
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Voting with regenerable volatile witnesses

Permalink
https://escholarship.org/uc/item/00d3r105

Authors
Paris, J-F
Long, DDE

Publication Date
1991

DOI
10.1109/icde.1991.131458

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/00d3r105
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Proc. 7th International Conference on Data Engineering (1991), pp. 112-119

Voting with Regenerable Volatile Witnesses

Jehan-Franc,ois Pâris Darrell D. E. Long

Department of Computer Science Computer and Information Sciences
University of Houston University of California

Houston, TX 77204-3475 Santa Cruz, CA 95064

ABSTRACT

Voting protocols ensure the consistency of replicated
objects by requiring all read and write requests to collect
an appropriate quorum of replicas. We propose to replace
some of these replicas by volatile witnesses that have no
data and require no stable storage, and to regenerate
them instead of waiting for recovery. The small size of
volatile witnesses allows them to be regenerated much
easier than full replicas. Regeneration attempts are also
much more likely to succeed since volatile witnesses can
be stored on diskless sites.

We show that under standard Markovian assump-
tions two full replicas and one regenerable volatile witness
managed by a two-tier dynamic voting protocol provide a
higher data availability than three full replicas managed by
majority consensus voting or optimistic dynamic voting
provided site failures can be detected significantly faster
than they can be repaired.

Keywords: distributed file systems, replicated data, vot-
ing, witnesses.

1. INTRODUCTION

Fault-tolerance is an important issue in distributed systems
owing to the large number of cooperating components.
The redundancy present in most distributed systems can
be used to enhance fault-tolerance, and the evaluation of
this increased resiliency is of great practical interest. The
most common measures of fault tolerance is availability,
which is the steady-state probability that the object is avail-
able at any given moment.

While replicating immutable data objects is an easy
task, replicating ordinary data objects presents a special
challenge as sites and communication failures are likely to
result in inconsistent replica updates. Special protocols
have been devised to avoid this occurrence. These repli-
cation control protocols define a new data abstraction that
has the same semantics as an unreplicated instance of the
object being replicated while providing a higher resiliency.
We refer to this abstraction as a replicated object.

The simplest replication control protocol, majority
consensus voting (MCV), requires a minimum of three
replicas to be of any practical use. Even then, quorum
requirements disallow a large fraction of read and write
operations. Several solutions have been proposed to sur-

mount these limitations. Dynamic voting [5] and dynamic-
linear voting [7] adjust quorums to reflect changes in
replica availability and network topology. Both greatly
improve availability when applied to replicated objects
composed of more than three replicas, but do not perform
significantly better than majority consensus voting when
fewer than four replicas are present.

Voting with witnesses [4, 12] reduces the number of
full replicas necessary to achieve a given level of fault-
tolerance by replacing some replicas by witnesses that
hold no data but can attest to the status of the replicated
object. Agrawal and El Abbadi [2] have recently proposed
storing overlapping fragments of the object instead of
whole replicas. Both of these techniques significantly
reduce storage costs but still require at least three voting
entities to be kept in stable storage.

One of the authors has recently proposed [14] stor-
ing witnesses in volatile memory. Since these light-weight
or volatile witnesses are likely to be left in an incorrect
state after a site failure, recovering volatile witnesses must
be prevented from participating in elections until they can
determine the current status of the replicated object. This
can delay recovery of the replicated object, especially
when the volatile witnesses are stored at sites subject to
frequent failures.

We propose to eliminate this weakness of volatile
witnesses by replacing failed witnesses instead of waiting
for the recovery of the failed site. This technique, known
as regeneration, approximates the protection provided by
additional witnesses, but at a much lower cost. The
minuscule memory requirements of volatile witnesses
make this an attractive solution.

Our proposal has several major advantages over
other regenerative replication control protocols. First,
volatile witnesses can be regenerated inexpensively owing
to their small size. Second, attempts to regenerate a vola-
tile witness are more likely to succeed than attempts to
regenerate a full replica since diskless sites can be used.
Third, regenerating a volatile witness has practically no
effect on the network traffic and incurs no significant
storage cost. Finally, regenerable volatile witnesses can
be combined with two-tier voting to provide a high level of
fault-tolerance with as few as two replicas in stable
storage. Unlike other replication control protocols that
require only two replicas [2, 3, 12, 13, 16], our novel tech-
nique requires only two sites providing stable storage,

112

operates correctly in the presence of communication
failures, and does not require any knowledge of the net-
work topology.

