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ABSTRACT OF THE DISSERTATION

Generating Functions for Composition/Word Statistics

by

Evan Fuller

Doctor of Philosophy in Mathematics

University of California San Diego, 2009

Professor Jeffrey Remmel, Chair

The statistics des, inv, maj are well-known statistics on Sn. A central theme of this

dissertation is to extend these statistics and others to compositions. A composition,

or word on P, the set of positive integers, is simply a sequence of positive integers

γ1, γ2, . . . , γn. In Chapter 3, we derive generating functions for basic composition

statistics such as des, inv, maj, as well as statistics unique to compositions such as

lev and levmaj, defined by

Lev(γ) = {i : γi = γi+1},
lev(γ) = |Lev(γ)|, and

levmaj(γ) =
∑

i∈Lev(γ)

i.

A permutation σ ∈ Sn is called up-down if σ1 < σ2 > σ3 < · · · . When we con-

sider analogues for up-down words, we find that there are four classes to consider:

strict or weak increase, followed by strict or weak decrease. We derive generating

functions for all four classes in Chapter 4, and we also generalize previous results

to words that have a weakly/strictly increasing block of length s followed by a

weak/strict decrease. In order to handle all classes, we use an involution that re-

duces the original classes considered to ones that are easier to count. In Chapter

5, we generalize these results by forcing the final letter in each block of length s to

be in some set X ⊂ P.

xi



In Chapter 6, we apply an alternate method to find the generating functions for

certain classes of alternating words on alphabet P. In addition, we use the results

of previous chapters to find generating functions for statistics defined by

altdes(w) = |{2i : w2i > w2i+1} ∪ {2i + 1 : w2i+1 < w2i+2}|,
waltdes(w) = |{2i : w2i ≥ w2i+1} ∪ {2i + 1 : w2i+1 ≤ w2i+2}|,
altmaj(w) =

∑

i∈Altdes(w)

i, and

waltmaj(w) =
∑

i∈Waltdes(w)

i.

Finally, in Chapter 7 we find generating functions for additional composition

patterns. For instance, we can partition a composition into blocks of fixed length

and count levels between the maxima of these blocks.

xii



Chapter 1

Introduction

1.1 General introduction

A permutation statistic is a function mapping permutations to nonnegative

integers. The modern analysis of such objects began in the early twentieth century

with the work of Percy MacMahon [31]. He popularized the “classic” notions of

the descents, rises, inversions, and major index statistics. Here if σ = σ1 · · ·σn is

an element of the symmetric group Sn written in one line notation, then

des(σ) = |{i : σi > σi+1})| rise(σ) = |{i : σi < σi+1}|
inv(σ) =

∑
i<j χ(σi > σj) coinv(σ) =

∑
i<j χ(σi < σj)

maj(σ) =
∑n−1

i=1 iχ(σi > σi+1) comdes(σ, τ) = |{i : σi > σi+1 & τi > τi+1}|,

where for any statement A, χ(A) is 1 if A is true and 0 if A is false. These

definitions make sense if σ = σ1 . . . σn is any sequence of natural numbers, not just

a permutation.

There has been a long line of research, [27], [28], [35], [37], [43], [33], showing

that a large number of generating functions for permutation statistics can be ob-

tained by applying homomorphisms defined on the ring of symmetric functions Λ

in infinitely many variables x1, x2, . . . to simple symmetric function identities. For

example, the nth elementary symmetric function, en, and the nth homogeneous

1
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symmetric function, hn, are defined by the generating functions

E(t) =
∑
n≥0

entn =
∏

i

(1 + xit) (1.1.1)

and

H(t) =
∑
n≥0

hntn =
∏

i

1

1− xit
. (1.1.2)

We let P (t) =
∑

n≥0 pnt
n, where pn =

∑
i x

n
i is the n-th power symmetric function.

For any partition µ = (µ1, . . . , µ`), we let hµ =
∏`

i=1 hµi
, eµ =

∏`
i=1 eµi

, and

pµ =
∏`

i=1 pµi
. It is well known that

H(t) = 1/E(−t) (1.1.3)

and

P (t) =

∑
n≥1(−1)n−1nent

n

E(−t)
. (1.1.4)

A surprisingly large number of results on generating functions for various permuta-

tion statistics in the literature and a large number of new generating functions can

be derived by applying homomorphisms on Λ to simple identities such as (1.1.3)

and (1.1.4).

We shall use standard notation for q analogues: [n]q = 1+q+ · · ·+qn−1 = 1−qn

1−q

and [n]q! = [n]q[n− 1]q · · · [1]q. In addition, let (x; q)0 = 1 and

(x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1). Then all of the following results can be

proved by applying a suitable homomorphism to the identity (1.1.3).

1)
∑∞

n=0
un

n!

∑
σ∈Sn

xdes(σ) = 1−x
−x+eu(x−1) .

2) (Stanley 1976) [41]
∑∞

n=0
un

[n]q !

∑
σ∈Sn

xdes(σ)qinv(σ) = 1−x
−x+eq(u(x−1))

.

3) (Stanley 1976) [41]
∑∞

n=0
un

[n]q !

∑
σ∈Sn

xdes(σ)qcoinv(σ) = 1−x
−x+Eq(u(x−1))

.

4) (Fedou and Rawlings 1995) [16]
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∑∞
n=0

un

[n]q ![n]p!

∑
(σ,τ)∈Sn×Sn

xcomdes(σ,τ)qinv(σ)pinv(τ) = 1−x
−x+Jq,p(u(x−1))

.

5) (Garsia and Gessel 1979) [18]
∑

n≥0
tn

[n]q !(x;r)n+1

∑
σ∈Sn

xdes(σ)rmaj(σ)qinv(σ) =
∑

k≥0
xk

eq(−tr0)···eq(−trk)
,

where eq(u) =
∞∑

n=0

un

[n]q !
q(

n
2), Eq(u) =

∞∑
n=0

un

[n]q !
, and Jq,p(u) =

∞∑
n=0

un

[n]q ![n]p!
.

One of the main goals of this dissertation is to extend these types of results

to more general sequences: compositions. Here a composition γ is a sequence

of positive integers γ = (γ1, . . . , γk). We call the γi’s the parts of γ and let `(γ)

denote the number of parts of γ. We let |γ| = γ1 + · · ·+γk and xγ be the monomial

xγ1 · · ·xγk
.

Brenti [9] used a ring homomorphism to find the generating function for

∑
n≥0

tn

n!

∑
σ∈Sn

ydes(σ).

Gessel gave a generating function for

∑
σ∈Sn

xdes(σ)umaj(σ)qinv(σ)

both in his thesis and in a paper coauthored with Garsia [18, 19]. This function

was rederived by Mendes and Remmel [34] using a ring homomorphism.

Since compositions can have repeated entries, it is natural to have analogues

of des and maj where we replace > by ≥ or = in the definition of des and maj.

That is, if γ = γ1 . . . γn is a composition, then we let

Des(γ) = {i : γi > γi+1},
WDes(γ) = {i : γi ≥ γi+1}, and

Lev(γ) = {i : γi = γi+1}.
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Then we define

des(γ) = |Des(γ)|,
wdes(γ) = |WDes(γ)|, and

lev(γ) = |Lev(γ)|

and

maj(γ) =
∑

i∈Des(γ)

i,

wmaj(γ) =
∑

i∈WDes(γ)

i, and

levmaj(γ) =
∑

i∈Lev(γ)

i.

Notice that there are three analogues for des and maj, respectively. It turns

out that similar methods to those used to find the generating functions for permu-

tations can be extended to compositions. We will use these methods to find the

following generating functions:

∑
n≥0

tn
∑

γ∈Pn

ydes(γ)xγ,

∑
n≥0

tn
∑

γ∈Pn

ywdes(γ)xγ,

∑
n≥0

tn
∑

γ∈Pn

ylev(γ)xγ,

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ),

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγywdes(γ)uwmaj(γ), and

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγylev(γ)ulevmaj(γ).

We say that σ is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 · · · .
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André [1, 2] found the following simple generating functions for UDn, the number

of up-down permutations in Sn.

1 +
∑

n∈E
UDn

tn

n!
= sec(t) and

∑

n∈O
UDn

tn

n!
= tan(t),

where E is the set of even positive integers and O is the set of odd positive integers.

When we consider analogues for up-down words, we find that there are four classes

to consider: strict or weak increase, followed by strict or weak decrease. We derive

generating functions for all four classes, and we also generalize previous results

to words that have a weakly/strictly increasing block of length s followed by a

weak/strict decrease. In order to handle all classes, we use an involution that

reduces the original classes considered to ones that are easier to count. In addition,

we can generalize these results by forcing the final letter in each block of length s

to be in some set X ⊂ P.

Chebikin [14] used up-down permutations to introduce the notion of alternating

descents for permutations, defined by

d̂(σ) = |{2i : σ2i < σ2i+1} ∪ {2i + 1 : σ2i+1 > σ2i+2}|.

He also found the generating function for alternating Eulerian polynomials, defined

as Ân(t) =
∑

σ∈Sn
td̂(σ)+1. In addition, Remmel [39] introduced the notion of

alternating major index, defined by

altmaj(σ) =
∑

i∈Altdes(σ)

i.

Remmel then found the following extension of Chebikin’s generating function:

∑
n≥0

tn

n!

∑
σ∈Sn

xaltdes(σ)qaltmaj(σ)

(1− x)(1− xq) · · · (1− xqn)
.

When we consider analogues for words, we can apply both strong and weak versions

of these statistics. Chebikin and Remmel defined alternating descents as places
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where σ deviates from an up-down pattern, but we find it more natural to define

alternating descents as places where σ follows an up-down pattern. That is, we

will use the following definitions.

Altdes(w) = {2i : w2i > w2i+1} ∪ {2i + 1 : w2i+1 < w2i+2}
= (E ∩Des(w)) ∪ (O ∩Ris(w)),

altdes(w) = |Altdes(w)|,
Waltdes(w) = {2i : w2i ≥ w2i+1} ∪ {2i + 1 : w2i+1 ≤ w2i+2}

= (E ∩WDes(w)) ∪ (O ∩WRis(w)),

waltdes(w) = |Waltdes(w)|,
altmaj(w) =

∑

i∈Altdes(w)

i, and

waltmaj(w) =
∑

i∈Waltdes(w)

i.

We will find the following generating functions:

∑
n≥0

tn
∑

w∈[m]n

xaltdes(w)

∑
n≥0

tn
∑

w∈[m]n

xwaltdes(w)

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

yaltdes(w)ualtmaj(w) and

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

ywaltdes(w)uwaltmaj(w),

where [m] = {1, 2, . . . , m}.
In Chapter 2, we develop background needed to prove results in the remaining

chapters. In Chapter 3, we examine analogues for the number of descents and

major index of a composition. In Chapter 4, we extend existing work on up-down

permutations and words to obtain four different analogues of generalized Euler

numbers for words. That is, for any s ≥ 2, we consider classes of words that can

be divided up into an initial set of blocks of size s followed by a block of size
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j where 0 ≤ j ≤ s − 1. We then consider the classes of such words where all

the blocks are strictly increasing (weakly increasing) and there are strict (weak)

decreases between blocks. We show that the weight generating functions of such

words w = w1 . . . wm, where the weight of a word is
∏m

i=1 zwi
, is always the quotient

of sums of quasi-symmetric functions. Moreover, we give a direct combinatorial

proof of our results via simple involutions. In Chapter 5, we generalize the results

of Chapter 4 by considering the same classes of words with the added condition

that all entries at the end of a block lie in some set X ⊂ P. Chapters 4 and 5 only

examine words over a finite alphabet. In Chapter 6, we use a different method to

obtain generating functions for two of the classes of words from Chapter 4 over

an infinite alphabet. We also consider a variation on the block condition: words

with equal entries within each block, but inequalities between blocks. In addition,

we use the results of the previous chapters to find generating functions for the

number of alternating descents and the alternating major index of a word. Finally,

in Chapter 7, we again examine words that can be partitioned into blocks of fixed

length, but we consider other conditions on entries within the blocks. We introduce

these results in more detail in the next subsections.

1.2 Introduction to Chapter 3

The main goal of Chapter 3 is to develop generating functions for the number

of descents and major index of a composition. Gessel gave a generating function

for ∑
σ∈Sn

xdes(σ)umaj(σ)qinv(σ)

both in his thesis and in a paper coauthored with Garsia [18, 19]. Later, Mendes

and Remmel showed how Gessel’s result could be derived by applying a homo-

morphism defined on the ring of symmetric functions. In particular, Mendes and

Remmel proved the following formula, which is easily derived from the Garsia-
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Gessel formula for the generating function of des(σ), maj(σ) and inv(σ):

∑
n≥0

tn

[n]p,q!(x, y; u, v)n+1

∑
σ∈Sn

xdes(σ)yris(σ)umaj(σ)vcomaj(σ)qinv(σ)pcoinv(σ)

=
∑

k≥0

xk

yk+1e
−t(u/v)0
p,q · · · e−t(u/v)k

p,q

.

Here we use standard notation from hypergeometric function theory. For n ≥ 1

and λ ` n, let

[n]p,q =
pn − qn

p− q
= pn−1q0 + · · ·+ p0qn−1,

and

[n]p,q! = [n]p,q · · · [1]p,q,

be the p, q-analogues of n and n!. By convention, let [0]p,q = 0 and [0]p,q! = 1. We

let (x; q)0 = 1 and

(x; q)n = (1− x)(1− xq) · · · (1− xqn−1).

In addition, let (x, y; p, q)0 = 1 and

(x, y; p, q)n = (x− y)(xp− yq) · · · (xpn−1 − yqn−1).

Finally, et
p,q is a p, q-analog for the exponential function defined by

et
p,q =

∑
n≥0

tn

[n]p,q!
q(

n
2).

Since compositions can have repeated entries, it is natural to have analogues

of des and maj where we replace > by ≥ or = in the definition of des and maj.

That is, if γ = γ1 . . . γn is a composition, then we let

Des(γ) = {i : γi > γi+1},
WDes(γ) = {i : γi ≥ γi+1}, and

Lev(γ) = {i : γi = γi+1}.
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Then we define

des(γ) = |Des(γ)|,
wdes(γ) = |WDes(γ)|, and

lev(γ) = |Lev(γ)|

and

maj(γ) =
∑

i∈Des(γ)

i,

wmaj(γ) =
∑

i∈WDes(γ)

i, and

levmaj(γ) =
∑

i∈Lev(γ)

i.

Let P denote the set of positive integers, and let xγ denote
∏n

i=1 xγi
. We will prove

the following theorems.

Theorem 1.2.1.

∑
n≥0

tn
∑

γ∈Pn

ydes(γ)xγ =
1− y

−y +
∏

j≥1(1 + t(y − 1)xj)
.

Theorem 1.2.2.

∑
n≥0

tn
∑

γ∈Pn

ywdes(γ)xγ =
1− y

−y +
∏

j≥1
1

1−t(y−1)xj

.

Theorem 1.2.3.

∑
n≥0

tn
∑

γ∈Pn

ylev(γ)xγ =
1

1−∑
j≥1

txj

1−t(y−1)xj

.

Theorem 1.2.4.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ)

=
∑

k≥0

yk

∏
i≥1(xit; u)k+1

,
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where (x; q)n = (1− x)(1− xq) · · · (1− xqn−1).

Theorem 1.2.5.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγywdes(γ)uwmaj(γ)

=
∑

k≥0

yk
∏
i≥1

(−xit; u)k+1.

Theorem 1.2.6.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγylev(γ)ulevmaj(γ)

=
∑

k≥0

yk

∏k
j=0(

∑
n≥0 pn(−ujt)n)

,

where pn = pn(x1, x2, . . .) =
∑

i≥1 xn
i is the nth power symmetric function. Each

of these theorems can be easily extended to compositions with parts in some set

S ⊂ P.

It should be noted that there has been considerable work on enumerating com-

positions by the number of occurrences of certain patterns in a composition. For ex-

ample, if γ = (γ1, . . . , γk) is a composition and we define ris(γ) = |{s : γs < γs+1}|,
then Carlitz [13] proved that

∑

γ∈P∗
u`(γ)q|γ|xris(γ)ydes(γ)zlev(γ) =

e(qu(z − y), q)− e(qu(z − x), q)

xe(qu(z − x), q)− ye(qu(z − y), q)

where

e(x, q) =
∞∑

n=0

xn

(q)n

=
∞∏

n=0

1

1− qnx

and (q)0 = 1 and (q)n = (1−q)(1−q2) · · · (1−qn) for n ≥ 1. Similarly, Heubach and

Mansour [25] found generating functions of compositions according to the number

of occurrences of various 3 letter patterns, and Mansour and Sirhan [32] extended

the work of Heubach and Mansour by finding generating functions of compositions

according to the number of occurrences of various l letter patterns. Enumerating

various types of compositions according to other types of patterns can be found in

[24], [23], and [26].
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1.3 Introduction to Chapter 4

The main goal of Chapter 4 is to develop 4 different analogues of alternat-

ing permutations, proving that the weight generating functions of such words are

always quotients of sums of quasi-symmetric functions.

Let P = {1, 2, 3, . . .} denote the set of positive integers, E = {2, 4, 6, . . .} denote

the set of even integers in P, and O = {1, 3, 5, . . .} denote the set of odd integers in

P. Let Pn = {1, . . . , n}, En = E ∩ Pn, and On = O ∩ Pn. Let Sn denote the set of

all permutations of Pn. Then if σ = σ1σ2 . . . σn ∈ Sn, we define Des(σ) = {i : σi >

σi+1} and Ris(σ) = {i : σi < σi+1}. We say that σ is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 · · · ,

or, equivalently, if Des(σ) = En−1 and Ris(σ) = On−1. Let UDn denote the

number of up-down permutations in Sn. Then André [1, 2] proved the following.

sec(t) = 1 +
∑

n∈E
UDn

tn

n!
and

tan(t) =
∑

n∈O
UDn

tn

n!
.

If s ≥ 2 and 1 ≤ j ≤ s−1, let sP = {s, 2s, 3s, . . .} and j+sP = {j, s+j, 2s+j, . . .}.
For any n > 0, let (sP)n = sP∩Pn and (j + sP)n = (j + sP)∩Pn. Let En,s denote

the number of permutations σ ∈ Sn such that Des(σ) = (sP)n−1. The En,s’s are

called generalized Euler numbers [29]. There are well-known generating functions

for q-analogues of the generalized Euler numbers; see Stanley’s book [42], page

148. Various divisibility properties of the q-Euler numbers have been studied in

[4, 5, 17], and properties of the generalized q-Euler numbers were studied in [20, 40].

More general generating functions for statistics on permutations σ ∈ Sn such that

Des(σ) = (j + sP)n−1 were given by Mendes, Remmel, and Riehl [36].

We extend the idea of up-down permutations to words by defining the following

four classes.

Definition 1.3.1. Let s ≥ 2, WRis(w) = {i : wi ≤ wi+1},
and WDes(w) = {i : wi ≥ wi+1}.
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1. SU s−1SDn,m is the set of all words w ∈ P+
n of length m such that

Des(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1.

We let SU s−1SDn =
⋃

m≥0 SU s−1SDn,m.

2. WU s−1SDn,m is the set of all words w ∈ P+
n of length m such that

Des(w) = (sP)m−1 and WRis(w) = Pm−1 − (sP)m−1.

We let WU s−1SDn =
⋃

m≥0 WU s−1SDn,m.

3. SU s−1WDn,m is the set of all words w ∈ P+
n of length m such that

WDes(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1.

We let SU s−1WDn =
⋃

m≥0 SU s−1WDn,m.

4. WU s−1WDn,m is the set of all words w ∈ P+
n of length m such that

WDes(w) = (sP)m−1 and WRis(w) = Pm−1 − (sP)m−1.

We let WU s−1WDn =
⋃

m≥0 WU s−1WDn,m.

Carlitz [12, 11] proved analogues of André’s formulas for strict up-down words.

In particular, he used recursions to prove the following formulas:

1 +
∑

m∈E
|SU1SDn,m|zm =

1

Qn(z)

and ∑

m∈O
|SU1SDn,m|zm =

Pn(z)

Qn(z)
,

where

Pn(z) =
n∑

k=0

(−1)k

(
n + k

2k + 1

)
z2k+1 and

Qn(z) =
n∑

k=0

(−1)k

(
n + k − 1

2k

)
z2k.

Rawlings [38] developed more general recursions, a special case of which can

prove the following formulas:

1 +
∑

m∈E

∑

w∈WU1WDn,m

q|w|z`(w) =
1

Bn(q, z)
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and ∑

m∈O

∑

w∈WU1WDn,m

q|w|z`(w) =
An(q, z)

Bn(q, z)
,

where

Bn(q, z) =
∑

k≥0

(−1)kqk(k+1)

[
n + k

2k

]

q

z2k and

An(q, z) =
∑

k≥0

(−1)kqk2+2k+1

[
n + k

2k + 1

]

q

z2k+1.

We define the following generating functions for any s ≥ 2:

HSUs−1SD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1SDn,m

z(w) and

HSUs−1SD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1SDn,m

z(w) for j = 1, . . . , s− 1.

We define HWUs−1SD
n,s,j (z1, . . . , zn), HSUs−1WD

n,s,j (z1, . . . , zn), and HWUs−1WD
n,s,j (z1, . . . , zn)

for j = 0, . . . , s− 1 similarly.

We will find explicit expressions for each of these generating functions in terms

of Gessel quasi-symmetric functions [21]. Our expressions can then be specialized

to explicit formulas from the literature. Let

Set(γ) = {γ1, γ1 + γ2, . . . , γ1 + γ2 + · · ·+ γt−1}.

For example, if γ = (2, 3, 1, 1, 2), then |γ| = 9 and Set(γ) = {2, 5, 6, 7}. Gessel [21]

defined the quasi-symmetric function

Qγ(z1, . . . , zn) =
∑

1≤i1≤···≤i|γ|≤n

ij<ij+1 if j∈Set(γ)

zi1zi2 · · · zi|γ| .

Using a simple involution, we will prove the following theorems:

Theorem 1.3.2. Let s ≥ 2. Then

HSUs−1SD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1SDn,m

z(w)

=
1

1 +
∑

k≥1(−1)kQ1(1s−22)k−11s−1(z1, . . . , zn)
,
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HWUs−1SD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈WUs−1SDn,m

z(w)

=
1

1 +
∑

k≥1(−1)kQ(ks)(z1, . . . , zn)
,

HSUs−1WD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1WDn,m

z(w)

=
1

1 +
∑

k≥1(−1)kQ(1ks)(z1, . . . , zn)
,

and

HWUs−1WD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈WUs−1WDn,m

z(w)

=
1

1 +
∑

k≥1(−1)kQ(sk)(z1, . . . , zn)
.

Theorem 1.3.3. Let s ≥ 2 and 1 ≤ j ≤ s− 1. Then

HSUs−1SD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1SDn,m

z(w)

=

∑
k≥0(−1)kQ1(1s−22)k1j−1(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ1(1s−22)k−11s−1(z1, . . . , zn)
,

HWUs−1SD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈WUs−1SDn,m

z(w)

=

∑
k≥0(−1)kQ(ks+j)(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ(ks)(z1, . . . , zn)
,

HSUs−1WD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1WDn,m

z(w)

=

∑
k≥0(−1)kQ(1ks+j)(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ(1ks)(z1, . . . , zn)
,
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and

HWUs−1WD
n,s,j (z1, . . . , zn) =

∑

m∈sP

∑

w∈WUs−1WDn,m

z(w)

=

∑
k≥0(−1)kQ(skj)(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ(sk)(z1, . . . , zn)
.

1.4 Introduction to Chapter 5

In Chapter 4, we were able to enumerate four classes of up-down words via a

simple involution. In this chapter, we will enumerate these same classes of up-down

words with the added condition that all peaks–entries at the end of a block–are in

a certain set X ⊂ P. We will show that the same involution applies, although the

results can no longer be expressed in terms of quasi-symmetric functions.

Let s ≥ 2. We extend our definition from Chapter 4 as follows.

Definition 1.4.1. SU s−1SDn,X,m is the set of all words w ∈ P+
n of length m such

that wsi ∈ X ∀i, Des(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1. We let

SU s−1SDn,X =
⋃

m≥0 SU s−1SDn,m.

We define WU s−1SDn,X,m, WU s−1SDn,X , SU s−1WDn,X,m, SU s−1WDn,X ,

WU s−1WDn,X,m, WU s−1WDn,X , SU s−1WUn,X,m, SU s−1WUn,X , WU s−1WUn,X,m,

WU s−1WUn,X , SU s−1SUn,X,m, SU s−1SUn,X , WU s−1SUn,X,m, and WU s−1SUn,X

similarly.

Also, define the following generating functions for any s ≥ 2:

HSUs−1SD
n,X,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1SDn,X,m

z(w) and

HSUs−1SD
n,X,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1SDn,X,m

z(w) for j = 1, . . . , s− 1.

We define HWUs−1SD
n,X,s,j (z1, . . . , zn), HSUs−1WD

n,X,s,j (z1, . . . , zn),

and HWUs−1WD
n,X,s,j (z1, . . . , zn) for j = 0, . . . , s− 1 similarly.
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We wish to define the following additional generating functions for s ≥ 2:

P SUs−1WU
n,X,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)k
∑

w∈SUs−1WUn,X,ks

z(w) and

P SUs−1WU
n,X,s,j (z1, . . . , zn) =

∑

k≥0

(−1)k
∑

w∈SUs−1WUn,X,ks+j

z(w) for j = 1, . . . , s− 1.

We define PWUs−1WU
n,X,s,j (z1, . . . , zn), P SUs−1SU

n,,X,s,j (z1, . . . , zn), and PWUs−1SU
n,X,s,j (z1, . . . , zn)

for j = 0, . . . , s − 1 similarly. The same involution from Chapter 4 will give, for

example, the following theorem:

Theorem 1.4.2.

HSUs−1SD
n,X,s,0 (z1, . . . , zn) =

1

P SUs−1WU
n,X,s,0 (z1, . . . , zn)

,

and

HSUs−1SD
n,X,s,j (z1, . . . , zn) =

P SUs−1WU
n,X,s,j (z1, . . . , zn)

P SUs−1WU
n,s,0 (z1, . . . , zn)

.

We then consider the special case s = 2 and X = E or X = O. Let

EV SUSU
n,0 (z, q) = P SUSU

n,E,2,0(z1, . . . , zn)|zi=qiz

= 1 +
∑

k≥1

(−1)k
∑

w∈SUSUn,E,2k

z`(w)q|w|,

and

EV SUSU
n,1 (z, q) = P SUSU

n,E,2,1(z1, . . . , zn)|zi=qiz

=
∑

k≥0

(−1)k
∑

w∈SUSUn,E,2k+1

z`(w)q|w|.

Then we have theorems such as the following.

Theorem 1.4.3.

