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Abstract. A combinatorial neural code C ⊆ 2[n] is called convex if it arises as the intersec-
tion pattern of convex open subsets of Rd. We relate the emerging theory of convex neural
codes to the established theory of oriented matroids, both with respect to geometry and com-
putational complexity and categorically. For geometry and computational complexity, we
show that a code has a realization with convex polytopes if and only if it lies below the code
of a representable oriented matroid in the partial order of codes introduced by Jeffs. We
show that previously published examples of non-convex codes do not lie below any oriented
matroids, and we construct examples of non-convex codes lying below non-representable
oriented matroids. By way of this construction, we can apply Mnëv-Sturmfels universality
to show that deciding whether a combinatorial code is convex is NP-hard.

On the categorical side, we show that the map taking an acyclic oriented matroid to the
code of positive parts of its topes is a faithful functor. We adapt the oriented matroid ideal
introduced by Novik, Postnikov, and Sturmfels into a functor from the category of oriented
matroids to the category of rings; then, we show that the resulting ring maps naturally to the
neural ring of the matroid’s neural code.
Keywords. Oriented matroids, convex neural codes, hyperplane arrangements
Mathematics Subject Classifications. 52C40, 13P25

1. Introduction

A combinatorial neural code is a collection C of subsets of [n] := {1, . . . , n}. Such codes
model neural activity, with each codeword σ ⊆ [n] in C representing a set of neurons which
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C = code(U1, U2, U3) = {∅, 1, 12, 2, 23}

Figure 1.1: The code of U1, U2, U3 is C = {∅, 1, 12, 2, 23}.

are simultaneously active. Our motivating example is the activity of hippocampal place cells,
neurons in the brain which encode an animal’s physical location [ON78]. Each neuron i is active
when the animal is in a corresponding subset Ui of the animal’s environment X ⊆ Rd, called
the i-th place field. If neural activity is viewed as a function X → {0, 1}n, then the set Ui is the
support of the i-th component of this function, the “preferred location” of that neuron. Neurons
acting as indicators for a preferred set of stimuli appear across many sensory modalities, so we
will use the slightly broader term receptive field to de-emphasize the spatial navigation aspect.

In this simplified model, neurons fire together if and only if their receptive fields overlap,
and thus the code represents the intersection pattern of the receptive fields. This information
can reveal significant topological and geometric information in experimental data, such as the
topology of an animal’s environment [CI08] or the intrinsic geometry of more abstract stimulus
spaces [GPCI15, ZSS18]. Receptive fields are often observed to be convex, and therefore we are
interested in characterizing convex neural codes: codes that arise as the intersection patterns of
convex open subsets of some Euclidean space. For example, Figure 1.1 illustrates three convex
receptive fields and the associated convex code.

Beyond experimental motivation, requiring receptive fields to be convex yields rich theo-
retical results. In particular, the nerve lemma can be used to deduce topological properties of
simplicial complexes associated to convex codes [CGJ+17, CFS19]. Another useful tool de-
veloped to study neural codes is the neural ring [CIVCY13], the coordinate ring of the code
as an algebraic variety in Fn

2 . This was used to detect obstructions to convexity in [CGJ+19].
However, there are many examples of non-convex codes which cannot be captured by these
obstructions [LSW17, Jef19]. While other classes of neural codes have been completely char-
acterized (e.g. codes described by connected receptive fields [MT20], or convex codes on five
or fewer neurons [GP20]), convex codes have evaded full description.

As the literature on combinatorial neural codes proliferated, we observed various similar-
ities with the well-studied realm of oriented matroid theory. For instance, the class of stable
hyperplane codes introduced in [IKR20] are defined by a collection of half-spaces intersect-
ing a convex set, which are precisely the sets of topes of a realizable COM (conditional ori-
ented matroid) as studied in [BCK18]. The neural ideal, defined in [CIVCY13] and further
developed in [CGJ+19, GJS19, dPMS20], seems to align with the oriented matroid ideal de-
fined in [NPS02], particularly after the neural ideal is polarized [GJS19]. Finally, morphisms of
codes, as defined in [Jef20], seem analogous to strong maps of oriented matroids, as formulated
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Figure 1.2: (a) The covectors of an oriented matroid arising from a central hyperplane arrange-
ment. (b) The combinatorial code of the cover given by the positive open half-spaces.

in [HN99]. In this paper, we draw parallels between the notions of convexity for neural codes
and representability for oriented matroids, and formalize these connections on a functorial level.

First, we establish strong connections between representable oriented matroids and convex
neural codes by considering the map L+ : OM → Code which takes an oriented matroid to the
positive parts of its covectors. Representable oriented matroids are precisely those which can be
obtained from real hyperplane arrangements, as in Figure 1.2(a). Isomorphism classes of neural
codes form a partially ordered set denoted PCode, introduced in [Jef20]. Roughly, C ⩽ D if
there is a way to construct a realization for C using a realization of D , in which case we say C is
a minor of D . We extend a result of [Jef20] and use it to prove that all codes lying below codes
of representable oriented matroids have realizations with interiors of convex polytopes, which
we call open polytope convex. Further, the converse also holds:

Theorem 1. A code is open polytope convex if and only if it is a minor of L+M for some repre-
sentable oriented matroid M.

Since every code which has a convex realization in the plane has a realization with convex
polygons [BJ22], this result gives a full characterization of planar convex codes in terms of
representable oriented matroids. In higher dimensions, it is not yet known whether every convex
code has a realization with convex polytopes. If this does hold, then Theorem 1 would give a
full characterization of convex codes in terms of representable oriented matroids. Without this
result, we can still categorize non-convex codes: if a code is not convex, then either it does not
lie below any oriented matroid in PCode, or it lies below non-representable matroids only. There
are many known examples of non-convex codes [CGJ+17, LSW17, Jef20, Jef19, CFS19], and
we show that many of these fall into the first category: they are non-convex because they are not
below any oriented matroids in PCode. For instance, codes with topological local obstructions
do not lie below oriented matroids. Furthermore, sunflower codes [Jef19], a well known family
of non-convex codes with no local obstructions also do not lie below oriented matroids.

Theorem 2. The non-convex codes with no local obstructions constructed via sunflowers do not
lie below codes of oriented matroids in PCode.
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We are also able to generate an infinite family of non-convex codes of the second kind, those
which lie below non-representable matroids only. In order to obtain this family, we establish a
relationship between representability and convexity. We do this for the special case of uniform
oriented matroids of rank 3, which correspond to non-degenerate pseudoline arrangements in
the plane.

Theorem 3. Let M be a uniform, rank 3 oriented matroid. Then we can construct a code which
is convex if and only if M is representable.

Using this result, we are able to compare two fundamental decision problems: (1) is a given
oriented matroid representable, and (2) is a given neural code realizable by convex sets. We
demonstrate that deciding convexity for arbitrary neural codes is at least as hard as deciding
representability of an oriented matroid. The latter problem is known to be NP-hard and ∃R-hard,
leading to the following theorem:

Theorem 4. The convex code decision problem is NP-hard and ∃R-hard.

Finally, we relate algebraic and categorical structures for matroids and codes. Acyclic ori-
ented matroids form a category OM whose morphisms are given by strong maps, as defined
in [HN99]. Neural codes form a category Code introduced in [Jef20], with morphisms defined
using trunks of codes. We show that the map W+ : OM → Code which takes an acyclic
oriented matroid to the positive parts of its topes is a faithful functor. Furthermore, we adapt the
oriented matroid ideal introduced in [NPS02] to non-affine oriented matroids, producing the ori-
ented matroid dual idealO(M)⋆ and the oriented matroid ring k[x1, . . . , xn, y1, . . . , yn]/O(M)⋆.
We show that the map S taking an oriented matroid to its oriented matroid ring is a functor, and
use this to define the category OMRing. Using results from [GJS19], we define the depolar-
ization map D : OMRing → NRing, and show that this map is functorial. Finally, we show
that these maps play nicely with the functor R : Code → NRing from [Jef20].

Theorem 5. The maps S, D, and W+ are functorial. In particular, the map W+ is a faithful,
but not full functor from OM → Code. Moreover, the square below commutes,
that is, R ◦W+ = D ◦ S.

OM OMRing

Code NRing

S

W+ D

R

The paper is organized as follows: In Section 2, we establish notation and background mate-
rial that will be necessary for later sections. In Section 3, we relate minors of codes to realizabil-
ity by intersection-closed families of sets, and use this to establish Theorem 2. In Section 4, we
discuss classes of non-convex codes and their relationships to oriented matroids. In Section 5,
we detail the functors among the categories of acyclic oriented matroids, combinatorial neural
codes, and rings. Finally, in Section 6, we present open questions related to each area discussed
in the paper.
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2. Background

We provide the essential background information on oriented matroids in Section 2.1 and com-
binatorial codes in Section 2.2. In Section 2.3, we define the maps W+ and L+ which take
oriented matroids to combinatorial codes. This section is by no means comprehensive, and we
will occasionally make reference to theorems not fully stated in the text. Our primary reference
for oriented matroids is [BLVS+99], which collects and synthesizes decades of research on the
subject. For combinatorial codes, there is no single comprehensive reference; for those unfa-
miliar with the subject, [CIVCY13] and [Jef20] are good introductions to the neural ring and
morphisms of codes, respectively.

2.1. Oriented matroids

An oriented matroid M = (E,L) consists of a finite ground set E and a collection L ⊆ 2±E

of signed subsets of ±E satisfying certain axioms. Typically, we will take
E = [n] := {1, . . . , n}, Ē = [n̄] := {1̄, . . . , n̄}, and ±E := E ∪ Ē. The set ±E is en-
dowed with the involution − : ±E → ±E, exchanging e ∈ E with ē ∈ Ē. The negative
of a subset X ⊆ ±E is −X := {−x | x ∈ X}. The support of a set X ⊆ ±E is the set
X := {e ∈ E | e ∈ X or − e ∈ X} ⊆ E. The positive part of X is X+ := X ∩ E and the
negative part is X− := (−X) ∩ E.

A set X ⊆ ±E is a signed set if its positive and negative parts are disjoint. If e ∈ E and X
is a signed subset of ±E, define Xe by Xe = + if e ∈ X , Xe = − if −e ∈ X , and Xe = 0
otherwise; in this way, we can consider signed subsets equivalently as subsets of±E or as vectors
in {+, 0,−}E . The composition of sign vectors X and Y is defined component-wise by

(X ◦ Y )e :=

{
Xe if Xe ̸= 0

Ye otherwise.

The separator of X and Y is the unsigned set sep(X, Y ) := {e | Xe = −Ye ̸= 0}.
Now, we are ready to define oriented matroids, which we do via the covector axioms.

Definition 2.1. Let E be a finite set, and L ⊆ 2±E a collection of signed subsets satisfying the
following covector axioms:

(V1) ∅ ∈ L

(V2) X ∈ L implies −X ∈ L.

(V3) X, Y ∈ L implies X ◦ Y ∈ L.

(V4) If X, Y ∈ L and e ∈ sep(X, Y ), then there exists Z ∈ L such that Ze = 0 and Zf =
(X ◦ Y )f = (Y ◦X)f for all f /∈ sep(X, Y ).

Then, the pair M = (E,L) is called an oriented matroid, and L its set of covectors.

Maximal covectors (with respect to inclusion) are called topes. An oriented matroid is
acyclic if it has a positive tope, i.e. a tope with empty negative part.
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Example 2.2. A central hyperplane arrangement H in Rd produces an oriented matroid.
Let ℓ1, . . . , ℓn be linear forms on Rd, and H1, . . . , Hn their zero sets (i.e. hyperplanes). We
can assign each point x ∈ Rd to a signed set X ⊆ ±[n] by

Xi =


+ if ℓi(x) > 0

− if ℓi(x) < 0

0 if ℓi(x) = 0.

The family of signed sets which arise in this way satisfies the covector axioms, and therefore
defines an oriented matroid. Notice that each covector corresponds to a cell of the hyperplane
arrangement, and that topes correspond to top-dimensional cells. We will refer to this oriented
matroid M(H) = ([n],L(H)) as the oriented matroid of H.

An oriented matroid M is representable if M = M(H) for some hyperplane arrange-
mentH. Figure 1.2(a) illustrates an example inR2. The rank of a representable oriented matroid
is the minimum possible dimension of the hyperplane arrangement H with M = M(H). Not
every oriented matroid is representable. However, we are able to take this hyperplane picture
as paradigmatic. The topological representation theorem guarantees that every oriented matroid
has a representation by a pseudosphere arrangement [FL78]; for details, see [BLVS+99, Ch 5].

