
UC Berkeley
UC Berkeley Previously Published Works

Title
EXAGRAPH: Graph and combinatorial methods for enabling exascale applications

Permalink
https://escholarship.org/uc/item/00c5m1sg

Journal
The International Journal of High Performance Computing Applications, 35(6)

ISSN
1094-3420

Authors
Acer, Seher
Azad, Ariful
Boman, Erik G
et al.

Publication Date
2021-11-01

DOI
10.1177/10943420211029299

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/00c5m1sg
https://escholarship.org/uc/item/00c5m1sg#author
https://escholarship.org
http://www.cdlib.org/

EXAGRAPH: Graph and Combinatorial Methods for
Enabling Exascale Applications

Seher Acer2, Ariful Azad6, Erik G. Boman2, Aydın Buluç3, Karen D. Devine2, S M Ferdous4,
Nitin Gawande7,1, Sayan Ghosh1, Mahantesh Halappanavar1,5, Ananth Kalyanaraman5,1, Arif
Khan1, Marco Minutoli1, Alex Pothen4, Sivasankaran Rajamanickam2, Oguz Selvitopi3,
Nathan R. Tallent1, and Antonino Tumeo1

Abstract
Combinatorial algorithms in general and graph algorithms in particular play a critical enabling role in numerous scientific
applications. However, the irregular memory access nature of these algorithms makes them one of the hardest
algorithmic kernels to implement on parallel systems. With tens of billions of hardware threads and deep memory
hierarchies, the exascale computing systems in particular pose extreme challenges in scaling graph algorithms. The co-
design center on combinatorial algorithms, ExaGraph, was established to design and develop methods and techniques
for efficient implementation of key combinatorial (graph) algorithms chosen from a diverse set of exascale applications.
Algebraic and combinatorial methods have a complementary role in the advancement of computational science
and engineering, including playing an enabling role on each other. In this paper, we survey the algorithmic and
software development activities performed under the auspices of ExaGraph from both a combinatorial and an algebraic
perspective. In particular, we detail our recent efforts in porting the algorithms to manycore accelerator (GPU)
architectures. We also provide a brief survey of the applications that have benefited from the scalable implementations
of different combinatorial algorithms to enable scientific d iscovery a t s cale. We b elieve t hat s everal a pplications will
benefit from the algorithmic and software tools developed by the ExaGraph team.

over time. In addition to sparse direct methods, iterative
solvers for linear systems employ graph algorithms to
compute preconditioners and coarsen matrices for multigrid
methods Hysom and Pothen (2001). Graph algorithms are
used to partition and map meshes and computational graphs
to processors in order to achieve load balance and reduce
communication costs in parallel computing Boman et al.
(2012). In Automatic Differentiation, directed acyclic graphs
model the decomposition of mathematical functions using
unary and binary (elementary) operations, and the use of the
chain rule to compute partial derivatives by differentiating
these elementary operations; edge and node eliminations
on this graph enable algorithms that are efficient with
respect to computations and memory needed Griewank and
Walther (2008). In data analytics, graph construction from
noisy, dense data leads to computational models from which

1 Pacific Northwest National Lab, Richland WA
2 Sandia National Labs, Albuquerque NM
3 Lawrence Berkeley National Lab, Berkeley CA
4 Purdue University, West Lafayette IN
5 Washington State University, Pullman WA
6 Indiana University, Bloomington IN
7 Intel Corporation, Santa Clara CA

Corresponding author:
Mahantesh Halappanavar, hala@pnnl.gov

Interplay between algebraic and
combinatorial methods in computational
science and engineering

Combinatorial algorithms play a crucial enabling role in
many applications in computational science and engineering.
Work in this area began with the realization that graphs
are critical to the design of efficient a lgorithms for solving
sparse systems of linear equations. A graph model of
sparse Gaussian elimination was first d escribed b y Parter
(1961), and chordal graphs were shown to be the adjacency
graphs of Cholesky factors of symmetric matrices by
Rose (1972). Efficient d ata s tructures a nd a lgorithms for
computing sparse matrix factorizations (Cholesky and LU)
were then developed by Rose, Tarjan, Leuker, George,
Eisenstat, Duff, Reid, and others. See the discussions in the
recent books Davis (2006); Duff et al. (2017), and some older
and recent articles Davis et al. (2016); J. W-H. Liu (1990);
Rose et al. (1976). This led to the development of efficient
algorithms and software (SPARSPAK, Harwell Subroutine
Library, Yale Sparse Matrix Package), which were followed
by more recent codes such as SuperLU (Demmel et al. 1999),
MUMPS, WSMP, sparse matrix functions in Matlab, etc.,
for solving sparse systems of linear equations using direct
or factorization based methods Davis et al. (2016).

Since this beginning, the role of graph algorithms
in computational science and engineering has burgeoned

An exact algorithm for an optimization problem computes
the optimum value of its objective function. An approxima-
tion algorithm for an optimization problem computes a value
that is within some factor α (a constant or a function of the
problem size) of the optimal value for all problem instances.
For a maximization problem (as in b-MATCHING), the ratio
of the value computed by the approximation algorithm to
the maximum value is at least α < 1 for all instances; for
a minimization problem (as in b-EDGE COVER), the ratio
of the value computed by the approximation algorithm to
the optimal value is at most α > 1, again for all instances.
We say that this is an α-approximation algorithm for the
problem, and that the approximation ratio of the algorithm is
α. Note that this worst-case approximation ratio is obtained
analytically by an a priori argument, and the approximation
ratio for a specific instance might be much better than α. An
algorithm for an optimization problem for which we cannot
obtain an approximation ratio is called a heuristic algorithm.
This is the situation for many problems in combinatorial
Scientific Computing, and we have to evaluate an algorithm
by empirically comparing the value of the objective function
it computes with other algorithms on a collection of test
problems.

Approximation algorithms have several advantages over
exact algorithms, of which the most important for our
purposes is the higher concurrency they have relative to exact
algorithms. This makes it possible for us to design parallel
algorithms for the matching and edge cover problems,
whereas exact algorithms do not have sufficient concurrency.
Approximation algorithms are easier to implement when
compared to the more sophisticated exact algorithms, which
is practically an important reason for their widespread use.
We have provided a comprehensive review of the design
of approximation algorithms for several matching problems
and edge cover problems with applications in Pothen et al.
(2019).

A parallel algorithm for b-MATCHING: A b-MATCHING
in a graph corresponds to a combinatorial structure called
a 2-extendible system. Consider two b-MATCHINGS, M1 ⊆
M2, and consider the situation when there is an edge e ∈
E \M2 such that M1 + e is a b-MATCHING, while M2 + e
is not. If e = {u, v}, then removing at most two edges from
M2, namely the two edges incident on the vertices u and
v in M2, leads to another b-MATCHING. A 2-extendible
system is a relaxation of a matroid, in which the independent
sets correspond to a 1-extendible system, where in the
construction above, only one edge would need to be removed
to preserve independence. Mestre showed that for any k-
extendible system, the Greedy algorithm computes a 1/k-
approximation to a maximization problem over its objective
function. Hence we have the result that the Greedy algorithm
is a 1/2-approximation algorithm for a maximum weight
b-MATCHING.

The Greedy algorithm considers edges to add to the
matching in non-increasing order of weights, and hence
there is not much concurrency in the algorithm. Hence we
have designed another algorithm called b-SUITOR, which is
based on making proposals to compute the b-MATCHING.
The b-SUITOR algorithm generalizes the SUITOR algorithm
for maximum edge-weighted matching problem designed
by Manne and Halappanavar. Every vertex v makes up to

algorithms for classification, clustering, regression, etc. may
be developed. Sparse subgraphs obtained using criteria
such as constraints on degrees, lead to faster algorithms
and more accurate classification results. Furthermore, graph
algorithms continue to be critical in emerging applications
such as quantum computing, epidemic modeling, network
science, computer security, computational genomics and
proteomics, etc.

To describe the work we have performed in the ExaGraph
project, we will discuss the development and application
of several graph algorithms. Some of these applications
arise in sparse matrix computations, such as sparse matrix
multiplication, solving sparse systems of linear equations,
ordering sparse matrices for efficient m emory a ccess, etc.
In other problems, we will solve problems on graphs
using algebraic techniques, as in the computation of the
eigenvectors of the Laplacian matrix associated with a graph
in order to partition it. Similar in spirit is the use of
algebraic operations on suitably defined semirings t o solve
problems on graphs (Combinatorial BLAS). We will also
discuss graph algorithms to obtain significant subgraphs
(degree constrained subgraphs) with applications in sparse
matrix computations, data privacy, and machine learning. We
will discuss graph algorithms for community detection and
influence maximization in networks.

Combinatorial Approaches for Graph
Algorithms

Matchings and Coverings

We discuss progress we have made in the Exascale project in
the design of parallel algorithms for matching and edge cover
problems on graphs, with their applications. These problems
enable the computation of degree-constrained subgraphs
of a graph that might represent its significant subgraphs.
Computing these subgraphs reduce the computational costs
and memory required of algorithms that obtain information
from the graph, such as semi-supervised classification in
machine learning, or the solution of sparse systems of
linear equations. The first p roblem w e c onsider i s t he one
of computing a b-MATCHING in a graph. Given a graph,
and a natural number b(v) for each vertex in the graph, a
b-MATCHING is a subset of at most b(v) edges incident on
the vertex v in the graph. Here we assign weights to the
edges, and maximize the sum of the weights of edges in a
b-MATCHING.

The second problem we consider is b-EDGE COVER,
where given natural numbers b(v) for each vertex v, we are
required to choose at least b(v) edges incident on v to belong
to the edge cover. Here we seek to minimize the sum of
weights of the edges in the cover.

Both of these problems have polynomial time algorithms
to solve them; however, the asymptotic run time is too high
to be practical for graphs with millions or billions of vertices
and edges. Hence we turn to the design of approximation
algorithms that have near-linear time complexity in the size
of the graph. We also design approximation algorithms that
possess high concurrency, so that they can be implemented
efficiently on parallel computers.

b(v) proposals to its neighbors, in non-increasing order of
weights of its edges. Each vertex keeps track of the lowest
weight proposal that it has received from a neighbor. The
vertex v proposes to a neighbor u provided the weight of the
edge {u, v} is higher than the lowest weight proposal that u
currently holds. If v can beat this value, then it annuls the
lowest weight proposal that u holds, made by some vertex
w, and proposes to u. The vertex w will need to make
another proposal to a neighbor x such that the weight of
the edge (w, x) is higher than the lowest weight offer that
x holds, if such a vertex exists. When two vertices u and v
propose to each other, then the edge {u, v} is added to the
b-MATCHING.