EV SUSU
2n,0 (z, q) =

n∑

k=0

(−1)kz2k

k∑
j=0

q2j2−j+4k2+2k−4kj

[
n + j

2k

]

q2

[
k

j

]

q4

and

EV SUSU
2n,1 (z, q) =

n∑

k=0

(−1)kz2k+1([2]1/q)
k∑

j=0

q2j2−3j+4k2+6k−4kj+2

[
n + j

2k + 1

]

q2

[
k

j

]

q4

.
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As the reader can see, the condition that all peaks must be in a set X forces us

to use more subtle reasoning to arrive at the right generating functions. Similar

theorems are proved for the other classes of words. In handling some of the cases,

we also exhibit a bijection between certain classes of words.

1.5 Introduction to Chapter 6

In this chapter, we will apply another method that allows us to count two of

the classes of up-down words from Chapter 4 with an infinite alphabet. Define

SU s−1WD∞,n = {w ∈ Pn : WDes(w) = (sP)n−1} and

WU s−1SD∞,n = {w ∈ Pn : Des(w) = (sP)n−1}. We will prove the following

theorem:

Theorem 1.5.1. Let s ≥ 2 and 1 ≤ J < s. Then

∑
n≥0

tsn
∑

w∈SUs−1WD∞,sn

z(w) =

(
1

s

s∑
i=1

∏

k≥1

(1 + ζitzk)

)−1

,

∑
n≥1

tsn−J
∑

w∈SUs−1WD∞,sn−J

z(w) =

∑s
i=1 ζ−J

i

∏
k≥1(1 + ζitzk)

−∑s
i=1

∏
k≥1(1 + ζitzk)

,

∑
n≥0

tsn
∑

w∈WUs−1SD∞,sn

z(w) =

(
1

s

s∑
i=1

∏

k≥1

1

1− ζitzk

)−1

,

and
∑
n≥1

tsn−J
∑

w∈WUs−1SD∞,sn−J

z(w) =

∑s
i=1 ζ−J

i

∏
k≥1

1
1−ζitzk

−∑s
i=1

∏
k≥1

1
1−ζitzk

,

where ζ1, . . . , ζs are all sth roots of −1.

We will also use results from previous chapters to enumerate words by alter-

nating descents and alternating major index. Chebikin [14] first introduced the

notion of alternating descents for permutations, defined by

d̂(σ) = |{2i : σ2i < σ2i+1} ∪ {2i + 1 : σ2i+1 > σ2i+2}|.
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He also found the generating function for alternating Eulerian polynomials, defined

as Ân(t) =
∑

σ∈Sn
td̂(σ)+1. That is, he showed that

∑
n≥1

Ân(t)
un

n!
=

t(1− h(u(t− 1)))

h(u(t− 1))− t
,

where h(x) = tan(x) + sec(x). In addition, Remmel [39] introduced the notion of

alternating major index, defined by

altmaj(σ) =
∑

i∈Altdes(σ)

i.

Remmel then extended Chebikin’s generating function to the following:

∑
n≥0

tn

n!

∑
σ∈Sn

xaltdes(σ)qaltmaj(σ)

(1− x)(1− xq) · · · (1− xqn)
=

∑

k≥0

xk

(sec(−t) + tan(−t))(sec(−tq) + tan(−tq)) · · · (sec(−tqk−1) + tan(−tqk−1))
.

Remmel also obtained similar formulas for common alternating descents and major

index, as well as for the hyperoctahedral group Bn and its subgroup Dn.

When we consider analogues for words, we can apply both strong and weak

versions of these statistics. Chebikin and Remmel defined alternating descents as

places where σ deviates from an up-down pattern, but we find it more natural to

define alternating descents as places where σ follows an up-down pattern. That
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is, we will use the following definitions.

Altdes(w) = {2i : w2i > w2i+1} ∪ {2i + 1 : w2i+1 < w2i+2}
= (E ∩Des(w)) ∪ (O ∩Ris(w)),

altdes(w) = |Altdes(w)|,
Waltdes(w) = {2i : w2i ≥ w2i+1} ∪ {2i + 1 : w2i+1 ≤ w2i+2}

= (E ∩WDes(w)) ∪ (O ∩WRis(w)),

waltdes(w) = |Waltdes(w)|,
altmaj(w) =

∑

i∈Altdes(w)

i, and

waltmaj(w) =
∑

i∈Waltdes(w)

i.

Then we will prove the following theorems:

Theorem 1.5.2.

∑
n≥0

tn
∑

w∈[m]n

xaltdes(w) = (1− x)

[
−x +

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(t[x− 1])2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
(t[x− 1])2k

]−1

and

∑
n≥0

tn
∑

w∈[m]n

xwaltdes(w) = (1− x)

[
−x +

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(t[x− 1])2k+1

∑m
k=0(−1)k

(
m+k
2k

)
(t[x− 1])2k

]−1

.

Theorem 1.5.3.

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

yaltdes(w)ualtmaj(w) =

∑
p≥0

yp

∏p
j=0

1+
∑m

k=0(−1)k+1(m+k
2k+1)(tuj)2k+1

∑m
k=0(−1)k(m+k−1

2k )(tuj)2k

and

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

ywaltdes(w)uwaltmaj(w) =

∑
p≥0

yp

∏p
j=0

1+
∑m

k=0(−1)k+1(m+k
2k+1)(tuj)2k+1

∑m
k=0(−1)k(m+k

2k )(tuj)2k

.
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1.6 Introduction to Chapter 7

This chapter builds on Chapter 4, where we considered words that could be

partitioned into blocks of fixed length so that, within each block, the entries were

strictly or weakly increasing and there were strict or weak increases between blocks.

In this chapter, we still consider words that can be partitioned into blocks of fixed

length, but we examine more general patterns within the blocks. We will consider

blocks where the only condition is that the first element of each block is the (unique)

maximum of the block, as well as blocks with a fixed number of rises followed by

a fixed number of descents. Also, we will consider blocks with a fixed number

of levels followed by a descent. We then apply the statistics des, wdes, and lev

from Chapter 3 to these blocks, where we will sometimes compare maximal entries

within each block and sometimes compare the final entry of one block with the

first entry of the following block.

We first consider a relatively weak condition: each block has a strong maximum

at a particular place in the block (say, the first). Let

BlockMax(K, Kn) = {w ∈ PKn : wiK+1 > wj for j = iK + 2, . . . , (i + 1)K}.

For words in this class, we will be interested in block levels, or places in which

maxima with the same value. Let

levKmax(w) = |{i :
(i+1)K
max

j=iK+1
wj =

(i+2)K
max

j=(i+1)K+1
wj}|.

For example, when K = 4, the word w = 6 3 5 4|7 1 4 2|7 5 6 3 ∈ BlockMax(4, 12)

has levKmax(w) = 1, coming from the repeated maximal element 7 (“|” indicates

separations between blocks). We will prove the following theorem.

Theorem 1.6.1.

∑
n≥0

tKn
∑

w∈BlockMax(K,Kn)

xlevKmax(w)q|w|

=

(
1−

∑
j≥1

tKq(j+K)([j]q)
(K−1)

1− tK(x− 1)q(j+K)([j]q)(K−1)

)−1
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We will also consider the condition that each block has r (strong) rises followed

by d (strong) descents. Let K = r + d + 1, and let SU rSDd(n) be the set of words

w ∈ Pn with this pattern. For example, one element of SU2SD3(12) is given by

1 3 7 6 2 1|2 4 8 5 4 3. We will prove the following theorem and corollary.

Theorem 1.6.2.

∑
n≥0

tKn
∑

w∈SUrSDd(Kn)

xlevKmax(w)q|w| =


1−

∑
j≥1

tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q

1− (x− 1)tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q



−1

.

Corollary 1.6.3.

∑
n≥0

tKn
∑

w∈SUrSDd(Kn)

q|w| =

(
1− tK

∑
j≥0

qj+K+(r
2)+(d

2)
[
j

r

]

q

[
j

d

]

q

)−1

For any K ≥ 3, let

LSD(K,m, n) = {w ∈ [m]n : ∀i, wiK+1 = wiK+2 = · · · = wiK+K−1 > wiK+K};

i.e. the set of words with a K − 2 level followed by a drop (in each block of length

K, we have K − 1 equal entries followed by a smaller entry). For example, one

element of LSD(4, 9, 8) is given by 5 5 5 2|9 9 9 3. Define

blockKwdes(w) = |{i : wiK ≥ wiK+1}| and blockKdes(w) = |{i : wiK > wiK+1}|.

Then we will prove the following theorem:

Theorem 1.6.4. Let K ≥ 3. Then

∑
n≥0

tKn
∑

w∈LSD(K,m,n)

xblockKwdes(w) =

(
1− 1

x− 1

∑
n≥1

[tK(x− 1)]n
(

m + n− 1

2n

))−1

and

∑
n≥0

tKn
∑

w∈LSD(K,m,n)

xblockKdes(w) =

(
1− 1

x− 1

∑
n≥1

[tK(x− 1)]n
(

m

2n

))−1

=
1− x

1− x + (1 +
√

tK(x− 1))m + (1−
√

tK(x− 1))m
.
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Next, we will consider words that can be partitioned into blocks of length 3,

where each block has the pattern strict increase, strict decrease; and there are

weak increases between blocks. Let SUSDWU(m,n) be the set of such words on

alphabet [m] of length n. For example, one element of SUSDWU(7, 6) is given

by 1 6 3 3 7 5. Although we cannot find a simplified expression for the generating

function of SUSDWU in general, we will prove the following theorem

Theorem 1.6.5. ∑
n≥0

|SUSDWU(m,n)|tn =
Pm(t)

Qm(t)
,

where Pm and Qm are polynomials.

Our method for proving this theorem will reduce the problem to counting

SUSDSD(m,n) = {w ∈ [m]n : w3i−2 < w3i−1 > w3i > w3i+1∀i},

which we accomplish by recursion, working out several example cases. For instance,

|SUSDSD(5, 3n)| =
(

30 + 27x + 10x2 + x3

1− 10x + x2

)∣∣∣∣
xn−1

,

so that

∑
n≥0

|SUSDWU(5, 3n)|t3n =
1 + 10t3 + t6

1− 19t3 + 38t6 − 9t9 + t12
.



Chapter 2

Background

2.1 Permutation statistics

Let Sn denote the symmetric group, and consider a permutation σ ∈ Sn written

in one-line notation: σ = σ1 · · · σn. Writing σ in this way, it is natural to ask about

the distributions arising from patterns of rises and descents when reading σ left-

to-right. The following statistics on Sn are well-known:

Des(σ) = {i : σi > σi+1} Ris(σ) = {i : σi < σi+1}
des(σ) = |Des(σ)| ris(σ) = |Ris(σ)|
inv(σ) =

∑
i<j χ(σi > σj) coinv(σ) =

∑
i<j χ(σi < σj)

maj(σ) =
∑

i∈Des(σ) i,

where for any statement A, χ(A) = 1 if A is true and 0 if A is false. These statistics

count the descents, rises, and inversions of σ. The last statistic, called the major

index of σ, is a weighted sum of the descents of σ. For example, suppose σ ∈ S12

is given by

σ = 4 6 9 1 12 7 10 3 5 2 8 11.

Then Des(σ) = {3, 5, 7, 9}, so that des(σ) = 4.

Ris(σ) = {1, 2, 4, 6, 8, 10, 11}, so that ris(σ) = 7.

maj(σ) = 3 + 5 + 7 + 9 = 24.

23
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inv(σ) = 3 + 8 + 6 + 0 + 5 + 0 + 2 + 3 + 0 + 1 + 1 = 29, since there are 3 elements

larger than 1 to its left, 8 elements larger than 2 to its left, etc.

2.2 q-binomial coefficients

We use standard notation for q-analogues. For n ≥ 1, let

[n]q =
1− q

1− qn
= 1 + q + q2 + · · ·+ qn−1,

[n]q! = [n]q[n− 1]q · · · [1]q,

and [
n

k

]

q

=
[n]q!

[k]q![n− k]q!
.

By convention, let [0]q = 0 and [0]q! = 1. For a set S of finite sequences, we

will use the term q-count S to mean finding a simplified expression for

∑
s∈S

q|s|,

where |s| = s1 + s2 + . . . .

It is well known that

∑
0≤a1≤a2≤···≤ak≤n

qa1+a2+···+ak =

[
n + k

k

]

q

and ∑
1≤a1<a2<···<ak≤n

qa1+a2+···+ak = q(
k+1
2 )

[
n

k

]

q

.

Equivalently, we have the following theorems:

q-binomial theorem

n∏
j=1

(1 + zqj) =
∑

k≥0

q(
k+1
2 )

[
n

k

]

q

zk.

q-binomial series

n∏
j=1

1

1− zqj
=

∑

k≥0

qk

[
n + k − 1

k

]

q

zk.
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2.3 Partitions

A partition of n, written λ ` n, is an increasing sequence of positive integers

λ = (λ1 ≤ λ2 ≤ · · · ≤ λ`) such that n =
∑`

i=1 λi. In such a situation, we write

|λ| = n and `(λ) = `. Let xλ = xλ1
1 · · ·xλn

n . We will use several well known

generating functions for partitions, see [3]:

1 +
∑
n≥1

∑

λ`n

q|λ|tparts(λ) =
∏
i≥1

1

1− tqi

and

1 +
∑
n≥1

∑

λ`n

xλtparts(λ) =
∏
i≥1

1

1− txi

,

as well as

1 +
∑
n≥1

∑

λ`n, λ has distinct parts

q|λ|tparts(λ) =
∏
i≥1

(1 + tqi)

and

1 +
∑
n≥1

∑

λ`n, λ has distinct parts

xλtparts(λ) =
∏
i≥1

(1 + txi).

More generally, for any set S ⊆ P, let Ptnn(S) denote the set of partitions of

n with parts from S. Then

1 +
∑
n≥1

∑

λ∈Ptnn(S)

xλtparts(λ) =
∏
i∈S

1

1− txi

,

and

1 +
∑
n≥1

∑

λ∈Ptnn(S), λ has distinct parts

xλtparts(λ) =
∏
i∈S

(1 + txi).

2.4 Generating functions

The generating function for a sequence of integers a0, a1, . . . is the formal power

series
∑

i≥0 ait
i ∈ Z[[t]]. More generally, we can let the ai themselves be power

series. Let f =
∑

i≥0 ait
i. Define f |tn to be the coefficient of tn in f ; i.e. f |tn= an.
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We will wish to apply this idea to partition generating functions. For example,

(∏
i≥1

1

1− tqi

)
|tn

can be interpreted as enumerating all partition with n parts, weighted by size:

∑

λ=(λ1,...,λn)

q|λ|.

We will also make use of the following simple observation. Let f be any formal

power series in x1, x2, . . . and suppose g =
∑

i≥0 ti(f |xi
1
).

Then g = f(t, x2, . . . ).

2.5 Symmetric functions

The idea of extracting information about permutation statistics through

symmetric function theory has been used for decades, but the method of this

dissertation—defining a homomorphism on the elementary symmetric functions

and evaluating it on the homogeneous symmetric functions—was first given by

Francesco Brenti [10, 9]. Desiree Beck and Jeff Remmel reproved his results com-

binatorially [6, 8, 7]. It is this approach which is closest to our own.

A symmetric polynomial p in the variables x1, . . . , xN is a polynomial over a

field F of characteristic 0 with the property that p(x1, . . . , xN) = p(xσ1 , . . . , xσN
)

for all σ = σ1 · · · σN ∈ SN . A symmetric function in the variables x1, x2, . . . may

be thought of as a symmetric polynomial in an infinite number of variables. Let

Λ be the ring of all symmetric functions (a more formal definition of Λ may be

found in [30]). The previously defined elementary symmetric functions en and the

homogeneous symmetric functions hn are both elements of Λ. We can also define
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these functions in an equivalent but more intuitive way:

hn(x) =
∑

1≤i1≤···≤in

xi1 · · · xin ,

en(x) =
∑

1≤i1<···<in

xi1 · · · xin , and

pn(x) =
∑

i

xn
i .

For example,

h3(x1, x2, x3)

= x3
1 + x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x1x

2
3 + x3

2 + x2
2x3 + x2x

2
3 + x3

3,

e3(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4, and

p3(x1, x2, x3, x4) = x3
1 + x3

2 + x3
3 + x3

4.

If λ = (λ1, . . . , λ`) is an integer partition, we let eλ = eλ1 · · · eλ`
. The well-

known fundamental theorem of symmetric functions says that

{eλ : λ is a partition} is a basis for Λ. Similarly, if we define hλ = hλ1 · · ·hλ`
and

pλ = pλ1 · · · pλ`
, then {hλ : λ is a partition} and {pλ : λ is a partition} are also

bases for Λ.

2.6 Transition matrices

In this subsection, we shall present the combinatorics of the transition matrices

between various bases of symmetric functions that will be needed for our methods.

Since the elementary symmetric functions eλ and the homogeneous symmetric

functions hλ are both bases for Λ, it makes sense to talk about the coefficient of

the homogeneous symmetric functions when written in terms of the elementary

symmetric function basis. This coefficient has been shown to equal the size of a

certain set of combinatorial objects. A rectangle of height 1 and length n chopped

into “bricks” of lengths found in the partition λ is known as a brick tabloid of shape

(n) and type λ, or a λ-brick tabloid for short. One brick tabloid of shape (12) and

type (1, 1, 2, 3, 5) is displayed below.
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Figure 2.1: A brick tabloid of shape (12) and type (1, 1, 2, 3, 5)

A λ-brick tabloid can be viewed as a sequence of brick lengths (b1, b2, . . . b`(λ)),

where the bi are a rearrangement of the parts of λ. For instance, the brick lengths

in Figure 2.1 are (3, 1, 5, 1, 2). Let Bλ,n denote the set of all λ-brick tabloids of

shape (n) and let Bλ,n = |Bλ,n|. Through simple recursions stemming from (1.1.3),

Eğecioğlu and Remmel proved in [15] that

hn =
∑

λ`n

(−1)n−`(λ)Bλ,neλ. (2.6.1)

More generally, suppose that R is a ring and we are given any sequence ~u =

(u1, u2, . . .) of elements of R. Then for any brick tabloid T ∈ Bλ,n, we set

w~u(T ) = ubk
, where bk is the length of final brick in T . We then set w~u(Bλ,n) =

∑
T∈Bλ,n

w~u(T ). For example if u = (1, 2, 3, . . .), then w~u(T ) = w(T ) is just the

length of the final brick of T . We have given w(T ) for each of the brick tabloids

in Figure 2.2.

T

 w(    )=2 w(    )=1 w(    )=1T  3T 2T 1

 3 2 1 TT

Figure 2.2: w(Bλ,4) for λ = (1, 1, 2)

This given, we can define a new family of symmetric functions pλ,~u as follows.

First we let p0,~u = 1 and

pn,~u =
∑

λ`n

(−1)n−`(λ)w~u(Bλ,n)eλ (2.6.2)

for n ≥ 1. Finally if µ = (µ1, . . . , µk) is a partition, we set pµ,~u = pµ1,~u · · · pµk,~u.

The functions pn,~u were first introduced in [28] and [35]. It follows from the results
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of Eğecioğlu and Remmel [15] that if u = (1, 2, 3, . . .), then pn,~u is just the usual

power symmetric function pn. Thus we call pn,~u a generalized power symmetric

function.

Mendes and Remmel [35] proved the following:

∑
n≥1

pn,~ut
n =

∑
n≥1(−1)n−1unent

n

E(−t)
and (2.6.3)

1 +
∑
n≥1

pn,~ut
n =

1 +
∑

n≥1(−1)n(en − unen)tn

E(−t)
. (2.6.4)

Note that if we take ~u = (1, 1, . . .), then (2.6.3) becomes

1 +
∑
n≥1

pn,~ut
n = 1 +

∑
n≥1(−1)n−1ent

n

∑
n≥0(−1)nentn

=
1∑

n≥0(−1)nentn
= 1 +

∑
n≥1

hntn,

which implies pn,(1,1,...) = hn. Other special cases for ~u give well-known generating

functions. For example, by taking un = (−1)kχ(n ≥ k + 1) for some k ≥ 1, pn,~u is

the Schur function corresponding to the partition (1k, n).

2.7 Quasi-symmetric functions

Gessel [21] introduced quasi-symmetric functions to enumerate P-partitions.

We let P be a partial order on [n], and we use <p for the partial order P , < for

the usual total order.

A P-partition is a function f : [n] → P s.t.

1. i <p j implies f(i) ≤ f(j)

2. i <p j and i > j implies f(i) < f(j).

For example, one can view column-strict fillings of tableax as a special case of

P-partitions.

Symmetric functions are typically indexed by partitions, whereas

quasi-symmetric functions are indexed by compositions. Let γ = (γ1, . . . , γt) be a
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composition, i.e. a sequence of nonnegative integers. Then we let |γ| = γ1+ · · ·+γt

and

Set(γ) = {γ1, γ1 + γ2, . . . , γ1 + γ2 + · · ·+ γt−1}.

For example, if γ = (2, 3, 1, 1, 2), |γ| = 9 and Set(γ) = {2, 5, 6, 7}. Then Gessel

[21] defined the quasi-symmetric function

Qγ(z1, . . . , zn) =
∑

1≤i1≤···≤i|γ|
ij<ij+1 if j∈Set(γ)

zi1zi2 · · · zi|γ| . (2.7.1)

Thus, for example, if γ = (2, 3, 1, 1, 2), then

Qγ(z1, . . . , zn) =
∑

1≤i1≤i2<i3≤i4≤i5<i6<i7<i8≤i9

9∏
j=1

zij .

Qγ is not symmetric unless γ = 1n or γ = n. However, it does have the property

that if x1 < x2 < · · · < xm and y1 < y2 < · · · < ym, then the coefficient of xi1
1 · · · xim

m

is equal to the coefficient of yi1
1 · · · yim

m . Gessel called power series in Z[[X]] with

this property quasi-symmetric and showed that {Qγ : γ is a composition of n} is

a basis for Qsymn, the homogeneous quasi-symmetric functions of degree n.



Chapter 3

Basic results on composition

statistics

A permutation statistic is a function mapping permutations to nonnegative

integers. The modern analysis of such objects began in the early twentieth century

with the work of Percy MacMahon [31]. He popularized the “classic” notions of the

descents, rises, inversions, coinversions, major index and comajor index statistics.

Here if σ = σ1 · · ·σn is an element of the symmetric group Sn written in one line

notation, then

des(σ) =
n−1∑
i=1

χ(σi > σi+1) ris(σ) = 1 +
n−1∑
i=1

χ(σi < σi+1),

inv(σ) =
∑

1≤i<j≤n

χ(σi > σj) coinv(σ) =
∑

1≤i<j≤n

χ(σi < σj),

maj(σ) =
n−1∑
i=1

i χ(σi > σi+1) comaj(σ) =
n−1∑
i=1

i χ(σi < σi+1),

where for any statement A, χ(A) is 1 if A is true and 0 if A is false. These

definitions make sense if σ = σ1 . . . σn is any sequence of natural numbers.

The study of the properties of these statistics and subsequent generalizations

of these statistics to other groups and sequences remains an active area of research

today. In this chapter, we shall find analogues of the joint distribution of des(σ),

31
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maj(σ), and inv(σ). That is, Gessel gave a generating function for

∑
σ∈Sn

xdes(σ)umaj(σ)qinv(σ) (3.0.1)

both in his thesis and in a paper coauthored with Garsia [18, 19]. Later, Mendes

and Remmel showed how Gessel’s result could be derived by applying a homomor-

phism defined on the ring of symmetric functions Λ in infinitely many variables

x1, x2, . . . to the simple symmetric function identity

H(t) =
1

E(−t)
(3.0.2)

where H(t) is the generating function for the homogeneous symmetric functions

hn = hn(x1, x2, . . .) and E(t) is the generating function for the elementary sym-

metric functions en = en(x1, x2, . . .). That is,

H(t) =
∑
n≥0

hnt
n =

∏
n≥1

1

1− xit
(3.0.3)

and

E(t) =
∑
n≥0

entn =
∏
n≥1

(1 + xit). (3.0.4)

In particular, Mendes and Remmel proved the following formula, which is eas-

ily derived from the Garsia-Gessel formula for the generating function of des(σ),

maj(σ) and inv(σ),

∑
n≥0

tn

[n]p,q!(x, y; u, v)n+1

∑
σ∈Sn

xdes(σ)yris(σ)umaj(σ)vcomaj(σ)qinv(σ)pcoinv(σ)

=
∑

k≥0

xk

yk+1e
−t(u/v)0
p,q · · · e−t(u/v)k

p,q

.

Here we use standard notation from hypergeometric function theory. For n ≥ 1

and λ ` n, let

[n]p,q =
pn − qn

p− q
= pn−1q0 + · · ·+ p0qn−1,

and

[n]p,q! = [n]p,q · · · [1]p,q,
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be the p, q-analogues of n and n!. By convention, let [0]p,q = 0 and [0]p,q! = 1. We

let (x; q)0 = 1 and

(x; q)n = (1− x)(1− xq) · · · (1− xqn−1).

In addition, let (x, y; p, q)0 = 1 and

(x, y; p, q)n = (x− y)(xp− yq) · · · (xpn−1 − yqn−1).

Finally, et
p,q is a p, q-analog for the exponential function defined by

et
p,q =

∑
n≥0

tn

[n]p,q!
q(

n
2).

Mendes and Remmel also showed how their methods can be used to extend such

results to the hyperoctahedral group Bn and its subgroup Dn.

The main goal of this chapter is to show how the methods of Mendes and

Remmel can prove similar results for compositions. Here a composition γ is a

sequence of positive integers γ = (γ1, . . . , γk). We call the γi’s the parts of γ and

let `(γ) denote the number of parts of γ. We let |γ| = γ1 + · · ·+ γk and xγ be the

monomial xγ1 · · · xγn . Since compositions can have repeated entries, it is natural

to have analogues of des and maj where we replace > by ≥ or = in the definition

of des and maj. That is, if γ = γ1 . . . γn is a composition, then we let

Des(γ) = {i : γi > γi+1},
WDes(γ) = {i : γi ≥ γi+1}, and

Lev(γ) = {i : γi = γi+1}.

Then we define

des(γ) = |Des(γ)|,
wdes = |WDes(γ)|, and

lev = |Lev(γ)|
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and

maj(γ) =
∑

i∈Des(γ)

i,

wmaj(γ) =
∑

i∈WDes(γ)

i, and

levmaj(γ) =
∑

i∈Lev(γ)

i.

3.1 Descents and weak descents

Brenti [9] showed the following. Define a ring homomorphism

ξ : Λ, the ring of symmetric functions → Q[y] by setting

ξ(ek) =
(1− y)k−1

k!
,

where ek is the k-th elementary symmetric function, and ξ(e0) = 1. Then:

n!ξ(hn) =
∑
σ∈Sn

ydes(σ)

and

∑
n≥0

tn

n!

