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Abstract
This paper focuses on the implications of a commutative formulation that
integrates branch-cutting cosmology, the Wheeler–DeWitt equation, and
Hořava–Lifshitz quantum gravity. Building on a mini-superspace structure, we
explore the impact of an inflaton-type scalar field on the wave function of the
Universe. Specifically analyzing the dynamical solutions of branch-cut gravity
within a mini-superspace framework, we emphasize the scalar field’s influ-
ence on the evolution of the evolution of the wave function of the Universe.
Our research unveils a helix-like function that characterizes a topologically
foliated spacetime structure. The starting point is the Hořava–Lifshitz action,
which depends on the scalar curvature of the branched Universe and its deriva-
tives, with running coupling constants denoted as gi. The corresponding wave
equations are derived and are resolved. The commutative quantum gravity
approach preserves the diffeomorphism property of General Relativity, main-
taining compatibility with the Arnowitt–Deser–Misner formalism. Additionally,
we delve into a mini-superspace of variables, incorporating scalar-inflaton fields
and exploring inflationary models, particularly chaotic and nonchaotic sce-
narios. We obtained solutions for the wave equations without recurring to
numerical approximations.
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1 INTRODUCTION

Alan Guth has suggested that our universe is product of
inflation (Guth 1981, 2004), a conception based on the
existence of states with negative pressure, which effects
can be seen in the Friedmann equations (Friedman 1922)
in which a positive pressure contributes to the deceleration
of the universe, while a negative pressure can cause
acceleration.

In order to build physical states of negative pressure,
Guth has introduced a scalar field, the inflaton, 𝜙. The
corresponding energy-momentum tensor, T𝜇𝜈 , is given
as (Guth 1981, 2004)

T𝜇𝜈 = 𝜕

𝜇

𝜙𝜕

𝜈

𝜙 − g𝜇𝜈
[1

2
𝜕
𝜆

𝜙𝜕

𝜆

𝜙 + V(𝜙)
]
. (1)

In this expression, V(𝜙) represents the potential energy
density.

The energy density, 𝜌(t), and pressure, p(t), in the infla-
tion model are (Guth 2004)

𝜌(t) = T00 = 1
2

̇

𝜙

2 + 1
2
(∇i𝜙)2 + V(𝜙) ,

p(t) = 1
3

3∑
i=1

Tii =
1
2

̇

𝜙

2 − 1
6
(∇i𝜙)2 − V(𝜙), (2)

As a fundamental result, quantum density perturbations
lead to the eternal inflation as a result of a repulsive form
of gravity, driving the acceleration of cosmic expansion.

Branch cut gravity (BCG) in turn, a theoretical alter-
native to the inflation model, based on the mathemat-
ical augmentation technique of closure and existential
completeness (Manders 1989), represents an analytically
continuous extension of general relativity (Einstein 1916,
1917) to the complex plane (Bodmann et al. 2022; Bod-
mann et al. 2023a; Bodmann et al. 2023b; de Freitas
Pacheco et al. 2022; Hess et al. 2023; Zen Vasconcel-
los et al. 2019; Zen Vasconcellos et al. 2021a; Zen Vas-
concellos et al. 2021b; Zen Vasconcellos et al. 2023).
Such mathematical procedures have proven extremely
useful both in quantum mechanics (Dirac 1937), with
direct physical manifestations (Aharonov & Bohm 1959;
Wu et al. 2021) and in pseudocomplex general relativity
(pc-GR) (Hess 2017; Hess et al. 2016; Hess & Boller 2020;
Hess & Greiner 2009), allowing to identify a suppression
mechanism of the primordial gravitational singularity and
to the prediction of the existence of dark energy outside
and inside cosmic mass distributions.

