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ABSTRACT OF THE DISSERTATION

Ultrafast optical parametric processes in photonic crystal fibers:
fundamentals and applications

by

Chenji Gu

Doctor of Philosophy in Physics

University of California, Merced, 2012

Facilitated by the advent of photonic crystal fibers two decades ago, the

moded-locked fiber lasers become the new trend of ultrafast light sources. Never-

theless, their major limitations are the output wavelength range and pulse quality.

Motivated by building widely tunable ultrashort light sources, this thesis focuses

on the experimental and theoretical studies of fiber optical parametric process.

As one important application of this process, fiber optical parametric oscillator

(FOPO), promises to address the shortcomings of fiber lasers.

From the application point of view, it is important to manage and optimize

the output performance of light sources such as the pulse duration, pulse shape,

spectrum width and so on. So there is a need to clearly understand the pulse

evolution from a platform of applied mathematics. Under this theoretical guid-

ance, experimental work can be better oriented to develop functional light sources

xii



which address needs for applications such as pulsed-light microscopy, multiphoton

spectroscopy and so on.

We demonstrate FOPO as tunable light sources in both femtosecond and

picosecond domains. For the femtosecond operation, we generate sub-50fs pulses

with linear chirp. The studies on the pulse quality are carried out where the

fiber length inside the oscillator is varied. In particular, our studies focus on

dispersive pulse broadening and walk-off effects which influence the performance

of FOPO. The optimal condition, i.e., the shortest pulse duration, arises from the

minimization of these two effects. For the picosecond operation, we generate pulses

with the duration of 2 ∼ 4ps. The experiment also reveals that the spectral shape

and width of output pulses are determined by cross-phase modulation and cavity

synchronization. More precisely, the spectrum exhibits pump power dependent

broadening which can be asymmetric with a red or blue shift depending on cavity

synchronization. Moreover, the average power conversion efficiency is maximized

by adjusting the cavity length to the long range of its operation which leads to a

blue shifted spectrum.

To capture the operational principles and precisely emulate the performance

of FOPO, we also focus on the theoretical analysis of fiber optical parametric pro-

cesses. We extend the previous theory of partially degenerate four-wave mixing to

the ultrafast situation where waves are all ultrashort pulses with broadband spec-

tra. Then we perform the simulation based on justified parameters and compare

our calculation results with experimental data. We find both experimentally and

numerically that there exhibits an interesting symmetry behavior in the frequency

domain - two widely separated spectral sidebands can always behave as mirror im-

ages of one another with respect to the center frequency of the controlling pump

pulse. We call this interesting physical phenomenon “Spectral Mirror Imaging”.

Not just limited to the numerical computation, under certain operation regime

we obtain an analytic solution and clarify the physical mechanisms of this phe-

nomenon. A simple analytical expression for the coupled governing equations of

two sideband spectra is obtained, which reveals that the opposite values of group-

velocity dispersion and the complex-conjugated parametric gain are the physical

xiii



mechanisms responsible for this phenomenon. Furthermore, we give a comparison

between spectral reversal and time reversal.
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Chapter 1

Introduction and outline

Photonic crystal fibers (PCF) give us numerous outstanding optical prop-

erties, such as endless single mode, high nonlinearity and controllable chromatic

dispersion. Based on these novel properties, it is possible to make a variant of

functional optical devices. For example, one can make compact and portable light

sources which deliver output pulses with ultrashort durations and high energies.

In particular, our research focus is on fiber based optical parametric oscillators

(FOPOs) for widely tunable pulsed light sources. There are both fundamental and

applied interests in the development of this kind of fiber-based nonlinear optical

devices. We will discuss its tremendous applicability first.

Commercial solid-state laser systems are commonly used and quite suc-

cessful, however, they are still expensive. During these years, facilitated by the

development of PCFs there is a trend towards using ultrafast fiber lasers. Never-

theless, the major drawbacks of fiber lasers are their limited tunable wavelength

and pulse duration. Operating through four-wave mixing (FWM) mediated by the

nonlinearity of glass, FOPOs promise to address this shortcoming. Listed below

are some major advantages for fiber-based devices in comparison with traditional

bulk nonlinear crystals based systems. First, the FWM phase-matching band-

width can be continuous and hundreds of nanometers wide. Thus, the generated

two sidebands can be a few hundred nanometers from the input pump. Second,

due to the endless single mode property of PCF the transverse mode quality of

FOPOs is exceptionally good. Third, rather than using external energy supplies

1
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from laser diode, FOPOs simply utilize the parametric process from optical waves

which makes it convenient to further integrate with other fiber components and

optical systems. Therefore, the widespread adoption of ultrafast systems will be

greatly facilitated by the development of fiber-integrated synchronous ultrashort

light sources.

From the application point of view, it is important to manage and opti-

mize the output performance of light sources such as the pulse duration, pulse

shape, spectrum width and so on. So there is a need to clearly understand the

pulse evolution from a platform of applied mathematics. This heavy job is usu-

ally carried out by the numerical computation of partial differential equations. In

particular, for the simulation of fiber-based optical parametric devices, instead of

a single governing equation one needs to consider coupled nonlinear Schrödinger

equations. Therefore, an important aim of this thesis is to understand the pulse

generation and evolution in fiber-based optical devices. Under this guidance, our

experimental work is aimed at building widely tunable pulsed light sources, which

address needs for a lot of applications such as pulsed-light microscopy and spec-

troscopy. Interestingly, in our demonstration of this fiber optical parametric device

there exhibits a noticeable symmetric phenomenon in the spectrum domain, which

we call “spectral mirror imaging”. This interesting phenomenon is also verified by

numerical computations.

Chapter 2 gives an introduction to nonlinear fiber optics and PCFs. In

particular, we focus on the new opportunities in nonlinear fiber optics since the

demonstration of PCFs. We discuss the configuration of FOPOs as widely tunable

light sources. In order to develop some operational principles of this device, we

also give an section to introduce on the theory of fiber optical parametric process

under continuous-wave approximation.

Chapter 3 focuses on the operation of FOPOs in the femtosecond domain.

Using a 27mm fiber, we generate 48fs pulses with linear chirp. The output ultra-

short pulse is synchronized with 400fs pump which is delivered by a mode-locked

Yb-doped fiber laser. We study the pulse quality for both short-wavelength and

long-wavelength operation where the fiber length inside the oscillator is varied from
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17mm to 61mm. The optimal pulse duration is only observed in short wavelength

operation. Furthermore, to better understand the optimal condition, we model

the FOPO system as a single-pass parametric amplifier including dispersive pulse

broadening and walk-off effect. The optimal condition arises from the minimization

of the walk-off and dispersion. When walk-off is large, the parametric amplifica-

tion process is most efficient over some reduced effective fiber length leading to an

upper limit in the amount of observed pulse broadening.

Chapter 4 focuses on the operation of FOPOs in the picosecond domain.

We generate pulses with the duration of 2 ∼ 4ps using 1.2m fiber. The output

ultrashort pulses are synchronized with 8ps pump pulses which are delivered by a

mode-locked Nd:Vanadate fiber laser. Our experiment also reveals that the spec-

tral shape and width of output pulses are determined by cross-phase modulation

and cavity synchronization. More precisely, the spectrum exhibits pump power

dependent broadening which can be asymmetric with a red or blue shift depend-

ing on cavity synchronization. Moreover, the average power conversion efficiency

is maximized by adjusting the cavity length to the long range of its operation.

This leads to a blue shifted spectrum and conversion efficiency as high as 15% for

80mW of output and a 535mW of pump.

Chapter 5 focuses on the theoretical analysis of fiber optical parametric

processes. We first extend the model of FWM process to the ultrafast situation, in

which three waves, pump, signal and idler, are all ultrashort pulses with broadband

spectra. Then we will show our simulation results based on justified parameters and

compare our simulations with experimental results. We found both experimentally

and numerically that there exhibits an interesting physical phenomenon, which we

call “spectral mirror imaging”.

Chapter 6 focuses on the analytic theory and physics of “spectral mirror

imaging”. Not just limited to the discussion of simulations results, under certain

operation regime we obtain an analytic solution and clarify the physical mecha-

nisms of this phenomenon. Furthermore, we give a comparison between spectral

reversal and time reversal.

During the course of our study, several new interesting directions are iden-
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tified but have not been detailedly explored in this thesis. We briefly give an

introduction on some of them in Chapter 7. Furthermore, there are some im-

portant calculation methods and experimental techniques used as tools when we

referred in this thesis. On the one hand, since a lot of theoretical work in this thesis

depends on the simulation of ultrashort pulse propagation we need to discuss an

effective numerical computation method. On the other hand, we discuss a novel

technique for the characterization of ultrashort pulses.

In Appendix A, we discuss the split-step Fourier method for the numeri-

cal computations of nonlinear Schrödinger equation. This is a powerful tool for

simulations of ultrashort pulses propagation and their interactions.

In Appendix B, we focus on the technical details of a measurement technique

to capture the temporal and spectral information of ultrashort optical pulses within

nonlinear optical fibers. As the fastest available photodetector to date is still too

slow, we introduce a technique called frequency-resolved optical gating to perform

this great job.



Chapter 2

Nonlinear optics and its

application using photonic crystal

fibers (PCFs)

In this chapter, we first give an introduction to nonlinear fiber optics and

PCFs. In particular, we focus on the new opportunity in nonlinear fiber optics

since the demonstration of PCFs.

Then we discuss the configuration of fiber optical parametric oscillators

(FOPOs) for widely tunable light sources. In order to have a deeper understanding

of fiber optical parametric processes and develop some operational principles of this

device, FOPO, we give an introduction to the theory of fiber optical parametric

process under continuous-wave approximation.

2.1 Introduction to nonlinear fiber optics in PCF

The invention of the LASER (Light Amplification by Stimulated Emission

of Radiation) in 1960 [1] boomed the development of a new field - nonlinear optics.

This is because the optical field is so strong that the response of medium can not

be treated linearly. Shortly after this invention, there were various observations of

nonlinear phenomena, such as second harmonic generation (SHG) [2] , stimulated

Raman scattering (SRS) [3], stimulated Brillouin scattering (SBS) [4], and four-

5
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wave mixing (FWM) [5]. However, all these early experimental reports were in

bulk materials or liquids. At that time, concerning optical fibers, however, the

silica fibers were available but exhibiting very high losses and small nonlinearities.

The revolution happened in 1970 as low losses optical fibers were demonstrated in

Corning [6]. Soon after this, pioneered by Dr. Stolen and other researchers at Bell

Lab a variety of nonlinear effects including SBS and SRS, self-phase modulation

(SPM), FWM [7, 8, 9, 10, 11, 12] 1 and various advancements of optical solitons [14,

15, 16] were achieved by using silica fibers. The advent of photonic-crystal fibers

(PCFs) two decades ago stimulated this area, nonlinear fiber optics.

Before we go to the introduction of PCFs, the key question we first need to

answer is why using fiber as nonlinear media. In comparison with bulk materials,

other than compact and portable, fibers can offer very long interaction distance.

Furthermore, the nonlinearity of the material (silica) is small, but the effective

nonlinearity is high2 due to the small fiber core. Therefore, the nonlinear effects

can be observed at relatively low power levels. These properties make fibers ideal

to build nonlinear optical devices.

1Please refer to Ref. [13] for the early works on nonlinear fiber optics.
2We will show later in Eq. (2.6) that the nonlinear coefficient are inversely proportional to

fiber core.
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Figure 2.1: Photograph of visible supercontinuum generation using highly non-
linear PCF.
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The study of PCF began in the early 1990s [17]. The initial motivation of

this kind of fiber is to guide optical wave by means of a photonic bandgap effect.

Therefore, rather than highly nonlinearity, the first successful PCF can guide op-

tical waves because of an effective refractive index difference between a solid silica

core and a surrounding cladding region containing a transverse microstructure of

air holes. Although index guiding in PCF is conceptually similar to the guidance

in conventional fibers3, there exists the additional degrees of freedom by engineer-

ing the air-hole geometry resulting in unattainable guidance properties in standard

fiber. Furthermore, the strong waveguide contribution to the dispersion made it

possible to obtain zero-dispersion wavelengths (ZDW) in the visible or near infrared

region, very far from the intrinsic material value of fused silica (around 1.3 µm). As

an example as shown in Fig. 2.1, the demonstration of supercontinuum at visible

wavelength in our lab looks magically colorful. This feature is due to the shifting

ZDW close to the pump wavelength.The demonstration of highly nonlinear PCF

has led to a variety of technological advancements such as high-brightness sources,

precise measurements of fundamental physical constants [18, 19, 20, 21, 22, 23], or

even mature commercial products.

More comprehensively, not just limited to highly nonlinearity and shift

ZDW to short wavelength, let us take a detail look at other outstanding properties

of PCFs. This new class of fiber is referred to other names such as holey fiber, hole-

assisted fiber, or microstructure fiber. Pioneered by Prof. Philip Russell’s research

group [17], PCFs give unique optical property that is impossible in conventional

optical fibers. In particular, the control over transverse geometrical pattern of

fibers leads to the freedom to design their outstanding optical properties. One

can spatially vary an arrangement of very tiny and closely spaced air holes which

go through the whole length of fiber. Such air holes can be obtained by using a

preformed design with holes, made by stacking capillary tubes. These “lattices”,

the relative size of the holes and small displacements among them, lead to different

designs of the hole pattern. These designs result in a variety of interesting optical

properties as follows. First, it is possible to obtain a high numerical aperture of 0.7

3Index guide in conventional fibers refers to the total internal refraction between the fiber
core and the cladding area due to their index contrast.
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for multimode fibers [24]. Second, the single-mode guidance over wide wavelength

regions (endlessly single-mode fiber) can also be obtained for small ratios of hole

size and hole spacing [25]. Third, extremely small or extremely large mode areas

are achievable, which leads to either very strong or very weak optical nonlinearities.