The remainder of this paper is organized as follows:
Section two introduces regenerable volatile witnesses and
describes our protocol in detail. Section three contains a
stochastic analysis of the availability of the data provided
by our protocol. Our conclusions follow in section four.

2. VOLATILE REGENERABLE WITNESSES

The notion of regenerating replicas to replace those lost
owing to site failures was first introduced by the regenera-
tion algorithm (RA) [15], which provided mutual and serial
consistency of replicated objects in a partition-free distri-
buted system. Since then, it has been shown [8, 10, 17]
that regeneration is a generally applicable technique that
can be profitably combined with many replication control
protocols.

In a partitionable distributed system, consensus pro-
tocols are required to maintain consistency. Regeneration
has been combined with majority consensus voting to
obtain a simple protocol for maintaining mutual con-
sistency, and has also been combined with dynamic voting
protocols to provide an increased level of fault tolerance
[8, 10]. The penalty for using regeneration with these pro-
tocols is an increase in both network traffic and peak
storage requirements.

A witness [12] requires very little storage: only
enough so that it can attest to the state of the replicated
object. We describe a method that combines regenera-
tion, a two-tier dynamic voting protocol, and volatile
witnesses to create a superior protocol for replicated data
management. By regenerating only volatile witnesses,
both network traffic and storage requirements are
significantly reduced while fault tolerance is improved over
conventional protocols.

Dynamic Voting with Regenerable Witnesses

Unlike a conventional witness, a volatile witness cannot
recover from a site failure until it can obtain the current
state of the replicated object from a valid quorum of repli-
cas and witnesses. Using witnesses as full voting entities
could result in unstable majorities that would be lost follow-
ing the failure of the witnesses. To prevent replicated
objects from becoming permanently unavailable, the sum
of the weights of all replicas must always exceed the sum
of the weights of all volatile witnesses. This condition is
especially difficult to enforce for dynamic voting protocols
since the access quorums are readjusted each time a
change in the state of the replicas or the witnesses is
detected. To avoid this complexity, our protocol instead
uses a two-tier voting scheme where witnesses are solely
used to break ties among competing quorums. This has
the advantage that all quorums are stable, since they are
composed solely of full replicas.

Our two-tier protocol uses a dynamic voting protocol
to protect against communication failures. This protocol

must satisfy three conditions. First, it must be able to
disenfranchise witnesses that belong to previous genera-
tions to avoid possible inconsistencies among the replicas.
Dynamic voting protocols already provide the necessary
mechanism since they must be able to adjust quorums.
Second, it must be atomic to ensure consistent creation of
witnesses. If this condition is not met, generations with
fewer than a quorum can result, causing the replicated
object to become permanently inaccessible. We assume
that an appropriate commit protocol is used to ensure
atomicity. Third, it must take into account that some vola-
tile witnesses may never recover completely. This results
in our two-tier scheme for using volatile witnesses to break
ties.

Our protocol uses sets of site names, called partition
sets, to record the identity of the replicas and witnesses
that constitute a quorum. These partition sets represent
the sets of replicas and witnesses that participated in the
last successful operation that included the site where it is
stored. They are used to determine the required quorum
for the next access operation, and are altered when either
a read or write operation occurs, and are brought up-to-
date when a site recovers from a failure. This is similar to
the information required by optimistic dynamic voting
(ODV) [9]. Partition sets are used by ODV to determine
which replicas can form a quorum. For ODV, a quorum is
formed either by a majority of the replicas in a current par-
tition set, or by one half of the current replicas with the tie
broken according to lexicographic order.

Our protocol requires four pieces of information to
be stored along with each replica: an operation number,
oi , and a version number, vi ; Pr

i , the partition set
representing the set of replicas that participated in the last
operation; and Pw

i , the partition set representing the set of
witnesses that participated in the last operation.
Witnesses are simpler and only require an operation
number to be kept. The version number represents the
number of writes that have been applied to the replica of
the data object. The operation number is used to deter-
mine the most recent quorum and witnesses and can be
viewed as a version number for the partition sets.