The branch-cut formulation corresponds to the com-
plexification of the Friedman–Lemaître–Robertson–
Walker (FLRW) metric (Friedman 1922; Lemaître 1927;
Robertson 1935; Walker 1937), resulting in a sum of

field equations associated to continuously distributed
single-poles with infinitesimal residues, arranged along a
line in the complex plane (for details, see ref. Bodmann
et al. 2022; Bodmann et al. 2023a; Bodmann et al. 2023b;
de Freitas Pacheco et al. 2022; Hess et al. 2023; Zen Vas-
concellos et al. 2019, 2023; Zen Vasconcellos et al. 2021a;
Zen Vasconcellos et al. 2021b). Through a Riemann inte-
gration process, this complexification gives rise to a new
scale factor, denoted as ln−1(𝛽(t)), which characterizes a
topological foliated spacetime structure.

In this work, based on a recently developed commuta-
tive formulation that combines the branch-cut cosmology,
the Wheeler–DeWitt equation, and the Hořava–Lifshitz
quantum gravity (Bodmann et al. 2023a; Bodmann
et al. 2023b), considering a mini-superspace framework,
we study the implications of an inflaton-type scalar field
and the corresponding potential in the acceleration of the
Universe.

2 HO ̌RAVA–LIFSHITZ
BRANCH- CUT ACTION

The Hořava–Lifshitz approach to commutative quan-
tum gravity incorporates, in the Lagrangian formulation,
contributions from the spacetime curvature of high
orders, preserving the diffeomorphism property of
General Relativity (Kiefer 2012). This property char-
acterizes an isomorphism of smooth varieties, as well
as the usual foliation of the Arnowitt–Deser–Misner
(ADM) formalism at the limit of the infrared region of
the spectrum (García-Compeán & Mata-Pacheco 2022).
In combination with the Wheeler–DeWitt (WdW)
equation (Witt 1967), the formulation is free of
ghosts, making it suitable for describing quantum
effects of the gravitational field (García-Compeán &
Mata-Pacheco 2022). The solutions of the WdW equation,
represented in turn by a geometric functional of com-
pact manifolds and matter fields, describe the evolution
of the quantum wave function of the Universe (Hartle &
Hawking 1983; Hawking 1982).

The Hořava–Lifshitz action, HL, is given by (Abreu
et al. 2019; Bertolami & Zarro 2011; Bodmann
et al. 2023a; Bodmann et al. 2023b; Cordero et al. 2019;
García-Compeán & Mata-Pacheco 2022; Hess et al. 2023;
Hořava 2009; Vieira et al. 2020):

HL =
M2

P

2 ∫
d3x dt N

√
g
(

Ki𝑗Ki𝑗 − 𝜆K2 − g0M2
P

− g1 − g2M−2
P 

2 − g3M−2
P i𝑗

i𝑗 − g4M−4
P 

3

− g5M−4
P (

i
𝑗


𝑗

i ) − g6M−4
P 

i
𝑗


𝑗

k
k
i

− g7M−4
P ∇

2
 − g8M−4

P ∇i𝑗k∇iR𝑗k)
. (3)
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In the BCG formulation, the action HL depends on the
scalar curvature of the branched Universe, , and on
its derivatives, in different orders (Abreu et al. 2019;
Bertolami & Zarro 2011; Bodmann et al. 2023a; Bodmann
et al. 2023b; Cordero et al. 2019; García-Compeán &
Mata-Pacheco 2022; Hess et al. 2023; Hořava 2009; Vieira
et al. 2020). In expression (3), gi denote running cou-
pling constants, MP is the Planck mass, ∇i represents
covariant derivatives, and the branching Ricci components
of the three-dimensional metrics may be determined by
imposing a maximum symmetric surface foliation (Hess
et al. 2023) which gives:

i𝑗 =
2

𝜎

2u2(t)
gi𝑗 , and  = 6

𝜎

2u2(t)
, (4)

where the variable change u(t) ≡ ln−1[𝛽(t)], with du ≡
dln−1[𝛽(t)], was introduced. K = Ki𝑗gi𝑗 represents in
expression (3) the trace of the extrinsic curvature tensor
Ki𝑗 (Bodmann et al. 2023a;Bodmann et al. 2023b; Hess
et al. 2023):