Fourth, even for large mode areas, low sensitivity to bend losses were achieved by

the special design of PCFs [26, 27]. Fifth, instead of index guiding of conventional

fibers certain design of hole arrangements can result in a photonic bandgap. The

significance of this is that a higher refractive index in the inner part is no longer

required, where the guidance is possible even in a hollow core. This property

made the advent of air-guiding hollow-core fibers, which are interesting for disper-

sive pulse compression at high pulse energy levels by filling gases or liquids into

the hollow-core. This is highly useful in fiber-optic sensors, or for variable power

attenuators. Sixth, asymmetric hole patterns can lead to extremely strong bire-

fringence for polarization-maintaining fibers [28] as well as polarization-dependent

fibers [29, 30]. In summary, there are substantial design freedoms available for

PCFs, which yields different combinations of desirable parameters of fibers for the

applications in fiber-optic communications, fiber lasers, nonlinear optical devices,

high-power transmission, highly sensitive gas sensors, and other areas [31].
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Figure 2.2: SEM cross section photograph of the sample PCF1. (a) the whole
area of transverse section (b) the central area only
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Figure 2.3: SEM cross section photograph of the sample PCF2. (a) the whole
area of transverse section (b) the central area only
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As an example of PCF design, i.e., the transverse hole pattern, shown in

Fig. 2.2 and Fig. 2.3 are scanning electron microscope (SEM) of two sample fibers

from our collaborator - Yangtze Optical Fibre and Cable Co., Ltd. The design

of PCF1 is shown in Fig. 2.2, which is a piece of nonlinear photonic crystal fiber

guide optical waves in a small silica core, surrounded by a high air filling ratio

microstructured cladding formed by a periodic arrangement of air holes in silica.

The optical properties of the core closely resemble those of a rod of glass suspended

in air, resulting in strong confinement of the light. Some key parameters of this

fiber are high nonlinear coefficients (about 40W−1km−1 at 1550nm), ZDW around

715nm and near-Gaussian mode profile over the widely near IR wavelength. This

piece of fiber is ideal for supercontinuum generation pumped by Ti:Sapphire or

other ultrafast laser sources. Using this fiber, one can convert ultrafast lasers into

a compact, low-cost, ultra-bright supercontinuum source. The design of PCF2 is

shown in Fig. 2.3, this piece of fiber is single-mode nonlinear photonic crystal fiber,

with ZDW around 950nm and nonlinear coefficient about 11W−1km−1 at 1030nm.

Furthermore, this fiber is available spliced to standard single mode fiber or other

endlessly single mode PCFs, and is also available with hermetically sealed ends for

the patch cord connection.

As the design of PCF can engineer the dispersion curve of the fibers, in

principle, one can shift the ZDW of fibers to any visible or near infrared wavelength.

Thus, our discussion below will not be sensitive at where center wavelength is,

although the focus of this thesis will be at the wavelength window of 1 µm. In the

remaining contents of this section, we will give an introduction to the temporal and

spectral property of nonlinear ultrashort pulses propagation inside optical fibers.

We first start to consider a dispersive medium with nonlinear responses,

and some major steps for the derivation of governing equations are summarized

here.4 We consider a simple case that an input pulse at the carrier frequency ω0 is

launched such that it excites a single mode of the fiber. Furthermore, we assume

that the pulse maintains its linear polarization (the x axis) during the propagation

4For the detail discussion, please refer to Ref. [32].
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along the fiber length (the z axis), the electric field can be written in the form

E(r, t) = x̂F (x, y, ω0)A(z, t)ei(β0z−ω0t). (2.1)

where x̂ is a unit vector along the x axis, and F (x, y, ω) represents the spatial

distribution of the fiber. Here we assume that the spectrum bandwidth of pulse

is not very wide (∆ω � ω0). So F (x, y, ω) is a constant at the carrier frequency

ω0. Furthermore, it is also useful to remove the rapidly varying part of the optical

field at this frequency and introduce a slowly varying pulse envelope A(z, t).

On the other hand, one can rewrite the optical fields in the frequency do-

main by Fourier transform.

E(r, t) =
1

2π

∫ ∞
−∞

x̂F (x, y, ω)A(0, ω)ei[β(ω)z−ωt]dω, (2.2)

The physical meaning of Eq. (2.2) is that although each spectral component of

the input field propagates as a plane wave, there exhibits a slightly different phase

shift among them. This is because the propagation constant β(ω) is frequency

dependent. Moreover, we will expand β(ω) in a Taylor series at a carrier frequency

ω0 as

β(ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)2β2 + . . . , (2.3)

where each order of dispersion parameters are defined as βm = (dmβ/dωm)ω=ω0 .

If only the Kerr and Raman contributions to the nonlinear polarization are

included, one can obtain the slowly varying pulse envelope A(z, t) satisfying the

following propagation equation [32]:

∂A

∂z
+
α

2
A = i

∞∑
m=1

imβm
m!

∂mA

∂tm

+ iγ(1 +
i

ω0

∂

∂t
)× (A(z, t)

∫ ∞
0

R(t′)|A(z, t− t′)|2dt′), (2.4)

where fiber losses is α, the nonlinear coefficient is

γ =
ω0n2(ω0)

cAeff
, (2.5)

and the parameter

Aeff =
[
∫ ∫
|F (x, y, ω0)|2dxdy]2∫ ∫
|F (x, y, ω0|4dxdy

(2.6)
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is known as the effective mode area which is related to the optical mode extending

beyond the core region of the fiber. This effective mode area is generally propor-

tional to the size of the fiber core. Note that we assume the nonlinear parameter

n2 is independent on frequency.

Since in Eq. (2.4) the nonlinear response function, R(t), includes both the

electronic and Raman (nuclear) contributions, we assume that the electronic con-

tribution is nearly instantaneous and Raman contribution suffers from a delay.

Then the functional form of R(t) can be written as

R(t) = (1− fR)δ(t) + fRhR(t). (2.7)

One can find in Ref. [33] for the typical parameters of the silica fibers, where the

Raman response function is hR(t) and the fractional contribution fR ≈ 0.18.

Under certain operational region [32], Eq. (2.4) can be simplified as:

∂A

∂z
+
α

2
A+

iβ2

2

∂2A

∂T 2
− β3

6

∂3A

∂T 3
= iγ(|A|2A+

i

ω0

∂

∂t
(|A|2A)− TRA

∂|A|2

∂T
). (2.8)

where α is the fiber loss (in inverse meters 1/m), γ is the fiber nonlinearity (in in-

verse Watt meters (Wm)−1), β2 is second-order dispersion of the fiber (in seconds

squared per meter (s2/m)), β3 is third-order dispersion of the fiber (in seconds

cubed per meter (s3/m)), TR incorporates the Raman effect with delayed nonlin-

earity.

2.2 Introduction to fiber-based optical paramet-

ric processes

Optical parametric process is a well-known phenomenon in nonlinearly me-

dia. A typical example in bulk nonlinear material is SHG based on second-order

nonlinearity. The similar process also happens in optical fibers exploiting the third-

order nonlinearity, relying on highly efficient FWM. In particular, we will focus

on the partially degenerated case including three optical waves: one pump at ω0,

one signal at ω1 and one idler at ω2. As shown in Fig. 2.4 (a), the frequencies of

the two waves, signal and idler, are symmetrically positioned on each side of the
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pump. And the optical property of these three waves should satisfy following two

relationships:

2ω0 = ω1 + ω2, (2.9)

∆β = β(ω1) + β(ω2)− 2β(ω0) = 0, (2.10)

where βωj = ωjn(ωj)/c, j = {0, 1, 2} is the propagation constant of each wave, n

is the reflective index, c is the speed of light in vacuum, and ∆β is the lower power

propagation mismatch.

Equations (2.9) and (2.10) indicate that fiber parametric process based on

third-order nonlinearity can be understood from a quantum mechanical point of

view. As shown in Fig. 2.4 (b), the degenerate parametric amplification is mani-

fested as the annihilation of two pump photons at frequency ω0 and the generation

of a signal and an idler photon at frequencies ω1 and ω2, respectively. The conver-

sion needs to satisfy the photon energy conservation relation as shown in Fig. 2.4

(b) which is microcosmic energy conservation relation as indicated in Eq. (2.9).

Equation (2.10) generally regarded as phase-match condition actually indicates

the relation of photon momentum conservation. We will show later that the con-

tribution from the Kerr nonlinear effect can strongly influence this phase-match

condition.
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Figure 2.4: (a) Single pump optical parametric process. (b) Two photons (pump)
are annihilated and two photons (signal and idler) are generated.
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Now we give a more detailed discussion to the fiber optical parametric pro-

cess from an electromagnetic point of view. This process involves the interaction of

three copolarized waves whose complex amplitudes (slowly varying electric fields)

are A0(z), A1(z) and A2(z), respectively. Based on the relation of photon energy

conservation, i.e., Eq. (2.9), three carrier waves (stationary collinearly polarized

monochromatic waves) are at frequencies ω0, ω1 = ω0 − Ω, ω2 = ω0 + Ω, respec-

tively. Assuming the transverse mode of three waves are the same during their

propagation, the total electric field propagating along a single-mode optical fiber

may be written as:

E(z) = [A0(z)ei(β0z−ω0t) + A1(z)ei[β1z−(ω0−Ω)t] + A2(z)ei[β2z−(ω0+Ω)t]], (2.11)

where β0 = β(ω0), β1 = β(ω0 − Ω), and β2 = β(ω0 + Ω) are the propagation con-

stants evaluated at the relative frequencies for pump, signal and idler, respectively.

To clarify the physics of parametric optical process, before we give the

formulation of governing equations, let us take a brief review on the assumptions

we had made till now. First, we assume that the three waves interact through

the intensity-dependent refractive index (i.e., a purely nonlinear Kerr effect) with

instantaneous response of the fiber. Second, the nonlinear susceptibility is nearly

constant over the range of frequencies considered (the nonlinear parameter n2 is

independent on frequency), Third, the Raman-scattering process does not affect

the parametric exchange of energy among the waves (i.e., the susceptibility is real).

Then (the fourth assumption), we further consider that the process is nearly phase

matched, so that the usual assumption of neglecting the generation of higher-order

harmonics can be made. Under these hypotheses, three waves satisfy the coupled

governing equations are obtained as [32, 34, 35, 36]:

dA0

dz
= iγ[(|A0|2 + 2(|A1|2 + |A2|2))A0 + 2A1A2A

∗
0e
i∆βz], (2.12)

dA1

dz
= iγ[(|A1|2 + 2(|A2|2 + |A0|2))A1 + A∗2A

2
0e
−i∆βz], (2.13)

dA2

dz
= iγ[(|A2|2 + 2(|A1|2 + |A0|2))A2 + A∗1A

2
0e
−i∆βz]. (2.14)

On the right-hand side of Eq. (2.12)-(2.14), the first two terms are responsible
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for the nonlinear phase shift due to SPM and XPM, respectively. The last term

is responsible for the energy flow among the three interacting waves. These three

equations (Eqs. (2.12) to (2.14)) are named as coupled nonlinear Schrödinger equa-

tions (NLSE).

Furthermore (the fifth assumption), assuming the system is under the strong

pump approximation, i.e., A0(z) � A1,2(z), based on three coupled Eqs. (2.12)-

(2.14) one can simplify as,

dA0

dz
= iγ|A0|2A0 (2.15)

dA1

dz
= iγ2|A0|2A1 + iγA2

0A
∗
2e
−i∆βz (2.16)

dA2

dz
= iγ2|A0|2A2 + iγA2

0A
∗
1e
−i∆βz. (2.17)

The first equation is for the pump amplitude, and can be integrated for the

solution as,

A0 = Ap0e
iγ|Ap0|2z =

√
P0e

iγP0z (2.18)

where |Ap0|2 = P0 is the pump power at z = 0, which implies that the pump signal

does not lose any energy. This is justified if signal and idler are still small as the

assumption we made is pump undepleted. Then the signal and idler amplitudes

can now be described with the two coupled equations given as

dA1

dz
= 2iγP0A1 + iγP0e

iκzA∗2, (2.19)

dAi
dz

= 2iγP0Ai + iγP0e
iκzA∗2, (2.20)

where the parameter, phase mismatch, is defined as,

κ = 2γP0 + ∆β. (2.21)

We will show later that phase mismatch plays the key role in the operation of fiber

optical parametric processes. Here, we will discuss an important parameter for

the characterization of the tunable range fiber optical parametric processes - the

parametric gain profile.

The coupled Eqs. (2.19) and (2.20) above describe a strong pump and a

weak signal launched together at the fiber input such that the pump remains
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undepleted during the parametric gain process. These two coupled eqs. can be

solved analytically, and the unsaturated single pass gain G1 is written [39, 40],

G1 = P1(L)
P1(0)

= 1 + [γP0

g
sinh(gL)]2

= 1 + (γP0L)2[1 + gL2

6
+ gL4

120
+ · · · ]2, (2.22)

where L is the fiber interaction length and the parametric gain coefficient g is given

by g2 = [(γP0)2−(κ/2)2] = −∆β[∆β
4

+γP0]. In Chapter 4, we will use this relation

to estimate the tunable range of FOPOs (the dashed line) and compare with our

experimental demonstration, as shown in Fig. 4.4.

Let us go back to Eqs. (2.12)-(2.14) and rewrite them in terms of powers and

phases of the waves as some further insights can be revealed. Let Pj(z) = |Aj(z)|2

and φj(z), where Aj(z) =
√
Pje

iφj for j ∈ {0, 1, 2}.

dP0

dz
= −4γ(P 2

0P1P2)1/2 sin θ (2.23)

dP1

dz
= 2γ(P 2

0P1P2)1/2 sin θ (2.24)

dP2

dz
= 2γ(P 2

0P1P2)1/2 sin θ (2.25)

dθ

dz
= ∆β + γ(2P0 − P1 − P2) + γ[(P 2

0P1/P2)1/2

+(P 2
0P1/P2)1/2 − 4(P1P2)1/2] cos θ, (2.26)

where θ(z) = ∆βz + 2φ0(z)− φ1(z)− φ2(z) describes the relative phase difference

between the three waves. The first term of θ on the right hand side of Eq. (2.26)

describes the linear phase shift, while the second and third term describe the

nonlinear phase shift.

By inspecting three governing Eqs. (2.23) to (2.26), one can identify the

opportunity to direct the power flow among three waves by controlling their relative

phase relation. In particular, the direction can be from the pump to the signal-

idler (θ = π/2, parametric amplification) or from the signal-idler to the pump

(θ = −π/2, parametric attenuation). This gives us the possibility to create a phase-

sensitive amplifier, which has potential applications in low-noise amplifier [37].

