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ABSTRACT 

An investigation of the flow of the two superposed liquids (the electrolyte 

and the molten aluminum) and of the interface shape has been carried out with the 

intention of revealing the main mechanisms and to clarify the hydrodynamic behavior 

of Hall-Heroult cells. The wide channels present around the anodes and between the 

-. two anodes rows in modern cells appear responsible, in the final analysis, for the 

electrolyte motion. The horizontal component of the current density in the aluminum 

layer largely determines the interface shape. It can also drive an organized motion 

when it is not a pure gradient. Two main ideas are at the source of this theory; i) 

the_ .. shallow depth of the fluid layers (compared w~th their horizontal dimensions) 
:, . 

. 'justifies· an _·approximation of zero. inertia,. and 11) a linear approximation is 

_proposed for the horizontal shear stresses. This almost explicit theory results in 

predictions that are not completely realistic, but it is shown how certain features 

of actual cell behavior can be revealed. 



1 

INTRODUCTION 

There is considerable interest in better understanding the general behavior 

/ of Hall-Heroult cells, because these large devices, in which aluminum oxide is 

reduced electrolytically to produce molten metal, are known as the major energy 

consumer in the production of aluminum from its ores. For a full description of 

these cells the reader is referred to Lympany, Evans and Moreau (1). For the sake 

of brevity, it will only be mentioned that the electric current coming from the 

anodes (see fig. 1) has to pass first through a horizontal liquid layer, the 

electrolyte (often known as "cryolite") before entering into the molten aluminum 

layer (where.it is partially.redirected in the horizontal direction), and thence 

through the carbon lining and into thecollector bars. 

Electromagnetics, .. hydrodynamics, heat and mass transfer, as well as 

electrochemistry, enter immediately into any complete description of the cell. 

Indeed, magnetohydrodynamic effects are responsible for the motion and the 

turbulence of the two liquids, and play a significant role in determining the 

current efficiency. In recent work (2) the development of a mathematical model, 

based on general equations of electromagnetics and hydrodynamics, has been attempted 

in order to compute the main behavior of these cells. The objective was to build a 

convenient tool for conception of new cells with better efficiency (3). 

It has, however, been recently realized that the two-dimensional Navier-

Stokes equations and the usual turbulence modelling (k-E) could not describe the 

true mechanisms involved in the motion of the two thin liquid layers. Using the k-E 

model for turbulence in a supposed two-dimensional flow leads to neglect of the 

vertical transport of momentum, and this is unrealistic in this configuration where 

it is, in fact, dominant over the horizontal one. Besides, a purely two-dimensional 

schema could not take into accourit the presence of channels between the anode blocks 
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and around the cell periphery. These have, however, a strong influence on the flow 

of the electrolyte because they connect this flow with the atmospheric pressure, 

almost without head losses. 

It is the purpose of this paper to propose a new basis or approximations to 

the hydrodynamics of the two superposed liquids, and to develop a better 

understanding or the influence or each parameter on the fluid flows and the 

interface shape. To do this, the concept of an ideal cell in which the 

electromagnetic forces are pure gradients, is introduced. As a consequence the 

cryolite is the only moving fluid. The pressure differences between the two liquids 

in different motion vary from one place to another, and this is responsible for the 

shape of the interrace. It is also shown that second, .order effects can easily be 
. ' 

superimposed on _this state of reference predicted for the ideal cell 9 and an example 

is treated. 

Each liquid layer may be characterized by its vertical thickness (Wlder the 

anodes), H, its length, 2a, and its width, 2b. It appears convenient to introduce 

also a typical horizontal length scale, L, which can be either a or b or some 

combination of them, in order to characterize the thinness of the layer by the ratio 

H/L. The thickness His of the order or 0.04m in the cryolite and 0.16 min the 

aluminum. In typical modern cells 9 L may be of the order or 4 m, so that H/L is or 

the order of 10-2 in the cryolite and 4.1o-2 in the aluminum. The smallness of H/L 

is or prime importance in the justification or the approximations proposed in 

section I. Other important orders or magnitude are the typical electric current 

{=2. 105A) and the current density j
0

{!::i6.103Am-2). 

The coordinates are defined in fig. 2, with x in the long horizontal axis 

and y in the small one. The z axis is along the upward vertical with its origin at 

the mean level of the interface between cryolite and aluminum. To illustrate the 

results, all the numerical computations have been done with a cell whose aspect 

ratio was a/b = 2. Unit vectors are denoted ex, e
1

, ez• 

.. 

