

Notice that for each term T

i

, T

i

�

�

= 1 if and only if the following two events occur: (i)

T

i

�

�

�

= 1 and (ii) for each fu; vg 2 P

T

i

, c

�

(u) 6= c

�

(v).

Fix a coloring of the vertices in the core � : C ! [4k]. We will show that

Pr

�

[F �

�

6= 1 j c

�

�

C

= �] �

�

1�

1

2

k

2

+3k

�

t

First we show that for each T

i

, Pr

�

[T

i

�

�

j c

�

�

C

= �] �

1

2

k

2

+3k

. For each fu; vg 2 P

T

i

,

fu; vg 6� C, if every v 2 S

T

i

n C with a distinct color outside of Rng � then every pair of P

T

i

is bichromatic, and this happens with probability at least

1

2

2k

. Because T

i

contains at most k

literals, T

i

�

�

�

= 1 occurs with probability at least

1

(

2

k+1

)

k

. These two events are independent,

so we may multiply the probabilities.

Next we show that when we condition on the event that c

�

�

C

= �, we have that the events

T

i

�

�

= 1 are totally independent. Because the terms share no underlying pairs of vertices, the

events of type (i) are completely independent of one another and the coloring c

�

. Because no

pair fu; vg in any P

T

i

is contained in the core, the events of type (ii) depend only on the values

that c

�

takes on S

T

i

n C, so they are independent of one another and the assignmment �

�

.

Therefore, Pr

�

[F �

�

6= 1 j c

�

�

C

= �] �

�

1�

1

2

k

2

+3k

�

t

.

Because this hold for all colorings of the core, we have that

Pr

�

[F �

�

6= 1 = �] �

�

1�

1

2

k

2

+3k

�

t

Combining lemmas 8 and 9 we have the following:

Lemma 10 For each k there exists a positive constant depending only on k, 


k

, so that if F is

a k-DNF with c

k

(F ) � s, then

Pr

�

[F �

�

6= 1] � 2

�


k

s

(

1

2k

)

5.3 Expanding Res(k) Refutations into Resolution Refutations

The distributive law of boolean algebra states that (A^B)_C is equivalent to (A_C)^(B_C).

This fact allows us to convert k-DNFs into an equivalent set of (k� 1)-DNFs, and iterating this

expansion gives us a conversion into an equivalent set of clauses. In this section we de�ne a

method for converting k-DNFs into sets of (k � 1)-DNFs (and hence clauses) in a manner so

that the factor of size increase is at most exponential the k-covering number of the DNF, and

demonstrate how this expansion can be used to transform Res(k) refutations into resolution

refutations.

Our method of expansion is based on covering sets (recall de�nition 5.1). For a k-DNF F

with k-cover S, we expand F into the set of all possible (k�1)-DNFs that arise by choosing, for

each literal in the k-covering set to either include it or all of the terms containing that literal,

with that literal removed.

De�nition 5.7 Let k > 1, let F be a k-DNF and let S be a set of literals which k-covers F .

For each l 2 S, set C

0

l

= flg and C

1

l

= fT n l j T 2 F; jT j = k; l 2 Tg.

Let

~

F be the disjunction of all terms of width � k � 1 appearing in F .

The expansion of F with respect to S, E

S

(F ), is de�ned as:

9



E

S

(F ) = f

~

F [

[

l2S

C

�

l

l

j ~� 2 f0; 1g

S

g

Clearly, if F is a k-DNF with k-cover S, then E

S

(F ) is a set of at most 2

jSj

many k-DNFs.

Moreover, F is equivalent to the conjunction of all the formulas in E

S

(F ).

We iterate this process to reduce a k-DNFs into sets of clauses. To keep the expansion as

small as possible, at each step we expand according to the minimum possible cover set.

De�nition 5.8 Let F be a k-DNF.