The b-SUITOR algorithm computes the same matching
as the Greedy algorithm, provided ties in edge weights are
resolved in the same manner in both algorithms. But the
b-SUITOR algorithm has a great deal of concurrency since
every vertex can make proposals to its neighbors. It does so at
the cost of annulled proposals which corresponds to wasted
work in computing a matching. If the edge weights are
chosen at uniformly at random, then the expected number of
proposals in the SUITOR algorithm is bounded by n log n for
a complete bipartite graph, where n is the number of vertices.
Edge weights could be chosen such that O(m) proposals are
needed for a sparse graph with m edges, but in practice such
pathological distributions are not observed. The b-SUITOR
algorithm has been implemented on serial, parallel shared
memory, and parallel distributed-memory computers. For
parallel b-SUITOR algorithm, the total work (number of
operations in the parallel algorithm) is bounded byO(βb(V),
and the parallel depth (the length of the critical path) is
bounded by O(logb(V) log ∆). Here b(V) =

∑
v∈V b(v),

8

16

32

64

128

256

512

1024

2048

4096

128 256 512 1024 2048 4096 8192

Co
m

pu
te

 ti
m

e
in

 se
co

nd
s

Number of cores

USCensus1990
Poker_hands
CMS17
Ideal

Figure 1. Strong Scaling on Cori for three adaptive anonymity
problems.

to the matching. An augmenting path is an alternating path
that begins and ends with unmatched vertices; it has one
more non-matching edge than matching edges, and hence
has an odd number of edges in the path (length). A weight-
increasing path is an alternating path of even length that
has an equal number of non-matching and matching edges,
such that the unmatched endpoint of the path has higher
weight than its matched endpoint. Let k be a natural number,
and define a k-augmentation as an augmenting path or a
weight increasing path that has at most k edges not in the
matching. If we ensure that there is no k-augmentation in
the graph with respect to a matching, then the matching is
k/(k + 1)-approximate Al-Herz and Pothen (2020). Such
an algorithm can be implemented in O(∆km) time, where
∆ is the maximum degree of a vertex. For k = 1, we
obtain a 1/2-approximation, and for k = 2, we obtain a
2/3-approximation. The latter is the first instance of a
practical parallel implementation of a matching algorithm
with time complexity greater than 1/2. An interesting issue
that arises in this work is that care needs to be taken
in processing multiple augmentations in parallel to avoid
deadlock, livelock and starvation. Both these algorithms have
been implemented in parallel on shared memory computers
and exhibit good speedups on modest numbers of threads Al-
Herz and Pothen (2020).

Parallel Algorithms for b-EDGE COVER: Given a graph
G = (V,E) and a function b(v) that maps each vertex v ∈ V
to a natural number, a b-EDGE COVER is a subset of edges
C such that at least b(v) edges in C are incident on v. We
assume that b(v) ≤ deg (v). If b(v) is identically equal to one
for all vertices v, then we have the EDGE COVER problem.
If the edges are weighted by a non-negative function w(.),
then the weight of a b-EDGE COVER is the sum of weights
of the edges in the cover. The problem we consider is to
compute a b-EDGE COVER of minimum weight. An exact
algorithm for the problem has polynomial time complexity,
since it can be computed as the complement of a maximum
weight b′-MATCHING, where b′(v) = deg (v)− b(v) for all
v ∈ V .

We have designed a number of approximation algorithms
for this problem, with approximation ratios of 3/2 and
2 Ferdous et al. (2018); Khan et al. (2018b). The well-known

β = maxv∈V b(v), and ∆ is the maximum degree of a
vertex. The algorithm has been shown to strongly scale to
12, 000 cores of the Cori machine at NERSC on graphs with
one or two billion edges Khan et al. (2018a).

Parallel Algorithms for Vertex-weighted Matching: In the
vertex-weighted matching problem, there are non-negative
weights on the vertices of a graph, the weight of a matching
is the sum of weights on the endpoints of the matching edges,
and we seek to find a matching of maximum weight. This has
not been a well-studied problem in earlier work, although it
occurs in applications such as internet advertising, the design
of network switches, crew scheduling, etc. Underlying this
problem is a matroid called the matching matroid; it consists
of a ground set of the set of vertices, with a subset of vertices
S defined t o b e i ndependent i f t here i s s ome matching
such that the endpoints of the matching edges contain S.
This is unlike the edge-weighted matching problem where
the matching edges form a 2-extendible system, but not a
matroid. Hence the Greedy algorithm solves the maximum
vertex-weighted matching problem Dobrian et al. (2019); Al-
Herz and Pothen (2019). However, the time complexity of
this algorithm is O(nm), where n is the number of vertices
and m is the number of edges. Furthermore, there is no
concurrency in the algorithm since the Greedy algorithm
must process the vertices in non-increasing order of weights.
Hence we have turned to the design of approximation
algorithms for this problem.

An alternating path with respect to a matching is a path
in the graph in which alternate edges in the path belong

Graph Coloring
Graph coloring is a class of graph problems where the
vertices need to be “colored”, i.e. assigned a label, according
to some constraint. In the standard vertex coloring problem
(aka distance-1) no pair of adjacent vertices can have
the same color. The objective is to minimize the number
of colors. This is useful to find independent tasks for
parallel processing. A common extension is distance-2
coloring, where vertices less than distance two apart must
have different colors. Other variations are also useful
in certain applications, such as algorithmic differentiation
Gebremedhin et al. (2005a).

Although solving graph coloring optimally is NP-hard,
greedy heuristics work well in practice. However, these
heuristics are typically highly sequential and difficult to
parallelize. Two approaches are commonly used in parallel.
The first is based on finding independent sets using a Luby-
type algorithm Jones and Plassmann (1993). The second
is the speculative coloring method by Gebremedhin and
Manne Gebremedhin and Manne (2000). The idea there
is to have many processes (threads) color concurrently in
parallel, then check for conflicts and recolor as needed until
a valid coloring is found. We found the latter approach
more efficient, and in previous work, it was extended to
distributed-memory and implemented in the Zoltan package
Bozdağ et al. (2008).

In ExaGraph, we have extended parallel coloring in
several ways. First, we optimized the speculative coloring
method for manycore architectures such as GPU Deveci
et al. (2016a). We designed a novel edge-based variation of
the algorithm that is faster for irregular graphs. We showed
the new version was up to 139X faster than cuSparse and
also gave fewer colors (4X better geometric mean). As
our implementation is based on Kokkos, it is performance
portable and runs on a wide range of platforms, including
multicore CPU and most GPU platforms.

Second, we are currently developing a hybrid
MPI+Kokkos coloring code for exascale. The target is
supercomputers with many nodes (distributed memory), and
each node may have multiple GPUs. We require one MPI
rank per GPU. We then use the Kokkos Kernel coloring
method previously developed on each GPU (local coloring).
At the MPI level, we exchange boundary information,
detect and resolve conflicts. We currently support distance-1
and distance-2 coloring Bogle et al. (2020) while partial
distance-2 coloring is in progress. Our approach is highly
scalable. We have colored a graph with 76.7 billion edges
on 128 GPUs in less than half a second Bogle et al. (2020).
Note that Sallinen et al. Sallinen et al. (2016) have colored
graphs of similar size on a CPU-based parallel computer.
Our code is unique in that it runs efficiently on both CPU
and GPU based computers. Weak scaling is very good
(Figure 2).

Generative Models: A question that arises in evaluating
the quality and performance of parallel coloring algorithms
is how to generate graphs at scale with known chromatic
numbers. Generally the number of colors computed by
a coloring algorithm increases with the size of graphs.
We cannot know if this is a property of the graph being
colored, or it is because of the performance of the algorithm

nearest neighbor algorithm is a 2-approximation algorithm
for the minimum weight b-EDGE COVER problem, a fact that
does not seem to have been recognized in work earlier to
ours. The Greedy algorithm for this problem cannot work
with static edge weights as in the MATCHING problem;
instead, the algorithm computes effective edge weights,
which is the weight of the edge divided by its number
of uncovered endpoints. Initially the latter is two, and it
becomes one when one endpoint is covered but not the
other one; finally w hen b oth e ndpoints a re c overed, then
the weight of the edge becomes infinite, a nd s uch an
edge will not be included in a b-EDGE COVER, unless
it was chosen to cover one of both of its endpoints.
We have developed b-EDGE COVER algorithms based on
other paradigms for designing algorithms. One of them
uses the primal-dual linear programming framework to
obtain a 3/2-approximation algorithm, while two others
use different reduction to b-MATCHING problems. One of
these computes a b-EDGE COVER as the complement of a
b′-MATCHING, where b′(v) = deg(v) − b(v). If we use a
1/2-approximation algorithm that computes a b-MATCHING
by matching locally heaviest edges (i.e., edges that have
weight greater than equal to other edges that share one its
endpoints), such as the b-SUITOR algorithm,then we obtain
a 2-approximation algorithm for b-EDGE COVER. Since the
b-SUITOR algorithm has been implemented efficiently on
serial and parallel computers, this leads to a scalable parallel
algorithm for the b-EDGE COVER problem.

Software Libraries: We have included several match-
ing algorithms in the MatchBox software available at
www.github.com/CSCsw/MatchBox. The parallel b-SUITOR
code is available at www.github.com/ExaGraph/.

Applications: An application for b-MATCHING involves
a load-balancing problem for computing the Fock matrix
in quantum chemistry, a problem that occurs within the
NWChemEx project Alexander et al. (2020). We have a
set of tasks, each of which corresponds to the computation
of a set of integrals over quartets of molecular orbitals. A
computational cost is associated with each task Chavarrı́a-
Miranda et al. (2015). We are required to map these tasks to
a much smaller set of processors in a parallel computer. This
corresponds to a b-MATCHING in which each processor is
mapped to several tasks, but each task is mapped to a unique
processor. The problem is to map the tasks to processors
in order to achieve load balance. In current work, we
have shown that b-MATCHINGS with submodular objective
functions can be used to effectively solve this problem.

We have used the MCE algorithm to solve an adaptive
anonymity problem in data privacy using a variational
optimization algorithm that at each iteration computes
an approximately optimal b-EDGE COVER to compute a
significant subgraph. We anonymized a health care data set
with 750, 000 instances and 512 features on 8000 cores of
the Cori computer at NERSC in under five m inutes Khan
et al. (2018a). Strong scaling results on the Cori machine for
three anonymization problems are included in Fig, 1. This
computation increased the size of the problems solved by
three orders of magnitude.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

MPI Ranks

T
im

e(
se
co
n
d
s)

100M vertices/MPI rank

50M vertices/MPI rank

25M vertices/MPI rank

12.5M vertices/MPI rank

Earlier theoretical analyses show that the Greedy
algorithm for coloring (or some variant) colors Erdős-Rényi
graphs using a number of colors that is at most twice the
chromatic number of the graph. Our computational results
confirm these analyses. ColPack, a software library that we
have developed for solving several coloring problems and
associated estimation problems in computing Jacobians and
Hessians over a period of years, has been extended with
shared memory implementations in recent work Cheng et al.
(2020a).

Software Libraries: Zoltan2 Boman et al. (2012) is a
toolkit of parallel algorithms for partitioning, coloring,
ordering, and task placement on modern computing
architectures. Zoltan2 is in part funded by ExaGraph. Like
its predecessor, the widely used Zoltan toolkit G.Boman
et al. (2012); Boman et al. (2007), Zoltan2 focuses
on the graph-algorithm needs of large-scale, distributed-
memory applications. However, Zoltan2 advances Zoltan’s
capabilities in three key ways.