K = Ki𝑗gi𝑗 = −
3

2𝜎Nu(t)
du(t)

dt
. (5)

Applying standard canonical quantization procedures
and thus promoting the canonical conjugate momentum
into an operator, that is, pu → −i 𝜕

𝜕u
, the Hamiltonian is also

elevated to an operator. The canonical quantization Dirac
procedure applied to the Einstein–Hilbert action results
in a second-order functional differential equation defined
in general terms in a configuration superspace, whose
solutions depend on a three-dimensional metric and on
matter fields (Hartle & Hawking 1983; Hawking 1982;
Lukasz 2014; Witt 1967).

The Hamiltonian, the new complex dynamical variable
u(t), representing the helix-like scale factor analytically
continued to the complex plane, along with the corre-
sponding conjugate momentum pu, are then treated as
operators, denoted respectively as ̂(t), û(t), and p̂u. This
leads to the formulation of the branching Hamiltonian
given by1 (Bodmann et al. 2023a; Bodmann et al. 2023b;
see also Bertolami & Zarro 2011)

 = 1
2

N
u

[
−p2

u + gr − gmu − gku2 − gqu3 + gΛu4 +
gs

u2

]
,

(6)

with pu = − u(t)
N

du(t)
dt

. In this expression, pu represents the
conjugate momentum of the original branching grav-
itation dynamical variable ln−1[𝛽(t)], gk, gΛ, gr, and
gs represent respectively the curvature, cosmological

1To simplify notation, we do not use in the following the hat symbol and
explicit time dependence in most cases.

constant, radiation, and stiff matter running coupling
constants (Bertolami & Zarro 2011; Maeda et al. 2010)

gk ≡
2

3𝜆 − 1
; gΛ ≡

ΛM−2
PI

18𝜋2(3𝜆 − 1)2
; gr ≡ 24𝜋2 (3g2 + g3) ;

gs ≡ 288𝜋4 (3𝜆 − 1) (9g4 + 3g5 + g6). (7)

The gr, and gs running coupling constants can be positive
or negative, without affecting the stability of the solu-
tions. Stiff matter contribution in turn is determined by
the p = 𝜔𝜌 condition in the corresponding equation of
state. In Equation (6) we supplemented the Hamiltonian
with two additional terms, gmu, that describes the con-
tribution of baryon matter combined with dark matter,
and gqu3, a quintessence contribution. The parametriza-
tion of curvature, cosmological constant, radiation, stiff
matter, baryon matter combined with dark matter, and
quintessence running coupling constants are in tune with
the Wilkinson Microwave Anisotropy Probe (WMAP)
observations (Hinshaw et al. 2013).

3 MINI-SUPERSPACE OF
VARIABLES

We consider in the following a mini-surperspace of vari-
ables (u(t), 𝜙(t)). We adopt for the action of the scalar field
the following expression (Kiritsis & Kofinas 2009; Tavakoli
et al. 2021)

S
𝜙

=
∫


d3x dt N
√

g
[ 1

N2

(
̇

𝜙 − Ni
𝜕i𝜙

)2 − (𝜕i𝜙, 𝜙)
]
.

(8)

Assuming homogeneous and isotropic cosmological set-
tings we have Ni = 0 (Kiritsis & Kofinas 2009; Tavakoli
et al. 2021), and the action of the scalar field 𝜙(t), given by
expression (8), may be written as

S
𝜙

=
∫


d3x dt N
√

g
(1

2
1

N2 F(𝜙) ̇𝜙2 − V(𝜙)
)
, (9)

with V(𝜙) denoting the inflation potential and where F(𝜙)
represents a coupling function. In the following, from the
total action determined by adding the Hořava–Lifshitz and
the scalar field actions, the Hamiltonian associated with
the mini-superspace of variables may be obtained.