∑
σ∈Sn

ydes(σ) =
1− y

−y + et(y−1)
.

We can readily extend this result to compositions, so that we obtain the fol-

lowing theorems:

Theorem 3.1.1.

∑
n≥0

tn
∑

γ∈Pn

ydes(γ)xγ =
1− y

−y +
∏

j≥1(1 + t(y − 1)xj)
.

Theorem 3.1.2.

∑
n≥0

tn
∑

γ∈Pn

ywdes(γ)xγ =
1− y

−y +
∏

j≥1
1

1−t(y−1)xj

.
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Before proving these theorems, we will outline the general method beyond this

type of result, which will be used repeatedly throughout this dissertation. The

basic steps are as follows:

1. Define a homomorphism on the ring of symmetric functions by specifying its

action on the elementary symmetric functions en.

2. Apply this homomorphism to hn (or another class of symmetric functions)

and interpret the result in terms of labeled filled brick tabloids.

3. Perform an involution on the set of all possible labeled filled brick tabloids,

and characterize the fixed points of the involution.

4. Find a nice generating function using the relationship between hn (or other

symmetric functions) and en.

We will now use these steps to prove Theorem 3.1.2. Define Θ1 : Λ →
Q[[y, x1, x2, . . . ]] by

Θ1(en) = (−1)n−1(y − 1)n−1

(∏
j≥1

1

1− txj

)
|tn

for n ≥ 1, and Θ1(e0) = 1.

Claim:

Θ1(hn) =
∑

γ∈Pn

ywdes(γ)xγ

We saw in Chapter 2 that

hn =
∑

λ`n

(−1)n−`(λ)Bλ,neλ, (3.1.1)



36

where Bλ,n is the number of λ-brick tabloids of shape n. Thus,

Θ1(hn) =
∑

λ`n

(−1)n−`(λ)Bλ,nΘ1(eλ)

=
∑

λ`n

(−1)n−`(λ)Bλ,n

`(λ)∏
i=1

(−1)λi−1(1− y)λi−1

(∏
j≥1

1

1− txj

)
|tλi

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(y − 1)λi−1

(∏
j≥1

1

1− txj

)
|tλi . (3.1.2)

Our goal is to interpret Θ1(hn) as a sum of weighted combinatorial objects.

We interpret
∑

λ`n Bλ,n as letting us choose some λ ` n and create a brick tabloid

T = (b1, . . . , b`(λ)) of shape n and type λ. For instance, Figure 3.1 shows a brick

tabloid T = (3, 4, 2, 2) of shape 12 and type (2, 2, 3, 4).

Figure 3.1: A brick tabloid of shape 12 and type (2, 2, 3, 4)

Recall from section 2.3 that
(∏

j≥1
1

1−txj

)
|tλi is the sum over all possible par-

titions µ with λi parts, weighted by xµ [3]. Thus, we can interpret the term
∏`(λ)

i=1

(∏
j≥1

1
1−txj

)
|tλi as letting us choose a partition µi with λi parts for each

brick, weighted by xµ1 · · · xµ`(λ)
. Within each brick, we write the chosen partition

in weakly decreasing order, with one part per cell. Figure 3.2 shows a possible

filling of the brick tabloid from Figure 3.1.

9 1157233466

Figure 3.2: A filled brick tabloid of shape 12 and type (2, 2, 3, 4) coming from

Equation 3.1.2

Next, the term
∏`(λ)

i=1 (y − 1)λi−1 lets us leave the last cell of every brick alone,

and label every other cell of each brick with either a y or −1. We call the result
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a filled labeled brick tabloid (also, a decorated brick tabloid). Figure 3.3 shows an

example of a filled labeled brick tabloid.

−1yyyy

9 6 4 3 3 2 7 5 1 16

−1 −1

Figure 3.3: A filled labeled brick tabloid of shape 12 and type (2, 2, 3, 5) coming

from Equation 3.1.2

Let TΘ1(n) be the set of filled labeled brick tabloids obtained by interpreting

every term in this sum. Thus, a C ∈ TΘ1(n) consists of a brick tabloid T , a

composition γ ∈ Pn, and a labeling L of the cells of T with elements from {y,−1}
such that

1. γ is strictly decreasing within each brick, and

2. each cell which is not a final cell of a brick is labeled with y or −1.

We then define the weight W (C) of C to be the monomial xγ = xγ1xγ2 · · · xγn

times the product of all the y labels in L and the sign sgn(C) of C to be the product

of all the −1 labels in L. For example, the weight of the object in Figure 3.3 is

x2
1x2x

2
3x4x5x

2
6x7x9y

4 and its sign is −1. Then Θ1(hn) =
∑

C∈TΘ1
(n) sgn(C)W (C).

Next, we wish to get rid of all objects with negative sign. To this end, we

define a weight-preserving, sign-reversing involution I : TΘ1(n) → TΘ1(n). To

define I(C), we scan the cells of C = (T, γ, L) from left to right, looking for the

leftmost cell a such that either (i) a is labeled with −1 or (ii) a is at the end of

a brick bj and the brick bj+1 immediately following bj has the property that γ is

weakly decreasing in all the cells corresponding to bj and bj+1.

In case (i), I(C) = (T ′, γ′, L′), where

1. T ′ is the result of replacing the brick b in T containing a by two bricks b∗

and b∗∗, where b∗ contains the cell a plus all the cells in b to the left of a and

b∗∗ contains all the cells in b to the right of a;
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2. γ′ = γ; and

3. L′ is the labeling that results from L by removing the −1 label of cell a.

In case (ii), I(C) = (T ′, γ′, L′), where

1. T ′ is the result of replacing the bricks bj and bj+1 in T by a single brick b;

2. γ′ = γ; and

3. L′ is the labeling that results from L by inserting a −1 label for cell a.

For instance, if C is the element of TΘ1(11) pictured in Figure 3.3, then I(C) is

given in Figure 3.4. In this case, a = 2, since the second cell of T has a −1.

9

y

7

yyy −1−1

6 11523346

Figure 3.4: The image I(C) for C in Figure 3.3

It is easy to see that I is a weight-preserving, sign-reversing involution. Hence,

I shows that

Θ1(hn) =
∑

C∈TΘ1
(n):I(C)=C

sgn(C)W (C)

Thus, we must examine the fixed points C = (T, γ, L) of I. First, there can be no

−1 labels in L, so that sgn(C) = 1. Moreover, if bj and bj+1 are two consecutive

bricks in T and a is the last cell of bj, then it cannot be the case that γa ≥ γa+1;

otherwise, we could combine bj and bj+1. For any such fixed point, we associate

the composition γ. γ must weakly decrease within each brick and strictly increase

between bricks. For example, Figure 3.5 is a fixed point corresponding to the

composition 9 6 6 4 3 3 2 7 5 1 1.

It follows that every cell with a weak decrease is labeled with y, and those

with increases are not, so that for a fixed point C = (T, γ, L), sgn(C)W (C) =
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9

yyy

7

yyyyyy

6 11523346

Figure 3.5: A fixed point of I coming from Equation 3.1.2

ywdes(γ)xγ. On the other hand, given any composition γ, we can create a fixed point

C = (T, γ, L) by having the bricks in T end at every cell a where a /∈ Wdes(γ).

Therefore, we have shown that

Θ1(hn) =
∑

γ∈Pn

ywdes(γ)xγ

as desired.

It remains only to use our identity relating the en and hn to obtain a generating

function:

∑
n≥0

tn
∑

γ∈Pn

ywdes(γ)xγ =
∑
n≥0

tnΘ1(hn)

= Θ1

(∑
n≥0

hntn

)
= Θ1

(∑
n≥0

en(−t)n

)−1

=

(
1 +

∑
n≥1

(−t)n(−1)n−1(y − 1)n−1

(∏
j≥1

1

1− txj

)
|tn

)−1

=

(
1− 1

y − 1

∑
n≥1

[t(y − 1)]n

(∏
j≥1

1

1− txj

)
|tn

)−1

=
1− y

1− y +
∑

n≥1[t(y − 1)]n
(∏

j≥1
1

1−txj

)
|tn

=
1− y

−y +
∑

n≥0[t(y − 1)]n
(∏

j≥1
1

1−txj

)
|tn

=
1− y

−y +
∏

j≥1
1

1−t(y−1)xj

,

proving Theorem 3.1.2.

We will repeatedly use this method of defining an appropriate homomorphism,

interpreting the homomorphism applied to one symmetric function basis in terms
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of filled labeled brick tabloids, and characterizing the fixed points. Our interpre-

tations will typically be similar to that of Equation 3.1.2. To avoid burdening the

reader with detail, we will usually describe our interpretations less technically than

we did in this case. It is easier to process the filled labeled brick tabloids if they

are described as a set of choices. In addition, we collapse the weight and sign into

a single weight function. Nevertheless, each interpretation and involution can be

made fully formal, just as we did above.

The proof of Theorem 3.1.1 is so similar to the proof of Theorem 3.1.2 that

we omit even the detailed sketch. We use a related homomorphism Θ2 : Λ →
Q[[y, x1, x2, . . . ]] defined by

Θ2(en) = (−1)n−1(y − 1)n−1

(∏
j≥1

(1 + txj)

)
|tn

for n ≥ 1 and Θ2(e0) = 1. Our interpretation of Θ2(hn) is the same as that for

Θ1(hn), except that we fill in each brick using a partition with distinct parts.

3.2 Levels

Theorem 3.2.1.

∑
n≥0

tn
∑

γ∈Pn

ylev(γ)xγ =

(
1−

∑
j≥1

txj

1− t(y − 1)xj

)−1

To prove Theorem 3.2.1, we define a homomorphism on the ring of symmetric

functions by

Θ3(en) = (−1)n−1(y − 1)n−1
∑
j≥1

xn
j

for n ≥ 1, and Θ3(e0) = 1.

Claim: Θ3(hn) =
∑

γ∈Pn ylev(γ)xγ.
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Expanding hn in terms of en, we get

Θ3(hn) =
∑

λ`n

(−1)n−`(λ)Bλ,nΘ3(eλ)

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(y − 1)λi−1
∑
j≥1

xλi
j (3.2.1)

Again, we interpret each term in this sum as creating a filled labeled brick tabloid

in stages, where the only difference is in the partitions we use to fill in each brick.
∑

λ`n Bλ,n lets us choose some λ ` n and create a brick tabloid of shape n and

type λ. The term
∏`(λ)

i=1

∑
j≥1 xλi

j lets us choose a partition with identical parts for

each brick (i.e. choose a number j for each brick and fill every cell of the brick

with it), weighting the brick by xλi
j . Next, the term

∏`(λ)
i=1 (y − 1)λi−1 lets us leave

the last cell of every brick alone, and label every other cell with either a y or −1.

For instance, Figure 3.6 is one such object.

7

yyyy

117

−1 −1 −1 −1

5 5 5 7 7 7 7

Figure 3.6: A filled labeled brick tabloid coming from Equation 3.2.1

Let TΘ3(n) denote the set of all such filled labeled brick tabloids. We define

the weight W (C) of C ∈ TΘ3(n) to be the monomial xγ = xγ1xγ2 · · · xγn times the

product of all the y labels and the sign sgn(C) of C to be the product of all the

−1 labels. For example, the weight of the object given in Figure 3.6 is x2
1x

3
5x

6
7y

4

and its sign is 1. Then Θ3(hn) =
∑

T∈TΘ3
(n) sgn(C)W (C).

We define an involution as follows to get rid of all objects with negative weight;

the involution is very similar to that used in the previous section. Scan left to

right for a −1 or two consecutive bricks with a level between them (last entry of

the first brick is the same as first entry in the second brick). If a −1 is found,

break the brick in two after that cell and remove the −1 label. If a level between

bricks is found, insert a −1 label for the last cell in the first brick and combine the

bricks. For example, the image of Figure 3.6 is depicted in Figure 3.7.
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7

yyyy

117

−1 −1 −1

5 5 5 7 7 7 7

Figure 3.7: The image of Figure 3.6

The fixed points can be read as compositions that have identical entries within

each brick, but unequal entries between bricks, and only y labels. A fixed point

is displayed in Figure 3.8.
∑

T∈TΘ3
(n) sgn(C)W (C) reduces to a sum over fixed

points, which is exactly given by
∑

γ∈Pn ylev(γ)xγ.

7

yyyyyyyy

1175 5 5 7 7 7 7

Figure 3.8: A fixed point coming from Equation 3.2.1 when n = 11

Thus,

∑
n≥0

tn
∑

γ∈Pn

ylev(γ)xγ = Θ3

(∑
n≥0

hntn

)
= Θ3

(∑
n≥0

en(−t)n

)−1

=

(
1 +

∑
n≥1

(−t)n(−1)n−1(y − 1)n−1
∑
j≥1

xn
j

)−1

=

(
1−

∑
j≥1

∑
n≥1

tn(y − 1)n−1xn
j

)−1

=

(
1−

∑
j≥1

txj

1− t(y − 1)xj

)−1

,

proving Theorem 3.2.1.

3.3 Major index

Let P denote the set of positive integers. We shall prove the following three

theorems.
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Theorem 3.3.1.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ)

=
∑

k≥0

yk

∏
i≥1(xit; u)k+1

.

Theorem 3.3.2.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγywdesuwmaj(γ)

=
∑

k≥0

yk
∏
i≥1

(−xit; u)k+1.

Theorem 3.3.3.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγylevulevmaj(γ)

=
∑

k≥0

yk

∏k
j=0(

∑
n≥0 pn(−ujt)n)

,

where pn = pn(x1, x2, . . .) =
∑

i≥1 xn
i is the power symmetric function.

It should be noted that there has been considerable work on enumerating com-

positions by the number of occurrences of certain patterns in a composition. For ex-

ample, if γ = (γ1, . . . , γk) is a composition and we define ris(γ) = |{s : γs < γs+1}|,
then Carlitz [13] proved that

∑

γ∈P∗
u`(γ)q|γ|xris(γ)ydes(γ)zlev =

e(qu(z − y), q)− e(qu(z − x), q)

xe(qu(z − x), q)− ye(qu(z − y), q)
(3.3.1)

where

e(x, q) =
∞∑

n=0

xn

(q)n

=
∞∏

n=0

1

1− qnx

and (q)0 = 1 and (q)n = (1−q)(1−q2) · · · (1−qn) for n ≥ 1. Similarly, Heubach and

Mansour [25] found generating functions of compositions according to the number

of occurrences of various 3 letter patterns and Mansour and Sirhan [32] extended

the work of Heubach and Mansour by finding generating functions of compositions
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according to the number of occurrences of various l letter patterns. Enumerating

various types of compositions according to other types of patterns can be found

in [24], [23], and [26]. In each case, one can find such generating functions by

applying the transfer matrix method, see [42], section 4.7 or [22]. The basic idea

is the following. Suppose you want to find the generating function

C(u, v, x) =
∑

γ∈P∗
u`(γ)v|γ|xdes(γ). (3.3.2)

Then one can define

C(i; u, v, x) =
∑

γ∈P+,γ1=i

u`(γ)v|γ|xdes(γ)

and we have simple recursions

C(i; u, v, x) = uvi + uvi(
∑
j<i

xC(j; u, v, x) +
∑
j≥i

C(j; u, v, x)) (3.3.3)

for all i ≥ 1. Thus, if U and V are the infinite vectors U = [uv1, uv2, . . .] and

V = [C(1; u, v, x), C(2; u, v, x), . . .], we can write down an invertible matrix M

such that

UT = MV T

and, hence, we can solve for V T as

V T = M−1UT .

Then, at least in some cases, one can simplify the expression for

1 +
∑

i≥1 C(i; u, v, x) to obtain nice formulas for the desired generating function.

Of course, this method is more straightforward if we restrict ourselves to finite

alphabets, but it can still work over infinite alphabets, as Carlitz basically showed

in [13]. However, when we try the same thing while adding a variable q recording

the major index, we cannot derive such an equation. That is, define

C(i; u, v, x, q) =
∑

γ∈P+,γ1=i

u`(γ)v|γ|xdes(γ)qmaj(γ). (3.3.4)
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When we consider a composition γ = (γ1, . . . , γk) where γ1 = j and add i to the

front of γ to obtain the composition δ = (i, γ1, . . . , γk), then a descent γs ≥ γs+1

which contributes s to maj(γ) will contribute 1 + s to maj(δ) since that descent

will occur at position s + 1 in δ. Thus maj(δ) = 1 + des(γ) + maj(γ) if j < i and

maj(δ) = des(γ) + maj(γ) if i ≤ j. Hence, in this case we obtain the recursion

C(i; u, v, x, q) = uvi + uvi(
∑
j<i

qxC(j; u, v, qx, q) +
∑
j≥i

C(j; u, v, qx, q)). (3.3.5)

The fact that C(j; u, v, qx, q) appears on the RHS of (3.3.5) as opposed to the

C(j; u, v, x, q) which appear on the RHS of (3.3.3) means that we cannot solve

directly for V T in this case. Instead, if

V = V (u, v, x, q) = (C(1; u, v, qx, q), C(2; u, v, qx, q), C(3; u, v, qx, q), . . .)

and A = (uv, uv2, uv3, . . .), then we end up with an equation of the form

V (u, v, x, q)T = AT + B(u, v, x, q)V (u, v, xq, q)T (3.3.6)

where B(u, v, x, q) is a matrix. We can iterate (3.3.6) to obtain an expression for

V (u, v, x, q)T of the form

AT + B(u, v, x, q)AT +B(u, v, x, q)B(u, v, xq, q)AT +

B(u, v, x, q)B(u, v, xq, q)B(u, v, xq2, q)AT + · · · .

However, in this case, even when we restrict ourselves to finite alphabets {1, . . . , n}
so that the matrix B(u, v, x, q) is finite, this leads to a complicated expression for

V (u, v, x, q)T . We were unable to see how we could simplify these expressions for

V (u, v, x, q)T or 1+
∑

i=1 C(i; u, v, x, q) to obtain anything as simple as the formula

in Theorem 3.3.1.

It should be noted, however, that various specializations easily follow from

Theorems 3.3.1, 3.3.2, and 3.3.3. That is, by setting the variables xi = 0 for

certain i, we can obtain formulas for an arbitrary alphabet A ⊆ P. By setting

xi = uvi for all i, we can also obtain generating functions like

C(u, v, x, q) =
∑

γ∈P∗
u`(γ)v|γ|xdes(γ)qmaj(γ).
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To prove Theorem 3.3.1, define a ring homomorphism Θ(k) by defining it on

the elementary symmetric function en so that

Θ(k)(en) =
∑

i0,...,ik≥0
i0+···+ik=n

u0i0+···+kik

[
k∏

j=0

∏
i≥1

(1 + xizj)

]∣∣∣∣∣
z

i0
0 ···z

ik
k

,

where expression|tk means to take the coefficient of tk in expression.

First we apply Θ(k) to hn. We have

Θ(k)(hn) (3.3.7)

=
∑

λ`n

(−1)n−`(λ)Bλ,nΘ(k)(eλ)

=
∑

λ`n

(−1)n−`(λ)Bλ,n

`(λ)∏
m=1

∑
i0,...,ik≥0

i0+···+ik=λm

u0i0+···+kik

[
k∏

j=0

∏
i≥1

(1 + xizj)

]∣∣∣∣∣
z

i0
0 ···z

ik
k

.

Our goal is to interpret Θ(k)(hn) as a sum of weighted combinatorial objects.

We interpret the sum
∑

λ`n Bλ,n as all ways of picking a brick tabloid T of shape

(n). Then the factor (−1)n−`(λ) allows us to place a −1 in each non-terminal cell

of a brick in T and place a 1 at the terminal cell of each brick in T . Next, for each

brick in T , choose nonnegative integers i0, . . . , ik that sum to the total length of

the brick. This accounts for the product and second sum in (3.3.7). Using powers

of u, these choices for i0, . . . , ik can be recorded in T . In each brick, place a power

of u in each cell such that the powers weakly increase from left to right and the

number of occurrences of uj is ij. At this point, we have constructed an object

which may look something like Figure 3.9 below.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

1 1 1

Figure 3.9: One possible object when k = 3 and n = 12.
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Now, the term
[∏k

j=0

∏
i≥1(1 + xizj)

]∣∣∣
z

i0
0 ···z

ik
k

lets us choose k+1 partitions with

distinct parts, π(0), . . . , π(k) where `(π(j)) = ij for j = 0, . . . , k, which we write in

strictly decreasing order. Each i that occurs in such a configuration is weighted

with xi, so that we write these factors in the bottom row of each configuration.

Figure 3.10 gives one example of such an object created in this manner. The

weight of such a composite object is the product of the signs at the top of the

configuration times the product of the xi’s that appear in the bottom row of the

configuration times the products of the uj’s in the second row of the configuration.

Thus, the weight of the object in Figure 3.10 is −x1x
3
2x

4
3x

2
4x5x6u

17.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

3 33

x x x x x x x x x x x3 2

1 1 1

3 x

6 1

6 1

5 23 4 2 2 4 3

5 23 4 2 4 3

Figure 3.10: An object coming from (3.3.7) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type λ for some λ ` n have

the following properties:

1. the cells in each brick contain −1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is uk, and

3. T contains a composition of n which must strictly decrease between con-

secutive cells within a brick if the cells are marked with the same power of

u.

In addition, each entry i in the composition is weighted by xi. In this way, Θ(k)(hn)

is the weighted sum over all possible decorated brick tabloids of shape (n).

Next, we define a sign-reversing involution I which will allows us to cancel all

the terms T with a negative weight. To define I, scan the cells from left to right
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looking for either a cell containing −1 or two consecutive bricks which may be

combined to preserve the properties of this collection of objects. If a −1 is scanned

first, break the brick containing the −1 into two immediately after the violation

and change the −1 to 1. If the second situation is scanned first, glue the brick

together and change the 1 in the first brick to −1. For example, the image of

Figure 3.10 is displayed in Figure 3.11.

−1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

3 33

x x x x x x x x x x x3 2

1 1 1

3 x

6 1

6 1

5 23 4 2 2 4 3

5 23 4 2 4 3

1

Figure 3.11: The image under I of Figure 3.10.

It is easy to see that I is a sign-reversing, weight-preserving involution. Thus,

I shows that Θ(k)(hn) is equal to the sum of the weights of all the fixed points of

I.

Let us consider the fixed points of I. First, there can be no −1’s, so every brick

must be of size 1. Next, it cannot be the case that the power of u strictly increases

as we move from brick i to brick i+1, since then we could combine these two bricks

and still satisfy properties (1), (2), and (3). Thus, the powers of u must weakly

decrease as we read from left to right. Let γ = (γ1, . . . , γn) denote the underlying

composition. We note that if the power of u is the same on brick i and i + 1, then

it must be the case that γi ≤ γi+1: otherwise, we could combine brick i and brick

i + 1. One example of a fixed point may be found in Figure 3.12.

u u u u u u u u u u u u
3

3

x x x x x x x x x x x3 2

1 1

x

2 2

1 1 1 1 1 1 1 1 1 1
33 3 2 2 23 1 01 0

1 2 3 5 3 3 6 43

1 2 3 5 3 3 6 2 3 4

Figure 3.12: A fixed point when k = 3 and n = 12.
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We now turn our attention to counting fixed points. Suppose that the powers

of u in a fixed point are r1, . . . , rn when read from left to right. It must be the

case that k ≥ r1 ≥ · · · ≥ rn. Define nonnegative integers ai by ai = ri − ri+1 for

i = 1, . . . , n−1 and let an = rn. It follows that r1 + · · ·+ rn = a1 +2a2 + · · ·+nan,

a1 + · · · + an = r1 ≤ k. Now suppose that γ is the composition in a fixed point.

Then if γi > γi+1, it cannot be that ri = ri+1 because that would violate our

conditions for fixed points. Thus, it must be the case that ai ≥ χ(γi > γi+1). Let

xγ denote
∏n

i=1 xγi
. In this way, the sum of the weights of all fixed points of I

equals

∑

γ∈Pn

xγ
∑

a1+···+an≤k
ai≥χ(i∈Des(γ))

ua1+2a2+···+nan

=
∑

γ∈Pn

xγ
∑

a1≥χ(1∈Des(γ))

· · ·
∑

an≥χ(n∈Des(γ))

ya1+···+anua1+2a2+···+nan

∣∣∣∣∣∣
y≤k

,

where expression|t≤k means to sum the coefficients of tj for j = 0, . . . , k in

expression. Rewriting the above equation, we have

∑

γ∈Pn

xγ
∑

a1≥χ(1∈Des(γ))

(yu)a1 · · ·
∑

an≥χ(n∈Des(γ)

(yun)an

∣∣∣∣∣∣
y≤k

=
∑

γ∈Pn

xγ(yu)χ(1∈Des(γ))(yu2)χ(2∈Des(γ)) · · · (yun)χ(n∈Des(γ))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

=
∑

γ∈Pn

xγydes(γ)umaj(γ)

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

.

Dividing by (1− y) allows the above expression to be rewritten as

∑

γ∈Pn

xγydes(γ)umaj(γ)

(1− y)(1− yu) · · · (1− yun)

∣∣∣∣∣
yk

.
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Therefore, we have

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ)

=
∑

k≥0

ykΘ(k)

(∑
n≥0

tnhn

)

=
∑

k≥0

yk

(∑
n≥0(−t)nΘ(k)(en)

)

=
∑

k≥0

yk

(∑
n≥0(−t)n

∑
i0,...,ik≥0

i0+···+ik=n
u0i0+···+kik

∏k
j=0

∏
i≥1(1 + xizj)|zi0

0 ···z
ik
k

) .

However,

∑
n≥0

(−t)n
∑

i0,...,ik≥0
i0+···+ik=n

u0i0+···+kik

k∏
j=0

∏
i≥1

(1 + xizj)|zi0
0 ···z

ik
k

=

∑
n≥0

(−t)n

k∏
j=0

∏
i≥1

(1 + ujxiz)|zn =

k∏
j=0

∏
i≥1

(1− xiu
jt) =

∏
i≥1

(xit; u)k+1.

Thus, we have shown that

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ) =

∑

k≥0

yk

∏
i≥1(xit; u)k+1

,

which proves Theorem 3.3.1.

To prove Theorem 3.3.2, we define a homomorphism Θ
(k)
w on Λ by defining

Θ(k)
w (en) =

∑
i0,...,ik≥0

i0+···+ik=n

u0i0+···+kik

[
k∏

j=0

∏
i≥1

1

1− xizj

]∣∣∣∣∣
z

i0
0 ···z

ik
k

.
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Again we apply Θ
(k)
w to hn. We have

Θ(k)
w (hn) (3.3.8)

=
∑

λ`n

(−1)n−`(λ)Bλ,nΘ(k)
w (eλ)

=
∑

λ`n

(−1)n−`(λ)Bλ,n

`(λ)∏
m=1

∑
i0,...,ik≥0

i0+···+ik=λm

u0i0+···+kik

[
k∏

j=0

∏
i≥1

1

1− xizj

]∣∣∣∣∣
z

i0
0 ···z

ik
k

.