First, Zoltan2 supports modern computer architectures
such as pre-exascale systems with multicore and accelerator-
based nodes. Zoltan2 includes hybrid MPI+X algorithms
for partitioning (e.g., Deveci et al. (2016b); Acer et al.
(2020)) and coloring (e.g., Bogle et al. (2020)) on these
multicore and GPU platforms. Performance portability is
achieved through use of the Kokkos library Edwards et al.
(2014), which provides a single interface for on-node parallel
operations with specialized back-ends for each architecture.
Zoltan2 also provides task placement algorithms that assign
MPI ranks to compute cores in a way that reduces
application communication cost and network congestion in
extreme-scale simulations Deveci et al. (2019). All of these
capabilities are crucial for support applications on next-
generation architectures.

Second, Zoltan2 has a more natural user interface for
application developers, separating the input adapters from
the model (e.g., graph, hypergraph) being used.

Third, Zoltan2 is better integrated with the Trilinos solver
framework Heroux et al. (2005); Trilinos Project Team.
However, the design allows Zoltan2 also to be used by non-
Trilinos users.

Kokkos Kernels is a library for sparse or dense linear
algebra kernels, and graph kernels that are performance
portable to CPUs, KNLs, and GPUs. Kokkos Kernels is part
of the Kokkos ecosystem, and it depend on Kokkos Core
for performance portability. Kokkos Kernels by design has
sparse linear algebra kernels that are tuned for both scientific
applications and data science applications. This allows the
library to serve as the foundation for both combinatorial
approaches and algebraic approaches for graph algorithms.

Kokkos Kernels implements combinatorial algorithms for
distance-1 Deveci et al. (2016a) and distance-2 coloring,
reverse Cuthill-McKee (RCM) ordering methods, and graph
clustering for better preconditioning. We also have an
algebraic approach for triangle counting Wolf et al. (2017)
based on fast SpGEMM implementations Deveci et al.
(2018, 2017). Kokkos Kernels algorithms are used within the
Trilinos software framework to improve the performance of
multigrid methods, preconditioners such as Gauss-Seidel or
ILU(k) preconditioner. Kokkos Kernels is funded by multiple

Figure 2. Weak scaling for coloring a mesh on up to 128 GPUs
Bogle et al. (2020)

deteriorating, unless we know the dependence of the
chromatic number on graph size. If we can generate graphs
with known chromatic numbers at scale, we can use them to
test the performance of scalable coloring algorithms. In this
section, we present our work on generative models that are
broadly applicable to ECP applications and beyond.

In recent work Cheng et al. (2020b), we have identified
several classes of graphs that can be generated to have
arbitrary sizes, and whose distance-1 chromatic numbers
(or good lower bounds) are known. We consider three
classes of graphs for this problem. The first i s t he well-
known Erdős-Rényi graph in the probability regime where
the expected mean degree is specified. H ere t he chromatic
number of the graph is a constant that depends on the
mean expected degree. Then for large enough values of
the expected degree and the number of vertices, with high
probability the chromatic number is a constant depending
on the mean expected degree but not on the size of the
graph. The second is a random geometric graph embedded
in hyperbolic space where the size of a maximum clique
is a tight lower bound on the chromatic number, and the
asymptotic behavior of this value is known and we can
compute a good estimate of it. The third class is the
Mycielski graph, which is recursively constructed to have a
chromatic number that increases logarithmically with graph
size although the maximum clique size remains two. We have
computationally verified t hat t hese g raphs c an b e colored
in nearly optimal number of colors by the Greedy coloring
algorithm.

We have extended this work to the distance-2 coloring
problem on random bipartite graphs, a problem that
corresponds to estimating Jacobian matrices using either
the set of rows or the set of columns, but not both. Here
only one vertex set in the bipartite graph is colored. We
obtain a lower bound of ln n/ ln ln n, where n is the number
of vertices in the vertex set being colored, on the partial
distance-2 chromatic number of random bipartite graphs by
using intersection graphs and “a balls and bins” analysis.
Note that these results show that the chromatic number
increases with graph size, unlike the Erdős-Rényi graphs
where the distance-1 chromatic number depends on the
average expected degree but not the graph size. We also
obtain upper bounds close to the lower bound in parameter
regimes of interest to us, and report empirical results that
show that the lower bound is reasonably tight.

(2008). While efficient, problems such as non determinism
and resolution limit are well known limitations of this
approach.

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

256 512 1024 2048

E
x
e
c
u
ti
o
n
 t
im

e
 (

in
 s

e
c
s
.)

Processes

uk-2007 (3.3B edges)
soc-friendster (1.8B edges)
nlpkkt240 (401.2M edges)
com-orkut (117.1M edges)

Figure 3. Strong scaling results for VITE using four real-world
graphs on ALCF Theta supercomputer. VITE is a distributed
community detection library using MPI+OpenMP.

Our work builds on the Louvain method as the serial
template. We employ a number of heuristics such as graph
coloring, minimum label heuristic, threshold scaling, and
early termination to efficiently parallelize the inherently
sequential Louvain method. By applying these heuristics,
we have not only demonstrated excellent scaling results, but
also for the quality of solutions that are competitive with the
serial Louvain method Ghosh et al. (2018a). Figure 3 shows
the performance of VITE on ALCF Theta supercomputer
using four real-world graphs of different structure. We have
also developed a preliminary version of VITE that can make
use of multi-GPU systems, namely CUVITE, which uses the
CUDA API to offload the most compute intensive parts on
the GPUs. Figure 4 shows the performance of CUVITE
on multiple Nvidia V100 GPUs. Here, the performance of
the distributed-memory CPU code (VITE) and CUVITE are
compared for two datasets (nlpkkt240 with 387M edges
and rgg134 with 794M edges) on 2–8 nodes of the OLCF
Summit supercomputer. Both the implementations use 6 MPI
processes per node, and 14 OpenMP threads (7 cores × 2-
threads per core) per process, with the GPU version using
a GPU per process in addition to the OpenMP threads. The
performance of CUVITE was found to be about 1.3–2.3× of
VITE for the specific input datasets using up to 8 nodes of
OLCF Summit (48 GPUs) relative to two nodes. On a single
GPU, CUVITE obtained a performance improvement of up
to 19× relative to NVIDIA RAPIDS CUGRAPH NVIDIA
(2020) and greater than 10× relative to multithreaded CPU
implementation GRAPPOLO Halappanavar et al. (2017). A
faster GPU implementation of Louvain method may be
possible for certain datasets that exhibit low communication
overhead and load imbalance over the partitioned distributed
graph. Currently, the performance of CUVITE is limited by
the frequent data movement and transformations between
host and device, adding significant overhead for a number
of cases. Future research will look into uniform data
representations across heterogeneous systems to minimize
data transfers across memory domains.

projects, and ExaGraph uses it as a delivery vehicle for on-
node (shared memory) graph algorithms.

A common theme of all these algorithms in Kokkos
Kernels is effective use of large scale parallelism, by using
algorithms that are edge-based or non-zero based, and
algorithms that can exploit hierarchical parallelism. Kokkos
allows expressing such hierarchical-parallel and maps the
hierarchical parallelism to multiple GPUs, architectures like
KNLs or traditional CPUs. This allows Kokkos Kernels
based graph algorithms to be performance portable.

Applications: Graph coloring is a graph kernel that has
several applications. Within ECP, there are at least two
application customers. First, the MueLu multigrid solver
in Trilinos is part of the National Security Applications
(ATDM) Alexander et al. (2020). The matrix coarsening
step is often given as AC = RAP (where R is a restriction
operator and P a prolongator) but can also be viewed as
a graph algorithm as A, R and P are sparse. MueLu uses
smoothed aggregation for coarsening. First, a set of seed
vertices are chosen, and then the aggregates formed around
the seeds. Typically, the seed vertices form an independent
set or a distance-2 independent set. We can solve these
problems using graph coloring, as each color class is an
independent set.

Second, the National Security Application SPARC uses
automatic differentiation to get the Jacobian matrix. The
Jacobian matrix is sparse and can be formed more efficiently
by compressing the columns. How to find s ets o f columns
that are structurally orthogonal is a well known coloring
problem. It has been shown that partial distance-2 coloring
is an efficient m ethod f or t his p roblem Gebremedhin
et al. (2005b). As the Jacobian is typically large and
distributed across many processes, a distributed-memory
algorithm/software is needed.

Coloring has also been applied as an effective heuristic
for parallelization in other graph algorithms developed in
ExaGraph such as community detection Lu et al. (2017).

Community Detection
Given a graph G = (V, E, ω), where ω are non-zero positive
weights associated with the edges, the goal of community
detection is to identify tightly knit groups (or clusters) of
vertices that strongly correlate to one another within their
own group, but sparsely so with the rest of the graph.
The problem is not rigorously defined a nd i s k nown to
be NP-hard Fortunato (2010). Consequently, a diverse set
of methods have been devised for identifying communities
in a graph. The emergence of large scale graphs from
domains such as bioinformatics and social network science
has accelerated the need for fast and accurate algorithms for
community detection.

Modularity was proposed by Newman as a statistical
measure defined f or a g iven p artitioning o f a n i nput graph
that measures the connectivity with the partitions (clusters)
with respect to a probabilistic estimate on the same fraction
in a random graph with identical degree sequence Newman
and Girvan (2004). Modularity optimization is an NP-
Complete problem. However, heuristics such as the Louvain
method proposed by Blondel et al. has been demonstrated
to compute high quality solutions efficiently Blondel et al.

4
8

16
32
64

128
256
512

1024

2 4 8

Ti
m

e,
 s

Nodes(6 MPI-ranks + 6-GPUs)/Node

nlpkkt240-CPU rgg134-CPU
nlpkkt240-GPU rgg134-GPU

of vertices in graphs for efficient execution on hierarchical
memory systems Barik et al. (2020).

Benchmarking Efforts: An indispensible tool in the
codesign and benchmarking of novel supercomputing
systems is mini/proxy applications from larger scientific
codes. Proxy applications represent performance-critical
kernels that capture both programming models and
computational characteristics of their original application,
enabling hardware and system software designers to
optimize their layers of the stack without requiring to
simulate or emulate an entire application. Most existing
proxy apps are extracted from older scientific codes,
and include kernels that operate on dense data structures
or exhibit structured communication patterns. Modern
applications however are varied, operating on an increasingly
large and unstructured data coming from newer instruments
and analytics kernels. Mixed workloads that combine
phases of structured simulations with data analytics and
machine learning are increasingly common and challenging
to support. Consequently, there is an urgent need to extend
the set of proxy apps to include kernels that use sparse
data structures and graph algorithms as key computational
elements. One such example is the MINIVITE proxy
application developed by the ExaGraph team Ghosh et al.
(2018b), which is part of the ECP Proxy Applications
suite Richards et al. (2018). Several vendors have been using
MINIVITE as one of the kernels to evaluate their novel
architecture designs and optimization. Tools developed by
the team are providing a valuable service in the codesign of
computing, networking, runtime and programming models.