For the more commonly used and practical application of a phase-insensitive

fiber-based parametric processes which are the focus of this thesis, we may consider
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an intense pump at ω0 and a weak signal at ω1. The idler is assumed to be zero

and the relative phase difference is in a special case, θ = π/2, at the input end of

fiber. This can be understood by realizing that the idler will be generated after an

infinitesimal propagation distance in the fiber [38]. Furthermore, suppose within

small propagation distance the interaction of three waves still make the operation

in the phase-matched condition θ(z) remains near π/2. Then Eq. (2.26) may be

simplified as following equation,

dθ

dz
≈ ∆β + γ(2P0 − P1 − P2) ≈ ∆β + 2γP0 = κ. (2.27)

where the phase mismatch parameter κ is introduced in a different way from the

approach of Eq. (2.21). Moreover, assuming higher-order dispersion is neglectible

we can rewrite the propagation mismatch as,

∆β = β(ω1) + β(ω2)− 2β(ω0) ≈ − 2πc

λ2
zero

dD

dλ
(λ0 − λzero)(λ0 − λ1)2, (2.28)

where dD/dλ is the slope of the dispersion at the ZDW, pump at λ0 and ZDW is

λzero. The approximation we made is linearly dependent dispersion curve within

a small bandwidth separation between the pump and signal-idler (λ0 − λ1 � λ0).

Using the relation in Eq. (2.28) to consider the phase-matched condition, Eq. (2.27)

, gives a crucial operation principle of fiber optical parametric processes: When the

pump wavelength λ0 is positioned in the normal dispersion regime (λ0 < λzero and

∆β > 0) , the phase mismatch will accumulate and increase with the growth of

signal, wavelength at λ1, thus decreasing the resulting efficiency of the process. By

positioning the pump wavelength in the anomalous dispersion regime (λ0 > λzero

and ∆β < 0), it is possible to compensate the nonlinear phase mismatch 2γP0

using the linear phase mismatch ∆β.

In a more general case, for the simulation of the performance of fiber op-

tical parametric processes one need to have the numerical calculations based on

Eqs. (2.15) to (2.17) which include a depleted pump, higher order dispersion and

a nonlinear phase shift. We will discuss this important approach more detailedly

in Chapter 5 and Appendix A.

For a fixed pump wavelength at λ0, the gain versus signal wavelength λ1

will thus be formed in two lobes on each side of λ0, where the peak of each lobe



21

is at the wavelength that meets the relation κ = ∆β + 2γP0 = 0. This process is

identical to the phenomenon that is also referred to as modulation instability [32],

i.e., the parametric process establishes a balance between GVD and the nonlinear

Kerr effect.

Note that the theoretical analysis presented here in this section based on

coupled Eqs. (2.12)-(2.14) only apply for CW or long-pulsed pump. In the rest of

chapters, either the experiments or the theories, where most of work this thesis

focused on, will be at the ultrashort situation. The purpose of this introduction

is to clarify some physics meanings and the operational principles of fiber-based

optical parametric devices.

2.3 Fiber optical parametric oscillators (FOPOs)

for widely tunable light sources

In the previous section, we gave an introduction to fiber optical parametric

processes. Based on these theoretical understandings, we will discuss one impor-

tant application of nonlinear optical devices - FOPOs.
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Figure 2.5: (a) A single-pass optical parametric amplifier where a pump and
signal are input to the system. (b) A optical parametric oscillator where only a
pump is input, but cavity feedback results in coherent buildup of a signal.
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First, there are two configurations based on optical parametric processes

illustrated schematically in Fig. 2.5. Let us have a comparison between these

two, a single-pass optical parametric amplifier and a optical parametric oscillator.

Shown in Fig. 2.5 (a) is a parametric amplifier which includes both pump and

signal fields at the input where the energy flow is from the strong pump to the

weaker signal-idler resulting in the amplification of signal and generation of idler.

As we discussed above in Eq. (2.9), the relation of energy conservation indicates

the generation of a third “conjugate” (we refer this as “idler” in this thesis) field

whose frequency is at ω2 = 2ω0 − ω1. The generation of the idler field also means

that this configuration, optical parametric amplifier, can be used for wavelength

conversion.

The configuration shown in Fig.2.5 (b) is an oscillator where there is only

a pump coupled input to the system, but the presence of feedback as the design

of cavity sctruture allows for the coherent buildup of the amplified spontaneous

emission (ASE) in a manner similar to laser action. There is usually some sort of

filter within the cavity that prevents both of the sidebands from oscillating which

would result in undesirable phase-sensitive operation [41].

Before we go to the detail of design and operation of this configuration,

however, the first question one may ask is that what is the motivation for non-

linear fibers based devices and why not just keep on using the already popular

solid-state laser systems. It is true that solid-state laser systems often use crystals

for stable generation of wavelength-agile short pulsed laser radiation [42]. One can

have synchronous short pulses trains at different wavelengths, and the wavelength

can be widely tunable at certain frequency domain. These pulse trains are useful in

pump-probe measurements such as probing the carrier lifetimes in semiconductors

and spectroscopically resolving fast chemical and biological reactions [43, 44, 45].

These commercial solid-state laser systems are quite successful and commonly used,

but they are still kind of expensive. During these years, facilitated by the devel-

opment of PCFs there is a trend towards using ultrafast fiber lasers. The major

limitations of fiber lasers are their range of tunable wavelength and quality of pulse

duration. Operating through FWM mediated by the nonlinearity of glass, FOPOs



24

promise to address this shortcoming. Some major advantages for fiber-based de-

vices in comparison with crystals based systems [41] are as fellows. Since the FWM

phase-matching bandwidth can be continuous and hundreds of nanometers wide,

the output occurs at wavelengths either longer or shorter than that of the input

pump. The transverse mode quality of fiber-based oscillators is exceptionally good

due to the endless single mode property of PCF. Furthermore, a fiber-based gain

medium lends itself to further integration with fiber components. The widespread

adoption of ultrafast systems will be greatly facilitated by the development of

fiber-integrated wavelength-agile synchronous sources. So one of our motivations

is to develop compact tunable pulsed light sources.

More detailedly, operating through FWM and mediated by the third-order

nonlinearity, FOPOs can enhance the performance of mode-locked fiber lasers

through greater wavelength flexibility and shorter pulse durations [41, 46]. The

pump laser delivers a stable high-power pulse train at a fixed wavelength while

FOPOs enable conversion to other wavelengths. As the design of PCF allows

engineering dispersion, i.e., shifting the ZDW, novel PCFs have extended FOPO

functionality from visible wavelengths to the infrared [47, 48]. These FOPO sys-

tems deliver complimentary functionality as compared with the relatively mature

bulk material to build optical parametric light sources based on second-order non-

linearity. Furthemore, our intention also refer to the optimal capability of pulsed

FOPOs [49] and to exploit these systems as new light sources for applications in

other areas [50, 51]. Operating over a broad range of wavelengths, pulse durations,

and output powers [41, 48, 52], the design of FOPO ranges from fiber integrated to

mostly bulk where the design is determined by usability versus performance trade-

offs [53, 54]. The need for greater fiber integration and optimization of FOPOs

provides motivation for identifying the primary physical mechanisms that govern

the output. For an example in nonlinear microscopy, it is critical to know what

governs the spectral width and quality of output spectrum. This will be covered in

chapter 4. There are also some practical applications of FOPO systems reported

by our group [55]. Since parametric amplification is an ultrafast process based on

the electronic susceptibility of the materia, there is no long-lived excited state, so
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the FOPO cavity must be aligned so that it is synchronous with that of the pump

laser cavity. The goal is to amplify the small portion of feedback after each round

trip through the system, and so a new pump pulse must be passing through the

fiber and synchronized with existing feedback pulses. Additionally, the ultrafast

pump pulses can experience distortion upon propagation through the fiber. When

the cavity is perfectly aligned then the system produces a stable pulse train with a

minimum of amplitude fluctuations. Unstable amplitude fluctuations are present

if the cavity is not perfectly synchronous.

Figure show the basic design of FOPO, where . As we discussed in the

previous section, based on Eqs. (2.27) and (2.28), it is critical to choose a fiber

with suitable dispersion curve to obtain wideband parametric amplification [41].

One needs to choose a fiber and pump wavelength so that the system operates

in the small transition region between anomalous and ZDW. The system will still

operate over a fairly wide bandwidth when the pump laser is tuned slightly into

the anomalous GVD, and in practice the system is much easier to align under this

situation. Oscillation is considerably more challenging to obtain for operation even

slightly into the region of normal GVD. This is because it is hard to compensate

for the nonlinear phase mismatch 2γP0 by the linear phase mismatch ∆β as we

discussed in the previous section based on Eqs. (2.27) and (2.28). However, if the

pump wavelength is tunable one can achieve a different design of FOPOs whose

parametric gain profiles are isolated narrow spectrum-band [56] by imposing pump

wavelength in normal GVD region of fibers.

The cavity lifetime is also an interesting consideration. Most of systems

described in this thesis have relatively lossless cavity mirrors at the oscillating

wavelength, but suffer significant loss due to fiber input coupling. It is reasonable to

estimate that the round-trip loss is more than 70%. The system depicted in Fig. 2.6

will operate at a center wavelength corresponding to the peak of the parametric

gain. Wavelength tunability can be introduced by including a dispersive element

within the cavity. If sufficient dispersion is added then the optical path length

depends on wavelength. As such, the wavelength at which synchronous operation

is achieved depends on the position of one of the end mirrors within the cavity.



26

End
mirror

   Pump
laser

Fiber

   Front 
reflection

Dispersive 
  medium

Optional 
reflection

Output

Cavity

Figure 2.6: Schematic of generalized FOPO.
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In order to identify the optimum oscillating signal feedback condition one

must consider shifting pump energy as much as possible to the output fields. Using

this system we can independently adjust the feedback of the oscillating signal to

obtain the optimum pump depletion. For example, by introducing an intracavity

filter detuned from the oscillator’s phase-matched frequency conversion efficien-

cies considerably higher than those possible when operating at the phase-matched

frequency are demonstrated [57].



Chapter 3

Femtosecond operation of FOPOs

In this chapter, our discussion focuses on the generation of 48fs pulses with

linear chirp using a short (27mm) fiber based on the configuration of FOPO. The

output ultrashort pulse is synchronized with pump which is delivered by a mode-

locked Yb-doped fiber laser. We study the pulse quality for both short-wavelength

and long-wavelength operation where the fiber length inside the oscillator is var-

ied from 17mm to 61mm. The optimal pulse duration is only observed in short

wavelength operation.

Furthermore, to better understand the optimal condition, we model the

FOPO system as a single-pass optical parametric amplifier including dispersive

pulse broadening and walk-off between the pump and output. The optimal con-

dition arises from the minimization of the walk-off and dispersion. When walk-off

is large, the parametric amplification process is most efficient over some reduced

effective fiber length leading to an upper limit in the amount of observed pulse

broadening.

3.1 Performance in femtosecond region

The detailed FOPO setup in our experiment is illustrated in Fig. 3.1. The

pump laser source is a 400 ± 30fs, 50MHz mode-locked Yb-doped fiber laser

(PolarOnyx, Inc. Uranus) with a polarized output centered at 1032nm [58]. The

coupled average pump power was adjusted to be 1.0W for all of the measurements.

28
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Pump light is coupled into the Fabry-Perot cavity via a glass window where Fresnel

reflections provide sufficient feedback for oscillation. The repetition rate of FOPO

cavity is the same as laser and the output is synchronized with pump laser. The

FOPO can oscillate due to feedback from either surface of “Window” and we adjust

to use the right-most surface (see Fig. 3.1). The “Q”-factor of the cavity is low,

but the parametric gain provided by phase-matched FWM compensates for the

loss. This piece of fiber, PCF3, is not designed to be birefringent, but fibers of

this type generally exhibit birefringence with a difference in refractive indices on

the order of 10−5. We observe variations in the amount of SPM of the pump, and

there are two maximal polarization-maintaining modes. The FOPO can oscillate

on either mode. The output was experimentally verified to be co-polarized with

respect to the pump. One can change the output wavelength range by switching

the mirror (see Fig. 3.1) from a longpass dielectric mirror to a shortpass dielectric

mirror. The output is obtained from the front coated surface of the dielectric mirror

while the back uncoated surface can be used to monitor the oscillating wave and

residual pump. For the long-pass mirror there is oscillation of long wavelengths

while the short wavelengths are coupled out. For the short-pass mirror there is

oscillation of short wavelengths while the long wavelengths are coupled out. To

clarify the nomenclature used in this chapter, we refer to the oscillating portion

of the spectrum as “signal” and the output-coupled portion of the spectrum as

“idler”.
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Figure 3.1: The setup of FOPO utilizing a short PCF within a Fabry-Perot cavity.
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(a)

 

(b)

Figure 3.2: (a) Measured group velocity delay and inferred group velocity dis-
persion of the PCF3 used in these experiments. (b) SEM image of the PCF3.
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(a)

(b)

Figure 3.3: Experimental measurements of the output of the FOPO for a 27-mm
long fiber. (a) Measured FROG spectrogram. (b) Retrieved temporal amplitude
(solid line) and phase (dashed line).
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Figure 3.4: Measured spectra for both sidebands at high and low pump power
for a 33-mm long fiber. Curves for 1W have been vertically offset for clarity.
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This piece of optical fiber, PCF3, was provided by Yangtze Optical Fibre

and Cable Co. Ltd. At 1060nm it has a nonlinear coefficient of 11(W · km)−1, a

mode field diameter of 3.6±0.1µm, and an attenuation of 3.0dB/km. As illustrated

in Fig. 3.2, our measurement of the zero dispersion wavelength for this fiber is

1030nm. We characterized the output of the FOPO for different fiber lengths

ranging from 17mm to 61mm, where the fibers were individually cut and cleaved

from the same fiber spool. Second harmonic generation frequency resolved optical

gating (SHG-FROG) was used for the characterization [59].

Shown in Fig. 3.3 are measurements of FOPO output at short wavelengths

for a fiber length of 27mm. Figure 3.3 (a) is the measured SHG-FROG trace

showing the power at the second harmonic as a function of time and wavelength.

The temporal amplitude in Fig. 3.3 (b) implies a pulse duration of 48fs, and the

newly quadratic temporal phase profile suggests that the pulse has linear chirp.

Similar data sets were recorded for the other seven fiber lengths tested in this

experiment. For all of these cases the average output power is 70± 10mW .