Again we interpret Θ
(k)
w (hn) as a sum of weighted combinatorial objects. Ev-

erything is the same as before except that the term
[∏k

j=0

∏
i≥1

1
1−xizj

]∣∣∣
z

i0
0 ···z

ik
k

lets

us choose k + 1 partitions, π(0), . . . , π(k) where `(π(j)) = ij for j = 0, . . . , k, which

we write in weakly decreasing order. Each i that occurs in such a configuration

is weighted with xi, so we write these factors in the bottom row of each configu-

ration. Figure 3.13 gives one example of such an object created in this manner.

The weight of such a composite object is the product of the signs at the top of the

configuration times the product of the xi’s that appear in the bottom row of the

configuration times the products of the uj’s in the second row of the configuration.

Thus, the weight of the object in Figure 3.13 is −x1x
3
2x

4
3x

3
4x6u

17.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

3 33

x x x x x x x x x x x3 2

1 1 1

3 x

6 1

6 1

23 4 2 2 4

23 4 2 4

3

3

4

4

Figure 3.13: An object coming from (3.3.8) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type λ for some λ ` n have

the following properties:

1. the cells in each brick contain −1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is uk, and
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3. T contains a composition of n which must weakly decrease between consec-

utive cells within a brick if the cells are marked with the same power of

u.

In addition, each entry i in the composition is weighted by xi. In this way, Θ
(k)
w (hn)

is the weighted sum over all possible decorated brick tabloids.

We define a sign-reversing involution I exactly as before. That is, we scan

the cells from left to right looking for either a cell containing −1 or two consec-

utive bricks which may be combined to preserve the properties of this collection

of objects. If a −1 is scanned first, break the brick containing the −1 into two

immediately after the violation and change the −1 to 1. If the second situation

is scanned first, glue the brick together and change the 1 in the first brick to −1.

Thus, I shows that Θ
(k)
w (hn) is equal to the sum of the weights of all the fixed

points of I.

Again, let us consider the fixed points of I. First, there can be no −1’s, so every

brick must be of size 1. Next, it cannot be the case that the power of u strictly

increases as we move from brick i to brick i+1, since then we could combine these

two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must

weakly decrease as we read from left to right. Let γ = (γ1, . . . , γn) denote the

underlying composition. We note that if the power of u is the same on brick i and

i + 1, then it must be the case that γi < γi+1: otherwise, we could combine brick

i and brick i + 1. One example of a fixed point may be found in Figure 3.14.

u u u u u u u u u u u u
3

3

x x x x x x x x x x x3

1 1

x

2

1 1 1 1 1 1 1 1 1 1
33 3 2 2 23 1 01 0

1 2 3 6 43

1 2 3 6 2 3 4

4

4

6

6

5

5

5

5

Figure 3.14: A fixed point when k = 3 and n = 12.

We can then count the fixed points as before. That is, suppose that the powers

of u in a fixed point are r1, . . . , rn when read from left to right. It must be the
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case that k ≥ r1 ≥ · · · ≥ rn. Define nonnegative integers ai by ai = ri − ri+1 for

i = 1, . . . , n−1 and let an = rn. It follows that r1 + · · ·+ rn = a1 +2a2 + · · ·+nan,

a1 + · · · + an = r1 ≤ k. Now, suppose that γ is the composition in a fixed point.

Then if γi ≥ γi+1, it cannot be that ri = ri+1 because that would violate our

conditions for fixed points. Thus, it must be the case that ai ≥ χ(γi ≥ γi+1). Let

xγ denote
∏n

i=1 xγi
. In this way, the sum the weights of all fixed points of I equals

∑

γ∈Pn

xγ
∑

a1+···+an≤k
ai≥χ(i∈WDes(γ))

ua1+2a2+···+nan

=
∑

γ∈Pn

xγ
∑

a1≥χ(1∈WDes(γ))

· · ·
∑

an≥χ(n∈WDes(γ))

ya1+···+anua1+2a2+···+nan

∣∣∣∣∣∣
y≤k

.

Rewriting the above equation, we have

∑

γ∈Pn

xγ
∑

a1≥χ(1∈WDes(γ))

(yu)a1 · · ·
∑

an≥χ(n∈WDes(γ))

(yun)an

∣∣∣∣∣∣
y≤k

=
∑

γ∈Pn

xγ(yu)χ(1∈WDes(γ))(yu2)χ(2∈WDes(γ)) · · · (yun)χ(n∈WDes(σ))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

=
∑

γ∈Pn

xγywdesuwmaj(γ)

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

.

Dividing by (1− y) allows the above expression to be rewritten as

∑

γ∈Pn

xγywdesuwmaj(γ)

(1− y)(1− yu) · · · (1− yun)

∣∣∣∣∣
yk

.
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Therefore, we have

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγywdesqwmaj(γ)

=
∑

k≥0

ykΘ(k)
w

(∑
n≥0

tnhn

)

=
∑

k≥0

yk

(∑
n≥0(−t)nΘ

(k)
w (en)

)

=
∑

k≥0

yk

(∑
n≥0(−t)n

∑
i0,...,ik≥0

i0+···+ik=n
u0i0+···+kik

∏k
j=0

∏
i≥1

1
1−xizj

|
z

i0
0 ···z

ik
k

) .

However,

∑
n≥0

(−t)n
∑

i0,...,ik≥0
i0+···+ik=n

u0i0+···+kik

k∏
j=0

∏
i≥1

1

1− xizj

|
z

i0
0 ···z

ik
k

=

∑
n≥0

(−t)n

k∏
j=0

∏
i≥1

1

1− ujxiz
|zn =

k∏
j=0

∏
i≥1

1

1 + xiujt
=

∏
i≥1

1

(−xit; u)k+1

.

Thus, we have shown that

∑
n≥0

tn

(y; n)n+1

∑

γ∈Pn

xγywdesuwmaj(γ) =

∑

k≥0

yk
∏
i≥1

(−xit; u)k+1,

which proves Theorem 3.3.2.

To prove Theorem 3.3.3, we define a homomorphism Θ
(k)
` (en) on Λ by setting

Θ
(k)
` (en) =

∑
i0,...,ik≥0

i0+···+ik=n

u0i0+···+kik

k∏
j=0

pij .
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where pn is the n-th power symmetric function.

As before, we apply Θ
(k)
` to hn. We have

Θ
(k)
` (hn) (3.3.9)

=
∑

λ`n

(−1)n−`(λ)Bλ,nΘ(k)(eλ)

=
∑

λ`n

(−1)n−`(λ)Bλ,n

`(λ)∏
m=1

∑
i0,...,ik≥0

i0+···+ik=λm

u0i0+···+kikpi0 · · · pik .

Again we interpret Θ
(k)
` (hn) as a sum of weighted combinatorial objects. Ev-

erything is the same as before except that the term pi0 · · · pik lets us choose k + 1

partitions, π(0), . . . , π(k) where π(j) = (n
ij
j ) for some nj for j = 0, . . . , k. Each i that

occurs in such a configuration is weighted with xi so that we write these factors

in the bottom row of each configuration. Figure 3.15 gives one example of such

an object created in this manner. The weight of such a composite object is the

product of the signs at the top of the configuration times the product of the xi’s

that appear in the bottom row of the configuration times the products of the uj’s

in the second row of the configuration. Thus, the weight of the object in Figure

3.15 is −x2x
6
3x

3
4x

2
6u

17.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

3

x x x x x x x x x x x3 2

1 1 1

x

6

6

3 4 2 3

3 4 3

6

6

3 3

33

4 4

4 4

3

3

Figure 3.15: An object coming from (3.3.9) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type λ for some λ ` n have

the following properties:

1. the cells in each brick contain −1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is uk, and
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3. T contains a composition of n whose entries must be equal for any two

consecutive cells within a brick if the cells are marked with the same power

of u.

In addition, each entry i in the composition is weighted by xi. In this way, Θ
(k)
` (hn)

is the weighted sum over all possible decorated brick tabloids.

We define a sign-reversing involution I exactly as before. That is, we scan

the cells from left to right looking for either a cell containing −1 or two consec-

utive bricks which may be combined to preserve the properties of this collection

of objects. If a −1 is scanned first, break the brick containing the −1 into two

immediately after the violation and change the −1 to 1. If the second situation

is scanned first, glue the brick together and change the 1 in the first brick to −1.

Thus, I shows that Θ
(k)
` (hn) is equal to the sum of the weights of all the fixed

points of I.

Again, let us consider the fixed points of I. First, there can be no −1’s, so every

brick must be of size 1. Next, it cannot be the case that the power of u strictly

increases as we move from brick i to brick i+1, since then we could combine these

two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must

weakly decrease as we read from left to right. Let γ = (γ1, . . . , γn) denote the

underlying composition. We note that if the power of u is the same on brick i and

i + 1, then it must be the case that γi 6= γi+1: otherwise, we could combine brick

i and brick i + 1. One example of a fixed point may be found in Figure 3.16.

u u u u u u u u u u u u
3

x x x x x x x x x x x2

1 1

x

2

1 1 1 1 1 1 1 1 1 1
33 3 2 2 23 1 01 0

2 3 5 3 6 43

2 3 5 3 6 3 4

3

3

1

1

2

2

6

6

Figure 3.16: A fixed point when k = 3 and n = 12.

We can then count the fixed points as before. That is, suppose that the powers

of u in a fixed point are r1, . . . , rn when read from left to right. It must be the
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case that k ≥ r1 ≥ · · · ≥ rn. Define nonnegative integers ai by ai = ri − ri+1 for

i = 1, . . . , n−1 and let an = rn. It follows that r1 + · · ·+ rn = a1 +2a2 + · · ·+nan,

a1 + · · · + an = r1 ≤ k. Now suppose that γ is the composition in a fixed point.

Then if γi = γi+1, then it cannot be that ri = ri+1 because that would violate our

conditions for fixed points. Thus, it must be the case that ai ≥ χ(γi = γi+1). Let

xγ denote
∏n

i=1 xγi
. In this way, the sum the weights of all fixed points of I equals

∑

γ∈Pn

xγ
∑

a1+···+an≤k
ai≥χ(i∈Lev(γ))

ua1+2a2+···+nan

=
∑

γ∈Pn

xγ
∑

a1≥χ(1∈Lev(γ))

· · ·
∑

an≥χ(n∈Lev(γ))

ya1+···+anua1+2a2+···+nan

∣∣∣∣∣∣
y≤k

.

Rewriting the above equation, we have

∑

γ∈Pn

xγ
∑

a1≥χ(1∈Lev(γ))

(yu)a1 · · ·
∑

an≥χ(n∈Lev(γ))

(yun)an

∣∣∣∣∣∣
y≤k

=
∑

γ∈Pn

xγ(yu)χ(1∈Lev(γ))(yu2)χ(2∈Lev(γ)) · · · (yun)χ(n∈Lev(γ))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

=
∑

γ∈Pn

xγylevulevmaj(γ)

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣
y≤k

.

Dividing by (1− y) allows the above expression to be rewritten as

∑

γ∈Pn

xγylevulevmaj(γ)

(1− y)(1− yu) · · · (1− yun)

∣∣∣∣∣
yk

.
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Therefore, we have

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγylevulevmaj(γ)

=
∑

k≥0

ykΘ
(k)
`

(∑
n≥0

tnhn

)

=
∑

k≥0

yk

(∑
n≥0(−t)nΘ

(k)
` (en)

)

=
∑

k≥0

yk

(∑
n≥0(−t)n

∑
i0,...,ik≥0

i0+···+ik=n
u0i0+···+kikpi0 · · · pij

) .

However,

∑
n≥0

(−t)n
∑

i0,...,ik≥0
i0+···+ik=n

u0i0+···+kikpi0 · · · pij =

∑
n≥0

(−t)n

k∏
j=0

(
∑
m≥0

pm(ujz)m)|zn =

k∏
j=0

(
∑
m≥0

pm(−ujt)m).

Thus, we have shown that

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγylevulevmaj(γ) =

∑

k≥0

yk

∏k
j=0(

∑
0≥1 pm(−ujt)m)

,

which proves Theorem 3.3.3.

Now suppose that S is a subset of P. Then we can restrict to compositions

with parts from S by simply setting xi = 0 for all i /∈ S. Thus, we immediately

have the following corollaries:

Corollary 3.3.4.

∑
n≥0

tn
∑
γ∈Sn

ydes(γ)xγ =
1− y

−y +
∏

j∈S(1 + t(y − 1)xj)
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Corollary 3.3.5.

∑
n≥0

tn
∑
γ∈Sn

ywdes(γ)xγ =
1− y

−y +
∏

j∈S
1

1−t(y−1)xj

Corollary 3.3.6.

∑
n≥0

tn
∑
γ∈Sn

ylev(γ)xγ =
1

1−∑
j∈S

txj

1−t(y−1)xj

Corollary 3.3.7.

∑
n≥0

tn

(y; u)n+1

∑
γ∈Sn

xγydes(γ)umaj(γ)

=
∑

k≥0

yk

∏
i∈S(xit; u)k+1

.

Corollary 3.3.8.

∑
n≥0

tn

(y; u)n+1

∑
γ∈Sn

xγywdesuwmaj(γ)

=
∑

k≥0

yk
∏
i∈S

(−xit; u)k+1.

Corollary 3.3.9.

∑
n≥0

tn

(y; u)n+1

∑
γ∈Sn

xγylevulevmaj(γ)

=
∑

k≥0

yk

∏k
j=0(

∑
n≥0 pn,S(−ujt)n)

,

where pn,S =
∑

i∈S xn
i .

In addition, we can replace xj by qj in order to keep track of q|γ| = qγ1+···+γn .

For example, we will have

Corollary 3.3.10.

∑
n≥0

tn
∑
γ∈Sn

ydes(γ)q|γ| =
1− y

−y +
∏

j∈S(1 + t(y − 1)qj)
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We can also derive analogues of our results for other partial orders on P by

specializing our results. For instance, suppose that 4 is the partial order where

all the odd numbers are incomparable, every even number is larger than every odd

number, and the even numbers are ordered as in the standard universe. In this

case, we define for any composition γ = (γ1, . . . , γn),

Des(γ) = {i : γi Â γi+1},
des(γ) = |Des(γ)|, and

maj(γ) =
∑

i∈Des(γ)

i.

Then it easy to see that the generating function

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ)

arises by taking the generating function

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ)

and setting x1 = 1
1−∑

n≥0 x2n+1
and setting x2i+1 = 0 for i ≥ 1. Thus, we have the

following corollary.

Corollary 3.3.11.

∑
n≥0

tn

(y; u)n+1

∑

γ∈Pn

xγydes(γ)umaj(γ)

=
∑

k≥0

yk

∏k
j=0(1− ujt

1−∑
n≥0 x2n+1

)
∏

i≥1(x2it; u)k+1

.

3.4 Common descents or levels

We can also generalize to looking at common descents or levels in m-tuples of

compositions. Define comlev(γ1, γ2, . . . , γm) to be number of places where each of

γ1, . . . , γm has a level. Then we have the following theorem.
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Theorem 3.4.1.

∑
n≥0

tn
∑

γ1,...,γm∈Pn

ycomlev(γ1,...,γm)q
|γ1|
1 . . . q|γ

m|
m =

1

1−∑
a1,...,am≥1

t(y−1)q
a1
1 ···qam

m

1−t(y−1)q
a1
1 ···qam

m

The proof follows the same structure: apply the homomorphism

Θm
3 (en) = (−1)n−1(y − 1)n−1

m∏
i=1

∑
j≥1

qjn
i

to hn to obtain a brick tabloid in which we fill in m compositions and decorate in

the same manner as before. For example, one such object is displayed in Figure

3.17.

5

77777555

−1−1−1

7 1 1

y y y y

7 7 7 7 7 76 6 6 5

Figure 3.17: An object coming from Θ2
3(h11)

Next, we perform an involution on the resulting objects as follows. Scan left to

right for a −1 or two consecutive bricks with a level between them in each of the

m compositions. If a −1 is found, break the brick in two after that cell and remove

the −1 label. If a level between bricks for every composition is found, insert a −1

label for the last cell in the first brick and combine the bricks. For example, the

image of Figure 3.17 is displayed in Figure 3.18.

7

−1

55666 777777

yyyy

117

−1 −1 −1

5 5 5 7 7 7 7

Figure 3.18: The image of Figure 3.17
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Thus, we will have

Θ
(m)
3 (hn) =

∑

γ1,...,γm∈Pn

ycomlev(γ1,...,γm)q
|γ1|
1 . . . q|γ

m|
m .

Therefore,

∑
n≥0

tn
∑

γ1,...,γm∈Pn

ycomlev(γ1,...,γm)q
|γ1|
1 . . . q|γ

m|
m

=

(
1 +

∑
n≥1

(−t)n(1− y)n−1

m∏
i=1

∑
j≥1

qjn
i

)−1

=

(
1 +

∑
n≥1

(−t)n(1− y)n−1
∑

a1,...,ak≥1

(qa1
1 · · · qak

k )n

)−1

=

(
1 +

1

1− y

∑
n≥1

∑
a1,...,ak≥1

(t(y − 1)qa1
1 · · · qak

k )n

)−1

=

(
1 +

1

1− y

∑
a1,...,ak≥1

∑
n≥1

(t(y − 1)qa1
1 · · · qak

k )n

)−1

=

(
1 +

1

1− y

∑
a1,...,ak≥1

t(y − 1)qa1
1 · · · qak

k

1− t(y − 1)qa1
1 · · · qak

k

)−1

Similarly, define comdes(γ1, γ2, . . . , γm) to be number of places where each of

γ1, . . . , γm has a descent and comwdes(γ1, γ2, . . . , γm) to be number of places where

each of γ1, . . . , γm has a weak descent. Unfortunately, the generating functions

for common descents are less nice than those for common levels as they contain

Hadamard products that cannot be simplified. We can define the homomorphisms:

Θ
(m)
1 (en) = (−1)n−1(y − 1)n−1

m∏
j=1

[(∏
j≥1

1

1− tqi
j

)
|tn

]

and

Θ
(m)
2 (en) = (−1)n−1(y − 1)n−1

m∏
j=1

[(∏
j≥1

(1 + tqi
j)

)
|tn

]
.

The same extended involutions will give us fixed points with the appropriate
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weighting for the objects we want. However, the final results remain as
∑
n≥0

tn
∑

γ1,...,γm∈Pn

ycomdes(γ)q
|γ1|
1 . . . q|γ

m|
n

=
1

1 + 1
1−y

∑
n≥1[t(y − 1)]n

∏m
j=1

[(∏
j≥1

1
1−tqi

j

)
|tn

]

and

∑
n≥0

tn
∑

γ1,...,γm∈Pn

ycomwdes(γ)q
|γ1|
1 . . . q|γ

m|
n

=
1

1 + 1
1−y

∑
n≥1[t(y − 1)]n

∏m
j=1

[(∏
j≥1(1 + tqi

j)
)
|tn

] ,

which provide little insight.

3.5 j-levels

We can look at j-levels, but we pay a price for it. The method of the previous

sections does not work well for statistics that look at more than 2 adjacent entries.

Thus, we must give up keeping track of the monomial xγ, which also leads us to

restrict to a finite alphabet [m] = {1, 2, . . . , m}. For any word γ ∈ [m]n, define the

number of j-levels by jlev(γ) = |{i : γi = γi+1 = · · · = γi+j}|, i.e. the number of

places a letter is repeated j + 1 times. Then we will prove the following theorem.

Theorem 3.5.1.

∑
n≥0

tn
∑

γ∈[m]n

yjlev(γ) =
1 + t−tj

1−t
+ tj

1−ty

1− (m− 1)[ t−tj

1−t
+ tj

1−ty
]
.

To prove Theorem 3.5.1, we define a homomorphism on the ring of symmetric

functions by φj(e0) = 1 and, for n ≥ 1,

φj(en) =





(−1)n−1(m− 1) n < j

(−1)n−1(m− 1)yn−j n ≥ j

= (−1)n−1(m− 1)ymax(0,n−j)
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Then

m

m− 1
φj(hn) =

m

m− 1

∑

λ`n

(−1)n−l(λ)Bλ,n

l(λ)∏
i=1

φj(eλi
)

=
m

m− 1

∑

λ`n

(−1)n−l(λ)Bλ,n

l(λ)∏
i=1

(−1)λi−1(m− 1)ymax(0,λi−j)

=
m

m− 1

∑

λ`n

Bλ,n

l(λ)∏
i=1

(m− 1)ymax(0,λi−j) (3.5.1)

We still interpret each term as a filled labeled brick tabloid. The term
∑

λ`n Bλ,n

lets us choose a brick tabloid of shape λ. For the first brick, the factor of m
m−1

(m−1)

lets us choose any an entry ∈ [m], which we use to fill every cell of the brick. For

every other brick, the factor of
∏l(λ)

i=1(m− 1) lets us choose any entry ∈ [m] except

the label of the previous brick, which we use to fill every cell. The factor of
∏l(λ)

i=1 ymax(0,λi−j) does nothing to bricks of length ≤ j, and weights bricks of length

> j by yλi−j. We can think of this as labeling the first λi − j cells with y.

For instance, one filled labeled brick tabloid for j = 2 is displayed in Figure

3.19. The first brick has the first 3 − 2 = 1 cells labeled with y, the second brick

has the first 6− 2 = 4 cells labeled with y, and the third brick has no cells labeled

with y since its length is not greater than 2.

yy

77777555 7 1 1

y y y

Figure 3.19: A filled labeled brick tabloid coming from Equation 3.5.1 with j = 2

and n = 11

Notice that there are no signs in our filled labeled brick tabloid. In this case,

we do not need to perform an involution in order to get the desired objects–we

already have them. Let Tφj
(n) be the set of filled labeled brick tabloids that arise

in this way. Any C ∈ Tφj
(n) has equal entries within each brick, while adjacent

bricks cannot have equal entries. Moreover, there is a y at the beginning of every
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sequence of j +1 equal entries. On the other hand, for any γ ∈ [m]n, we can create

a filled labeled brick tabloid by breaking a brick every time adjacent entries are

different and, within a brick b, labeling the first j − b cells with a y.

Therefore, for n ≥ 1,

m

m− 1
φj(hn) =

∑

γ∈[m]n

yjlev(γ).

Thus

∑
n≥0

tn
∑

γ∈[m]n

yjlev(γ) = 1 +
m

m− 1

(
1

1 +
∑

n≥1(−t)nφj(en)
− 1

)

= 1 +
m

m− 1

(
1

1 +
∑

n≥1(−t)n(−1)n−1(m− 1)ymax(0,n−j)
− 1

)

= 1 +
m

m− 1

(
1

1− (m− 1)
∑

n≥1 tnymax(0,n−j)
− 1

)

= 1 +
m

m− 1

(
1

1− (m− 1)[ t−tj

1−t
+ tj

1−ty
]
− 1

)

=
1 + t−tj

1−t
+ tj

1−ty

1− (m− 1)[ t−tj

1−t
+ tj

1−ty
]

Of course, when j = 1 this reduces to the regular level generating function with

each xi = 1 and parts from [m].



Chapter 4

Enumerating up-down words

Let P = {1, 2, 3, . . .} denote the set of positive integers, E = {2, 4, 6, . . .} denote

the set of even integers in P, and O = {1, 3, 5, . . .} denote the set of odd integers in

P. Let Pn = {1, . . . , n}, En = E ∩ Pn, and On = O ∩ Pn. Let Sn denote the set of

all permutations of Pn. Then if σ = σ1σ2 . . . σn ∈ Sn, we define Des(σ) = {i : σi >

σi+1} and Ris(σ) = {i : σi < σi+1}. We say that σ is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 · · · ,

or, equivalently, if Des(σ) = En−1 and Ris(σ) = On−1. Similarly, we say that σ is

a down-up permutation if

σ1 > σ2 < σ3 > σ4 < σ5 · · · ,

or, equivalently, if Ris(σ) = En−1 and Des(σ) = On−1. Clearly, if σ = σ1σ2 . . . σn ∈
Sn is an up-down permutation, then the complement of σ,

σc = (n + 1− σ1)(n + 1− σ2) . . . (n + 1− σn)

is a down-up permutation. Thus, the number of up-down permutations in Sn is

equal to the number of down-up permutations in Sn. Let UDn denote the number

66
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of up-down permutations in Sn. Then André [1, 2] proved the following.

sec(t) = 1 +
∑

n∈E
UDn

tn

n!
and (4.0.1)

tan(t) =
∑

n∈O
UDn

tn

n!
. (4.0.2)

If s ≥ 2 and 1 ≤ j ≤ s−1, let sP = {s, 2s, 3s, . . .} and j+sP = {j, s+j, 2s+j, . . .}.
For any n > 0, let (sP)n = sP∩Pn and (j + sP)n = (j + sP)∩Pn. Let En,s denote

the number of permutations σ ∈ Sn such that Des(σ) = (sP)n−1. The En,s’s are

called generalized Euler numbers [29]. There are well-known generating functions

for q-analogues of the generalized Euler numbers; see Stanley’s book [42], page

148. Various divisibility properties of the q-Euler numbers have been studied in

[4, 5, 17], and properties of the generalized q-Euler numbers were studied in [20, 40].

More general generating functions for statistics on permutations σ ∈ Sn such that

Des(σ) = (j + sP)n−1 were given by Mendes, Remmel, and Riehl [36].

Carlitz [12] and Rawlings [38] proved two different analogues of André’s results

for words. To state their results, we first need to introduce some more notation.

Let P∗ denote the set of all words over the alphabet P and P+ denote the set

of all non-empty words in P∗. We let ε denote the empty word. For any w =

w1w2 . . . wm ∈ P+, we let `(w) = m denote the length of w, |w| =
∑m

i=1 wi, and

z(w) =
∏m

i=1 zwi
. For example, if w = 1 2 1 3 2 4 5 4, then `(w) = 8, |w| = 22,

and z(w) = z2
1z

2
2z3z

2
4z5. Given w = w1w2 . . . wn ∈ P+, we define the descent set

Des(w), the weak descent set WDes(w), the rise set Ris(w), and the weak rise

set WRis(w) as follows:

Des(w) = {i : wi > wi+1}, (4.0.3)

WDes(w) = {i : wi ≥ wi+1}, (4.0.4)

Ris(w) = {i : wi < wi+1}, and (4.0.5)

WRis(w) = {i : wi ≤ wi+1}. (4.0.6)

Definition 4.0.2. Let w = w1w2 . . . wm ∈ P+.
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1. We say that w is a strict up-down word if w1 < w2 > w3 < w4 > w5 · · · , or,

equivalently if Ris(w) = Om−1 and Des(w) = Em−1.

2. We say that w is a strict down-up word if w1 > w2 < w3 > w4 < w5 · · · , or,

equivalently if Des(w) = Om−1 and Ris(w) = Em−1.

