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ABSTRACT OF THE DISSERTATION 

 

 

 

Image-Guided Cell Classification and Sorting 

 

 

by 

Yi Gu 

 

Doctor of Philosophy in Electrical Engineering (Photonics) 

 

University of California San Diego, 2019 

 

Professor Yuhwa Lo, Chair 

Professor Zhaowei Liu, Co-Chair 

 

The ability to classify and map numerous cell types as well as healthy and 

diseased cells can bring significant insight to biology and medicine. While single-cell 

sequencing becomes cornerstone for cell classification and mapping, isolation of 

interested cells for genomic analyses rely on fluorescence activated cell sorting 

(FACS), which can only isolate cells based on integrated intensities. The availability 



 

 xvi 

of flow cytometers with the capability to classify and isolate cells guided by high-

content cell images is enabling and transformative. It provides a new paradigm to 

allow researchers and clinicians to isolate cells using multiple user-defined 

characteristics encoded by both fluorescent signals and morphological and spatial 

features. In this thesis, we demonstrated the “Image-Guided Cell Classification and 

Sorting” technology. This technology possesses high throughput isolation capability 

of FACS and high information content of microscopy.  

To achieve “Image-Guided Cell Classification and Sorting”, we combined 

the techniques of machine learning, photonics, real-time signal processing and 

microfluidics.
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Chapter 1 Introduction 

1.1  Overview 

1.1.1  Motivation 

There are a far greater number of cell types than people realized in the past, 

and classifying cells from healthy and diseased tissues in much finer detail than before 

can bring significant insight in biology and medicine. While sequencing of single cells 

becomes the technology cornerstone for cell classification, selection of these single 

cells for genomic analyses rely on fluorescence activated cell sorting (FACS) 

systems.[1,2] A small biological sample can contain millions of cells, hence analyzing 

even as many as 100,000 single cells represent only a very small percentage of cells 

in the sample. Thus intelligent selection of this small percentage of cells for 

downstream analysis is critical to efficient and accurate cell classification.  However, 

today’s cell selection techniques are purely based on fluorescent biomarkers and/or 

light scattering intensity, without resorting to high content image information that has 

the most distinctive power to support smart and logical selection of cells, especially 

those rare cells and cells without known or unique biomarkers.   

Cell sorting based on high-content images has not been achieved partly due to 

the incompatibility between cell imaging and cell sorting systems and more 

importantly, due to the inability of real-time image acquisition, feature extraction, and 

construction of image-based gating as criteria for cell sorting. We demonstrate an 
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image-guided flow cytometer cell sorter.  The availability of flow cytometers with the 

capability to classify and isolate cells guided by high-content cell images is enabling 

and transformative. It provides a new paradigm to allow researchers and clinicians to 

isolate cells using multiple user-defined characteristics encoded by both fluorescent 

signals and morphological and spatial features.   

 

Examples of applications include isolation of cells based on organelle 

translocation, cell cycle, detection and counting of phagocytosed particles, and protein 

co-localization, to name a few.[3-6]  Some specific applications include translocation 

of glucocorticoid receptor (GR) from cytosol to nucleus under dexamethasone 

treatment[7], glucocorticoid receptor and sequential p53 activation by drug mediated 

apoptosis[8], and translocation of protein kinase C (PKC) from cytosol to membrane 

in the context of oncogenesis[9]. β-arrestin-GFP is often used to measure the 

internalization (inactivation) of g-protein coupled receptors (gpcrs) as β-arrestin-GFP 

moves from cytosol to membrane. The ~800 Gpcrs include the opioid receptors 

(heroin, morphine, pain pills), the dopamine receptors (cocaine, methamphetamine, 

addiction/reward), and hundreds of others, many awaiting discovery or “adoption” of 

ligands. Other specific application examples include immunology studies of B-cell or 

T-cell responses to various drug treatments, asymmetric B-cell division in the 

germinal center reaction[10,11], the erythroblast enucleation process, signaling and 

cytoskeletal requirements in erythroblast enucleation[12,13], uptake and 
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internalization of exosomes by various cancer cells, response of infected cells to drugs, 

use of antibody-drug conjugates for tracking drugs in/outside sub-cellular 

compartments, and locating antigens, enzymes or other molecules.[14-18] 

 

 

1.1.2  Potential Solutions 

The image-guided cell sorting and classification technology possesses the high 

throughput of flow cytometer and high information content of microscopy, being able 

to isolate cells according to their imaging features at 1000X faster rate than laser 

microdissection and single-cell aspiration. Two methods are employed to capture 

weak fluorescence signals at high throughput. The first is the spatial-temporal 

transform, and the second is the laser point scanning. We also developed a 

methodology of user-interface (UI) to generate sorting criteria by supervised machine 

learning, as described next. 

After hundreds of cells pass through the imaging flow cytometer, the software 

generates a distribution of cell parameters, as well as several categories of cell images 

based on the built-in image processing and statistical classification algorithms. Users 

then apply point-and-click selection of desired cell images for the basis of gating the 

cells for sorting from the sample. After collecting an additional number of cells based 

on user’s instructions, the software displays both the conventional flow cytometer 

parameters (i.e. fluorescence intensity) and a new set of image/morphology related 
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parameters (e.g. nucleus size, cell area, circularity, fluorescence patterns, etc.), as well 

as the representative cell images of the cells. This iterative feedback process gives 

users the chance to confirm their original choice criteria and to modify the “gating”. 

Based on the displayed image and conventional data feedback, users may adjust the 

gating criteria. These criteria can be “ratio of fluorescence area over the total cell 

area”, “variations of fluoresce intensity profile over the cell”, “size of nucleus”, or 

numerous other choices utilizing the spatial features of the cells. As a result, the image-

guided cell selection process becomes a user-interface (UI) and user-experience (UX) 

interactive process with machine learning occurring in the background to present users 

with representative images of cell classes that most closely match the user needs and 

even suggest features possibly overlooked by users. As a result, users are given 

unprecedented intuitive visual assistance and insight to enhance their studies. 

 

 

1.2  Scope of Thesis 

In this thesis, chapter 2 is Computational Cell Analysis for Label-free 

Detection of Cell Properties in a Microfluidic Laminar Flow Using Spatial-Temporal 

Transformation. Chapter 3 is Image-Guided Cell Sorting Using Spatial-Temporal 

Transform. Chapter 4 is Image-Guided Cell Sorting Using Laser Point Scanning.  



 

 5 

Chapter 2 Computational Cell Analysis 

for Label-free Detection of Cell 

Properties in a Microfluidic Laminar 

Flow Using Spatial-Temporal 

Transformation 
 

2.1  Computational cell analysis technique 

2.1.1 Measurement of cell position within a microfluidic channel 

In a microfluidic channel, cells of different physical properties (size, shape,  

stiffness, morphology, etc.) experience different magnitudes of lift and drag force, thus 

yielding different equilibrium positions in the laminar flow[19-21].  

 

To determine the equilibrium position of a particular cell in the microfluidic 

channel, a spatial coding method was used to obtain the horizontal position and the 

velocity of the cell. The design and configuration of the system is illustrated in figure 

2.1. The spatial mask has two oppositely oriented trapezoidal slits with the base 

lengths being 100𝑢𝑚 and 50𝑢𝑚. An LED source was used to illuminate from the 

bottom of the microfluidic channel. The transmitted signal was detected by a variable 

gain photoreceiver made of a Si photodiode and a transimpedance amplifier (Thorlab). 

All light blocking areas on the spatial mask was coated with a layer of Ti/Au on a glass 

slide. When cells flew through the spatial mask area, their forward scattering signal 

gave rise to a characteristic waveform encoded by the mask.  The microfluidic channel 
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is 5 𝑐𝑚 long and has its inlet and outlet at the ends. The rectangular cross section of 

the channel is 100𝑢𝑚 wide and 50 𝑢𝑚 high. The mask is located at 4.5 𝑐𝑚 from the 

inlet. In the following discussion, we will represent the channel width direction as x-

axis and channel height direction as y-axis. The intensity modulated FS signal by the 

trapezoidal slits displays 2 peaks, as shown in figure 2.2(b). The ratio between the 

width of the first peak and the second peak provides information of the cell position 

in the X-axis; and the absolute value of the signal width gives information about cell 

velocity. Knowing the position along the x-axis and the cell velocity, the cell position 

along the y-axis can be obtained using the property of laminar flow that gives rise to 

a parabolic velocity profile represented by the following relation[22-25]: 

 

In the above equation, 𝑦 is the cell position in the channel height direction (y-

axis), ℎ  is the half channel height, 25𝜇𝑚  in this work. 𝑥  is the horizontal position. 

𝑉(𝑥, 𝑦)  is the velocity at a specific position. 𝐿  is the channel length in horizontal 

direction, in our case 100 𝜇𝑚.  𝑉𝑚𝑎𝑥 is the velocity at 𝑥 =
𝐿

2
, 𝑦 = 0, in our case, 𝑥 =

50 𝜇𝑚, 𝑦 = 0 𝜇𝑚.  

 

𝑦 = ℎ × √1 −
𝑉(𝑥, 𝑦)

𝑉𝑚𝑎𝑥−(
𝑥 − 𝐿/2

𝐿/2
)2
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Figure 2.1 Experiment setup 

 

 

Figure 2.2 (a) Spatial mask design with two oppositely oriented trapezoidal slits.  

