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Web Application Teaching Tools for
Statistics Using R and Shiny

1. Introduction

Computer technology can greatly enhance statistics education by illustrating fundamen-
tal concepts such as randomness, sampling, and variability through computer simulations
and visualizations (Chance & Rossman, 2006; Chance, Ben-Zvi, Garfield & Medina, 2007;
delMas, Garfield & Chance, 1999; Garfield & Ben-Zvi, 2008; Harraway, 2012; McDaniel
& Green, 2012; Pratt, Davies & Connor, 2011; Shaltayev, Hodges & Hasbrouck, 2010;
Zieffler, Park, Garfield, delMas & Bjornsdottir, 2012). Studies have shown that such tech-
nological enhancements to statistics instruction significantly improve student performance,
as measured by pretest and posttest analyses (Hagtvedt, Jones & Jones, 2007; Lane &
Tang, 2000; Lunsford, Rowell & Goodson-Espy, 2006). The use of technology to introduce
and reinforce these essential concepts has also been promoted in the Guidelines for Assess-
ment and Instruction in Statistics Education (GAISE) for introductory statistics at the
college level (Franklin & Garfield, 2006; ASA, 2005a) as well as for teaching statistics at
the secondary and primary levels (ASA, 2005b).

Many instructors use web-based applications, mainly in the form of Java/Javascript ap-
plets, to facilitate technology-assisted instruction. There are many outstanding applet
teaching tools found online (e.g., the Rossman/Chance Applet Collection; Rossman &
Chance, 2004) and the Statistics Online Computational Resource (www.socr.ucla.edu)).
There are many advantages in using applet teaching tools as they can be interactive, dy-
namic, user-friendly, visually appealing, and publicly accessible via the web. Students
can use these applications to better understand statistical concepts via a point-and-click
user-interface that does not require any code compilation by the user.

Despite the large collection of existing applet teaching tools found on the web, eventually
an instructor can come across a problem in finding an existing applet to perfectly suit
his/her needs. If an existing applet is close to the desired functionality, one can opt to
customize the applet. However, such customization requires access to all of the original
source code and in many situations this code is not easily available. Moreover, even if it
is available, customization still requires fluency in the source code language. Additionally,
if the desired functionality of the teaching tool application is novel (e.g., based on newly
proposed research), existing applets would most likely be unsuitable.

In these situations the instructor is left to consider building his/her own teaching tool
applet. But this is not a trivial task. This can require knowledge in Java, Javascript,
HTML, CSS, and PHP languages. The time required to learn the necessary languages can
be a sufficient obstacle in keeping an instructor from creating applets.

http://www.socr.ucla.edu


An alternative method to create web-based teaching tool applications is provided by Shiny
(Chang, Cheng, Allaire, Xie & McPherson, 2015), a recent technology created by RStudio.
Shiny is a web application framework for R (R Core Team, 2015) that only requires knowl-
edge in the R programming language. It is not uncommon for instructors to build their
own teaching tools via scripts written in R and, as we will show, it is not difficult to con-
vert existing R scripts into Shiny applications, known simply as ‘Shiny apps’. With Shiny,
instructors can build a teaching tool that is interactive, dynamic, user-friendly, visually
appealing, and, with similar functionality to Java/Javascript applets; the only requirement
is some familiarity in R.

This paper illustrates the versatility of Shiny through a collection of web application teach-
ing tools that we have developed via the Shiny package in R. We start with a motivating
example in Section 2 to show what Shiny can do and how it can be used in the classroom.
In Section 3 we describe our Shiny App Teaching Tools Collection (total of 18 apps). We
provide links to our Shiny apps site and our GitHub Gist site containing all Shiny source
code for each app so that anyone may tailor our apps as desired. In Section 4 we provide
feedback on how apps from our collection have been used in the classroom. In Section 5 we
discuss the feasibility of building, launching, deploying, and accessing Shiny apps. Section 6
contains helpful Shiny app resources and Section 7 includes concluding remarks. We also
provide a brief tutorial on how to install and get started in Shiny in Appendix A. Some
teaching materials based on our Shiny apps are included in Appendix B.

2. Motivating Example

One popular class activity to help students understand chance behavior is to observe the
runs of consecutive heads or tails in a sequence of coin flips. When asked to write down a
simulated sequence of 100 tosses of a fair coin, most students are hesitant to create runs
of heads or tails exceeding four. Students are often surprised to find that the longest run
of heads or tails turns out to be much higher.

It is far too time consuming (and boring!) to manually flip a coin hundreds of times and
record the outcomes for a class demonstration. It is far more reasonable to use a computer
to simulate this task. Let’s consider how this might be done by examining a traditional
way to use R to how it can be done using Shiny.

Several years ago one of the co-authors was teaching an introductory statistics course for
liberal arts majors and for a class demonstration wanted to simulate hundreds of coin tosses
and display the runs of heads or tails of a particular length. At the time no Java/Javascript
applets or any other simulation resources were found online to accomplish these tasks so
the instructor created two R functions for the demonstration. Both functions can be found
at our Shiny apps website (www.statistics.calpoly.edu/shiny). The first function, called

http://www.statistics.calpoly.edu/shiny


flip.gen(), simulates the outcomes of a fair coin flipped a given number of times and
also keeps track of the run length of heads or tails. As an example, here are the first 9
outcomes from 200 tosses of a fair coin generated by flip.gen(200):

coin 1 0 0 1 1 1 1 0 0

run 1 2 2 4 4 4 4 2 2

Here, coin represents the outcome (1 = heads, 0 = tails) and run represents the length of
the corresponding run.

The second function, called plot.flips(), graphically displays the outcomes generated
by flip.gen() and marks any runs having a length of at least some specified value. The
length of the longest observed run is also displayed. As an example, suppose the outcomes
we previously generated with flip.gen(200) were stored in results. If we wanted to
generate a plot of those outcomes and highlight run lengths of 4 or more, we would submit
the function plot.flips(4,results)1. This plot is shown in Figure 1.