Shown in Fig. 3.4 are typical optical spectra sampled from a FOPO incorpo-

rating a 33−mm long fiber and configured to output short wavelengths. Near the

oscillation threshold there are sidebands centered at 870nm and 1270nm. When

the average pump power increases to 1.0W the output peak wavelength occurs at

940 nm while the long wavelength sideband broadens over a range from 1100nm

up to 1450nm. Spectral behavior within the band labeled “Filter” in the diagram

is in the transition region of the output mirror. The broad spectrum of the output

is due to the broad parametric gain bandwidth [52].

3.2 Dispersive pulse broadening, walk-off, and

gain-narrowing effects

For crystal OPOs based on second order nonlinearity, the formation of signal

pulses over multiple passes through the system has been studied [60, 61]. Walk-off

between the injected and generated pulses plays a major role in compression of the

output pulses. A full understanding requires a series of careful simulations, but in
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order to develop some intuition about this system, as illustrated in Fig. 3.5, we

consider a single-pass optical parametric amplifier process and include dispersive

pulse broadening of the idler, walk-off between the pump and idler pulses, and pulse

narrowing due to enhanced gain near the peak of the pump pulse (gain narrowing

effect). The idler is coupled out of the cavity immediately as it emerges from the

fiber.

We define D(λi) as the dispersion parameter, ∆λi is the spectral full width

at half maximum (FWHM) of the idler pulse, and L is the length of fiber. The

dispersive pulse broadening is given by:∆t = |D(λi)|∆λiL, as shown in Fig. 3.6

(a). The magnitude of the walk-off between the pump and idler pulses [49, 62], as

shown in Fig. 3.6 (b), is given by:∆T = |D(λc)||λi − λp|L , where λi is the output

wavelength, λp is the pump wavelength and λc = (λi + λp)/2.

The signal and idler pulses propagate slightly slower through the fiber than

the pump pulse does; so due to the amplification from parametric gain, the idler

pulse will emerge longer in duration than would be the case for negligible walk-off.

However, gain narrowing provides an upper limit to the amount of broadening.

Gain narrowing occurs because the gain depends approximately exponentially on

the pump power. The gain is much larger at the peak of the pump pulse leading to

output pulses much narrower than the pump. For example, if a small CW signal

interacts with a strong Gaussian pump pulse, the output is a Gaussian pulse with

a temporal FWHM given by [52]:

τeffective = 2Tp

√
−1

2
ln(1− ln 2

2γPoL
) (3.1)

where P0 is the peak power of the pump pulse and Tp is the pulse duration of

the pump. Typically P0 ≈ 50kW and Tp ≈ 400fs for these experiments. And

τeffective is about 40fs for the 27mm fiber length. The whole process is illustrated

in Fig. 3.6 (c).
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(a)

(b)

Figure 3.5: (a) The setup of FOPO utilizing a short PCF3 within a Fabry-Perot
cavity. (b) Single pass FOPO model.
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Figure 3.6: (a) Pulse dispersion: ∆tdispersion ≈ |D(λi)|∆λiL. (b) The pump-to-
signal walk-off: ∆Twalk−off ≈ |D(λc)||λi − λp|L. (c) Gain narrowing effect.
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We consider the case of small walk-off (∆τ < τeffective) and large walk-off

(∆τ > τeffective) separately. For small walk-off, the signal and idler pulses are

almost always within the center region of pump pulse. In this case, the combined

effects of walk-off and dispersive pulse broadening will stretch the output pulse in

additive fashion according to τsignal = ∆T + ∆t. For the large walk-off situation,

the signal and idler pulses pass quickly through the center region of pump pulse.

The OPA process is most efficient over some reduced effective fiber length leading

to an upper limit to the amount of observed pulse broadening. The limit is given

by the gain narrowed pulse duration, τeffective. In total, the pulse duration for the

large walk-off case is obtained by adding the gain-narrowed pulse duration and

dispersion according to τsignal = τeffective + ∆t.

3.3 Optimization of pulse duration for the sub-

50fs generation

Plots of pulse duration as a function of fiber length are shown in Fig. 3.7

(a). For short wavelength operation, as the fiber length increases from 17mm up

to 27mm, the pulse duration decreases at a linear rate of 5fs/mm. The minimum

pulse duration of 48fs is obtained for a fiber length of 27mm. From 27mm up

to 61mm the pulse duration increases at a linear rate of 1.4fs/mm. The system

can be operated using fibers longer than 61mm but measurements are unreliable

due to a large amount of supercontinuum. for long wavelength operation where

the pulse duration increases from 132fs up to 250fs, the results are also shown

in Fig. 3.7 (a).Furthermore, plots of wavelength as a function of fiber length are

shown in Fig. 3.7 (b). Fig. 3.8 shows detail temporal information (pulse profile

and temporal phase) for some typical data points in Fig. 3.7 (a).

A comparison of our experimental data points with the model we dis-

cussed in section 3.2 is shown in Fig. 3.9. The central wavelength and FWHM

are taken as input parameters, The output performance for short-wavelengths for

all of the fibers tested corresponds to the case of small walk-off. The output at

long-wavelengths corresponds to the case of large walk-off.
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Figure 3.7: Reconstructed amplitude and phase in the time domain of the output
of the FOPO measured on both sidebands for different fiber lengths.
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(a)

(b)

Figure 3.8: (a) Measurement of pulse duration as a function of fiber length at both
output wavelengths ranges. (b) Measurement of center wavelength as a function
of fiber length.
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Figure 3.9: Measurement of pulse duration as a function of fiber length at both
output wavelengths ranges.
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There are three issues with the analyses given above. Firstly, the model

indicates that a longer fiber length will lead to a smaller τeffective. However, for

the case of a high gain FOPO incorporating a long fiber, the peak power, P0, of

the pump pulse decreases along the length of the fiber leading to a longer τeffective.

Secondly, the calculation of τeffective assumes a Gaussian-shaped pump pulse. For

pump pulses exhibiting a more complicated shape [49], τeffective may be longer.

Thirdly, we have ignored the potential broadening or compression produced by

the dichroic mirror used for output coupling. We experimentally find that a single

reflection from this mirror generates less than 5fs of pulse broadening of the idler.

Reconstructed amplitude and phase in the time domain of the output of the

FOPO measured on both sidebands for different fiber lengths. (a) Measurement

of pulse duration as a function of fiber length at both output wavelengths ranges.

(b) Measurement of center wavelength as a function of fiber length.

In summary, we generate 48fs pulses using a 27mm fiber within a FOPO

configuration. We propose a model for the output pulse duration including pump-

to-output walk-off, intra-pulse dispersion and gain narrowing. Optimal pulse du-

rations are obtained when walk-off and dispersion are minimized by choosing a

suitable fiber length and output wavelength. We report on a FOPO capable of

delivering pulses as short as 48 fs in duration. We explore the variation in system

performance as a function of the length of fiber used in the oscillator. For short

wavelength operation (840nm to 970nm) an optimal fiber length of 27mm gener-

ates a pulse duration of 48 fs with a center wavelength at 970nm. This optimal

condition arises from the minimization of dispersion, and walk-off between the

pulsed pump and output. In contrast, we do not observe an optimal fiber length

when the system is configured for the output ranging from 1250nm to 1330nm.



Chapter 4

Picosecond operation of FOPOs

In this chapter, our discussion focuses on the generation of a few picosec-

onds pulses (duration of 2 ∼ 4ps) using 1.2m fiber based on the configuration of

FOPO. The output ultrashort pulses are synchronized with pump pulses which are

delivered by a mode-locked Nd:Vanadate fiber laser.

Our experiment also reveals that the spectral shape and width of the output

pulses are determined by cross-phase modulation (XPM) and cavity synchroniza-

tion. The spectral behavior is explained by a single pass pulse propagation model.

The spectrum exhibits pump power dependent broadening which can be asymmet-

ric with a red or blue shift depending on cavity synchronization. Moreover, the

average power conversion efficiency is maximized by adjusting the cavity length

to the long range of its operation. This leads to a blue shifted spectrum and

conversion efficiency as high as 15% for 80mW of output and a 535mW of pump.

4.1 Performance in picosecond region

Figure 4.1 illustrates our experimental setup. The pump laser delivers

transform-limited 8ps pulses at a repetition rate of 80MHz. It is a mode-locked

Nd:Vanadate laser with a linearly polarized output centered at 1064 nm. The max-

imum average pump power coupled through the PCF4 is 535mW . A Fabry-Perot

cavity is formed between the Fresnel reflection from the front cleave of the fiber and

the end mirror mounted on a translation stage. We utilize the Fresnel reflection

43
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because the system is stable and easy to align. However, this reflection is only 4%.

Combining other loss and coupling efficiency, the round trip cavity loss is about

99%. The parametric gain needed to achieve threshold for oscillation should be

about 100, corresponding to a nonlinear phase shift of γPpL ∼ π [32]. The cavity

length is adjusted to an optical path of 2 m, which corresponds to the repetition

rate of the pump laser. A half-wave plate (HWP 1) and isolator are used for the

input power control, while HWP 2 adjusts the polarization. A fiber polarization

controller (FPC) is installed on the PCF in order to manage the beam polarization

within the fiber, which is not polarization maintaining. By adjusting HWP 2 and

the FPC one can optimize the output of the FOPO. The oscillating wavelength is

tuned by rotating the end mirror where the mirror and prism combination leads

to a 3-nm wide wavelength-dependent feedback. The output coupler can be either

a long-pass mirror (for short wavelength output), or a short-pass mirror (for long

wavelength output).

This piece of fiber (NKT Photonics; NL 5.0 1065), PCF4, has a nonlinear

coefficient of 11 (W ·km)−1 measured at 1064nm, a mode field diameter of 4.2±0.4

µm, and an attenuation of less than 16dB/km. The group velocity dispersion, as

shown in Fig. 4.2, indicates the zero group velocity dispersion wavelength is at

1061nm.

∆T ≈ 1

2
D ·∆λ · L (4.1)

where D is dispersion parameter, ∆λ is the spectrum width in wavelength domain,

and L is fiber length.

Figure 4.3 shows the calculated temporal walk-off between the pump and

signal. For example, the wak-off is 0.8 ps at 1140 nm, which corresponds to δ =

0.1. As the pump-to-signal wavelength spacing increases their effective interaction

length decreases, thus reducing the parametric gain within the FOPO.
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Figure 4.1: The setup of FOPO utilizing a 1.2m-long PCF.
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Figure 4.2: The group velocity dispersion of the PCF used in these experiments.
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Figure 4.4: Measured spectra from the reflection of prism.
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Figure 4.5: Retrieved output pulse from a FROG measurement .

Figure 4.4 shows the measured spectra from the reflection of the prism

without an output coupler in the cavity. By adjusting the angle of end mirror and

the position of the translation stage, one can select the wavelength for feedback.

The tuning range is from 960 nm to 1044 nm on the anti-Stokes side and 1084

nm to 1191 nm on the Stokes side. The dashed line in Fig. 4.4 is a calculation of

the parametric gain which considers phase matching, pump SPM and XPM for a

continuous-wave undepleted pump [41, 52]. The wavelengths for peak operation

are 990 nm and 1140 nm. The oscillation threshold is 460±10 mW for the peak

power of pump. Shown in Fig. 4.5, a FROG measurement implies a pulse duration

of 2.2 ps at 1140 nm.

Till now, we have briefly discussed the performance of FOPO in picosecond

domain. Our demonstration clearly shows the feasibility of our FOPO as widely

tunable light source. In next two sections, our study will focus on the output

in the frequency domain and will show the experimental evidence and theoretical

analysis of asymmetric spectrum with modulated peaks. This spectrum property

depends on the pump power and cavity synchronization.
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4.2 Asymmetric spectrum behavior

The high resolution spectra shown in Fig. 4.6 (a)- (c) are measured at long

wavelength operation with a short pass dichroic mirror placed in the cavity as the

output coupler. We gradually decrease the pump power from Fig. 4.6 (a) to (c)

but fix the cavity length. The key conclusions drawn from these figures are: The

spectral bandwidth of the output is determined by XPM spectral broadening. And

the number of peak of the spectra is also determined by the power of the pump.

The spectral signature of XPM combined with cavity length detuning (syn-

chronization of pump and signal pulses) is shown in Fig. 4.7 (a)- (c). The syn-

chronization is adjusted the position of the end cavity mirror with the constant

pump power. Although we will discuss the calculation of spectrum quantitatively

in the next section, here we will first develop some qualitative understandings of

this observation. One can simplify the performance of FOPO using a single pass

optical parametric amplifier model: A weak signal is amplified by a strong pump,

and meanwhile an idler is generated and amplified as well. The modulation and

asymmetry are due to XPM-induced chirp combined with a delay between the

pump and amplified two pulses, as shown in Fig. 4.8. Fig. 4.8 (a) - (c) are under

situations with different initial pulse delay between pump and signal.

We explain the variations of spectrum as follows [63]. In the case of Fig. 4.7

(a), the signal pulse interacts mainly with the trailing edge of the pump pulse.

As a result, the XPM-induced chirp is positive leading to red-shifted spectral

components. Figure 4.7 (b) is a smooth spectrum. This arises from the fact that

the pump pulse starts slightly behind the signal, but passes through the signal

after the propagation of the fiber length. Due to the balance of interaction with

the trailing edge and leading edge of the pump pulse, the spectrum of anti-Stokes

wave is more like a simple peak. In the case of Fig. 4.7 (c), the pump pulse trails

the signal by a larger amount than in Fig. 4.7 (b). The chirp is negative leading

to blue-shifted spectral components.

In short, we find that the output of a picosecond-pumped FOPO in a low-

finesse Fabry-Perot cavity exhibits a spectral width and distortion determined by

XPM between the output and the pump pulses. The broadening is significant,
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Figure 4.6: Measured output spectra at different pump power level. (a) Coupled
pump at 535mW and output at 80mW . (b) Coupled pump at 484mW and output
at 63mW . (c) Coupled pump at 432mW and output at 48mW .



52

1130 1135 1140 1145 1150
Wavelength (nm)

In
te

ns
ity

 (
10

 d
B

/d
iv

)

(a)

(c)

(b)

Figure 4.7: Measured output spectra at different cavity synchronization (a) Max-
ima output power at 80mW . (b) Shorten the cavity length by 0.056cm to get the
output power at 60mW . (c) Shorten the cavity length by 0.16cm to get the output
power at 45mW .
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Figure 4.8: Single pass mode with different initial pulse delay between pump and
signal.
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leading to chirped pulses with time-bandwidth products greater than the factor of

two. In order to use such a system in settings where a narrow spectral width is

important, such as spectroscopy, one must reduce the spectral broadening. One

way to achieve this is to improve the overall finesse of the cavity so that the system

will operate at lower pump powers.