~-
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I. BASIC EQUATIONS AND APPROXIMATIONS 

~ ~ releyant magnetic Reynolds number 

The question of a possible influence of the velocities in the two superposed 

liquids on the magnetic field has often arisen. Clearly the relevant magnetic 

Reynolds number characterizing this effect must be the ratio between the diffusion 

time of the magnetic field through the whole cell and the transit time of the fluid 

elements LV-1• In the idealized configuration of a thin layer of conducting material 

located between two insulating media, any disturbance would diffuse instantaneously 

through these media, so that its diffusion time would be ~aH2 (~ and a denote the 

permeability and the electrical conductivity of the conducting layer). The · 

situation with which we are concerned is more complex because the media above and 

below the aluminum layer are conducting: they are thick (let H• denote their total 

thickness) and they are conducting (let a• denote their conductivity). Forgetting 

the extremely short diffusion through the electrolyte layer, the total diffusion 

time through the cell may be estimated as~ (aH2 .+ cr-H•2 ). Therefore the relevant 

magnetic Reynolds number is: 

( 1) Rm = ~OVL • ~ ( 1 + a:fl22
) 

It appears that, although ~oVL may be of the order of a few units, H2/L2 is 

extremely small (=3.10~4 ). This means that the vertical diffusion time through the 

aluminum layer is extremely small canpared with the transit time. Besides, the 

ratio ~Ia is sufficiently small (:::::-2.10-3) to also render negligible the diffusion 

time through the electrodes. Then it may be concluded that the classical 

approximation of a zero magnetic Reynolds number is valid. 
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~. ~ "shallow water" approximation 

Because of the shallowness of the two liquid layers and because of the very 

active mixing due to turbulence and to gas bubbles generated at the anode, the 

interest is essentially in describing the mean horizontal motion. If uH denotes the 

horizontal velocity field, the definition of this mean motion is: 

(2) 

(3) 

(4) 

= 
The equations for such a two-dimensional flow are: 

= 0 

a ( a - ) + d; n -"~ < u > x. eox. H 
1 1 

..l.. 
H 

The subscript H stands for the horizontal vectors or operators, so that9 H = 

( a:· a;· Q) and p denotes the pressure, p the density, ne the effective viscosity, 

and T the sum of the shear stresses at the top and bottom of the fluid layer. 

To appreciate the consequences of the small values of H/L, let us write 

Equation (4) in a non-dimensional form. Since the driving mechanism is the 

difference between the Lorentz forces and the pressure gradient, it is convenient to 

introduce the non-dimensional pressure 

and the velocity scale V 

Then with xi 
uH t 

<(j X B)H> 
u =- T = -- and F = v. pV2, ~j2L 

0 

the 

(5) 

non-dimensional equation is: ( _ ) 

H.L <U"·7H )U' = - vHP + Y - "f + .a v a ne au . 
L VL nt n ax1 
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With the typical values of H/L previously mentioned, for modern cells, with 

current of the order of 2.105 amps, Vis of the order of 0.1 m.s-1 and the Reynolds 

number VL/v is of the order of 4.105• Therefore, even if ne is much higher than the 

molecular viscosity n because of the intense mixing present in each liquid, it is 

clear that the two-dimensional friction (or the horizontal transport of momentum) 

cannot compete with the Lorentz forces. Inertia also appears unable to balance the 

driving forces. Consequently the dominant equilibrium is between the difference 

Er-~Hp (which is not exactly zero as will be seen later) and the friction on the 

horizontal boundaries T. Then the equations for the two-dimensional flow of each 

liquid reduce to: 

(6) V'H '{f = 0 

Of course this approximation still.needs an assumption for the relation 

between the drag T and the velocity lf. Two ideas suggest that a linear expression 

i.e. 

(8) Y : KU" 

could be quite plausible, and certainly better than a quadratic expression (as in 

turbulent duct flows). One idea is the previously established fact that inertia is 

negligible in these shallow layers of liquids. The other derives from the fact 

··.that the typical scale of random eddies responsible for the vertical transport of 

momentum is H which is much smaller than the typical horizontal length scale of the 

mean motion L. The situation appears then more similar to the kinetic theory of 

gases (with a mean free path much smaller than the macroscopic scales) than usual 
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turbulent flows (with an integral scale of the same order as the length scales of 

the mean flow}. We will therefore retain this very simple expression (8}. It will 

be seen that it has also the advantage of allowing a clear illustration and 

understanding of the mechanism of stirring in each liquid. 

~ ~ influence ~ ~ cryolite channels 

Since the cryolite is a poor conductor, compared to the carbon electrodes, 

the fraction of the electric current crossing the channels between the anode blocks 

may be neglected. Then the flow in these channels behaves like an open channel 

flow, having the capability-of exchanging mass and momentum with the neighboring 

two-dimensional flow underneath the anodes. In spite .of this mass exchange the mean 

flow in a straight channel· is ~uch that· the· pressure variation in the cross-section · 

follows the law of hydrostatics. Howver, pressure differences develop underneath 

the anodes, in order to partially balance the Lorentz forces according to Equation 

(7}o Because of the continuity of pressure between the cryolite layers and the 

channels, pressure gradients may also exist in the channels where they would 

necessarily drive some flow and be balanced by friction and momentum transport. 

Let S denote the area of the cross-sectioo, P the wet perimeter, and q the 

flow rate which is a function of the abcissa ~ along the channel. If Yg and u~ 

stand for the outward normal and tangential velocity components of the two-

dimensional cryolite flow along the anode edge, and if Tw denotes the wall shear 

stress, the mass and momentum conservation equations can be written: 

(9) 
dq ·. 