W1 and W2 represent the widths of the slits experienced by a cell traversing the 

mask from different positions.  Also shown are the anticipated waveforms for cells 

crossing the mask area via different paths. 
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Figure 2.2 (b) Intensity modulated forward scattering signal by the trapezoidal slits 

 

2.1.2 Computational cell analysis methods 

For a given type of cells in a channel, their equilibrium positions can be 

represented by a characteristic distribution 𝑅(𝑥, 𝑦). The characteristic distribution can 

be obtained in a diluted sample to avoid any effects caused by cell-cell interactions in 

the flow. Figure 2.3 shows the characteristic distribution of Live MDA-MB-231 cells.  

Without cell-cell interactions in the fluid, the spatial distribution of a sample 

containing multiple cell groups is the linear combination of the characteristic functions 

of each cell type. 
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Figure 2.3 Spatial characteristic function of live MDA cell 

If 𝑅𝐴(𝑥, 𝑦) and 𝑅𝐵(𝑥, 𝑦) are the characteristic functions of cell type A and cell 

type B, the spatial distribution, 𝑆(𝑥, 𝑦), for  a mixture of cell A and cell B can be 

described by Eq. (1) where the coefficient, C, is the fraction of cell A in the sample. 

  

𝑆(𝑥, 𝑦) =  𝐶 × 𝑅𝐴(𝑥, 𝑦) + (1 − 𝐶) × 𝑅𝐵(𝑥, 𝑦)  (1) 

 

Since both 𝑅𝐴(𝑥, 𝑦) and 𝑅𝐵(𝑥, 𝑦) are normalized over the entire cross section 

of the fluidic channel, 
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∬ 𝑅𝐴(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

= 1 and  ∬ 𝑅𝐵(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

= 1 

The distribution function 𝑆(𝑥, 𝑦) for the sample is also normalized as in (2). 

 

∬ 𝑆(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

=  𝐶 × ∬ 𝑅𝐴(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

+ (1 − 𝐶) × ∬ 𝑅𝐵(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

=

1 (2) 

If we already know 𝑅𝐴(𝑥, 𝑦), 𝑅𝐵(𝑥, 𝑦) from the training data and measure 

𝑆(𝑥, 𝑦) from the sample, we can find from Eq. 1 the only unknown, 𝐶 , being the 

population of cell A, which is the information of interest. 

 

In practice, the values of 𝑅𝐴(𝑥, 𝑦), 𝑅𝐵(𝑥, 𝑦), 𝑎𝑛𝑑 𝑆(𝑥, 𝑦)  at each specific 

position (𝑥, 𝑦) are random variables. We divide the whole area of the channel cross 

section into meshes so the sets of random variables 𝑅𝐴(𝑥, 𝑦), 𝑅𝐵(𝑥, 𝑦), 𝑎𝑛𝑑 𝑆(𝑥, 𝑦) 

follow the relations: 

 

∑ 𝑅𝐴(𝑥, 𝑦)

𝑥,𝑦

= 1 𝑎𝑛𝑑 ∑ 𝑅𝐵(𝑥, 𝑦)

𝑥,𝑦

= 1 

∑ 𝑆(𝑥, 𝑦)𝑥,𝑦 =  𝐶 × ∑ 𝑅𝐴(𝑥, 𝑦)𝑥,𝑦 + (1 − 𝐶) × ∑ 𝑅𝐵(𝑥, 𝑦)𝑥,𝑦 = 1  (3)  
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Figure 2.4. Illustration of the steps to calculate the cell ratio in a sample of cell 

mixture. The yellow and blue patterns represent the characteristic distributions for 

cell A and cell B. 

 

Due to the statistical nature of the problem, the resulting value of C, calculated 

at each position (𝑥, 𝑦), is also a random variable. Thus we can plot the distribution of 

C, the percentage of cell A in the sample, in a histogram. The mean value of the 

histogram produces the most likely percentage for cell A in the sample and the spread 

of the histogram provides a good indication of the quality of the measurement. Figure 

2.5 shows an example of the histogram for C. 
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Figure 2.5. Histogram of the cell ratio, C. 

Therefore, for any cell type possessing even a slightly different physical 

property than the rest of the cells in the sample, manifested by its largely overlapped 

spatial distribution with the rest of the samples, our method is still able to find the 

relative population of such specific cell type in a cell mixture.  This is a unique 

capability of the proposed method. 

2.2  Demonstrate the technology using cell samples 
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2.2.1 Detection of the population of live and fixed cells 

Without labelling, today’s flow cytometers cannot find the percentage of live 

and dead cells in a culture because the scattering signals (forward, side, and back 

scattering) between live and dead cells overlap significantly in the distribution plot. 

We demonstrate that in spite of the high similarity in their physical properties of live 

and dead cells, the computation cell analysis technique enables us to give an 

unequivocal answer to the subpopulation of live cells from dead cells. 

 

We used live and fixed MDA cells to demonstrate the concept. MDA-MB-231 

is a cell line for human breast cancer cells.  In the experiment, we fixed one group of 

cultured MDA cells and labeled them fluorescently (Propidium lodide), and then 

mixed these fixed cells with live cells in different ratios. Each sample with a specific 

ratio of live and fixed cells was divided into two parts, one running through our device 

and the other running through a commercial flow cytometer. Figure 2.6(a) shows the 

distribution plot for forward and side scattering signals from a flow cytometer. It was 

impossible to determine the ratio between live and fixed MDA cells from the 

scattering signals by any gating or machine learning algorithms due to the significant 

overlap of the signals from live and dead cells. The only reliable method for a flow 

cytometer to detect the relative population of live cells from dead cells is by 

fluorescent labeling as shown in Figure 2.6(b). Next we demonstrate how the 

computation cell analysis method can solve this problem.  
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To produce the characteristic function for live and dead MDA cells, we ran 

through our system with two samples with 100% live MDA and 100% fixed MDA. 

Then we ran multiple test samples with different ratios of live and fixed MDA cells. 

For each test sample, we ran the experiment 10 times, taking 3 minutes for each run, 

to test the reproducibility and reliability of the results. Figure 2.7 shows comparisons 

between our method and the flow cytometer results by detecting the fluorescent signals 

of fluorescently labelled fixed cells. The excellent agreement and similar repeatability 

(10 repeats) of the results from both methods demonstrate the accuracy and reliability 

of our label-free computation cell analysis method.  
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(A) 

 

(B)                                                      

Figure 2.6. (a) Forward and side scattering of live and fixed MDA cells; (b) 

fluorescent signal of live and fixed MDA cells. The cluster on the left was auto 

fluorescence from live cells and the cluster on the right was Propidium lodide 

labelled fluorescent signal from fixed cells. 
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Figure 2.7. Measured mean value of live cell percentage in 4 samples.  The error 

bars show the variations for 10 repeats for each sample using our method and a 

commercial flow cytometer (Accuri C6). 

 

2.2.2 Neutrophil counter for point-of-care applications 

There are three major types of white blood cells, neutrophil, lymphocyte, and 

monocyte. Neutrophil count is an indicator of patient’s immunity to infections and is 

particularly important for cancer patients undergoing chemotherapy since the 

treatment can lower neutrophil count. Neutropenia develops when the neutrophil count 

falls below certain levels, substantially increasing the risk of infections.[26,27] 

Therefore, the neutrophil count of chemotherapy patients has to be closely monitored, 

presenting the need for point-of-care neutrophil counter without fluorescent labelling.  

In the following we demonstrate how the computation cell analysis technique can 

count neutrophil in a point-of-care setting.  
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We performed the experiment using purchased blood from San Diego blood 

bank. After red blood cell lysing, the blood was diluted with 1X PBS solution.  Since 

we were interested in neutrophil count, we treated neutrophil as cell A and all non-

neutrophil WBCs as cell B. Then we represent the characteristic function for 

neutrophil as 𝑅𝐴(𝑥, 𝑦) and all non-neutrophil WBCs as 𝑅𝐵(𝑥, 𝑦). To obtain 𝑅𝐴(𝑥, 𝑦) 

and 𝑅𝐵(𝑥, 𝑦) , we did not use blood samples with 100% pure neutrophils since 

complete removal of neutrophil from the samples can be practically difficult.  Instead, 

we chose two blood samples with different neutrophil to non-neutrophil ratios. We 

used superparamagnetic beads (Dynabeads from ThermoFisher) to remove some 

neutrophils from the blood to produce samples with lower than normal amounts of 

neutrophil, which also simulated neutropenia patients. Using the aforementioned 

protocol, the superparamagnetic beads--Dynabeads CD15--that were covalently 

coupled with an anti-human CD15 antibody were used to deplete human CD15+ 

myeloid cells, predominantly neutrophils, directly from whole blood. Different 

concentrations of Dynabeads CD15 were used to create blood samples having various 

percentages of neutrophil. 

Using the above mentioned algorithm (see Fig. 2.4), we obtained the 

characteristic functions of Neutrophil and non-neutrophil as shown in Figure 2.8. 

From these characteristic functions, one could apply Eq. (4) to find the neutrophil ratio 

from samples of an unknown neutrophil population.  Again, we have divided each test 

sample into two parts, one going through our device and another going through a 
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commercial flow cytometer (Accuri C6).  For each sample the test was repeated 10 

times.  Figure 2.9 shows the comparison of results from both methods. The experiment 

was designed to cover the whole range of neutrophil ratio to simulate healthy samples 

and samples with different degrees of neutropenia.  

Table 2.1 summarizes results from another set of experiment out of 8 purchased 

blood samples from San Diego blood bank. The excellent agreement between the 

proposed method and the commercial flow cytometer shows that the computational 

cell analysis device, being a highly flexible and versatile technique, can operate as a 

cost effective, point-of-care neutrophil counter. 