3. We say that w is a weak up-down word if w1 ≤ w2 ≥ w3 ≤ w4 ≥ w5 · · · , or,

equivalently if WRis(w) = Om−1 and WDes(w) = Em−1.

4. We say that w is a weak down-up word if w1 ≥ w2 ≤ w3 ≥ w4 ≤ w5 · · · , or,

equivalently if WDes(w) = Om−1 and WRis(w) = Em−1.

By convention, the empty word ε and one letter word w1 are considered to

be (all of) strict up-down words, strict down-up words, weak up-down words, and

weak down-up words. We let SUDn, SDUn, WUDn, and WDUn denote the sets of

all words in P∗n which are strict up-down, strict down-up, weak up-down, and weak

down-up, respectively. Clearly, if w = w1w2 . . . wm ∈ P∗n, then w ∈ SUDn(WUDn)

if and only if the complement of w relative to n,

wc,n = (n + 1− w1)(n + 1− w2) . . . (n + 1− wm) ∈ SDUn(WDUn).

We let SUDn,m, SDUn,m, WUDn,m, and WDUn,m denote the sets of all words in

P∗n of length m which are strict up-down, strict down-up, weak up-down, and weak

down-up, respectively.

Carlitz [12, 11] proved analogues of André’s formulas for strict up-down words.

In particular, Carlitz [12] considered the following generating functions.

Fn(z1, . . . , zn) =
∑

m∈O

∑
w∈SUDn,m

z(w), (4.0.7)

Gn(z1, . . . , zn) = 1 +
∑

m∈E

∑
w∈SUDn,m

z(w), (4.0.8)

Fn(z) =
∑

m∈O
|SUDn,m|zm, and (4.0.9)

Gn(z) = 1 +
∑

m∈E
|SUDn,m|zm. (4.0.10)
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For example, if n = 2, then clearly SUD2,1 = {1, 2} and SUD2,2m = {(1 2)m} and

SUD2,2m+1 = {(1 2)m1} for m ≥ 1. Thus

G2(z1, z2) =
1

1− z1z2

,

G2(z) =
1

1− z2
,

F2(z1, z2) = z2 +
z1

1− z1z2

=
z1 + z2 − z1z

2
2

1− z1z2

, and

F2(z) =
2z − z3

1− z2
.

In general, Carlitz [12] proved that

Gn(z1, . . . , zn) =
1

Qn(z1, . . . , zn)
and (4.0.11)

Fn(z1, . . . , zn) =
Pn(z1, . . . , zn)

Qn(z1, . . . , zn)
(4.0.12)

where

Pn+1(z1, . . . , zn+1) = (1− z2
n+1)Pn(z1, . . . , zn) + zn+1Qn(z1, . . . , zn) (4.0.13)

and

Qn+1(z1, . . . , zn+1) = −zn+1Pn(z1, . . . , zn) + Qn(z1, . . . , zn). (4.0.14)

In particular, he used these recursions to prove the following formulas:

Gn(z) =
1

Qn(z)
(4.0.15)

and

Fn(z) =
Pn(z)

Qn(z)
(4.0.16)

where

Pn(z) =
n∑

k=0

(−1)k

(
n + k

2k + 1

)
z2k+1 and (4.0.17)

Qn(z) =
n∑

k=0

(−1)k

(
n + k − 1

2k

)
z2k. (4.0.18)
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Rawlings proved q-analogues of (4.0.15) and (4.0.16) for weak down-up words.

That is, let [n] = 1 + q + · · · qn−1 = 1−qn

1−q
, [n]q! = [n]q[n − 1]q · · · [1]q, and

[
n
k

]
q

=
[n]q !

[k]q ![n−k]q !
. Let

Bn(q, z) =
∑

k≥0

(−1)kqk(k+1)

[
n + k

2k

]

q

z2k and (4.0.19)

An(q, z) =
∑

k≥0

(−1)kqk2+3k+1

[
n + k

2k + 1

]

q

z2k+1. (4.0.20)

Then Rawlings [38] proved that

1 +
∑

m∈E

∑
w∈WDUn,m

q|w|z`(w) =
1

Bn(q, z)
(4.0.21)

and ∑

m∈O

∑
w∈WDUn,m

q|w|z`(w) =
An(q, z)

Bn(q, z)
. (4.0.22)

This chapter was motivated by our attempt to give direct proofs via involu-

tions of the formulas of Carlitz and Rawlings described above. That is, Carlitz

[12] proved (4.0.15) and (4.0.16) by recursions. Rawlings [38] developed much

more general recursions for generating functions of words and proved (4.0.21) and

(4.0.22) as special cases of these recursions. The main goal of this chapter is to

show that all of the formulas of Carlitz and Rawlings described above can be

proved directly by simple involutions. In fact, we shall give direct combinatorial

proofs of generalizations of these formulas. That is, we shall prove formulas for

the analogues of generalized Euler numbers for words. To this end, we define the

following classes of words.

Definition 4.0.3. Let s ≥ 2.

1. SU s−1SDn,m is the set of all words w ∈ P+
n of length m such that

Des(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1.

We let SU s−1SDn =
⋃

m≥0 SU s−1SDn,m.

2. WU s−1SDn,m is the set of all words w ∈ P+
n of length m such that

Des(w) = (sP)m−1 and WRis(w) = Pm−1 − (sP)m−1.

We let WU s−1SDn =
⋃

m≥0 WU s−1SDn,m.
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3. SU s−1WDn,m is the set of all words w ∈ P+
n of length m such that

WDes(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1.

We let SU s−1WDn =
⋃

m≥0 SU s−1WDn,m.

4. WU s−1WDn,m is the set of all words w ∈ P+
n of length m such that

WDes(w) = (sP)m−1 and WRis(w) = Pm−1 − (sP)m−1.

We let WU s−1WDn =
⋃

m≥0 WU s−1WDn,m.

For example, SU s−1SDn consists of all words that start out with s − 1 strict

increases followed by a strict decrease, then another sequence of s−1 strict increases

followed by a strict decrease, etc. For example, we can describe SU2SDn as the

set of all words w = w1 . . . wm ∈ P∗n such that wi > wi+1 if i ≡ 0 mod 3 and

wi < wi+1 if i 6≡ 0 mod 3 or, alternatively, SU2SDn consists of all words in

w = w1 . . . wm ∈ Pn such that

w1 < w2 < w3 > w4 < w5 < w6 > w7 < w8 < w9 > w10 · · · .

Similarly, WU2SDn consists of all words w = w1 . . . wm ∈ P∗n such that wi > wi+1

if i ≡ 0 mod 3 and wi ≤ wi+1 if i 6≡ 0 mod 3. That is, WU2SDn denotes the set

of all words in w = w1 . . . wm ∈ Pn such that

w1 ≤ w2 ≤ w3 > w4 ≤ w5 ≤ w6 > w7 ≤ w8 ≤ w9 > w10 · · · .

It will be useful for later developments to have a pictorial representation of these

classes of words. The idea is that we are interested in words w that we can partition

into an initial sequence of blocks of size s and ending in a block of size j where

0 ≤ j ≤ s−1. The letters in any given block are either strictly increasing if we pick

SU s−1 or weakly increasing if we pick WU s−1. Then, either we have strict decreases

between blocks as pictured in the top of Figure 4.1 if we are considering either

SU s−1SD or WU s−1SD or we have weak decreases between blocks as pictured at

the bottom of Figure 4.1 if we are considering either SU s−1WD or WU s−1WD.

It is then easy to see that the collection of words studied by Carlitz [12] is

SUDn = SU1SDn and the collection of words studied by Rawlings [38] is
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s s s j

s s j

> > > >

>s > > >.    .   .

.    .   .

Figure 4.1: Pictorial representation of words in SU s−1SD, WU s−1SD, SU s−1WD,

and WU s−1WD.

WUDn = WU1WDn. This given, we define the following generating functions for

any s ≥ 2:

HSUs−1SD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1SDn,m

z(w) and

HSUs−1SD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1SDn,m

z(w) for j = 1, . . . , s− 1.

We define HWUs−1SD
n,s,j (z1, . . . , zn), HSUs−1WD

n,s,j (z1, . . . , zn), and HWUs−1WD
n,s,j (z1, . . . , zn)

for j = 0, . . . , s− 1 similarly. We shall give an explicit expression for each of these

generating functions in terms of Gessel quasi-symmetric functions [21]. Our expres-

sions can then be specialized to explicit formulas like (4.0.15), (4.0.16), (4.0.21),

and (4.0.22).

The outline of this chapter is as follows. In section 4.1, we shall define the

Gessel quasi-symmetric functions and some additional classes of words that can be

defined in terms of quasi-symmetric functions that we will need for our proofs. In

section 4.2, we state and prove our generating functions for HSUs−1SD
n,s,j (z1, . . . , zn),

HSUs−1WD
n,s,j (z1, . . . , zn), HWUs−1SD

n,s,j (z1, . . . , zn), and HWUs−1WD
n,s,j (z1, . . . , zn) and give

some specializations. Finally, in section 4.3, we shall end with a brief discussion

about some extensions of our work.
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4.1 Quasi-symmetric functions

Let γ = (γ1, . . . , γt) be a composition, i.e. a sequence of positive integers. Then

we let |γ| = γ1 + · · ·+ γt and

Set(γ) = {γ1, γ1 + γ2, . . . , γ1 + γ2 + · · ·+ γt−1}.

For example, if γ = (2, 3, 1, 1, 2), |γ| = 9 and Set(γ) = {2, 5, 6, 7}. Then Gessel

[21] defined the quasi-symmetric function

Qγ(z1, . . . , zn) =
∑

1≤i1≤···≤i|γ|≤n

ij<ij+1 if j∈Set(γ)

zi1zi2 · · · zi|γ| . (4.1.1)

Thus, for example, if γ = (2, 3, 1, 1, 2), then

Qγ(z1, . . . , zn) =
∑

1≤i1≤i2<i3≤i4≤i5<i6<i7<i8≤i9≤n

9∏
j=1

zij .

We shall also need explicit expressions for the specializations

Qγ(z1, . . . , zn)|zi→z and Qγ(z1, . . . , zn)|zi→qiz.

Lemma 4.1.1.

Qγ(z1, . . . , zn)|zi→z =

(
n + |γ| − `(γ)

|γ|
)

z|γ| (4.1.2)

and

Qγ(z1, . . . , zn)|zi→qiz = q
∑

i iγi

[
n + |γ| − `(γ)

|γ|
]

q

z|γ|. (4.1.3)

Proof. For the specialization, Qγ(z1, . . . , zn)|zi→z, we must count the number of

sequences 1 ≤ i1 ≤ i2 ≤ · · · ≤ i|γ| ≤ n such that ij < ij+1 if j ∈ Set(γ). Let

~s(γ) = a1 . . . a|γ| where a1 = 1 and ai+1 = ai if i 6∈ Set(γ) and ai+1 = ai + 1

if i ∈ Set(γ); thus, ~s(γ) is the minimal sequence of this type. For example, if

γ = (2, 3, 1, 1, 2), then ~s(γ) = 112223455. Now if 1 ≤ i1 ≤ . . . ≤ i|γ| ≤ n

is a sequence such that ij < ij+1 if j ∈ Set(γ), then it easy to see that we

have designed ~s(γ) = a1 . . . a|γ| so that if bj = ij − aj for j = 1, . . . , |γ|, then
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0 ≤ b1 ≤ b2 ≤ · · · ≤ b|γ| ≤ n− 1− |Set(γ)|. Note that |Set(γ)| = `(γ)− 1. Thus,

the number of such sequences b1 . . . b|γ| is the number of partitions contained in

the |γ| × (n − `(γ)) rectangle, which is well known to be
(

n+|γ|−`(γ)
|γ|

)
. Thus, the

number of sequences 1 ≤ i1 ≤ i2 ≤ · · · ≤ i|γ| ≤ n such that ij < ij+1 if j ∈ Set(γ)

equals
(

n+|γ|−`(γ)
|γ|

)
, which yields (4.1.2).

For the specialization Qγ(z1, . . . , zn)|zi→qiz, note that

∑

0≤b1≤b2≤···≤b|γ|≤n−`(γ)

qb1+···+b|γ| =

[
n + |γ| − `(γ)

|γ|
]

q

.

Thus

∑
1≤i1≤i2≤···≤i|γ|≤n

ij<ij+1 if j∈Set(γ)

qi1+···+i|γ| = q|~s(γ)|
[
n + |γ| − `(γ)

|γ|
]

q

= q
∑

i iγi

[
n + |γ| − `(γ)

|γ|
]

q

.

Next, we define several more classes of words. In particular, we are interested

in words w that we can partition into blocks of size s and ending in a block of size j

where 0 ≤ j ≤ s− 1 like those considered for the classes in SU s−1SD, WU s−1SD,

SU s−1WD, and WU s−1WD. That is, letters in a given block are either strictly

increasing or weakly increasing, but this time we want either weak increases or

strict increases between the blocks. In pictures, we want to consider words as

pictured in Figure 4.2.

s s j

s s j

s< < < <

s .    .   .

.    .   .

< < <

Figure 4.2: Pictorial representation of words in SU s−1WU , WU s−1WU , SU s−1SU ,

and WU s−1SU .

Formally, we consider the following sets of words.
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Definition 4.1.2. Let s ≥ 2.

1. SU s−1WUn,m is the set of all words w = w1 . . . wm ∈ P+
n of length m such

that wi ≤ wi+1 if i ∈ sP and wi < wi+1 if i 6∈ sP.

We let SU s−1WUn =
⋃

m≥0 SU s−1WUn,m.

2. WU s−1WUn,m is the set of all words w = w1 . . . wm ∈ P+
n of length m such

that wi ≤ wi+1 if i ∈ sP and wi ≤ wi+1 if i 6∈ sP.

We let WU s−1WUn =
⋃

m≥0 WU s−1WUn,m. Thus WU s−1WUn is just the

set of all weakly increasing words in P+
n .

3. SU s−1SUn,m is the set of all words w = w1 . . . wm ∈ P+
n of length m such

that wi < wi+1 if i ∈ sP and wi < wi+1 if i 6∈ sP.

We let SU s−1SUn =
⋃

m≥0 SU s−1SUn,m. Thus SU s−1SUn is just the set of

all strictly increasing words in P+
n .

4. WU s−1SUn,m is the set of all words w = w1 . . . wm ∈ P+
n of length m such

that wi < wi+1 if i ∈ sP and wi ≤ wi+1 if i 6∈ sP.

We let SU s−1WUn =
⋃

m≥0 SU s−1WUn,m.

We then define the following generating functions for any s ≥ 2:

P SUs−1WU
n,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)k
∑

w∈SUs−1WUn,ks

z(w) and

P SUs−1WU
n,s,j (z1, . . . , zn) =

∑

k≥0

(−1)k
∑

w∈SUs−1WUn,ks+j

z(w) for j = 1, . . . , s− 1.

We define PWUs−1WU
n,s,j (z1, . . . , zn), P SUs−1SU

n,s,j (z1, . . . , zn), and PWUs−1SU
n,s,j (z1, . . . , zn)

for j = 0, . . . , s− 1 similarly. We can express each of these generating functions in

terms of quasi-symmetric functions. That is, for any s ≥ 2,

P SUs−1WU
n,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)kQ1(1s−22)k−11s−1(z1, . . . , zn) and

P SUs−1WU
n,s,j (z1, . . . , zn) =

∑

k≥0

(−1)kQ1(1s−22)k1j−1(z1, . . . , zn) for j = 1, . . . , s− 1.
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It then follows from Lemma 4.1.1 that for s ≥ 2 and j = 1, . . . , s− 1,

P SUs−1WU
n,s,0 (z1, . . . , zn)|zi=qiz

= 1 +
∑

k≥1

(−1)kq(
k(s−1)+1

2 )+(s−1)(k+1
2 )

[
n + k − 1

ks

]

q

zks

and

P SUs−1WU
n,s,j (z1, . . . , zn)|zi=qiz

=
∑

k≥0

(−1)kq(
k(s−1)+j+1

2 )+(s−1)(k+1
2 )

[
n + k

ks + j

]

q

zks+j

(note that these are finite sums as
[
n+k
ks

]
q

= 0 for k > n
s

+ 1).

Similarly, for s ≥ 2 and j = 1, . . . , s− 1,

PWUs−1WU
n,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)kQ(ks)(z1, . . . , zn) and

PWUs−1WU
n,s,j (z1, . . . , zn) =

∑

k≥0

(−1)kQ(ks+j)(z1, . . . , zn)

and with the specializations

PWUs−1WU
n,s,0 (z1, . . . , zn)|zi=qiz = 1 +

∑

k≥1

(−1)kqks

[
n + ks− 1

ks

]

q

zks, and

PWUs−1WU
n,s,j (z1, . . . , zn)|zi=qiz =

∑

k≥0

(−1)kqks+j

[
n + ks + j − 1

ks + j

]

q

zks+j

(sums are truly infinite).

We also have, for any s ≥ 2 and 1 ≤ j ≤ s− 1,

P SUs−1SU
n,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)kQ(1ks)(z1, . . . , zn) and

P SUs−1SU
n,s,j (z1, . . . , zn) =

∑

k≥0

(−1)kQ(1ks+j)(z1, . . . , zn)

with the specializations

P SUs−1SU
n,s,0 (z1, . . . , zn)|zi=qiz = 1 +

∑

k≥1

(−1)kq(
ks+1

2 )
[

n

ks

]

q

zks, and

P SUs−1SU
n,s,j (z1, . . . , zn)|zi=qiz =

∑

k≥0

(−1)kq(
ks+j+1

2 )
[

n

ks + j

]

q

zks+j
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(nonzero terms when ks + j ≤ n).

Finally, for any s ≥ 2 and j = 1, . . . , s− 1,

PWUs−1SU
n,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)kQ(sk)(z1, . . . , zn) and

PWUs−1SU
n,s,j (z1, . . . , zn) =

∑

k≥0

(−1)kQ(skj)(z1, . . . , zn)

with the specializations

PWUs−1SU
n,s,0 (z1, . . . , zn)|zi=qiz = 1 +

∑

k≥1

(−1)kqs(k+1
2 )

[
n + k(s− 1)

ks

]

q

zks

and

PWUs−1SU
n,s,j (z1, . . . , zn)|zi=qiz

=
∑

k≥0

(−1)kqs(k+1
2 )+j(k+1)

[
n + k(s− 1) + j − 1

ks + j

]

q

zks+j

(nonzero terms when k < n).

4.2 Main results

In this section, we shall prove our desired formulas. Our first theorem is the

following.

Theorem 4.2.1. Let s ≥ 2. Then

HSUs−1SD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1SDn,m

z(w)

=
1

P SUs−1WU
n,s,0 (z1, . . . , zn)

(4.2.1)

=
1

1 +
∑

k≥1(−1)kQ1(1s−22)k−11s−1(z1, . . . , zn)
,
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HWUs−1SD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈WUs−1SDn,m

z(w)

=
1

PWUs−1WU
n,s,0 (z1, . . . , zn)

(4.2.2)

=
1

1 +
∑

k≥1(−1)kQ(ks)(z1, . . . , zn)
,

HSUs−1WD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1WDn,m

z(w)

=
1

P SUs−1SU
n,s,0 (z1, . . . , zn)

(4.2.3)

=
1

1 +
∑

k≥1(−1)kQ(1ks)(z1, . . . , zn)
,

and

HWUs−1WD
n,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈WUs−1WDn,m

z(w)

=
1

PWUs−1SU
n,s,0 (z1, . . . , zn)

(4.2.4)

=
1

1 +
∑

k≥1(−1)kQ(sk)(z1, . . . , zn)
.

Proof. We start by proving (4.2.1). We must show that

HSUs−1SD
n,s,0 (z1, . . . , zn) · P SUs−1WU

n,s,0 (z1, . . . , zn) = 1. (4.2.5)

Now we can interpret the LHS of (4.2.5) as

∑

(a,b)∈T

z(a)z(b)(−1)`(b)/s (4.2.6)

where T is the set of all pairs of words (a, b) such that

a ∈ {ε} ∪⋃
m∈sP SU s−1SDn,m and b ∈ {ε} ∪⋃

m∈sP SU s−1WUn,m.

The empty word ε accounts for the leading 1 in the series of HSUs−1SD
n,s,0 (z1, . . . , zn)
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and P SUs−1WU
n,s,0 (z1, . . . , zn). Thus, in general, a consists of a number of strictly

increasing blocks of size s where there are strict decreases between blocks and b

consists of a number of strictly increasing blocks of size s where there are weak

increases between blocks. We will define a sign-reversing, weight-preserving invo-

lution I1 on the collection of all such pairs of words (a, b). The definition of I1

proceeds in 4 cases.

Case 1. The last block of a is aks+1 < . . . < aks+s and the first block of b is

b1 < · · · < bs.

If aks+s > b1, then I1(a, b) = (ā, b̄), where ā is the result of inserting the first block

of b at the end of a and b̄ is the result of removing the first block of b from b. Clearly

(ā, b̄) is again a pair in T . However if aks+s ≤ b1, then we let I1(a, b) = (¯̄a, ¯̄b) where

¯̄a is the result of removing the last block of a from a and ¯̄b is the result of inserting

the last block of a at the start of b. Clearly (¯̄a, ¯̄b) is again a pair in T .

Case 2. The first block of b is b1 < · · · < bs and a = ε.

Then I1(a, b) = (ā, b̄), where ā = b1 . . . bs and b̄ is the result of removing the first

block of b from b. Clearly (ā, b̄) is again a pair in T .

Case 3. The last block of a is aks+1 < . . . < aks+s and b = ε.

Then I1(a, b) = (¯̄a, ¯̄b), where ¯̄a is the result of removing the last block of a from a

and ¯̄b = aks+1 . . . aks+s.

Case 4. a = b = ε.

Then I(a, b) = (a, b).

It is easy to see that I1 is a sign-reversing, weight-preserving involution with trivial

fixed point (ε, ε), so that I1 proves (4.2.5).

The exact same involution will prove that

HWUs−1SD
n,s,0 (z1, . . . , zn) · PWUs−1WU

n,s,0 (z1, . . . , zn) = 1, (4.2.7)
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since the only difference in this case is that the blocks are weakly increasing.

The same proof, with minor modifications, will also prove

HSUs−1WD
n,s,0 (z1, . . . , zn) · P SUs−1SU

n,s,0 (z1, . . . , zn) = 1 (4.2.8)

and

HWUs−1WD
n,s,0 (z1, . . . , zn) · PWUs−1SU

n,s,0 (z1, . . . , zn) = 1. (4.2.9)

That is, we can interpret the LHS of (4.2.8) as

∑

(a,b)∈U

z(a)z(b)(−1)`(b)/s (4.2.10)

where U is the set of all pairs of words (a, b) such that

a ∈ {ε} ∪⋃
m∈sP SU s−1WDn,m and b ∈ {ε} ∪⋃

m∈sP SU s−1SUn,m.

Thus, in general, a consists of a number of strictly increasing blocks of size s where

there are weak decreases between blocks and b consists of a number of strictly in-

creasing blocks of size s where there are strict increases between blocks. Again,

we define a sign-reversing, weight-preserving involution I2 on the collection of all

such pairs of words (a, b). The definition of I2 proceeds in 4 cases just like the

definition of I1, where only Case 1 has to change. That is, I2 is defined as follows.

Case 1. The last block of a is aks+1 < . . . < aks+s and the first block of b is

b1 < · · · < bs.

If aks+s ≥ b1, then I2(a, b) = (ā, b̄), where ā is the result of inserting the first block

of b at the end of a and b̄ is the result of removing the first block of b from b. Clearly

(ā, b̄) is again a pair in T . However, if aks+s < b1, then we let I2(a, b) = (¯̄a, ¯̄b),

where ¯̄a is the result of removing the last block of a from a and ¯̄b is the result of

inserting the last block of a at the start of b. Clearly (¯̄a, ¯̄b) is again a pair in U .

Case 2. The first block of b is b1 < · · · < bs and a = ε.

Then I2(a, b) = (ā, b̄), where ā = b1 . . . bs and b̄ is the result of removing the first

block of b from b. Clearly (ā, b̄) is again a pair in U .
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Case 3. The last block of a is aks+1 < . . . < aks+s and b = ε.

Then I2(a, b) = (¯̄a, ¯̄b), where ¯̄a is the result of removing the last block of a from a

and ¯̄b = aks+1 . . . aks+s.

Case 4. a = b = ε.

Then we let I2(a, b) = (a, b).

Clearly I2 proves the LHS of (4.2.8). Essentially the same involution will also

prove (4.2.9) since the only difference in that case is that the blocks are weakly

increasing.

Using Lemma 4.1.1, we immediately have the following corollaries.

Corollary 4.2.2. Let s ≥ 2. Then

1 +
∑

m∈sP

∑

w∈SUs−1SDn,m

q|w|z`(w) =
1

1 +
∑

k≥1(−1)kq(
k(s−1)+1

2 )+(s−1)(k+1
2 )[n+k

ks

]
q
zks

,

1 +
∑

m∈sP

∑

w∈WUs−1SDn,m

q|w|z`(w) =
1

1 +
∑

k≥1(−1)kqks
[
n+ks−1

ks

]
q
zks

,

1 +
∑

m∈sP

∑

w∈SUs−1WDn,m

q|w|z`(w) =
1

1 +
∑

k≥1(−1)kq(
ks+1

2 )[ n
ks

]
q
zks

, and

1 +
∑

m∈sP

∑

w∈WUs−1WDn,m

q|w|z`(w) =
1

1 +
∑

k≥1(−1)kqs(k+1
2 )[n+k(s−1)

ks

]
q
zks

.

Our next theorem will give the other generating functions mentioned in the

introduction.
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Theorem 4.2.3. Let s ≥ 2 and 1 ≤ j ≤ s− 1. Then

HSUs−1SD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1SDn,m

z(w)

=
P SUs−1WU

n,s,j (z1, . . . , zn)

P SUs−1WU
n,s,0 (z1, . . . , zn)

(4.2.11)

=

∑
k≥0(−1)kQ1(1s−22)k1j−1(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ1(1s−22)k−11s−1(z1, . . . , zn)
,

HWUs−1SD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈WUs−1SDn,m

z(w)

=
PWUs−1WU

n,s,j (z1, . . . , zn)

PWUs−1WU
n,s,0 (z1, . . . , zn)

(4.2.12)

=

∑
k≥0(−1)kQ(ks+j)(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ(ks)(z1, . . . , zn)
,

HSUs−1WD
n,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1WDn,m

z(w)

=
P SUs−1SU

n,s,j (z1, . . . , zn)

P SUs−1SU
n,s,0 (z1, . . . , zn)

(4.2.13)

=

∑
k≥0(−1)kQ(1ks+j)(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ(1ks)(z1, . . . , zn)
,

and

HWUs−1WD
n,s,j (z1, . . . , zn) =

∑

m∈sP

∑

w∈WUs−1WDn,m

z(w)

=
PWUs−1SU

n,s,j (z1, . . . , zn)

PWUs−1SU
n,s,0 (z1, . . . , zn)

(4.2.14)

=

∑
k≥0(−1)kQ(skj)(z1, . . . , zn)

1 +
∑

k≥1(−1)kQ(sk)(z1, . . . , zn)
.