3.1 Chaotic inflation

The momenta conjugate to the dynamical variables
(u(t), 𝜙(t)) can be obtained by definition as pq = 𝜕L∕𝜕q̇,
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where L defines the total Lagrangian of the system,
resulting in

pu = −
1
N

uu̇ ; and p
𝜙

= 1
N

F(𝜙)u3
̇

𝜙. (10)

The total Hamiltonian then reads

 = 1
2

N
u

[
−p2

u + gr − gmu − gku2 − gqu3 + gΛu4 +
gs

u2

]

+ 1
2

N
u

[
1

u3𝜔−1F(𝜙)
p2
𝜙

+ 2V(𝜙)
]
. (11)

The condition HΨ(u, 𝜙) = 0, where Ψ(u, 𝜙) = Ψ(u)Ψ(𝜙)
represents the wave function of the Universe, implies, for
𝜔 = 1∕3, the following two separable equations

[
−p2

u + gr − gmu − gku2 − gqu3 + gΛu4 +
gs

u2 − 
]
Ψ(u) = 0,

(12)

and [
1

F(𝜙)
p2
𝜙

+ 2V(𝜙) − 
]
Ψ(𝜙) = 0. (13)

Promoting the canonical conjugate momenta pu and p
𝜙

into operators

pu → −i 𝜕
𝜕u

, and p
𝜙

→ −i 𝜕

𝜕𝜙

, (14)

we get

p2
u → − 𝜕

2

𝜕u2 , and p2
𝜙

→ − 𝜕

2

𝜕𝜙

2 . (15)

Combining Equations (12), (13), and (15), we obtain

[
𝜕

2

𝜕u2 + gr − gmu − gku2 − gqu3 + gΛu4 +
gs

u2 − 
]
Ψ(u) = 0,

(16)

and [
− 𝜕

2

𝜕𝜙

2 + F(𝜙) (2V(𝜙) − )
]
Ψ(𝜙) = 0. (17)

In the following we consider chaotic inflation modeled
by using the potential V(𝜙) = 1

2
g2
𝜙

𝜙

2 and we assume a poly-
nomial coupling function for the scalar field, F(𝜙) = 𝜆𝜙

m,
so Equation (17) then reads

[
− 𝜕

2

𝜕𝜙

2 + 𝜆𝜙

m
(

g2
𝜙

𝜙

2 − 
)]
Ψ(𝜙) = 0. (18)

Through consistent computational approaches, we
obtained solutions for the Universe’s wave function with-
out resorting to numerical approximations, despite the
formal difficulties inherent in solving the differential

equations associated with the Hořava–Lifshitz formalism,
as is common in works found in the literature. The bound-
ary conditions adopted in this work follow conventional
canons of convergence, as well as stability and continuity
of solutions of differential equations, and are in line with
the Bekenstein criterion (de Freitas Pacheco et al. 2022).
The sample set of solutions for the wave function, Ψ(𝜙),
illustrates the impact of different parameters on chaotic
inflation. Figure 1 shows typical individual solutions for
the u(t)-component of the wave function of the Universe,
Ψ(u, 𝜙), given in Equation (16) for different parametriza-
tions for the different terms of the super-Hamiltonian
and boundary conditions. Figure 2 shows generic forms
of the potential for the chaotic and nonchaotic inflation.
On the left, a generic form illustrates the potential for
the chaotic inflationary scenario. This scenario typically
involves a potential function associated with chaotic infla-
tion dynamics. On the right, the figure presents a typical
form of the potential for the original inflationary model,
which is based on the Fubini potential.

3.2 Modeling inflation with a
Fubini-type potential

We adopt the following the Fubini potential to simulate
inflation

V(𝜙) = 𝛽

4
(𝜙 − 𝜙c)4 −

1
2

g2
𝜙

(𝜙 − 𝜙c)2. (19)

Combining this equation with expression (17), we obtain

[
− 𝜕

2

𝜕𝜙

2 + 𝜆𝜙

m
(
𝛽

2
(𝜙 − 𝜙c)4 − g2

𝜙

(𝜙 − 𝜙c)2 − 
)]
Ψ(𝜙) = 0.