 

 

Figure 2.8. Neutrophil and Non-neutrophil characteristic functions. 
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Figure 2.9. Measured mean value of neutrophil percentage over WBCs in 3 samples.  

The error bars show the variations for 10 repeats for each sample using our method 

and a commercial flow cytometer (Accuri C6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

43

17

51

41

18

0

10

20

30

40

50

60

N
eu

tr
o

p
h

il 
Pe

rc
en

ta
ge

 (
%

)

Our Results Accuri Results

Sample 1 Sample 2 Sample 3



 

 20 

Table 2.1 Measured neutrophil percentage over WBCs from 8 blood samples using 

our method and a commercial flow cytometer. Samples 9 and 10 were used to obtain 

the characteristic functions for neutrophil and non-neutrophil 
Test    

Sample Flow cytometer (%) Our Method (%) 

Deviation 

(%) 

1 50 52 4.0 

2 50 51 2.0 

3 56 58 3.6 

4 59 59 0.0 

5 64 62 3.1 

6 50 50 0.0 

7 66 64 3.0 

8 52 52 0.0 

    
Training  

  
9 60 

  
10 49 

  

 

Chapter 2 is based on and mostly a reprint of: Alex Ce Zhang, Yi Gu(co-first 

author), Yuanyuan Han, Zhe Mei, Yu-Jui Chiu, Lina Geng, Sung Hwan Cho, and Yu-

Hwa Lo. "Computational cell analysis for label-free detection of cell properties in a 

microfluidic laminar flow." Analyst 141, no. 13 (2016): 4142-4150. The dissertation 

author was the primary author of the work. 
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Chapter 3 Image-Guided Cell Sorting 

Using Spatial-Temporal Transform 
 

3.1  System Design of Image-Guided Cell Sorter 

As shown in Figure 3.1 (a), the image-guided cell sorting and classification 

system consists of: (1) an imaging optical system with a spatially coded optical filter 

to perform spatial-temporal transformation, (2) a real-time image processing and 

feature extraction module, (3) an off-line post processing module for construction of 

cell images for human vision and generation of cell classification criteria, and (4) a 

microfluidic chip integrated with an on-chip piezoelectric (PZT) cell sorting actuator.  

The optical filter encodes the fluorescent or light scattering signal of a cell into 

a temporal photocurrent waveform in the output of a photomultiplier tube (PMT) 

detector.  Through a mathematical transformation described in[28,29], the 1D time 

domain signal is transformed into a 2D cell image.  Due to the simplicity of the 

transformation algorithm, real-time signal processing can be implemented to extract 

image features of each cell to allow cell sorting based on these image features. 

Machine learning is needed to generate and adjust image features to guide cell 

sorting.[30-32]   To start, training samples are flowed through the system to produce 

a set of training data. Off-line processing is employed to construct high resolution, cell 

images to interface with users whose inputs will aid the selection and adaptation of 

cell classification criteria for real-time sorting, a method of supervised machine 

learning. During the real-time cell sorting experiments, real-time processing module 



 

 22 

reconstructs cell images, extracts image features and makes sorting decisions based 

on the off-line trained sorting criteria. When a decision is made to sort a cell, a voltage 

pulse is applied to the on-chip PZT actuator, which instantaneously bends the bimorph 

PZT disk to deflect the cell away from the central flow into the sorting channel. For a 

proof-of-concept prototype, we have used a field-programmable-gate-array (FPGA) 

platform to implement real-time image processing which produces a latency of a few 

milliseconds. Higher performance GPU processors can reduce the processing time by 

100 folds or more to microseconds.  

 

 

 

 

 

    



 

 23 

 

      

Figure 3.1 The Machine Learning Based Real-Time Image-Guided Cell Sorting and 

Classification system. (a) Schematic diagram of the image-guided cell sorting 

system. (Scale bar is 5µm).  Bright field and fluorescence cell images are at first 

encoded into time domain waveforms and detected by PMTs. Cell images are then 

reconstructed from time domain waveforms. Next, image features are extracted and 

image-based gating criteria are generated. Finally, cell images are processed and 

sorting decision is made in real-time based on the image-guided gating criteria with 

supervised machine learning. DM, dichroic mirror; SF, spatial filter; EF, emission 

filter; PMT, photomultiplier tube. (b) Design of optical spatial filter having ten 100 

μm by 50 μm slits positioned apart. (c) Microfluidic device with an on-chip 

piezoelectric PZT actuator to deflect selected cells in the microfluidic channel for 

image-guided cell sorting. 
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3.2  Optical imaging setup 

In the optical imaging system, suspended single cells flow in a microfluidic 

channel made of soft-molded polydimethylsiloxane (PDMS) bonded to a glass 

substrate. Sheath flow is used to hydro-dynamically focus the travelling cells to the 

center of the microfluidic channel. At the interrogation zone, each flowing cell is 

illuminated simultaneously by a 500mW 455nm LED (Thorlabs) and a 100mW 

488nm laser (iBeam-SMART, Toptica) to generate bright field and fluorescent 

images. The output beam of 488nm laser is collimated, focused and expanded to 

illuminate a 100μm (x-direction) by 250μm (y-direction) area. The LED light is 

collimated and focused at the laser illumination area. Both the fluorescent emissions 

and the transmitted bright field signal are detected by PMTs (H9307-02, Hamamatsu). 

To accommodate the geometry of the microfluidic device, the laser beam is introduced 

to the optical interrogation area by a 52-degree miniature dichroic mirror positioned 

in front of a 50X objective lens (NA=0.55, working distance=13 mm, Mituyoyo). The 

LED is placed at the opposite side of the channel and the light is focused to the same 

position as the laser beam. The spatially coded optical filter is inserted at the image 

plane in the detection path. The pattern of the filter is shown in Figure 3.1 (b). With 

the spatial filter, fluorescence/scattering from different parts of the cell will pass 

different slits at different times. As a result, the waveform of the fluorescent/scattering 

signal from the PMT consists of a sequence of patterns separated in time domain, and 

each section of the signal in the time domain corresponds to the fluorescent/scattering 

signal generated by each particular segment of the cell. After the light intensity profile 
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over each slit is received, the cell image of the entire cell can be constructed by splicing 

all the profile together. The image resolution in x- (transverse to the flow) direction is 

primarily determined by the number of slits on the spatial filter, and the resolution in 

y- (flow) direction is mainly determined by the sampling rate and cell flow speed. In 

our system, the raw image resolution is 2 μm in x-direction and 0.4 μm in y-direction.  

Dichroic mirrors are used to route the desired emission bands to their 

respective PMTs. 

3.3  Real-Time image processing and cell classification 

The real-time image processing module is implemented in a field-

programmable-gate-array (FPGA) platform (National Instrument cRIO-9039). The 

processing module performs the functions of cell detection and image processing, to 

be discussed next. 

Both the bright field and fluorescent images of a cell are reconstructed from 

respective PMT readouts. Each image covers a field-of-view of 20X20µm2 with 

50X50 pixels, matched to the finest spatial resolution achievable by the system. All 

relevant image features are calculated and compared against the cell selection (gating) 

criteria to make sorting decision. 

3.3.1  Cell detection algorithm  

The cell detection function determines whether a cell exists within a certain 

time interval, and subsequently instructs the system whether to store and transmit the 

signal over this time interval. The system records the outputs from PMTs in the First-

in First-out (FIFO) data structure over a chosen length of time. Each time a new set of 
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PMT readout enters the FIFO, cell detection algorithm is activated to determine 

whether there is a cell within the optical system’s field of view. As soon as the system 

detects the presence of cell within the data set, the system processes the data 

immediately to construct images and extract image features.  Otherwise, the system 

continues to examine the next set of PMT readout.  

Since fluorescent and bright-field images are generated simultaneously, only 

one fluorescent signal is used in cell detection algorithm. To shorten the processing 

time, we calculate the Brightness of signal by integrating the fluorescent intensity 

stored in the FIFO. As shown in Figure. 3.2, if the Brightness is greater than the first 

threshold defined as Threshold1, the system assumes a cell is entering the field of 

view. Next, the time derivative of Brightness is compared to another preset threshold, 

Threshold2. If the time derivative of Brightness is smaller than Threshold2, the 

algorithm determines that the cell is within the field of view, and the function of real-

time image processing is activated. After image processing is completed, Brightness 

calculated at later time is compared to Threshold1 again. If the Brightness falls below 

Threshold1, the algorithm determines the cell has left the field of view.  

Brightness is calculated from the PMT readout stored in the FIFO data 

structure. The FIFO for fluorescent signal is referred to as FIFOPMT. Each time when 

a new PMT readout enters FIFOPMT, Brightness value is updated based on the 

incoming PMT readout and the value of the dequeued element in FIFOPMT. Brightness 

is calculated by equation 1. 

1[ ] [ ] [ ]n n PMT PMTBrightness t Brightness t Voltage FIFO dequeue−= + −  (1) 
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where [ ]nBrightness t  is the updated Brightness, 1[ ]nBrightness t −  is 

Brightness of last time step, PMTVoltage  is the incoming PMT readout, which is the 

enqueued element of FIFOPMT, and [ ]PMTFIFO dequeue  is the dequeued element in 

FIFOPMT. 