= ~H ar 
( 10) d (p f)- pu u H = - S dP _ PT 

~ n ~ ~ w 

Because of the variations of the liquid depth, themselves related to the 

-

·~ 
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topology of the free surface and of the interface, and because of possible 

variations in the shape of the solidified ledge of cryolite (for the peripheral 

channel), the parameters Sand P may slowly vary from one place to another. 

However, in this theory they are supposed to be constant for the sake of simplicity. 

The wall friction Tw is assumed to follow the usual quadratic law. 

( 11 ) = 
2 

A.p q 

52" 

where the friction coefficient A has still to be estimated. 

( 12) 

Introducing the non-dimensional quantities 

Q = q 
VLH 

t - .6 
- t' 

equations (10) and (11) reduce to 

(13) 

etc. 

This equation exhibits three dimensionless numbers, essentially depending on the 

geometry, which characterize the three possibilities of balancing any longitudinal 

pressure gradient: momentum transport along the chanel, or toward the horizontal 

layer of cryolite under the anodes, and friction. 

There are two kinds of channels: the wide ones present around the cell 

periphery (or between the two rows of anodes in modern cells with automatic 

feeding of alumina), and the narrow ones between the anode blocks, 3 or 4 em apart. 

In the wide channels typical values S = 0.5 m2 and P = 0.6 m seem to be realistic 

and provide the following orders of magnitude: 
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The consequence of these very small values is that any pressure difference along the 

large channels could not be balanced. In other words.the channels are so large that 

their free surface must be horizontal. Therefore the presence of these large 

channels is dictating the striking boundary condition that P must be constant at the 

edge of the anode rows. 

In the narrow channels, with P of the same order butS smaller (~0.1 m2), 

the non-dimensional numbers have the following orders of magnitude: 

-2 1.6 X 10 , 0.6~ 

It still appears that the momentum transport could not balance any pressure 

gradient. But the situation is not as simple with regard to friction because ~ 

is very difficult to estimate. If these channels behaved like ordinary turbulent 

duct flows,~ would be in the range 10-2 to 10-1• But the intense bubbling 

activity (carbon dioxide evolved from the anodes), particularly important in these 

channels because of their narrowness, would increase ~ by a few orders of 

magnitude. One has therefore to accept the idea that some pressure differences (and 

variations in the height of the free surface) can take place. They could be 

modelled by the equation 

(14) dP 
dt + = 0 

with a convenient guess for the ~ coefficient. Since it is one of the aims of this 

paper to simplify rather than to inspect all the details, it will be considered that 

the friction term is dominant over the pressure gradient, as it would be if the gap 

between the anode blocks were smaller (~1 em). Then Equation (14) reduces to Q = 0, 
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and these channels may be ignored in this asymptotic limit. 

It has still to be noticed that the cryolite channels have another 

consequence in allowing Un to be non-zero at the boundary of the layer underneath 

the anodes. The flow rate in these channels Q follows from relations (8) and (12). 

This is to be contrasted with the aluminum layer, at the border of which no such 

channels exist; Un has to be zero at the aluminum boundary, but no restriction 

applies on the pressure. 

~. ~ interface equation 

In each liquid the vertical variation of pressure is of the form 

'(15) 

9 

where z is the upward vertical, g gravity, and where the values 1 and 2 will be used 

for the subscript i respectively in the cryolite and the aluminum. The functions 

f 1(x,y) and f 2(x,y) can only be determined by solving first Equation (6) and (7) in 

each liquid with the relevant boundary conditions. Then the continuity of pressure 

at the interface z = z0 gives the equation of this surface: 

( 16) (p 2 .:..pd gz = fz (x,y) - fi{x,y) 
0 

II. A FIRST MODEL FOR AN IDEAL CELL 

II. 1. Assumptions ~ currents ~ magnetic fields 

In each cell the current density has a specific distribution depending on 

parameters like the geometry of each anode block, the particular design of the 

risers, the position of the collector bars, etc. The magnetic field also is 

dependent on many parameters (the effect of which is not easily taken into account 
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explicity}, such as the position of the cell in a pot line or the Bhielding effect 

of the steel shell surrounding the cell. Therefore any distribution of the Lorentz 

forces J x ~ which could be considered as sufficiently exact for a given cell 

would certainly be imprecise for many others. Since a main goal of this study is to 

reach a general understanding of the hydrodynamics of cells, it ha~ been choosen to 

use some "ideal" distributions of j and B, rather than to compute them. (Notice 

that even computed distributions would not be "exact.") Of course such 

distributions have to be in agreement with some first order requirements such as the 

respective positions and voltages of the anodes, the two liquids, the carbon cell 

lining, and the collector bars. They should also contain a small number of 

parameters which are to' be adjusted by. comparison with measurements or computed 
- . . 

dlstributi~ns such as those of Lympany and Evans [3]. The first approximation 

developed in this section is based on·the following assumptions: 

i) The jx component in the long horizontal direction is taken to be zero 

since the collector bars usually drive the horizontal current in the y direction. 

ii) Because of the very small electrical conductivity and depth of the 

cryolite layer, the current density is supposed purely vertical and uniform in this 

liquid (jz = -j0 ). 

iii) In the aluminum the distribution of the current density is taken as: 

(17) 
= j 1"1. 