Figure 1: Output from plot.flips() based on 200 simulated tosses of a fair coin. Run
lengths of four or more are marked in color.

1The function plot.flips() actually accepts 4 total arguments but we only show 2 here for the sake
of simplicity.



For the in-class simulation the two R functions were used in the following manner:

(1) Display 20 trials: plot.flips(4,flip.gen(20))

(2) Repeat to observe run length variability: plot.flips(4,flip.gen(20)),
plot.flips(4,flip.gen(20)), . . .

(3) For a given set of randomized outcomes, update display with new minimum run
length parameter: plot.flips(5,results), plot.flips(6,results), . . .

• Step above assumes the given outcomes are stored in results

(4) Repeat previous steps using different number of trials (50, 100, 200, 400)

Because the audience needed to wait for the instructor to submit new commands at the R
console before the display was updated, the presentation became rather choppy. Submitting
commands at the console can be a nuisance and, especially for introductory statistics
students, the delays can detract from the content of the presentation.

This scenario is what could be described as a traditional way to use R functions in the
classroom: (1) load/submit functions from the R console, (2) draw attention to the newly
generated display/output, (3) update the script by changing a function parameter to an-
other value, and repeat the process.

As opposed to the choppy nature of this traditional approach, a corresponding Shiny app
(using interactive web elements) can allow for a much more fluid presentation. The Longest
Run of Heads or Tails Shiny app is a web application that produces the same results as
shown in Figure 1 but allows for a more dynamic user experience. The app uses the same
two R functions previously described. In the app a graphical slider object is used to select
the total number of trials to simulate. Another slider object controls the minimum run
length which determines what particular runs to mark in color. As shown in Figure 2 both
of these slider objects appear in the left panel of the app.2

2 Note that the app features a third slider object that controls font size of the displayed outcomes. Also
a checkbox object allows the user the option to display the predicted approximate length of the longest
run and an approximate 95% prediction interval for the length of the longest run. Details on these two
estimators can be found in Schilling (1990). See Schilling (2012) for a more recent and related article.



Figure 2: Longest Run of Heads or Tails app.

Here are some features of this Shiny app:

• An adjustment of the trials slider instantly updates the display with a re-randomization
of outcomes. One can then quickly show simulations corresponding to different trials
(e.g., 20, 50, 100, 200, 400).

• An adjustment of the run length slider instantly updates marked runs without forc-
ing a re-randomization3. Thus one can conveniently highlight various run lengths
using the same outcomes in the current plot.

• By clicking on the “Generate” button one can instantly re-randomize outcomes based
on the currently selected number of trials.

3 This feature is facilitated by what is known as a reactive expression in Shiny. For more on reactive
programming see Section A.3 of Appendix A.



Presenting via the Shiny app offers some advantages over the traditional presentation
method. When using this app the R console need not ever be shown as R works com-
pletely in the background and interactively with Shiny. Thus the awkward pauses caused
by code submission at the command line from the traditional method are no longer an
issue. All adjustments in the app are done by moving sliders or clicking buttons and cor-
responding updates to the output plot are virtually instantaneous. This leads to a much
more fluid and dynamic presentation.

Another important advantage of the Shiny app is that it can be deployed on a server so
that it can be accessed online via a web browser. Thus, students can experiment with the
app on their own without having to know anything about R programming. All they would
need to know is how to launch a web browser.

Finally, it is important to note that this example was spawned by the instructor’s need
for a demonstration that did not currently exist online. Shiny provided a framework where
existing R code could be adapted to produce the dynamic web-based application as shown.
As such, Shiny can facilitate the development of new teaching tools in a very feasible
manner. This is especially helpful when teaching concepts that are not in the standard
curriculum or are based on recent research.

The app described here offers only a limited glimpse into the possibilities with Shiny. In
the next section we introduce our collection of Shiny app teaching tools covering a variety
of statistical topics ranging from introductory to advanced levels. We hope this collection
will provide a greater understanding how Shiny can be used as a teaching tool and inspire
instructors to generate their own apps.

3. Shiny App Teaching Tools Collection

At the time of manuscript submission we had completed a total of 18 Shiny app teaching
tools. The apps can be accessed from our Shiny apps website at www.statistics.calpoly.edu/
shiny. All relevant files required to create each app can be accessed and downloaded from
our GitHub Gist directory at gist.github.com/calpolystat. Our complete list of apps is
shown in Table 1 (ordered by topic). To our knowledge, most of our apps are unique in
that there are no equivalent Java/Javascript applets or other web applications found online.

As can be seen from Table 1 there is a wide variety of apps to select from making them
applicable for a broad audience. The Longest Run of Heads or Tails app (first described
in Section 2) is based on the simple concept of coin tossing which even elementary school
students should find understandable. The Random Variable Generation app produces ran-
dom deviates through the probability integral transform and the accept-reject algorithm,
topics that are well suited for mathematical statistics students. In addition, an example

http://www.statistics.calpoly.edu/shiny
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of virtually every Shiny widget and application layout can be found within our collection
of apps, making it quite broad with regard to not only subject matter but also Shiny app
components/features. The development of additional apps will be an ongoing effort and
we will update our Shiny website and GitHub Gist directory as new apps are completed.

Topic Shiny App Name

Inference • Benford’s Law: Sequences
• Benford’s Law: Current Demographic Data
• Length/Coverage Optimal Confidence Intervals
• Performance of the Wilcoxon-Mann-Whitney vs. t-test
• t-test with diagnostics
• Testing Violation of the Constant Variance Condition
for ANOVA

Probability and • Chaos Game: Two Dimensions
Randomness • Chaos Game: Three Dimensions

• Longest Run of Heads or Tails
• Gambler’s Ruin

Distribution Theory
and Estimation

• Maximum Likelihood Estimation for the Binomial Dis-
tribution
• Probability Distribution Viewer
• Random Variable Generation
• Sampling Distributions of Various Statistics

Regression • Correlation and Regression Game
• Multiple Regression Visualization

Special Topics • Heaped Distribution Estimation
• Hierarchical Models

Table 1: Shiny apps listed by topic.