4.3 Cross-phase-modulation-induced spectral ef-

fects

Pulsed parametric amplification in fibers involves co-propagation of a strong

pump pulse and one or more weak pulses. Due to the effect of XPM the spectrum

of the weak pulse is influenced by the strong pump pulse. The combination of

XPM and walk-off leads to a modulated and asymmetric spectrum [63, 64]. These

effects have been reported previously in fiber Raman soliton lasers [64]. As shown

in the previous section, we experimentally observed a similar phenomenon in op-

tical parametric process. The generation of signal and idler pulses is due to the

phase-matched FWM, stimulated by pump pulses. Although our system is an os-

cillator, we find that many aspects of its performance are described using a single

pass of parametric amplification once operation at steady state is achieved [54].

This approximation is justified because the cavity is lossy and the output coupler

is placed immediately after the beams exit the fiber. Intra-pulse dispersive broad-

ening of the individual pump, signal and idler pulses through 1.2 m of fiber is

insignificant [32]. The analysis below describes the single-pass evolution of a weak

signal pulse in the presence of a strong pump pulse, including XPM and walk-

off between them. We neglect small contributions from SPM of the signal and

XPM arising from the idler. Therefore the time-dependent nonlinear phase shift

arises only from the strong pump pulse. Despite these assumptions, our simplified

theoretical analysis below still find remarkable agreement with experiments.

We begin with two pulses, pump and signal, propagating along the fiber.

They are initially unchirped Gaussian shaped pulses with initial amplitudes, Ap(0, T ) =√
Ppe

− (T+Td)
2

2T2
p and As(0, T ) =

√
Pse

− T2

2T2
s , respectively [63]. Soliton shaped pulses
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yield similar results [64]. The peak powers are given by Pp and Ps and their pulse

durations are Tp and Ts. T is the time in the reference frame of the signal pulse.

The initial delay between the peaks of the two pulses is given by Td. Including

walk-off and XPM, the amplitude of the signal pulse after propagating through the

fiber of length L is given by As(L, T ) = As(0, T − ∆β1L) exp(iφ). The resulting

phase shift is

φ(L, T ) = 2γ

∫ L

0

|Ap(0, T + ∆β1z)|2dz (4.2)

where ∆β1 = β1(λs)− β1(λp) is the difference in the first order propagation coef-

ficient of the pump and signal pulses. Equation (4.2) indicates that as the pulse

propagates through the fiber its phase is modulated because of the intensity de-

pendent refractive index, and this contribution changes along the fiber length due

to group-velocity mismatch. The total contribution is [32, 63]

φ =
γPpL

√
π

δ
[erf(τ + τd)− erf(τ + τd − δ)] (4.3)

where erf(τ) = 2√
π

∫ τ
0
e−t

2
dt stands for the error function, τ = T

Tp
is the normalized

time frame, τd = Td
Tp

is normalized delay, and δ = ∆β1L
Tp

quantifies the walk-off

relative to the pump pulse duration. The resulting spectrum is obtained through

a Fourier transform [32]:

S(w) =|
∫ ∞
−∞

As(0, T −∆β1z)

· e[iφ(T )+i(w−ws)T ]dT |2 . (4.4)

Therefore, increasing the pump power introduces more phase modulation and gen-

erally broadens the output spectrum. Furthermore, the detailed calculation below

will show that the spectrum can be asymmetric accompanied with red or blue

frequency shift depending on τd.

In section 4.2, we shown the measured spectra in Fig. 4.6 and 4.7. Here

based on Eq. (4.4) and justified parameters, we show the calculated spectra plotted

using the thin curve in Fig. 4.9. Accordingly, the thick curves are the measured

output spectra of the FOPO, where the subfigures (a) - (e) are the same as Fig. 4.6
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(a) (b) (c) and Fig. 4.7 (b) (c). First, let us take a look at the power dependent

spectrum broadening. The synchronization is the same for Fig. 4.9 (a) (b) and (c)

by fixing the cavity length and end mirror rotation. There is an asymmetric spec-

trum with a sequence of peaks and valleys extending towards longer wavelengths.

As the pump power decreases from Fig. 4.9 (a) to (c), the spectral width narrows,

the main peak moves to longer wavelengths and fewer cycles are visible.

The effect of time-dispersion tuning on the output spectrum is shown in

Fig. 4.9 (a), (d) and (e). The pump power and rotational position of the end

mirror are fixed but the cavity length is adjusted. The average output power is 80

mW for the case of Fig. 4.9 (a). Figure 4.9 (d) shows that after adjusting by 0.038

cm (2.4 ps round trip delay) the output spectrum becomes smooth. The average

output power is 60 mW. Adjusting by another 0.089 cm (5.6 ps round trip delay)

leads to asymmetric spectrum with modulations extending to short wavelengths

relative to the main peak, shown in Fig. 4.9 (e). The average output power is 45

mW.

The thin curves in Fig. 4.9 are the theoretical calculations of the output

spectrum using Eq. (4.4). For τd = 0.25, corresponding to Fig. 4.8 (a), the signal

pulse is launched behind the pump which maks it experiencing the trailing edge

of pump. For the case in Fig. 4.9 (d), τd = −0.05, corresponding to Fig. 4.8

(b), after one pass through the fiber, the signal pulse which was initially launched

ahead of the pump pulse lags slightly behind the pump pulse at the output. As

such, the signal walks through the center of the pump pulse. When τd = −0.75,

corresponding to Fig. 4.8 (c), the signal pulse is launched further ahead of the

pump in comparision with Fig. 4.9 (d), as shown in Fig. 4.9 (e). Although it

travels slowly, the signal pulse still leads the pump pulse after one pass.

By comparing Fig. 4.9 (a) (d) and (e), one can see that the spectrum is

modulated and shifts towards shorter wavelength if the cavity length is adjusted

to the long range of its operation. In its short range, the spectrum shifts towards

longer wavelengths. Finally, in its middle range, the output spectrum becomes

smooth. It is surprising that interaction with the trailing edge gives a higher

output power. We believe this is due to the power-dependent phase mismatch [38].
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In summary, we describe a ps-pumped FOPO which is more compact and

stable compared with femtosecond systems [48, 54]. For a high power pulsed

FOPO, the output spectral width is governed by XPM, pump power, and cavity

synchronization. The spectrum exhibits pump power dependent broadening, and

a red or blue shift depending on cavity synchronization. One can increase the

spectral bandwidth for time-dispersion tuning by increasing the input pump power.

This will lead to chirped output pulses with clear spectral modulation away from

the center of the tuning range. Chirped pulses with a wide spectral bandwidth may

be desirable if one plans to use extra pulse compressor. Alternatively, to reduce

the spectral bandwidth of the output pulses one should use less pump power, for

example, by reducing cavity losses. We explore the spectral effects due to cross-

phase modulation and walk-off in picosecond fiber optical parametric oscillators.

The output spectrum exhibits pump-power-dependent broadening, which can be

quite asymmetric associated with a redshift or a blueshift depending on pump

synchronization. By slightly increasing the cavity length, one obtains a blueshifted

spectrum and a conversion efficiency as high as 15%.



Chapter 5

Theoretical analysis of fiber

optical parametric processes

In chapter 3 and 4, we discussed two FOPOs which are operated in fem-

tosecond and picosecond domain, respectively. In this chapter, we will focus on

the theoretical analysis and physical dynamics in this configuration - fiber optical

parametric process. First, we will model FWM at ultrafast situation, where three

waves (pump, signal and idler) are all ultrashort pulses with broadband spectra

rather than CW or long-pulsed situation which had been discussed in section 2.2

based on Eqs. (2.12) to (2.14). Second, we will show numerical results using jus-

tified parameters and compare with experimental data. Third, there exhibit an

interesting physical phenomenon which is both experimentally and numerically

observed. We call this phenomenon “spectral mirror imaging” (SMI) because two

widely separated spectral sidebands can always behave as mirror images of one

another with respect to the center frequency of the controlling pump beam.

5.1 Modeling ultrafast four-wave mixing

In chapter 3 and 4 we have discussed two FOPOs, and shown that both of

their performance can be regarded as a single pass fiber optical parametric process

after steady state operation. In this chapter, we will continue with this configu-

ration but focus more on the theoretical analysis to compare with an interesting
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experimental result we observed. As shown in Fig. 5.1, the key elements of this

FOPO configuration are similar to the previous one we used in chapter 3 and 4,

except that an extra prism is used inside the cavity. This FOPO system consists

of a mode-locked laser, a piece of highly nonlinear fiber, a prism and an adjustable

end mirror. The fiber is placed within an optical cavity so as to resonantly enhance

a signal wave built up from noise in the presence of the strong pump wave. Since

the pump is pulsed, the generated signal and idler are also pulsed and synchronous

with the pump. As illustrated in Fig. 5.1 (b), a Fabry-Pérot cavity is formed be-

tween the cleave at the input end of the fiber and the end mirror. The rotatable

end mirror determines the center wavelength of the resonant signal field. Neither

the pump nor idler fields are resonant in the cavity. Once steady-state is achieved

the signal oscillates within the cavity and is synchronous with a refreshed pump

for each pass through the fiber. The nonlinear wave-mixing leads to the generation

of an idler within each pass. Therefore once oscillate, each pass can be modeled as

a single pass fiber optical parametric process where a portion of the output signal

is fed back as the input to the next pass.

In section 2.2, the simplified analysis is based on Eqs. (2.12) to (2.14) that

assume a CW or quasi-CW regime so that GVD and even higher order dispersions

can be neglected. Here, to be precise, in the femtosecond or a few picosecond

domain, the effects of GVD can be included by allowing Aj(z) to be a slowly varying

function of time and following the analysis of section 2.1. Assuming that all three

waves are polarized the same along the fiber (polarization effects are neglected),

and our concern of dispersion only extend to the second-order coefficient so that

the inclusion of GVD effects amounts to replacing the derivative dAj/dz with

dAj
dz
→ ∂Aj

∂z
+ β1j

∂Aj
∂t

+
i

2
β2j

∂2Aj
∂t2

(5.1)

for all three waves (i.e., j = 0 to 2, for pump, signal and idler) in analogy with
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Eqs. (2.12) to (2.14), as shown below [65]:

∂A0

∂z
− iγ

[
|A0|2 + 2|A1|2 + 2|A2|2

]
A0 + 2iγA1A2A

∗
0e
i∆βz = 0,

(5.2)

∂A1

∂z
+ ∆β11

∂A1

∂T
+
i

2
β21

∂2A1

∂T 2
− iγ

[
|A1|2 + 2|A2|2 + 2|A0|2

]
A1 + iγA2

0A
∗
2e
−i∆βz = 0,

(5.3)

∂A2

∂z
+ ∆β12

∂A2

∂T
+
i

2
β22

∂2A2

∂T 2
− iγ

[
|A2|2 + 2|A1|2 + 2|A0|2

]
A2 + iγA2

0A
∗
1e
−i∆βz = 0 .

(5.4)

These three coupled NLS eqs. above consider the co-propagation of three

waves in the moving frame of pump pulse, where A0 A1 A2 represent pump, signal

and idler respectively. The pump wavelength is near the ZDW of fiber (β20 = 0), γ

is the nonlinearity of fiber and the fiber loss is negligible. The difference in group

velocity between the pump and signal pulses is defined as ∆β11 = β1(ω1)−β1(ω0),

and the difference in group velocity between the pump and idler is defined as

∆β12 = β1(ω2) − β1(ω0). The GVD of signal and idler are described by β21 and

β22, while the propagation mismatch is described by ∆β = β(ω1)+β(ω2)−2β(ω0).
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Figure 5.1: Schematic of a generalized FOPO for both femtosecond and picosec-
ond operation.
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In Eqs. (5.3) and (5.4) for the signal and idler, the second term represents

walk-off and the fourth term represents self-phase modulation and cross-phase

modulation. Their combined contributions, nonlinear phase shift as a function of

walk-off, lead to an asymmetric multiple-peaked spectrum [66]. We will show later

that the third term, representing GVD of pulses, and the last term, representing

parametric gain, are responsible for SMI.

The resulting three coupled NLS equations (5.2) - (5.4) describe FWM

of ultrashort optical pulses and include the effects of GVD, SPM, and XPM. It

is generally difficult to solve the coupled NLS equations analytically, therefore

numerical approaches are usually used in practice. Furthermore, as the group

velocity of three pulses participating in the FWM process can be quite different,

efficient FWM requires not only phase matching but also matching of the group

velocities. Our simulations on the performance of FOPO are based on the three

coupled nonlinear Schrödinger Eqs. (5.3) and (5.4). We start with a transform-

limited pump pulse and a chirped signal pulse as the input where the initial delay

between the pump and signal, τ , can vary. The signal pulse is ahead of the pump

pulse if τ < 0. Adding chirp to the input signal pulse is necessary as a result of the

prism inside the cavity as shown in Fig. 5.1. For the femtosecond case, the pump

pulse is an unchirped Gaussian shape having a pulse duration of 400 fs and a peak

power of 30 kW . The input signal pulse is a chirped hyperbolic secant shape with

a pulse duration of 80 fs and peak power of 10 W. For the picosecond case, the

pump pulse is an unchirped Gaussian shape having a pulse duration of 8 ps and a

peak power of 780 W . The input signal pulse is a chirped hyperbolic secant shape

with a pulse duration of 2 ps and peak power of 5 W. Based on these parameters,

our simulations show a notable symmetric feature between two spectral sidebands.

Simulation results of two sideband spectrograms, i.e. spectra as a function of the

initial delay, are shown in Fig. 5.2 and 5.3.
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5.2 Simulation and experimental results

To compare with the simulations in section 5.1, we use two setups incorpo-

rating different pump lasers and fibers whose ZDWs match the pump wavelength.

The femtosecond FOPO is pumped by a mode-locked Yb-doped fiber laser which

delivers a pulse duration of 400 fs with a repetition rate of 50 MHz. It is linearly

polarized with center wavelength at 1032 nm. The average pump power launched

into the fiber is 620 mW. In the femtosecond case, the fiber is 3 cm long with a

ZDW at 1030 nm. For other parameters of fiber, please refer to chapter 3 and

Ref. [54]. The picosecond FOPO is pumped by a mode-locked Nd:Vanadate laser

which delivers transform-limited 8 ps pulses at a repetition rate of 80 MHz. It is

linearly polarized with center wavelength at 1064 nm. The average pump power

coupled into the fiber is 525 mW. In the picosecond case, the fiber is 1.2 m long

with ZDW at 1061 nm. For other parameters of fiber, please refer to chapter 4

and Ref. [66].