Regeneration is attempted when a site recovers
from a failure and at each access to the replicated object.
Frequent accesses ensure a full complement of witnesses
and improve the availability of the replicated object.
Accomplishing a regeneration requires a majority of the
replicas in the previous quorum to be present, or, if there
is a tie, some predefined rule to break it. Once a quorum
has been formed, spare sites are selected and witnesses
are created. The names of the sites holding witnesses are
entered into the partition sets Pw

i of each site in the
quorum. The operation number oi of the replicated object
is then incremented. Since a quorum must be present,
incrementing the operation number has the effect of disen-
franchising all replicas and witnesses that did not partici-
pate in the regeneration.

113

Our method is based on the protocol for detecting
whether the access request originates within the majority
partition. Since there can be only one majority partition,
mutual exclusion is guaranteed and consistency is
preserved.

Protocol 1. A request for votes is sent to all participating
sites, holding either replicas or witnesses, and the follow-
ing information is collected. R is the set of responding
replicas and W is the set of responding witnesses. From
each replica in R we obtain oi , the operation number, vi ,
the version number, Pr

i the partition set containing only
replicas, and Pw

i the partition set containing only
witnesses. From each witness in W we obtain only the
operation number oi .

From these, two important sets are computed: Qw which is
the set of current witnesses, and Qr, the set of current
replicas.

A quorum is present if any of the following four conditions
hold.

1. The set of responding replicas constitutes a majority
of replicas in the previous quorum.

2. The set of responding replicas contains exactly half
of the replicas from the previous quorum and a
majority of the current witnesses also respond.

3. The set of responding replicas contains exactly half
of the replicas from the previous quorum and exactly
half of the current witnesses respond. In this case a
quorum exists if the maximal witness in some total
ordering of Pw is present.

4. There were no witnesses present in the previous
quorum, and exactly one half of the replicas in the
previous quorum are present. In this case, a
quorum is present if the maximal replica in some
total ordering of Pr is present.

The rules given in protocol 1 require some explana-
tion. The key to improving the resiliency of dynamic voting
is improving the tie resolution algorithm. A majority of the
previous quorum is the most logical choice for the new
quorum, and so, as in most dynamic voting protocols, rule
(1) declares a majority of replicas to be a quorum. When
one half of the previous quorum of replicas is present, a tie
will occur and must be resolved according to some
predefined rule.

Using volatile witnesses is a better method for
breaking ties for two reasons. First, when lexicographic
ordering is used a quorum will be formed only 50% of the
time. A volatile witness is a better tie breaker than lexico-
graphic ordering as long as its availability remains greater
than 0.5. Finally, increasing the regeneration rate or the
number of volatile witnesses brings us closer to the goal of
an infallible tie breaker.

When there is a tie among the witnesses, rule (3)
applies a total ordering on the set of witnesses to deter-
mine the quorum. If all else fails, and there are no
witnesses then rule (4) resolves the tie by applying a total

ordering to the set of replicas. A more precise statement
of the quorum conditions is given in figure 1.

The algorithm for performing a read operation is
simple. It first determines whether the current partition is
the majority partition. A message is sent to all participat-
ing sites requesting their partition sets, operation number
and version number; those that send replies are con-
sidered to be in the current partition. The set of current
replicas is found by computing the maximum operation
number of all responding replicas. This set of sites holding
up-to-date replicas is called the quorum set. If the quorum
set represents a majority of the previous quorum,
represented by Pr

i , then by rule (1) the access request will
be granted. If there is a tie, that is exactly one half of the
previous quorum are present, the access request will be
granted by rule (2) if a majority of the current witnesses
are present. If there is a tie both in the number of replicas
from the previous quorum and in the number of current
witnesses, then by rule (3) the lexicographic orderering on
the set of witnesses will be used to break the tie. If there
were no witnesses present in the previous quorum, and
there is a tie involving the number of replicas from the pre-
vious quorum then by rule (4) the tie will be resolved by
applying the lexicographic ordering on the set of replicas.