For j; 1 � j � k; we de�ne the expansion of F into j-DNFs, E

j

(F ), as follows:

Set E

k

(F ) = fFg

For i ranging from k down to 2:

For each f 2 E

i

(F )

let S

f

be the �rst, smallest (i� 1)-cover of f

Set E

i�1

(F ) =

S

f2E

i

(F )

E

S

f

(F )

We now take note of some basic properties of this expansion. The proofs are simple and

omitted for space.

Lemma 11

E

j

(F ) is a set of j-DNFs whose conjunction is equivalent to F

k-DNF F and i < j � k, f 2 E

j

(F ), we have E

i

(f) � E

i

(F )

jE

k�1

(F )j � 2

c

k

(F )

Unfortunately, the expansion of a Res(k) refutation does not necessarily result in a resolution

refutation. Because their respective covering sets could be di�erent, E

1

(A _ B) need not look

very much like E

1

(A _ x) or E

1

(B _ :x).

Another way to expand k-DNFs into a set of clauses is to simply use the set of all possible

clauses which select one literal from each term. This can be very ine�cient, but it behaves in

a regular way that allows us to connect the expansions of similar formulas. It is used in an

auxiliary to help us reason about the more complicated E

1

expansion.

De�nition 5.9 Let F =

W

w

i=1

T

i

be a k-DNF. The brute-force expansion of F , B(F ), is de�ned

to be the following set of clauses:

B(F ) = f

w

_

i=1

l

i

j 8i; 1 � i � w; l

i

2 T

i

g

Let's take the time to note some properties of the E

1

and B expansions.

Lemma 12 For any k-DNF F :

1. B(A _B) � ff

A

_ f

B

j f

A

2 B(A); f

B

2 B(B)g

2. E

1

(F ) � B(F )

3. For any f 2 E

1

(A _ l) there exists g 2 E

1

(A) so that f = g _ l.

4. For every f 2 B(F ), there exists f

0

2 E

1

(F ), f

0

� f .

Proof:

Proofs of the the �rst three properties are left to the reader.

The third property is proved by induction, our hypothesis is \For each 1 � j � k, if F is a

j-DNF, then for each f 2 B(F ) there exists f

0

2 E

1

(F ) so that f

0

� f".

For the base case when j = 1, F is a clause and B(F ) = E(F ) = fFg.

10



Let j; 1 < j � K; be given and assume that the induction hypothesis holds for (j�1) DNFs.

Let F be a j-DNF, and let f 2 B(F ) be given. We adopt the notation of de�nition 5.7. Let S

be the �rst, least covering set of F . Let S

0

be the set of literals of S that appear in f , and let

S

1

be the set of literals of S that do not appear in f .

Consider the formula F

0

de�ned as:

F

0

=

~

F _

_

l2S

0

l _

_

l2S

1

C

0

l

Clearly, F

0

2 E

j�1

(F ) and f 2 B(F

0

). Therefore, by the induction hypothesis, we may

choose f

0

2 E

1

(F

0

) so that f

0

� f . However, E

1

(F

0

) � E

1

(F ), so we have found f

0

2 E

1

(F ) that

weakens f .

Lemma 13 For each f 2 E

1

(A _ B), there is a width � w(f) resolution derivation of f from

E

1

(A _ l) and E

1

(B _ :l).

Proof: By lemma 12, f 2 B(A _ B), so we may choose f

A

2 B(A), f

B

2 B(B) so that

f = f

A

_ f

B

. The formula f

A

_ l belongs to B(A _ l), and f

B

_ :l belongs to B(B _ :l).

Therefore, by lemma 12, each of these formulas follows from E

1

(A _ l) and E

1

(B _ :l) by

weakening. We then cut on l to derive f

A

_ f

B

.

Now that we know how to derive E

1

(A _B) from E

1

(A _

V

j

i=1

l

i

) and E

1

(B _

W

j

i=1

:l

i

), we

can expand Res(k) refutations into resolution refutations by expanding each line into clauses

and adding some auxiliary clauses needed for the derivations.

De�nition 5.10 Let � be a Res(k) refutation of C. Let F be a formula of �, and let f 2 E

1

(F )

be given.

If F is hypothesis, or results from a weakening, AND-introduction, or AND-elimination

inference, then for each f 2 E

1

(F ), we set I

�;F

(f) = ;.