Calculated Brightness enters another FIFO named FIFOBrightness. The length of 

FIFOBrightness is 100. When a cell is entering the field of view, the time derivative of 

Brightness is evaluated to check if the cell is within the field of view. To evaluate if 

the time derivative of Brightness is small enough, the maximum element in 

FIFOBrightness (maxBrightness) is compared to the minimum element in FIFOBrightness 

(minBrightness). If the difference is smaller than a predefined value (e.g. 5%), the system 

considers the cell is within the field of view. Both maxBrightness and minBrightness are 

updated each time a new element enters FIFOBrightness. The algorithm to calculate 

maxBrightness and minBrightness is shown as Figure. 3.3. 
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Figure 3.2 Illustration of cell detection algorithm. 
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Figure 3.3 (a) Schematic diagram of FIFOPMT and FIFOBrightness. (b) Flow chart 

for maxBrightness calculation. (c)  Flow chart for minBrightness calculation. 

 

3.3.2  Image processing algorithm  

For all applications, we essentially follow the same flow for real time image 

processing, involving denoising, image resizing, contour definition, area calculation, 

feature enumeration, etc. Some of the processes can run in parallel to simultaneously 
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extract multiple image derived features pertinent to image-guided sorting.  In the 

following, we depict the specific processes applicable to each specific experiment. 

Real time image processing algorithm for protein translocation experiment.  

The image processing algorithm is illustrated in Figure 3.4. The image 

processing algorithm includes the following steps: (1) Denoise PMT signals with a 

10th-order Hamming low-pass filter. (2) Reconstruct both bright-field and fluorescent 

images from PMT signals. Since both bright-field and fluorescent signals are 

generated by the same slit although from different light sources, they are well 

synchronized. Thus the image reconstruction algorithm only needs to be launched 

once for both bright-field and fluorescent images. (3) Resize the images from 10x50 

pixels (due to asymmetric resolution in raw images) to 50x50 pixels. (4) Detect 

contours of cell images by first converting the grayscale images to binary images, then 

eliminating spurious noise with open filter, and finally applying the contour detection 

algorithm to the binary images. (5) Extract all image-derived parameters.  
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Figure 3.4 (a) Flow chart of real-time image processing algorithm for protein 

translocation experiment. 

 

Figure 3.4 (b) An example of image processing algorithm for protein translocation 

experiment. 

 

Examples of image-derived parameters that can be extracted from each cell in real 

time are shown in Table 3.1. As discussed later in this paper, these image-derived 

parameters are evaluated with Receiver Operating Characteristics (ROC). The 3 

parameters receiving the highest ROC score are used as default parameters for real-

time image-guided sorting. The latency of real-time processing algorithm is 
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5.8ms/cell with the current FPGA system, and the latency can be reduced by over 

100 times with high performance GPU(e.g. NVIDIA QUADRO P6000). 

Table 3.1. Extracted image-derived parameters. 

Fluorescent image Bright-field image Fluorescent image + 

Bright-field image 

Area Area Fluorescent 

area/bright-field area 

(Area ratio) 

Perimeter Perimeter Fluorescent 

perimeter/bright-field 

perimeter (Perimeter 

ratio) 

Shape factor 

(Area/Perimeter) 

Shape factor 

(Area/Perimeter) 

 

Diameter (in x 

direction) 

Diameter (in x 

direction) 

 

Diameter (in y 

direction) 

Diameter (in y 

direction) 

 

 

Real time image reconstruction and speed detection. An optical spatial filter 

consisting of 10 slits is placed at the image plane of the signal.  With a 50X (or 20X if 

desired for extended focal depth) objective lens, the image projected onto the optical 
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spatial filter is 50X (20X) times greater than the object in the microfluidic channel.  

For each cell travelling in the microfluidic channel, its PMT readout produces10 

peaks, each corresponding to the cell’s fluorescent or bright-field transmitted signal 

passing one of 10 slits on the spatial filter. At a cell travel speed of 8 cm/s and at 200 

kSamples/s, each peak consists of 50 sampling points. To reconstruct cell images, two 

factors need to be considered. First, since cells do not travel at a perfectly uniform 

speed, the actual number of sampling points for each of 10 peaks may vary slightly. 

Second, since both cell travelling speed and cell position within the 20 μm by 20 μm 

image area can vary, the starting time point of the PMT readout also varies. In the 

image reconstruction algorithm, we refer “m” to be the starting point of PMT readout, 

“n” to be the number of sampled points in each peak. Based on cell speed variations, 

n ranges from 46 to 51. This leads to a range of m from 0 to 519-10n. The algorithm 

sweeps m and n to assure the best combination of (m,n) to reconstruct the cell image. 

Summation of intensities at the starting point of each peak is calculated for every (m,n) 

combination. The combination yielding the smallest sum is the right (m,n) which we 

use to reconstruct the image. Travelling speed of the cell can be detected based on the 

calculated value “n”. The algorithm is shown in equation 2 and Figure. 3.5. In Figure. 

3.5, The black “*” are starting points for each peak found by the reconstruction 

algorithm.  

10 519 10

1

0 0

( , ) ( , ) min [ ]
n

PMT

i m

m n m n FIFO m i n
−

= =

 
= +  
 

   (2) 
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After image reconstruction, grayscale cell images are resized to 50x50 pixel 

images by linear interpolation. Then resized grayscale images are converted to binary 

images based on the preset intensity threshold. The conversion is described as follows: 

1, _ ( , )
_ ( , )

0, _ ( , )

if grayscale image i j threshold
binary image i j

if grayscale image i j threshold


= 


 (3) 

where ( , )i j  refers to the pixel located at row i  and column j . 

In the step of open filter, we use a 3x3 pixel neighborhood in our image processing 

algorithm. 

 

Figure 3.5 The result of searching for the best combination of starting time point 

(represented by “*”) and number of sampling points for each peak. 

 

Real time image contour detection. As shown in Figure. 3.6, in the contour 

finding algorithm all the pixels in a binary cell image are scanned. For those pixels of 
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non-zero value, the algorithm checks all eight pixels surrounding the center pixel in a 

3x3 matrix. If the number of non-zero neighboring pixels is between 1 and 7, then this 

pixel is determined to be on the cell contour. Otherwise, the pixel is either inside or 

outside the contour. The criteria can be described in (4): 

1, 0 8 & _ ( , ) 1
_ ( , )

0,

if n binary image i j
image contour i j

Otherwise

  =
= 


 (4) 

where  n  is the number of non-zeros pixels surrounding the center pixel of the 3x3 

matrix. 

 

Figure 3.6 Criteria used to determine the contour of cell image. 

 

Real time image processing algorithm for sorting MDCK cells according to 

the number of particles on cell surfaces.  
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The image processing algorithm for sorting MDCK Madin-Darby Canine 

Kidney Epithelial Cells based on the number of beads bonded to the cells is essentially 

the same as the previous cases except a top-hat filter with 7X7 pixels is used to extract 

features of small particles.  The entire algorithm takes about 6 ms with current 

hardware. The flow chart of real-time image processing algorithm is shown in Figure. 

3.7. 

 

Figure 3.7 Flow chart of real time image processing algorithm for sorting MDCK 

cells by the number of particles bonded to the cells. 

 

Real time image processing algorithm for sorting human glioblastoma cells 

by the extent of radiation induced DNA damage.  

The image processing algorithm is illustrated in Figure. 3.8. The same top-hat 

filter with 7X7 pixels used before is also applied to remove background in gamma-

h2ax image. Also the same algorithm is used to convert both the GFP image and the 

background removed gamma-h2ax image into binary images, and extract all image-

derived parameters. The latency of the algorithm is about 6.7ms/cell. 
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Figure 3.8 (a) Flow chart of real-time image processing algorithm for sorting human 

glioblastoma cells by the extent of radiation induced DNA damage. (b) Illustration of 

image processing algorithm for sorting human glioblastoma cells by the extent of 

radiation induced DNA damage. 

 

 

3.4  Demonstrate the system by sorting different cell 

samples 

3.4.1  Sorting cells by spatial distribution of specific protein  
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Spatial distribution of certain protein or organelles such as lysosomes and 

mitochondria carry important biological information. Image guided cell sorter is, to 

our knowledge, the only tool that can capture cells of sufficient quantity and purity 

based on such information.  Here we demonstrate such functionality using pEGFP-GR 

plasmids translocated HEK-297T cells and un-translocated HEK-297T cells. pEGFP-

GR expresses the eGFP protein fused to the N-terminal end of the glucocorticoid 

receptor. 

Nuclear import and export of glucocorticoid receptor are important cellular 

processes related to numerous cancers, chronic inflammatory diseases and 

developmental disorders.[33-35] Protein translocation does not necessarily change the 

overall fluorescent or light scattering intensity of cells. Hence conventional flow 

cytometer is unable to distinguish translocated cells from un-translocated cells.  

In the experiment, HEK-293T cells are transfected with GR-GFP and 

separated into 2 plates. One plate of cells is treated with dexamethasone that causes 

migration of GR-GFP protein from cytoplasm to nucleus. The other plate of cells is 

untreated so the GR-GFP protein stays in cytoplasm. The example microscope cell 

images are shown in Figure. 3.9(a). The mixture of both types of cells are flown 

through the system and imaged, and the interested subgroup can be isolated based on 

the real-time captured cell images. 

For supervised machine learning, treated and untreated cells are flown through 

the system and all image-related parameters from their fluorescent and bright field 
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images are obtained. These extracted image parameters are used to generate gating 

criteria for real-time image guided cell sorting.  