function QUORUM (Pr ,Pw ,R,W,Qw ,Qr) : Boolean
begin

choose any m∈Qr

if (| Qr | >
2

| Pr
m |

�����������) ∨

(| Qr | =
2

| Pr
m |

����������� ∧ | Qw | >
2

| Pw
m |

�����������) ∨

(| Qr | =
2

| Pr
m |

����������� ∧ | Qw | =
2

| Pw
m |

����������� ∧ max(Pw
m)∈Qw) ∨

(| Qr | =
2

| Pr
m |

����������� ∧ Pw
m=∅ ∧ max(Pr

m)∈Qr) then

return true
else

return false
fi

end QUORUM

Figure 1: Quorum Algorithm

Once it has been determined that the current parti-
tion is the majority partition, then access can continue.
After the read operation is performed, a check is made to
determine if any witnesses have been lost, that is if
| W | < nw , where nw is the initial number of witnesses.
Lost witnesses are replaced by locating other sites willing
to hold a witness. The operation number is incremented
and sent along with the set of current replicas and
witnesses, including the newly created volatile witnesses,
to all current replicas to serve as their new partition sets.
This last action serves to change the quorum requirements
for future access requests. Sites holding witnesses store

114

procedure READ

begin
START

collect 〈Pr,Pw ,o,v,R,W〉
Qw = {r∈W : or =

s∈(R∪W)
max {os}}

Qr = {r∈R : or =
s∈(R∪W)

max {os}}

S = {r∈R : vr =
s∈R)
max{vs}}

if QUORUM (Pr ,Pw ,R,W,Qw ,Qr) then
choose any m∈Qr

perform the read
if | W | < nw then

generate Tw with | Tw | = nw − | W |
fi

COMMIT(〈S,W∪Tw〉,om+1,vm ,〈S,W∪Tw〉)
else

ABORT(R∪W)
fi

end READ

Figure 2: Read Algorithm

only the operation number.

There are several items in the algorithm for reading
that need explanation. The START operation begins the
transaction. R is the set of reachable replicas, and W is
the set of reachable witnesses. Four arrays are collected:
o, the operation numbers, v, the version numbers, Pw , the
partition sets consisting only of witnesses, and Pr, the par-
tition sets consisting only of replicas. The COMMIT opera-
tion completes the transaction and transmits the new con-
sistency control information to all current replicas and
witnesses.

The algorithm for writing is similar to the algorithm
for reading. Again it is ascertained if the current partition
is the majority partition by using the QUORUM function. If
this is successful, the write operation is performed, fol-
lowed by the regeneration of any failed witnesses. The
operation number oi and the version number vi are incre-
mented and sent along with the sets of current replicas
and witnesses to all current replicas to serve as their new
partition sets.

The recovery algorithm behaves much like the other
algorithms, first determining whether the current partition is
the majority partition. If the recovering site is able to com-
municate with the majority partition, then it determines
whether the replica at that site is up-to-date by comparing
version numbers. If it is not, then it must be copied from
one of the replicas in the quorum set. Any failed
witnesses are then regenerated. The recovering replica
then sends the union of the set of current replicas and
itself, and the set of current witnesses, to all current repli-
cas to serve as their new partition sets.

procedure WRITE

begin
START

collect 〈Pr,Pw ,o,v,R,W〉
Qw = {r∈W : or =

s∈(R∪W)
max {os}}

Qr = {r∈R : or =
s∈(R∪W)

max {os}}

S = {r∈R : vr =
s∈R)
max{vs}}

if QUORUM (Pr ,Pw ,R,W,Qw ,Qr) then
choose any m∈Qr

perform the write
if | W | < nw then

generate Tw with | Tw | = nw − | W |
fi

COMMIT(〈S,W∪Tw〉,om+1,vm+1,〈S,W∪Tw〉)
else

ABORT(R∪W)
fi

end WRITE

Figure 3: Write Algorithm

procedure RECOVER(k : site identifier)
begin

repeat
START

collect 〈Pr,Pw ,o,v,R,W〉
Qw={r∈W : or =

s∈(R∪W)
max {os}}

Qr={r∈R : or =
s∈(R∪W)

max {os}}

S={r∈R : vr =
s∈R)
max{vs}}

if QUORUM (Pr ,Pw ,R,W,Qw ,Qr) then
choose any m∈Qr

if vk < vm then
copy the object from site m

fi
if | W | < nw then

generate Tw with | Tw | = nw − W
fi

COMMIT(〈S∪{k},W∪Tw〉,om+1,vm ,〈S∪{k},W∪Tw〉)
else

ABORT(R)
fi

until successful
end RECOVER

Figure 4: Recovery Algorithm

115

3. AVAILABILITY ANALYSIS

In this section we present an analysis of the availability
provided by our protocol. We define the availability of a
replicated object as the stationary probability of the object
being in a state permitting access. AP(n, m) will denote
the availability of an object with n replicas and m
witnesses managed by the protocol P.