Influence Maximization
Given a graph G = (V,E, ω), a diffusion process, and a
budget k, the influence maximization problem is to select
a set of k seed vertices that will result in maximizing the
expected outcome of the diffusion process over the graph
when chosen as the seed set. The problem was first proposed
by Domingos and Richardson (2001) in the context of viral
marketing campaigns. However, it has broad applicability in
(social) network analysis, controlling spread of epidemics,
and optimal sensor placement. Optimal algorithms for
IM are known to be NP-hard. However, exploiting a
certain combinatorial structure known as submodularity,
greedy algorithms with approximation guarantees exist. In
particular, the greedy algorithms provide an approximation
guarantee of (1− 1/e− ε), where e = 2.72 and 0 ≤ ε ≤
0.63 is an input parameter. First such algorithm was proposed
by Kempe et al. (2003), which was subsequently improved
by several authors, with the most efficient algorithm in recent
times attributed to Tang et al. (2015).

While newer approaches have enabled many applications,
the prohibitive computational costs have prevented a broader
adoption of IM algorithms. The ExaGraph team worked on
efficiently parallelizing the state-of-the-art algorithms for
influence maximization on a variety of distributed computing
platforms, including accelerator enabled leadershipclass
platforms. From an algorithmic perspective, the best
known algorithms are based on the concept of reverse
reachability in graph. Intuitively, instead of asking “Who
am I influencing?”, one asks “Who is influencing me?”

Figure 4. Strong scaling results for GPU code CUVITE and
comparison with with VITE on OLCF Summit supercomputer.

Software Libraries: GRAPPOLO is a C++ library targeting
multicore systems and offers the most features for commu-
nity detection and is implemented using OpenMP shared-
memory programming model. A distributed implementation
using MPI+OpenMP is available using a library called VITE.
A simpler variant of VITE is available as an ECP proxy
application called MINIVITE. We have also developed a
single GPU version using OpenMP+CUDA in a tool names
Rundemaanan, and distributed multi-GPU implementation
using MPI+OpenMP+CUDA is currently under active devel-
opment via a library named CUVITE. We are also currently
developing distributed multi-GPU versions using OpenMP
offloading f eatures. S ome o f t hese e fforts h ave w on IEEE
HPEC Graph Challenge Awards Halappanavar et al. (2017);
Ghosh et al. (2018a, 2019).

Applications: Community detection is one of the most
widely used graph algorithms with applications in diverse
domains. One particular application we highlight here
is in bioinformatics. With the advent of high-throughput
devices, single-cell experiments are capable of producing
datasets with millions of cells. Community detection is
often employed to identify cell populations in single-cell
analysis. However, for large datasets the computation time
can be prohibitive, and therefore, development of scalable
algorithms becomes necessary. Existing approaches such as
subsampling of cells or sparsification of data greatly reduces
the accuracy, and are therefore undesirable. Consequently,
efficient p arallel a lgorithms c an p lay a s ignificant role
in enabling single-cell analysis. The ExaGraph team
integrated their scalable community detection method with
a newly developed tool named FastPG Bodenheimer et al.
(2020). FastPG builds on the state-of-the-art-method graph-
based algorithm PhenoGraph by parallelizing key steps
in the workflow, w here t he fi nal st ep is cl ustering using
GRAPPOLO. Using a set of standard datasets with known
ground truth, the team demostrates that FastPG has the
same cell assignment accuracy but is on average 27× faster
than other tools. FastPG also has higher cell assignment
accuracy than two other fast clustering methods, FlowSOM
and PARC Bodenheimer et al. (2020).

The ExaGraph team has also worked on the application
of community detection for model reduction in the context
of electric power grid domain Purvine et al. (2017), and
more recently for the purpose of fast and efficient ordering

from the perspective of a vertex in the graph. Using
statistical analysis, these methods bound the amount of
computation that needs to be performed, and are therefore
efficient. Parallelizing these algorithms involves two basic
phases — an embarrassingly parallel step of constructing
the samples, followed by a selection step that involves
serialization and synchronization among the participating
processes. Since the reverse reachable approaches limit the
diffusion models that can be used, there is still a need
for computationally expensive methods such as the greedy
hill climbing algorithm of Kempe et al. (2003). Although
relatively expensive, the greedy hill climbing algorithm is
relatively amenable to parallelization and can be generalized
to include different diffusion models (Minutoli et al. 2020b).

Software: Through careful design and optimizations, the
team has developed a distributed software library named
RIPPLES using MPI+OpenMP as the programming model. A
specialized library targeting distributed multi-GPU platforms
using MPI+OpenMP+CUDA is also available through
CURIPPLES (Minutoli et al. 2020a). The tools not only
enable computation of solutions on large-scale problems but
also provide the ability to compute high quality solutions.
Note that the computational complexity grows nonlinearly
with the quality of solution. The team has demonstrated
up to 790× speedups (Fig.5) relative to the previous state-
of-the-art, and with unprecedented accuracy for large-scale
problems.

2020b). The team has also worked with subject matter
experts to demonstrate the applicability in domains such as
cancer research and soil microbiome research (Minutoli et al.
2019). Many more applications including observability and
controllability of complex systems will the target for future
exploration.

0 50 100 150 200

Number of days from the first infection

0

50

100

150

200

250

300

A
ve

ra
ge

nu
m

b
er

of
in

fe
ct

io
ns

fo
r

a
gi

ve
n

da
y

No action

Preempt-RR(1000)

Preempt-HC(1000)

Preempt-RR(5000)

Preempt-HC(5000)

SaaRound(1239)

Figure 6. Temporal evolution of infections under different
intervention strategies. Algorithms considered are:
PREEMPT-RR (reverse reachable), PREEMPT-HC (greedy hill
climbing) and SAAROUND (Sambaturu et al. 2020) for contact
network Portland-141k. Details are available in Minutoli et al.
(2020b).

Algebraic Approaches for Graph Algorithms
and Combinatorial Problems
Basic linear algebraic operations on sparse matrices and
vectors can be used to efficiently implement several data
analysis pipelines, with the canonical example being graph
algorithms as codified by the GraphBLAS effort Kepner
et al. (2016); Buluç et al. (2017). Recently, sparse matrix
operations on user-defined semirings are used to accelerate
certain machine learning and biology problems. Here, we
describe the advances enabled through ExaGraph, either
via direct funding or through collaborations or providing
computational resources.

Bipartite Matching for Sparse Solvers
A matching in a graph is an independent set of edges.
A bipartite graph is a special type of graph where the
vertices can be split into two sets such that no edges connect
vertices in the same set. Finding matchings in bipartite
graphs has a celebrated history. In the context of scientific
computing, one well-known application is in direct solvers
for square non-singular sparse matrices. Due to the high-cost
of exchanging rows (also known as pivoting) dynamically in
distributed memory platforms, these solvers Li and Demmel
(2003); Rouet et al. (2016) relied on prepermuting the sparse
matrix prior to factorization. In this method, known as static
pivoting Li and Demmel (1998), the goal of the permutation
is to make sure that the matrix elements in the diagonal are
all nonzero and their magnitudes are as large as possible to
ensure numerical stability.

This problem is conveniently modeled as a matching
problem on a bipartite graph. Each existing nonzero in the

Figure 5. Scaling results for CURIPPLES. We achieve a
speedup of up to 790× over a state-of-the-art serial
implementation (left), while also significantly improving the
approximation factor (to ε = 0.13) and doubling the number of
seeds (right). The input network is com-Orkut. Details are
available in Minutoli et al. (2020a)

Applications: In the context of an epidemic outbreak,
intervention techniques such as vaccination and social
distancing become critical in containing its spread.
Graph-theoretic (or network) models have been explored
extensively in literature (Marathe and Vullikanti 2013).
The team’s recent work on applying RIPPLES to the
problem of optimal intervention (vaccination) to reduce the
spread of an epidemic outbreak has demonstrated significant
impact (Fig.6), where previously known state-of-the-art
methods such as SAAROUND (Sambaturu et al. 2020) are
computationally infeasible. While the previous methods
are based on mathematical programming, RIPPLES is able
to exploit the underlying structure through submodular
optimization and scalable implementations (Minutoli et al.

SpGEMM SpMSpV SpMV
HWPM X
PASTIS X
HipMCL X X X
Kokkos Kernels
Triangle Count X

Table 1. ExaGraph supported codes and the basic linear
algebraic primitives they use. SpGEMM: sparse matrix-sparse
matrix multiplication, SpMSpV: sparse matrix-sparse vector
multiplication, SpMV: sparse matrix-dense vector multiplication.
HWPM and PASTIS are developed primarily by the ExaGraph
project whereas HipMCL is primarily developed by the
ExaBiome project with pieces supported by ExaGraph.

sparse matrices. PASTIS uses the 2D sparse matrix-matrix
multiplication (SpGEMM) algorithm Buluç and Gilbert
(2012) implemented in CombBLAS to quickly identify pairs
of protein sequence that either share an exact or “similar”
short subsequence. It performs expensive pairwise alignment
only on those pairs that share exact or similar subsequences.
PASTIS, an ECP application jointly developed by ExaGraph
and ExaBiome, scales up to 2,000 nodes on NERSC’s Cori
supercomputer while being comparable in accuracy with
other sequence aligners.

The output of PASTIS is fed to a high-performance
distributed implementation of the Markov Cluster algorithm
named HipMCL Azad et al. (2018), an application initially
developed by the ExaBiome project. ExaGraph identified
and optimized key graph and sparse matrix kernels within
HipMCL, which we describe below. HipMCL is an iterative
algorithm that relies on SpGEMM as its workhorse at
each iteration. The ExaGraph project ported the hash-based
SpGEMM algorithm, which was originally developed for
GPUs by collaborators Nagasaka et al. (2017), into multicore
CPUs and Intel KNLs Nagasaka et al. (2019). For GPU
equipped clusters, we developed a model to choose the
fastest GPU-based SpGEMM depending on the sparsity
of the current MCL iteration and utilized a pipelined
communication scheme that hides the cost of CPU-to-GPU
data transfers. These advances, coupled with a distributed-
memory implementation of randomized output structure
prediction algorithm, resulted in orders of magnitude
speedup compared to the original HipMCL Selvitopi et al.
(2020b).