We can also use oriented matroid theory to describe affine hyperplane arrangements. An
affine oriented matroid consists of a pair (M, g)whereM is an oriented matroid and g is a distin-
guished element of its ground set. The affine space of (M, g) is the set {X ∈ L(M) | Xg = +}.
We can embed an affine hyperplane arrangement in Rd as a central hyperplane arrangement
in Rd+1. We replace each affine hyperplane w1x1 + · · · + wdxd + b = 0 with a central hyper-
plane w1x1 + · · ·+wdxd + bxd+1 = 0, and add an additional hyperplane xd+1 = 0. Restricting
to the xd+1 = 1 plane recovers the original hyperplane arrangement. Each chamber of the affine
arrangement corresponds to an element of the affine space of (M(H), g), where g corresponds
to the hyperplane xd+1 = 0. Because we can translate between affine and central realizations,
the matroid M is representable with a central hyperplane arrangement if and only if (M, g) is
representable by an affine hyperplane arrangement for any ground set element g.

There are many equivalent axiomatizations of oriented matroids. The two formulations we
use most often throughout this work are the covector axioms (V1)-(V4), stated above, and the
circuit axioms (C1)-(C4), which we state here.

Definition 2.3. Let E be a finite set, and C ⊆ 2±E a collection of signed subsets satisfying the
following circuit axioms:

(C1) ∅ /∈ C.

(C2) X ∈ C implies −X ∈ C.

(C3) X, Y ∈ C and X ⊆ Y implies X = Y or X = −Y .

(C4) For all X, Y ∈ C with X ̸= −Y and an element e ∈ X+ ∩ Y −, there is a Z ∈ C such that
Z+ ⊆ (X+ ∪ Y +) \ e and Z− ⊆ (X− ∪ Y −) \ e.
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Then the pair M = (E, C) is an oriented matroid, and C is its set of circuits.
In some contexts, we admit the sets {e, ē} as improper circuits. We will call a circuit a proper

circuit when we wish to emphasize that it is a signed set, i.e. its positive and negative parts are
disjoint.

For an oriented matroid arising from a hyperplane arrangement, circuits are the signs of the
coefficients in the minimal linear dependencies among the normal vectors to the hyperplanes. As
a result, the rank of an oriented matroid can be defined via its circuits – the rank of an oriented
matroid is the one less than the cardinality of its largest circuit. An oriented matroid is uniform
of rank r if all of its circuits have the same cardinality of r + 1. Uniform oriented matroids
correspond to generic hyperplane arrangements.

An element e ∈ E is a loop of M if {e} ∈ C(M). An oriented matroid is loopless if no
element is a loop.

Proper circuits are related to covectors as follows: Two signed sets X and Y are called
orthogonal if either X ∩ Y = ∅ or if there exist e, f ∈ X ∩ Y such that XeXf = −YeYf . A
signed set is called a vector of M if and only if it is orthogonal to every covector. Equivalently,
a signed set is a vector of M if and only if it is orthogonal to every tope. The circuits are the
minimal vectors of M. The vectors of an oriented matroid define a dual oriented matroid, hence
the vector and covector axioms are identical. Minimal covectors are know as cocircuits. They
also satisfy the circuit axioms.

For a given oriented matroid M, each one of the set of covectors L(M), the set of
topes W(M), the set of vectors V(M), and the set of circuits C(M) is sufficient to recover
all of the others.

2.2. Combinatorial codes

A combinatorial code C is a collection of subsets of a finite set V , i.e. C ⊆ 2V . Typically, we
take V = [n].

Given an arbitrary set X and collection U = {U1, . . . , Un} with each Ui ⊆ X , the code of
the cover U (relative to X) is

code(U , X) :=
{
σ ⊆ [n]

∣∣∣ ⋂
i∈σ

Ui \
⋃
j /∈σ

Uj ̸= ∅
}
.

Note we do not require X =
⋃

i∈[n] Ui; indeed, ∅ ∈ code(U , X) if and only if
⋃

i∈[n] Ui ⊊ X .
A code C is called open convex if there exists a collection U = {U1, . . . , Un} of open convex
sets and an open convex set X ⊆ Rd, such that C = code(U , X), for some d. We will refer to
open convex codes simply as convex codes.

Example 2.4. Let Ui denote the open half-space on the positive side of hyperplane Hi in Fig-
ure 1.2(a), i.e. Ui = {x ∈ R2 | ℓi(x) > 0}. Then, code(U ,Rn) is the combinatorial code with
codewords as labeled in Figure 1.2(b).

Morphisms of combinatorial codes were defined in [Jef20] in terms of trunks. For σ ⊆ [n],
the trunk of σ in C is the set of codewords which contain σ,

TkC (σ) := {τ ∈ C | σ ⊆ τ}.
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A subset of C is a trunk if it is equal to TkC (σ) for some σ ⊆ [n] or if it is empty. A simple trunk
is the trunk of a singleton set. A map f : C → D is a morphism of codes if the preimage of each
trunk of D is a trunk of C . Any set of trunks T1, . . . , Tm ⊆ C defines a morphism f : C → 2[m]

by f(σ) := {i | σ ∈ Ti}, and any code morphism f : C → D can be obtained in this way [Jef20,
Proposition 2.12]. The class of codes, together with these morphisms, forms the categoryCode.

A subset σ ⊆ [n] can be encoded as a point c ∈ Fn
2 by setting ci = 1 for i ∈ σ and ci = 0

for i /∈ σ. Hence, a code C ⊆ 2[n] can equivalently be thought of as a variety C ⊆ Fn
2 . The

vanishing ideal of a code C is the ideal

IC := {f(x) ∈ F2[x1, . . . , xn] | f(c) = 0 for all c ∈ C },

and the neural ring of C is the quotient ringRC = F2[x1, . . . , xn]/IC . The vanishing ideal IC is
a pseudo-monomial ideal, meaning it is generated by products of the form

∏
i∈σ xi

∏
j∈τ (1−xj),

called pseudo-monomials. As with circuits, we distinguish between proper pseudo-monomials,
with σ and τ disjoint, and improper pseudo-monomials, which are divisible by some xi(1−xi).
We will briefly discuss the vanishing ideal and neural ring in Section 5.1, but many more details
can be found in [CIVCY13]. For clarity, we will denote pseudo-monomials and monomials with
superscripts, i.e.

xσ(1− x)τ :=
∏
i∈σ

xi
∏
j∈τ

(1− xj) and xσyτ :=
∏
i∈σ

xi
∏
j∈τ

yj.

2.3. Codes from oriented matroids

Consider an oriented matroid M on ground set E. We can consider the positive parts of cov-
ectors (respectively, topes) as a code on E, which we denote L+M (respectively W+M) to
emphasize the change in categories:

L+M := {X+ | X ∈ L(M)} and W+M := {W+ | W ∈ W(M)}.

In Sections 3 and 4 we will show how L+ relates representability of oriented matroids with
convexity of codes. In Section 5, we will examine the functorial properties of W+; culminating
in a proof of Theorem 5.

IfM is the matroid of a hyperplane arrangement the code L+Mmatches the code of the cover
given by positive sides of the hyperplanes (as in Figure 1.2). This extends to any topological
representation of M by a pseudosphere arrangement (as introduced in [FL78]).

Observation 2.5. If M is any oriented matroid and {Se}e∈E is an oriented pseudosphere ar-
rangement topologically realizing M, then

L+M = code({S+
e }e∈E,Sd).

In particular, if M is a representable oriented matroid and {He}e∈E is an oriented hyper-
plane arrangement realizing M, then

L+M = code({H+
e }e∈E,Rd).
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The map L+ is better behaved geometrically than W+. In particular, Observation 2.5 fails
for W+. For instance, in the hyperplane arrangement pictured in Figure 1.2, ∅ is a codeword in
the code of the cover given by the positive open half-spaces, but is not the positive part of any
tope.
Remark 2.6. If M is an acyclic oriented matroid, then the the signed set −E is a tope. Thus,
if S ⊆ E is the positive part of some covector X ∈ L(M), then S is also the positive part of
the tope X ◦ −E ∈ W(M). Thus, on acyclic oriented matroids, W+ and L+ coincide.

3. Intersection-closed families and morphisms

In [Jef20], Jeffs shows that the image of a convex code under a code morphism, as well as any
trunk of a convex code, is itself a convex code. From this observation, he defines the poset of iso-
morphism classes of codes PCode in which convex codes form a down-set: if D ⩽ C in PCode

and C is convex, then so is D . In this section, we generalize this statement to intersection-closed
families, of which open convex subsets of Rd is one example. A family F of subsets of a topo-
logical space is called intersection-closed if it is closed under finite intersections and contains
the empty set. We say that a neural code C is F-realizable if C = code(U , X) for some U ⊆ F
and X ∈ F . For instance, a neural code is convex if and only if it is F-realizable for the set F
of convex open subsets of some Rd. Then, using this result, we prove Theorem 1.

We recall the relevant definitions. Two codes C and D are isomorphic if there is a bijective
code morphism f : C → D whose inverse is also a code morphism. If there is a sequence
of codes C = C0,C1, . . . ,Ck = D such that each successive code is either the image of a
morphism from or a trunk of the preceding code, we say D is a minor of C [Jef21]. Codes are
then quasi-ordered by setting D ⩽ C if D is a minor of C . The poset of isomorphism classes
of codes induced by this order is denoted PCode.

Proposition 3.1. For any intersection closed family F , if C is F-realizable and D ⩽ C , then D
is F-realizable.

Proof. We first check the case D = f(C ). This closely follows the proof of Theorem 1.4
in [Jef20], since the only property of convex sets this proof uses is that the family of open
convex subsets of Rd is closed under finite intersection. We repeat the details here.
Let C ⊆ 2[n], D ⊆ 2[m], and T1, . . . , Tm be the trunks in C that define the morphism f : C → D .
Let {U1, . . . , Un} ⊆ F be an F-realization of C .

If Tj is nonempty, let σj be the intersection of all elements of Tj , which is the unique largest
subset of [n] such that Tj = TkC (σj). Then, for j ∈ [m], define

Vj =

{
∅ Tj = ∅⋂

i∈σj
Ui Tj ̸= ∅

Since F is closed under finite intersection and contains the empty set, Vj ∈ F for all j ∈ [m].
Thus, it suffices to show that the code E that they realize is D . To see this, note that we
can associate each point p ∈ X to a codeword in C or E by p 7→ {i ∈ [n] | p ∈ Ui}
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Figure 3.1: Example of construction from proof of Proposition 3.1.

and p 7→ {j ∈ [m] | p ∈ Vj}. Then let p ∈ X be arbitrary, and let c and e be the associ-
ated codewords in C and E respectively. By the definition of the Vj , we have that c ∈ Tj if and
only if j ∈ e, which is equivalent to e = f(c). Since p was arbitrary and every codeword arises
at some point, we conclude that E = f(C ) = D , as desired.

Next, we check the case D = TkC (σ). In this case, let C ⊆ 2[n], σ ⊆ [n], U = {U1, . . . , Un}
be a F-realization of C . Then for define V = {V1, . . . , Vn} where

Vi = Ui ∩
(⋂

j∈σ

Uj

)
, and Y = X ∩

(⋂
j∈σ

Uj

)
.

Then D = code(V , Y ). To check this, as above, we can associate each point p ∈ Y to a codeword
by p 7→ {j ∈ [n] | p ∈ Vj}. Since Y = X∩

(⋂
j∈σ Uj

)
, each of these codewords will contain σ,

and we will obtain every codeword of C containing σ in this way.

Our first application of Proposition 3.1 is to good cover codes. A code C is a good cover
code if there exist open sets U1, . . . , Un realizing C which form a good cover, i.e. all intersec-
tions

⋂
i∈σ Ui are either empty or contractible. Good cover codes are precisely the codes with no

local obstructions, as proved by [CFS19, Theorem 3.13]. Codes with local obstructions formed
the first known class of non-convex codes [CGJ+17]. Recall the link of a face σ in a simplicial
complex ∆ is the subcomplex

linkσ(∆) = {τ ∈ ∆ | σ ∩ τ = ∅, σ ∪ τ ∈ ∆}.