Proof. We start by proving (4.2.11). Since we know that

HSUs−1SD
n,s,0 (z1, . . . , zn) =

1

P SUs−1WU
n,s,0 (z1, . . . , zn)

,
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we must show that

HSUs−1SD
n,s,0 (z1, . . . , zn) · P SUs−1WU

n,s,j (z1, . . . , zn) = HSUs−1SD
n,s,j (z1, . . . , zn). (4.2.15)

Now we can interpret the LHS of (4.2.15) as

∑

(a,b)∈V

z(a)z(b)(−1)(`(b)−j)/s (4.2.16)

where V is the set of all pairs of words (a, b) such that a ∈ {ε}∪⋃
m∈sP SU s−1SDn,m

and b ∈ ⋃
m∈j+sP SU s−1WUn,m. Thus, in general, a consists of a number of strictly

increasing blocks of size s where there are strict decreases between blocks and b

consists of a number of strictly increasing blocks of size s followed by a strictly

increasing block of size j where there are weak increases between blocks. We will

define a sign-reversing weight preserving involution I3 on the collection of all such

pairs of words (a, b). The definition of I3 proceeds in 4 cases.

Case 1. The last block of a is aks+1 < . . . < aks+s and the first block of b is

b1 < · · · < bs.

If aks+s > b1, then I3(a, b) = (ā, b̄) where ā is the result of inserting the first block

of b at the end of a and b̄ is the result of removing the first block of b from b. Clearly

(ā, b̄) is again a pair in V . However if aks+s ≤ b1, then we let I3(a, b) = (¯̄a, ¯̄b) where

¯̄a is the result of removing the last block of a from a and ¯̄b is the result of inserting

the last block of a at the start of b. Clearly (¯̄a, ¯̄b) is again a pair in V .

Case 2. The first block of b is b1 < · · · < bs and a = ε.

Then I3(a, b) = (ā, b̄) where ā = b1 . . . bs and b̄ is the result of removing the first

block of b from b. Clearly (ā, b̄) is again a pair in V .

Case 3. The last block of a is aks+1 < . . . < aks+s and b = b1 < · · · < bj

where aks+s ≤ b1.

Then I3(a, b) = (¯̄a, ¯̄b) where ¯̄a is the result of removing the last block of a from a

and ¯̄b is the result of inserting the last block of a to the start of b.
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Case 4. The last block of a is aks+1 < . . . < aks+s and b = b1 < · · · < bj

where aks+s > b1.

Then I3(a, b) = (a, b).

It is easy to see that I3 is a sign-reversing, weight-preserving involution, so that

I3 proves that the LHS of (4.2.15) reduces to summing the weights of the pairs

of words (a, b) in Case 4. To do this, first observe that the signs of all the pairs

of words in Case 4 are positive. Moreover, it is easy to see that if we insert b at

the end of a, we will create a word in
⋃

m∈j+sP SU s−1SDn,m and that all words in
⋃

m∈j+sP SU s−1SDn,m arise from the pairs of words in Case 4 in this way. Thus,

the sum of the weights in Case 4 is equal to HSUs−1SD
n,s,j (z1, . . . , zn) as desired.

The exact same involution will prove that

HWUs−1SD
n,s,0 (z1, . . . , zn) · PWUs−1WU

n,s,0 (z1, . . . , zn) = HWUs−1SD
n,s,j (z1, . . . , zn) (4.2.17)

since the only difference in this case is that the blocks are weakly increasing.

It is also the case that we can make the same type of modifications to the

involution as we did in Theorem 4.2.1 to prove

HSUs−1WD
n,s,0 (z1, . . . , zn) · P SUs−1SU

n,s,j (z1, . . . , zn) = HSUs−1WD
n,s,j (z1, . . . , zn) (4.2.18)

and

HWUs−1WD
n,s,0 (z1, . . . , zn) · PWUs−1SU

n,s,j (z1, . . . , zn) = HWUs−1WD
n,s,j (z1, . . . , zn). (4.2.19)

Using Lemma 4.1.1, we immediately have the following corollaries.
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Corollary 4.2.4. Let s ≥ 2 and 1 ≤ j ≤ s− 1. Then

∑

m∈j+sP

∑

w∈SUs−1SDn,m

q|w|z`(w) =

∑
k≥0(−1)kq(

k(s−1)+j+1
2 )+(s−1)(k+1

2 )[n+k
ks+j

]
q
zks+j

1 +
∑

k≥1(−1)kq(
k(s−1)+1

2 )+(s−1)(k+1
2 )[n+k

ks

]
q
zks

,

∑

m∈j+sP

∑

w∈WUs−1SDn,m

q|w|z`(w) =

∑
k≥0(−1)kqks+j

[
n+ks+j−1

ks+j

]
q
zks+j

1 +
∑

k≥1(−1)kqks
[
n+ks−1

ks

]
q
zks

,

∑

m∈j+sP

∑

w∈SUs−1WDn,m

q|w|z`(w) =

∑
k≥0(−1)kq(

ks+j+1
2 )[ n

ks+j

]
q
zks+j

1 +
∑

k≥1(−1)kq(
ks+1

2 )[ n
ks

]
q
zks

, and

∑

m∈j+sP

∑

w∈WUs−1WDn,m

q|w|z`(w) =

∑
k≥0(−1)kqs(k+1

2 )+j(k+1)
[
n+k(s−1)+j−1

ks+j

]
q
zks+j

1 +
∑

k≥1(−1)kqs(k+1
2 )[n+k(s−1)

ks

]
q
zks

.

4.3 Extensions

It should be clear from our definitions of the involutions in section 3 that they

did not depend on the nature of what was in the blocks. We only needed that the

blocks in the pairs of words (a, b) are of the same type. Thus, the same type of

theorems will hold for any type of block conditions. For example, suppose that

we consider a block condition a1 . . . as where we require that the ai+1 − ai ≥ r for

i = 1, . . . , s− 1. That is fix s ≥ 2 and r ≥ 1. We then define the following classes

of words.

1. SrU s−1SDn,m is the set of all words w = w1 . . . wm ∈ P+
n of length m such

that wi > wi+1 if i ∈ sP and r + wi ≤ wi+1 if i 6∈ sP.

We let SrU s−1SDn =
⋃

m≥0 SrU sSDn,m.

2. SrU s−1WUn,m is the set of all words w = w1 . . . wm ∈ P+
n of length m such

that wi ≤ wi+1 if i ∈ sP and r + wi ≤ wi+1 if i 6∈ sP.

We let SrU s−1WUn =
⋃

m≥0 SrU sWUn,m.
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We can also define the following set of generating functions.

HSrUs−1SD
n,s,r,0 (z1, . . . , zn) = 1 +

∑

k≥1

∑

w∈SrUs−1SDn,ks

z(w),

HSrUs−1SD
n,s,r,j (z1, . . . , zn) =

∑

k≥0

∑

w∈SrUs−1SDn,ks+j

z(w) for j = 1, . . . , s− 1,

P SrUs−1WU
n,s,r,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)k
∑

w∈SrUs−1WUn,ks

z(w) and

P SrUs−1WU
n,s,r,j (z1, . . . , zn) =

∑

k≥0

(−1)k
∑

w∈SrUs−1WUn,ks+j

z(w) for j = 1, . . . , s− 1.

Then we can use the same proofs as in Theorems 4.2.1 and 4.2.3 to prove that

HSrUs−1SD
n,s,r,0 (z1, . . . , zn) =

1

P SrUs−1WU
n,s,r,0 (z1, . . . , zn)

, (4.3.1)

and

HSrUs−1SD
n,s,r,j (z1, . . . , zn) =

P SrUs−1WU
n,s,r,j (z1, . . . , zn)

P SrUs−1WU
n,s,r,0 (z1, . . . , zn)

, (4.3.2)

In this case, we cannot express the P SrUs−1WU
n,s,r,j (z1, . . . , zn) as a sum of quasi-

symmetric functions, but we can still give explicit expressions for the specializa-

tions where we replace zi by qiz for i = 1, . . . , n. That is, suppose that m = ks+ j

where 0 ≤ j ≤ s−1, and we are given a word a1 . . . am ∈ SrU s−1WUn,m. Then, let

b = b1 . . . bks+j be such that b1 = 1 and bi+1−bi = r if i 6∈ sP and bi+1 = bi if i ∈ sP.

For example if s = 3, r = 2, and m = 10, then b1 . . . b10 = 1 3 5 5 7 9 9 11 13 13.

Note that the largest letter in b is bks+j = 1 + r((s − 1)k + [j − 1]+), where

[j − 1]+ = max(j − 1, 0), and that

|b| =

k(s−1)+j−1∑
i=0

(1 + ir) +
k∑

i=1

i(s− 1)r + 1

= ks + j + r




k(s−1)+j−1∑
i=0

i


 + r(s− 1)

k∑
i=1

i

= ks + j + r

(
k(s− 1) + j

2

)
+ r(s− 1)

(
k + 1

2

)
.
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It is then easy to see that we have designed b so that if ci = ai − bi, then

0 ≤ c1 ≤ c2 ≤ · · · ≤ cks+j ≤ n− (1 + r(k(s− 1) + [j − 1]+)). Thus, the sequences

c = c1 . . . cks+j that arise in this way are just the partitions that lie in the (ks +

j)× (n− (1 + r(k(s− 1) + [j − 1]+))) rectangle. Since

∑

0≤c1≤c2≤···≤cks+j≤n−(1+r(k(s−1)+[j−1]+))

qc1+···+cks+j

=

[
n + ks + j − (1 + r(k(s− 1) + [j − 1]+))

ks + j

]

q

,

it follows that

∑

a1...aks+j∈SrUs−1WUn,ks+j

qa1+···+aks+j =

qks+j+r(k(s−1)+j
2 )+r(s−1)(k+1

2 )
[
n + ks + j − (1 + r(k(s− 1) + [j − 1]+))

ks + j

]

q

.

Thus, for s ≥ 2, r ≥ 1, and j = 1, . . . , s− 1,

P SrUs−1WU
n,s,r,0 (z1, . . . , zn)|zi→qiz =

1 +
∑

k≥1

(−1)kqks+r(k(s−1)
2 )+r(s−1)(k+1

2 )
[
n + kr − (r − 1)ks− 1

ks

]

q

zks and

P SrUs−1WU
n,s,r,j (z1, . . . , zn) =

∑

k≥0

(−1)kqks+j+r(k(s−1)+j
2 )+r(s−1)(k+1

2 )
[
n + kr − (r − 1)(ks + j − 1)

ks + j

]

q

zks+j.

Thus, we have the following theorem.

Theorem 4.3.1. For s ≥ 2, r ≥ 1, and j = 1, . . . , s− 1,

1 +
∑

m∈sP

∑

w∈SrUs−1SDn,m

q|w|z`(w) =

1

1 +
∑

k≥1(−1)kqks+r(k(s−1)
2 )+r(s−1)(k+1

2 )[n+kr−(r−1)ks−1
ks

]
q
zks
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and

∑

m∈j+sP

∑

w∈SrUs−1SDn,m

q|w|z`(w) =

qks+j+r(k(s−1)+j
2 )+r(s−1)(k+1

2 )[n+kr−(r−1)(ks+j−1)
ks+j

]
q
zks+j

1 +
∑

k≥1(−1)kqks+r(k(s−1)
2 )+r(s−1)(k+1

2 )[n+kr−(r−1)ks−1
ks

]
q
zks

.



Chapter 5

Enumerating up-down words with

peak conditions

In Chapter 4, we were able to enumerate 4 classes of up-down words via a

simple involution. In this chapter, we will enumerate these same classes of up-down

words with the added condition that all peaks–entries at the end of a block–are

in a certain set X ⊂ P. We will see that the same involution applies, although

the resulting generating functions can no longer be expressed in terms of quasi-

symmetric functions.

Definition 5.0.2. Let s ≥ 2.

1. SU s−1SDn,X,m is the set of all words w ∈ P+
n of length m such that

wsi ∈ X ∀i, Des(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1.

We let SU s−1SDn,X =
⋃

m≥0 SU s−1SDn,X,m.

2. WU s−1SDn,X,m is the set of all words w ∈ P+
n of length m such that

wsi ∈ X ∀i, Des(w) = (sP)m−1 and WRis(w) = Pm−1 − (sP)m−1.

We let WU s−1SDn,X =
⋃

m≥0 WU s−1SDn,X,m.

3. SU s−1WDn,X,m is the set of all words w ∈ P+
n of length m such that

wsi ∈ X ∀i, WDes(w) = (sP)m−1 and Ris(w) = Pm−1 − (sP)m−1.

We let SU s−1WDn,X =
⋃

m≥0 SU s−1WDn,X,m.

89
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4. WU s−1WDn,X,m is the set of all words w ∈ P+
n of length m such that

wsi ∈ X ∀i, WDes(w) = (sP)m−1 and WRis(w) = Pm−1 − (sP)m−1.

We let WU s−1WDn,X =
⋃

m≥0 WU s−1WDn,X,m.

We define SU s−1WUn,X,m, SU s−1WUn,X , WU s−1WUn,X,m, WU s−1WUn,X ,

SU s−1SUn,X,m, SU s−1SUn,X , WU s−1SUn,X,m, and WU s−1SUn,X similarly.

Also, define the following generating functions for any s ≥ 2:

HSUs−1SD
n,X,s,0 (z1, . . . , zn) = 1 +

∑

m∈sP

∑

w∈SUs−1SDn,X,m

z(w) and

HSUs−1SD
n,X,s,j (z1, . . . , zn) =

∑

m∈j+sP

∑

w∈SUs−1SDn,X,m

z(w) for j = 1, . . . , s− 1.

We define HWUs−1SD
n,X,s,j (z1, . . . , zn), HSUs−1WD

n,X,s,j (z1, . . . , zn), and

HWUs−1WD
n,X,s,j (z1, . . . , zn) for j = 0, . . . , s− 1 similarly.

We wish to find simple expressions for each of these generating functions. The

results from the previous chapter can be viewed as the special case when X = P.

The proof technique we use to find the above generating functions will be identical

to that from Chapter 4. Thus, we wish to define the following additional generating

functions for s ≥ 2:

P SUs−1WU
n,X,s,0 (z1, . . . , zn) = 1 +

∑

k≥1

(−1)k
∑

w∈SUs−1WUn,X,ks

z(w) and

P SUs−1WU
n,X,s,j (z1, . . . , zn) =

∑

k≥0

(−1)k
∑

w∈SUs−1WUn,X,ks+j

z(w) for j = 1, . . . , s− 1.

We define PWUs−1WU
n,X,s,j (z1, . . . , zn), P SUs−1SU

n,,X,s,j (z1, . . . , zn), and PWUs−1SU
n,X,s,j (z1, . . . , zn)

for j = 0, . . . , s− 1 similarly.

5.1 Involution

We have the following theorem.

Theorem 5.1.1. Let s ≥ 2. Then

HSUs−1SD
n,X,s,0 (z1, . . . , zn) =

1

P SUs−1WU
n,X,s,0 (z1, . . . , zn)

, (5.1.1)
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HWUs−1SD
n,X,s,0 (z1, . . . , zn) =

1

PWUs−1WU
n,X,s,0 (z1, . . . , zn)

, (5.1.2)

HSUs−1WD
n,X,s,0 (z1, . . . , zn) =

1

P SUs−1SU
n,X,s,0 (z1, . . . , zn)

, (5.1.3)

and

HWUs−1WD
n,X,s,0 (z1, . . . , zn) =

1

PWUs−1SU
n,X,s,0 (z1, . . . , zn)

. (5.1.4)

We start by proving (5.1.1). We must show that

HSUs−1SD
n,X,s,0 (z1, . . . , zn) · P SUs−1WU

n,X,s,0 (z1, . . . , zn) = 1. (5.1.5)

If the reader reflects on the proofs given in Chapter 4, she will realize that they

will carry through regardless of any condition on the peaks (or any entries, for that

matter). Thus, this proof is essentially the same as the proof of (4.2.1).

We can interpret the LHS of (5.1.5) as

∑

(a,b)∈T

z(a)z(b)(−1)`(b)/s, (5.1.6)

where T is the set of all pairs of words (a, b) such that

a ∈ {ε} ∪⋃
m∈sP SU s−1SDn,X,m and

b ∈ {ε} ∪⋃
m∈sP SU s−1WUn,X,m, where ε denotes the empty word.

The empty word ε accounts for the leading 1 in the series of HSUs−1SD
n,X,s,0 (z1, . . . , zn)

and P SUs−1WU
n,X,s,0 (z1, . . . , zn). Thus, in general, a consists of a number of strictly

increasing blocks of size s where there are strict decreases between blocks and b

consists of a number of strictly increasing blocks of size s where there are weak

increases between blocks. We will define a sign-reversing, weight-preserving invo-

lution I1 on the collection of all such pairs of words (a, b). The definition of I1

proceeds in 4 cases.

Case 1. The last block of a is aks+1 < . . . < aks+s and the first block of b is

b1 < · · · < bs.
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If aks+s > b1, then I1(a, b) = (ā, b̄), where ā is the result of inserting the first block

of b at the end of a and b̄ is the result of removing the first block of b from b. Clearly

(ā, b̄) is again a pair in T . However if aks+s ≤ b1, then we let I1(a, b) = (¯̄a, ¯̄b) where

¯̄a is the result of removing the last block of a from a and ¯̄b is the result of inserting

the last block of a at the start of b. Clearly (¯̄a, ¯̄b) is again a pair in T .

Case 2. The first block of b is b1 < · · · < bs and a = ε.

Then I1(a, b) = (ā, b̄), where ā = b1 . . . bs and b̄ is the result of removing the first

block of b from b. Clearly (ā, b̄) is again a pair in T .

Case 3. The last block of a is aks+1 < . . . < aks+s and b = ε.

Then I1(a, b) = (¯̄a, ¯̄b), where ¯̄a is the result of removing the last block of a from a

and ¯̄b = aks+1 . . . aks+s.

Case 4. a = b = ε.

Then I1(a, b) = (a, b).

It is easy to see that I1 is a sign-reversing, weight-preserving involution with trivial

fixed point (ε, ε), so that I1 proves (5.1.5).

The analogous proofs will carry over to show 5.1.2, 5.1.3, and 5.1.4. Moreover,

analogous proofs will also give us results with a final block of length j. Thus, we

have the following theorem.

Theorem 5.1.2. Let s ≥ 2 and 1 ≤ j ≤ s− 1. Then

HSUs−1SD
n,X,s,j (z1, . . . , zn) =

P SUs−1WU
n,X,s,j (z1, . . . , zn)

P SUs−1WU
n,X,s,0 (z1, . . . , zn)

, (5.1.7)

HWUs−1SD
n,X,s,j (z1, . . . , zn) =

PWUs−1WU
n,X,s,j (z1, . . . , zn)

PWUs−1WU
n,X,s,0 (z1, . . . , zn)

, (5.1.8)

HSUs−1WD
n,X,s,j (z1, . . . , zn) =

P SUs−1SU
n,X,s,j (z1, . . . , zn)

P SUs−1SU
n,X,s,0 (z1, . . . , zn)

, (5.1.9)
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and

HWUs−1WD
n,X,s,j (z1, . . . , zn) =

PWUs−1SU
n,X,s,j (z1, . . . , zn)

PWUs−1SU
n,X,s,0 (z1, . . . , zn)

. (5.1.10)

Thus, we have reduced our original task to finding the generating functions

P SUs−1WU
n,X,s,j (z1, . . . , zn), PWUs−1WU

n,X,s,j (z1, . . . , zn), P SUs−1SU
n,X,s,j (z1, . . . , zn), and

PWUs−1SU
n,X,s,j (z1, . . . , zn) for j = 0, . . . , s− 1.

Unfortunately, there does not seem to be any direct way to find compact ex-

pressions for these generating functions for arbitrary X and s. One can develop

recursions for such generating functions, but they are not easy to solve in general.

However, in the special case where X = E or X = O, s = 2, and zi = qiz, we can

find compact expressions for these generating functions. This will be the subject

of our next section. Future work could extend these results to more general values

s and sets X.

5.2 Special case: s = 2 and X = E or O

Define

EV WUSU
n,0 (z, q) = PWUSU

n,E,2,0 (z1, . . . , zn)|zi=qiz

= 1 +
∑

k≥1

(−1)k
∑

w∈WUSUn,E,2k

z`(w)q|w|,

EV WUSU
n,1 (z, q) = PWUSU

n,E,2,1 (z1, . . . , zn)|zi=qiz

=
∑

k≥0

(−1)k
∑

w∈WUSUn,E,2k+1

z`(w)q|w|,

ODWUSU
n,0 (z, q) = PWUSU

n,O,2,0 (z1, . . . , zn)|zi=qiz

= 1 +
∑

k≥1

(−1)k
∑

w∈WUSUn,O,2k

z`(w)q|w|,
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and

ODWUSU
n,1 (z, q) = PWUSU

n,O,2,1 (z1, . . . , zn)|zi=qiz

=
∑

k≥0

(−1)k
∑

w∈WUSUn,O,2k+1

z`(w)q|w|.

Similarly define

EV SUWU
n,0 (z, q), EV SUWU

n,1 (z, q), EV WUWU
n,0 (z, q),

EV WUWU
n,1 (z, q), EV SUSU

n,0 (z, q), EV SUSU
n,1 (z, q),

and

ODSUWU
n,0 (z, q), ODSUWU

n,1 (z, q), ODWUWU
n,0 (z, q),

ODWUWU
n,1 (z, q), ODSUSU

n,0 (z, q), ODSUSU
n,1 (z, q).

The following observation reduces our work slightly. Consider, for example,

SUSD2n+1,E. No word in SUSD2n+1,E can contain 2n + 1 except the singleton

word w1 = 2n + 1, because any other word must have some even peak above that

entry. Similarly, no word in SUSD2n,O can contain 2n except the singleton word

w1 = 2n. The same reasoning applies to SUWD, WUSD, and WUWD. Thus,

we get the following lemma.

Lemma 5.2.1. Let n ≥ 1. Then

HWUWD
2n+1,E,2,0(z1, . . . , zn) = HWUWD

2n,E,2,0 (z1, . . . , zn),

HWUWD
2n+1,E,2,1(z1, . . . , zn) = HWUWD

2n,E,2,1 (z1, . . . , zn) + z2n+1,

HSUWD
2n+1,E,2,0(z1, . . . , zn) = HSUWD

2n,E,2,0(z1, . . . , zn),

HSUWD
2n+1,E,2,1(z1, . . . , zn) = HSUWD

2n,E,2,1(z1, . . . , zn) + z2n+1,

HSUSD
2n+1,E,2,0(z1, . . . , zn) = HSUSD

2n,E,2,0(z1, . . . , zn),

HSUSD
2n+1,E,2,1(z1, . . . , zn) = HSUSD

2n,E,2,1(z1, . . . , zn) + z2n+1,

HWUSD
2n+1,E,2,0(z1, . . . , zn) = HWUSD

2n,E,2,0(z1, . . . , zn),

HWUSD
2n+1,E,2,1(z1, . . . , zn) = HWUSD

2n,E,2,1(z1, . . . , zn) + z2n+1,
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and

HWUWD
2n,O,2,0 (z1, . . . , zn) = HWUWD

2n−1,O,2,0(z1, . . . , zn),

HWUWD
2n,O,2,1 (z1, . . . , zn) = HWUWD

2n−1,O,2,1(z1, . . . , zn) + z2n,

HSUWD
2n,O,2,0(z1, . . . , zn) = HSUWD

2n−1,O,2,0(z1, . . . , zn),

HSUWD
2n,O,2,1(z1, . . . , zn) = HSUWD

2n−1,O,2,1(z1, . . . , zn) + z2n,

HSUSD
2n,O,2,0(z1, . . . , zn) = HSUSD

2n−1,O,2,0(z1, . . . , zn),

HSUSD
2n,O,2,1(z1, . . . , zn) = HSUSD

2n−1,O,2,1(z1, . . . , zn) + z2n,

HWUSD
2n,O,2,0(z1, . . . , zn) = HWUSD

2n−1,O,2,0(z1, . . . , zn),

HWUSD
2n,O,2,1(z1, . . . , zn) = HWUSD

2n−1,O,2,1(z1, . . . , zn) + z2n.

Based on this lemma, in order to find all the H generating functions under

the specialization zi = qiz, it suffices to find the generating functions EV2n,j and

OD2n−1,j for j ∈ {0, 1}. In the following subsections, we will find compact expres-

sions for the generating functions EV2n,j and OD2n−1,j for j ∈ {0, 1}, sketching

the proof for each by directly counting the desired objects. Although the bijection

from Chapter 4 is the same, finding the generating functions for the classes of

words that we reduce to is different in each case and cannot be handled with a

general lemma. We treat the first case more carefully, illustrating both the subtle

reasoning involved and the simplification steps. We present other cases in slightly

less detail. It will be useful to note that, when q-counting words, the power of q

in an expression is equal to the sum of the letters in the minimal possible word of

the type considered. This provides a check for our reasoning.

5.2.1 SUSU

Theorem 5.2.2.

ODSUSU
2n−1,0(z, q) =

n−1∑

k=0

(−1)kz2k[2]q

k−1∑
j=0

q2j2+4k2+3j−4jk

[
n + j

2k

]

q2

[
k − 1

j

]

q4
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and

ODSUSU
2n−1,1(z, q) =

n−1∑

k=0

(−1)kz2k+1([2]q)
2

k−1∑
j=0

qj+2j2+4k−4jk+4k2

[
n + j

2k + 1

]

q2

[
k − 1

j

]

q4

.

We shall classify the words w = w1 . . . w2k in SUSU2n−1,O,2k by the number of

odd positions 2t + 1 > 1 such that w2t+1 is even. First, label the odd positions

> 1 from left to right with 1, 2, . . . , k − 1. Thus, position 3 gets label 1, position

5 gets label 2, and so on. Let 1 ≤ i1 < i2 < · · · < ij ≤ k − 1 be the labels of the

odd positions 2t + 1 > 1 such that w2t+1 is even. To arrive at a possible word w,

we first choose some sequence

0 ≤ a1 ≤ a2 ≤ · · · ≤ a2k ≤ n + j − 2k.

The set of such sequences is q-counted by
[
n+j
2k

]
q
. Next, we consider the sequence

b defined by bm = 2am + 1, so that our q-count becomes q2k
[
n+j
2k

]
q2 . We will have

b2k ≤ 2(n+2−2k)+1. Now, we want to force < everywhere except at the specified

locations i1, i2, . . . , ij. Thus, we add 0, 2, 4, 6, etc to our sequence entries, except

at the specified locations, where we add the same number again. For instance,

suppose j = 2, i1 = 1, and i2 = 3. After we have our sequence b, then we choose a

new sequence c, where

c1 = b1, c2 = b2 + 2, c3 = b3 + 2, c4 = b4 + 4, c5 = b5 + 6, c6 = b6 + 8, c7 = b7 + 8, . . .