The spectra plotted in Fig. 5.4 (a) are for the output of the femtosecond

system where traces 1, 2, and 3 correspond to three different end mirror translation

settings. Trace 1 is obtained when the FOPO is operated at its highest output

power. We acquire trace 2 and trace 3 by reducing 15 µm and 30 µm of cavity

length (corresponding to 0.1 ps and 0.2 ps round-trip delay), respectively. In these

three traces one observes two distinct sidebands located at about 7880 cm−1 and

11500 cm−1 which are equally spaced from the pump at 9690 cm−1. For trace

1 each sideband includes three peaks. As the cavity length becomes shorter, in

trace 2 each sideband has two peaks. Finally, for trace 3 there is only one peak

on each sideband. In all cases, the two sidebands behave as mirror images of one

another illustrating the SMI features. Simulations for the femtosecond case, shown

in Fig. 5.4 (b), support our experimental observations.

Figure 5.5 (a) shows the experimental observations of SMI for the picosec-

ond system. Two distinct sidebands, located at about 8750 cm−1 and 10050 cm−1,

are equally separated from the pump at 9400 cm−1. Trace 1 in Fig. 5.5 (a) shows

the expected sidebands on either side of the pump spectrum. The signal exhibits a

blue shift with four decaying peaks, while the idler features the mirror image- a red
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Figure 5.4: Demonstration of SMI in the femtosecond domain. (a) Measured
output spectrum from the femtosecond FOPO. From trace 1 to trace 3 one reduces
the round-trip delay by 0.1 ps per step. From left to right, the broadband spectra
for each trace includes a signal sideband, a residual pump and an idler sideband.
(b) Simulations of two spectral sidebands in the presence of a femtosecond pump
pulse where τ is an initial delay between the pump and signal. The resulting
spectra at τ=-80 fs resemble the experimental measurement in trace 1.
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shift with four decaying peaks. Trace 2 in Fig. 5.5 (a) is obtained by increasing the

cavity length by 1.25 mm (8.3 ps round-trip delay). In this case the signal exhibits

a red shift with five peaks, while idler exhibits the mirror image- a blue shift with

five peaks. Simulations for the picosecond case are shown in Fig. 5.5 (b).

5.3 Further discussions

An interesting insight from our simulation is that for the picosecond case as

shown in Fig. 5.5 (b), the spectrogram of each sideband exhibits the “180 degree

rotational symmetry”. This indicates that by adjusting the delay, one can obtain

a blue-shifted peak with a tail extending towards the red, or a red-shifted peak

with a tail extending towards the blue. We acquire this experimentally as well

(see two traces in Fig. 5.5 (a)). This symmetry feature is less pronounced in the

femtosecond case shown in Fig. 5.4 (b) where only a red-shifted tail is observable.

The difference rises from GVD-induced pulse broadening. Pulse broadening is

much smaller for the picosecond case (2% pulse broadening in 1.2 m of fibre) [66]

than the femtosecond case (25% pulse broadening in 3 cm of fibre) [54].

Our study also provides insight into optimization of the time-dispersion

tuning of fibre optical parametric processes. Figure 5.5 (b) shows that one can

shift the wavelength of output signal by adjusting the initial delay between the

pump and signal. Based on an 8-ps pump pulse, our simulation predicts that more

than 100 nm of tunability is possible for a single pass fibre optical parametric

process. This is much bigger than the previous result of 0.25 nm which relied

exclusively on a cross-phase modulation induced shift [67]. The potential increase

in tunability occurs because in our case the wavelength difference between the

pump and signal pulse is relatively small leading to a large interaction length.

Experimentally we have not found such large frequency shifts. The reason is the

limited range of temporal delay settings over which the FOPO will oscillate. Near

the edge of this range, the pulse energy of input signal (the feedback from the

output of fibre optical parametric process) are much lower than in the center. The

simulations, on the other hand, rely on a single pass process with the fixed energy
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at the input end regardless of the delay setting.

Our experimental observations shown in Fig. 5.4 (a) and simulations shown

in Fig. 5.2, indicate the signal has a narrower spectral width than the idler for

the femtosecond case. This is because the frequency difference between the pump

and signal, ∆ω, is quite large (1700 cm−1). The GVD curve for the fibre is no

longer in the linear region which invalidates the assumption of β21 = −β22 = β2,

leading to |β21| < |β22|. We will show in section 6.2 that this relation, the opposite

vale of GVD, is one of key physical mechanisms of SMI. Since the magnitude of

GVD for the signal is smaller than idler, the signal will introduce less chirp during

its dispersive propagation. For the picosecond case as shown in Fig. 5.5 (a) and

5.3, the signal and idler have nearly the same spectral width because ∆ω is much

smaller (650 cm−1) and the assumption of a linear GVD curve is justified.

The agreement between simulation and experiment is good for the fem-

tosecond case (see Fig. 5.4 (a) and Fig. 5.2). However, for the picosecond case

simulations of spectra shown in Fig. 5.3 do not reveal the same sequence of de-

caying peaks for trace 1 in Fig. 5.5 (a). This discrepancy arises from using a

single-peaked spectrum as the input signal pulse. This choice is justified for the

femtosecond case because the output spectrum is wide and the prism filtering effect

within the FOPO leads to a relatively narrow feedback on the order of 2 nm [66].

As such, only a single spectral peak is resonating. However, for picosecond case

the feedback spectral width is comparable to the whole multiple-peaked spectrum.

One can retrieve simulation results comparable to the experimental results by using

a chirped pulse with specified multiple-peaked spectrum as the input signal.

We have not included third or other higher order dispersion, self-steepening,

and intra-pulse Raman scattering [32] within our simulation. Nevertheless, the

simulations replicate the key elements of the experiments in both femtosecond and

picosecond cases.



Chapter 6

Spectrum reversal and temporal

phase conjugation

In chapter 5, our simulation verified a tunable spectrum reversal which we

experimentally observed. In this chapter, besides numerical calculations, to eluci-

date the principles of SMI we will theoretically explore the physical mechanisms.

To begin with, we discuss a similiar reversal behavior in the time domain

which has already been revealed as spatial phase conjugation of counterpropagating

optical beams.

Then, concerning our spectral reversal a simple analytical expression for

the coupled governing equations of two sideband spectra is obtained, which reveals

that the opposite values of group-velocity dispersion and the complex-conjugated

parametric gain are the physical mechanisms responsible for this phenomenon.

As an analogy to the time reversal via spatial phase conjugation of counter-

propagating optical beams, here we demonstrate a tunable non-degenerate spec-

trum reversal technique based on temporal phase conjugation of co-propagating

ultrashort pulses. This spectral imaging technique is a spectral realization of phase

conjugation, and provides a new measurable connection between the temporal and

spectral properties of correlated fields.

Our exploration of SMI, while fundamentally interesting and important,

also has enormous potential for applicability. For examples, these “spectral mir-

rors”, when combined with “time lenses”, will complete a set of optical components
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for manipulating temporal and spectral information in ways analogous to tradi-

tional imaging. We anticipate these fundamental interests to be the starting point

for advancements in diverse applications.

6.1 Introduction to phase conjugation and time

reversal

Here we will first give an introduction to optical phase conjugation, which

generally refers to spatial phase conjugation of counterpropagating optical beams.

Before we go to the theoretical detail of optical phase conjugation, in order to better

understand the concept, let us first take a look at an example of its application:

this process can be used to remove the effects of aberrations from certain types

of optical systems [68, 69, 70, 71]. The key elements of this process is shown in

Fig. 6.1 (a), showing an optical wave which incidents onto a normal mirror. We

see that the advanced portion of the incident wavefront remains the same after

reflection. As a comparison, Fig. 6.1 (b) shows the same wavefront falling onto

a phase-conjugate mirror (PCM). In this case the advanced portion turns into

the retarded portion in the reflection process. Note that the generated wavefront

exactly replicates the incident wavefront but propagates in the opposite direction.

For this reason, optical phase conjugation is sometimes referred to as the generation

of a time-reversed wavefront.

Let us take a detailed look at the physics of this incident wavefront reversal

process as illustrated in Fig. 6.1 (b). The reason why it is also named as phase con-

jugation can be understood by introducing a mathematical description as follows.

The incident wave that hits on the PCM can be written as

Ẽ1(r, t) = E1(r)e−iωt + c.c., (6.1)

On the other hand, illuminating by such a wave, the PCM produces a reflected

wave, called the phase-conjugate wave, described by

Ẽ2(r, t) = rE∗1(r)e−iωt + c.c., (6.2)
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Figure 6.1: Reflections (a) an ordinary mirror and (b) a phase-conjugate mirror.
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where r is a real constant representing the amplitude reflection coefficient of the

PCM. Furthermore, since E1(r) is a vector function, we can represent it as the

product as below:

E1(r) = ε̂1A1(r)eik1·r, (6.3)

where the polarization unit vector is ε̂1, the slowly varying field amplitude is A1(r),

and the wavevector of the incident light is k1. Accordingly, the complex conjugate

of Eq. (6.3) is given explicitly by

E∗1(r) = ε̂∗1A
∗
1(r)e−ik1·r, (6.4)

From this expression above, we can identify that the action of a PCM has

two important properties: First, by replacing A1(r) with A∗1(r), Eq. (6.2) implies

the reversal of wavefront as illustrated in Fig. 6.1 (b). Second, by comparing

Eq. (6.3) with Eq. (6.4), one can identify that k1 is replaced by −k1, showing that

the incident wave is reflected back into its direction of incidence. This result means

that each ray of the incident beam is precisely reflected back onto itself.

By combining Eq. (6.1) and Eq. (6.2), one can easily identify the important

relation:

Ẽ2(r, t) = rẼ1(r,−t). (6.5)

This result shows that the phase conjugation process can be regarded as the gen-

eration of a time-reversed wavefront.

Let us now consider a physical process that performs the function of PCM.

Pioneered by Prof. Yariv, the phase conjugate of an incident wave can be created

by the process of degenerate FWM using the geometry shown in Fig. 6.2 [70]. This

process is degenerate in the sense that all the four interacting waves have the same

frequency. In this process, a lossless nonlinear medium characterized by a third-

order nonlinear susceptibility, χ(3), is illuminated by two strong counterpropagating

pump waves E1 and E2 and an additional signal wave E3. The pump waves are

usually taken to be plane waves1. The signal wave can be an arbitrary wavefront.

Later we will show that, as a result of the nonlinear coupling between these waves,

a new wave E4 is created that is the phase conjugate of E3.

1In principle, they can possess any wavefront structure as long as their amplitudes are complex
conjugates of one another [72]
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First, the electric field of four interacting waves can be represented as

Ẽi(r, t) = Ei(r)e−iωt + c.c.

= Ai(r)Ei(ki·r−ωt) + c.c. (6.6)

for i = 1, 2, 3, 4. The nonlinear polarization produced within the medium by the

three input waves will have, a term of the form [72]

PNL = 6ε0χ
(3)E1E2E

∗
3 = 6ε0χ

(3)A1A2A
∗
3e
i(k1+k2−k3)·r

= 6ε0χ
(3)A1A2A

∗
3e
−ik3·r (6.7)

Here the simplification is based on the assumption that the wavevectors of coun-

terpropagating the pump waves E1 and E2 are related by k1 + k2 = 0. From the

expression above, we see that the contribution to the nonlinear polarization has a

spatial dependence that allows it to act as an automatically phase-matched source

term for a conjugate wave, E4, with the wavevector k3. Thus, the wavevectors of

the signal and conjugate waves are related by k3 = −k4 Furhtermore, this expres-

sion also implies that the field amplitude of the wave generated by the nonlinear

polarization will be proportional to A1A2A
∗
3. This wave, A4, will be the phase

conjugate of A3 whenever the phase of the product A1A2 is spatially invariant2.

We can also understand this process, the generation of conjugated wave,

from the following point of view. The incoming signal wave of amplitude A3 in-

terferes with one of the pump waves, say A1, to form a spatially varying intensity

distribution. As a consequence of the nonlinear response of the medium, a refrac-

tive index variation accompanies this interference pattern. This variation acts as

a volume diffraction grating, which scatters the other pump wave, say A2, to form

the outgoing conjugate wave of amplitude A4.

Assuming that the fields E3 and E4 are much weaker than the pump fields

E1 and E2, the governing eqs. for two pump waves can be obtained as [72],

dA1

dz′
=

3iω

2nc
χ(3)[|A1|2 + 2|A2|2]A1 ≡ iκ1A1. (6.8)

2This can be understood by the assumption of plane waves we previously made. Both A1 and
A2 represent plane waves. Or if, A1 and A2 are phase conjugates of one another, then A1A2 will
be proportional to the real quantity |A1|2.
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dA2

dz′
=
−3iω

2nc
χ(3)[|A2|2 + 2|A1|2]A2 ≡ iκ2A2. (6.9)

Furthermore, if the two pump beams have equal intensities so that κ1 = κ2 = κ,

the product A1A2 becomes spatially invariant, so that A1(z′)A2(z′) = A1(0)A2(0).

dA3

dz
=

3iω

nc
χ(3)[(|A1|2 + 2|A2|2)A3 + A1A2A

∗
4]. (6.10)

dA4

dz
=
−3iω

nc
χ(3)[(|A1|2 + 2|A2|2)A4 + A1A2A

∗
3]. (6.11)

By defining A3 = A′3e
iκ3z, and A4 = A′4e

−iκ3z, where κ3 = 3ω
nc
χ(3)(|A1|2 +

|A2|2), we can simplified the coupled equations above as

dA′3
dz

= iκA
′∗
4 , (6.12)

dA′4
dz

= −iκ3A
′∗
3 . (6.13)

From these two coupled Eqs. above, we can easily identify the reason for

the phase conjugation via degenerate FWM: The generated field A′4 is driven only

by the complex conjugate of the input field amplitude A′3. It is interesting that the

transformation we made by defining A′3 and A′4 is equivalent to remove the energy

from two pump waves [72].