For a code C , ∆(C ) is the simplicial complex of C , obtained by taking the closure of C under
taking subsets. A neural code C has a local obstruction if there is some σ ∈ ∆(C ) \ C such
that linkσ(∆(C )) is not contractible.

We show that codes with no local obstructions form a down-set in PCode. The only require-
ment to be an open set in some good cover is contractibility, and the family of contractible sets
is not intersection-closed. Instead, we consider the sets U1, . . . , Un in one particular good cover
and their intersections as our intersection-closed family.
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Corollary 3.2. The set of codes with no local obstructions is a down-set in PCode.

Proof. Let C be a code with no local obstructions. By [CFS19, Theorem 3.13], C is a good
cover code. Fix a good cover U = {U1, . . . , Un} realizing C . Let FU denote the family of sets
obtained by arbitrary intersections of sets in U , together with the empty set. This family still
forms a good cover. Any code D ⩽ C is FU -realizable by Proposition 3.1; it is therefore a good
cover code and thus has no local obstructions.

Armed with these results, we look at the codes of oriented matroids and those lying below
them. In particular, we examine the intersection-closed family of interiors of convex polytopes
in Rn. We say that a code C is polytope convex if there exists a collection of interiors of convex
polytopes P = {P1, . . . , Pn} and a bounding convex polytope X such that C = code(P , X).
Note that polytope convex codes are open convex. Proposition 3.1 implies that the image of
any polytope code under a surjective morphism is also a polytope code. Thus, since the codes
of representable oriented matroids correspond to codes of hyperplane arrangements, all codes
which lie below a representable oriented matroid are polytope codes. We prove the converse,
showing that every polytope code is itself the image of the code of an oriented matroid under
some surjective morphism. This demonstrates that polytope codes are a down-set generated by
the set of representable oriented matroid codes.

We begin by noting that codes below oriented matroids have no local obstructions. This
result appears in different language in [ERW02]. We flesh this out.

Proposition 3.3. Let M be an oriented matroid. If C ⩽ L+M in PCode, C is a good cover
code, and thus has no local obstructions.

Proof. Edelman, Reiner, and Welker define a simplicial complex ∆acyclic(M) which is identical
to ∆(L+M) [ERW02]. Proposition 11 and Lemma 13 of [ERW02] establish that
if σ ∈ ∆(L+M) \L+M, then linkσ ∆(L+M) is contractible. Thus, L+M has no local obstruc-
tions, and is therefore a good cover code. By Corollary 3.2, good cover codes form a down-set
in PCode, so if C ⩽ L+M in PCode, then C has no local obstructions.

Theorem 1. A code C is polytope convex if and only if there exists a representable oriented
matroid M such that C ⩽ L+(M).

Proof. (⇒) A polytope is an intersection of half-spaces, so this follows from Observation 2.5
and Proposition 3.1.

(⇐) Let C be a polytope convex code with (V , X) a realization of C with convex polytopes Vi
and bounding convex setX . Without loss of generality, we can chooseX to be a convex polytope.
Then each Vi is the intersection of a collection of open half spaces Ui1, . . . , Uiki , and X is the
intersection of open half spaces X1, . . . , Xk. Now, let

H = code({U11, . . . , U1k1 , . . . , Unkn , X1, . . . , Xk},Rd).

Let H ′ be the trunk of the neurons associated to X1, . . . , Xk. Now, we define a surjective mor-
phism f : H ′ → C as follows. Choose trunks T1, . . . , Tn of H ′ by Ti = TkH ′({i1, . . . , iki}).
Let f be the morphism defined by the trunks T1, . . . , Tn. We now show that its image is C .
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To do this, construct the realization of f(H ′) given in the proof of Proposition 3.1. This
construction gives the realization

V ′
j =

i=kj⋂
i=1

Uji

relative to the convex set X =
⋂k

i=1Xi. Thus, f(H ′) = code({V1, . . . , Vn}, X) = C .

In dimension two, every convex code admits a realization with convex polytopes [BJ22].
Thus, in dimension two, we can strengthen Theorem 1 as follows:

Corollary 3.4. A code C including the empty codeword is open convex with minimal embedding
dimension two if and only if there exists a representable affine oriented matroid (M, g) of rank
three such that C ⩽ TkL+(M)(g).

Proof. First suppose C is a planar convex code. By intersecting each of the convex sets with
the same sufficiently large ball, we obtain a realization of C by bounded convex sets. Then
by Theorem 1 of [BJ22], C has a realization with interiors of convex polygons in R2. These
convex polygons are intersections of half-spaces. Let (M, g) be the affine oriented matroid
of the corresponding affine, oriented hyperplane arrangement. Notice that M is representable
and rank three, since it arises from the centralization of a hyperplane arrangement in R2. The
covectors in the affine space of (M, g) each contain g in their positive part. Then by the argument
used in the proof of Theorem 1, C ⩽ TkL+(M)(g).

Now suppose that C ⩽ TkL+(M)(g), where (M, g) is a representable affine oriented matroid
of rank two. Then by Theorem 1, C has a realization with intersections of half spaces in R2, and
is thus convex with minimal embedding dimension two.

4. Non-convex codes

In dimensions three or higher, it is unknown whether every convex code has a realization with
convex polytopes. However, the contrapositive to Theorem 1 still helps us characterize non-
convex codes. If C is not convex, one of two possibilities hold: either C does not lie below
any oriented matroid, or C lies below only non-representable oriented matroids in PCode. In
this section, we prove that codes with local obstructions as well as “sunflower codes” do not
lie below any oriented matroids. We also construct a new class of non-convex codes which lie
below non-representable oriented matroids.

4.1. Sunflower codes do not lie below oriented matroids

The first example of a non-convex code with no local obstructions,

C = {∅, 123, 13, 134, 14, 145, 23, 2345, 3, 34, 4, 45},

appeared in [LSW17]. In [Jef20], Jeffs uses this code to construct a smaller non-convex
code C2 ⩽ C with no local obstructions,

C2 = {∅, 1236, 13, 135, 23, 234, 4, 456, 5, 6}.
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P

{p1} {p3} {p2}

{p1, s2, s3} {p3} ∪ S{s2, s3} {p2, s1, s3}{s1, s3}

Figure 4.1: A good cover realization of C2 = {∅, 23, 13, 4, 5, 6, 234, 135, 1236, 456}. Here
P = {1, 2, 3} and S = {4, 5, 6}.

This code is minimally non-convex, in the sense that any code C ′ < C2 in PCode is convex. The
proofs that C and C2 are not convex depend on the n = 3 case of the following theorem:

Theorem 4.1 ([Jef19], Theorem 1.1). Let U1, . . . , Un be convex open sets in Rn−1 such that
for all i, j ∈ [n], Ui ∩ Uj =

⋂
k∈[n] Uk. Then any hyperplane which passes through each

of U1, . . . , Un passes through
⋂

k∈[n] Uk.

Jeffs uses this theorem to construct an infinite family {Cn}n⩾2 of minimally non-convex
codes with no local obstructions generalizing C2; we refer to these as “sunflower codes.” In the
rest of this subsection, we define the code Cn for n ⩾ 2 and give a proof that for all n ⩾ 2, the
code Cn does not lie below any oriented matroid, representable or otherwise.

Definition 4.2 ([Jef19], Definition 4.1). Let n ⩾ 2, P = {p1, . . . , pn+1} andS = {s1, . . . , sn+1}
be sets of size n+ 1. Denote by Cn ⊆ 2P∪S the code that consists of the following codewords:

• ∅;

• S ∪ {pn+1};

• P ;

• the codeword X ∪ {sn+1} for each ∅ ⊊ X ⊊ {s1, . . . , sn};

• the codewords {pi} for each 1 ⩽ i ⩽ n+ 1;

• and (S \ {si}) ∪ {pi} for each 1 ⩽ i ⩽ n.

We will refer to the regions indexed byP as petals, and the regions indexed by S as simplices.

The proof of Theorem 2 depends on some basic facts about tope graphs of oriented matroids.
The tope graph T of an oriented matroid M is a graph whose vertices are the topes of M, and
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whose edges connect pairs of topes which differ by one sign. A subgraph Q ⊆ T is called T -
convex if it contains the shortest path between any two of its members. Any e ∈ E divides the
tope graph into two half-spaces T +

e = {W ∈ W | e ∈ W+} and T −
e = {W ∈ W | e ∈ W−}.

A subgraph Q ⊆ T is T -convex if and only if it is an intersection of half-spaces [BLVS+99,
Proposition 4.2.6].

Theorem 2. For each n ⩾ 2, the code Cn ̸⩽ L+M for any oriented matroid M.

Proof. Fix n ⩾ 2. Suppose to the contrary that there is an oriented matroid M such
that Cn ⩽ L+M. For ease of notation, let M denote the code L+M. Since ∅ ∈ Cn, we
can assume without loss of generality that Cn = f(M ) for some code morphism f .

Denote the ground set of M by E. The map f must be defined by trunks

TkM (π1), . . . ,TkM (πn+1),TkM (σ1), . . . ,TkM (σn+1),

with πi, σi ⊆ E corresponding to pi and si respectively.

Claim 1: There is a tope T of M such that
(⋃n+1

i=1 σi
)
∪
(⋂n

j=1 πj
)
∪ πn+1 ⊆ T+.

Roughly speaking, we are producing a codeword in the intersection of the last petal and all
simplices, which also lies in the convex hull of the other petals.

Define a morphism g : M → 2[n+1] by the trunks Ti = TkM (τi), with τi = σi ∪
(⋂n

j=1 πj
)

for i = 1, . . . , n+ 1. Let D = g(M ).
Since (S \ {si})∪ {pi} ∈ Cn for each i ∈ [n], we deduce that [n+1] \ i is a codeword of D

for each i ∈ [n]. Thus, link{n+1}(∆(D)) is either a hollow (n − 1)-simplex or a solid (n − 1)-
simplex. Since we have defined D as the image of an oriented matroid code, it cannot have local
obstructions. The codeword {n+1} is not in D ; if it were, then f(g−1({n+1})) would contain
a codeword of C including sn+1 without any other si. No such codeword exists in C . Thus
link{n+1}(∆(D)) must be contractible and so must be a solid (n− 1)-simplex; therefore, [n+1]
is a codeword of D .

Based on the trunks defining g, we know that
(⋃n+1

i=1 σi
)
∪
(⋂n

j=1 πj
)

⊆ c for any
codeword c ∈ g−1([n + 1]). By definition of f , we must also have S ⊆ c for any codeword
c ∈ f(g−1([n+ 1])); however, the only codeword of Cn which contains S is S ∪ {pn+1}. Thus,
there is a codeword of M containing

(⋃n+1
i=1 σi

)
∪
(⋂n

j=1 πj
)
∪ πn+1. This implies that M has

a covector X such that
(⋃n+1

i=1 σi
)
∪
(⋂n

j=1 πj
)
∪ πn+1 ⊆ X+. To produce a tope satisfying the

condition, take T = X ◦W for any tope W of M.

Claim 2: πn+1 ∪
(⋂n

j=1 πj
)
⊆ T+ implies

⋃n+1
j=1 πj ⊆ T+ for any tope T of M.

The intuition here is that the last petal must intersect the convex hull of the other petals only in
the common intersection of all petals.

Let U be a tope with
(⋃n+1

j=1 πj
)
⊆ U+. Such a tope must exist, since P ∈ Cn. Suppose for

the sake of contradiction that there exists a tope V such that

πn+1 ∪
( n⋂

j=1

πj

)
⊆ V +, but

n+1⋃
j=1

πj ̸⊆ V +.
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{p1, p2, p3}

U

V

{p1} {p2}

{p3}

Figure 4.2: Any path from a tope U with
(⋃n+1

j=1 πj
)

⊆ U+ to a tope V with(⋃n+1
j=1 πj

)
̸⊆ V + must cross an edge in

(⋂n+1
j=1 πj

)
. Analogously, a path from a point in

the atom P = {p1, p2, . . . , pn} to the atom {pn+1} must cross the boundaries of p1, p2, . . . , pn
all at one time.

Consider a shortest path from U to V in the tope graph of M. Each edge of the tope graph
is naturally labeled by the ground set element e by which the two incident topes differ. By
the T -convexity of intersections of half-spaces in the tope graph, each tope along this path
has πn+1 ∪

(⋂n
j=1 πj

)
in its positive part, so no edge is labeled with an element of

⋂n
j=1 πj .