What do we add to the place corresponding to im? It turns out we need to add

4im − 2m. For instance, in our example above, we added 4(3) − 2(2) = 8 to

b7, which corresponds to i2 = 3. Thus, moving from sequence b to c multiplies

our q-count by a factor of q2((2k−j
2 )+(2i1−1)+(2i2−2)+···+(2ij−j)). We will have c2k ≤

(2n + 2j − 4k + 1) + 2(2k − j − 1) = 2n − 1, as needed. Next, we add 1 to each

of the locations specified by i1, i2, . . . , ij to obtain a new sequence d = d1 . . . d2k.

This multiplies our q-count by an additional factor of qj. Overall, the q-count of

our word d is given by:

k−1∑
j=0

q2k

[
n + j

2k

]

q2

q2(2k−j
2 )+j

∑

1≤i1<i2<···<ij≤k−1

q2((2i1−1)+(2i2−2)+···+(2ij−j)). (5.2.1)
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The largest j can be is k − 1, since that’s how many odd places > 1 there are.

Equation 5.2.1 simplifies to

k−1∑
j=0

qj+2k+2(2k−j
2 )

[
n + j

2k

]

q2

∑

1≤i1<i2<···<ij≤k−1

q−2(j+1
2 )(q4)i1+i2+···+ij

=
k−1∑
j=0

qj+2k+2((2k−j
2 )−(j+1

2 ))

[
n + j

2k

]

q2

∑

1≤i1<i2<···<ij≤k−1

(q4)i1+i2+···+ij

=
k−1∑
j=0

qj+2k+2((2k−j
2 )+(j+1

2 ))

[
n + j

2k

]

q2

[
k − 1

j

]

q4

.

We can obtain our final word w by either leaving d1 alone or adding 1 to d1.

This multiplies our q-count by an additional factor of (1 + q), so we get (after

simplifying):

∑
w∈SUSU2n−1,O,2k

q|w| = (1 + q)
k−1∑
j=0

q2j2+4k2+j(3−4k)

[
n + j

2k

]

q2

[
k − 1

j

]

q4

,

which proves the first part of Theorem 5.2.2.

Recall that we can also ascertain the smallest power of q present in our q-count

by summing the entries in the minimal word of the desired type. For a given j,

the minimal word will be

1, 3, 3, 5, 5, . . . , 2j + 1, 2j + 1, 2j + 3, . . . 2(2k − j − 2) + 3

This gives 2(j +1)2−1+(2k− j)2− (j +1)2 + j = 2j2 + j(3−4k)+4k2, confirming

that our power of q is correct.

Our reasoning for the second part of Theorem 5.2.2 is similar. To q-count

SUSU2n−1,O,2k+1, we classify the words w1w2 . . . w2k+1 by the number of odd posi-

tions 2t + 1 with 1 < 2t + 1 < 2k + 1 such that w2t+1 is even. First, label the odd

positions 1 < 2t + 1 < 2k + 1 from left to right with 1, 2, . . . , k− 1. Thus, position

3 gets label 1, position 5 gets label 2, and so on. Let 1 ≤ i1 < i2 < · · · < ij ≤ k−1

be the labels of the odd positions 1 < 2t + 1 < 2k + 1 such that w2t+1 is even. To

arrive at a possible word w, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ · · · ≤ a2k ≤ a2k+1 ≤ n + j − 2k − 1.
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The set of such sequences is q-counted by
[

n+j
2k+1

]
q
. Next, we consider the sequence b

defined by bm = 2am +1, so that our q-count becomes q2k+1
[

n+j
2k+1

]
q2

. Now, we want

to force < everywhere except at the specified locations i1, i2, . . . , ij and before the

last entry b2k+1. Thus, we add 0, 2, 4, 6, etc to our sequence entries, except at the

specified locations and the last entry, where we add the same number again. For

instance, suppose j = 2, i1 = 1, and i2 = 3. After we have our sequence b, then

we choose a new sequence c, where

c1 = b1, c2 = b2 + 2, c3 = b3 + 2, c4 = b4 + 4, c5 = b5 + 6, c6 = b6 + 8, c7 = b7 + 8, . . .

We then add 1 to the specified locations to obtain a sequence d = d1 . . . d2k+1 that

is q-counted by

k−1∑
j=0

q2k+1

[
n + j

2k + 1

]

q2

q2(2k−j
2 )+2(2k−j−1)+j

∑

1≤i1<i2<···<ij≤k−1

q2((2i1−1)+(2i2−2)+···+(2ij−j)).

Finally, we have 2 choices to make in order to extend d to our final word w.

We can increase d1 by 1 or not, and increase d2k+1 by 1 or 2. Thus, we will have

w2k+1 ≤ 2(n + j − 2k − 1) + 1 + 2(2k − j − 1) + 2 = 2n − 1, as needed. These

multiply our q-count by a factor of (1 + q)(q + q2), so that

∑
w∈SUSU2n−1,O,2k+1

q|w| =(1 + q)(q + q2)
k−1∑
j=0

q2k+1

[
n + j

2k + 1

]

q2

q2(2k−j
2 )+2(2k−j−1)+j

×
∑

1≤i1<i2<···<ij≤k−1

q2((2i1−1)+(2i2−2)+···+(2ij−j)),

which simplifies to give the second part of Theorem 5.2.2.

We can again check the power of q using the minimal word of this type. For a

given j, the minimal word will be

1, 3, 3, 5, 5, . . . , 2j + 1, 2j + 1, 2j + 3, . . . 2(2k − j − 2 + 1) + 3

with the last entry reduced by 1. This gives 2(j + 1)2 − 1 + (2k − j + 1)2 − (j +

1)2 + j − 1 = 2j2 + j − 4jk + 4k2.
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Theorem 5.2.3.

EV SUSU
2n,0 (z, q) =

n∑

k=0

(−1)kz2k

k∑
j=0

q2j2−j+4k2+2k−4kj

[
n + j

2k

]

q2

[
k

j

]

q4

and

EV SUSU
2n,1 (z, q) =

n∑

k=0

(−1)kz2k+1([2]1/q)
k∑

j=0

q2j2−3j+4k2+6k−4kj+2

[
n + j

2k + 1

]

q2

[
k

j

]

q4

.

Our reasoning for even peaks is similar to that used in Theorem 5.2.2. To

q-count SUSU2n,E,2k, we classify the words w1w2 . . . w2k ∈ SUSU2n,E,2k by the

number of odd positions 2t+1 such that w2t+1 is odd. First, label the odd positions

2t + 1 from left to right with 1, 2, . . . , k. Thus, position 1 gets label 1, position 3

gets label 2, and so on. Let 1 ≤ i1 < i2 < · · · < ij ≤ k be the labels of the odd

positions 2t + 1 such that w2t+1 is odd. To arrive at a possible word w, we first

choose some sequence

0 ≤ a1 ≤ a2 ≤ · · · ≤ a2k ≤ n + j − 2k.

The set of such sequences is q-counted by
[
n+j
2k

]
q
. Next, we consider the sequence

b defined by bm = 2am + 2, so that our q-count becomes q4k
[
n+j
2k

]
q2 . Now, we want

to force < everywhere except at the specified locations i1, i2, . . . , ij. Thus, we add

0, 2, 4, 6, etc to our sequence entries, except at the specified locations, where we

add the same number again. Thus, c2k ≤ 2(n + j − 2k) + 2 + 2(2k − j − 1) = 2n,

as needed. We will end up adding 4am − 2(m + 1) to the place with label im. For

instance, suppose j = 2, i1 = 1, and i2 = 3. After we have our sequence b, then

we choose a new sequence c, where

c1 = b1, c2 = b2, c3 = b3 + 2, c4 = b4 + 4, c5 = b5 + 6, c6 = b6 + 6, c7 = b7 + 6, . . .

We then subtract 1 from the specified locations to obtain the final sequence w,

which is q-counted by

k∑
j=0

q4k

[
n + j

2k + 1

]

q2

q2(2k−j
2 )−j

∑

1≤i1<i2<···<ij≤k

q2((2i1−2)+(2i2−3)+···+(2ij−j−1)),
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which simplifies to give the first part of Theorem 5.2.3.

We can again check the power of q using the minimal word of this type. For a

given j, the minimal word (before reduction) will be

2, 2, . . . , 2j, 2j, 2j + 2, 2j + 4, . . . , 2(2(k − j) + j + 1)

This gives 4
(

j+1
2

)
+ 2

[(
2k−j+2

2

)− (
j+1
2

)]− j = 2j2 − j + 4k2 + 2k − 4kj.

To q-count SUSU2n,E,2k+1, we classify the words w1w2 . . . w2k+1 by the number

of odd positions 2t+1 with 2t+1 < 2k +1 such that w2t+1 is odd. First, label the

odd positions 2t + 1 < 2k + 1 from left to right with 1, 2, . . . , k. Thus, position 1

gets label 1, position 3 gets label 2, and so on. Let 1 ≤ i1 < i2 < · · · < ij ≤ k be

the labels of the odd positions 2t + 1 < 2k + 1 such that w2t+1 is odd. To arrive at

a possible word w, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ · · · ≤ a2k ≤ a2k+1 ≤ n + j − 2k − 1.

The set of such sequences is q-counted by
[

n+j
2k+1

]
q
. Next, we consider the sequence

b defined by bm = 2am + 2, so that our q-count becomes q4k+2
[

n+j
2k+1

]
q2

. Now, we

want to force < everywhere except at the specified locations i1, i2, . . . , ij.Thus,

we add 0, 2, 4, 6, etc to our sequence entries, except at the specified locations

and the last entry, where we add the same number again. Thus, we will have

c2k+1 ≤ 2(n + j − 2k− 1) + 2 + 2(2k− j) = 2n, as needed. We will end up adding

4am − 2(m + 1) to the place with label im. For instance, suppose j = 2, i1 = 1,

and i2 = 3. After we have our sequence b, then we choose a new sequence c, where

c1 = b1, c2 = b2, c3 = b3 + 2, c4 = b4 + 4, c5 = b5 + 6, c6 = b6 + 6, c7 = b7 + 6, . . .

We then subtract 1 from the specified locations to obtain a sequence d = d1 . . . d2k+1

that is q-counted by

k∑
j=0

q4k+2

[
n + j

2k + 1

]

q2

q2(2k−j+1
2 )−j

∑

1≤i1<i2<···<ij≤k

q2((2i1−2)+(2i2−3)+···+(2ij−j−1)).
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We can obtain our final word w by either leaving d2k+1 alone or subtracting 1 from

d2k+1. This multiplies our q-count by a factor of (1 + 1/q), so that

∑
w∈SUSU2n,E,2k+1

q|w| =(1 + 1/q)
k∑

j=0

q4k+2

[
n + j

2k + 1

]

q2

q2(2k−j+1
2 )−j

×
∑

1≤i1<i2<···<ij≤k

q2((2i1−2)+(2i2−3)+···+(2ij−j−1)),

which simplifies to give the second part of Theorem 5.2.3.

We can again check the power of q using the minimal word of this type. For a

given j, the minimal word (before reduction) will be

2, 2, . . . , 2j, 2j, 2j + 2, 2j + 4, . . . , 2(2(k − j) + j + 1).

This gives 4
(

j+1
2

)
+ 2

[(
2k−j+2

2

)− (
j+1
2

)]− j = 4k2 − 4jk + 6k + 2j2 − 3j + 2.

5.2.2 WUSU

Theorem 5.2.4.

EV WUSU
2n,0 (z, q) =

n∑

k=0

(−1)kz2k([2]1/q)
kq2k2+2k

[
n + k

2k

]

q2

and

EV WUSU
2n,1 (z, q) =

n∑

k=0

(−1)kz2k+1([2]1/q)
k+1q2k2+4k+2

[
n + k

2k + 1

]

q2

.

To obtain a word w ∈ WUSU2n,E,2k, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ a3 · · · ≤ a2k ≤ n− k

The set of such sequences is q-counted by
[
n+k
2k

]
q
. Next, we consider the sequence

b defined by bm = 2am +2, so that our q-count becomes q4k
[
n+k
2k

]
q2 . Then, we want

to force < every other place, so generate a new sequence c by adding 0 to b1 and

b2, 2 to b3 and b4, 4 to b5 and b6, and so on, ending by adding 2(k−1) to b2k−1 and

b2k. We will have c2k ≤ 2(n−k)+2+2(k−1) = 2n, as needed. This increases our
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q-count by 2 + 2 + 4 + 4 + · · ·+ 2(k− 1) + 2(k− 1) = 4(1 + · · ·+ k− 1) = 4
(

k
2

)
, so

that we have q4k+4(k
2)

[
n+k
2k

]
q2 . We obtain our final word w from the sequence c by

choosing whether or not to subtract 1 from each odd place c1, c3, . . . , c2k−1. This

multiplies our q-count by a factor of (1 + 1/q)k, so that we have.

∑
w∈WUSU2n,E,2k

q|w| = (1 + 1/q)kq4k+4(k
2)

[
n + k

2k

]

q2

,

which simplifies to give the first part of Theorem 5.2.4.

To obtain a word w ∈ WUSU2n,E,2k+1, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ a3 · · · ≤ a2k+1 ≤ n− k − 1

The set of such sequences is q-counted by
[

n+k
2k+1

]
q
. Next, we consider the sequence b

defined by bm = 2am+2, so that our q-count becomes q4k+2
[

n+k
2k+1

]
q2

. Then, we want

to force < every other place, so generate a new sequence c by adding 0 to b1 and

b2, 2 to b3 and b4, 4 to b5 and b6, and so on, ending by adding 2k to b2k+1. Thus, we

will have c2k+1 ≤ 2(n−k−1)+2+2k = 2n, as needed. This increases our q-count

by 2+2+4+4+ · · ·+2(k−1)+2(k−1)+2k = 4(1+ · · ·+k−1)+2k = 4
(

k
2

)
+2k,

so that we have q4k+2+4(k
2)+2k

[
n+k
2k+1

]
q2

.

We obtain our final word w from the sequence c by choosing whether or not to

subtract 1 from each odd place c1, c3, . . . , c2k+1. This multiplies our q-count by a

factor of (1 + 1/q)k+1, so that we have

∑
w∈WUSU2n,E,2k+1

q|w| = (1 + 1/q)k+1q4k+2+4(k
2)+2k

[
n + k

2k + 1

]

q2

,

which simplifies to give the second part of Theorem 5.2.4.

Theorem 5.2.5.

ODWUSU
2n−1,0 (z, q) =

n∑

k=0

(−1)kz2k([2]1/q)
k−1

×
(
q2k2

[
n + k − 1

2k − 1

]

q2

+ [2]1/q

n−k−1∑
j=1

q2k2+4jk

[
n− j + k − 1

2k − 1

]

q2

)
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and

ODWUSU
2n−1,1 (z, q) =

n∑

k=0

(−1)kz2k+1([2]1/q)
k
(
q2k2+2k+1

[
n + k − 1

2k

]

q2

+ [2]1/q

n−k−2∑
j=1

q2k2+4jk+2k+2j+1

[
n− j + k − 1

2k

]

q2

)
.

To q-count WUSU2n−1,O,2k, we classify words w1w2 . . . w2k ∈ WUSU2n−1,O,2k

by the first letter w1. If w1 = 1, we obtain a word w as follows. First, choose a

sequence

0 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ≤ a2k ≤ n− k,

which is q-counted by
[
n+k−1
2k−1

]
q
. Next, we consider the sequence b defined by b1 = 1

and bm = 2am + 1 for m > 1, so that our q-count becomes q2k
[
n+k−1
2k−1

]
q2

. Then,

we want to force < every other place, so generate a new sequence c by adding 0

to b1 and b2, 2 to b3 and b4, 4 to b5 and b6, and so on, ending by adding 2(k − 1)

to b2k−1 and b2k. Thus, we will have c2k ≤ 2(n − k) + 1 + 2(k − 1) = 2n − 1, as

needed. This increases our q-count by 2 + 2 + 4 + 4 + · · ·+ 2(k − 1) + 2(k − 1) =

4(1 + · · · + k − 1) = 4
(

k
2

)
, so that we have q2k+4(k

2)
[
n+k−1
2k−1

]
q2

. We then obtain our

final word w from the sequence c by choosing whether or not to subtract 1 from

each odd place except the first: c3, c5, c7, . . . , c2k−1. This multiplies our q-count by

a factor of (1 + 1/q)k−1, so that we have

∑
w∈WUSU2n−1,O,2k

w1=1

q|w| = (1 + 1/q)k−1q2k+4(k
2)

[
n + k − 1

2k − 1

]

q2

.

If w1 = 2j or w1 = 2j + 1, we obtain a word w as follows. First, note that since

we must have k− 1 strict increases after w1, the largest j can be is n− k− 1. We

choose a sequence

0 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ≤ a2k ≤ n− j − k,

which is q-counted by
[
n−j+k−1

2k−1

]
q
. Next, we consider the sequence b defined by

b1 = 2j + 1 and bm = 2am + 2j + 1 for m > 1, so that our q-count becomes
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q(2j+1)(2k)
[
n+k−1
2k−1

]
q2

. Then, we want to force < every other place, so generate a

new sequence c by adding 0 to b1 and b2, 2 to b3 and b4, 4 to b5 and b6, and

so on, ending by adding 2(k − 1) to b2k−1 and b2k. Thus, we will have c2k ≤
2(n− j− k)+2j +1+2(k− 1) = 2n− 1, as needed. This increases our q-count by

2+2+4+4+ · · ·+2(k− 1)+2(k− 1) = 4(1+ · · ·+k− 1) = 4
(

k
2

)
, so that we have

q(2j+1)(2k)+4(k
2)

[
n+k−1
2k−1

]
q2

. We then obtain our final word w from the sequence c by

choosing whether or not to subtract 1 from each odd place: c1, c3, c5, c7, . . . , c2k−1.

This multiplies our q-count by a factor of (1 + 1/q)k, so that we have

∑
w∈WUSU2n−1,O,2k

w1∈{2j,2j+1}

q|w| = (1 + 1/q)kq(2j+1)(2k)+4(k
2)

[
n + k − 1

2k − 1

]

q2

.

Simplifying
∑

w∈WUSU2n−1,O,2k
w1=1

q|w| +
n−k−1∑

j=1

∑
w∈WUSU2n−1,O,2k

w1∈{2j,2j+1}

q|w|

yields the first part of Theorem 5.2.5.

We can again check the power of q using the minimal word of this type. If

w1 = 1, the minimal word before reducing will be 1, 1, 3, 3 . . . 2k − 1, 2k − 1. It is

twice the sum of the first k odd numbers, so 2k2.

If w1 = 2j+1, the minimal word (after reductions) will be 2j, 2j+1, . . . , 2j+2k−1,

which gives 2j +
(
2j+2k

2

)− (
2j+1

2

)
+ k − 1 = 2k2 + 4jk.

To q-count WUSU2n−1,O,2k+1, we use essentially the same reasoning. We clas-

sify words w1w2 . . . w2k+1 ∈ WUSU2n−1,O,2k+1 by the first letter w1. If w1 = 1, we

obtain a word w as follows. First, choose a sequence

0 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ≤ a2k+1 ≤ n− k − 1,

which is q-counted by
[
n+k−1

2k

]
q
. Next, we consider the sequence b defined by b1 = 1

and bm = 2am+1 for m > 1, so that our q-count becomes q2k+1
[
n+k−1

2k

]
q2 . Then, we

want to force < every other place, so generate a new sequence c by adding 0 to b1

and b2, 2 to b3 and b4, 4 to b5 and b6, and so on, ending by adding 2k to b2k+1. Thus,
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we will have c2k+1 ≤ 2(n−k−1)+1+2k = 2n−1, as needed. This increases our q-

count by 2+2+4+4+· · ·+2(k−1)+2(k−1)+2k = 4(1+· · ·+k−1)+2k = 4
(

k
2

)
+2k,

so that we have q2k+1+4(k
2)+2k

[
n+k−1

2k

]
q2 . We then obtain our final word w from the

sequence c by choosing whether or not to subtract 1 from each odd place except

the first: c3, c5, c7, . . . , c2k+1. This multiplies our q-count by a factor of (1+1/q)k,so

that we have

∑
w∈WUSU2n−1,O,2k+1

w1=1

q|w| = (1 + 1/q)kq4k+1+4(k
2)

[
n + k − 1

2k

]

q2

.

If w1 = 2j or w1 = 2j +1, we obtain a word w as follows. First, note that since we

must have k strict increases after w1, the largest j can be is n− k− 2. We choose

a sequence

0 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ≤ a2k+1 ≤ n− j − k − 1,

which is q-counted by
[
n−j+k−1

2k−1

]
q
. Next, we consider the sequence b defined by

b1 = 2j + 1 and bm = 2am + 2j + 1 for m > 1, so that our q-count becomes

q(2j+1)(2k+1)
[
n+k−1

2k

]
q2 . Then, we want to force < every other place, so generate

a new sequence c by adding 0 to b1 and b2, 2 to b3 and b4, 4 to b5 and b6, and

so on, ending by adding 2k to b2k+1. Thus, we will have c2k+1 ≤ 2(n − j − k −
1) + 2j + 1 + 2k = 2n − 1, as needed.. This increases our q-count by 2 + 2 +

4 + 4 + · · · + 2(k − 1) + 2(k − 1) + 2k = 4(1 + · · · + k − 1) + 2k = 4
(

k
2

)
+ 2k,

so that we have q(2j+1)(2k+1)+4(k
2)+2k

[
n+k−1

2k

]
q2 . We then obtain our final word w

from the sequence c by choosing whether or not to subtract 1 from each odd place:

c1, c3, c5, c7, . . . , c2k+1. This multiplies our q-count by a factor of (1 + 1/q)k+1,so

that we have

∑
w∈WUSU2n−1,O,2k+1

w1∈{2j,2j+1}

q|w| = (1 + 1/q)k+1q(2j+1)(2k+1)+4(k
2)+2k

[
n + k − 1

2k

]

q2

.

Simplifying
∑

w∈WUSU2n−1,O,2k+1
w1=1

q|w| +
n−k−2∑

j=1

∑
w∈WUSU2n−1,O,2k+1

w1∈{2j,2j+1}

q|w|
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yields the second part of Theorem 5.2.5.

We can again check the power of q using the minimal word of this type. If

w1 = 1, the minimal word before reducing is

1, 1, 3, 3 . . . 2k − 1, 2k − 1, 2k + 1,

which gives 2k2 + 2k + 1.

If w1 = 2j + 1, the minimal word before reducing is

2j + 1, 2j + 1, 2j + 3, 2j + 3, . . . , 2j + 2k, 2j + 2k, 2j + 2k + 1,

which gives 2(j + k)2 − 2j2 + 2j + 2k + 1 = 2k2 + 4jk + 2k + 2j + 1.

5.2.3 SUWU

Theorem 5.2.6.

EV SUWU
2n,0 (z, q)

=
n∑

k=0

(−1)kz2k([2]q)
k−1

(n−k+1∑
j=1

q2k2+4kj−4k+1

[
n− j + k − 1

2(k − 1)

]

q2

+ [2]1/qq
2k2+4k

[
n + k − 1

2k

]

q2

)

and

EV SUWU
2n,1 (z, q)

=
n∑

k=0

(−1)kz2k+1

[
q2n([2]q)

k−1
(n−k+1∑

j=1

q1+2k2+4kj−4k

[
n + k − j − 1

2(k − 1)

]

q2

+ ([2]1/q)q
2k2+4k

[
n + k − 1

2k

]

q2

)

+([2]q)
k
(n−k∑

j=1

q2j−2k+4jk+2k2−1

[
n− j + k − 1

2k − 1

]

q2

+ [2]1/qq
2k2+6k+2

[
n + k − 1

2k + 1

]

q2

)]
.
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To q-count SUWU2n,E,2k, we classify words w1w2 . . . w2k by the difference w2−
w1. If w2 − w1 = 1, then we let w2 = 2j, w1 = 2j − 1 and obtain a word w as

follows. First, note that the largest j can be is n − k + 1, since w2 is followed by

k − 1 strict increases. We choose some sequence

0 ≤ a3 ≤ a4 ≤ a5 ≤ · · · ≤ a2k ≤ n + 1− j − k,

which is q-counted by
[
n−j+k−1

2(k−1)

]
q
. Next, we consider the sequence b defined by

b1 = 2j − 1, b2 = 2j, and bm = 2am + 2j for m > 2, so that our q-count becomes

q2k(2j)−1
[
n−j+k−1

2(k−1)

]
q2

. Then, we want to force < every other place, so generate a new

sequence c by adding 2 to b4 and b5, 4 to b6 and b7, and so on, ending by adding

2(k − 1) to b2k. Thus, we will have c2k ≤ 2(n + 1 − j − k) + 2j + 2(k − 1) = 2n,

as needed. This increases our q-count by 2 + 2 + 4 + 4 + · · · + 2(k − 2) + 2(k −
2) + 2(k − 1) = 4(1 + · · · + k − 2) + 2k − 2 = 4

(
k−1
2

)
+ 2k − 2, so that we

have q2k(2j)−1+4(k−1
2 )+2k−2

[
n−j+k−1

2(k−1)

]
q2

. We then obtain our final word w from the

sequence c by choosing whether or not to add 1 to each odd place except the first:

c3, c5, c7, . . . , c2k−1. This multiplies our q-count by a factor of (1+ q)k−1,so that we

have

∑
w∈SUWU2n,E,2k

w2=w1+1=2j

q|w| = (1 + q)k−1q2k(2j)−1+4(k−1
2 )+2k−2

[
n− j + k − 1

2(k − 1)

]

q2

.

On the other hand, if w2 − w1 > 1, we obtain a word w as follows. We choose

a sequence

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ≤ a2k ≤ n− 1− k,

which is q-counted by
[
n+k−1

2k

]
q
. Next, we consider the sequence b defined by

bm = 2am + 2, so that our q-count becomes q4k
[
n+k−1

2k

]
q2 . Then, we want to force

< every other place, so generate a new sequence c by adding 0 to b1, 2 to b2 and

b3, 4 to b4 and b5, and so on, ending by adding 2k to b2k. Thus, we will have

c2k ≤ 2(n − 1 − k) + 2 + 2k = 2n, as needed. This increases our q-count by

2 + 2 + 4 + 4 + · · ·+ 2(k− 1) + 2(k− 1) + 2k = 4(1 + · · ·+ k− 1) + 2k = 4
(

k
2

)
+ 2k,

so that we have q6k+4(k
2)

[
n+k−1

2k

]
q2 . We then obtain our final word w from the
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sequence c by choosing whether or not to add 1 to each odd place except the first

and choosing whether or not to subtract 1 from c1. This multiplies our q-count by

a factor of (1 + 1/q)(1 + q)k−1,so that we have

∑
w∈SUWU2n,E,2k

w2−w1>1

q|w| = (1 + 1/q)(1 + q)k−1q6k+4(k
2)

[
n + k − 1

2k

]

q2

.