Figure 3.9(b) shows typical reconstructed cell images with bright-field image 

defining the cell boundary and the fluorescent image delineating the spatial 

distribution of GR-GFP protein. All image-derived parameters are also extracted to 

generate criteria for real-time image-based cell sorting. In this example, the image-

derived parameters include fluorescent area, bright-field area, perimeters, shape 

factors (i.e. area/perimeter ratio), etc. 

Next all image-derived parameters are ranked by their Receiver Operating 

Characteristics (ROC) score, which quantifies each parameter’s ability to distinguish 

translocated cells from un-translocated cells. The three highest ranked parameters are 

selected for image-guided sorting parameters by default unless users enter extra inputs 

for the system to adopt different sorting criteria. In this experiment, the top 3 

parameters are the area ratio between fluorescent and bright field signals, perimeter 

ratio of fluorescent and bright field signals, and total fluorescent area.  

Next a 3D hyperplane separating two cell populations based on the selected 

top 3 parameters is formed by Support Vector Machine (SVM). This hyperplane 

(Figure 3.9 (c)) defines the criteria for real-time image-guided cell sorting. 
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Figure 3.9 Sorting cells by spatial distribution of specific protein. (a) Example of 

microscope cell images.  Row(1) shows translocated cells, and row(2) shows un-

translocated cells. Column(1) shows fluorescent images, column(2) shows bright-

field images, and column(3) shows overlaid images with their respective contours 

defined by the computer-generated red and white curves. (b) Example cell images 

generated by our system. Row(1) shows translocated cells, and row(2) shows un-

translocated cells. Column(1) shows fluorescent images, column(2) shows bright-

field images, and column(3) shows fluorescent images overlaid with bright-field 

images with their respective contours defined by the computer-generated red and 

white curves. (c) Hyperplane formed by SVM.  A 5µm scale bar is shown in each 

row of micrographs. 
 

3.4.2  Sorting cells according to particle binding on cell membrane  

To show the capabilities of isolating cells based on surface markers, we sort 

MDCK cells based on the number of fluorescent particles bonded to the cell 

membrane. Fluorescent polystyrene beads (1µm diameter) functionalized with 

carboxylic groups can be adsorbed to almost any membrane proteins. By adjusting the 

concentration of the beads and cells in the mixture, the test system can produce a large 

variety of the number of beads bonded to each cell. Here we use a 20X objective lens 
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to increase the depth of focus, and the dimension of optical spatial filter is adjusted 

accordingly. The fluorescent signals of cells (520nm wavelength) and beads (645nm 

wavelength) are detected by 2 PMTs. The image processing algorithm is similar to the 

previous cases, including generation of fluorescent images (50x50 pixels) of the cells 

and the beads, noise suppression with a digital filter, finding image contours by 

converting gray scaled images into binary images with defined thresholds, and 

extraction of image-derived features (See more details in Methods section).  Examples 

of the reconstructed images are shown in Figure 3.10(a) from which one can 

unambiguously enumerate the number of particles on the cell surface. Figure 3.10(b) 

is the histogram of normalized fluorescence area from the beads. One can see a strong 

correlation between the fluorescent area and the number of beads. The hyperplane 

generated by SVM separating cell populations bonded with different number of beads 

is shown in Figure 3.10(c). The top 3 parameters used to generate the 3D hyperplane 

are normalized fluorescent area from the beads,  normalized perimeter of the beads 

and the net intensity within the central area of beads. The “net intensity within central 

area of beads” is different from the overall fluorescent intensity of beads because it 

includes signals only from the region of the highest intensity in each spot, thus 

minimizing the effects of background noise, blurring, and color bleeding in the signal 

of conventional FACS systems. 



 

 42 

 

Figure 3.10 Sorting cells according to particle binding on cell membrane. (a) 

Example cell images generated by our system. Column(1) shows fluorescent images 

at 645nm, column(2) shows fluorescent images at 520nm, and column(3) shows 

overlaid images. (b) Histogram for normalized fluorescent area from beads. (c) 

Hyperplane formed by SVM. A 5µm scale bar is shown in each row of micrographs. 
 

3.4.3 Sorting cells by the extent of radiation damage 

Next we report experiment of sorting human glioblastoma cells by the extent 

of radiation induced DNA damage. The number of gamma-h2ax foci is a key 

parameter measuring the number of DNA double-strand breaks (DSB) induced by 

cytotoxic agents including ionizing radiation.[36,37] Currently, fluorescent 

microscopy equipped with high throughput image processing is used to count gamma-

h2ax foci number as a measure of DNA damage.[38] However, besides the lower than 

desired throughput for microscopy, no technique can efficiently isolate cells according 
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to cell’s resistance to radiation or cytotoxic damage to support downstream molecular 

analysis over the targeted cell groups. The throughput of laser microdissection is much 

too low to support such studies. Image-guided cell sorter fills the technology gap by 

using machine learning and real time image processing to sort cells based on the foci 

count of gamma-h2ax that directly delineates the sections of broken DNAs by ionizing 

radiation.  

GFP transfected human glioblastoma cells (GBM-CCC-001) are treated with 

6Gy irradiation, and then the cells are fixed by paraformaldehyde. The fixed cells are 

stained with primary antibody (mouse-anti-gH2AX) and secondary antibody 

conjugated with fluorophore (PerCP-Cy5.5). The GFP signal delineates the area of the 

entire cell and the distribution of fluorescent signals from gamma-h2ax represents the 

fragments of double strand DNAs broken by radiation.  

As stated previously, the spatial resolution of the raw image of our system is 

2µm by 0.4µm. Hence image processing is required to enhance the effective resolution 

to resolve the gamma-h2ax foci smaller than 1µm diameter. The typical images of the 

fluorescent spots from gamma-h2ax foci are shown in Figure 3.11 (a). Here off-line 

compressive sampling algorithm is used to produce higher spatial resolution (0.4µm x 

0.4µm) images from the lower resolution (2µm x 0.4µm) raw images.[39,40] Such 

off-line processed higher resolution images are only displayed to users, but not used 

for real time image-derived parameter extraction. 

The compressive sampling reconstruction can be described by equation 5, 

where measureI  is the background removed image, ( , )f x y  is the spatial mask, and 



 

 44 

( , )x y  is the point spread function of objective lens (NA=0.55) approximated by a 

Gaussian function with 0.35µm root-mean-square (RMS) width, and FociI  is the 

gamma-h2ax fluorescence distribution. FociI  is solved using 1 -Regularized Least 

Squares Solver.[41] Using the solved FociI , the image ObjctiveI  formed by objective lens 

(NA=0.55) is calculated by equation 6. The image ObjctiveI has higher resolution 

compared to the raw image measureI , which has 2 µm by 0.4 µm asymmetric resolution 

equivalent to a 10x50 pixel image. The example cell images reconstructed by 

compressive sampling algorithm are shown in Figure 3.11(b).  

( , ) ( , )measure FociI f x y x y I=     (5) 

( , )Objctive FociI x y I=     (6) 

 

 

 

Figure 3.11 Example images of irradiated cells. (a) Example cell images generated 

by real-time algorithm. Column(1) shows GFP images, column(2) shows gamma-

h2ax images with background removed , column(3) shows overlaid images, and 

column(4) shows image contours, with green contour for GPF image and red 

contours for gamma-h2ax images. (b) Example cell images generated by off-line 

processing for human vision. Column(1) shows GFP images, column(2) shows 

gamma-h2ax images, and column(3) shows overlaid images.  A 5µm scale bar is 

shown in each row of micrographs. 
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Although compressive sampling algorithms reconstruct images with high 

resolution, it is not used for image-guided sorting in our experiment because of the 

limited processing speed of our current hardware. In the experiment reported here we 

still use the lower resolution raw images in Figure 3.11(a) to guide cell sorting. Two 

image-derived parameters extracted from the real-time reconstructed images are used 

to estimate the foci count: the total perimeter of gamma-h2ax images and the net 

gamm-h2ax intensity within the central area of each focus area. The latter is different 

from the overall fluorescent intensity of gamm-h2ax because it includes signals only 

from the region of highest intensity in each focus area, thus minimizing the effects of 

background noise, blurring, and color bleeding in the signal of conventional FACS 

systems.  Figure 3.12(a-c) shows how conventional intensity-based sorting is 

compared against image-guided sorting with the above image-derived parameters. 

 

To obtain the ground truth for each cell being investigated, we apply off-line 

processing to resolve high-resolution images of 1800 cells, and then find how the total 

fluorescent intensity and real-time image-derived parameters are related to the ground 

truth images. The actual foci count is derived from the ground truth images, and 

Poisson regression is used to predict the foci count based on total fluorescent intensity 

and real-time image-derived parameters. The scatter plot of predicted foci count and 

actual foci count are shown in Figure 3.12(a) and (b), and the respective R-squared 

values are calculated. Using total fluorescent intensity to predict the foci count, the R-

squared value is found to be 0.632±0.029. In contrast, using real-time image-derived 
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parameters to predict foci count, the R-squared value is increased to 0.881±0.008, 

significantly greater than intensity-based sorting. Figure 3.12 (d) and (e) shows 

histograms of foci count predicted by total gamma-h2ax fluorescent intensity and 

predicted by image derived parameters. Here bin1 includes cells with 16~17 foci and 

bin2 includes cells with 25~31 foci. Consistent with the conclusion from Figure 

3.12(a-c), Figure 3.12 (d) and (e) indicates that intensity based sorting between bin1 

and bin2 has greater overlap (i.e. ambiguity) than image based sorting. The result can 

be more quantitatively represented from the Receiver Operating Characteristic (ROC) 

analysis in Figure 3.12 (f). The ROC analysis indicates superior performance of 

image-guided sorting compared to conventional intensity-based sorting. Also notably 

in Figure 3.12 (c), there are about 1% “outliers” in the scatter plot of total gamma-

h2ax fluorescent intensity versus foci count, indicating the presence of a small 

population of cells with exceptionally high gamma-h2ax intensity but not particularly 

large foci count. If cells of such properties are to be studied, one can use sorting criteria 

that combine intensity and image-derived parameters to isolate such rare population.  