Thus at some point along the path from U to V , we must cross an edge (T,W ) labeled by a
ground set element e ∈

(⋃n+1
j=1 πj

)
\
(⋂n+1

j=1 πj
)
. Choose the first such edge (T,W ) labeled with

ground set element e. By our choice of e, there exist k, ℓ ∈ [n] such that e ∈ πk, and e /∈ πℓ. This
means πk ̸⊆ W+, whereas πℓ ⊆ W+. Then {pℓ, pn+1} ⊆ f(W+),
but f(W+) ̸= P . However, the only codeword of Cn containing {pℓ, pn+1} is P , so we have
reached a contradiction. Therefore, no such tope V may exist.

By Claim 1, M must have a tope T which has
(⋃n+1

i=1 σi
)
∪
(⋂n

j=1 πj
)
∪ πn+1 ⊆ T+.

Because T satisfies
(⋂n+1

i=1 πi
)
∪ πn+1 ⊆ T+, Claim 2 implies that

⋃n+1
i=1 πi ⊆ T+. Therefore,(⋃n+1

i=1 πi
)
∪
(⋃n+1

i=1 σi
)
⊆ T+, but this implies f(T ) = P ∪ S ∈ Cn, a contradiction.

By showing that the family of codes {Cn}n⩾2 do not lie below oriented matroids, we have
given an alternate proof that these codes do not have realizations with interiors of convex poly-
topes. This proof is significantly different in structure than the original proof that these codes
are not convex using Theorem 4.1, which is in turn proved by induction on dimension. In con-
trast, our proof makes no reference to rank or dimension, and does not use induction. While the
codes {Cn}n⩾2 are not open convex, they do have realizations with closed convex sets, which
can even be chosen to be (non-full dimensional) closed convex polytopes. Notice that Theo-
rem 1 establishes that if C has a realization with interiors of convex polytopes, then C ⩽ L+M.
However, the fact that a code has a realization with closed convex polytopes does not guarantee
this. Further, in showing that these codes do not lie below any oriented matroids at all, we have
established that, even while these codes are good cover codes, their obstructions to convexity are
somehow still topological in nature.
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4.2. Representability and convexity

Having exhibited that many well-known non-convex codes do not lie below any oriented ma-
troids at all, we now exhibit a family of non-convex codes which lie below non-representable
oriented matroids. For each uniform, rank 3 affine oriented matroid (M, g), we construct a
code C (M, g) which is convex if and only if M is representable (recall a uniform oriented ma-
troid is one in which all circuits have the same cardinality). Moreover, this code is always the
image of an oriented matroid under a code morphism.

Consider a uniform, affine oriented matroid (M, g) of rank 3. A pseudoline is a sim-
ple curve L in R2, unbounded in both directions, which partitions the plane into unbounded
pieces R2 = L+ ⊔ L ⊔ L−. By the topological representation theorem ([BLVS+99, Sec-
tion 1.3],[FL78]), (M, g) can be represented by a uniform arrangement of piecewise linear
pseudolines, that is, a family P = {Li}i∈[n] of pseudolines such that each pair intersects ex-
actly once and no more than two meet at any point. The sign vectors of this arrangement are the
covectors of (M, g). An example is illustrated in Figure 4.3(a).

Note that the oriented matroid of a pseudoline arrangement is completely determined by the
order in which each line meets all of the other lines. We can record this information as follows:
Let L1, . . . , Ln be a pseudoline arrangement. For each pseudoline, fix one end of the pseudoline
as the “head”. Let πi(j) denote the index k such that Lj is the k-th pseudoline we encounter as
we follow Li from the head to the tail.

We use this order to define a code C (M, g). We then use the concept of order-forcing
introduced in [JLY20] to prove that the code C (M, g) is convex if and only ifM is representable.
Order-forcing depends on feasible walks in the codeword containment graph.

Definition 4.3. Let C ⊆ 2[n] be a neural code. The codeword containment graph of C is the
graph GC whose vertices are codewords of C , with edges {σ, τ} when either σ ⊊ τ
or τ ⊊ σ. A σ, τ walk σ = v1, v2, . . . , vk = τ in GC is called feasible if vi ∩ vj ⊆ vm for
all 1 ⩽ i < m < j ⩽ k. A sequence of codewords σ1, . . . , σk is order-forced if every feasi-
ble σ1, σk walk contains that sequence as a subsequence.

Order forcing constrains the realizations of a code by forcing certain sequences of codewords
to correspond to straight-line paths in all convex realizations. In any realization of a code, the
atom corresponding to codeword σ is the region Aσ =

⋂
i∈σ Ui \

⋃
j /∈σ Uj .

Theorem 4.4 ([JLY20], Theorem 1.1). Let σ1, σ2, . . . , σk be an order-forced sequence of code-
words in a code C ⊆ 2[n]. Let U = {U1, . . . , Un} be a (closed or open) convex realization
of C , and let x ∈ Aσ1 and y ∈ Aσk

. Then the line segment xy must pass through the atoms
of σ1, σ2, . . . , σk, in this order.

Now, we construct the code C (M, g) so that a sequence of codewords along each pseudoline
is order-forced.

Definition 4.5. Let (M, g) be a uniform, affine oriented matroid of rank 3 with pseudoline ar-
rangement L1, . . . , Ln. Without loss of generality, assume we have labeled pseudolines
L1, . . . , Ln, with their heads in clockwise order around the outside of the plane. An example
is illustrated in Figure 4.3 (a).

C (M, g) is a code on n+ 2 + n2 + 2n = (n+ 1)(n+ 2) neurons, labeled:
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a1, . . . , an: Strips corresponding to each pseudoline of M.
bℓ, br: Strips corresponding to two new “boundary” pseudolines

whose positive quadrant includes all pseudoline intersections.
ci,j for all i, j ∈ [n]: n neurons along each ai to apply order-forcing.
ds,i for all s ∈ {ℓ, r}, i ∈ [n]: n neurons along br and bℓ to apply order-forcing.

The codewords of C (M, g) are as follows:

bℓbrdℓ,1dr,1: Intersection of the two boundary strips.
bsds,j: Order-forcing along each boundary strip

(s = ℓ, r, j = 1, . . . , n.)
braidr,idr,i+1ci,1: Intersection of each pseudoline with right boundary strip, with

order-forcing neurons. (i = 1, . . . , n− 1)
brandr,ncn,1: Intersection of final pseudoline with right boundary strip (one

less order-forcing neuron is required.)
bℓan+1−idℓ,idℓ,i+1cn+1−i,n: Intersection of each pseudoline with left boundary strip plus

order-forcing neurons. (i = 1, . . . , n− 1.)
bℓa1dℓ,nc1,n: Intersection of first pseudoline with left boundary strip.
aici,j: Order-forcing along each pseudoline

(i = 1, . . . , n, j = 1, . . . , n)
aiajci,πi(j)ci,πi(j)+1 Pairwise intersections of pseudolines plus order-forcing

cj,πj(i)cj,πj(i)+1: (i = 1, . . . , n, j = 1, . . . , n− 1.)

We include an example of a good cover realization of this code in Figure 4.3(b).

Proposition 4.6. For any uniform, rank 3 affine oriented matroid (M, g), there exists a rank 3
oriented matroid M̂ such that C (M, g) ⩽ L+M̂.

Proof. We describe the pseudoline arrangement associated to M̂. Fix a piecewise-linear pseu-
doline arrangement L1, . . . , Ln representing (M, g) consistent with the labeling in C (M, g).
Let Br be a line which meets L1, L2, . . . , Ln in the clockwise order consistent with the labeling.
Let Bℓ be a line which meets Br and then Ln, Ln−1, . . . , L1 in the opposite of this clockwise
order. Orient Br and Bℓ such that B+

r and B+
ℓ are the half-spaces containing all bounded cells

of the pseudoline arrangement. Orient each Li such that Br ∩Bℓ lies in L−
i .

Now, for each i ∈ [n], we define a pseudoline L′
i which acts as a translation of Li into its

positive half-space. That is, we letL′
i be a pseudoline which intersectsBℓ, Br, and eachLj, j ̸= i

in the same order as Li, and such that for each other pseudoline L, the intersections of Li and L′
i

are adjacent along L. Further, we ensure that Li, L
′
i do not intersect. Orient L′

i so that Li ⊆ L′+
i .

Define B′
ℓ, B

′
r and orient them analogously. This pseduoline arrangement is illustrated in Fig-

ure 4.3(c).
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(a)

(b)

(c)

Figure 4.3: (a) A pseudoline arrangement for the oriented matroid M. (b) A good-cover real-
ization of the code C (M, g). Left, representative open sets are shown. Right, select codewords
are labeled. (c) A pseudoline arrangement for M̂.
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Finally, we produce an oriented matroid M̂ from this pseudoline arrangement by fixing a
ground set element h such that the set of covectors of the pseudoline arrangement is the affine
space of (M̂, h). We claim the oriented matroid of this arrangement, M̂, lies above C (M, g).
The morphism f such that f(TkL+M̂(h)) = C (M, g) is defined by the the trunks

{Tai}i=1,...,n ∪ {Tbr , Tbℓ} ∪ {Tci,j}i=1,...,n,j=1,...,n ∪ {Tds,j}s=r,ℓ,j=1,...,n.

corresponding to the neurons of C (M, g). We let i, i′ (for each i ∈ [n]), r, r′, ℓ, and ℓ′ be the
ground set elements corresponding to Li, L

′
i, Br, B

′
r, Bℓ, and B′

ℓ respectively. These trunks are
defined as follows:

Tai := Tk({i, i′, r, ℓ}) for i = 1, . . . , n

Tbr := Tk({r, r′, ℓ, n′})
Tbℓ := Tk({ℓ, ℓ′, r, 1′})
Tdr,1 := Tk({r, r′, ℓ, 1′})
Tdr,i := Tk({r, r′, i− 1, i′}) for i = 2, . . . , n

Tdℓ,1 := Tk({ℓ, ℓ′, r, n′})
Tdℓ,i := Tk({ℓ, ℓ′, n− i+ 2, n− i+ 1′}) for i = 2, . . . , n.

In order to define Tci,j , we introduce some notation. Let

right(i, j) =

{
j if j < i

j′ if j > i
left(i, j) =

{
j′ if j < i

j if j > i
.

That is, right(i, j) is whichever of j, j′ the pseudoline Li meets first as we follow it from its
intersection with Br to its intersection with Bℓ, and left(i, j) is whichever it hits second. Now,
we define

Tci,1 := Tk({i, i′, r, left(i, πi(1))}) for i = 1, . . . , n.

Tci,j := Tk({i, i′, right(i, πi(j − 1)), left(i, πi(j))}) for i = 1, . . . , n, j = 2, . . . , n− 1.

Tci,n := Tk({i, i′, right(i, πi(n− 1)), ℓ}) for i = 1, . . . , n, j = 2, . . . , n− 1.

Finally, we verify that the map f(σ) = {s | σ ∈ Ts} has image C (M, g). Each Ts specifies
the open set Us given by the intersection of the open half-spaces indexed by s. By construction,
the {Us} give rise to a good cover realization of C (M, g).

Theorem 3. Let M = (E,L) be a uniform, rank 3 oriented matroid. Then for g ∈ E, the
code C (M, g) is convex if and only if M is representable.

Proof. First, we show that if M is representable, C (M, g) is convex. Note that by Proposi-
tion 4.6, we have that C (M, g) ⩽ L+M̂. Also note that by construction, if M is representable,
then so is M̂. Therefore, by Theorem 1, if M is representable, C (M, g) is convex.