The HipMCL pipeline interprets the converged matrix
after MCL iterations by finding its connected components.
To find connected components in distributed memory,
we developed LACC Azad and Buluç (2019), which is
based on the Awerbuch-Shiloach algorithm Awerbuch and
Shiloach (1987) but with the added focus on exploiting
sparsity. Our CombBLAS based implementation of LACC
heavily relies on SpMSpV like the HWPM algorithm
we described earlier but it also utilizes SpMV (sparse
matrix-dense vector multiplication) in its earlier iterations.
Later, LACC has been improved (Zhang et al. 2020a)
with the introduction and integration of another linear-
algebraic connected components implementation named
FastSV Zhang et al. (2020b), which is based on the Shiloach-
Vishkin algorithm Shiloach and Vishkin (1982).

matrix is an edge and the bipartite vertex sets are composed
of rows and columns of the matrix. The requirement of
finding a d iagonal t hat i s f ree o f n onzeros m eans t hat the
matching needs to be perfect. The magnitudes of the diagonal
entries being as large as possible is a softer requirement
that can be relaxed. Previous attempts on parallelizing the
maximum-weight perfect matching algorithms have not been
successful at producing a highly-scalable solution. In our
recent work, we relaxed the maximum-weight requirement
and opted for a heuristic that achieves a heavy-weight perfect
matching instead Azad et al. (2020).

Our algorithm starts with a maximum cardinality
matching, which is by definition p erfect d ue t o t he matrix
being nonsingular. The input matrix is assumed to be
nonsingular because otherwise a Gaussian elimination based
solver would fail. This maximum cardinality matching, also
called a maximum transversal in the literature Duff and
Koster (1999), is computed in distributed memory using
Combinatorial BLAS (CombBLAS) primitives Azad and
Buluç (2016), chief among them sparse matrix-sparse vector
multiplication (SpMSpV). While computing the maximum
cardinality matching, if there are multiple paths that can
be augmented at the same time, we choose the one with
the larger weight. This modification i s a lmost t rivial and
amounts to modifying the semiring addition function, due to
the flexibility of CombBLAS. Our algorithm then proceeds
to find w eight-increasing a lternating c ycles. W e c hose to
only find c ycles o f l ength 4 f or l imiting t he c ritical path
of our computation and increasing scalability. The resulting
matchings are often already maximum weight or extremely
close to maximum weight. Our resulting heavy-weight
perfect matching (HWPM) algorithm, scales up to 17,408
cores.

Protein Similarity Network Construction
Another important application that ExaGraph helped
accelerate is the protein family identification. Proteins
can be divided into families based on their evolutionary
relationship. Proteins in the same family share a relatively
recent common ancestor. Members of a given protein family
are said to be homologous and often perform similar
functions. In the absence of high-quality data that reveals
protein structure and function, the method of choice is to
rely on sequence information for identifying protein families.
The common pipeline Enright et al. (2002) constructs a
similarity network among proteins using their pairwise
sequence similarity and then clusters that network using
a graph clustering algorithm such as the Markov Cluster
Algorithm (MCL) Van Dongen (2000).

The first s tep o f s imilarity n etwork c onstruction has
traditionally been done with BLAST Altschul et al. (1990)
but the increases in protein sequence data now requires
much faster tools. This has led to several popular alternatives
such as LAST, DIAMOND Buchfink e t a l. (2015), and
MMseqs2 Steinegger and Söding (2017), which are widely
used in practice. However, LAST and DIAMOND only run
on single CPU node whereas MMseqs2 does not scale well
to high node counts. To unleash the power of Exascale
supercomputers on billions of protein sequences, we recently
developed PASTIS Selvitopi et al. (2020a), a distributed
many-to-many protein sequence aligner that relies on

the ExaGraph supported codes to GPU-equipped exascale
supercomputers.

Applications: The linear-algebraic primitives developed
and optimized by ExaGraph have been used in many graph
algorithms as well as computational biology and machine
learning pipelines. They also have applications in large
sparse solvers as detailed in this subsection.

Graph Partitioning
Graph partitioning is a fundamental problem in combina-
torial scientific computing. Typically, the objective is to
minimize the edge cut (e.g., load balancing for parallel
computing), but another variation is to minimize the vertex
separator size (for fill-reducing ordering).

The most popular graph partitioning methods (software)
are currently based on the multilevel method Hendrickson
and Leland (1993); Karypis and Kumar (1998, 1997).
However, these methods are hard to parallelize, especially
on GPU. In ExaGraph, we chose to revisit the spectral
partitioning method. Spectral methods solve the partitioning
problem using an algebraic approach, based on linear
algebra. First, the graph Laplacian matrix for a graph is
formed. Then, a small number of eigenpairs are computed.
These are used to define a low-dimensional space to embed
the graph. A fast geometric partitioning method is then
applied to the embedded graph. In the bisection case,
only the second-lowest eigenvector is needed, but it may
be beneficial to use more than one eigenvector to do
multisection Hendrickson and Leland (1995).

The idea of the spectral partitioning goes back to
spectral graph theory in the 1970s Donath and Hoffman
(1972); Fiedler (1973), and it was later developed into a
practical algorithm and used in the context of scientific
computing Pothen et al. (1990). It is an early example
of using linear algebra to solve a graph/combinatorial
problem. The key insight is that the graph edge cut can
be reformulated as 1

4x
TLx, where L is the Laplacian

matrix and x is an indicator vector where xi is ±1 in
the bisection case. Relaxing the integer constraint gives
the symmetric eigenvalue problem. Hence the continuous
problem approximates the discrete problem. Spectral
partitioning for balanced edge cuts was an option in Chaco
Hendrickson and Leland (1993). Spectral methods has also
become popular for data clustering Shi and Malik (2000). A
parallel spectral code for clustering is available Chen et al.
(2011), and there is also a GPU code Naumov and Moon
(2016), but it is limited to a single GPU.

As part of ExaGraph, we have developed a new spectral
partitioner, Sphynx Acer et al. (2020, 2021). The algorithm
is based on spectral partitioning but the implementation is
targeted highly parallel exascale systems. Sphynx is based
on Trilinos Boman et al. (2007), a state-of-the-art toolkit for
scientific computing. The Tpetra linear algebra layer is used
for distributed matrices and graphs. The Anasazi package is
used for eigensolvers. We found LOBPCG Knyazev (2001)
works well, and it also supports preconditioning. We have
recently integrated several preconditioners from Trilinos to
accelerate the convergence ?. Sphynx has been integrated
into the Zoltan2 Trilinos package so it is easily available to
Trilinos users.

In Table 1, we summarize the tools we have covered
in this subsection with the key linear-algebraic primitive(s)
they rely on. ExaGraph project also allowed us to increase
the computational efficiency of single node implementations
of these primitives. SpGEMM is one kernel where the
ExaGraph team has made many advances in the last several
years. We introduced a two-phase, performance portable,
SpGEMM implementation in Kokkos Kernels using a team-
level hash map accumulator Deveci et al. (2017, 2018). We
also developed a multicore SpGEMM algorithm Nagasaka
et al. (2019) that uses an efficient hash table for computing
row accumulations. The latest advances include an outer
product algorithm that uses propagation blocking Gu et al.
(2020). Some of the improvements in the SpGEMM
and other linear algebra kernels directly translated to
improvements in graph algorithms. For example, the Kokkos
Kernels SpGEMM implementation led to highly optimized
implementation of the triangle counting kernel Wolf et al.
(2017). Since then there are other fast implementations of
triangle counting kernels based on Cilk Yaşar et al. (2018)
and using both CPUs and GPUs Yasar et al. (2019) and
distributed memory systems Acer et al. (2019).

Graph Learning
Graph learning is an emerging subfield of machine learning
that is concerned with learning on graph-structured data
such as graphs describing chemical bonds of molecules,
power grid, or transportation networks. ExaGraph supported
research on high-performance graph learning through
knowledge transfer on graph methods and the use of compute
resources. The marginalized graph kernels computation
on GPUs enable fast similarity computation among all
pairs of graphs in a large database Tang et al. (2020).
The techniques include identification a nd o ptimization of
the fused sparse Kronecker product times dense vector
multiplication operation as well as using state-of-the-art
graph partitioning algorithms for minimizing the number of
nonzero tiles.

Graph Neural Networks (GNN) are versatile learners that
can be used for classifying or embedding vertices, edges, or
entire graphs. Our recent work on distributed-memory GNN
training Tripathy et al. (2020) showed that communication-
avoiding algorithms greatly accelerate GNN training at the
expense of increasing memory requirements. The primary
workhorse of GNN training and inference is the sparse
matrix-dense matrix product Yang et al. (2018); Huang
et al. (2020). The algorithmic research on marginalized
graph kernels and communication-avoiding distributed GNN
training has been primarily supported by the ASCR Applied
Math program. In related work, the robustness of GNN was
studied Fox and Rajamanickam (2020).

Software Libraries: Our primary software library is the
Combinatorial BLAS (CombBLAS) Buluç and Gilbert
(2011), which provides distributed-memory linear-algebra
primitives for implementing complex data analysis appli-
cations. Using CombBLAS, we have supported HipMCL,
PASTIS, and HWPM libraries described in this section.
A high-performance GPU library that provides an imple-
mentation of the GraphBLAS-like primitives is the Graph-
BLAST Yang et al. (2019), which will be useful for porting

v3

v5

v7 v8

v6 v9

v11 v12

v10

v13

v15 v16

v14

v1

v4

v2

eigenvectors

1

2

2
1

2

3

4

9 10

11 12

68

7

5

13 14

15 16

v3

v5

v7 v8

v6 v9

v11 v12

v10

v13

v15 v16

v14

v1

v4

v2

multi-jaggedgraph G partition ∏ Applications: Graph partitioning is fundamental algorith-
mic operation with numerous applications in scientific com-
puting. The most typical use case is load balancing for
parallel computing.

The National Security Application Empire and ExaWind
ECP projects Alexander et al. (2020) have mesh partitioning
needs and are the intended early users. A potential
future extension is to compute vertex separators and
nested dissection orderings, which would benefit the
Strumpack/SuperLU project.

Summary and Future Work

Combinatorial and graph algorithms are key enablers for
several applications in scientific computing and are increas-
ingly applied for data analysis in the emerging areas of graph
analytics and artificial intelligence. Ubiquity of large scale
datasets as well as accelerator platforms, especially in the
context of exascale computing has necessitated a fundamen-
tal reconsideration of graph algorithms. A codesign center
focusing on combinatorial kernels was established in the
Exascale Computing Project to address the needs of scientific
computing applications. In this paper, we presented a brief
survey of the algorithmic and software development efforts
spanning combinatorial and algebraic approaches for graph
algorithms, and the applications that have benefited from this
work.

Our future work will focus on adapting our libraries to
exascale platforms including optimizations for performance.
We plan to explore scalable algorithms and software
development for graph problems such as network alignment
and vertex orderings techniques. We also intend to work
closely with application teams and integrate our tools in
application workflows.

Acknowledgements

This work is supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration. We used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory (Contract
DE-AC05-00OR22725), Argonne Leadership Computing Facility
at Argonne National Laboratory (Contract DE-AC02-06CH11357),
and the National Energy Research Scientific Computing Center
(Contract DE-AC02-05CH11231). The Pacific Northwest National
Laboratory is operated by Battelle Memorial Institute under
Contract DE-AC06-76RL01830. Sandia National Laboratories is
a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

References

Acer S, Boman EG, Glusa CA and Rajamanickam S (2021) Sphynx:
A parallel multi-GPU partitioner for distributed memory
systems. Parallel Computing To appear.