To offer a glimpse into the variety of apps we have developed we will now provide a brief
summary of four selected apps.

3.1. Testing Violation of the Constant Variance Condition for ANOVA

The ANOVA F -test, used to test for a difference among group means, requires the condi-
tions of normality (or large sample size), independence, and constant variance. A common
rule of thumb for the constant variance condition is that the ratio of the largest to smallest
standard deviation is less than or equal to two. This app implements a user-guided simu-
lation study to assess the consequences of non-constant variance on the Type I error rate
of the ANOVA F -test. The app enables the user to visualize data with different standard
deviations, reinforces the concepts of sampling distribution, null distribution, and Type I
error, and allows the user to uncover a rule of thumb for the constant variance condition.



A screenshot of this app is shown in Figure 3.

Figure 3: Testing Violation of the Constant Variance Condition for ANOVA app.

In the app the user specifies standard deviations for three hypothetical populations and
sample sizes to be drawn from each of the populations. When the user presses the “Draw
samples” button, data will be simulated from normal distributions (with mean zero, spec-
ified standard deviations) and displayed in dot plots in the left graph. The ANOVA F -
statistic for the simulated data is plotted in the graph at right, and the critical value for
a 0.05-level hypothesis test is shown in red. As more samples are drawn (with the option
to draw up to 1,000 samples at a time), more F -statistics are plotted in the sampling dis-
tribution on the right. The Type I error rate is estimated as the proportion of samples for
which the null hypothesis was rejected, and this estimate is displayed in the app. Below
the graphs (not included in the accompanying screenshot) is guidance for a suggested series
of simulation studies allowing the user to compare different specifications systematically
and uncover the rule of thumb for the constant variance condition.



3.2. Performance of Wilcoxon-Mann-Whitney Test versus t-test

The goal of this app is to compare the performance of a nonparametric to a parametric test
for the difference in two population means. Specifically, performance is measured in the
app either by Type I error rate or power, and the two respective tests for comparison are
the Wilcoxon-Mann-Whitney (WMW) test and the two-sample t-test. For the respective
test conditions to be satisfied, the two-sample t-test requires either the two population
distributions to be normal or for the samples to be sufficiently large, while the WMW test
requires the two population distributions to have the same shape. Users have the option
to produce different scenarios and conclude the better test either through a lower Type I
error rate (if the two population means are the same) or a higher power (if they are not).

A screenshot of this app is shown in Figure 4.

Figure 4: Performance of Wilcoxon-Mann-Whitney Test versus t-test app.

When users first launch the app, they are presented with the goal of the study. Then, a
game demonstrates the challenge of identifying the population distributions of sample data.
Following the first two introductory tabs, users can proceed to comparing performance.
They have the option to choose a tab corresponding to their choice of the population
distributions. Within each tab, either a single comparison or comparisons over a range can
be conducted. The settings available for users to adjust are sample sizes, population means,
significance level, number of simulations, and range of comparison values. In addition,
visualizations are implemented to communicate results to users. For a single comparison,
the outputs are distributions of the test statistics and gauges. For comparisons over a
range, the output illustrates the performance of the two tests in each comparison.



3.3. Probability Distribution Viewer

Probability distributions, p-values, and percentiles are fundamental topics taught to intro-
ductory statistics students. Often, students encounter these topics through static images
in textbooks, but frequently do not have access to a dynamic and interactive tool they
can use for exploration. For example, in the case of p-values, introductory students are
frequently shown how to use tables to obtain a range of possible p-values associated with
their test statistic along with a guiding image, but this is often difficult for students to
understand. The goal of this app is to provide the student with an intuitive, simple, and
comprehensive visualization of the three aforementioned topics. At the moment, many
continuous distributions (Beta, Cauchy, Chi-Squared, Exponential, F , Gamma, Logistic,
Log Normal, Normal, Student’s t, Uniform, and Weibull) are available in the Shiny app.
Support for discrete distributions may be added in the future.

A screenshot of this app is shown in Figure 5.

Figure 5: Probability Distribution Viewer app.

When the app first renders, by default the user is shown the standard normal distribution.
Users may vary the both the distribution and corresponding parameters to choose the
distribution of their choice from the options at the top under “Distribution”. This enables
the student to see how the shape of their selected distribution changes as parameter values
change. The probability viewer app easily allows the student to select between two types of
inputs: probabilities and percentiles. The student can also select between different shaded
tail visualizations for the specified percentiles or probabilities. After inputting all required
values, a graph appears with the appropriate distribution, the percentile, the probability,
and the appropriate shading.



3.4. Gambler’s Ruin

The Gambler’s Ruin is a well-known problem that can be used to illustrate a variety of
probability concepts (e.g., conditional probability, Markov chains, and for simply visualiz-
ing a stochastic process). Two players are playing a game against each other, betting the
same amount on each turn (here, we use $1). On each turn of the game, Player A has a
fixed probability p of winning $1 from Player B, where 0 < p < 1. The probability that
Player B will win $1 from Player A is 1− p. Player A and Player B start with some initial
fortunes (which may or may not be equal to each other), and the game continues until one
player has all of the money.

A screenshot of this app is shown in Figure 6.

Figure 6: Gambler’s Ruin app.

This app shows a graphical representation of one iteration of the Gambler’s Ruin, and also
can simulate many runs under a variety of settings that may be manipulated to obtain
simulated estimates of the average length of a game and the probability that Player A will
win under those settings. In a mathematical statistics class, the simulated estimates from
this app could be used to corroborate analytic solutions.



4. Feedback on Using Shiny Apps in the Classroom

In this section we share feedback from various instructors (not all of whom are from our
university) who have used or plan to use our Shiny apps in class. We also provide access to
some of the related teaching materials (e.g., homework assignments using the apps). We
hope this information will help instructors see how Shiny can be used in their own classes.

4.1. Longest Run of Heads or Tails App

The following is based on feedback provided by two faculty at another university who used
the Longest Run app in an introductory probability and statistics course they co-taught
for liberal arts majors.