Next, we show that if C (M, g) is convex, then M is representable. Note that the following
sequences are order-forced in C (M, g).
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1. The only feasible path from brbℓdr,1dℓ,1 to brandr,n in GC (M,g) is

brbℓdr,1dℓ1 ↔ brdr,1 ↔ bra1dr,1dr,2 ↔ brdr,2 ↔ · · · ↔ brdr,n ↔ brandr,n

2. The only feasible path from brbℓdr,1dℓ,1 to bℓa1dℓ,n in GC (M,g) is

brbℓdr,1dℓ,1 ↔ bℓdℓ,1 ↔ bℓandℓ,1dℓ,2 ↔ brdℓ,2 ↔ · · · ↔ bℓdℓ,n ↔ bℓa1dℓ,n

3. For each i, the only feasible path from braici,1dr,idr,i+1 to aibℓci,ndℓ,(n−i+1) in GC (M,g) is

braici,1dr,idr,i+1 ↔ aici,1 ↔ aiaπ−1
i (1)ci,1ci,2cπ−1

i (1),π
π−1
i

(1)
(i)cπ−1

i (1),π
π−1
i

(1)
(i)+1 ↔ aici,2

· · · ↔ aici,(n−1) ↔ aiaπ−1
i (n−1)ci,(n−1)ci,ncπ−1

i ((n−1)),π
π−1
i

(n−1)
(i)cπ−1

i (1),π
π−1
i

(n−1)
(i)+1

· · · ↔ aici,n ↔ aibℓci,ndℓ,(n−i+1)

We claim if C (M, g) is convex, then it has a realization in the plane. Suppose that C (M, g)
is convex, and fix a realization U in Rd. Choose points p1, p2, p3 in the atoms Abrbℓdr,1dℓ,1 ,
Abrandr,n , and Abℓa1dℓ,n respectively. We will show that each atom in this realization has a
nonempty intersection with conv(p1, p2, p3). By order forcing (1), the line from p1 to p2 must
pass through the atoms of all codewords containing br in the listed order. Likewise, by order
forcing (2), the line from p1 to p3 must pass through the atoms of all codewords containing bℓ in
the listed order.

In particular, we have shown that for each i, the atoms of σ = braidr,idr,(i+1)ci,1
and τ = bℓaidℓ,(n+1−i)dℓ,(n+2−i)ci,1 have a nonempty intersection with conv(p1, p2, p3). For
each i, pick a point qi ∈ conv(p1, p2, p3)∩Aσ and a point ri ∈ conv(p1, p2, p3)∩Aτ . Applying
order forcing (3) for each i, we have that the line from ri to qi passes through the atoms of all
codewords containing ai, in the listed order. This accounts for every codeword of C (M, g).
Thus, intersecting the open sets in U with the plane aff(p1, p2, p3) produces a two-dimensional
convex realization of C (M, g).

Now, we obtain a straight line arrangement for (M, g) in this plane by extending the line
segment from qi to ri to be a line. By uniformity of M and our choice of bounding lines, every
pair of pseudolines intersects in B+

ℓ ∩ B+
r and so no new intersections are introduced. Notice

that by order forcing (3), this line meets the sets Ua1 , . . . , Uan in the order consistent with the
pseudoline arrangement. Thus, if this code is convex, M is representable.

Proposition 3 demonstrates that matroid representability and convex code realizability are
intertwined. One consequence is that non-representable oriented matroids are a new source for
constructing non-realizable codes:

Corollary 4.7. There is an infinite family of non-convex codes which lie below oriented matroids
in PCode.

Proof. There are infinitely many non-representable uniform rank 3 oriented matroids [BLVS+99,
Proposition 8.3.1]. By Proposition 3, C (M, g) is non-convex for each of these. By Proposition
4.6, C (M, g) ⩽ L+M̂.
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Figure 4.4: The pseudoline arrangement for the uniform non-Pappus matroid. The pairs of lines
23, 45, 78, 79, and 89 are taken to intersect outside of the figure.

Example 4.8. Let (M, g) be the uniform non-Pappus matroid from [Sho91], whose pseudoline
arrangement appears in Figure 4.4. This matroid is non-representable, since a realization of it
would violate Pappus’s hexagon theorem. Then C (M, g) is a non-convex code with no local
obstructions.

4.3. The convex code decision problem is NP-hard

We now turn to the computational aspects of convex codes. Using the relationship between
convex codes and representable oriented matroids (Theorem 3), we demonstrate the convex code
decision problem is NP-hard and ∃R-hard, though it remains open whether the convex code
decision problem lies in either of these classes, or is even decidable. The complexity class ∃R,
read as the existential theory of the reals, is the class of decision problems of the form

∃(x1 ∈ R) . . . ∃(xn ∈ R)P (x1, . . . , xn),

where P is a quantifier-free formula whose atomic formulas are polynomial equations, inequa-
tions, and inequalities in the xi. In other words, a problem in ∃R defines a semialgebraic set
over the real numbers and asks whether or not it contains any points [Bro11]. Many well known
problems in computational geometry lie in ∃R, including some problems very similar to deter-
mining whether a code is convex. For instance, determining whether a graph is the intersection
graph of convex sets in the plane is ∃R complete [Sch09].

Theorem 3 implies the convex code decision problem is at least as difficult as deciding if an
oriented matroid is representable. This decision problem is ∃R-complete [Mnë88, Sho91, Stu87,
RG99]: given any decision problem in ∃R, there is a polynomial time algorithm to produce an
oriented matroid (presented in terms of covectors) which is realizable if and only if the decision
problem has a positive answer. Therefore the convex code decision problem is ∃R-hard.
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Theorem 4. Any problem in ∃R can be reduced in polynomial time to the problem of determining
whether a neural code is convex.

Proof. By the Mnëv-Sturmfels universality theorem (see [Mnë88, Stu87, Sho91, BLVS+99,
RG99]), determining whether a rank 3 uniform oriented matroid (presented in terms of cov-
ectors) is representable is complete for the existential theory of the reals. By Proposition 3, a
rank 3 uniform oriented matroid M is representable if and only if C (M, g) is a convex neural
code. Further, the number of neurons in C (M, g) is quadratic in the size of the ground set ofM,
and the number of codewords of C (M, g) is less than the number of covectors of M. Finally,
we can construct C (M, g) from the covectors of M in polynomial time. Any problem in ∃R
can be reduced in polynomial time to deciding representability of a uniform oriented matroid
and thus convexity of the corresponding code.

Since any ∃R complete problem is also NP-hard, we have as a corollary that determining
whether a code is convex is NP-hard.

Corollary 4.9. The problem of determining whether a code is convex is NP-hard, where the
problem size is measured in the number of codewords.

Notice that because we can perform this reduction of a problem in ∃R to a neural code
in polynomial time, this result holds even when we measure the problem size in terms of the
number of codewords, which may be exponentially large in the number of neurons. Again, this
NP hardness result is not surprising. For instance, it parallels the result that recognizing whether
a simplicial complex is the nerve of convex sets in Rd is NP-hard for d ⩾ 2 [Tan09].

5. Categories of codes, matroids, and rings

5.1. The Neural Ring

To set the stage for the functorial connections between combinatorial codes and oriented ma-
troids, we begin with a brief discussion of the functor R : Code → NRing defined in [Jef20],
and its relation to the combinatorial relations of a code, introduced in [CIVCY13]. Recall that
the neural ring of a code C is RC = F2[x1, . . . , xn]/IC , where IC is the vanishing ideal of C
as a variety in Fn

2 . This is the ring of F2-valued functions on C with distinguished coordinate
functions x1, . . . , xn, that is, xi(σ) = 1 iff i ∈ σ. The category NRing is the category of
neural rings together with monomial maps, ring homomorphisms ϕ : RD → RC which map
the coordinate functions of RD either to products of coordinate functions in RC or to 0. By
restricting to this class of homomorphisms, the functor R which takes a code to its neural ring
is a contravariant equivalence of categories [Jef20, Theorem 1.6]. For f : C → D a morphism
of codes defined by trunks Ti = TkC (σi) for i ∈ [m], the ring homomorphism Rf : RD → RC

sends the coordinate function xi in RD to the product xσi in RC .
The pseudo-monomials in IC provide a dual description of C . They record the dependen-

cies among the elements of [n], or, equivalently, among the sets Ui in any realization of C .



combinatorial theory 3 (1) (2023), #14 23

If C = code(U , X), then [CIVCY13, Lemma 4.2] implies:

xσ(1− x)τ ∈ IC ⇐⇒
⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj. (5.1)

Containment relationships as in the right hand side of (5.1) are called the combinatorial relations
of C . As a generating set for IC , the minimal pseudo-monomials, i.e. the minimal combinatorial
relations, are sufficient to recover the code C . The minimal proper pseudo-monomials in IC are
called the canonical form of C [CIVCY13]. The following lemma shows that the structure of a
pseudo-monomial ideal encodes the weak elimination axiom (axiom (C4)) of oriented matroid
circuits.

Lemma 5.1. Let C = 2[n] be a combinatorial code. Denoting pseudo-monomials xσ(1 − x)τ

as sets σ ∪ τ̄ ⊆ ±[n], the minimal relations of C satisfy circuit axiom (C4) (weak elimination).

Proof. Suppose p1 = xσ(1−x)τ and p2 = xα(1−x)β are minimal in IC , with e ∈ σ∩β. Then

xα\σ(1− x)β\(τ∪e)p1 + xσ\(α∪e)(1− x)τ\βp2 = xσ∪α\e(1− x)τ∪β\e ∈ IC .

Thus, some minimal pseudo-monomial xZ+
(1 − x)Z

− in IC divides xσ∪α\e(1 − x)τ∪β\e,
i.e. Z+ ⊆ (σ ∪ α) \ e and Z− ⊆ (τ ∪ β) \ e, which is exactly circuit axiom (C4).

Note that, while the proper circuits of an oriented matroid satisfy axiom (C4), we must
include improper pseudo-monomials of the form xi(1− xi) in order for the generators of IC to
satisfy (C4). While elements of the canonical form are minimal combinatorial relations, they do
not satisfy axiom (C3) (incomparability). Combinatorial relations on the same support need not
be equal or opposite: for instance, the combinatorial relations of the code C = {∅, 1, 2, 3, 123}
are U1∩U2 ⊆ U3, U2∩U3 ⊆ U1, and U1∩U3 ⊆ U2, which are all supported on the set {1, 2, 3}.

The relationship between pseudo-monomials in IC and codewords in C is analogous to the
relationship between circuits and topes. In light of Lemma 5.1, the oriented matroid analogue
of R maps an oriented matroid M to an ideal generated by the circuits of M and then the
depolarization map D is simply the algebraic analogue of W+. As we will see, most of the work
involved in establishing these connections is in showing W+ and S are functors.

5.2. Oriented matroids to neural codes

We now show that the map W+ is a contravariant functor from the category OM whose objects
are acyclic oriented matroids and whose morphisms are strong maps, to the category Code
whose objects are neural codes and whose objects are code morphisms.

We define strong maps in terms of convexity following [HN99]. First, we include the requi-
site information on convexity for oriented matroids.

Definition 5.2. A subset S ⊆ ±E is convex in M if for all x /∈ S, there is no circuit C ∈ C(M)
such that −x ∈ C ⊆ S ∪ {−x}. The convex closure of a set S ⊆ ±E is the intersection of all
convex sets that contain S.
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Remark 5.3. This definition differs from [BLVS+99, Exercise 3.9, p 152] in that it acts on subsets
of ±E rather than E. The intuition behind this definition comes from vector arrangements. A
signed-linear dependence on S ∪ {−x} gives a signed-linear representation of x in terms of S:
just add x to both sides of the equation. This can be rescaled to a convex combination of elements
in S; therefore, x should be in the convex closure.

We now define strong maps:

Definition 5.4. Let M1,M2 be a pair of oriented matroids on ground sets E1, E2

and f : E1 ∪ {◦} → E2 ∪ {◦} such that f(◦) = ◦. Extend f to a map f on the signed ground
sets by f(−e) = −f(e), where ◦ = −◦. We say that f induces a strong map ϕf : M1 → M2

if whenever S ⊆ ±E2 is a convex set of M2, f−1(S) ⊆ ±E1 is a convex set of M1.

Remark 5.5. We briefly explain the loops in the definition of strong maps. We want the function
on sets to be well-defined while still allowing some elements to “disappear,” so we add {◦} in
the target to absorb the disappearing elements. Since strong maps between matroids on the same
ground set have certain duality properties, we include {◦} in the source as well.

The following lemma gives us an equivalent definition of convexity in terms of topes. We
will make use of a corollary (Corollary 5.7) along the way to proving W+ is a functor.

Lemma 5.6. A subset S ⊆ ±E is convex if and only if for all x /∈ S and A ⊆ S containing no
signed circuits, there exists a tope X ∈ W(M) such that A ∪ {−x} ⊆ X .

Proof. Assume that for all x /∈ S and A ⊆ S containing no signed circuits, there is a tope X
with A ∪ {−x} ⊆ X .

Suppose that S is not convex, by way of contradiction. Then there exists some x /∈ S for
which there is a circuit C with −x ∈ C ⊆ S ∪ {−x}. But, A = C \ {−x} is a subset of S
containing no signed circuits (by axiom (C3)), and if any tope contained A ∪ {−x}, that would
contradict tope-circuit orthogonality.