Acer S, Boman EG and Rajamanickam S (2020) SPHYNX: Spec-
tral partitioning for hybrid and axelerator-enabled systems. In:

Figure 7. Example of the Sphynx spectral partitioner workflow
for a graph with 16 vertices, partitioned into 4 parts.

In summary, the Sphynx spectral partitioner has three
phases: (i) Compute the graph Laplacian matrix; (ii)
compute a few eigenpairs corresponding to the lowest
eigenvalues; and, (iii) partition the (embedded) vertices
using the geometric MultiJagged (MJ) method. This is
illustrated in Figure 7.

We note one difference from previous work. First, we
do not use recursive bisection or octasection. Instead, we
compute the eigenvectors once for the global problem
and use multiple eigenvectors in the geometric step. The
advantage is speed and simplicity, we do not need to move
subproblems onto subsets of processors. The downside is
partitioning quality could be worse, as we do not capture
local structure well.

We have tested and evaluated Sphynx on both regular
graphs such as meshes, and highly irregular graphs such as
social networks and web graphs. We have also evaluated the
use of several different preconditioners: Jacobi, polynomial,
and algebraic multigrid (AMG). The Jacobi and polynomial
preconditioners run well on GPUs, but are not scalable (in
the sense that #iterations grow with problem size). AMG
is scalable, but has a high set-up cost (especially on GPU).
We observed that no single preconditioner was always best,
but AMG was often the best choice for regular (mesh-like)
graphs while the polynomial preconditioner did well on
irregular graphs (such as web graphs and social networks).
An advantage of using a preconditioned eigensolver, is
that we can easily benefit f rom n ew d evelopments in
preconditioners for linear solvers. Sphynx attempts to
analyze the graph structure and automatically pick a suitable
preconditioner.

Sphynx is distributed-memory parallel and can run on
multi-GPU systems. We believe this is a unique capability.
No other commonly used graph partitioner currently runs on
multi-GPU systems.

Sphynx is a single level partitioner, though it can use a
multigrid preconditioner. In collaboration with Penn State
University, we have recently studied graph coarsening on
GPU Gilbert et al. (2021). We believe this may provide an
approach to a faster (perhaps also better quality) multilevel
partitioner on GPU.

Software Libraries: Sphynx has been released as part of
the Zoltan2 package in Trilinos. Sphynx depends on several
Trilinos packages. The required dependencies are Tpetra,
Teuchos, and Anasazi. Optional dependencies are Belos,
Ifpack2 and MueLu (for preconditioning).

2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). pp. 440–449.

Acer S, Yaşar A, Rajamanickam S, Wolf M and Catalyürek
ÜV (2019) Scalable triangle counting on distributed-memory
systems. In: 2019 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, pp. 1–5.

Al-Herz A and Pothen A (2019) A 2/3-approximation algorithm for
vertex-weighted matching. Discrete Applied Mathematics .

Al-Herz A and Pothen A (2020) A parallel 2/3-approximation
algorithm for vertex-weighted matching. In: Proceedings of
the SIAM Workshop on Combinatorial Scientific Computing.
pp. 12–21.

Alexander F, Almgren A, Bell J, Bhattacharjee A, Chen J, Colella
P, Daniel D, DeSlippe J, Diachin L, Draeger E, Dubey A,
Dunning T, Evans T, Foster I, Francois M, Germann T, Gordon
M, Habib S, Halappanavar M, Hamilton S, Hart W, Huang
Z, Hungerford A, Kasen D, Kent PRC, Kolev T, Kothe DB,
Kronfeld A, Luo Y, Mackenzie P, McCallen D, Messer B,
Mniszewski S, Oehmen C, Perazzo A, Perez D, Richards D,
Rider WJ, Rieben R, Roche K, Siegel A, Sprague M, Steefel C,
Stevens R, Syamlal M, Taylor M, Turner J, Vay JL, Voter AF,
Windus TL and Yelick K (2020) Exascale applications: skin in
the game. Philosophical Transactions of the Royal Society. A,
Mathematical, Physical and Engineering Sciences 378(2166).
DOI:10.1098/rsta.2019.0056.

Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990)
Basic local alignment search tool. Journal of molecular biology
215(3): 403–410.

Awerbuch B and Shiloach Y (1987) New connectivity and MSF
algorithms for shuffle-exchange network and PRAM. IEEE
Transactions on Computers 10(C-36): 1258–1263.

Azad A and Buluç A (2016) Distributed-memory algorithms for
maximum cardinality matching in bipartite graphs. In: IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, pp. 32–42.

Azad A and Buluç A (2019) LACC: A linear-algebraic algorithm
for finding connected components in distributed memory. In:
International Parallel and Distributed Processing Symposium
IPDPS. Rio de Janeiro, Brazil: IEEE, New York, NY, USA, pp.
2–12.

Azad A, Buluç A, Li XS, Wang X and Langguth J (2020) A
distributed-memory algorithm for computing a heavy-weight
perfect matching on bipartite graphs. SIAM Journal on
Scientific Computing 42(4): C143–C168.

Azad A, Pavlopoulos GA, Ouzounis CA, Kyrpides NC and Buluç A
(2018) HipMCL: a high-performance parallel implementation
of the markov clustering algorithm for large-scale networks.
Nucleic acids research 46(6): e33–e33.

Barik R, Minutoli M, Halappanavar M, Kalyanaraman A and
Tallent N (2020) Vertex reordering for real-world graphs and
applications: An empirical evaluation. In: To appear in 2020
IEEE International Symposium on Workload Characterization.

Blondel V, Guillaume JL, Lambiotte R and Lefebvre E (2008)
Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment : P10008.

Bodenheimer T, Halappanavar M, Jefferys S, Gibson R, Liu S,
Mucha PJ, Stanley N, Parker JS and Selitsky SR (2020) Fastpg:
Fast clustering of millions of single cells. bioRxiv .

Bogle I, Boman EG, Devine KD, Rajamanickam S and Slota
G (2020) Distributed memory graph coloring algorithms for

multiple gpus. In: Proc. of the 2020 IAAA Workshop at SC20.
IEEE.

Boman E, Devine K, Heaphy R, Hendrickson B, Leung V, Riesen
LA, Vaughan C, Çatalyürek Ü, Bozdag D, Mitchell W and
Teresco J (2007) Zoltan 3.0: Parallel Partitioning, Load
Balancing, and Data-Management Services; User’s Guide.
Sandia National Laboratories. Tech. Report SAND2007-
4748W.

Boman EG, Devine KD, Leung VJ, Rajamanickam S, Riesen LA,
Deveci M and Catalyurek U (2012) Zoltan2: Next-generation
combinatorial toolkit. Technical Report SAND2012-9373C,
Sandia National Laboratories.

Bozdağ D, Gebremedhin AH, Manne F, Boman EG and Catalyurek
UV (2008) A framework for scalable greedy coloring on
distributed-memory parallel computers. Journal of Parallel
and Distributed Computing 68(4): 515–535.

Buchfink B, Xie C and Huson DH (2015) Fast and sensitive protein
alignment using DIAMOND. Nature methods 12(1): 59.

Buluç A and Gilbert JR (2011) The combinatorial blas: Design,
implementation, and applications. The International Journal
of High Performance Computing Applications 25(4): 496–509.

Buluç A and Gilbert JR (2012) Parallel sparse matrix-matrix
multiplication and indexing: Implementation and experiments.
SIAM Journal on Scientific Computing 34(4): C170–C191.

Buluç A, Mattson T, McMillan S, Moreira J and Yang C (2017)
Design of the graphblas api for c. In: IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, pp. 643–652.

Chavarrı́a-Miranda D, Halappanavar M, Krishnamoorthy S,
Manzano J, Vishnu A and Hoisie A (2015) On the impact of
execution models: A case study in computational chemistry. In:
2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. pp. 255–264. DOI:10.1109/IPDPSW.
2015.111.

Chen W, Song Y, Bai H, Lin C and Chang EY (2011) Parallel
spectral clustering in distributed systems. IEEE Transactions
on Pattern Analysis and Machine Intelligence 33(3): 568–586.

Cheng X, Gebremedhin A, Patwary M, Wang M and Pothen A
(2020a) Colpack: A graph coloring library for derivative matrix
computation and beyond. www.github.com/CSCsw/ColPack.

Cheng X, Maji HK and Pothen A (2020b) Graphs with tunable
chromatic numbers for parallel coloring. In: Proceedings of
the SIAM Workshop on Combinatorial Scientific Computing.
pp. 11–20.

Davis TA (2006) Direct Methods for Sparse Linear Systems. SIAM.
Davis TA, Rajamanickam S and Sid-Lakhdar WM (2016) A survey

of direct methods for sparse linear systems. Acta Numerica 25:
383–566.

Demmel JW, Eisenstat SC, Gilbert JR, Li XS and Liu JWH (1999)
A supernodal approach to sparse partial pivoting. SIAM
Journal on Matrix Analysis and Applications 20: 720–755.

Deveci M, Boman EG, Devine KD and Rajamanickam S (2016a)
Parallel graph coloring for manycore architectures. In:
2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, pp. 892–901.

Deveci M, Devine K, Pedretti K, Taylor M, Rajamanickam S and
Catalyurek U (2019) Geometric mapping of tasks to processors
on parallel computers with mesh or torus networks. IEEE
Transactions on Parallel and Distributed Systems PP: 1–1.

Deveci M, Rajamanickam S, Devine KD and Çatalyürek ÜV
(2016b) Multi-jagged: A scalable parallel spatial partitioning
algorithm. IEEE Trans. Parallel Distrib. Syst. 27(3): 803–817.

Deveci M, Trott C and Rajamanickam S (2017) Performance-
portable sparse matrix-matrix multiplication for many-core
architectures. In: 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW).
IEEE, pp. 693–702.

Deveci M, Trott C and Rajamanickam S (2018) Multithreaded
sparse matrix-matrix multiplication for many-core and gpu
architectures. Parallel Computing 78: 33–46.

Dobrian F, Halappanavar M, Pothen A and Al-Herz A (2019) A
2/3-approximation algorithm for vertex-weighted matching in
bipartite graphs. SIAM Journal on Scientific Computing 41(1):
A566–A591.

Domingos PM and Richardson M (2001) Mining the network value
of customers. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data
mining, San Francisco, CA, USA, August 26-29, 2001. ACM,
pp. 57–66.

Donath W and Hoffman A (1972) Algorithms for partitioning of
graphs and computer logic based on eigenvectors of connection
matrices. IBM Technical Disclosure Bulletin 15: 938–944.

Duff IS, Erisman AM and Reid JK (2017) Direct Methods for
Sparse Matrices. Oxford University Press. Second ed.

Duff IS and Koster J (1999) The design and use of algorithms
for permuting large entries to the diagonal of sparse matrices.
SIAM Journal on Matrix Analysis and Applications 20(4): 889–
901.

Edwards HC, Trott CR and Sunderland D (2014) Kokkos: Enabling
manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed
Computing 74(12): 3202 – 3216.