H 
-j 

0 

where H is the depth of the aluminum layer; the level variations of the interface 

are neglected for electromagnetic calculations 

iv) The magnetic field of all the external conductors is neglected by 

comparison with that of the internal current, which is itself assumed purely 

horizontal (Bz << Bx, By) and without variations with z in the gap of interest. 

Then the vector potential is purely vertical: 

·. 

._ 
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{18) B 
X 

= 
a A 
ay , 

and follows Ampere's law: 

(19) -]Jj z 

B 
y = 

Clearly these assumptions are open to discussion and improvements. For 

instance section III shows an example of such an improvement obtained by adding a 

supplementary term and a supplementary parameter in relations {17) in order to 
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include a new effect. Indeed these relations {17) may be considered as the simplest 

combination of two conservative fields allowing the study of the influence of the 

horizontal current densitY via the parameter j 1• Assumption (iv) may be understood 

as a tool to isolate the internal characteristics of the cell from external 

characteristics such as the arrangement of risers and collectors. Of course an 

explicit approximation of the magnetic field induced in the two liquids by the 

external conductors could be added in Equations (18) and (19). But it follows from 

QGIIlputed results (3) that this external magnetic field is definitely a second order 

effect (a few gauss compared to 50 gauss due to internal current). 

Equation {19), together with V ~A = 0 outside the rectangle 2a x 2b, and 

the conditions of continuity of A and its two first derivatives on the boundary, has 

a solution of the form: 

(20) 

where G(x,y) is completely determined by equation 

(21) 
inside the rectangle 

outside the rectangle 



and by the continuity conditions. This solution, analogous to the distribution of 

the electric potential created by a charge density which is uniform in a rectangle 

and zero outside, is explicity known (Durand, see Appendix A}. 

It follows from these assumptions that the Lorentz force has a simple 

expression in terms of A: 

(22) 

Since we only need its mean value in each fluid layer, let us write: 

(23) j X B = 

where C is a non-dimensional parameter representing the influence of the, horizontal 

current jy. It follows; from our assUmptions that C- ~- 1 in the cryolite layer 

whereas in the aluminum it has the value 

(24) Jt 1 jf 
c = 1 - jo + 

3 • 2 
Jo 

~ Motion ~ pressure jn 1n4 gryolite layer 

The non-dimensional form of Equation (23) to use with Equation (6), (7) and 

( 8) in the electrolyte is J' = - 'i7 8G. Therefore, the motion equations in this layer 

are 

(25) 

(26) -
K1U1 = -'i] (.Pl +G) 

H 

Taking the divergence of(26) yields the equation for the pressure distribution 

(27) 

The solution satisfying the boundary condition that P1 = 0 at the boundary of a 

·. 
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rectangle is explicitly known; it is analogous to the temperature distribution in a 

rectangle with uniform heat production and boundaries at a constant temperature 

(Carslaw and Jaeger, see Appendix A). 

This solution is illustrated in Figure 3, and may be compared with the 

solution of Equation (21) for G. It is clear that the boundary condition, imposing 

a stricter condition on P1 than on G, makes all the difference between these two 

functions and prevents the two gradients from canceling each other. To emphasize 

this difference, which is the key to the mean flow in the cryolite, one could say 

that because of the presence of the wide channels, the isobars resembles rectangles, 

whereas the lines G = Constant look rather like circles. 

The influence of a wide central channel appears very important when Figure 

3a is compared with Figure 3b where a center channel has been introduced. The 

center channel has essentially two main effects. 

i) There are two symmetrical pressure domes, one under each anode row, when 

there is a wide central channel, rather than one bigger dome centered in the middle 

of the cell when no wide central channel is present (Figure 3a). 

ii) In forcing P1 = 0 at the center and along the x axis as well as at the 

boundary, the presence of a wide central channel reduces the pressure differences 

and the pressure forces, for the same given value of the Laplacian (by a factor 3.7 

in the computed case). 

It is straight-forward to deduce the velocity field from (26) when P1 and G 

are known. Figure 4 shows the streamlines of this potential flow as deduced from 

equations 

(28) 
K1U 

a~ a 
(Pl + G) = ay = - --ax 

K1V 
a~ a 

(P1 + G) = ax = - ay 

The influence of a wide central channel again appears dramatic since the nature of 
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the main flow is completely different between Figure 4a and 4b. It is, however, 

easy to interpret these flow patterns: When there is no central channel the same 

pressure difference does exist along the small and the large axes, but the inward 

electromagnetic forces are dominant along the large axis whereas the outward 

pressure gradient is dominant along the small axis. When a wide central channel is 
.· 

present, the general reduction of pressure differences makes the electromagnetic 

forces predominant everywhere and provides a vel9city field almost parallel to the 

force field. 