In the instructors’ lesson titled Randomness, Runs, and Coincidences, students were first
shown two sets of sequences of 200 coin tosses: one sequence based on a fair coin toss
simulation and the other was fake. The fake sequence was constructed so that there was
never a run of more than four heads or four tails. The simulated sequence of a fair coin
contained multiple runs of six and a maximum run of seven. The students were asked to
determine which sequence was faked and most chose incorrectly.

The Longest Run app was then displayed in class to show the simulated sequence that
most students dismissed as being ‘fake’ was not a fluke occurrence. Given that the class
did not meet in a computing lab, students were invited to access the app via a web browser
on their smartphones to see the results for themselves. Many complied and were surprised
to see the unexpected results.

One of the instructors provided the following impression about the app:

“I felt that the app was quite effective in reinforcing a main message from the
lesson, which is that ‘surprising’ patterns (such as long runs) are in fact quite
common in sequences of outcomes of independent events.”

The instructor went on to say:

“I’m afraid I didn’t make the use of the app very student centered, as it was
not built into the lesson . . . however, we absolutely could and I think should
incorporate the app into the written lesson and the homework that is at the
end of it. It is so easy to use, so transparent in what it shows, and does exactly
what we want to do in that part of the lesson.”



4.2. Testing Violation of the Constant Variance Condition for ANOVA App

This app was used in a calculus-based second course in statistics, mainly taken by statistics
and math majors. The app was first demonstrated in class to illustrate what different
simulated data sets look like when they have the same or different standard deviations as
well as the sampling distribution of the F -statistic. Students then explored simulations
with the app in a homework problem. See Section B.1 of Appendix B for more details
about this assignment.

This exercise helped students solidify their understanding of variability and sampling dis-
tributions while students explored the robustness of the F -test to the constant variance
condition. The homework highlighted the fact that the violation of this condition may be
small or large, with larger violations having a larger impact on test validity. The app also
allowed students to uncover the importance of sample size in robustness of the test.

The instructor who used this app felt that the students achieved a better understanding
of power and Type I error when compared to students from other classes where the app
was not used. The instructor also felt the app helped the students better understand the
constant variance condition of ANOVA.

4.3. Sampling Distributions of Various Statistics App

We describe the use of this app in two different classes: introductory statistics for engineers
(taught at our university) and introductory biostatistics (taught at a liberal arts college).

Course: Introductory Statistics for Engineers

This app was used in a calculus-based introductory course in statistics for engineering
majors. The app was used to demonstrate the concept of a sampling distribution. During
lecture, each student manually sampled a data set of three American incomes (from papers
in an envelope) and computed the mean income. A histogram of all the mean incomes
was created on the board. Next, the app was used to draw a larger number of samples,
thereby generalizing the histogram and better approximating the sampling distribution.
The entire exercise was repeated with samples of size 10, again using the app to generalize
the sampling distribution. Finally, the app alone was used to illustrate the sampling
distribution with samples of size 1000. After this demonstration, students were assigned a
homework problem that required the use of the app. See Section B.2 of Appendix B for
more details about this assignment. The instructor who used this app felt the students
had a better understanding of sampling distributions in general compared to students who
had not used the app.



Course: Introductory Biostatistics

This app was also used in a second semester course of a non-calculus-based introductory
biostatistics sequence. A laboratory exercise was built around this app, with the aim of
demonstrating that the sample size requirement for the Central Limit Theorem depends
on the underlying distribution of the data generating process.

Assuming the underlying distribution has finite variance, some textbooks suggest a rule of
thumb for the minimum size required for the sample mean to attain normality is 30. With
this lab students explored, by a qualitative examination of simulated data, what actual
sample sizes appear to lead to normal distributions of the sample mean for different under-
lying distributions. See Section B.3 of Appendix B for more details about this laboratory
exercise. The instructor who used this app felt the students had a firm understanding of
the fact that the minimum sample size of 30 rule of thumb fails in many situations.

4.4. Random Variable Generation App

One of the co-authors plans to use the Random Variable Generation app for a class to be
taught later in the year. The following is the proposed use for the app.

Random variable generation is an advanced topic in Probability/Mathematical Statistics.
As such, it can be very informative to visualize the process through a step-by-step sim-
ulation, and students can gain insight that they might not have otherwise. For example,
a student may be very capable of proving mathematically that the Probability Integral
Transform does in fact produce random variates from a desired distribution, but may still
have little intuition behind its mechanics. Our app provides exactly this insight.

The app could work in combination with a standard homework problem of showing a proof
of the Probability Integral Transform. The student could then use the app to produce
random variates from a few different distributions that the app allows for and comment
on its properties. In this way, a student gains not only a theoretical understanding of the
Probability Integral Transform, but also a practical understanding of it.

4.5. Challenges and Limitations

To allow students access to our Shiny apps we needed to deploy all apps on a server. When
we had completed about ten apps we deployed them at the cloud-based server ShinyApps.io.
This was a convenient option as our account was free and the account limitations were
initially not too restrictive. However the restrictions for the free account at ShinyApps.io
eventually changed. One change was the total hours of app usage (across all apps) per
month was lowered to 25 hours. The previous setting was such that our students had no

http://www.shinyapps.io
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problems accessing our apps and using them as much as they desired. But when the 25
hours restriction was set it did not take long for our students to use up this allotted time
within a month. Another important change was the maximum number of deployed apps
per free account was lowered to five. With these changes we realized we could not solely
rely on ShinyApps.io for app deployment. This led to our decision to install Shiny Server
Pro on a Linux server on our campus (see Section 5.2 for more details).

As far as the Shiny apps themselves, though they can mimic the behavior of certain
Java/Javascript applets, there are some disadvantages to note. First, applets can perform
more efficiently and faster than corresponding Shiny apps. Second, Shiny does not currently
offer the same dynamic animation capabilities that applets can provide. One example is the
Least Squares Regression applet at www.rossmanchance.com/applets/RegShuffle.htm. In
this applet the user can overlay a line on the scatterplot and adjust the slope and intercept
very fluidly by manipulating anchor points on the line with the mouse. To our knowledge
there is no way to emulate this same feature in Shiny.