For the reverse implication, we prove the contrapositive using the four-painting axioms
[BLVS+99, Theorem 3.4.4 (4P)]. Suppose that there is some set A ⊆ S containing no signed
circuits and an element x /∈ S such thatA∪{−x} is not contained in any tope. Paint the ground
set to be black and white coincident with A ∪ {−x}, and to be red on the remaining elements.
By the four-painting axioms, there must be a circuit supported on the elements of A ∪ {−x};
this proves that S is not convex.

Corollary 5.7. Every tope of a loopless matroid is convex.

Proof. Let X be a tope. By tope-circuit orthogonality, there is no circuit contained in X . Con-
sider x /∈ X . Since topes have full support, x /∈ X implies −x ∈ X . This means that for
any A ⊆ X , the set A ∪ {−x} ⊆ X , which is a tope. Therefore X is convex.

Now we define the contravariant functorW+ : OM → Code. We restate the map on objects
and add the action on morphisms.
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Definition 5.8. Let M be an acyclic oriented matroid. Take W+M to be the code consisting of
the positive parts of topes of M,

W+M = {W+ | W ∈ W(M)} ⊆ 2E.

Let ϕf : M1 → M2 be a strong map with associated set map f : E1 ∪ {◦} → E2 ∪ {◦}.
Then, take W+ϕf : W+M2 → W+M1, to be the map on codewords (W+ϕf )(σ) = f−1(σ).

In order to prove that W+ is a functor, we must prove that W+ϕ is actually a well-defined
function with the desired domain. At this point, acyclicity becomes necessary.

Example 5.9. Consider the matroid M1 on ground set E = {1, 2, 3} defined by the columns of
the matrix [

1 −1 0
0 0 1

]
The topes of M1 are {12̄3, 12̄3̄, 1̄23, 1̄23̄}. Let M2 be the rank-1 matroid on one element
obtained by contracting the first two columns of M1. That is, M2 is the oriented matroid
on ground set [1] with topes {1̄, 1}. The contraction is the strong map induced by the set
map f(1) = f(2) = ◦, f(3) = 1.

Passing toCode, we haveW+M2 = {∅, 1} andW+M1 = {1, 13, 2, 23}. For the functor to
work, we would need W+ϕ(1) = 3 to be the positive part of some tope, but there is no such tope.
By demanding that the matroids are acyclic we avoid this problem. Acyclic oriented matroids
are also loopless, so topes of acyclic oriented matroids have full support.

Proposition 5.10. Let M1 and M2 be acyclic oriented matroids on E1 and E2 respectively,
and ϕf : M1 → M2 a strong map induced by f : E1 ∪ ◦ → E2 ∪ ◦. If X ∈ W(M2) is a tope,
there is a tope Z ∈ W(M1) such that f−1(X+) = Z+.

Proof. Since both matroids are loopless, topes of each have full support on their ground sets. By
Corollary 5.7, X ∪ {◦} is convex, and since f is a strong map, we conclude
that f−1(X ∪ {◦}) = f−1(X+)+ ⊔ f−1(X−)− ⊔ ±f−1(◦) is convex. We claim that omitting
the positive-signed elements of f−1(◦) to obtain Z := f−1(X+)+ ⊔ f−1(X− ∪ {◦})− retains
convexity.

If not, then by nonconvexity ofZ, there is x /∈ Z, such that −x is in some circuitC contained
in Z ∪ {−x}. Thus, x would be an element in the convex closure of Z but not in Z itself,
rendering Z nonconvex. Because Z has full support, this means −x ∈ Z, implying C ⊆ Z.
Because M1 is acyclic, C must have at least one element x ∈ f−1(X+)+. But this implies
that −x should be in the convex closure of f−1(X ∪ {◦}), contradicting convexity.

Finally, by Corollary 5.7, we note that a maximal signed convex set must be a tope, indicating
that Z is a tope satisfying our constraints.

Thus, Proposition 5.10 confirms that the map of codes has the desired domain, so it is well-
defined as a map of sets. We need to confirm that this set map is also a morphism of codes (i.e.
the preimage of a trunk is a trunk).
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Proposition 5.11. For a strong map of acyclic oriented matroids ϕf : M1 → M2, the map of
neural codes given by W+ϕf (σ) = f−1(σ) is a morphism of codes.

Proof. Let Ci = W+Mi for i = 1, 2. It is sufficient to check that the preimage of a sim-
ple trunk (i.e. the trunk of a singleton set) is a trunk. Thus, we compute (W+ϕf )

−1TkC1(i).
Let τ ∈ (W+ϕf )

−1TkC1(i), so (W+ϕf )(τ) ∈ TkC1(i). By our definition of W+ϕf , this is
equivalent to the condition f−1(τ) ∈ TkC1(i). By the definition of a trunk, this is equivalent
to i ∈ f−1(τ), or f(i) ∈ τ . Thus, τ ∈ TkC2(f(i)) if and only if τ ∈ (W+ϕf )

−1TkC1(i).
Therefore

(W+ϕf )
−1TkC1(i) = TkC2(f(i)).

Thus, the map W+ϕf is a morphism of neural codes.

To finish off the proof that W+ is a functor, we need only check that it respects the identity
morphism and composition of morphisms.

Proposition 5.12. The identity strong map on a matroid id : M → M yields
W+ id : W+M → W+M the identity on the corresponding code.

Given two strong maps ϕ : M1 → M2 and ψ : M2 → M3, the morphisms W+(ψ ◦ ϕ)
and W+ϕ ◦W+ψ from W+M3 → W+M1 are equal.

Proof. Based on Proposition 5.10, the map of codes is well-defined. The composition of strong
maps is defined by ϕg ◦ ϕf := ϕg◦f . Then

W+(ϕg ◦ ϕf )(σ) = W+(ϕg◦f )(σ) = (g ◦ f)−1(σ) = f−1 ◦ g−1(σ) = (W+ϕf ◦W+ϕg)(σ).

Thus W+ respects composition of morphisms. Next, we check that

W+(ϕid)(σ) = id−1(σ) = σ,

thus W+ respects the identity morphism. Therefore, W+ is a functor.

Proposition 5.13. The map W+ is a faithful, but not full, contravariant functor from the cate-
gory OM of acyclic oriented matroids with strong maps to the category Code of neural codes
with code morphisms.

Since we have already proven that the map of categories W+ is indeed a functor, we only
need to prove that the functor is faithful but not full to complete the proof of Proposition 5.13.

Proof. For a given strong map ϕ : M1 → M2, it is easy to read out the map on ground
sets E1 → E2 from the values of W+ϕ. Because the set map uniquely determines the strong
map, the functor is faithful – that is, it is injective on morphisms.

To show that not all morphisms of codes arise from strong maps of oriented matroids we
produce the following example:

Take the morphism f : C → D , where

C = {∅, 1, 12345, 1235, 1245, 13, 1345, 135, 14, 145, 2, 23, 2345, 235, 24, 245, 3, 4}
D = {∅, 1′, 1′2′, 2′},
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Figure 5.1: Partial realization of code C (left) and a realization of code D (right). To construct
the complete realization of C , embed this figure in the plane z = 1 in R3. For i = 1, 2, 3, 4, let
the plane Hi be the plane spanned by the line embedded in the plane z = 1 and the origin, and
let theH5 be the plane z = 0, oriented up. Notice that the canonical construction of a realization
of D from the realization of C is not a hyperplane realization, even though D happens to be a
hyperplane code.

and the morphism is defined by trunks TkC (135) and TkC (245). See Figure 5.1 for realizations
of these codes. By construction, f is a morphism of neural codes. Both codes are hyperplane
codes, thus they arise from oriented matroids M2 and M1. However, the map f does not arise
from any strong map. To see this, notice that the proof of Proposition 5.11 actually proves that
the preimage of a simple trunk is a simple trunk for any morphism arising from a strong map.
However, by construction, f−1(TkD(1

′)) = TkC (135), which is not a simple trunk.
This proves that the functor is not full.

5.3. Oriented matroids to rings

We now describe the oriented matroid ring and show that the map taking an oriented matroid to
its associated ring is a functor. The key ingredient for doing this is the oriented matroid ideal
introduced in [NPS02]. As defined in that paper, the oriented matroid ideal is associated to affine
oriented matroids; in other words, oriented matroids with a distinguished element. We alter their
definition to avoid the need for a distinguished element, and show that the affine oriented matroid
ideal can be constructed algebraically from the oriented matroid ideal. Finally, we define the
oriented matroid ring as the quotient by the Alexander dual ideal. We define the functor S which
takes an oriented matroid to its oriented matroid ring and describe its image, which we take as
our category OMRing.

Fix a field k. We will consider polynomial rings over k with variables indexed by the ground
set E of an oriented matroid; when the indexing set is apparent, we will denote these as k[x,y]
or k[x]. The affine oriented matroid ideal is defined in [NPS02] (under the name “oriented
matroid ideal”) with an equivalent description from their Proposition 2.8 as follows:

Definition 5.14. Let M = (E,L, g) be an affine oriented matroid with E = {1, . . . , n, g}.
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(Covectors) For every sign vector Z ∈ {0,+,−}E , associate a monomial

m(g)
xy (Z) =

( ∏
i:Zi=+

xi

)( ∏
i:Zi=−

yi

)
where xg = yg = 1.

The affine oriented matroid ideal Og(M) is the ideal in k[x,y] generated by all monomials
corresponding to covectors Z ∈ L+ = {X ∈ L | Xg = +}.

(Circuits) The minimal prime decomposition of the affine oriented matroid ideal is
Og(M) =

⋂
C P

(g)
C , where P (g)

C is the ideal generated by variables ⟨xi, yj | i ∈ C+, j ∈ C−,
j ̸= g⟩, and the intersection is over all circuits C such that g ∈ C−.

We define the oriented matroid ideal in terms of generators, and show that it also has this
dual description in terms of minimal primes.

Definition 5.15. Let M be a loopless oriented matroid. Let the oriented matroid ideal O(M)
denote the ideal generated as

⟨mxy(Z) : Z tope of M⟩ , where mxy(Z) =

( ∏
i:Zi=+

xi

)( ∏
i:Zi=−

yi

)
.

Remark 5.16. This definition can be extended in a straightforward way to matroids with loops,
but “topes” would be replaced with “complements of covectors.” Note that the minimal com-
plements of covectors in loopless matroids are indeed the topes.

Proposition 5.17. Let M = (E,L) be a loopless oriented matroid. The minimal prime decom-
position of O(M) is given by O(M) =

⋂
C PC , where PC is the ideal generated by variables

⟨xi, yj | i ∈ C+, j ∈ C−⟩, and the intersection is over all (proper and improper) circuits C.

Proof. Note thatO(M) is a monomial ideal, as is the intersection of the monomial ideals {PC}C .
Therefore, it is sufficient to check that the sets of monomials in the two ideals are identical.

First, consider mZ = mxy(±[n] \ Z) for Z ∈ W(M). We will show that mZ ∈ PC

for all C ∈ C(M). For each element b ∈ E, exactly one of b or −b is in every tope Z,
so mZ ∈ ⟨xb, yb⟩; this covers improper circuits of the form {b, b̄}. For every proper circuit C,
both sep(Z,C) and sep(Z,−C) are non-empty by tope-circuit orthogonality. In this case, there
exists i ∈ C (resp. −i ∈ C) such that i /∈ Z (−i /∈ Z); this means that xi | mZ for i ∈ C which
implies mZ ∈ PC . Since mZ ∈ PC for all types of circuits, it is also in the intersection.

In the reverse direction, we show that for any monomial m in
⋂

C PC , there is a tope Z such
that mxy(±[n] \ Z) | m. For all elements j ∈ E, either xj | m or yj | m; so there exist disjoint
sets I, J such that [n] = I ∪ J and

mI,J =

(∏
i∈I

xi
∏
j∈J

yj

)
| m.

We claim that Z = I ∪ J̄ is a tope of M. It is enough to show that every circuit C ∈ C(M)
is orthogonal to Z. The fact that mI,J ∈ PC and mI,J ∈ P−C means that both sep(Z,C)
and sep(Z,−C) are nonempty, implying orthogonality.
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The affine oriented matroid ideal can be obtained from the oriented matroid ideal using the
following construction.

Proposition 5.18. The affine oriented matroid ideal Og(M) can be obtained via the following
ideal quotient and specialization

Og(M) = [O(M) : O(M\ g)] xg=1
yg=0

⊆ k[x1, . . . , xn, y1, . . . , yn].