It is also of interest to notice that the value of the stream function ~ is 

3.5 times greater with,than without,a central channel in the computed case, and that 

the place where ~ is maximum is not at all the same in the two cases. Also the 

direction of the mean flow in the peripheral channel is changed when a wide central 

channel is present. 

These predictions could be checked with direct observations on real cells 

since the wide channels are more accessible than the shadow of the anode (6). The 

flow rate in these channels is easily deduced from the values of ~ at the boundary: 

112 

(29) q = 

and seems to be the first quantity to be checked with measurements. 

It is remarkable that in this inertia free approximation it is not necessary 

to give a numerical value to the friction coefficient 1<1 to find out the flow 

pattern. This is, however, necessary to get some numerical value of the flow rates 
·-

in the channel from Equation (29). Inversely, this relation could be used as an 

empirical way to determine K1• 

11.3. Pressure~~ aluminum~ interface shape 

In the aluminum layer, the motion equations are very similar to (25) and 
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(26) with the only difference that the velocity potential is now P2 + CG. The 

important feature is the absence of channels or anything equivalent. The force 

distribution (23) is assumed to be valid everywhere, and the depth of the aluminum 

layer is assumed to be uniform. Then the only boundary condition demands that the 

normal component of the velocity be zero on the edge of the rectangle. The only 

irrotational plane motion satisfying this condition is tT2 = 0. As a consequence, 

the pressure distribution in the aluminum is 

(30) 

(31) 

p 1oJ· 2 L 2 CG + = -P28Z - ,.. 
0 

constant 

The analogous equation in the cryolite layer is 

+ lJj 2L2Pl 
0 

P = - P18Z 

and it is straight-forward to deduce from (30) and (31) the interface equation · 

(32) (p 2-pr)gz = -~j?L2 (Pl + CG) + constant 
0 .· 0 

Our choice· that the z origin be at the mean level of the interface determines the 

constant, and the final equation of the interface is 

(33) 
---- z = P1 + CG (Pl + CG) 

where the upper bar is used to designate the average value in the rectangle. 

Figures 5, 6, and 7 show the results for our cell of reference (aspect 

ratio: 2), with and without a wide central channel, and for two values of the 

parameter C. The unrealistic case C = 1 has interest only as a reference to 
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illustrate the influence of the horizontal current in the aluminum when C is smaller 

than one. It appears that the predicted shape looks like a dome with deviations 

which are worthy of discussion. 

To interpret these results, remember first that the overpressure which is 

developed under the anodes in the cryolite layer is the strongest when there is no 

central channel. Furthermore, the pressure differences which arise in the aluminum 
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layer are exactly those necessary to balance the electromagnetic forces. In 

particular, the smaller I jy I (C = 1), the larger I jzl, and the higher these 

pressure differences. The general dome shape is due to the fact that the central 

overpressure is generally smaller in the cryolite than in the aluminum; therefore 

16 

the only possibility to generate such a departure on a vertical line is to vary the 

height of the denser liquid. This is particularly clear along the boundaries of the 

rectangle where the interface is always like a dome, because p = Constant in the 

cryolite, whereas in the aluminum it has to be a maximum at the middle of each side 

and to be the smallest at the corners in order to balance the inward electromagnetic 

forces. Therefore one understands that in the four computed cases the dome is the 

most significant when C = 1 and when a large central channel is present. It is, on 

the contrary; the wea_ker when C = 0.5 and without any central channel. 

From among the noticeable deviations from this dome shape,_notice the 

central saddle or trough in the middle of a cell without a central channel. It 

comes from the fact that the central overpressure is higher in the cryolite than in 

the aluminum. It is remarkable that the depth of this trough increases when C 

decreases, thus illustrating the influence of increasing the horizontal current in 

the aluminum. Varying the coefficient Cwould also show that the lower point of the 

interface (still for a cell without central channel), which is at the corner when C 

= 1, moves along the small side to its middle and then along the large axis to the 

cell center as C decreases monotomically to its limit of 0.25 imposed by Equation <24 >· 

\ III. EXAMPLE OF A SECOND ORDER IMPROVEMENT · 

Correction ~ ~ electromagnetic ~ 

When expressions ( 17) are compared with plausible values such as those 

\II.], 
computed by Lympany and Evans (3), their linear variation with the coordinates does 

not,seem to be correct for more than three-quarters of the cell width. It appears 
\ 

that in the outermost quarter some reduction should be introduced in relations (17). 

.· 
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This comes from the fact that the aluminum pool is wider than the anode. Indeed the 

geometry of the external boundary of the aluminum layer is in itself a difficult 

question. The key point is the shape and the position of the ledge of solidified 

electrolyte all around the cell. It is, of course, strongly dependent on the 

thermal behavior of the cell, and it exhibits important variations form one cell to 

another, as well as in a given cell during its life • 

In this section consequences of this boundary phenomenon are studied as a 

disturbance of the reference state described in Section II. Because of the 

linearity of the motion equations {6), {7)~ and {8), this disturbance need not be 

supposed to be very small. However, the thickness of the region through which such a 

disturbance is concentrated is assumed· to be small.enough, so that ideas and 

techniques of the boundary layer theory apply. 