(20)

The Fubini potential introduces specific features into
the inflationary model, and this visual representation pro-
vides insight into the shape and characteristics of the
potential associated with the original inflationary model.

Figure 3 show typical individual solutions for the
𝜙(t)-component of the wave function of the Universe,
Ψ(u, 𝜙), given respectively in Equations (18) and (20)
for different parametrizations and specific boundary
conditions.

The figures represent distinct scenarios correspond-
ing to different particular parameter conditions. These
variations in parameter values allow for the exploration
of different conditions that influence the behavior of the
wave function during chaotic inflation and nonchaotic
inflation. Evidently, there is a range of additional parame-
terizations to be explored in the future. The exploration of
diverse parameter combinations contributes to a nuanced
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WEBER et al. 5 of 7

F I G U R E 1 Typical individual solutions of the u(t)-component (Ψ(u)) of the wave function of the Universe, Ψ(u, 𝜙), using the
commutative approach given by Equation (16) for different initial value, boundary conditions and ranges. The boundary condition on the left
figures is Ψ(−1) = −1 while on the right figures the boundary condition is Ψ(1) = 1.

F I G U R E 2 On the left, generic form of the potential for the chaotic inflationary scenario. On the right, a typical form of the potential
for the original inflationary model, based on the Fubini potential (de Alfaro et al. 1976).
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6 of 7 WEBER et al.

F I G U R E 3 Typical individual solutions forΨ(𝜙), theΦ-component of the wave function of the Universe,Ψ(u, 𝜙). The figure on the left
corresponds to chaotic inflation according to Equation (18), with the initial condition Ψ(1) = 1 and 𝜆g2

𝜙

< 0. The figure on the right
corresponds to nonchaotic inflation, according to Equation (20), with the initial condition Ψ(1) = 1, 𝜆𝛽 < 0, 𝜆g2

𝜙

< 0, and 𝜆 < 0. Although
the solutions exhibit some similarity to Figure 1, it is important to highlight that the presence of the inflaton field anticipates the effects of the
acceleration of the Universe towards the boundary region of separation between the two evolutionary cosmic phases: the current phase and
its mirror counterpart. This is in comparison with results that do not include the presence of this scalar field.

understanding of the dynamic behavior exhibited by the
wave function of the Universe. By specifically focusing on
the initial condition Ψ(1) = 1, the figures discern between
distinct scenarios of the wave function’s unfolding indi-
cating distinct evolution trajectories under chaotic and
nonchaotic inflationary conditions, which exhibit a dual-
ity in parameter configurations. This duality sheds some
light on the sensitivity of the chaotic and nonchaotic infla-
tionary dynamics to these critical factors. Such insights are
pivotal for comprehending the intricate interplay between
the chosen parameters and the resulting behavior of the
wave function of the Universe.

4 SUMMARY AND FINAL
REMARKS

This paper explored the implications of a commuta-
tive formulation integrating branch-cutting cosmology,
the Wheeler–DeWitt equation, and Hořava–Lifshitz quan-
tum gravity. Building on a mini-superspace structure,
the study investigated the influence of an inflaton-type
scalar field on the wave function of the Universe.
The analysis focused on the dynamical solutions of
branch-cut gravity within a mini-superspace framework,
emphasizing the scalar field’s impact on the evolu-
tion of the Universe’s scale factor, parameterized by
the dimensionless scale factor ln[𝛽(t)]. The formulation
is based on the Hořava–Lifshitz action, which depends
on the scalar curvature of the branched Universe and
its derivatives, with running coupling constants denoted
as gi. We derived the corresponding Wheeler–DeWitt

equations and solved them without recurring to numer-
ical approximations. The approach preserves the diffeo-
morphism property of General Relativity and is com-
patible with the Arnowitt–Deser–Misner formalism. The
study also explored a mini-superspace of variables, incor-
porating scalar-inflation fields and investigating chaotic
and nonchaotic inflationary models. The paper provides
insights into the topological foliated spacetime structure
and its evolution over time, contributing to our under-
standing of cosmic acceleration.
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