If F results from a cut inference, then let I

�;F

(f) be formulas of the derivation guaranteed

by lemma 13.

E

�

(F ) = E

1

(F ) [

[

f2E

1

(F )

I

�;F

(f)

De�nition 5.11 Let � be a Res(k) refutation of a set of clauses, C. The resolution expansion

of �, R(�), is de�ned by replacing every formula F in � by E

�

(F ).

Lemma 14 If � is a Res(k) refutation of a set of clauses C, then R(�) is a resolution refutation

of C.

Proof:

We follow the structure of � and show inductively that the set of clauses E

�

(F ) follows by

resolution from the clauses of E

�

(F

0

) where F

0

precedes F in �.

Because every hypothesis H 2 C is a clause, E(H) = fHg, and therefore the hypotheses of

E(�) are the same as the hypotheses of �.

Suppose that F = A _ B, and follows in �, by a cut of the form

A_l B_:l

A_B

. In this case

E

�

(A _ B) follows from E

�

(A _ l) and E

�

(B _ :l) by lemma 13.

In the remaining cases we will repeatedly use the fact that E

�

(F ) = E

1

(F ).

Suppose that F = A_ l follows by a weakening inference

A

A_l

. For each f 2 E

1

(A_ l), there

exists g 2 E

1

(A) so that f = g _ l. Therefore, for every f in E

1

(A _ l), f can be inferred by

weakening from some g 2 E

1

(A).

Suppose that F = A _

V

j

i=1

l

i

follows by AND-introduction,

A_l

1

::: A_l

j

A_

V

j

i=1

l

i

. Because E

1

(A _

V

j

i=1

l

i

) � B(A _

V

j

i=1

l

i

) �

S

j

i=1

B(A _ l

i

), for each f 2 E

1

(A _

V

j

i=1

l

i

), we can choose
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f

0

2

S

j

i=1

E

1

(A _ l

i

) so that f

0

� f . Therefore, every formula of E

�

(A _

V

j

i=1

l

i

) follows by

weakening some formula of

S

j

i=1

E

1

(A _ l

i

) �

S

j

i=1

E

�

(A _ l

i

).

Suppose that F = A _ l follows by AND-elimination,

A_l^

V

j

i=1

l

i

A_l

. Because E

1

(A _ l) �

B(A_ l^

V

j

i=1

l

i

), for each f 2 E

�

(A_ l), we can choose f

0

2 E

1

(A_ l^

V

j

i=1

l

i

) so that f

0

� f .

5.4 The Lower Bound

In this subsection we tie our threads together and prove the lower bound. As has been said

before, the proof expands a small Res(k) refutation to a resolution refutation and then restricts

it by a random assignment. The crucial observation is that the formulas that contribute a large

increase in the size when we expand them, those with high cover number, will be satis�ed by the

restriction. Therefore, most of the clauses in the expanded proof, and those with high width in

particular, will be eliminated from the refutation upon restriction, and thus we obtain a narrow

resolution refutation for an instance of the GOP principle.

Upon random restriction by �, the graph G �

�

obtained by deleting the bichromatic edges

should have that resolution refutations of GOP (G �

�

) require large width. By lemma 5.1,

it su�ces that G �

�

should consist of large, neighborly connected components with very high

probability. We use the notion of \usefulness" to formalize such graphs. Unsurprisingly, random

graphs of �(log n) degree are useful with high probability. This is shown in the appendix.

De�nition 5.12 We say that an n vertex graph G is (m; �; p) useful if upon partition into m

distinct vertex induced subgraphs, with probability � p, each subgraph G

i

is connected, has size

at least

n

2m

, and is �jV (G

i

)j-neighborly.

We now prove theorem 4.

Proof:

Let k be given.

Apply lemma 16 of the appendix and choose G to be an n vertex, degree c log n, (4k;

1

6

;

1

4

)-

useful graph.