Proof. By Definition 5.14,

O(M) =
⋂

C∈C(M)

PC =
⋂
Cg=0

C∈C(M)

PC ∩
⋂

Cg=+
C∈C(M)

PC ∩
⋂

Cg=−
C∈C(M)

PC

=
⋂
Cg=0

C∈C(M)

PC ∩

⟨xg⟩+
⋂

Cg=+
C∈C(M)

P
(−g)
C

 ∩

⟨yg⟩+
⋂

Cg=−
C∈C(M)

P
(g)
C


= O(M\ g) ∩ (⟨xg⟩+O−g(M)) ∩ (⟨yg⟩+Og(M))

Ideal quotients commute with intersection, so we can apply the quotient to each component.
The first component becomes the ideal quotient of O(M \ g) by itself, which is the full ring.
After specializing xg = 1, the second component is also the full ring. Turning to the third
component, we need to prove that

(
(⟨yg⟩+Og(M)) : O(M\ g)

)
= ⟨yg⟩+Og(M).

A monomialm is in the quotient if and only if for allA = ±[n]\B whereB ∈ L(M\ g), ei-
ther yg | m · mxy(A) or there exists covector Z ∈ L(M) with Zg = − such that
m

(g)
xy (Z) | m · mxy(A). Suppose m · mxy(A) ∈ ⟨yg⟩. Then yg | m since mxy(A) is defined

on the deletion by g; this implies that m ∈ ⟨yg⟩. Suppose instead that m ·mxy(A) ∈ Og(M).
This implies that there is a covector Z of M with Zg = − such that m(g)

xy (Z) | m ·mxy(A). By
[BLVS+99, Prop 3.8.2 (b)], this implies that the support ofm is a covector of the matroid. Since
yg ∤ mxy(A), the support of m must include yg, implying that its support is a covector B of M
with Bg = −. This implies m ∈ Og(M). We conclude that

(
(⟨yg⟩+ Og(M)) : O(M\ g)

)
=

⟨yg⟩+Og(M). Specializing yg = 0 leaves us with Og(M).

One more step is needed to make the functor S work. The oriented matroid ideal O(M) is
a square-free monomial ideal; we take its Alexander dual (see e.g. [MS04, Definition 1.35]) to
obtainO(M)⋆. This takes the oriented matroid ideal and swaps the role of topes and circuits; i.e.
irreducible components now correspond to topes, and monomial generators to circuits. Let W
be a tope and let p(W ) = ⟨xe | We = +⟩+ ⟨ye | We = −⟩. Then, for acyclic oriented matroids,

O(M)⋆ = ⟨mxy(C) | C ∈ C(M)⟩ =
⋂

W∈W(M)

p(W ). (5.2)

The oriented matroid ring is then the quotient ring k[x,y]/O(M)⋆.
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Proposition 5.19. Let OM be defined as above.
Let M be an oriented matroid and ϕ : M1 → M2 be a strong map of matroids with

associated set map f : E1 ∪ {◦} → E2 ∪ {◦}.
Define SM = SM = k[x,y]/O(M)⋆. Define Sϕf : SM1 → SM2 by

(Sϕf )(xi) =

{
0 f(i) = ◦
xf(i) else.

(Sϕf )(yi) =

{
0 f(i) = ◦
yf(i) else.

We refer to the ring SM as an oriented matroid ring and the map Sϕf as a strong monomial map.
Then, S is a covariant functor from OM to Ring.

Proof. We need to prove that this map defines a ring homomorphism, respects the identity mor-
phism, and respects composition of morphisms.

We begin by checking that the map Sϕf is a ring homomorphism. Since it is defined as a
map on generators, Sϕf defines a ring homomorphism

k[x1, . . . , xn1 , y1, . . . , yn1 ] → k[x1, . . . , xn2 , y1, . . . , yn2 ].

We need to check that this map respects the quotient structure. That is, we must show that
if m ∈ O(M1)

⋆, then Sϕf (m) ∈ O(M2)
⋆.

Since O(M1)
⋆ is a monomial ideal, it is sufficient to check this for monomials

m =
∏
i∈I

xi
∏
j∈J

yj.

If f(i) = ◦ (or f(j) = ◦) for some i ∈ I (j ∈ J), then Sϕf (m) = 0 ∈ O(M2)
⋆. Next,

we consider the case when Sϕf (xi) = xf(i), Sϕf (yj) = yf(j) for all i ∈ I, j ∈ J . Be-
cause O(M1)

⋆ is a monomial ideal, m ∈ O(M1)
⋆ implies that xC+yC− divides m for some

generator xC+yC− ∈ O(M1)
⋆.

If f(C) is not a signed set, then it contains an improper circuit of the form {i, ī}, so Sϕf (m)
is divided by xiyi, so Sϕf (m) ∈ O(M2)

⋆ as desired. Thus, suppose that f(C) is a signed set.
We show that f(C) contains a circuit. Let e ∈ C. We will show that −f(e) is in the convex
closure of f(C); this implies that there is a circuit D of M2 such that

f(e) ∈ D ⊆ f(C) ∪ {f(e)} = f(C),

which is what we need. Suppose that −f(e) is not in the convex closure of f(C). Then there is
some convex set S such that −f(e) /∈ S, f(C) ⊂ S. By the definition of a strong map, f−1(S)
must be convex. However, −e /∈ f−1(S), and

e ∈ C ⊂ f−1(S) ∪ {e},

contradicting convexity of S. We conclude that −f(e) is in the convex hull of f(C). Thus, there
is a circuit D of M2 such that f(e) ∈ D ⊆ f(C), so xD+

yD
− divides f(m).

To see that S respects the identity morphism, note that if f(i) = i for each i ∈ E,
then Sϕf (xi) = xi and Sϕf (yi) = yi, so Sϕf is the identity on SM. Now, let ϕf and ϕg be strong
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maps. First, suppose neither f(i) = ◦ nor g(f(i)) = ◦. Without loss of generality, we check that
composition of morphisms is respected on the xi. Then S(ϕfϕg)(xi) = xf◦g(i) = (Sf)(Sg)xi.
Now, if either f(i) = ◦ or g(f(i)) = ◦, then S(ϕfϕg)(xi) = 0 = (Sf)(Sg)xi. Thus the map S
respects composition of morphisms.

We define the category OMRing to be the category whose objects are oriented matroid
rings SM with distinguished generators x1, . . . , xn, y1, . . . , yn. The morphisms of OMRing
are the strong monomial maps Sϕf , where ϕf is a strong map of oriented matroids.

5.4. Oriented matroid rings to neural rings and back

The final piece of the puzzle is describe the relationship between OMRing and the category
of neural rings NRing. Note that neural rings are defined over F2, thus we take all rings in
this section to be over F2. The vanishing ideal of a code is a pseudo-monomial ideal, meaning
it has a pseudo-monomial generating set. Polarization of a pseudo-monomial ideal, introduced
in [GJS19], produces a true monomial ideal which encodes the same combinatorial information.
As W+ is not a full functor and R is an equivalence of categories, there is no reason to expect
polarization to be a functor. Instead, we will use the operation of depolarization to define the
functor D so that R ◦W+ = D ◦ S, i.e. the diagram below commutes.

OM OMRing

Code NRing

S

W+ D

R

(5.3)

Definition 5.20. Let SM be an oriented matroid ring. Define DSM to be the ring
SM/⟨xi + yi − 1 | i ∈ [n]⟩ with distinguished coordinate functions x1, . . . , xn.

If ϕ : SM1 → SM2 is a morphism in OMRing with underlying set map
f : E1 ∪ {◦} → E2 ∪ {◦}, then define Dϕ : DSM1 → DSM2 to be the map sending xi 7→ xf(i)
if f(i) ̸= ◦ and xi 7→ 0 otherwise.

Proposition 5.21. The map D is a functor OMRing to NRing.

Proof. We first show D maps an oriented matroid ring to a neural ring. Denote S = F2[x,y]
and D = ⟨xi + yi − 1 | i ∈ [n]⟩ ⊆ S. Let D̄ denote the ideal with the same generators as D, but
considered as an ideal of SM, i.e. DSM = SM/D̄, and let S ′ = O(M)⋆ + D ⊆ S. We apply
standard isomorphism theorems to conclude

DSM = SM/D̄ ∼= S/S ′ ∼= (S/D)/(S ′/D).

Observe that S/D ∼= F2[x] under the map yi 7→ 1 − xi. Under this same map,
xσyτ 7→ xσ(1−x)τ , soS ′/D is a pseudo-monomial ideal; since xiyi ∈ O(M)⋆ for all i ∈ [n], we
have xi(1 − xi) ∈ S ′/D for all i and therefore S ′/D is the vanishing ideal of a combinatorial
code.

Next we check that if ϕ : SM1 → SM2 is a strong monomial map, thenDϕ is a monomial map
of neural rings. By definition, ϕ induces a monomial map F2[x1, . . . , xn1 ] → F2[x1, . . . , xn2 ],
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sending each xi to some xj or 0 as appropriate. So, we only need to check this is a
well-defined ring homomorphism. This follows from properties of polarization:
xσ(1− x)τ ∈ (O(M)⋆ +D)/D if and only if xσyτ ∈ O(M)⋆ [GJS19]. Therefore,

xσ(1− x)τ ∈ (O(M)⋆ +D)/D =⇒ xσyτ ∈ O(M1)
⋆ =⇒ ϕ(xσyτ ) ∈ O(M2)

⋆

=⇒ Dϕ(xσ(1− x)τ ) ∈ (O(M2)
⋆ +D)/D.

Thus, Dϕ is a well-defined monomial map.
To complete the proof D is a functor, we need to show D respects the identity and

composition of morphisms. These are immediate from the definitions: D idxi = xid(i)
and D(ϕf ◦ ϕg)(xi) = xf◦g(i) = Dϕf ◦ Dϕgxi.

Proposition 5.22. The diagram (5.3) commutes.

Proof. We will show that:

1. for any acyclic oriented matroid M,

(D ◦ S)(M) = (R ◦W+)(M), and

2. for a strong map of acyclic oriented matroids f : M1 → M2,

(D ◦ S)(f) = (R ◦W+)(f).

(1) We prove the first part by showing that the ring of functions on W+M is precisely the
ring (D ◦S)(M). We do this by showing that they are both quotients of F2[x] by the same ideal.
For a tope W ⊆ ±[n], denote p̄(W ) = ⟨xi | Wi = +⟩ + ⟨1 − xi | Wi = −⟩, i.e. the image
of p(W ) under the map yi 7→ 1− xi (recall Equation (5.2)). Then we have

(D ◦ S)(M) ∼= F2[x]/

( ⋂
W∈W(M)

p̄(W )

)
.

Now consider (R ◦W+)M = F2[x]/IW+M. For each tope W , let

m(W ) = ⟨xi | Wi = −⟩+ ⟨1− xi | Wi = +⟩,

the maximal ideal of F2[x] vanishing at codewordW+. As the vanishing ideal of a finite variety,
we have

IW+M =
⋂

W∈W(M)

m(W ).

By construction,m(W ) = p̄(−W ). By symmetry (axiom (V2)),W is a tope if and only if−W is
a tope. Therefore, the ideals are defined by the same intersection and therefore the corresponding
quotients are identical.
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(2) Now we prove that strong maps point to the same monomial map via D ◦ S and R ◦W+. It
is sufficient to check the action of each monomial map on generators of F2[x].

A strong map ϕf is defined by a set map f : E1 → E2 satisfying S ⊆ E2 convex
implies f−1(S) ⊆ E1 convex. The strong monomial map Sϕf sends xi to 0 if f(i) = ◦ and xf(i)
otherwise; it acts similarly on yi. Applying D, the monomial map (D ◦ S)(ϕf ) still sends xi to 0
if f(i) = ◦ and xf(i) otherwise.

Going around the diagram the other way, W+ϕf sends a codeword σ ∈ W+M2

to f−1(σ) ∈ W+M1. The functor R sends a morphism of codes g : C1 → C2 to the ring
homomorphism given by sending ν ∈ RC2 to its precomposition with g, i.e. ν ◦ g ∈ RC1.
Starting with a strong map ϕf , let us consider the action of RW+ϕf on generators of RW+M1:

(RW+ϕf )(xi) = xi ◦ [(W+ϕf )
−1] = xi ◦ [σ 7→ f−1(σ)]

This function takes as input a codeword σ ∈ W+M2. If i ∈ f−1(σ), then it takes the value 1,
and if i /∈ f−1(σ) then it takes the value 0. If f(i) = ◦, then the function is identically zero.
If f(i) ̸= ◦, then xi◦ [σ 7→ f−1(σ)] is equal to xf(i), proving that the monomial maps (D◦S)(ϕf )
and (R ◦W+)(ϕf ) are the same.