5. Feasibility

In this section we discuss the feasibility of building, launching, deploying, and accessing
Shiny apps.

5.1. Building Shiny Apps

Shiny allows the instructor to build web-based teaching tool applications that can have
very similar functionality to Java/Javascript applets. Unlike applets that may require
knowledge in Java, JavaScript, PHP, CSS, and HTML, Shiny only requires familiarity with
the R programming language.

For instructors who already have R scripts used for in-class demonstration purposes, the
process to convert the code into a Shiny app can be straightforward. As described in
Section A.2 of Appendix A, each Shiny app is usually comprised of two components: a
user-interface script (ui.r) and a server script (server.r)4. It is usually the case that
server.r is mainly comprised of computational components found in an R script. So if
one already has a working R script, much of the work to build the corresponding Shiny app
has already been done. In Section A.2 we show how a simple R script is converted to a
corresponding Shiny app.

4As of version 0.10.2, Shiny allows for single-file applications where the components of server.r and
ui.r can be stored in one file called app.r.

http://www.shinyapps.io
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Of course if one wants to build a complex app with multiple user interface components
then the required Shiny code can also be quite complex. Our recommendation for anyone
learning Shiny for the first time is to start with a very simple project and slowly build on
that foundation.

Our Experience

The initial step for each of the co-authors in learning Shiny was to go through the Shiny
Tutorial provided by RStudio (shiny.rstudio.com/tutorial). The seven lessons of the tutorial
took about two hours to complete. This tutorial provided a solid foundation to create apps.

One of the first apps we created was the Longest Run of Heads or Tails app described in
Section 2. The co-author who created this app had previously built the R script containing
the required functions to perform the coin toss simulations and to generate the correspond-
ing plot as shown in Figure 1. Those functions were copied (without modification) into the
app’s server script server.r and only a handful of additional Shiny functions were required
to complete this file. As a result this step required relatively little time.

The step that required the most time in building this app was the creation of the corre-
sponding user interface script ui.r. However this is not to suggest that this is necessarily
a difficult process. The layout and appearance of the app is defined in ui.r. As shown
in Figure 2 the layout of the Longest Run app is not complicated. There is a title, a left
panel containing text and various widgets (three sliders, one checkbox, one button), and
a right panel containing a plot and some exposition. All of these components must be
defined in ui.r. We slowly built this file in stages by adding a component, test launching
the app, and then repeating the process to eventually include all necessary components.
The Longest Run app required approximately seven hours of work in total. Some projects
in our Shiny apps teaching tool collection required less time and some required more. The
time commitment depends on the computational complexity of the app and how elaborate
the desired user interface components are.

Overall we believe it is quite feasible for anyone with some familiarity with R to be able
to create Shiny apps. One does not need to be at the level of a master R developer. In
fact, two of the co-authors were undergraduate statistics students in our department as
we developed our collection of Shiny apps. We recommend new users to start with the
RStudio tutorial and then slowly build the first app in stages. Many Shiny app teaching
tools found online, including those at our Shiny apps website, provide complete access to
corresponding server.r and ui.r files. As such it is easy to learn from and customize an
existing app.

http://shiny.rstudio.com/tutorial


5.2. Launching, Deploying, and Accessing Shiny Apps

Launching Apps for Demonstrations

Once a Shiny app has been completed, showing the app for a presentation is a very simple
process. We encountered no problems in demonstrating Shiny apps in the classroom. When
the app is launched it will appear either in a web browser or in an app window. If the
app files are stored on a local machine, by default a Shiny app is launched on a randomly
selected port of the computer and so no active internet connection is required in this mode.
More details on launching a Shiny app are found in Section A.4 of Appendix A.

Deploying Apps on a Server

Shiny apps can be made publicly available on the internet through app deployment on a
server (see Section A.5 of Appendix A for more details on deployment). With a deployed
app students will have the opportunity to experiment with the app at their leisure and
thereby gain a better understanding of the relevant material. Their exposure would not be
limited to a brief demonstration of the app shown in class.

One way to deploy an app is through RStudio’s server ShinyApps.io where the user can
choose one of several accounts based on a tiered pricing structure. ShinyApps.io offers a
free account option however it is extremely limited (maximum of five apps deployed and
25 hours of total app usage per month). The fee based accounts offer greater flexibility
however they can be cost prohibitive.

Instructors at an institution with access to a Linux server could consider installing a local
Shiny server (Open Source or Professional Edition). The Open Source Edition is free, while
the Professional Edition requires an annual license fee (but see Academic Pricing Policy
below). Users can download binary installers for Ubuntu/Debian and Red Hat/CentOS.

Academic Pricing Policy

According to the RStudio Academic Pricing website (www.rstudio.com/pricing/academic-
pricing) qualified academic institutions can access RStudio commercial products (such as
Shiny Server Professional Edition) at a discounted rate. If the purpose of the commercial
product is for research then the institution can obtain the software at a 50% discount. If
the purpose is for teaching then the institution can obtain the software for free (course
syllabus must be submitted to RStudio as verification).

http://www.shinyapps.io
http://www.shinyapps.io
http://www.rstudio.com/pricing/academic-pricing
http://www.rstudio.com/pricing/academic-pricing


At our university we were able to obtain Shiny Server Pro for free through the Academic
Pricing Policy. Our IT staff installed the software on a Linux server housed in our college.
The RStudio site claims that“installation is straightforward for anyone familiar with Linux”
and our IT staff confirmed this to be the case thanks to the very helpful Shiny Server Pro
installation guide (rstudio.github.io/shiny-server/latest).

For more details about Shiny Server and the difference between the Open Source and
Professional Editions see www.rstudio.com/products/shiny/shiny-server.

Accessing Deployed Apps

Once an app has been deployed on a server, accessing the app is very simple because all that
is needed is a web browser to access the URL address where the app is located. Shiny works
well on all standard computing platform environments including mobile devices. Recall in
Section 4.1 that students successfully used the Longest Run app on their smartphones
during a lecture.