Choose s

0

> s

1

> ::: > s

k

satisfying s

0

=

n

48k

�1 and for each i > 0, s

i

=

1

k

�




k

(s

i�1

)

1

2k

� ln(2k)

�

.

Suppose, for the sake of contradiction that � is a Res(k) refutation of GOP

k+1

(G) with size

� 2

s

k

.

For each clause f 2 E

1

(�), g 2 E

j

(�) we say that g is a j-ancestor of f if f 2 E

1

(g). For

each clause f of E

1

(�), and j, 1 � j � k, we say that f is j-bad if, for every i; j < i � k, every

i-ancestor g of f has c

i

(g) � s

i�1

and there exists a j-ancestor g of f so that c

j

(g) > s

j�1

. Call

such a g a j-corruptor. If f is not j-bad for any j, 1 � j � k, then we say that f is good. Notice

that good f 's are clauses of width � s

0

. Moreover, for each j; 1 � j � k, there are at most

2

P

k

i=j

s

i

many j-corruptors.

Let � be uniformly selected from P

k+1

(G). Let j, 1 � j < k, be given. By lemma 10, each

j-corruptor in E

j

(�) survives restriction by � with probability at most 2

�


k

(

s

j�1

)

1

2k

. Therefore,

the probability that there exists a j-corruptor g 2 E

j

(�) so that g �

�

6= 1 is at most:

2

P

k

i=j

s

i

�


k

s

1

2k

j�1

� 2

ks

j

�


k

s

1

2k

j�1

� 2

� ln(2k)

=

1

2k

Therefore, with probability at least

1

2

, for each j, 1 � j � k, every j-bad f 2 E

1

has f �

�

= 1.

Because G is (4k;

1

2

;

1

4

) useful, and

1

2

+

1

4

< 1, we can choose � 2 P

k+1

(G) so that for every

f 2 E

1

(�), if f is bad then f �

�

= 1 and for each component G

i

of G �

�

, G

i

has size �

n

8k

and

neighborliness �

1

6

jV (G

i

)j �

n

48k

.
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Let �

0

be the refutation obtained by taking R(�) �

�

and removing all clauses that do not

reach the empty clause. In particular, for any F 2 �; f 2 E

1

(F ), if f �

�

= 1 then any formulas

of I

�;F

(f) are removed.

The only formulas of �

0

are the restrictions of good formulas of E

1

(�) and their auxiliary

formulas, so by lemma 13, the width of �

0

is at most s

0

=

n

48k

� 1.

By lemma 18, there exists a refutation �

�

with w(�

�

) � w(�

0

) � s

0

of one of the principles

GOP

k+1

(G

i

). However, lemma 5 tells us that w(�

�

) �

1

6

�

n

8k

�

n

16k

�

=

n

48k

, contradiction.
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6 Appendix

6.1 Neighborly and Useful Graphs

A quick and crude application of the probabilistic method shows that with very high probility,

a random graph of expected degree �(log n) is neighborly.

Lemma 15 Let p = p(n) =

c log n

n

. With probability � e

(

2��c�

2

)

n log n

, G

n;p

is not �n-neighborly.

Proof: There are at most n

2�n

= 2

2�n log n

many pairs of disjoint sets of �n many vertices. Each

such pair has a chance of at most (1� p)

�

2

n

2

of being unconnected. However, (1� p)

�

2

n

2

=

(1�

c log n

n

)

�

2

n

2

� e

�c�

2

n log n

, so an application of the union bound proves the lemma.

Lemma 16 For each m, � there exists a constant c, so that for each n, there exists an (m; �;

1

4

)

useful graph G on n vertices with degree

O

(log n).

Proof:

Let p =

c log n

n

.

Consider the following experiment: select a graph G according to the distribution G

n;p

, and

then randomly partition its vertex set into m sets, removing all cross edges, to form m vertex

induced subgraphs, G

1

; : : : G

m

.

Let P be the probability that G has a vertex of degree > 2c log n, or that one of the partition

classes of G has size <

n

2m

, or that one of the induced subgraphs is disconnected or is not

�n

2m

-

neighborly. We now bound this probability.