On the other hand, using only intensity for sorting criteria as in conventional FACS, 

we would misclassify those high-intensity but moderate foci count cells, presenting 

the risk of missing vital biological information. This is just another example of the 

unique capability image-guided cell sorting can bring to the research community. 

To quantitatively evaluate the performance of image-guided sorting and 

intensity-based sorting, we have compared sorting purity and yield by isolating cells 

with more than 23 foci using both techniques. Aw shown in Figure 3.13 (b), image-
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guided sorting with 2µm x 0.4µm spatial resolution has consistently shown superior 

performance than conventional intensity-based sorting. 

 

Figure 3.12 Estimation of foci count based on image-derived parameters and total 

fluorescent intensity. (a) Scatter plot of predicted foci count based on total gamma-

h2ax intensity versus actual foci count (b) Scatter plot of predicted foci count based 

on image-derived parameters versus actual foci count (c) Scatter plot of total 

gamma-h2ax intensity versus actual foci count including outliers (d) Histogram of 

predicted foci count based on total gamma-h2ax intensity of bin1 and bin2 (e) 

Histogram of predicted foci count based on image-derived parameters of bin1 and 

bin2 (f) Receiving Operating Characteristic(ROC) analysis of bin1 and bin2, 

showing superior performance of image-guided sorting than conventional intensity-

based sorting. 
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Figure 3.13 Sorting purity and yield. (a) Histogram of actual foci count for Gamma-

ray irradiated cells. (b)Sorting yield versus sorting accuracy for isolation of cells 

with greater than 23 foci using image-guided and intensity-based methods. 
 

Chapter 3 is based on and mostly a reprint of: Yi Gu, Alex Ce Zhang, 
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3080140; Yuanyuan Han, Yi Gu, Alex Ce Zhang, and Yu-Hwa Lo. "Imaging 
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Chapter 4 Image-Guided Cell Sorting 

Using Laser Point Scanning 
 

4.1 System Design of Image-Guided Cell Sorter Using Laser 

Point Scanning 

The overall work flow of the 2D image guided cell sorter is shown in Figure. 

4.1. First, as cells flow through the microfluidic channel, each cell image is converted 

to a temporal waveform produced by the fluorescent or scattering/transmission signal 

resulted from the scanning laser excitation beam. Second, the temporal fluorescent or 

optical scattering/transmission waveforms are detected by photomultiplier tubes 

(PMTs) to become electronic waveforms.  These electronic waveforms will then be 

reconstructed to cell images. Third, the features of the constructed cell images are 

extracted and available to users to allow users to define or modify the gating criteria 

for cell isolation. Fourth, the imaging features of each cell passing the interrogation 

area are calculated in real time and those cells with features meeting the sorting criteria 

(i.e. within the regime of defined gating) will be sorted. 

The optical setup, image reconstruction, imaging feature extraction, gating 

strategy and real-time processing module will be described in detail in the following 

sections. The design can support a throughput of over 1000 cell/s, which is several 

orders of magnitude greater than any microscopy-based cell isolation systems such as 

laser micro dissection systems. 
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Figure 4.1 Schematic overview of the work flow for an image-guided cell sorter 

4.2 Optical Imaging Setup 

As shown in Figure. 4.2(a), suspended cells flow in a microfluidic channel. 

Sheath flow is used to hydro-dynamically focus the travelling cells to the center of the 

microfluidic channel. The flow direction is along the z-axis in Figure 4.2(a). At the 

optical interrogation zone, each flowing cell is illuminated simultaneously by a 455nm 

wavelength LED and a 488nm wavelength laser. The 455nm LED is used to measure 

the travelling speed of each cell as such information is needed for cell image 

construction.  The 488nm wavelength laser is coupled to an AOD modulator to create 

a scanning beam with a small (<1 um diameter) spot size for generation of optical 
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transmission, scattering, and fluorescent signals through fluorophores.  In this setup, 

10X objective lenses are used for both laser illumination and imaging to obtain high 

depth of focus across the cell thickness. Besides the laser beam used for producing 

cell images, the system also has an LED light source.  The purpose of the LED is to 

help us measure the travel speed of each individual cell.  As to be explained later, 

knowing the cell speed is critical to correct construction of cell images without 

distortion. 

Here we explain how to use the LED signal to measure cell speed.  The LED 

light passes the sample and the objective lenses, is reflected by the first dichroic mirror 

(DM1), and transmits through the spatial mask1 before reaching the high-speed 

photodetector (PD) to produce a photocurrent.  The spatial mask1 has a design of two 

slits separate in the z-direction (i.e. cell flow direction).  The transmitted LED light 

through the slit produces a dip in the light intensity each time a cell travels through 

the light path due to light scattering or absorption.  The time interval between the two 

photocurrent dips produced by these two slits can thus give rise to the information of 

cell travel speed since we know the physical separation of the two slits and the 

magnification factor of the optical system.  The detailed design of spatial mask 1 is 

shown in Figure. 4.2(c). The spatial mask1 is placed at the image plane of the optical 

system and consists of 2 parallel slits that are 10µm wide and 1mm long. The center-

to-center distance between these 2 slits is 200 µm.  

The 488nm wavelength laser illumination is used to generate transmission 

images and fluorescence images via excitation of fluorophores. The laser illumination 
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is focused to a diffraction-limited light spot by the objective lens on the left side of the 

sample. As shown in Figure. 4.2(e), the laser spot is scanned in the y-direction driven 

by an acoustic optical deflector (AOD). To be explained next, this fast laser scanning 

system will enable the production of two-dimensional cell images over the y-z plane 

where y-axis is the beam scanning direction and z-axis is the cell flow direction.   

At the image plane for the laser beam, there is a spatial mask2 with a 500µm 

by 500µm optical window. The actual field-of-view at the image plane for the 

scanning laser is designed to be 200µm by 200µm, hence in principle, the spatial 

mask2 can be treated as an optical window. The purpose of spatial mask 2 is to block 

tray light to enhance the sensitivity of the system.  

Dichroic mirrors are used to route the desired emission bands to their 

respective PMTs. The field of view is determined by the scanning range of AOD and 

the signal recording time period. In this setup, the field of view is chosen to be 20µm 

by 20µm, which covers the size of most biological cells. The resolution is determined 

by diffraction limit of the objective lens. In this setup, the resolution is 1µm. 
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Figure. 4.2 (a) The schematic diagram of the optical setup. As cells flow through the 

microfluidic channel (along the z-axis), the AOD scans the laser beam spot to 

produce time domain signals at the output of PMTs. The PMT output signals are 

acquired and processed by a real-time processing module (e.g. a FPGA) to make the 

sorting decision. Then the piezoelectric PZT actuator is actuated to sort cells based 

on the sorting decision. PD is photodetector, BP is bandpass filter, DM is dichroic 

mirror, PMT is Photomultiplier tube. (b) Microfluidic device with an on-chip 

piezoelectric PZT actuator to deflect selected cells in the microfluidic channel for 

image-guided cell sorting. (c) Design of spatial mask1. (d) Design of spatial mask2. 

(e) Illustration of beam scanning. Cell is travelling in z-axis and beam is scanning in 

y-axis 
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4.3 Real-Time image processing and cell classification 

4.3.1 Real-Time processing system design 

Sorting cells from a flow requires the abilities to compute the image features 

of each cell, compare these parameters against the sorting criteria, gating, and activate 

the actuator to isolate the selected cells from the stream; and all of these processes 

have to be completed rapidly to achieve high throughput, which is typically 1000 

cells/sec for flow cytometers.  Therefore, real-time processing for computation of cell 

image features are needed. To accelerate processing speed, one preferred embodiment 

is a FPGA-CPU hybrid design. The diagram of real-time processing system is 

illustrated as Figure 4.3. The PMT signals and the voltage signal modulating the AOD 

are acquired and digitized, and the LED signal from a photodetector is acquired by an 

Analog Input (AI) module. First, the FPGA reconstructs the cell images from the 

acquired signals. Then, the reconstructed cell images are transferred to the CPU for 

imaging feature extraction. After the image features are computed, the features are 

transferred back to the FPGA. Sorting decision is made based on the extracted imaging 

features compared against the defined sorting criteria. To sort a cell, a voltage pulse is 

applied to the on-chip piezoelectric PZT actuator, which instantaneously bends the 

bimorph PZT disk to deflect the cell away from the central flow into the sorting 

channel. 