In order to obtain the analytic solution of Eqs. (6.12) and (6.13), let us con-

sider the practical situation for the initial conditions of optical phase conjugation

via FWM. Usually there is no conjugate wave initially injected into the medium at

z = L, i.e., A′4(L) = 0. Therefore, the solution of two interacting fields amplitudes

are then given by [73]

A
′∗
3 (L) =

A
′∗
3 (0)

cos |κ|L
, (6.14)

A
′

4(0) =
iκ

|κ|
(tan |κ|L)A

′∗
3 (0). (6.15)

From the expressions above, we can have two interesting conclusions: First,

note that the transmitted signal wave A
′∗
3 (L) is always stronger than the incident

wave A
′∗
3 (0). Second, depending on the value of |κ|L, the output conjugate wave
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A4(0) can be infinity. This means the reflectivity of PCM based on degenerate

FWM can exceed 100% as this “mirror” is supplied by the energy from the pump

waves.

6.2 Concept of spectral mirror imaging and an-

alytic theory

In section 5.2, both our simulations and experiments captured the sym-

metric properties of two sideband spectra. In this section, we will discuss the

physics of this interesting notable phenomenon. Not just limited to SMI that one

can see visually on optical spectrum analyzer, but we will also introduce another

related concept called “temporal phase conjugation” (TPC) which is difficult to

capture directly in the time domain. Figure 6.3 illustrate the relationship between

SMI and TPC. After passing through an SMI system, the electric fields of two

co-propagating optical pulses (k = 1, 2) are given by

Ek(t) = Ak(t) · e−iωkt (6.16)

where Ak(t) are the slowly-varying complex envelopes independent of the rapidly

varying carrier waves e−iωkt. In the frequency domain, the spectra of these two

pulses are given by the Fourier transform

F{Ak(t)} = Ãk(ω) = Ẽk(ω + ωk) (6.17)

where Ãk(ω) represent the spectra of each pulse centered on its own reference

frame. Spectral mirror imaging implies that the spectral amplitudes are reversed

relative to one another, i.e.,

|Ã2(ω)| = |Ã1(−ω)|. (6.18)

Since the carrier frequencies of the two waves are often different, these two spectra

are distributed as mirror images of one another with respect to the mean of two

carrier frequencies, i.e. (ω1 + ω2)/2. We refer to the signal as the long-wavelength

sideband and the idler as the short-wavelength sideband.
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In comparison, TPC implies that the temporal phase profiles of two pulses

are inverted, i.e.,

arg{A2(t)} = ϕ0 − arg{A1(t)}, (6.19)

where ϕ0 is a constant arbitrary absolute phase. Furthermore, if the amplitudes

of two pulses equal, their complex envelopes are related as

A2(t) = A∗1(t) · eiϕ0 . (6.20)

The relationship between SMI and TPC follows from the Fourier transform:

Ã2(ω) = F [A2(t)] = F [A∗1(t) · eiϕ0 ] = Ã∗1(−ω)eiϕ0 . (6.21)

Therefore SMI is a spectral realization of TPC. To fully characterize the ultrashort

pulses in the time domain is difficult. Alternatively, it is convenient to capture the

spectral amplitudes in the frequency domain as such pulses carry broad spectra.

The overall concept is similar to low sideband modulation in communica-

tions and signal processing, where the generated spectrum is inverted with respect

to the baseband spectrum. This concept also resembles radio frequency conversion

mixing, where an inverted spectrum is achieved by using high-side local oscilla-

tion injection [74]. In the optical frequency regime, our demonstration of SMI

involves a nonlinear-optical medium with an instantaneous response and nonlinear

wave-mixing [72]. In particular, using nonlinear optical fibers [52], the third-order

nonlinearity based optical parametric process can be modeled as the interaction

among three waves (pump, signal and idler) by three coupled nonlinear Schrödinger

equations [32], as shown in Eq. (5.2) to (5.4). In a suitable operational regime,

we can obtain the simplified governing equations for the signal A1 and idler A2.

Suppose the long-pulsed pump is undepleted and the phase-matching condition

(∆β + 2γP0z = 0 where P0 = |A0|2 is the peak power of pump coupled into the

fiber) is met [32], Eqs. (5.2) - (5.4) can be simplified to two governing equations for

the signal and idler. If the wavelength shift between two sidebands is small, the

variation of GVD is approximately linear as a function of wavelength within this

region. Furthermore, as we set the pump wavelength close to the ZDW of fiber,

the magnitudes of the GVD for signal and idler are approximately the same but



80

Signal

Temporal phase conjugation

Idler 

Spectral mirror imaging

1 0ω ω ω= −∆ 2 0ω ω ω= + ∆0ω

t t

Pump

Carrier 
wave 

Carrier 
wave 

Figure 6.3: The concept of SMI. Two pulses, signal and idler, are depicted at the
top left and right respectively, where the solid lines are the temporal amplitudes
|A1,2(t)| and dashed lines are the temporal phase profiles arg{A1,2(t)}. Their spec-
tral amplitudes |Ã1,2(ω)| are depicted at the bottom left and right with different
center frequencies ω1,2. The demonstration of SMI involves an additional pump
pulse serving as the “mirror”. Two spectral sidebands appear as mirror images of
one another about the center frequency of pump ω0.
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signs are the opposite [65], i.e.,

β21 = −β22 = β2. (6.22)

Furthermore, this assumption also results in ∆β11 = ∆β12 in Eqs. (5.3) and (5.4).

Defining A1 = A1 · e2iγP0z and A2 = A2 · e2iγP0z, we obtain the governing equations

for the signal A1 and idler A2 as follows:

∂A1

∂z
+
i

2
β2
∂2A1

∂T 2
= iγP0A∗2 , (6.23)

∂A2

∂z
− i

2
β2
∂2A2

∂T 2
= iγP0A∗1 , (6.24)

where β2 is the magnitude of GVD for both signal and idler. Equations (6.23) and

(6.24) appear similar but have two major differences. Firstly, there is a negative

sign on the left side of Eq. (6.24) indicating that the GVD for signal and idler are

the opposite in sign, although the same in magnitude. The signal propagates in

anomalous dispersion while the idler propagates in normal dispersion [65]. Sec-

ondly, the evolution of A1 involves the complex conjugate of A2 on the right side

of Eq.(6.23), and vice versa. Thus in fiber optical parametric processes, the gain in

one field is proportional to the complex conjugate of the other field. This complex

conjugate relationship distinguishes our work from others using Yb-doped or Er-

doped fiber amplifiers [75]. For ultrashort pulses in the femtosecond domain, both

mechanisms contribute to SMI. When the pulses become longer, in the picosecond

domain, the complex-conjugated gain plays the major role in SMI.

Interestingly, by inspecting Eqs. (6.23) and (6.24) one can deduce a self-

consistent relation, A2(t, z) = iA∗1(t, z), which exhibits TPC. Furthermore, the

analytical solution is obtained in the Fourier domain. Transforming Eqs. (6.23)

and (6.24) into Fourier domain gives

Ã1,z −
i

2
β2ω

2Ã1 = iγP0Ã∗2(−ω, z) , (6.25)

Ã2,z +
i

2
β2ω

2Ã2 = iγP0Ã∗1(−ω, z) . (6.26)

We define µ(ω, z)
.
= e−

i
2
β2ω2z as the integrating factor then two cou-

pled eqs. are solvable. Since we use ultrashort pulses with high peak power and
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fiber with high nonlinearity, the parametric gain γP0 is extremely high for both

femtosecond and picosecond cases. This leads to γP0L� 1 even after short prop-

agation distance L. Furthermore, as generally only one of the fields is present at

the input, say Ã1(ω, 0) 6= 0 and Ã2(ω, 0) = 0, the solution is given by:

Ã2(ω, L) =
i

2
eγP0LÃ∗1(−ω, 0)e−

i
2
β2ω2L

= iÃ∗1(−ω, L). (6.27)

Two fields in the frequency domain exhibit the feature of spectrum reversal, as

shown in Eq. (6.27). This is the counterpart to the self-consistent relation in the

time domain. Note that the two fields centered at ω1 and ω2 are expressed for

the relative frequency space in Eq. (6.27). Due to photon energy conservation

in optical parametric processes [72], the center frequencies of two sidebands and

the center frequency of pump are related as ω1 + ω2 = 2ω0. Therefore, as shown

in the bottom of Fig. 5.1, in absolute frequency space two spectral sidebands

are equally separated with respect to the center frequency of pump. Although

the exponentially growing fields expressed in Eq. (6.27) quickly saturate in the

practical experimental situation [52], our simplified theory gives a simple but clear

interpretation of SMI.

The theoretical analysis above shows that SMI occurs naturally in fiber op-

tical parametric processes. However, if the spectrum of the input field is symmetric

according to its center frequency, its mirror image spectrum will be identical to

the input which makes SMI less evident. In order to better appreciate SMI one

needs the spectrum of input to be asymmetric. Fortunately, in most experimental

situations there always exist some parasitical effects leading to spectral asymme-

try in the frequency domain. The nonlinear phase shift as a function of walk-off

leading to an asymmetric multi-peaked spectrum is one such example [66] which

we already had discussed in chapter 4.
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6.3 Analogy between spectral reversal and time

reversal

In the previous sections, we discussed the physics of an interesting phe-

nomenon - SMI in the frequency domain. This is a tunable nondegenerate spec-

trum reversal. Here in this section, we will use this newly observed phenomenon to

make a comparison with its counterpart, time reversal, which we briefly discussed

in section 6.1.

Time reversal symmetry is based on the reciprocal feature of the wave equa-

tion. If a given solution satisfies the wave equation, its time-reversed expression

(t→ −t) is also a solution to the original equation. In the optical frequency regime,

the time-reversal technique has recently been used in controlling correlated fields

for the applications such as turbidity suppression in biological samples [76] and

light absorption control in cavities [77]. The fundamental aspect of these schemes

is the generation of time-reversed waves, a direct consequence of phase conjugation

in the backward geometry for optical beams [78]. Several established nonlinear op-

tical techniques [78, 79] can be used to demonstrate optical phase conjugation,

which has emerged as a powerful tool for correcting image distortions [71]. These

techniques traditionally involve a bulk photorefractive or third-order nonlinear op-

tical material and a backward degenerate four-wave mixing (FWM) process leading

to the time-reversal of optical waves.

Alternatively, it is desirable to perform phase conjugation in a collinearly

forward-propagating scheme, which offers long interaction lengths and wavelength

tunability. This is especially important for characterizations of the spectral and

temporal properties of ultrashort pulses [80, 81, 82]. Here we address the spectral

and temporal properties of the fields in a forward geometry, in contrast to the

spatial and temporal properties in a backward geometry (Summarized in Fig. 6.4).

Due to the requirement of sophisticated diagnostic techniques [83, 84] compre-

hensive experimental studies of temporal phase conjugation (TPC) have not been

undertaken till now, although the concept of TPC was used to compensate chro-

matic dispersion in optical fibers [85]. However, it is convenient to characterize
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ultrashort pulses in the frequency domain because such pulses carry broad spectra.

Here we demonstrate a tunable nondegenerate spectrum reversal technique which

is a spectral realization of optical phase conjugation. This spectral imaging tech-

nique provides a new measurable connection between the temporal and spectral

properties of correlated fields.

Our demonstration of SMI, while fundamentally interesting, also has enor-

mous potential for applicability. Recently, advanced temporal imaging systems

have been demonstrated based on forward partially degenerate FWM processes in

fibers and silicon waveguides. These systems perform all-optical ultrafast wave-

form characterization tasks such as time-to-frequency conversion [80], temporal

waveform magnification [81] and packet compression [82]. The key component

is the time lens [86], which imparts a quadratic phase modulation onto the input

signal pulse. In one realization of a time lens, the nonlinear wave-mixing be-

tween a linearly-chirped (i.e., a quadratic variation of the temporal phase) pump

pulse and an input signal pulse leads to the generation of an idler pulse with a

quadratic temporal phase. The time lens, when combined with dispersive optical

fibers for pulse propagation, completes a temporal imaging system. For example,

one can construct a system which produces an output idler field with a tempo-

rally reversed pulse shape compared with the input signal pulse [81]. Our study

generalizes these concepts to the frequency domain. Without the time lens, using

an un-chirped pump pulse we demonstrate spectral imaging systems in which two

spectral sidebands are mirror images of one another with respect to the center

frequency of the pump, i.e., spectral mirror imaging.
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Figure 6.4: Analogy between time reversal and spectrum reversal. The complex
wavefunctions of electric fields are E1,2 (the actual electric fields are the real parts
E1,2 = Re[E1,2]), the complex envelopes are A1,2 and their center frequencies are
ω1,2. The center frequency of pump is ω0. The wavevectors for optical beams are
~k1,2. The propagation constants for optical pulses are β(ω1,2).
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Ideally, TPC in the backward geometry [70] could also result in spectrum

reversal but the interaction length is limited due to the counterpropagation. One

then requires long-pulsed or continuous-wave light sources. Such narrowband light

sources make frequency domain measurements difficult [87] and broad wavelength

tunability challenging [88]. Therefore, as summarized in Fig. 6.4, the traditional

approaches based on counter-propagating narrow-band optical beams lead to time

reversal. Here we demonstrate a new technique based on co-propagating optical

pulses that offers tunable nondegenerate spectrum reversal.

In summary, we explore SMI features in both femtosecond and picosec-

ond domains and highlight that the opposite values of GVD for signal-idler (two

spectral sidebands) and the complex-conjugated gain are the two key physical

mechanisms responsible for SMI. As a spectral realization of phase conjugation,

SMI offers a measurable connection between the temporal and spectral properties

of correlated optical fields. Interestingly, SMI functioned as spectral mirrors, when

combined with time lenses [80, 81, 82] will complete a set of novel optical com-

ponents for manipulating temporal and spectral information in ways analogous to

traditional imaging. We anticipate these fundamental interests to be the starting

point for advancements in diverse applications.



Chapter 7

Future studies

During the course of our study, several new interesting directions are iden-

tified but have not been detailedly explored in this thesis. We briefly give an

introduction to some of them below.

First, in chapter 4 our measurements of output power levels according to

the different cavity synchronizations indicated a surprising result: For the signal

pulse evolution, its interaction with the trailing edge of pump actually gives highest

output power. We believe this is due to the power-dependent phase mismatch [38].

But we would suggest to do an experiment based on a single-pass fiber optical

parametric amplifier to verify this guess.