Consider the probability that G has a vertex of degree � 2c log n. By the Cherno� bounds,

the probability of any one vertex having degree in excess of 2p(n�1) is no more than

�

e

4

�

p(n�1)

=

�

e

4

�

c(n�1) logn

n

.

The Cherno� bounds also allow us to bound the probability that any of the G

i

's contain

too few vertices. The probability that a given piece of the partition fewer than

n

2m

vertices is

bounded by e

�

n

8m

.

Once we condition upon all pieces of the partition containing at least

n

2m

vertices, we can

bound the probability that any induced subgraph is disconnected. Consider a �xed set of s �

n

2m

many vertices, and condition upon the event those vertices recieve the same color in the partition.

Each edge internal to the set is included with probability

c log n

n

=

(cs=n) log n

s

�

(c=2m) log s

s

.

By a standard result on connectivity of the random graph (see [17] for details), each side is
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disconnected with probability bounded by

O

�

1

n

c=(2m)�1

�

. Choose a constant d so that this

probability is bounded by

d

n

c=2m�1

.

Finally, we consider the probability that each of the components G

i

is �jV (G

i

)j-neighborly.

For a �xed set of s �

n

2m

vertices, if we condition on the event that that set forms a compo-

nent after partition, each internal edge is included with probability �

(c=2m) log s

s

. By lemma

15, that means that the component is not a �s �

�n

2m

expander with probability at most

e

(2��(c=2m)�

2

)s log s

. Provided that

4m

�

< c, this is less than e

(2��(c=2m)�

2

)

n

2m

log

(

n

2m

)

.

Therefore,

P �

�

e

4

�

c(n�1) logn

n

+me

�

n

8m

+

md

n

c=2m�1

+me

(2��(c=2m)�

2

)

n

2m

log

(

n

2m

)

For a su�ciently large constant c, dependent only on m and �, this is below

1

2

.

Therefore, by an averaging argument on the edge choices, there exists a graph G of maximum

degree � 2c log n so that upon random partition of its vertices into m disjoint sets, its induced

subgraphs are each connected and of size �

n

2m

with probability �

1

2

.

6.2 Refutations of Variable Disjoint Sets of Clauses

It is a widely known theorem that resolution refutations can omit weakening inferences with no

ill-e�ect on the size or width. As with all results from the folklore, it is hard to �nd a reference.

We prove it here.

Lemma 17 Let � = C

1

; C

2

; : : : C

m

be a resolution refutation of set of initial clauses C. There

is a resolution refution �

0

= C

1

0

; C

2

0

; : : : C

m

0

of C so that no weakening inference is used, and

for each i, C

i

0

� C

i

.

Proof:

If C

i

is an initial clause, then C

0

i

:= C

i

.

If C

i

is a weakening of C

j

, then let C

0

i

= C

0

j

.

If C

i

is inferred by the resolution of C

j

and C

k

on the variable x, we have a case analysis

depending on how x appears in C

0

j

and C

0

k

. If x appears in both C

0

j

and C

0

j

, then let C

0

i

be

the result of resolving C

0

j

and C

0

k

. If x does not appear in C

0

j

, then let C

0

i

be C

0

j

. If x does

appear in C

0

j

but not C

0

k

, then let C

0

i

be C

0

k

.

Lemma 18 Let C

1

and C

2

be unsatis�able sets of claues on disjoint sets of variables. If there is

a refutation � of C

1

[C

2

, then there is a refutation �

0

of either C

1

or C

2

. Moreover, s(�

0

) � s(�),

w(�) � w(�

0

) and p(�) � p(�

0

).

Proof: Let �

�

be the weakening-free refutation of C

1

[C

2

as guaranteed by lemma 17. Because

clauses that are resolved with one another share a variable, the clauses of �

�

can be partitioned

into the consequences of C

1

and the consequences of C

2

. One of these sets of clauses contains

the empty clause, and that set is a resolution refutation �

0

which has s(�

0

) � s(�

�

) � s(�) and

w(�

0

) � w(�

�

) � w(�).
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