Theorem 5 (proven by Propositions 5.13, 5.19, 5.21 and 5.22) gives us a new lens to see
the neural ideal. In essence, neural codes can be seen as a relaxation of oriented matroids. The
neural ideal is a generalization of the oriented matroid ideal to the less constrained category of
neural codes. Further, Propositions 5.21 and 5.22 demonstrates that the duality between a neural
code and its combinatorial relations is analogous to the duality between topes and circuits. In
particular, in the special case when a neural code arises from an oriented matroid, the codewords
correspond to topes and the elements of the canonical form correspond to circuits. Lemma 5.1,
which states that the elements of the canonical form partially follow the circuit axioms, strength-
ens this analogy.

6. Open questions

The preceding sections have presented our case for employing oriented matroid theory in the
study of neural codes. However, we stand at the very beginning of exploring this connection. In
this section, we outline some directions for future work.

6.1. Is the missing axiom of convex neural codes also lost forever?

Oriented matroids capture much of combinatorial structure of hyperplane arrangements in a few
axioms. Is it possible to give a similar characterization for convex neural codes, or at least for
codes which lie below oriented matroids in PCode? While general neural codes are not required
to satisfy any axioms, the codes below oriented matroids may be more tractable to combinatorial
description.

Question 6.1. Can the class of neural codes below oriented matroids be characterized by a set
of combinatorial axioms?
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The functorial view we introduced in Section 5 may be helpful in finding this characteriza-
tion. If this question is answered in the affirmative, then these codes can be thought of as “partial
oriented matroids.” Suppose that C ⊆ 2[n] is a code and M is an oriented matroid on ground
set [N ] such that C = f(L+M); then, we obtain constraints on the set of covectors of M. Each
included codeword σ ∈ C implies existence of a preimage covector in M, and each excluded
codeword τ /∈ C implies a set of forbidden covectors which may not be in M. The oriented
matroids satisfying these constraints can then be said to be “completions” of the partial oriented
matroid.

Just as we wish to characterize codes lying below oriented matroids with a set of combi-
natorial axioms, we might also wish to characterize convex codes using a set of combinatorial
axioms. However, this is likely not possible. In [MNW18], Mayhew, Newman, and Whittle
show that “the missing axiom of matroid theory is lost forever.” Slightly more formally, they
show that there is no sentence characterizing representability in the monadic second order lan-
guage MS0, which is strong enough to state the standard matroid axioms. Roughly, this means
that there is no “combinatorial” characterization of representability, or no characterization of
representability in the language of the other matroid axioms.

Because we have found strong connections between representability and convexity, it is nat-
ural to ask whether a similar statement can be proven for convex codes.

Question 6.2. Is there a natural language in which we can state “combinatorial” properties of
neural codes, in analogy with theMS0 for matroids? If so, is it possible to characterize convexity
in this language?

6.2. Computational questions

While we have shown that the convex code decision problem is ∃R-hard, we have not actually
shown that the convex code decision problem lies in ∃R, or is even algorithmically decidable. A
similar problem, that of determining whether a code has a good cover realization, is undecidable
by [CFS19, Theorem 4.5]. Here, the distinction between codes with good cover realizations
and convex realizations may be significant. For instance, while there is an algorithm to decide
whether, for any given d, a simplicial complex is the nerve of convex open subsets of Rd, for
each d ⩾ 5, it is algorithmically undecidable whether a simplicial complex is the nerve of a good
cover in Rd [TT13].

We outline a possible path towards resolving [CFS19, Question 4.5], which asks whether
there is an algorithm which decides whether a code is convex. Our approach hinges on Theo-
rem 1: a code is polytope convex if and only if it lies below a representable oriented matroid.
A first step towards solving the convex code decision problem is answering the following open
question:

Question 6.3. Can every convex code be realized with convex polytopes?

In dimension two, this question has an affirmative answer, as a result, the class of planar
convex codes is decidable [BJ22]. If this holds in all dimensions, then our Theorem 1 becomes
strengthened to the following:
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Conjecture. A code C is convex if and only if C ⩽ L+M for M a representable oriented
matroid.

If this conjecture holds, then we can replace the problem of determining whether a code is
convex with the problem of determining whether a code lies below a representable matroid. We
only need to consider the set of minor-minimal matroids lying above the code, and check these
matroids for representability.
Question 6.4. Given a code C , is the set of minor-minimal matroids above C finite? If so, is
there an efficient algorithm to enumerate them?

One way to find oriented matroids above a code C is to travel step-by-step up the posetPCode.
While there is a straightforward algorithm to enumerate the O(n) codes which are covered by
a code C ⊆ 2[n] in PCode [Jef19], we do not know of a straightforward way to characterize
the codes which cover C . If we can characterize these codes as well, we may be able to find a
way to “climb up” towards an oriented matroid. Alternatively, we can use the “partial oriented
matroid” perspective described above to obtain a set of constraints that must be obeyed by any
oriented matroid above this code. Then we can look for a matroid satisfying these constraints.

Both of these approaches depend on the minimal size of the ground set of oriented matroids
that lie above C in PCode. Let

M(n) = max
C⊆2[n]

C below an
oriented matroid

[
min

C⩽L+(M)
|E(M)|

]

be the smallest N such that any code C on n neurons which lies below an oriented matroid lies
below an oriented matroid with ground set of size at most N . Similarly, let

H(n) = max
C⊆2[n]

C below a representable
oriented matroid

 min
C⩽L+M

M representable

|E(M)|


be the smallest N such that any code C on n neurons below a representable oriented ma-
troid lies below a representable oriented matroid with ground set of size at most N . Clearly,
M(n) ⩽ H(n), since any representable matroid is a matroid.
Question 6.5. Describe the growth of M(n) and H(n) as functions of n. Are they equal?

Note that if H(n) is a computable function of n, and Question 6.3 is answered in the affir-
mative, then the convex code decision problem is decidable.

6.3. Other questions in geometric combinatorics

Many classic theorems about convex sets, such as Helly’s theorem, Radon’s theorem, and
Caratheodory’s theorem, have oriented matroid analogues. In some way, we can view our The-
orem 2 as an oriented matroid version of Jeffs’ sunflower theorem [Jef19, Theorem 1.1]. The
fact that the non-convex codes constructed from the sunflower theorem do not lie below oriented
matroids shows us that there is some fact about oriented matroids underlying the sunflower the-
orem.



36 Alexander B. Kunin et al.

Question 6.6. Is there a natural oriented matroid version of Jeffs’ sunflower theorem?

Proposition 3.3 stated that if M is an oriented matroid, the code L+M has no local ob-
structions. That is, for any σ ∈ ∆(L+M) \ L+M, linkσ(∆(L+M)) is contractible. This re-
sult can also be found in [ERW02], where is is phrased as a result about the simplicial com-
plex ∆acyclic(M). Something stronger holds for representable oriented matroids: by [CFS19,
Theorem 5.10], if M is a representable oriented matroid, and σ ∈ ∆(L+M) \ L+M, then
linkσ(L

+M) must be collapsible. Expanding upon this work, [JN19] gives stronger conditions
that the link of a missing codeword in a convex code must satisfy.

We ask whether this holds for all oriented matroids:

Question 6.7. If M is an oriented matroid, and σ ∈ ∆(L+M) \ L+M, is linkσ(∆(L+M)) col-
lapsible? More generally, which simplicial complexes can arise as linkσ(∆(L+M))
for σ ∈ ∆(L+M) \ L+M?

If not, then the non-collapsibility of linkσ(∆(L+M)) gives a new “signature” of
non-representability.

6.4. Functorial questions

The maps W+ and L+ established analogies between structures of oriented matroids and neural
codes. Topes and covectors are translated into the codewords, and signed circuits are mapped to
the combinatorial relations. This leads us to the following natural question:

Question 6.8. Do W+ and L+ map other matroid features to meaningful structures associated
to neural codes? In particular, do the chirotope, rank function, and convex closure function have
a natural interpretation when mapped to general neural codes?

This paper focused on the category of oriented matroids, since they have a well-established
notion of morphisms (strong maps) and since they are extensively studied. However, there is
also a notion of “affine strong maps” defined in [HN99] that may serve to turn affine oriented
matroids into a category. This might also admit a natural functor to neural codes. Additionally,
the recently defined objects COM’s (which stands for both conditional oriented matroids and
complexes of oriented matroids) [BCK18] are a natural place to try to extend strong maps next.

Question 6.9. Can affine oriented matroids with affine strong maps be embedded inCode? Can
strong maps be defined for COM’s in such a way that the resulting category can be embedded in
Code?

While strong maps are more frequently used as morphisms of oriented matroids, weak maps
are the next best option.

Question 6.10. Can the category of oriented matroids with morphisms given by weak maps be
embedded in Code?
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[GJS19] Sema Güntürkün, Jack Jeffries, and Jeffrey Sun. Polarization of neural rings.
Journal of Algebra and Its Applications, page 2050146, 2019. doi:10.1142/

S0219498820501467.
[GP20] Sarah Ayman Goldrup and Kaitlyn Phillipson. Classification of open and closed

convex codes on five neurons. Advances in Applied Mathematics, 112:101948,
2020.

[GPCI15] Chad Giusti, Eva Pastalkova, Carina Curto, and Vladimir Itskov. Clique topology
reveals intrinsic geometric structure in neural correlations. Proceedings of the Na-
tional Academy of Sciences, 112(44):13455–13460, 2015. doi:10.1073/pnas.

1506407112.
[HN99] W Hochstattler and Jaroslav Nesetril. Linear programming duality and morphisms.

Commentationes Mathematicae Universitatis Carolinae, 40(3):577–592, 1999.
[IKR20] Vladimir Itskov, Alex Kunin, and Zvi Rosen. Hyperplane neural codes and the po-

lar complex. In Nils Baas, Gunnar Carlsson, Marius Thaule, Gereon Quick, and
Markus Szymik, editors, Topological Data Analysis, volume 15 of Abel Symposia,
pages 343–369. Springer International Publishing, 2020. arXiv:1801.02304,
doi:10.1007/978-3-030-43408-3_13.

[Jef19] R. Amzi Jeffs. Sunflowers of convex open sets. Advances in Applied Mathematics,
111:101935, 2019. doi:10.1016/j.aam.2019.101935.

[Jef20] R. Amzi Jeffs. Morphisms of neural codes. SIAM Journal on Applied Algebra and
Geometry, 4(1):99–122, 2020.

[Jef21] R. Amzi Jeffs. Embedding dimension phenomena in intersection complete codes.
Selecta Mathematica, 28(1):18, 2021. doi:10.1007/s00029-021-00742-2.

[JLY20] R Amzi Jeffs, Caitlin Lienkaemper, and Nora Youngs. Order-forcing in neural
codes. 2020. arXiv:2011.03572.

[JN19] R. Amzi Jeffs and Isabella Novik. Convex union representability and convex codes.
International Mathematics Research Notices, 2019. doi:10.1093/imrn/rnz055.

[LSW17] Caitlin Lienkaemper, Anne Shiu, and Zev Woodstock. Obstructions to convexity in
neural codes. Advances in Applied Mathematics, 85:31–59, 2017. doi:10.1016/
j.aam.2016.11.006.

https://doi.org/10.1016/j.aam.2019.101977
https://doi.org/10.1007/s00454-001-0055-6
https://doi.org/10.1142/S0219498820501467
https://doi.org/10.1142/S0219498820501467
https://doi.org/10.1073/pnas.1506407112
https://doi.org/10.1073/pnas.1506407112
http://arxiv.org/abs/1801.02304
https://doi.org/10.1007/978-3-030-43408-3_13
https://doi.org/10.1016/j.aam.2019.101935
https://doi.org/10.1007/s00029-021-00742-2
http://arxiv.org/abs/2011.03572
https://doi.org/10.1093/imrn/rnz055
https://doi.org/10.1016/j.aam.2016.11.006
https://doi.org/10.1016/j.aam.2016.11.006


combinatorial theory 3 (1) (2023), #14 39
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