The integrated piezoelectric actuator offers a desirable design to sort cells due 

to is low cost, easy operation, and gentleness that results in high cell viability, but 
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other mechanisms, including electrophoresis, dielectrophoresis, electric static, 

mechanical, acoustic, optical tweezers, etc. can also be used to sort cells.[42-45] 

 

Figure. 4.3 Schematic diagram of real-time processing module 

 

4.3.2 Image reconstruction algorithm 

Image construction process contains three steps: (1) conversion of the temporal 

waveform of PMT into an uncorrected 2D cell image, (2) correction of effect caused 

by a time delay between the modulating voltage applied to the AOD and the 

corresponding laser beam spot, which we call correction of “phase shift” below, and 

(3) correction of image distortion due to the effect of cell travelling speed, which we 

call “image resizing” as errors in cell speed measurements can result in contraction or 

stretch of the cell image.  In the following we describe each step in detail: 

(1) Conversion of the temporal waveform of PMT output into an uncorrected 2D cell 

image. 
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As shown in Figure. 4.4(a), we first find the troughs and peaks of the voltage 

waveform that modulates the AOD. For simplicity, we normalize the waveform plot 

to set the peak to be 1 and trough to be zero.  The waveform that modulates the AOD 

rises linearly with time from trough to peak and drops rapidly from peak to trough. 

Such waveform continues over time to form a periodic sawtooth waveform. Within 

each sawtooth period, the AOD scans the laser spot from one extreme position to 

another at a uniform speed along the y-axis, and then the laser spot returns quickly 

back to the starting position for the next scan.   In the current design, we choose a liner 

scan considering the simplicity of computation and the properties of acoustic optic 

crystal.  Other scanning waveforms other than the sawtooth waveform can also be 

used. 

Each time the AOD scans the laser excitation beam spot in the y direction, the 

resulting fluorescent or transmission signals registered by the PMTs are registered to 

form a 1D slice of the cell image along the y direction. Since the cell is also travelling 

in the z-direction during laser scanning, the laser y-scanning actually produces a line 

scan of the cell image with a small angle 

(𝜃~
v𝑐𝑒𝑙𝑙

𝑣𝑠𝑐𝑎𝑛
;  v𝑐𝑒𝑙𝑙: 𝑐𝑒𝑙𝑙 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑, 𝑣𝑠𝑐𝑎𝑛: 𝑙𝑎𝑠𝑒𝑟 𝑏𝑒𝑎𝑚 𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑) 

with respect to the frame of the cell.  Due to the much faster laser beam 

scanning speed (e.g. 500cm/s for 𝑣𝑠𝑐𝑎𝑛 and 20cm/s for 𝑣𝑠𝑐𝑎𝑛), such effect is rather 

small and can be neglected or easily corrected, if needed. 

Ignoring the small angle between the y-axis for the laboratory frame and the 

cell frame, one can consider that each time the laser beam makes a line scan along the 
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y-axis, the cell image features in the y-axis at a new z-position are recorded.  

Mathematically, each cell travelling through the optical interrogation area will 

produces a series of image data registered as 

𝑆𝑧1(𝑦1), 𝑆𝑧1(𝑦2) … . 𝑆𝑧1(𝑦𝑁); 𝑆𝑧2(𝑦1), 𝑆𝑧2(𝑦2) … . 𝑆𝑧2(𝑦𝑁); … 𝑆𝑧𝑀(𝑦1),  

𝑆𝑧𝑀(𝑦2) … . 𝑆𝑧𝑀(𝑦𝑁). Obviously the above data set can be easily arranged into 

an MxN matrix, representing a 2D cell image in the y-z plane.   
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Figure. 4.4 (a) Finding troughs and peaks of the AOD signal. (b) Illustration of the 

time delay between the modulating voltage applied to the AOD and the 

corresponding laser beam spot. (c) Form 1D slice of the image based on each rising 

edge and the corresponding PMT detected signal. And splice the 1D images to 

reconstruct the 2D cell image. 
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Correction of the time delay between the modulating voltage applied to the 

AOD and the corresponding laser beam spot, which we call correction of “phase shift” 

below.  Under DC bias condition, the laser beam spot should match the applied voltage 

to the AOD, having the beam spot at one extreme position in y-axis at the minimum 

bias voltage and the opposite extreme position at the maximum bias voltage.  

However, when a sawtooth voltage waveform is applied to the AOD, there can be a 

time delay between the actual laser beam spot position and the voltage value due to 

the electric capacitance of the AOD and parasitic capacitance.  The effect of time delay 

or phase shift is illustrated in Fig. 4.43(b). In Fig. 4.4(b), plot(1) is the voltage 

waveform that modulates AOD, and plot(2) is the actual laser beam position. As 

shown in the plot, there is a time delay 𝛥𝑡, which we call “phase shift”.  Such phase 

shift will produce a 2D cell image similar to the one in Fig. 4.4(c) where the lower 

part of the cell appears to be atop the upper part of the cell.  To correct such phase 

shift, we take the image of transmitted signal, which shows the contour of the cell in 

the y-z plane.  By choosing one or a few z-positions and plot the transmitted light 

intensity along the y- (laser scanning) direction, we obtain an intensity plot similar to 

Fig. 4.5(c) where the intensity profile does not appear to show a continuous profile but 

be divided into two regions separated by a section with minimum intensity.  By 

shifting the leftmost region to join the right most region to make a continuous intensity 

profile and to center the entire intensity profile within the field of view, we can obtain 

the “phase-shift corrected image” shown in Fig. 4.5(d).  The reconstructed image in 

Fig. 4.5(d) consists of 40 by 40 pixels with a pixel size of 0.5 um.  
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Note that although we only correct the phase shift for the transmitted image, 

the same correction for the phase shift is also applicable to the fluorescent signals and 

other scattering signals since they are all produced by the same scanning laser beam 

and synchronized with each other.   

(3) Correction of the image distortion due to effect of cell travelling speed, which 

we call “image resizing” as errors in cell speed measurements can result in contraction 

or stretch of the cell image.   

Even with flow confinement, cells may not be at the same position in the cross 

section of the flow channel.  The actual cell positions in the flow channel depend on 

the cell size, cell stiffness, and the detailed design of the flow channel.  For cells in a 

microfluidic channel with 2D instead of 3D flow confinement, the cell distance from 

the ceiling (or floor) of the channel can vary appreciably.  In a laminal flow where cell 

speed is determined by the cell position within the channel, the above effects can 

produce appreciable speed variations among cells.  Since the process of cell image 

construction converts a temporary signal (detected by PMTs) into a spatial signal 

where cell travelling speed determines how a certain time period is transformed into a 

certain length in space, variations in cell speed can distort the cell images without 

correction. 

Specifically, we consider a cell moves at a speed 𝑣 in the flow (z-) direction 

and for each time interval ∆𝑡 , the laser spot scans through the y-axis once and 

producing a series of signal: 𝑆𝑧𝑖(𝑦1), 𝑆𝑧𝑖(𝑦2) … . 𝑆𝑖(𝑦𝑁).  Then the next scan will 

produce signal series: 𝑆𝑧𝑖+1(𝑦1), 𝑆𝑧𝑖+1(𝑦2) … . 𝑆𝑖+1(𝑦𝑁) 
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where 𝑧𝑖+1 = 𝑧𝑖 + ∆𝑧 = 𝑧𝑖 + 𝑣∆𝑡 

For a specific example, for an AOD operating at 400KHz, each scan takes 2.5 

µs (i.e. ∆𝑡 = 2.5𝜇𝑠 ).  If a cell travels at a speed of 20 cm/s, ∆𝑧 = 𝑣∆𝑡 = 0.5𝜇𝑚.  The 

amount of time of taking 40 scans covers a distance of ∆𝑧𝑥40 = 20𝜇𝑚, which defines 

the field of view along the z-axis.  However, if another cell travels through the optical 

interrogation area at a speed of 25 cm/s, ∆𝑧 = 𝑣∆𝑡 becomes 0.625𝜇𝑚.  Then the same 

amount of time of taking 40 scans would cover a distance of 25𝜇𝑚 along the z-

direction, or effectively the field of view along the z-axis increases with the cell travel 

speed.  If we do not know the travel speed of individual cells and take an average cell 

speed to construct cell images, then cells travelling faster than the average speed will 

appear to be smaller along the z-axis than their actual size, and cells travelling at lower 

than the average speed will appear to be larger than their actual size.  Therefore, the 

process of resizing is necessary to construct the cell image correctly without distortion. 

From the above discussion, obviously one needs to know the travel speed of 

the cell, 𝑣 , accurately to produce the correct cell image in the y-z plane.  The 

transmitted LED light through the two slits on the spatial mask1 produces the signal 

that allows us to precisely measure the speed of each single cell, and the knowledge 

of speed enables us to put the proper length scale in the z-direction for the cell image 

without distortion. 
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Figure 4.5 (a) Reconstructed image before phase shift correction (b) Reconstructed 

image after phase shift correction (c) signal integration along x-axis before phase 

shift correction (d) Signal integration along x-axis after phase shift correction 

 

4.3.3 Feature extraction and gating strategy 

Feature extraction While cell images provide intuitive and rich information 

through visualization, the information can be best managed and utilized by extraction 

of key features from these images given the extremely large number of images (often 

well over 1 million cell images)  produced in each experiment.  Generally the 

biologically and clinically relevant image features can be divided into two groups: the 

features from each individual parameter and features from correlations of two or more 

parameters.  The commonly used features from each parameter includes area, 
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perimeter, shape, major and minor axis length, circularity, concentricity, aspect ratio 

(major axis length/minor axis length), integrated intensity, mean intensity (intensity 

divided by area), standard variation of intensity over space, granularity, texture 

entropy, texture variance, spot count, etc.  For relations between two or more 

parameters, they include area of overlap, correlations in intensity distribution, 

intensity variance, area, etc.  To perform image-guided cell sorting of single cells in a 

flow environment, it is required that (a) these image features of each cell passing the 

interrogation zone (i.e. scanning laser beam) need to be computed in real time, 

typically in less than 1 ms and (b) one needs to properly define “gating” based on some 

of the image features as the criteria for cell sorting.  In the following we will discuss 

the definition of “gating” and the methods for real time computation of image features 

for each cell. 