Enright AJ, Van Dongen S and Ouzounis CA (2002) An efficient
algorithm for large-scale detection of protein families. Nucleic
acids research 30(7): 1575–1584.

Ferdous S, Pothen A and Khan A (2018) New approximation
algorithms for minimum weighted edge cover. In: Proceedings
of SIAM Workshop on Combinatorial Scientific Computing. pp.
97–108.

Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak
Math. J. 23(98): 298–305.

Fortunato S (2010) Community detection in graphs. Physics reports
486(3-5): 75–174.

Fox JS and Rajamanickam S (2020) How robust are graph neural
networks to structural noise? In: The First International
Workshop on Deep Learning on Graphs: Methodologies and
Applications (DLGMA’20).

GBoman E, Çatalyürek ÜV, Chevalier C and Devine KD (2012)
The Zoltan and Isorropia parallel toolkits for combinatorial
scientific computing: Partitioning, ordering, and coloring.
sciprog 20(2): 129–150.

Gebremedhin AH and Manne F (2000) Scalable parallel graph
coloring algorithms. Concurrency: Practice and Experience
12(12): 1131–1146.

Gebremedhin AH, Manne F and Pothen A (2005a) What color is
your jacobian? graph coloring for computing derivatives. SIAM
Review 47(4): 629–705.

Gebremedhin AH, Manne F and Pothen A (2005b) What color is
your Jacobian? graph coloring for derivatives. SIAM Review
47(4): 629—-705.

Ghosh S, Halappanavar M, Tumeo A and Kalyanarainan A (2019)
Scaling and quality of modularity optimization methods for
graph clustering. In: 2019 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, pp. 1–6.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A and
Gebremedhin AH (2018a) Scalable distributed memory
community detection using vite. In: 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE,
pp. 1–7.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu
H, Chavarria-Miranda D, Khan A and Gebremedhin A
(2018b) Distributed Louvain algorithm for graph community
detection. In: 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, pp. 885–
895.

Gilbert MS, Acer S, Boman EG, Madduri K and Rajamanickam
S (2021) Performance-portable graph coarsening for efficient
multilevel graph analysis. In: Proc. of IEEE International
Parallel and Distributed Processing Symposium (IPDPS) 2021.
p. to appear.

Griewank A and Walther A (2008) Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentiation.
SIAM. Second ed.

Gu Z, Moreira J, Edelsohn D and Azad A (2020) Bandwidth-
optimized parallel algorithms for sparse matrix-matrix mul-
tiplication using propagation blocking. In: Symposium on
Parallelism in Algorithms and Architectures (SPAA).

Halappanavar M, Lu H, Kalyanaraman A and Tumeo A (2017)
Scalable static and dynamic community detection using
grappolo. In: 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, pp. 1–6.

Hendrickson B and Leland R (1993) The chaco user‘s guide.
version 1.0 DOI:10.2172/10106339. URL https://www.

osti.gov/biblio/10106339.
Hendrickson B and Leland R (1995) An improved spectral graph

partitioning algorithm for mapping parallel computations.
SIAM Journal on Scientific Computing 16(2): 452–469.

Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda
TG, Lehoucq RB, Long KiR, Pawlowski RP, Phipps ET,
Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM,
Williams A and Stanley KS (2005) An overview of the Trilinos
project. ACM Trans. Math. Softw. 31(3): 397–423.

Huang G, Dai G, Wang Y and Yang H (2020) GE-SpMM: General-
purpose sparse matrix-matrix multiplication on GPUs for graph
neural networks. arXiv preprint arXiv:2007.03179 .

Hysom DA and Pothen A (2001) A scalable parallel algorithm
for incomplete-factor preconditioning. SIAM J. Scientific
Computing 22(6): 2194–2215.

J W-H Liu (1990) The role of elimination trees in sparse
factorization. SIAM Journal on Matrix Analysis and
Applications 11: 134–172.

Jones MT and Plassmann PE (1993) A parallel graph coloring
heuristic. SIAM Journal on Scientific Computing 14(3): 654–
669.

Karypis G and Kumar V (1997) Parmetis: Parallel graph
partitioning and sparse matrix ordering library. Technical
report, Dept. Computer Science, University of Minnesota.

https://www.osti.gov/biblio/10106339
https://www.osti.gov/biblio/10106339

Karypis G and Kumar V (1998) A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing 20(1): 359–392.

Kempe D, Kleinberg JM and Tardos É (2003) Maximizing the
spread of influence through a social network. In: Proceedings
of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, DC,
USA, August 24 - 27, 2003. ACM, pp. 137–146.

Kepner J, Aaltonen P, Bader D, Buluç A, Franchetti F, Gilbert J,
Hutchison D, Kumar M, Lumsdaine A, Meyerhenke H et al.
(2016) Mathematical foundations of the graphblas. In: IEEE
High Performance Extreme Computing Conference (HPEC).
IEEE, pp. 1–9.

Khan A, Choromanski K, Pothen A, S M Ferdous, Halappanavar M
and Tumeo A (2018a) Adaptive anonymization of data using
b-edge cover. In: Proceedings of Supercomputing. IEEE, pp.
743–753.

Khan A, Pothen A and Ferdous S (2018b) Parallel algorithms
through approximation: b-edge cover. In: IPDPS. pp. 22–33.

Knyazev AV (2001) Toward the optimal preconditioned eigen-
solver: Locally optimal block preconditioned conjugate gra-
dient method. SIAM Journal on Scientific Computing 23(2):
517–541.

Li XS and Demmel JW (1998) Making sparse gaussian elimination
scalable by static pivoting. In: SC’98: Proceedings of the 1998
ACM/IEEE Conference on Supercomputing. IEEE, pp. 34–34.

Li XS and Demmel JW (2003) Superlu dist: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems.
ACM Transactions on Mathematical Software (TOMS) 29(2):
110–140.

Lu H, Halappanavar M, Chavarrı́a-Miranda D, Gebremedhin
AH, Panyala A and Kalyanaraman A (2017) Algorithms
for balanced graph colorings with applications in parallel
computing. IEEE Transactions on Parallel and Distributed
Systems 28(5): 1240–1256.

Marathe M and Vullikanti A (2013) Computational Epidemiology.
Communications of the ACM 56(7): 88–96.

Minutoli M, Drocco M, Halappanavar M, Tumeo A and
Kalyanaraman A (2020a) cuRipples: Influence maximization
on multi-GPU systems. In: Proceedings of the International
Conference on Supercomputing 2020 (ICS20).

Minutoli M, Halappanavar M, Kalyanaraman A, Sathanur AV,
Mcclure R and McDermott J (2019) Fast and Scalable
Implementations of Influence Maximization Algorithms. In:
2019 IEEE International Conference on Cluster Computing,
CLUSTER 2019, Albuquerque, NM, USA, September 23-26,
2019. IEEE, pp. 1–12.

Minutoli M, Sambaturu P, Halappanavar M, Tumeo A, Kalyanara-
man A and Vullikanti A (2020b) PREEMPT: Scalable Epi-
demic Interventions Using Submodular Optimization on Multi-
GPU System. In: To appear in The International Conference
for High Performance Computing, Networking, Storage, and
Analysis (SC20).

Nagasaka Y, Matsuoka S, Azad A and Buluç A (2019) Performance
optimization, modeling and analysis of sparse matrix-matrix
products on multi-core and many-core processors. Parallel
Computing 90: 102545.

Parallel Processing (ICPP). pp. 101–110.
Naumov M and Moon T (2016) Parallel spectral graph partitioning.

Technical report, NVIDIA tech. rep. NVR-2016-001.
Newman MEJ and Girvan M (2004) Finding and evaluating

community structure in networks. Physical Review E 69(2):
026113.

NVIDIA (2020) Nvidia rapids cugraph. https://github.

com/rapidsai/cugraph.
Parter SV (1961) The use of linear graphs in Gaussian elimination.

SIAM Review 3: 119–130.
Pothen A, Ferdous SM and Manne F (2019) Approximation

algorithms in combinatorial scientific computing. Acta
Numerica 28: 541–633.

Pothen A, Simon H and Liou K (1990) Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. 11(3): 430–
452.

Purvine E, Cotilla-Sanchez E, Halappanavar M, Huang Z, Lin G,
Lu S and Wang S (2017) Comparative study of clustering
techniques for real-time dynamic model reduction. Statistical
Analysis and Data Mining: The ASA Data Science Journal
10(5): 263–276.

Richards DF, Aaziz O, Cook J, Finkel H, Homerding B,
McCorquodale P, Mintz T, Moore S, Bhatele A and Pavel R
(2018) Fy18 proxy app suite release. milestone report for the
ecp proxy app project. Technical report, Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States).

Rose DJ (1972) A graph-theoretic study of the numerical solution
of sparse positive definite systems of linear equations. In: Read
RC (ed.) Graph Theory and Computing. New York: Academic
Press, pp. 183–217.

Rose DJ, Tarjan RE and Lueker GS (1976) Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on Computing 5:
266–283.

Rouet FH, Li XS, Ghysels P and Napov A (2016) A distributed-
memory package for dense hierarchically semi-separable
matrix computations using randomization. ACM Transactions
on Mathematical Software (TOMS) 42(4): 1–35.

Sallinen S, Iwabuchi K, Poudel S, Gokhale M, Ripeanu M
and Pearce R (2016) Graph colouring as a challenge
problem for dynamic graph processing on distributed systems.
In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’16. IEEE Press. ISBN 9781467388153.

Sambaturu P, Adhikari B, Prakash BA, Venkatramanan S
and Vullikanti A (2020) Designing effective and practical
interventions to contain epidemics. In: Proc. AAMAS.

Selvitopi O, Ekanayake S, Guidi G, Pavlopoulos G, Azad A and
Buluç A (2020a) Distributed many-to-many protein sequence
alignment using sparse matrices. In: Proceedings of the 2020
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’20.

Selvitopi O, Hussain MT, Azad A and Buluç A (2020b)
Optimizing high performance Markov clustering for pre-
exascale architectures. In: International Parallel and
Distributed Processing Symposium IPDPS.

Shi J and Malik J (2000) Normalized cuts and image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 22(8): 888–905.

Shiloach Y and Vishkin U (1982) An O(logn) parallel connectivity
algorithm. Journal of Algorithms 3(1): 57–67.

Nagasaka Y, Nukada A and Matsuoka S (2017) High-performance
and memory-saving sparse general matrix-matrix multiplica-

tion for nvidia pascal gpu. In: 6th International Conference on

 https://github.com/rapidsai/cugraph
 https://github.com/rapidsai/cugraph

Steinegger M and Söding J (2017) Mmseqs2 enables sensitive
protein sequence searching for the analysis of massive data
sets. Nature biotechnology 35(11): 1026.

Tang Y, Shi Y and Xiao X (2015) Influence Maximization in Near-
Linear Time: A Martingale Approach. In: Proc. 2015 ACM
SIGMOD International Conference on Management of Data.
ACM, pp. 1539–1554.