Our model consists of a set of sites with indepen-
dent failure modes that are connected via an arbitrary net-
work composed of LAN segments linked by repeaters and
gateways. When a site fails, a repair process is immedi-
ately started at that site. Should several sites fail, the
repair process will be performed in parallel on those failed
sites. We assume that failures are exponentially distri-
buted with mean failure rate λ , that repairs are exponen-
tially distributed with mean repair rate µ , and that access
requests are characterized by a Poisson process with
mean κ . The system is assumed to exist in statistical
equilibrium and to be characterized by a discrete-state
Markov process. No attempt is made to model failures of
LAN segments, repeaters or gateways.

The assumptions that we have made are required
for a steady-state analysis to be tractable [6]. They have
been made in most recent probabilistic analyses of the
availability of replicated data [1, 4, 7, 12]. Purely combina-
tional models that do not require assumptions about failure
and repair distributions have been proposed [15, 16] but
these models cannot distinguish among live replicas that
belong to the current majority partition and live replicas
that do not.

The availability analysis of a replicated object with
witnesses is complicated by the problem of distinguishing
between witnesses and full replicas and by taking into
account situations where the witnesses and the replicas
disagree about the state of the replicated object. We will
therefore focus our analysis on the case of a replicated
object consisting of two full replicas, one regenerable vola-
tile witness and an unlimited number of spare sites.
Although larger configurations can be analyzed using the
same approach, we did not include them here owing to
space considerations.

The state transition diagram for a replicated object
consisting of two full replicas, one regenerable volatile wit-
ness and an unlimited number of spare sites is shown in
figure 5. Each state is represented by a tuple 〈uv/ wx〉
where u is the current number of live replicas and v is the
number of live witnesses while w and x respectively are
the original numbers of replicas and witnesses when the
current majority partition was created. States where the
replicated object is unavailable due to the lack of a quorum
will be identified by a prime mark (′). This will allow us to
distinguish between a state as 〈11/ 11〉, where the live
replica and the live witness belong both to the current
majority partition, and state as 〈11/ 11〉′, where the only
live replica does not belong to the majority partition and
the replicated object is unavailable.

21/21 11/21 01/21

20/21 10/21′ 00/21′

11/11 01/11′

10/11 00/11′

11/11′

10/11′

2λ

µ

λκ +µ

λ

2µ

2λ

µ

λ

2µ

λ
λ

κ
λ

µ

λ

µ

λ

κ λ

λ
µ

λ
µ

λ

µ

µ

µ µ

Figure 5: State-Transition Rate Diagram for Two Replicas
and One Regenerable Volatile Witness (Optimistic Dynam-
ic Voting)

A replicated object with its two replicas and its wit-
ness fully operational is in state 〈21/ 21〉. A failure of the
witness brings the object into state 〈20/ 21〉 until the failure
is detected and the witness is regenerated. If either of the
two replicas fails before the failure of the witness is
detected, the object enters state 〈10/ 21〉′ and from there
to 〈00/ 21〉′ if the second replica fails. No witness can be
regenerated from state 〈10/ 21〉′ or state 〈00/ 21〉′ since no
quorum exists in either of these states. A recovery of the
failed replica would bring the replicated object directly from
state 〈10/ 21〉′ to state 〈21/ 21〉 since the recovery process
will automatically regenerate the failed witness.

An object in state 〈21/ 21〉 that loses one of its two
replicas enters 〈11/ 21〉 until the failure is detected. Since
the protocol does not regenerate replicas, the object is
brought to state 〈11/ 11〉 and a new majority partition
created. An object in state 〈11/ 11〉 can either recover and
return to state 〈21/ 21〉 or fail again and enter either
〈10/ 11〉 or 〈01/ 11〉′. A recovery from 〈01/ 11〉′ can bring
the object either to 〈11/ 11〉 if the recovering replica
belongs to the current majority partition or to 〈11/ 11〉 if it
does not. A failure from state 〈10/ 11〉 would bring the
object to state 〈00/ 11〉′. Note that there are transitions
from 〈00/ 11〉′ to 〈10/ 11〉 and to 〈10/ 11〉 but no transition
from 〈00/ 11〉′ to 〈01/ 11〉′ since a witness cannot be
regenerated by a minority. A failure occurring when the
object is in state 〈11/ 21〉 could bring it to either 〈10/ 21〉′ or
〈01/ 21〉. Again there are no transitions from 〈10/ 21〉′ to
〈11/ 21〉, nor from 〈00/ 21〉′ to 〈01/ 21〉.