6. Shiny App Resources

Here are some very helpful resources for learning more about Shiny.

1. A great starting point: The Shiny Tutorial at RStudio (shiny.rstudio.com/tutorial)

2. Many in-depth Shiny related articles can be found at shiny.rstudio.com/articles. This
would be a good resource after completing the tutorial. Here are some examples:

• Style your apps with CSS (shiny.rstudio.com/articles/css.html)

• Shiny Cheat Sheet (www.rstudio.com/resources/cheatsheets)

3. Many articles on Shiny can also be found at R-bloggers (www.r-bloggers.com/?s=shiny)

4. Beeley (2013) is a tutorial for Shiny available in paperback and e-book formats.

5. The“Shiny – Web Framework for R”Google Group is an online forum for Shiny related
issues. Questions posted at this Google Group are quickly answered, often by the
developers of Shiny (groups.google.com/forum/#!forum/shiny-discuss).

6. Many useful examples of apps and Shiny widgets can be found at the official Shiny
Gallery by RStudio (shiny.rstudio.com/gallery).

7. A collection of sophisticated apps can be found at the Shiny User Showcase
(www.rstudio.com/products/shiny/shiny-user-showcase).

http://rstudio.github.io/shiny-server/latest
https://www.rstudio.com/products/shiny/shiny-server
http://shiny.rstudio.com/tutorial
http://shiny.rstudio.com/articles
http://shiny.rstudio.com/articles/css.html
https://www.rstudio.com/resources/cheatsheets
http://www.r-bloggers.com/?s=shiny
https://groups.google.com/forum/#!forum/shiny-discuss
http://shiny.rstudio.com/gallery
http://www.rstudio.com/products/shiny/shiny-user-showcase


8. A large gallery (over 150) of various Shiny apps is at www.showmeshiny.com.

9. Scenarios Network for Alaska + Arctic Planning (SNAP) offers an interesting array
of Shiny apps using environmental/climate data. Examples can be found at:

• shiny.snap.uaf.edu/sea ice winds

• shiny.snap.uaf.edu/sea ice coverage

• shiny.snap.uaf.edu/temp wind events

7. Summary

There has been a large body of evidence to suggest that web application teaching tools help
statistics students learn material more effectively. Many of these applications have been
implemented as Java/Javascript applets. Shiny is a technology that allows an instructor
to create web application teaching tools. The construction of applets can require fluency
in Java, Javascript, HTML, CSS, and PHP languages, but with Shiny all that is needed is
some familiarity with R.

In-class demonstrations with Shiny can yield a much more fluid and dynamic presentation
than what one may typically experience by using the standard R console approach. As
described in the presentation scenario of Section 2, using Shiny eliminates R interruptions
due to script-changing and, in fact, the console need not ever be shown.

So far we have built a suite of 18 apps in our Shiny App Teaching Tools Collection. Anyone
interested in accessing the source code for the apps can find them from our GitHub Gist site.
Our apps have been successfully used for in-class demonstrations and for lab/homework
exercises. Feedback from instructors who have used our apps has been very positive.

For anyone with some familiarity in R we believe it is very feasible to build, launch, and
deploy Shiny apps. Those without access to a local server might try the free account at
ShinyApps.io but please note the significant account restrictions. For instructors with
access to a Linux-based server we highly recommend that they take advantage (as we did)
of the RStudio Academic Pricing Policy.

We do want to note again that there are many outstanding applet teaching tools found on-
line (e.g., the Rossman/Chance Applet Collection and the Statistics Online Computational
Resource). Our Shiny App Teaching Tools Collection augments this publicly available set
of accessible, interactive web-based statistics teaching tools. We also provide complete
source code for our apps so that users may easily tailor them to their own needs. Our app
gallery may stimulate ideas on how to to present statistical concepts to students, and may
even inspire instructors to create a new app of their own design.

http://www.showmeshiny.com
http://shiny.snap.uaf.edu/sea_ice_winds
http://shiny.snap.uaf.edu/sea_ice_coverage
http://shiny.snap.uaf.edu/temp_wind_events
http://www.shinyapps.io
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Appendix

A. Shiny Basics

A.1. Getting Started

The version of Shiny that we used is 0.11.1 which requires R version 3.0.0 or higher. R
version updates are available at cran.r-project.org.

At the R console submit the following commands to install Shiny:

install.packages("shiny")

library(shiny)

To confirm successful installation, submit the following command to launch one of the
built-in Shiny example apps:

runExample("01_hello")

This built-in app is a simple histogram example that we will discuss later.

Although not required, the freely available RStudio Desktop program (RStudio, 2015) can
greatly facilitate work with Shiny. This software can be downloaded from www.rstudio.com.
As shown later in this section, RStudio has some features that are quite convenient for Shiny
app building, launching, and deployment.

We will now describe the anatomy of a Shiny app and how to launch/deploy an app. Al-
though we will provide a basic overview of these topics, to learn more details we recommend
the excellent Shiny tutorial lessons found at shiny.rstudio.com/tutorial. Currently there are
a total of seven lessons and, as stated on the site, each one takes about 20 minutes and
teaches one new Shiny skill. Another entry point to Shiny is via R Markdown. With R
Markdown one can create dynamic documents comprised of interactive components based
on Shiny. A very helpful resource that shows how one can learn Shiny using R Markdown
is found at rmarkdown.rstudio.com/authoring shiny.html.

https://cran.r-project.org
https://www.rstudio.com
http://shiny.rstudio.com/tutorial
http://rmarkdown.rstudio.com/authoring_shiny.html


A.2. Anatomy of a Shiny App

Each Shiny app is usually comprised of two components: a user-interface script and a
server script. The layout and appearance of the app is defined in the user-interface script.
Instructions for the computer to build the app are stored in the server script. The user-
interface script is stored in a file called ui.r and the server script is stored in a filed called
server.r.a The name of the directory containing these two files becomes the name of app.
This can be important later when the app is launched with runApp() or when the app is
deployed on a Shiny server. These topics will be covered later in this section.