The disturbance of the current density is supposed to take place in a plane 

{ n ,z), where n is the outward normal to the rectangle edge {Figure 2), and to have 

have the following distribution: 

( 34) 

= 
z n/o 

j2 H e 

Clearly two new parameters { J2 and o ) are thus introduced to characterize this 

disturbance. No restriction applies on J2, but the thickness o of the disturbed 

layer is supposed to be much smaller than the width of the rectangle, so that the 
a 

derivative at may be neglected in comparison with a , except in the vicinity of an 
the corners where this theory fails. 

( 35) 

The vector potential of the magnetic field may then be written 

n/o 
A = (j

0 
+ h ~) ~G{x,y)-~j2o2~ e 

where the last term (the correction to ( 20)) is the solution of the simplified form 

of Equation (19). 
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It follows that the mean value of the elctromagnetic forces in the aluminum 

layer is now: 

where non-dimensional coefficients D and E, characterizing the importance of J2 , 

have the definitions 

(37) D 
jl 

(-1/2 + 1/3 j) 
0 

E = 

The two terms proportional to o 2 in equation (3.6) can be neglected in comparison 

with Den/o VHG which appears as the essential correction. Notice also that 

they are pure gradients and could not drive any aluminum motion. It is then 

interesting to notice the distribution of the curl of the forces: 

(38) 
~H x ... <jxB> 

n/o aG 
e -dt e 

z 

oc Since 6t is zero at the middle of each side and increases or decreaes towards the 

corners as an odd function of the abcissa, it is clear that the flow driven along 

each side by this force has the directions and symetries shown on Figure 2. 

III.2 ~motion JA ~aluminum 

(39) 

Let us introduce the decomposition 

U = U + u* 
c 

p = p + p* . c 

where rrc and vc stand for the dimensionless values of u and p in the central core 

of the aluminum rectangle, and vary on the typical length scale L. The corrections 

u• and p• are concentrated in the boundary region along the edge and vary along the 



., 

.· 

.· 

normal on the short length scale oL. Clearly ~c and Pc are no longer the values 

determined in the reference state, since the flow driven in the boundary region by 

the electromagnetic forces has to recirculate in the central core. Dimensionless 

equations (6) to (8) then become: 

( 40) 

(41) 

'iJ • u = 0 
H c 

K2U = -'iJ (P +CG) 
c H c 

( 42) "fj • u* = 0 
H 

(43) 

In the boundary region the normal component.u•n is negligible compared to 
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the tangential component u•t· Therefore, with the matching condition p(n~- oo ) = 

0, the normal projection of Equation (43) gives the disturbance of the pressure: 

( 44) 

n 

p* = D fen/o aG dn = Do ' an 
-00 

n=O 

n/o e 

an* Then after substitution of ~ , the tangential projection gives the u*t velocity 

component: 

( 45) n/o e 

Finally the continuity equation and the ma.tching condition u*n(n ~ - oo ) = 0 give 

the u*n velocity component: 



(46) 

It follows from the two last expressions that the non-dimensional flow rate driven 

by the electromagnetic forces in the boundary regions is ~ (~~l=O 

( 47) 

The core has essentially to feed these boundary regions. This demands 

U (n=O) 
en = 

20 

in order that the total normal velocity component be zero at the boundary. Therefore 

the molten altDDiniJm cannot stay at rest in the core as in the reference state. The 

potential flow sa.tisfying ( 40) .and ( 41 ) may be determined iii terms of a stream 

function '¥c. Taking account of the symetries, in the cell quarter x>O and y>O this 

stream function,whose definition is 

(48) 

is completely determined by the Laplace equation ~2 H'i'c = 0 together with the 

boundary condition 

'¥ = 0 on the axes 
c 

( 49) '¥ = c 
-Do (ac) ax y=b 

on side AC 

'¥ = Do.(~;) x=a c 
on side B 

Some typical streamlines shown on fig. 8 illustrate the main character of 

this flow. For the core. flow th-e corners are source points from which comes the 

flow rate necessary to feed the boundary regions. And in return they are the sink 

points to whi.ch goes all the flow of the boundary regions. Of course this 

singularity of tbe corners is nothing but a consequence of the asymptotic character 

of this theory which is only rigorous in the limit of o~ . 

.. 