The availability of the replicated object is given by
the sum of the probabilities of the system being in an avail-

116

able state:

ARVW(2, 1) =
(ρ +1)3

ρ 2+3ρ +1
� ��������������� −

(3ρ +φ +1)(ρ 4+7ρ 3+15ρ 2+13ρ +4)
3ρ 4+11ρ 3+10ρ 2

� ���

−
(2ρ 2+φ (ρ +2)+3ρ +2)(ρ 4+7ρ 3+15ρ 2+13ρ +4)

4ρ 4+10ρ 3+4ρ 2
� ��� (1)

where ρ =λ /µ and φ =κ /µ .

Failure rate to repair rate ratio

0 .05 .10 .15 .20

.88

.90

.92

.94

.96

.98

1

MCV(3)

. 2 + RVW φ = 0

. 2 + RVW φ = 1

. 2 + RVW φ = 2

. 2 + RVW φ = 5

. 2 + RVW φ = 10

. . . . 2 + RVW φ = ∞

Figure 6. Compared Availabilities of RVW and MCV

The graph in figure 6 shows the compared availabili-
ties for three replicas managed by MCV and two replicas
and one regenerable volatile witness managed by our
two-tier protocol. As one can see, the availability provided
by two replicas and one regenerable volatile witness is
strongly affected by the access rate κ and its ratio to the
repair rate φ =κ /µ . A replicated object that is frequently
accessed (κ > 2µ) will have an availability greater than
that of three replicas under MCV while a replicated object
that is rarely accessed will have a significantly lower avai-
lability. This can be inferred from equation (1) by comput-
ing

φ→∞
limARVW(2, 1) =

(ρ + 1)3

ρ 2 + 3ρ + 1
� ������������������� ,

and

φ→0
limARVW(2, 1) =

(ρ + 1)(3ρ + 1)(2ρ 2 + 3ρ +2)
10ρ 2 + 11ρ +2

��� .

The behavior of a regenerable volatile witness under
frequent access conditions is much more interesting. Fre-
quent accesses result in the rapid regeneration of the wit-
ness when it fails. The protocol essentially provides a
close approximation of a single infallible witness. Assum-
ing independent site failures and neglecting network parti-
tions, a replicated object consisting of n replicas and a sin-

gle infallible witness will remain available as long as at
least one of its n replicas can be accessed. To recover
from a simultaneous failure of all replicas the replicated
object will remain unavailable until the replica that failed
last recovers. This behavior is identical to that of n replicas
and no witness managed by the available copy protocol.
We have therefore for any positive n:

φ→∞
limARVW(n, 1) = AAC(n) (2)

Failure rate to repair rate ratio

0 .05 .10 .15 .20

.88

.90

.92

.94

.96

.98

1

ODV(3) φ = 5-∞

. 2 + RVW φ = 0

. 2 + RVW φ = 1

. 2 + RVW φ = 2

. 2 + RVW φ = 5

. 2 + RVW φ = 10

. . . . 2 + RVW φ = ∞

Figure 7. Compared Availabilities of RVW and ODV

This result is significant for several reasons. First,
the available copy protocol provides the highest availability
of all replication protocols that do not regenerate replicas.
Its performance is indeed so close to optimum that it is
unlikely that a protocol providing higher availabilities
without regenerating failed replicas will be found [11].
Second, the available copy protocol is an idealized proto-
col that assumes that failures can be instantaneously
detected; variants that do not make this assumption, such
as naive available copy and optimistic available copy [11],
provide somewhat lower data availabilities. Finally, unlike
optimistic dynamic voting, the available copy protocol does
not guarantee data consistency in the presence of network
partitions. Equation (2) states that the cost of this addi-
tional protection is one regenerable volatile witness. We
have shown in a previous article [11] that n replicas
managed by the available copy protocol provide a better
level of data availability than 2n−1 or 2n replicas managed
by the MCV protocol. Two-tier dynamic voting and a sin-
gle volatile regenerable witness provides a better level of
data availability than MCV with twice the number of repli-
cas.