The dynamic and interactive nature of a Shiny app is made possible through the interplay
that occurs between server.r and ui.r. For example, if an app contains “widgets” for
the user to specify input values (e.g., sliders, text input boxes, etc.), these widgets would
usually be defined in ui.r. The user specified input values are then sent to server.r

and operations based on these values can be performed (e.g., construction of a graph).
The results of those computations are then sent back to ui.r where the app displays the
outcome (e.g., display the graph).

Histogram App Example

As an illustration, let us return to the histogram Shiny app from Section A.1. We start by
examining the contents of the corresponding ui.r file.

ui.r

library(shiny)

shinyUI(fluidPage(

titlePanel("Histogram Shiny App"),

sidebarLayout(

sidebarPanel(

sliderInput("numBin", "Number of bins:",

min = 1, max = 50, value = 15)),

mainPanel(

plotOutput("distPlot")

)

)

))

ui.r

aAs of version 0.10.2, Shiny allows for single-file applications where the components of server.r and
ui.r can be stored in one file called app.r.



Note the following features of ui.r:

• library(shiny) loads functions from the Shiny package.

• All user interface elements that we define are wrapped in the call shinyUI(fluidPage()).

• The first element is a title: titlePanel("Histogram Shiny App").

• The appearance of the app will be described in sidebarLayout(). It will be com-
prised of 2 panels:

1. The first panel will be shown on the left side as defined by sidebarPanel().

. This side panel will contain a widget in the form of a slider:
sliderInput("numBin","Number of bins:",min=1,max=50,value=15).

. The value of this widget will be stored in the variable numBin. This argu-
ment will be used later in server.r.

2. The second panel will be shown on the right side as defined by mainPanel().

. With plotOutput("distPlot"), a plot called distPlot will be displayed
in the main panel. As will be seen later, distPlot will be created by
computations (based on numBin) that occur in server.r.

Figure A.1 reveals how the elements of the histogram Shiny app correspond to the compo-
nents of ui.r. The app uses only one widget (slider) and a simple layout. There are many
other types of widgets (e.g., numeric input, radio buttons, check boxes) and layout options
(e.g., tabsets, navbar, navlistPanel). These examples (including code) can be found at
shiny.rstudio.com/gallery.

The code required to generate the histogram from the R console is shown below as histogram.r.
The server script code for the Shiny app is shown below as server.r.

histogram.r

bin.num <- 15

x <- faithful[, 2]

bins <- seq(min(x),max(x),

length.out = bin.num+1)

hist(x, breaks = bins,

col = "darkgray",

border = "white")

histogram.r

server.r

shinyServer(function(input,output){

output$distPlot <- renderPlot({

x <- faithful[, 2]

bins <- seq(min(x), max(x),

length.out = input$numBin+1)

hist(x, breaks = bins,

col = "darkgray",

border = "white")

})

})

server.r

http://shiny.rstudio.com/gallery


Figure A.1: Correspondence of Shiny app elements to components of ui.r

Note the following features of server.r:

• All computational commands are wrapped in the call shinyServer(function(input,
output){}).

• output$distPlot indicates that an output object will be created and its name will be
distPlot. The type of object is a plot as it is assigned the result of renderPlot().

• The arguments of renderPlot() specify what plot to create. Note that histogram.r
is used almost entirely verbatim within renderPlot(). The only difference is that
what was previously defined to be bin.num has been replaced by the user specified
input value numBin corresponding to the slider widget from ui.r.

• The plot distPlot is finally shipped back to ui.r as the argument of plotOutput()
which ultimately reveals the image in the app.



A.3. Reactive Programming

As a brief introduction to reactive programming in Shiny let us revisit the Longest Run
app from Section 2. Recall this app generates a plot containing the outcomes of simulated
coin tosses and marks any runs having a length of at least some specified value. Three
key features of this app are: (1) an adjustment of the trials slider updates the display
with a re-randomization of coin toss outcomes, (2) an adjustment of the run length slider
updates marked runs in the plot without forcing a re-randomization, and (3) a click of
the “Generate” button re-randomizes outcomes. The prevention of re-randomization in (2)
is vital as it allows one to highlight runs of different lengths for the same set of outcomes.
Thus, what we desire is for the app to re-randomize only when the trials slider is updated
or when the “Generate” button is clicked, but not when the run length slider is updated.

The standard behavior in Shiny is for functions to be evaluated when any widget is updated.
This default mode would not be helpful for the Longest Run app as we would not be able
to prevent re-randomization as stated in feature (2). It is, however, possible for an app to
have a function evaluated only when specific widgets are updated and this can be done
via so-called reactive expressions. This feature allows for greater control and flexibility.

Recall from Section 2 that the function that performs the randomization of all coin toss
outcomes is flip.gen(). As found in the server.r codeb for the Longest Run app, we used
the variables corresponding to the trials slider and“Generate”button widgets as arguments
for flip.gen(). We then embedded that entire function call into the reactive expression
reactive(). Given that the only arguments of flip.gen() correspond to the trials slider
and button widgets, and because the entire function is wrapped within reactive(), this
allows for re-randomization to occur only when those two widgets are updated.

This is only one example of how reactive expressions work. Other examples can be found
in our Shiny App Teaching Tools Collection as virtually all of our apps use some form of
reactive programming. A general overview on this topic can be found at shiny.rstudio.com/
articles/reactivity-overview.html.

A.4. Launching a Shiny App

As one builds an app by editing the corresponding server.r and ui.r files, the user will
want to launch the app to see how it looks. This can be done by submitting the runApp()

command, assuming that the app files are in the current working directory. Or one can
directly specify in runApp() the full directory location of the folder containing the app
files. After submitting runApp() the app should launch in a web browser.

bCode can be found at our GitHub Gist website (gist.github.com/calpolystat).

http://shiny.rstudio.com/articles/reactivity-overview.html
http://shiny.rstudio.com/articles/reactivity-overview.html
http://gist.github.com/calpolystat


While the app is running note that the R console remains in a busy state and becomes
inaccessible (indicated by the “Listening” message from the console)c. Once the app is
stopped (Escape key or Stop button in the console) R will return to an interactive mode.
One way to build an app is to use a standard text editor to make changes to server.r

and ui.r and then manually submit runApp() in the R console, but this is an extremely
inconvenient process. This is because, once subsequent changes are made to server.r or
ui.r, the app needs to be manually stopped and then relaunched with another runApp()

submission. This could become a very tedious cycle.