   Gating strategy In general one can take two approaches to define gating, 

one based on machine learning or deep learning[32,46], and another based on a 

methodology of user-interface (UI) and user-experience (UX) interaction.  There have 

been many established machine learning and deep learning algorithms that can be 

tailored to the cell sorting application since here the image objects are distinct, 

relatively well defined, and standing out from the background.  Here we describe in 

more detail the second approach involving machine/user interactions as a preferred 

embodiment from the user perspective. Because this approach is similar to the current 

method of operating conventional flow cytometer and cell sorter, it is easier to learn 
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and adaptive to the new image features the new system offers.  The operation 

procedures are outlined in Figure. 4.6.  

 

First, a user selects the interested population based on signal intensities, a 

method similar to the operation of conventional flow cytometers and familiar to all 

flow cytometer users. Second, the histograms for each image feature within the 

selected population are displayed. Users can go through these histograms of image 

features to decide which features are most relevant to the intended applications.  From 

these histograms, users can easily and intuitively tell if the originally selected cell 

population can be further divided into subpopulations characterized by these image 

features (e.g. spatial distribution of the fluorescent intensity, shape or size of cells or 

organelles). Then users can refine the gate to select one or multiple subpopulations of 

cells according to a particular set of image features.  Thus cell sorting is guided not 

only by conventional fluorescent or scattering signals but also by image features.   

Of course users always have the choice to define the gating (cell sorting 

criteria) based on the image features (e.g. shape and size of cell body or nucleus) 

without starting with conventional optical fluorescent or scattering signals.  This can 

be a popular mode of operation for label-free sorting of lymphocytes or CTCs where 

the cell and nucleus shape/size show distinctive characteristics and rich information 

compared to traditional forward and side scattering signals.  

To assure the image-guided sorting criteria satisfy the user needs or consistent 

with the user knowledge about their samples, reconstructed cell images inside and 
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outside the “gated areas” can be displayed, allowing users to check the actual images 

of cells they choose to sort or exclude.  Users can repeat the steps shown in Figure 4.6 

(c) and (d) to fine tune and finalize the sorting criteria. 
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Figure 4.6 Flow chart of gating strategy 
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4.4 Demonstrate the system by sorting experiments 

4.4.1 Sorting of beads by diameter 

We demonstrate the image-guided cell sorter by sorting beads by diameter. 

Polystyrene beads of 2 difference diameters are mixed and isolated by the image-

guided cell sorted based on the beads diameter extracted in real-time. The example 

images generated by the image-guided cell sorter is shown in Figure.  4.7(a), and the 

diameter histogram is shown in Figure 4.7(b) 

 

Figure 4.7 Image and histogram of polystyrene beads. (a) Example images of 

polystyrene beads generated by the Image-Guided Cell Sorter. The first column is 

fluorescence images, the second column is transmission images. The first is the 

beads with 15µm diameter, the second row is the beads with 10 µm diameter. (b) 

Histogram of diameter measured by the Image-Guided Cell Sorter. 

 

In the sorting experiment, polystyrene beads with 15µm and 10µm diameter 

are mixed at ratio 50:50. Then the mixture is flow through the image-guided cell sorter 

and only beads with 15µm diameter are sorted and collected. Then the collected beads 
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are imaged by a fluorescent microscope. Based on the 170 images captured by 

fluorescent microscope, a 97% purity is calculated. 

 

4.4.2 Sorting of cells according to number of bonded beads 

To show the capabilities of isolating cells based on surface markers, we sort 

HEK cells based on the number of fluorescent particles bonded to the cell membrane. 

Fluorescent polystyrene beads (1µm diameter) functionalized with carboxylic groups 

can be adsorbed to almost any membrane proteins. The example cell images generated 

by image-guided cell sorter is shown in Figure. 4.8(a), and the histogram of beads 

counted calculated in real-time by image-guided cell sorter is shown in Figure. 4.8(b). 

 

Figure 4.8 Image and histogram of HEK cells bonded with 1µm polystyrene beads. 

(a) Example images generated by image-guided cell sorter. First column is 

transmission image, the second column is green fluorescence image, the third 

column is red fluorescence images, the fourth column is overlay image. (b) 

Histogram of beads number counted by image-guided cell sorter. 
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In the sorting experiment, only cells bonded with no less than 3 beads are 

sorted and collected. The sorted cells are imaged by a fluorescent microscope. A 96% 

sorting purity is calculated based on 197 microscope images. 

4.4.3 Sorting of pEGFP-GR plasmids translocated HEK-297T 

Human embryonic kidney cells 

Spatial distribution of certain protein or organelles such as lysosomes and 

mitochondria carry important biological information. Image guided cell sorter is, to 

our knowledge, the only tool that can capture cells of sufficient quantity and purity 

based on such information.  Here we demonstrate such functionality using pEGFP-GR 

plasmids translocated HEK-297T cells and un-translocated HEK-297T cells. 

In the experiment, HEK-293T cells are transfected with GR-GFP and 

separated into 2 plates. One plate of cells is treated with dexamethasone that causes 

migration of GR-GFP protein from cytoplasm to nucleus. The other plate of cells is 

untreated so the GR-GFP protein stays in cytoplasm. The example images generated 

by image-guided cell sorter are shown in Figure. 4.9(a), and the histogram of area ratio 

is shown in Figure. 4.9(b). The mixture of both types of cells are flown through the 

system and imaged, and the interested subgroup can be isolated based on the real-time 

captured cell images. 



 

 70 

 

Figure 4.9 Example images and histogram of GFP-GR transfected HEK293T cells. 

(a) Example images generated by image-guided cell sorter. The first column is the 

transmission image, the second column is fluorescence image, the third column is 

overlay image. The first row is un-translocated cell, the second column is 

translocated cell. (b) Histogram of area ratio. 

 

In the sorting experiment, GFP-GR transfected HEK293T cells treated and un-

treated with drug (Dexamethasone) are mixed at ratio 50:50. Only translocated cells 

are sorted and collected. A fluorescent microscope is used to verify the sorting purity. 

Based on 130 microscope images, a 100% sorting purity is calculated. 

 

Chapter 4 is based on and mostly a reprint of: Yi Gu, Xinyu Chen, Sung Hwan 

Cho, Chang-Hung Lee, Ivan Gagne, Alex Ce Zhang, Rui Tang, Yuanyuan Han, and 

Yu-Hwa Lo. “Image-Guided Cell Sorting Using Laser Point Scanning” in preparation. 

The dissertation author was the primary author of the work. 
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Conclusion 

We demonstrate a image-guided cell sorting and classification system that 

enables: (1) generation of bright-field and fluorescent images of single cells in real 

time, (2) generation of image-derived gating criteria with machine learning, (3) 

generation and scoring of image-guided sorting parameters adaptive to user inputs, (4) 

cell sorting based on image-guided “gating”.  

Importantly, all these additional features are established with essentially the 

same hardware as conventional FACS, allowing easy transition and upgrade of 

conventional systems to image-guided cell sorters.  For the same token, the system 

can be easily expanded to include more parameters/colors by leveraging the multi-

parameter FACS systems available today, and the throughput of the system can be 

enhanced with higher speed electronics. 
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Appendix A  

Cell preparation protocols 

 

Translocating pEGFP-GR plasmids to HEK-297T human embryonic 

kidney cells. First GR-GFP plasmid DNA is obtained from bacterial culture. Then 

two plates of HEK 293T cells are cultured and transfected with GR-GFP. After 

transfection, cells are cultured for 2~3 days. Then one plate of cells is treated with 

dexamethasone. The dexamethasone treatment is supposed to cause migration of 

pEGFP-GR protein from cytoplasm to nucleus. For untreated cells, pEGFP-GR 

protein stays in cytoplasm. 

Bond fluorescent beads to MDCK cells. MDCK cells are cultured in a 10cm 

diameter dish. Then add 100µL solution of 1m diameter fluorescent beads to the 

culture dish and keep the cell culture overnight. In the final step, cells are fixed and 

stained with Carboxyfluorescein succinimidyl ester (CFSE). 

Irradiation and antibody staining of Human Glioblastoma Cells. To 

induce DNA double-strand breaks (DSB), GFP labeled Human Glioblastoma Cells 

(GBM-CCC-001) are treated with 6Gy irradiation. The treated cells are washed once 

with phosphate buffered saline (PBS) and fixed with 1% paraformaldehyde 30 minutes 

post irradiation. The fixed cells are washed with PBS twice. Then 70% ethanol is 

added to the cells and the cells are incubated on ice for 1 hour. After ethanol treatment, 
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cells are washed with PBS twice and incubated in 1% TritonX-100 at room 

temperature for 10 minutes. Then cells are washed with PBS once and incubated in 

5% Bovine Serum Albumin (BSA) in PBS for 30 minutes at room temperature on 

shaker. Then cells are washed with PBS once and incubated in Anti-phospho-Histone 

H2A.X (Ser139) Antibody, clone JBW301 at 1:300 dilution on ice on shaker for 1 

hour. After the primary antibody treatment, cells are washed twice with 5% BSA and 

incubate in PerCP/Cy5.5 anti-mouse IgG1 Antibody at 1:100 dilution on ice on shaker 

for 1 hour. At last, the stained cells are washed twice with 5% BSA and resuspended 

in 1:3 diluted stabilize fixative buffer in MilliQ water.  
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