117

The graph in figure 7 contrasts the availabilities of
two full replicas and a volatile regenerable witness with the
availabilities of three full replicas managed by ODV. A
thick solid line is used to represent the availabilities of
three full replicas managed by ODV for values of the
access rate to repair rate ratio φ between 5 and ∞. Dotted
lines are used to represent the availability of two replicas
and one regenerable volatile witness for selected values of
φ between 0 and ∞. The graph again demonstrates the
excellent performance of our protocol when the access
rate allows a rapid detection of witness failures. This also
seems to indicate that very little improvement could be
achieved by adding additional volatile witnesses when the
access rate to repair rate ratio φ ≥ 5.

One might also wonder how our results were
affected by our hypothesis that there was an unlimited
supply of spare sites ready to host new volatile witnesses.
We analyzed a configuration with two full replicas and one
regenerable volatile witness where the volatile witness
could only be regenerated at one spare site and found that
the difference of availability resulting from this restriction
was below 2.5% for all values of φ ≥ 0 and 0 ≤ρ ≤ 0.20.

A comparison between regenerable volatile
witnesses and conventional witnesses would have led to
the same conclusions since replacing some replicas of a
replicated object by conventional witnesses never
increases—and often decreases—its availability. It is also
very unlikely that regenerable conventional witnesses
would perform significantly better than regenerable volatile
witnesses under frequent accesses. First, a single
regenerable volatile witness under frequent access
already provides an excellent approximation of an infallible
witnesses. Second, conventional witnesses can only be
regenerated on sites providing stable storage, which
greatly reduces the pool of potential regeneration sites.

Since high access rates are essential, one possible
implementation of our protocol could maintain all control
information on a per site basis. This would guarantee an
overall rate of access on the order of every second at
least. This solution is especially well suited for replicated
devices as each site would have the replicas of a large
number of files and directories.

Another interesting observation concerns the need
to regenerate witnesses when only one live replica
remains accessible. The regeneration transition from
〈10/ 11〉 to 〈11/ 11〉 is absolutely useless since the vote of
the single live replica in a majority partition is necessary
and sufficient to constitute a new majority partition. A
bolder protocol would always terminate the witness when
the replicated object is found in state 〈11/ 21〉, which would
bring the object in state 〈10/ 10〉. States 〈11/ 11〉, 〈01/ 11〉′
and 〈11/ 11〉′ would be totally eliminated while states
〈10/ 11〉, 〈00/ 11〉′ and 〈10/ 11〉′ would be respectively
renamed 〈10/ 10〉, 〈00/ 10〉′ and 〈10/ 10〉′. For the same
reason, we did not contemplate generating new witnesses
to replace the replicas that failed.

4. CONCLUSIONS

We have presented a replication control protocol that com-
bines volatile witnesses, regeneration, and a two-tier
dynamic voting protocol to provide a higher level of fault-
tolerance for a given number of replicas than all extant vot-
ing protocols. The excellent performance of our protocol is
largely based on the synergy between volatile witnesses
and regeneration, as volatile witnesses are quicker and
cheaper to regenerate than either full replicas or conven-
tional witnesses.

The behavior of regenerable volatile witnesses
under frequent access conditions is the most interesting.
Frequent accesses result in the rapid regeneration of fail-
ing witnesses. The protocol essentially provides a close
approximation of a single infallible witness. Assuming
independent site failures and neglecting network partitions,
a replicated object consisting of n replicas and a single
infallible witness will remain available as long as at least
one of its n replicas can be accessed. Under frequent
access, our two-tier protocol using n replicas and one
regenerable volatile witnesses provides the same availa-
bility as the available copy protocol with n replicas, and
better availability than the majority consensus voting proto-
col using 2n replicas.

We have shown that our protocol provides availabil-
ity superior to MCV and ODV when the access rate allows
a rapid detection of witness failures. We also found that
the number of available spare sites has only a small effect
on availability. A configuration with two full replicas and
one regenerable volatile witness where the volatile witness
could only be regenerated at one spare site was found to
differ from the case where an unlimited supply of spares
was available by less than 2.5% for all values of φ ≥ 0 and
0 ≤ρ ≤ 0.20.

More work is needed to assess the reliability of repli-
cated objects using regenerable volatile witnesses, to esti-
mate the impact of communication failures on the availabil-
ity of the replicated data, and to evaluate the costs
incurred by the protocol.