Tang YH, Selvitopi O, Popovici D and Buluç A (2020) A high-
throughput solver for marginalized graph kernels on GPU. In:
International Parallel and Distributed Processing Symposium
IPDPS.

Trilinos Project Team T (????) The Trilinos Project Website.
Tripathy A, Yelick K and Buluç A (2020) Reducing communication

in graph neural network training. In: Proceedings of the 2020
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’20.

Van Dongen SM (2000) Graph clustering by flow simulation. PhD
Thesis.

Wolf MM, Deveci M, Berry JW, Hammond SD and Rajamanickam
S (2017) Fast linear algebra-based triangle counting with
kokkoskernels. In: 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, pp. 1–7.

Yang C, Buluç A and Owens JD (2018) Design principles for sparse
matrix multiplication on the gpu. In: European Conference on
Parallel Processing. Springer, pp. 672–687.

Yang C, Buluc A and Owens JD (2019) Graphblast: A high-
performance linear algebra-based graph framework on the gpu.
arXiv preprint arXiv:1908.01407 .

Yasar A, Rajamanickam S, Berry JW, Acer S, Wolf M,
Young JG and Catalyurek U (2019) Linear algebra-based
triangle counting via fine-grained tasking on heterogeneous
environments. Technical report, Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States).

Yaşar A, Rajamanickam S, Wolf M, Berry J and Çatalyürek ÜV
(2018) Fast triangle counting using cilk. In: 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE,
pp. 1–7.

Zhang Y, Azad A and Buluç A (2020a) Parallel algorithms for
finding connected components using linear algebra. Journal
of Parallel and Distributed Computing .

Zhang Y, Azad A and Hu Z (2020b) FastSV: A distributed-memory
connected component algorithm with fast convergence. In:
Proceedings of the 2020 SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, pp. 46–57.

Erik G. Boman: Dr. Boman is a research scientist (PMTS)
at the Center for Computing Research at Sandia National
Labs. He received a PhD from Stanford University. His
research interests are in combinatorial scientific computing,
high-performance parallel computing, sparse linear algebra,
and preconditioners. Dr. Boman is currently an associate
editor of SIAM Journal on Scientific Computing (SISC) and
SIAM Review.

Aydın Buluç: Dr. Buluç is a Staff Scientist and Principal
Investigator at the Lawrence Berkeley National Laboratory
(LBNL) and an Adjunct Assistant Professor of EECS at UC
Berkeley. His research interests include parallel computing,
combinatorial scientific computing, high performance graph
analysis and machine learning, sparse matrix computations,
and computational biology. Previously, he was a Luis W.
Alvarez postdoctoral fellow at LBNL and a visiting scientist
at the Simons Institute for the Theory of Computing. He
received his PhD in Computer Science from the University
of California, Santa Barbara in 2010 and his BS in Computer
Science and Engineering from Sabanci University, Turkey in
2005. Dr. Buluç is a recipient of the DOE Early Career Award
in 2013 and the IEEE TCSC Award for Excellence for Early
Career Researchers in 2015. He is also a founding associate
editor of the ACM Transactions on Parallel Computing.

Karen D. Devine: Dr. Devine is a Distinguished Member
of Technical Staff at the Center for Computing Research at
Sandia National Labs. She earned her PhD from Rensselaer
Polytechnic Institute. Her research interests include high
performance computing applications and algorithms, parallel
partitioning and load balancing, and task mapping and
placement.

S M Ferdous: S M Ferdous is a PhD candidate in
computer science at Purdue University, USA. Ferdous’s
research interest is in Combinatorial scientific computing,
High-performance computing. Particularly, his interest lies
in applying algorithmic techniques (e.g., approximation,
randomization) to solve practical, real-world problems.

Nitin Gawande: Dr. Gawande, is Software Application
Engineer in the Architecture Workload Engineering team
of the Technical Computing Engineering Group, in
Architecture, Graphics, and Software at Intel Corporation.
The work that led to his contribution to this publication was
conducted during his tenure as a research scientist with the
Data Sciences and Machine Intelligence Group of the Pacific
Northwest National Laboratory at Richland WA (USA).
Nitin’s research interests include design and implementation
of scalable high performance computing algorithms on GPU
accelerators, and he is also part of the Global Arrays, a PGAS
model development team.

Sayan Ghosh: Dr. Ghosh is a Computer Scientist in
the Data Sciences and Machine Intelligence Group at the
Pacific Northwest National Laboratory in Richland, WA. His
research interests are broadly in the application of parallel
programming models and communication optimizations for
building scalable scientific codes. He holds a Masters degree
from University of Houston in Houston, TX and a PhD
degree (both in Computer Sciences) from Washington State
University in Pullman, WA.

Author Biographies
Seher Acer: Dr. Acer is a postdoc in the Center for

Computing Research at Sandia National Labs. She holds
a PhD from Bilkent University, Turkey. Her research
interests are in combinatorial scientific computing and graph
algorithms.

Ariful Azad: Dr. Azad is an Assistant Professor in
the department of Intelligent Systems Engineering at
Indiana University. He obtained his Ph.D. from Purdue
University. He was a research scientist at Lawrence Berkeley
National Laboratory. His research interests are in high-
performance computing, graph algorithms, machine learning
and bioinformatics.

acceleration. He is also active in the Design Automation
community where he works on the definition of HW/SW
co-design and High Level Synthesis methodologies and their
compilation and optimization pipelines for the generation of
custom computing devices.

Alex Pothen: Dr. Pothen is a Professor of Computer
Science at Purdue. His research interests are in combina-
torial scientific computing (CSC), parallel computing, and
bioinformatics algorithms. He is a Fellow of the Society
for Industrial and Applied Mathematics (SIAM). He is the
Chair of the SIAM Activity Group on Applied and Com-
putational Discrete Algorithms. He served as the Director
of the CSCAPES Institute, a pioneering research center in
CSC (2006-2012), Director of Purdue’s Computing Research
Institute (2008-2010), and Associate Head of computer sci-
ence (2015-2018).

Sivasankaran Rajamanickam: Dr. Rajamanickam is a
principal member of technical staff at the Center for
Computing Research at Sandia National Laboratories. He
received his PhD from the University of Florida. His research
interests are in high performance computing, combinatorial
scientific computing, machine learning, and sparse linear
algebra. Dr. Rajamanickam is a member is SIAM, ACM and
IEEE.

Oguz Selvitopi: Dr. Selvitopi is a Research Scientist in
the Performance and Algorithms group of Computer Science
Department at Lawrence Berkeley National Laboratory.
His research interests are high performance computing,
parallel sparse matrix computations, combinatorial scientific
computing, and bioinformatics. Oguz received his Ph.D. in
computer engineering from Bilkent University, Turkey in
2016.

Nathan Tallent: Dr. Tallent is a computer scientist and
lead of the Scalable Computing & Data Team in the
High Performance Computing group at Pacific Northwest
National Laboratory. His research focuses on developing
techniques for characterizing, analyzing, and accelerating the
performance of current and emerging workloads in scientific
modeling, analytics, and data-intensive scientific workflows.
He received a Ph.D. in 2010 from Rice University. He is a
member of IEEE and ACM.

Antonino Tumeo: Dr. Tumeo received the M.S degree
in Informatic Engineering, in 2005, and the Ph.D degree
in Computer Engineering, in 2009, from Politecnico di
Milano in Italy. Since February 2011, he has been
a research scientist in the PNNL’s High Performance
Computing Group. He Joined PNNL in 2009 as a
post doctoral research associate. Previously, he was a
post doctoral researcher at Politecnico di Milano. His
research interests are modeling and simulation of high
performance architectures, hardware-software codesign,
FPGA prototyping and GPGPU computing, with a specific
focus on data analytics workloads and irregular applications.
He is a senior member of IEEE and of ACM.

Mahantesh Halappanavar: Dr. Halappanavar is a chief
computer scientist and group leader of the Data Sciences
and Machine Intelligence Group at the Pacific Northwest
National Laboratory. He holds a joint appointment as
adjunct faculty in Computer Science at the School of
Electrical Engineering and Computer Science, Washington
State University in Pullman. His research has spanned
multiple technical foci and includes combinatorial scientific
computing, parallel graph algorithms, machine learning,
and application of graph theory and game theory to
solve problems in application domains such as scientific
computing, power grids, cybersecurity, and life sciences.
He is a member of Society for Industrial and Applied
Mathematics (SIAM), and Senior Member of Association for
Computing Machinery (ACM) and Institute of Electrical and
Electronics Engineers (IEEE).

Ananth Kalyanaraman: Dr. Kalyanaraman is a Professor
and Boeing Centennial Chair in Computer Science at
the School of Electrical Engineering and Computer
Science, Washington State University in Pullman. He
also serves as the Associate Director for the School of
EECS, holds a joint appointment with Pacific Northwest
National Laboratory (PNNL) as a Senior Scientist, and
holds affiliate f aculty p ositions a t t he W SU Molecular
Plant Sciences Graduate Program and the Paul G. Allen
School for Global Animal Health. Ananth received his
Ph.D. from Iowa State University. Ananth works at the
intersection of parallel computing, graph analytics, and
bioinformatics/computational biology. His focus is on
developing algorithms and software for scalable analysis
of large-scale data from various scientific d omains and
particularly the life sciences. He is currently serving as a
Vice-Chair for the IEEE Technical Committee on Parallel
Programming (TCPP). Ananth is a senior member of IEEE,
and a member of ACM and SIAM.

Arif Khan: Dr. Khan is a computer scientist in the
Data Sciences and Machine Intelligence Group at Pacific
Northwest National Laboratory. He received his Ph.D. from
Purdue University. His research interests include graph
algorithm, high performance computing, approximation
algorithm along with their applications in bioinformatics,
quantum computing, social network and machine learning.
His goal is to explore how approximation algorithms
can solve big graph problems using leadership class
supercomputers. His recent research includes application
of graph algorithms proteomics, quantum computing and
traffic analysis. He is a member of Society for Industrial and
Applied Mathematics (SIAM), Association for Computing
Machinery (ACM) and Institute of Electrical and Electronics
Engineers (IEEE).

Marco Minutoli: Marco Minutoli is a research scientist
in the Data Sciences and Machine Intelligence Group at
Pacific N orthwest N ational L aboratory. H e r eceived his
Bachelor of Science in Computer and Telecommunication
Engineering from University of Messina, Messina, Italy,
in 2008, his Master of Science in Computer Engineering
from Politecnico di Milano, Milan, Italy, in 2014, and
he is currently pursuing his PhD in Computer Science at
Washington State University, Pullman, WA. His research
focuses on the design of parallel graph algorithms and their

	Interplay between algebraic and combinatorial methods in computational science and engineering
	Combinatorial Approaches for Graph Algorithms
	Matchings and Coverings
	Graph Coloring
	Community Detection
	Influence Maximization

	Algebraic Approaches for Graph Algorithms and Combinatorial Problems
	Bipartite Matching for Sparse Solvers
	Protein Similarity Network Construction
	Graph Learning
	Graph Partitioning

	Summary and Future Work
	Author Biographies