·, 



It is also straightforward to calculate the pressure distribution. The 

velocity potential ~c = Pc + CG which has also to satisfy the Laplace equation 

following (40) is completley determined by the Newmann boundary condition (47). 
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Some typical potential lines are also shown on Figure 8. The pressure correction is 

proportional to DoG and is therefore much smaller than the pressure differences 

found in the state of reference (proportional to CG). Therefore, it cannot 

introduce any important change into the interface topology. It is, however, 

interesting to notice that this second order effect tends to compensate for the 

differences of level found at the state of reference, since the higher pressure 

correction takes place in the corners and tends to raise these lowest points of the 

interface. 

lL. . REMARKS AWL DISCUSSION 

/ 
The hydrodynamics of Hall-Heroult cells have been the subject of many 

investigations since the pioneering work by Givry [7]. The fact that the governing 

mechanisms were still unclear, and that the numerical predictions [2] and [8] did 

not predict the same flow pattern, have given to this problem the reputation of 

being extremely difficult. In this context this paper introduces a new point of 

view and some simplifications which provide an important clarification. From two 

main approximations (the way to model the channels influence the cryolite flow, 

and the shallow water approximation) arises an almost elementary solution for an 

ideal cell. This solution may be seen as a first order solution and remains open to 

improvements. It shows that phenomena like the interface shape and the cryolite 

motion are controlled at the first order of approximation by the geometry of the 

channels between the anode blocks and around the cell, and by the distribution of 

the horizontal current in the aluminum layer. 

This elementary theory has, however, still some weaknesses suggesting .future 

work: 
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i~ The analysis supposes that the channels are either very wide or very 

narrow, and that their width is not taken as a parameter. To remedy this first 

weakness, numerical solutions of the motion equations (6) to {8) together with 

relation (14) as a boundary condition at the edge of each anode block should be used 

in the cryolite (see Appendix B). 

ii) Another resides in the fact that the idealized force distributions (23) 

or (36) do not coincide with those of a real cell. The remedy is obviously in the 

numerical ccmputation of electric currents, magnetic fields, and force fields, as 

done by Evans, Zundelevich and Sharma [2]. It would permit the real distributions 

of <(J x ~)H > to be introduced in the motion equations before computing the 

velocity fields •. 

. iii) It must also be pointed out that this first investigation is only 

concerned with a steady state, which is assumed to coincide with an average of the 

actual wtsteady states. The unsteadyness and the turbulence are only taken into 

accowtt through the friction coefficients K1 and K2• · To make significant progress 

in the understanding of the cell's behavior it would be now important to study the 

mechanisms of instability of the interface. In this context it is felt that the 

present concept of an ideal cell with an elementary steady state of reference offers 

the necessary basis into which small disturbances could be introduced and studied. 

iv) Assumption (8) that 'T' is proportional to the local velocity can only 

be justified in an ideal cell with mean velocities much smaller in the aluminum than 

in the cryolite. For cells with rotational Lorentz forces, relation (8) could be 

generalized under the form 

= 
(50) 

= 

KlUl + yU2 

K2U2 + yUl 

Such expressions that retain the linearity of the problem would not really make the 

.. 



... 
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nu.erical computation more difficult. The interest in their use would be to 

introduce some coupling between the two fluid flows. This coupling should not be 

ignored since each liquid tends to drive the neighboring one in the direction of its 

own motion. 

v} In itself this theory cannot give any idea of the numerical values of 

coefficients K1, 1<2 and y. It is the hope of the authors that some comparison of 

measurements such as those made by Johnson [6] with numerical predictions deduced 

from equations of Appendix B could provide a good estimation for these parameters. 

~his work was supported by the Assistant Secretary for Conservation and Renewable 

Energy, Office of Energy Systems Research, Energy Storage Division of the u. s. 

Department of Energy under Contract Number DE-AC03-76SF00098. 
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APPENDIX A.i.. Explicit solutions ~ equations .wl .awl ill) 

With notations defined in fig. 9 and c = (a2 + b2>112 , the soluti~n of Eq. 

(21), such that the functions G (x,y) and its two first derivatives be continuous on 

the edge of the rectangle, may be written: 

r r r r 
2TIG = h1h2 Log ~ ~) + h2h3 log ~ ~) + h3h4 log ( ~) + h4h5 log ( :) 

(A1) 

The last term is a. particular solution o.f the Poisson equation · }12a : 1. The 

other terms are solutio~s ofLaplace equation 'iJ 2a = o ~ At the origin of 

coordinates the value of G is: 

(A2) G (o) = 1 
2TI f 2 2 2 b l b + 2 (a -b )arctan (a) 

It can be subtracted from (A 1) to get a zero value at the origin. 

is: 

(A3) 

The solution of eqo (27) such that P1 be zero at the edge of the rectangle 

p a 
1 

2 2 a -x 
2 

n (-1) cos[(2n+l)TIX/2a] cosh [(2n+l)Tiy/2a] 
3 . . 

(2n+l) cosh [(2n+l) Tib/2a] 

... 

.. 

·. 
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APPENDIX ~ Procedure ~ computation ~ velocity fields ~ interface shape in 

.t9l cells. 

When the distributions of the force fields Y1 and ~2 have been computed, 

the equations to solve to determine the velocity and pressure distributions in the 

two liquids are (6) and (7) with expressions (8) or (50) for the drag Ti. 