A more convenient mode of editing an app can be done with RStudio. With this software,
as one edits either server.r or ui.r, a quick way to launch the app is by pressing the“Run
App” button in the editor panel (keyboard shortcut Control+Shift+Enter). See Fig-
ure A.2. By default this launches the app in an app window as shown in Figure A.3. After
additional changes are made to server.r or ui.r, pressing Control+Shift+Enter
will automatically refresh the app window. So there is no need to ever manually close/re-
open the app window. Using RStudio the app may be launched in the default app window,
in a web browser, or in the Viewer Pane. The app launch mode can be set via a pull-down
menu next to the “Run App” button.

Figure A.2: RStudio environment for editing server.r and ui.r. Note the location of the
“Run App” and “Publish” buttons.

cIt is possible to run the app in a separate process and keep the console accessible. See
shiny.rstudio.com/articles/running.html for more details.

http://shiny.rstudio.com/articles/running.html


Figure A.3: Shiny app launched in the default app window. Note the location of the
“Publish” button.

A.5. Deploying/Publishing a Shiny App

Once an app has been finalized, the user may want to deploy/publish it by posting it
on a Shiny server. By doing so anyone can access the app with a web browser. Users
with access to a Linux server can install a local Shiny Server. For more details see
www.rstudio.com/products/shiny/shiny-server. Also, for those at academic institutions,
see www.rstudio.com/pricing/academic-pricing for information on the RStudio Academic
Pricing Policy.

Users without access to a server can deploy apps to the cloud service ShinyApps.io offered
by RStudio. Apps can be uploaded for free with a restriction on the number of deployed
apps and number of active use hours. Other plans that require a fee offer less restric-
tions. Visit shiny.rstudio.com/articles/shinyapps.html for more details on creating a free
ShinyApps.io account and configuration instructions for app deployment.

https://www.rstudio.com/products/shiny/shiny-server
https://www.rstudio.com/pricing/academic-pricing
http://www.shinyapps.io
http://shiny.rstudio.com/articles/shinyapps.html
http://www.shinyapps.io


Once the configuration process is completed publishing an app to ShinyApps.io is quite
simple. To do so, assuming the app files are in the current working directory, submit the
deployApp() command from the shinyapps package at the R console as shown here:

library(shinyapps)

deployApp()

Users can also directly specify in deployApp() the full directory location of the folder
containing the app files.

Alternatively one can publish an app by clicking the “Publish” button that is found in
RStudio (see Figure A.2) or in the default app window (see Figure A.3). Clicking this
button yields the dialogue box shown in Figure A.4. Note that the name of the folder
containing the app becomes the name of the app.

Figure A.4: Publishing a Shiny app to ShinyApps.io. The name of the folder containing
the app files becomes the name of the app.

http://www.shinyapps.io
http://www.shinyapps.io


B. Teaching materials

B.1. Homework Assignment using Testing Violation of the Constant Variance
Condition for ANOVA App

You are going to use this app to investigate performance of the ANOVA F -test when the
condition of constant variance fails. For your first simulation, use the default values for
population standard deviations, sample sizes, and population means.

1. Simulate 1000 data sets and record the estimated Type I error rate in the table below.
Next, perform simulations for the other combinations of sample size and standard
deviations. The Type I error rates are approximations which will improve if you do
more simulations.

Standard deviations
Sample sizes 6, 6, 6 4, 6, 8 1, 6, 11

20, 20, 20
10, 20, 30
5, 10, 20

2. Does violation of constant variance cause the Type I error rate to be different than
what we’d expect? If so, is the effect different for different sample sizes?

3. Is the Type I error rate higher or lower than what we expect?

4. Is there any drawback to having a Type I error rate lower than expected? Explain.



B.2. Homework Assignment using Sampling Distributions of Various Statistics
App

1. Use this app to explore the sampling distribution of the sample mean of American
income. Suppose income is right skewed with mean $53K and standard deviation
$35K.

(a) Simulate samples of size 10 and study the histograms of the samples as well as
the sampling distribution. What is the shape of the sample histograms? What
is the shape of the sampling distribution of the sample mean?

(b) Simulate samples of size 1000 and study the histograms of the samples as well as
the sampling distribution. What is the shape of the sample histograms? What
is the shape of the sampling distribution?

(c) Did the shapes of the sample histograms and sampling distributions change from
(a) to (b)? If so, explain how. Explain in plain English why they changed or
didn’t change.

2. Use the same app to explore the sampling distribution of the sample max. Assume a
uniform population with mean 0, standard deviation 1. With samples of size 10, what
is the distribution of the sample max? Is this an unbiased estimator for the population
max? (NOTE: you can select “Display summaries of sampling distribution” to see
the mean of your simulated sample statistics.) Why or why not?



B.3. Laboratory Exercise using Sampling Distributions of Various Statistics
App

In this lab, you will explore the effect of sample size on the validity of the Central Limit
Theorem using the Sampling Distributions of Various Statistics App. First, we will begin
with a left-skewed population distribution. Select that from the drop-down menu, and then
do the following:

• Change the sample size to 100

• Change the number of samples to 1 and click “Draw samples” just to observe what
one iteration looks like

• Do a few more, and then ultimately change the number of samples so that you get
at least 1000 total

• Decrease the sample size and repeat the above. Continue to decrease the sample size
until the sampling distribution no longer looks like a normal distribution.

Comment on what you observed, specifically the smallest sample size at which the sampling
distribution still resembles a normal distribution. Take a screen shot of the histograms at
this sample size and include it with your assignment.

Then, repeat this for a Bimodal population distribution, and a Normal population distri-
bution (are your results here surprising?)
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