Second, in chapter 5 we did numerical computations of pulse propagation

in fiber optical parametric process. Some earlier theories suggest that based on

the diode-pumped fiber amplifier it is possible to have a pulse propagating in the

self-similar region [89, 90]. We believe that a similar self-similar region exist in

fiber optical parametric process. Although have not included in this thesis, we had

already performed some preliminary theoretical analyses. More detailed simulation

and experimental studies need to be taken in order to verify the existence of this

self-similar region.

Furthermore, during the action of numerical computations, we found at

certain operational region for fiber optical parametric processes the temporal am-

plitude (pulse shape) and spectral amplitude of the signal-idler can be surprisingly

identical. After the detailed investigation of what had been previously published,

87
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there is a similiar method already been demonstrated based on Raman amplifier

named as amplified frequency-to-time conversion for real-time spectroscopy [91].

Our theory indicate asimiliar approach is possible by using parametric gain as well.

And we believe this new approach will be more promising as the wider bandwith

from the gain profile and the instantaneous response in comparison with Raman

approach.



Appendix A

Simulations of ultrashort pulse

dynamics using split-step Fourier

method

The split-step Fourier method1 is a numerical calculation tool to solve par-

tial differential equations (PDEs) with nonlinear terms. In particular, this method

is widely used to solve the nonlinear Schrödinger equations. It treats the linear

and nonlinear terms separately for the contribution of each small step. The linear

step is calculated in the frequency domain, and the nonlinear step is calculated

in the time domain. Therefore, one needs to apply Fourier transform back and

forth to switch between the time domain and frequency domain. To analytical

solve PDEs is generally difficult as both linear and nonlinear terms are involved in

the equations. However, it is convenient to obtain a numerical solution using the

split-step method.

The split-step Fourier method has been applied to a wide variety of optical

problems including wave propagation in atmosphere [92], semiconductor lasers [93],

unstable resonators [94], and waveguide couplers [95]. Here as an example, we

use the split-step Fourier method to simulate the ultrashort pulse propagation in

1For detail information, please refer to Ref. [32]
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optical fibers. We rewrite Eq. (2.8) as:

∂A

∂z
= (D̂ + N̂)A. (A.1)

D̂ = −iβ2

2

∂2

∂T 2
+
β3

6

∂3

∂T 3
− α

2
, (A.2)

N̂ = −iγ(|A|2 +
i

ω0

1

A

∂

∂T
(|A|2A− TR

∂|A|2

∂T
)). (A.3)

where D̂ is a linear operator accounting for dispersion and loss, and N̂ is a nonlinear

operator that governs various kinds of nonlinear effects. The effects of dispersion

and nonlinearity will act together during the pulse propagation. The split-step

Fourier method is based on two assumptions. First, the evolution of optical fields

is over a tiny small distance h. Second, the linear and nonlinear effects can be

treated independently, i.e., the propagation from z to z + h is carried out in two

steps. In the first step, the nonlinearity acts alone, i.e., set D̂ to 0 in Eq. (A.1).

In the second step, dispersion acts alone, i.e., set N̂ to 0 in Eq. (A.1). Thus the

optical field can be written as:

A(z + h, T ) ≈ exp(hD̂) exp(hN̂)A(Z, T )

≈ exp(
h

2
D̂) exp(

∫ z+h

z

N̂(z′)dz′) exp(
h

2
D̂)A(Z, T ). (A.4)

Here, the exponential operator exp(hD̂) can be evaluated in the Fourier

domain as follows

exp(
h

2
D̂)A(z, T ) = F−1{exp[

h

2
D̂(−iω)]}F{A(z, T )}, (A.5)

where F denotes the Fourier-transform operation, D̂(−iω) is obtained from Eq. (A.2)

by replacing the operator ∂/∂T by −iω, and ω is the frequency in the Fourier do-

main. The calculation in linear step, i.e., the numerical evaluation of Eq. (A.5), is

usually carried out using the Fast Fourier Transform (FFT) algorithm.

The discussion above in Eq. (A.4) - (A.5) is only for each small step, the

detailed procedure for the simulation of pulse propagation along a piece of long

fiber using the split-step Fourier method is as follows. We need to divide the

whole length of fiber into a large number of small segments. First, the optical field

A(z, T ) initially propagates for a distance h/2 with dispersion based on Eq. (A.5).
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Second, in the middle, the field is multiplied by a nonlinear term 2 that represents

the effect of nonlinearity over the entire segment length h. The pulse propagates

from one segment to the next following the evolution by Eq. (A.4), which considers

nonlinear effect only. Third, the field propagates for the remaining distance h/2

with dispersion only to obtain A(z + h, T ).

Suppose the number of steps is M , i.e., L = Mh. The expression of optical

fields after the propagation of whole length of fiber is [32]:

A(L, T ) ≈ e−
1
2
hD̂(
∏
m=1

MehN̂ehD̂)e−
1
2
hD̂A(0, T ). (A.6)

Therefore, except for the first and last linear steps, all intermediate steps can be

carried over the whole segment length h.

Imposing periodic boundary conditions when using FFT algorithm is jus-

tified, as the temporal window used for simulations is usually made much wider

than the pulse width. Typically, window size is chosen to be 10 to 20 times of the

pulse width.

2Note that this simplified approach is valid for the contribution of SPM only. For more
complex nonlinear effects, the Runge-Kutta methods are used for steps in the time domain.



Appendix B

Characterization of ultrafast

optical pulses

A pulsed light, or an optical pulse, is usually described by an electromag-

netic field of finite time duration. Similar to the approach in Chapter 5, we use

normalized complex wavefunction E(r, t) to characterize the optical fields. The

optical intensity is represented as P (r, t) = |E(r, t)|2(W/m2). Since our major

concern is the temporal and spectral properties of an optical pulse at a fixed po-

sition r, we will rewrite the functions as E(t) and P (t) for simplicity.

Except in the few-cycle regime, the complex wavefunction can be written

as E(t) = A(t)eiω0t, where A(t) is the complex envelope and ω0 is the center

frequency. Furthermore, the complex envelope is characterized by its magnitude

|A(t)| and phase ϕ(t) = arg{A(t)}, so that E(t) = |A(t)|ei[ω0t+ϕ(t)]. And the

integration of the intensity function
∫
P (t)dt over the whole pulse duration is the

energy density (J/m2). Some typical pulse profiles are the Gaussian function,

P (t) ∝ e(−2t2/τ2), the Lorentzian function P (t) ∝ 1/(1 + t2/τ 2), and the hyperbolic

secant function P (t) ∝ sech2(t/τ). For each profile (pulse shape) above, the pulse

width is proportional to the time constant τ . However, these profiles are only

for ideal situations. In practice, the shapes of pulses are complex and difficult to

measure.

Similarly in the spectral domain, the pulse is described by Ẽ(ω) =
∫
E(t)e−iωtdt =

|Ẽ(ω)|eiψ(ω), where ψ(ω) is the spectral phase and Ẽ(ω) is the spectral amplitude.

92
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Since the function Ẽ(ω) is centered at ω0, the Fourier transform of the complex

envelope Ã(ω) =
∫
A(t)e−iωtdt = Ẽ(ω − ω0) is centered at ω = 0. By using this

expression, we separate slowly-varying complex envelops A(t) from fast-varying

carrier waves e−iω0t as generally our concern is the pulse shape, |A(t)|. In sec-

tion B.1, we will first discuss how to characterize an optical pulse in the frequency

domain by its spectral intensity P̃ (ω) = |Ẽ(ω)|2.

To fully characterize the temporal information of an ultrashort optical pulse

is a challenging problem since the fastest available photodetector to date is still

too slow. Therefore, most available techniques rely on the use of an ultrafast

optical shutter, i.e., time gate, rather than electric or mechanical gate. This time

gate, as a reference pulse, should be equal to or shorter than the original pulse for

measurement. So in most of the cases, one use part of the energy from the original

pulse as the reference for itself. For example, by using bean splitter one can divide

the original pulse into two and introduce a controllable delay to one of them.

The generation of extra optical field based on nonlinear wave mixing is controlled

by an adjustable delay between the reference and the original pulse. Repeated

measurements are taken according to the spectral intensity. In section B.2, we

will also briefly discuss how to retrieve the temporal information based on the

measured results.

B.1 Optical spectrum analyzer

To fully capture the temporal information, e.g. pulse profile, temporal

phase, et al., of ultrashort pulses is usually difficult. However, it is relatively easy

to measure the spectral intensity. The spectral intensity P̃ (ω) = |Ã(ω)|2 of an

optical pulse with complex envelope A(t) may be measured by using an instrument

called optical spectrum analyzer. The scheme is summarized in Fig. B.1 (a). This

kind of analyzer can be simplified as a set of spectral filters to spatially separate

optical fields according to different frequencies or wavelengths. Thus, the “slow”

detectors can be used to detect the energy in each of the spectral components, i.e.,

the spectral intensity P̃ (ω).
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Figure B.1: Measurement of spectral intensity with an optical spectrum analyzer.
(a) Schematic of optical implementation using prisms. (b) System.
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Figure B.2: A spectral “interferometer” based on nonlinear effects generates an
spectrogram in the frequency domain.

Note, as shown in Fig. B.1 (b), the measurement of spectral intensity will

lose the information of spectral phase ψ(ω) . Furthermore, it is impossible to

retrieve a function A(t) from the magnitude of its Fourier transform Ã(ω) in the

absence of phase information [59].

B.2 Spectrogram and frequency-resolved optical

gating (FROG)

The spectrogram of an optical pulse is a set of time-delay gates in the fre-

quency representation. It equals to the squared magnitude of the Fourier transform

of the pulse as seen through a “moving window”, i.e., gating function W (t):

Φ(ω, τ) =

∫
E(t)W (t− τ)e−iωtdt (B.1)

by defining P̃ (ω, τ) = |Φ(ω, τ)|2. The spectrogram P̃ (ω) can be measured by

transmitting the pulse E(t) through an optical gate controlled by a time-delayed

gating function W (t− τ). As depicted schematically in Fig. B.2, the measurement

is based on the spectrum of the product E(t)W (t − τ) at each time delay τ .

An optical implementation relies on a pair of moving mirrors to introduce the

time delay, and a spectrum analyzer as shown in Fig. B.1, functioned as Fourier

transform. This technique is known as frequency-resolved optical gating (FROG).

Since a sufficiently short gating function W (t) for the measurement of an

ultrashort pulses is usually unavailable, one can use the pulse E(t) itself for the
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purpose of time gate. Furthermore, the product function E(t)E(t − τ) is usually

achieved by using nonlinear optical techniques, where a popular approach is based

on second-harmonic generation (SHG). For a SHG gate with input waves E(t) and

E(t−τ) at the fundamental frequency, the wave at the second-harmonic frequency

is proportional to the product E(t)E(t− τ). Then the function is given as

Φ(ω, τ) =

∫
E(t)E(t− τ)e−iωtdt. (B.2)

The overall optical system known as the SHG-FROG is depicted in Fig. B.3.

As we previously mentioned, the spectrogram P̃ (ω, τ) is a 2D “picture”

that can be used to characterize optical pulses. Based on this spectrogram, one

can retrieve the temporal information of original pulse, i.e., the temporal amplitude

and phase of complex wavefunction E(t). However, the retrieval procedure is not

straightforward. and here we will have a briefly discussion.

A general expression for P̃ (ω, τ), measured by the nonlinear optical gating

systems, can be written in the form

Φ(ω, τ) =

∫
g(t, τ)e−iωtdt, (B.3)

where g(t, τ) = E(t)W (t− τ).

Suppose the complex function Φ(ω, τ) were known, one can take the inverse

Fourier transform of Φ(ω, τ) with respect to ω at each τ ,

g(t, τ) =

∫
Φ(ω, τ)eiωtdω. (B.4)

Then the wavefunction E(t) may be computed by integration over τ , and we can

derive a proportional relation as∫
g(t, τ)dτ =

∫
E(t)W (t− τ)dτ = E(t)

∫
W (t− τ)dτ ∝ E(t). (B.5)

This indicates the proportional constant is the same as the area of the window

function. Till now, it seems that we have solved this “problem” - to retrieve

the temporal information of optical pulse. But actually the phase of complex

function Φ(ω, τ) is unknown in the beginning. Therefore, the problem of estimating

Φ(ω, τ) from the measured P̃ (ω, τ) = |Φ(ω, τ)|2 is a “missing-phase” problem. The
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real procedure is as follows. First, we need to have an initial guess of the phase

arg{Φ(ω, τ)} to get the E(t). Second, we calculate the spectrogram P̃ (ω, τ) based

on E(t). Third, by comparing this calculated spectrogram with the measured

one, we can have a better guess of the phase arg{Φ(ω, τ)}. The process is repeated

until it converges to a pulse wavefunction E(t) that is consistent with the measured

spectrogram1.

Here we show two examples which present the detailed information in sec-

tion 3.3.Figure B.4 is a screenshot of a commercial software for FROG simulation-

Femtosoft Technologies 3.2.2. The top left window shows the original measured

spectrogram. Two windows on the right side show the calculated optical field in

the time domain and frequency domain. Based on these calculations above, the

reconstructed spectrogram is shown on the bottom left corner. The window in

the middle shows the parameters used in the computation. By clicking “start”,

the software starts to run. After a while, when we click the “stop” button, the

software will display the result with smallest error and save the retrieved results.

The data in Fig. B.4 is about the temporal and spectral information of output

pulses from FOPO, corresponding to the data points shown in Fig. 3.8 (a) with

the PCF length at 61 mm.

As shown in Fig. B.5, the retrieved temporal information of optical pulses

in the right column is based on the original spectrograms in the left column. All

the results are the detail information of the experimental data points in Fig. 3.8

(a), when the operation of FOPO is at long wavelength.

1For detail information, please refer to [59].
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Second-harmonic-
generation crystal

Variable 
delay

Figure B.3: Schematic of a second-harmonic generation frequency-resolved opti-
cal gating.
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Figure B.4: Original and retrieved FROG data with the center wavelength at
1212 nm and a pulse duration of 86.35 fs.
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Figure B.5: A variety of measured spectrograms and retrieved pulses. (a) The
pulse duration is 86.35fs and the center wavelength is 1212nm. (b) The pulse
duration is 114.2fs and the center wavelength is 1223nm. (c) The pulse duration
is 183.1fs and the center wavelength is 1240nmnm. (d) The pulse duration is
182.3fs and the center wavelength is 1262nm.
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