In the cryolite the boundary condition to use on the edge of each anode 

block is: 

p1 = 0 in wide channels 

(B1) 

dP
1 + A 2 .· 0 dt Q = 

in narrow 9hannels 

where Q = Jun(n:O) dt stands for the dimensionless flow rate in the charmels, 

and where 

A = 

denotes the dimensionless friction coefficient. Taking the divergence of Equation 

(7) gives a Poisson equation, the solution of which P 1 (x ,y) is completely determined 

by cs,). Then (7) gives: 

(B2) 

In the aluminum the boundary condition to use on the edge of the metal pool 

is un = o. Taking the curl of the motion equation and eliminating 'VH X rr, with 

(B2) gives: 

(B3) curl F2 - 1_ curl F 
Kl 1 
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The technique to solve Equation (B3) for a conservative velocity field 

<Va • u2 = 0) is quite straight-forward. 1 stream-function is usually introduced, and 

appears to be determined by a Poisson equation together with the boundary condition 

that Un = 0 at the edge of the aluminum pool. The velocity field ~2 is thus 

determined. Then (B2) gives the velocity field ~1 , and the pressure distribution 

P2(x,y) follows from the motion equation. 

Finally the interface shape is given by: 

(B4) 

., . 



27 

FIGURE CAPTIONS 

1. Sectioned view of a Hall-Heroult cell as seen looking in the long horizontal 

direction. 

2. Coordinates and main notations in a typical horizontal plane. 

3. Potential lines (G = Const.) of the <j x B> force field, and pressure lines (P = 

Const.) 

a) for a cell without central channel 

b) for a cell with central channel 

4. Streamlines of the cryolite flow underneath the anode 

a) for a cell without central channel 

b) for a cell with central channel 

5. Interface contour lines when C = l (j 1 = 0, i.e. no horizontal current in the 

aluminum) 

a) for a cell without central channel 

b) for a cell with central channel 

6. Interface contour lines when C = 0~5 (j1/j0 = 0.634) 

a) for a cell without central channel 

b) for a cell with central channel 

1. Interface shape in the four computed cases 

a) c = 1 ' without central channel 

b) c = 1 ' with central channel 

c) c = 0~5, without central channel 

d) c = 0.5, with central channel 
. a. Typical streamlines of the core flow feeding the side boundary layers in the 

aluminum pool. 

9. Definition of notations used in equation A1. 



FIG. 1 Sectioned view of. a Hall-H~roult cell as seen looking in.~he. long horizontal direction. 
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FIG. 2 Coordinates a~d main notations in a typical horizontal plane. 
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FIG. 3 Potential lines (G ~ Const.) of the <j x B> force field, and 
pressure lines (P = Const.) 
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FIG. 4 Streamlines of the cryolite flow underneath the anode. 
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FIG. 5 Interface contour lines when C = 1 (j 1 = 0, i.e.p no horizontal 
current in the aluminum} 
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FIG. 6 Interface contour lines when C = 0. 5 (j / j 
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FIG. 7 Interface shape in the four computed cases 
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FIG. 8 Typical streamlines of the core flow feeding the side boundary layers in the aluminum pool. 

.· lJ • · . 

X 

w 
0\ 



37 

~ 
X• 

'· 

. 
...... 
< 
c:: 
0 ..... ..... 
~ 

=' C" 
Q) 

c:: ..... 
("'') "0 

..s:::. Q) 
rn 
=' 
rn c:: 
0 ..... ..... 
~ ..... 
0 c:: 
~ 
0 .. rn 
c:: 
0 ..... 
..... 

. ( ..... 
c:: ..... 
~ 
Q) 

~ 

0'1 

. 
t.!) 
1-1 
~ 



38 

REFERENCES 

1. Se D. Lympany, J. W. Evans and R. Moreau: "Magnetohydrodynamic effects in 

aluminum reduction cells," Proc. IUTAM Symp. "Metallurgical Applications of 

Magnetohydrodynamics 9 " Cambridge 9 England. ~The Metals Soc. , London 198 3. 

2. J. w. Evans, Y. Zundelevich and D. Sharma: "A Mathematical Model for Prediction 

of Currents, Magnetic Fields, Melt Velocities, Melt Topography and Current 

Efficiency on Hall-Heroult Cells," Met. Trans., 1981, vol. 128, pp. 353-360. 

3. S. D. Lympany and J. W. Evans: "The Hall-Heroult Cell: Some Design Alternatives 

Examined by a Mathematical Model," Met. Trans., 1983, vol. 148, pp. 63-70. 
. •· 

4. E. Durand: "Electrostat·ique," tome 1,. 1964, Hasson, p. 350. 

5. H. S. Car slaw and J. C. Jaeger: "Conduction of Heat in Solids," 2nd ed., 1959, 

Clarendon Press, P. 171. 

6. A. F. Johnson: "Light Metals 1978;" vol. 1, pp. 45-58, The Metallurgical 

Society of AIME, N.Y. 

7. J. P. Givry: Trans. Met. Soc. AIME, 1967, vol. 239, pp. 1161-1166. 

8. c. Cercignani, G. Solinas, B. Crudelle, and R. 8acchiega: "Contribution to the 

Study of the Metal Flow Pattern in an Aluminum Electrolytic Cell," AIME Conference, 

1977, paper no. 23. 

' .• 



.. 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable . 



:· 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

. ' 