Acknowledgements

We wish to thank Elizabeth Pâris, Mary Long and Richard
Golding for their editorial comments.

The Markov analysis of the availability of the proto-
cols under study has been done with the aid of
MACSYMA, a large symbolic manipulation program
developed at the Massachusetts Institute of Technology
Laboratory for Computer Science. MACSYMA is a trade-
mark of Symbolics, Inc.

References

[1] M. Ahamad and M. H. Ammar, ‘‘Performance Char-
acterization of Quorum-Consensus Algorithms for
Replicated Data,’’ IEEE Trans. on Software
Engineering, SE-15, 4 (1989), pp. 492-496.

118

[2] D. Agrawal and A. El Abbadi, ‘‘Reducing Storage for
Quorum Consensus Algorithms," Proc. 14th VLDB
Conf. (1988), pp. 419-430.

[3] P. A. Bernstein and N. Goodman, ‘‘An Algorithm for
Concurrency Control and Recovery in Replicated
Distributed Databases,’’ ACM Trans. on Database
Systems, 9, 4 (1984), pp. 596-615.

[4] J. Bechta Dugan and G. Ciardo, ‘‘Stochastic Petri
Net Analysis of a Replicated File System,’’ IEEE
Trans. on Software Engineering, SE-15, 4 (1989),
pp. 394-401.

[5] D. Davcev and W. A. Burkhard, ‘‘Consistency and
Recovery Control for Replicated Files,’’ Proc. 10th
ACM Symp. on Operating System Principles (1985)
pp. 87-96.

[6] B. V. Gnedenko, Yu. K. Belyayev and A. D. Solo-
vyev, Mathematical Methods of Reliability Theory,
(English translation of ‘‘Matematicheskiye Metody v
Teorii Nadezhnosti’’), Academic Press, New York
(1969).

[7] S. Jajodia and D. Mutchler, ‘‘Enhancements to the
Voting Algorithm,’’ Proc. 13th VLDB Conf. (1987),
pp. 399-405.

[8] D. D. E. Long, J. L. Carroll and K. Stewart, ‘‘Estimat-
ing the Reliability of Regeneration-Based Replica
Control Protocols,’’ IEEE Trans. on Computers, TC-
38, 12 (1989), pp. 1691-1702.

[9] D. D. E. Long and J.-F. Pâris, ‘‘A Realistic Evalua-
tion of Optimistic Dynamic Voting,’’ Proc. 7th Symp.
on Reliable Distributed Systems, (1988), pp. 129-
137.

[10] D. D. E. Long and J.-F. Pâris, ‘‘Regeneration Proto-
cols for Replicated Objects,’’ Proc. 5th Int. Conf. on
Data Engineering, (1989), pp. 538-545.

[11] J.-F. Paris and D.D.E. Long ‘‘On the Performance of
Available Copy Protocols,’’ Performance Evaluation,
11 (1990), pp 9-30.

[12] J.-F. Pâris, ‘‘Voting with Witnesses: A Consistency
Scheme for Replicated Files,’’ Proc. 6th Int. Conf. on
Distributed Computing Systems, (1986), pp. 606-
612.

[13] J.-F. Paris ‘‘Voting with Bystanders,’’ Proc. 9th Int.
Conf. on Distributed Computing Systems, (1989),
pp. 394-401.

[14] J.-F. Pâris, ‘‘Efficient Voting Protocols with
Witnesses,’’ Proc. 3rd Int. Conf. on Database
Theory, Lecture Notes in Computer Science,
Springer Verlag (1990), to appear.

[15] C. Pu, J. D. Noe and A. Proudfoot, ‘‘Regeneration of
Replicated Objects: A Technique and its Eden
Implementation,’’ IEEE Trans. on Software
Engineering, SE-14, 7 (1988), pp. 936-945.

[16] R. van Renesse and A. Tanenbaum, ‘‘Voting with
Ghosts,’’ Proc. 8th Int. Conf. on Distributed Comput-

ing Systems, (1988), pp. 456-462.

[17] M. Rusinkiewicz and D. Georgakopoulos, ‘‘Maintain-
ing Replicated Data Objects in a Server with a Tun-
able Degree of Reliability,’’ Proc. 2d Int. Software for
Strategic Systems Conference, (1988), pp.235-240.

119