Simplifying
n−k+1∑

j=1

∑
w∈SUWU2n,E,2k

w2=w1+1=2j

q|w| +
∑

w∈SUWU2n,E,2k
w2−w1>1

q|w|

yields the first part of Theorem 5.2.6.

We can again check the power of q using the minimal words of this type. If

w2 = w1 + 1 = 2j, the minimal word (before increasing) is

2j − 1, 2j, 2j, . . . , 2(j + k − 2), 2(j + k − 2), 2(j + k − 1),

which gives 4
[(

j+k
2

)− (
j
2

)]
+ 2j − 1− 2(j + k − 1) = 2k2 + 4jk − 4k + 1.

If w2 − w1 > 1, the minimal word (before increasing) is

2, 4, 4, 6, 6, . . . , 2k, 2k, 2k + 2,

which gives 4
(

k+1
2

)
+ 2k = 2k2 + 4k.

To q-count SUWU2n,E,2k+1, we classify words w1w2 . . . w2k+1 by both the value

of w2k+1 and the difference w2 − w1. If w2k+1 = 2n, then we obtain w by taking

any element of SUWU2n,E,2k and inserting the letter 2n at the end. Thus, such

words are q-counted by zq2nEV SUWU
2n,0 (z, q).

If w2k+1 < 2n and w2 − w1 = 1, then we let w2 = 2j, w1 = 2j − 1 and obtain

a word w as follows. First, note that the largest j can be is n − k, since w2 is

followed by k − 1 strict increases. We choose some sequence

0 ≤ a3 ≤ a4 ≤ a5 ≤ · · · ≤ a2k+1 ≤ n− j − k,

which is q-counted by
[
n−j+k−1

2k−1

]
q
. Next, we consider the sequence b defined by

b1 = 2j − 1, b2 = 2j, and bm = 2am + 2j for m > 2, so that our q-count becomes
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q2j(2k+1)−1
[
n−j+k−1

2k−1

]
q2

. Then, we want to force < every other place, so generate a

new sequence c by adding 2 to b4 and b5, 4 to b6 and b7, and so on, ending by adding

2(k−1) to b2k and b2k+1. Thus, we will have c2k+1 ≤ 2(n− j−k)+2j +2(k−1) =

2n − 2, as needed (since w2k+1 < 2n in this case). This increases our q-count by

2 + 2 + 4 + 4 + · · · + 2(k − 1) + 2(k − 1) = 4(1 + · · · + k − 1) = 4
(

k
2

)
, so that

we have q2j(2k+1)−1+4(k
2)

[
n−j+k−1

2k−1

]
q2

. We then obtain our final word w from the

sequence c by choosing whether or not to add 1 to each odd place except the first:

c3, c5, c7, . . . , c2k+1. This multiplies our q-count by a factor of (1 + q)k, so that we

have

∑
w∈SUWU2n,E,2k+1

w2k+1<2n, w2=w1+1=2j

q|w| = (1 + q)kq2j(2k+1)−1+4(k
2)

[
n− j + k − 1

2k − 1

]

q2

.

If w2k+1 < 2n and w2 − w1 > 1, we obtain a word w as follows. We choose a

sequence

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ≤ a2k+1 ≤ n− 2− k,

which is q-counted by
[
n+k−1
2k+1

]
q
. Next, we consider the sequence b defined by

bm = 2am +2, so that our q-count becomes q4k+2
[
n+k−1
2k+1

]
q2

. Then, we want to force

< every other place, so generate a new sequence c by adding 0 to b1, 2 to b2 and

b3, 4 to b4 and b5, and so on, ending by adding 2k to b2k and b2k+1. Thus, we

will have c2k+1 ≤ 2(n − 2 − k) + 2 + 2k = 2n − 2, as needed. This increases our

q-count by 2 + 2 + 4 + 4 + · · ·+ 2k + 2k = 4(1 + · · ·+ k) = 4
(

k+1
2

)
, so that we have

q4k+2+4(k+1
2 )[n+k−1

2k+1

]
q2

. We then obtain our final word w from the sequence c by

choosing whether or not to add 1 to each odd place except the first and choosing

whether or not to subtract 1 from c1. This multiplies our q-count by a factor of

(1 + 1/q)(1 + q)k, so that we have

∑
w∈SUWU2n,E,2k+1

w2k+1<2n, w2−w1>1

q|w| = (1 + 1/q)(1 + q)kq4k+2+4(k+1
2 )

[
n + k − 1

2k + 1

]

q2

.

The second part of Theorem 5.2.6 follows by combining

zq2nEV SUWU
2n,0 (z, q)
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with
n−k∑
j=0

∑
w∈SUWU2n,E,2k+1

w2k+1<2n, w2=w1+1=2j

q|w| +
∑

w∈SUWU2n,E,2k+1
w2k+1<2n, w2−w1>1

q|w|.

We can again check the power of q using the minimal word of this type. For

w2 = 2j, w1 = 2j − 1, the minimal word is

2j − 1, 2j, 2j, . . . , 2(j + k − 1), 2(j + k − 1),

which gives 2j − 1 + 4(j + (j + 1) + · · ·+ j + k − 1) = 2j − 1 + 4
[(

j+k
2

)− (
j
2

)]
=

2j − 2k + 4jk + 2k2 − 1.

For w1 < w2 − 1, the minimal word is

2, 4, 4, 6, 6, . . . , 2k, 2k, 2k + 2, 2k + 2,

which gives 4(1 + 2 + · · ·+ k + 1)− 2 = 4
(

k+2
2

)− 2 = 2k2 + 6k + 2.

Theorem 5.2.7.

ODSUWU
2n−1,0 (z, q) =

n∑

k=0

(−1)kz2k([2]q)
kq2k2+2k

[
n + k − 1

2k

]

q2

ODSUWU
2n−1,1 (z, q) =

n∑

k=0

(−1)kz2k+1
(
([2]q)

kq2k2+2k+2n−1

[
n + k − 1

2k

]

q2

+ ([2]q)
k+1q2k2+4k+1

[
n + k − 1

2k + 1

]

q2

)
.

To obtain a word w ∈ SUWU2n−1,O,2k, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ a3 · · · ≤ a2k ≤ n− k − 1

The set of such sequences is q-counted by
[
n+k−1

2k

]
q
. Next, we consider the sequence

b defined by bm = 2am + 1, so that our q-count becomes q2k
[
n+k−1

2k

]
q2 . Then, we

want to force < every other place, so generate a new sequence c by adding 0 to

b1, 2 to b2 and b3, 4 to b4 and b5, and so on, adding 2k to b2k. Thus, we will have

c2k ≤ 2(n − k − 1) + 1 + 2k = 2n − 1, as needed. This increases our q-count by
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2 + 2 + 4 + 4 + · · ·+ 2(k− 1) + 2(k− 1) + 2k = 4(1 + · · ·+ k− 1) + 2k = 4
(

k
2

)
+ 2k,

so that we have q4k+4(k
2)

[
n+k−1

2k

]
q2 . We obtain our final word w from the sequence

c by choosing whether or not to add 1 to each odd place c1, c3, . . . , c2k−1. This

multiplies our q-count by a factor of (1 + q)k, so that we have

∑
w∈SUWU2n−1,O,2k

q|w| = (1 + q)kq4k+4(k
2)

[
n + k − 1

2k

]

q2

,

which simplifies to give the first part of Theorem 5.2.7.

To q-count SUWU2n−1,O,2k+1, we classify words w1w2 . . . w2k+1 by the value of

w2k+1. If w2k+1 = 2n − 1, we obtain w by taking any element of SUWU2n−1,O,2k

and inserting the letter 2n − 1 at the end. Thus, such words are q-counted by

zq2n−1ODSUWU
2n−1,0 (z, q).

If w2k+1 < 2n− 1, we obtain w as follows. First, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ a3 · · · ≤ a2k+1 ≤ n− 2− k

The set of such sequences is q-counted by
[
n+k−1
2k+1

]
q
. Next, we consider the sequence

b defined by bm = 2am + 1, so that our q-count becomes q2k+1
[
n+k−1
2k+1

]
q2

. Then, we

want to force < every other place, so generate a new sequence c by adding 0 to b1, 2

to b2 and b3, 4 to b4 and b5, and so on, ending by adding 2k to b2k and b2k+1. Thus,

we will have c2k+1 ≤ 2(n−2−k)+1+2k = 2n−3, as needed (since w2k+1 < 2n−1).

This increases our q-count by 2+2+4+4+ · · ·+2k+2k = 4(1+ · · ·+k) = 4
(

k+1
2

)
,

so that we have q2k+1+4(k+1
2 )[ n+k

2k+1

]
q2

.

We obtain our final word w from the sequence c by choosing whether or not to

subtract 1 from each odd place c1, c3, . . . , c2k+1. This multiplies our q-count by a

factor of (1 + 1/q)k+1, so that we have

∑
w∈WUSU2n,E,2k+1

q|w| = (1 + 1/q)k+1q2k+1+4(k+1
2 )

[
n + k

2k + 1

]

q2

.

Combining this with

zq2n−1ODSUWU
2n−1,0 (z, q)

simplifies to give the second part of Theorem 5.2.7.
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We can again check the power of q using the minimal word of this type. If

w2k+1 < 2n− 1, the minimal word is

1, 3, 3, 5, 5, . . . , 2k − 1, 2k − 1, 2k + 1, 2k + 1,

which gives 2(1 + 3 + · · ·+ 2k + 1)− 1 = 2(k + 1)2 − 1 = 2k2 + 4k + 1.

5.2.4 WUWU

The results in this subsection are all based on the following lemma.

Lemma 5.2.8. Define level weak-up words by

LWUn,X,2i = {1 ≤ a1 = a2 ≤ a3 = a4 ≤ a5 · · · ≤ a2i−1 = a2i ≤ n : a2p ∈ X∀p}.

Then
bk/2c⋃
i=0

LWUn,X,2i × SUSUn,X,k−2i
∼= WUWUn,X,k.

The bijection proceeds as follows. Given any pair (a, w) in
⋃bk/2c

i=0 LWUn,X,2i ×
SUSUn,X,k−2i, we send (a, w) to the word obtained by inserting each element of a

into w so as to keep weak increases between entries. This is clearly well-defined

and reversible, thus a bijection for any peak condition X.

For example, the image of

(11113377, 1379) is

(111113337779).

Thus, we wish to q-count LWUn,X,2i. Define

EV LWU
n,0 (z, q) = 1 +

∑

k≥1

(−1)k
∑

w∈LWUn,E,2k

z`(w)q|w| and

ODLWU
n,0 (z, q) = 1 +

∑

k≥1

(−1)k
∑

w∈LWUn,O,2k

z`(w)q|w|.

Theorem 5.2.9.

EV LWU
2n,0 (z, q) =

∑

k≥0

(−1)kz2kq4k

[
n + k − 1

k

]

q4

=
n∏

i=1

1

1 + z2q4i
(5.2.2)
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and

ODLWU
2n−1,0(z, q) =

∑

k≥0

(−1)kz2kq2k

[
n + k − 1

k

]

q4

=
n∏

i=1

1

1 + z2q2i
. (5.2.3)

To q-count LWU2n,E,2k, we first choose a sequence 1 ≤ a1 ≤ a2 · · · ≤ ak ≤ n,

which is counted by qn
[
n+k−1

k

]
q
. Then, double and repeat each entry to get a new

sequence b given by

b1 = b2 = 2a1, b3 = b4 = 2a2, . . . b2k−1 − b2k = 2ak

This affects our q-count by replacing q with q4. Applying q-binomial series, we get

(5.2.2).

To q-count LWU2n−1,O,2k, we can take any element of LWU2n,E,2k and subtract

one from each entry. Thus, we reduce the power of q by 2k, which yields (5.2.3).

Therefore, we immediately get the following corollary:

Corollary 5.2.10.

EV WUWU
2n,0 (z, q) = EV LWU

2n,0 (z, q)EV SUSU
2n,0 (z, q)

=

(
n∏

i=1

1

1 + z2q4i

)
n∑

k=0

(−1)kz2k

k∑
j=0

q2j2−j+4k2+2k−4kj

[
n + j

2k

]

q2

[
k

j

]

q4

,

EV WUWU
2n,1 (z, q) = EV LWU

2n,0 (z, q)EV SUSU
2n,1 (z, q)

=

(
n∏

i=1

1

1 + z2q4i

)
n∑

k=0

(−1)kz2k+1[2]1/q

k∑
j=0

q2j2−3j+4k2+6k−4kj+2

[
n + j

2k

]

q2

[
k

j

]

q4

,

ODWUWU
2n−1,0 (z, q) = ODLWU

2n−1,0(z, q)ODSUSU
2n−1,0(z, q)

=

(
n∏

i=1

1

1 + z2q2i

)
n∑

k=0

(−1)kz2k[2]q

k−1∑
j=0

q2j2+4k2+3j−4kj

[
n + 1 + j

2k

]

q2

[
k − 1

j

]

q4

,
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and

ODWUWU
2n−1,1 (z, q) =ODLWU

2n−1,0(z, q)ODSUSU
2n−1,1(z, q)

=

(
n∏

i=1

1

1 + z2q2i

)
n∑

k=0

(−1)kz2k+1([2]q)
2

×
k−1∑
j=0

qj+2j2+4k−4jk+4k2

[
n + j

2k + 1

]

q2

[
k − 1

j

]

q4

.

5.3 Further specializations

A few of the formulas from the previous subsections simplify significantly if we

set q = 1. Thus, we get the following corollaries:

Corollary 5.3.1.

ODWUSU
2n−1,0 (z, 1) =

n∑

k=0

(−1)kz2k2k−1

[(
n + k − 1

2k

)
+

(
n + k

2k

)]

and

ODWUSU
2n−1,1 (z, 1) =

n∑

k=0

(−1)kz2k+12k

[(
n + k − 1

2k + 1

)
+

(
n + k

2k + 1

)]
.

Corollary 5.3.2.

EV SUWU
2n,0 (z, 1) =

n∑

k=0

(−1)kz2k

[
2k−1

(
n + k − 1

2k − 1

)
+ 2k

(
n + k − 1

2k

)]

and

EV SUWU
2n,1 (z, 1) =

n∑

k=0

(−1)kz2k+1

[
2k−1

(
n + k − 1

2k − 1

)
+ 2k+1

(
n + k

2k + 1

)]
.

Now that we have successfully found generating functions for up-down words

with peaks in E or O, we can ask how this might relate to results on up-down

permutations. We note that the analogous condition for permutations would be

trivial, as there would be at most one alternating permutation with even peaks:

when n is even, this would be n− 1, n, n− 3, n− 2, n− 5, n− 4, . . . 3, 4, 1, 2. Thus,
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enumerating up-down permutations with peaks in some specialized set is not likely

to be an interesting problem in general. A related issue is how to find the distribu-

tion of peaks from some set X over up-down permutations or words. Addressing

this issue is beyond the scope of this dissertation.

5.4 Extensions

The reasoning used in the previous sections can be extended to count our classes

of words with peaks in uP or j + uP (i.e. congruent to j mod u). For example,

we have the following theorem.

Theorem 5.4.1. Let u ≥ 2. Then

PWUSU
un,uP,2,0(z1, . . . , zn)|zi=qiz =

n∑

k=0

(−1)kz2k([u]1/q)
kquk2+uk

[
n + k

2k

]

qu

.

The reasoning is essentially identical to that for WUSU2n,E,2k. To obtain a

word w ∈ WUSU2n,uP,2k, we first choose some sequence

0 ≤ a1 ≤ a2 ≤ a3 · · · ≤ a2k ≤ n− k

The set of such sequences is q-counted by
[
n+k
2k

]
q
. Next, we consider the sequence b

defined by bm = uam +u, so that our q-count becomes q2ku
[
n+k
2k

]
qu . Then, we want

to force < every other place, so generate a new sequence c by adding 0 to b1 and b2,

u to b3 and b4, 2u to b5 and b6, and so on, ending by adding u(k − 1) to b2k−1 and

b2k. We will have c2k ≤ u(n−k)+u+u(k−1) = un, as needed. This increases our

q-count by u+u+2u+2u+ · · ·+u(k−1)+u(k−1) = 2u(1+ · · ·+k−1) = 2u
(

k
2

)
,

so that we have q2ku+2u(k
2)

[
n+k
2k

]
qu . We obtain our final word w from the sequence

c by choosing to reduce each odd place c1, c3, . . . , c2k−1 by some number v with

0 ≤ v < u. This multiplies our q-count by a factor of ([u]1/q)
k, so that we have.

∑
w∈WUSU2n,uP,2k

q|w| = ([u]1/q)
kq2uk+2u(k

2)
[
n + k

2k

]

qu

,
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which simplifies to give Theorem 5.4.1. Counting other classes of words with peaks

in uP for u ≥ 2 requires more subtle modifications but can be accomplished with

similar reasoning.

The reader may also wonder about the difficulty in extending these results to

other values of s. To illustrate why this is more difficult, consider WU2SU2n,E,6 =

{w : 1 ≤ w1 ≤ w2 ≤ w3 < w4 ≤ w5 ≤ w6 ≤ 2n; w3, w6 ∈ E} (so that s = 3).

The key to our reasoning for WUSU2n,E,2k was that, given any sequence of even

numbers 2 ≤ c1 ≤ c2 < c3 ≤ · · · ≤ c2k ≤ 2n, we could always subtract one from

any set of odd positions and still obtain an element of WUSU2n,E,2k.

If we try to apply the same reasoning to WU2SU2n,E,6, we would need to reach

an intermediate stage involving some sequence of even numbers 2 ≤ c1 ≤ c2 ≤ c3 <

c4 ≤ c5 ≤ c6 ≤ 2n. We would then obtain a word w ∈ WU2SU2n,E,6 by subtracting

appropriate amounts from entries in this sequence. The difficulty is that what

we are allowed to subtract from c1 and c2, as well as c4 and c5, depends on the

particular sequence c we chose. For example, if we have c1 = c2 = 2, then we can

extend c to a word w by having (w1, w2) equal (1, 1), (1, 2), or (2, 2). This gives

3 possibilities for extending our sequence to an element of WU2SU2n,E,6. On the

other hand, if we initially chose c1 = 4, c2 = 6, then we can extend c to a word w

by having (w1, w2) equal (4, 5), (3, 6), (3, 5), or (4, 6). This gives 4 possibilities for

extending our sequence c to an element of WU2SU2n,E,6. Thus, even when q = 1

we have a problem in trying to uniformly alter our intermediate sequences. Things

only get worse when we factor in the possibilities for w4 and w5. Thus, in order to

proceed, we would need to create a complicated function based on the distribution

of letters within our starting sequences. Such an approach is beyond the scope of

this dissertation.



Chapter 6

Enumerating up-down words on

an infinite alphabet

In this chapter, we will extend the results of Chapter 4 by enumerating two of

the classes of up-down words with an infinite alphabet. That is, we will obtain

generating functions for SU s−1WD∞,n = {w ∈ Pn : WDes(w) = (sP)n−1} and

WU s−1SD∞,n = {w ∈ Pn : Des(w) = (sP)n−1} by counting multiple rises. In

addition, we will enumerate compositions by alternating descents and alternating

major index.

6.1 Up-down words on P with s = 2

We first consider SU s−1WD∞,n and WU s−1SD∞,n with s = 2. Define double

rises and weak double rises as follows:

2-ris(w) = |{i : w2i+1 < w2i+2 < w2i+3 < w2i+4}|

and

w2-ris(w) = |{i : w2i+1 ≤ w2i+2 ≤ w2i+3 ≤ w2i+4}|.

117
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6.1.1 WUSD

Theorem 6.1.1. Let z(w) denote the monomial zw1zw2 · · · zw`(w). Then

∑
n≥0

t2n
∑

w∈P2n: w2j−1≤w2j∀j
xw2-ris(w)z(w) =

1− x

−x + 1
2

[∏
k≥1

1
1−t

√
x−1zk

+
∏

k≥1
1

1+t
√

x−1zk

] .

Corollary 6.1.2.

∞∑
n=0

t2n
∑

w∈WUSD∞,2n

z(w) = 2

(∏

k≥1

1

1− itqk
+

∏

k≥1

1

1 + itzk

)−1

,

where i =
√−1.

Corollary 6.1.2 follows by setting x = 0 in Theorem 6.1.1. This comes from

the fact that weak-up, strict-down words can be counted by looking at words with

weak increases in the appropriate places and no weak double rises.

Note that the combinatorial interpretation of these expressions ensures that all

coefficients are positive integers, which would not be at all obvious out of context.

To prove Theorem 6.1.1, define a function on nonnegative integers by

f(n) =





0 n is odd

1 n = 0

−(x− 1)k−1 n = 2k > 0

and define a homomorphism on the ring of symmetric functions by

ΘWUSD(en) = f(n)

(∏

k≥1

1

1− tzk

)
|tn .

Claim:

ΘWUSD(hn) =
∑

w∈P2n: w2j−1≤w2j∀j
xw2-ris(w)z(w).
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To see this, we interpret each term in

ΘWUSD(hn) =
∑

λ`n

(−1)n−`(λ)|Bλ,n|
`(λ)∏
j=1

f(λj)

(∏

k≥1

1

1− tzk

)
|tλj . (6.1.1)

By the definition of f , this sum will contribute nothing unless each part of λ is

even, which also implies that n must be even. Thus, a term in (6.1.1) corresponds

to a brick tabloid with even bricks. Then (−1)n−`(λ)
∏`(λ)

j=1 f(λj) reduces to
∏`(λ)

j=1(x− 1)λj/2, which weights each brick with a factor of x or −1 in every other

nonterminal cell. The term
∏`(λ)

j=1

(∏
k≥1

1
1−tzk

)
|tλj lets us choose a partition πj

with λj parts for each brick, where we write the partition in weakly increasing order

and weight by z(πj). We define the weight of a filled labeled brick tabloid created

in this manner to be the product of the x and −1 labels times the monomial z(w),

where w denotes the underlying word. For example, the weight of Figure 6.1 is

given by xz1z
3
2z

2
3z4z5.

2

x

1 225433

Figure 6.1: A brick tabloid coming from Equation 6.1.1 with n = 8

Thus, Equation 6.1.1 corresponds to a weighted sum over all such brick tabloids.

We perform the usual involution on these brick tabloids, where bricks are scanned

from left to right for the first occurrence of either a −1 or a weak increase between

bricks. If a −1 is encountered first, we break the brick after it and remove the

−1. If a weak increase is found first, we combine the bricks and insert a −1. For

instance, the image of Figure 6.1 is given in Figure 6.2. Thus, Equation 6.1.1 can

be reduced to summing over fixed points.

Fixed points must have bricks of even length and decreases between bricks.

Since we never break a brick at an odd place, we will always have w2j−1 ≤ w2j∀j.
In addition, the power of x will register the number of weak double rises, as desired.
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2

−1 x

1 225433

Figure 6.2: The image of Figure 6.1

For example, the fixed point in Figure 6.3 has weight x2z1z
3
2z

2
3z4z5. Thus, the sum

over all fixed points of Equation 6.1.1 is given by

∑

w∈P2n: w2j−1≤w2j∀j
xw2-ris(w)z(w).

2

x x

1 225433

Figure 6.3: A fixed point coming from Equation 6.1.1 when n = 8

Thus, we can use Equation 6.1.1 to obtain:

∑
n≥0

t2n
∑

w∈P2n: w2j−1≤w2j

xw2-ris(w)z(w)

= 1 +
∞∑

n=1

tnΘWUSD(hn) = ΘWUSD

( ∞∑
n=0

(−t)nen

)−1

=

(
1 +

∞∑
n=1

−(x− 1)n−1t2n

(∏

k≥1

1

1− tzk

)
|t2n

)−1

=
1− x

1− x +
∑

n≥1[t
√

x− 1]2n
(∏

k≥1
1

1−tzk

)
|t2n

=
1− x

−x + 1
2

[∏
k≥1

1
1−t

√
x−1zk

+
∏

k≥1
1

1+t
√

x−1zk

] ,

which proves Theorem 6.1.1.
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6.1.2 SUWD

Theorem 6.1.3.

∑
n≥0

t2n
∑

w∈P2n: w2j−1<w2j∀j
x2-ris(w)z(w)

=
1− x

−x + 1
2

[∏
k≥1(1 + t

√
x− 1zk) +

∏
k≥1(1− t

√
x− 1zk)

] (6.1.2)

and

∑
n≥0

t2n+1
∑

w∈P2n+1: w2j−1<w2j∀j
x2-ris(w)z(w)

=

√
x− 1

[∏
k≥1(1 + t

√
x− 1zk)−

∏
k≥1(1− t

√
x− 1zk)

]

2x− [∏
k≥1(1 + t

√
x− 1zk) +

∏
k≥1(1− t

√
x− 1zk)

] (6.1.3)

Corollary 6.1.4.

∞∑
n=0

t2n
∑

w∈SUWD∞,2n

q|w| = 2

(∏

k≥1

(1 + itzk) +
∏

k≥1

(1− itzk)

)−1

, (6.1.4)

and

∞∑
n=0

t2n+1
∑

w∈SUWD∞,2n+1

z(w) =

∞∑
n=0

t2n+1
∑

w∈WUSD∞,2n+1

z(w) =

−i
[∏

k≥1(1 + itzk)−
∏

k≥1(1− itzk)
]

∏
k≥1(1 + itzk) +

∏
k≥1(1− itzk)

, (6.1.5)

where i =
√−1.

Corollary 6.1.4 follows from setting x = 0 in Equations 6.1.2 and 6.1.3 and

from the following lemma.

Lemma 6.1.5. |SUWDm,2n+1| = |WUSDm,2n+1| for any n, m

(including m = ∞).
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To prove this lemma, we define a weight-preserving bijection

ρ : SUWDm,2n+1 → WUSDm,2n+1 by

ρ(w1, w2, . . . , w2n+1) = (w2n+1, w2n, . . . , w1).

That is, ρ simply reverses the order of letters in w. Since w1 < w2 ≥ w3 . . . implies

that w2n+1 ≤ w2n > w2n−1 . . . , this gives the desired bijection. Note that no such

result extends to words of even length or with increasing blocks of length s.

We now turn our attention to proving Theorem 6.1.3. Define a homomorphism

on the ring of symmetric functions by

ΘSUWD(en) = f(n)

(∏

k≥1

(1 + tzk)

)
|tn .

Claim:

ΘSUWD(hn) =
∑

w∈P2n: w2j−1<w2j∀j
x2-ris(w)z(w).

The proof for this claim is identical to our proof that

ΘWUSD(hn) =
∑

w∈P2n: w2j−1≤w2j∀j
xw2-ris(w)z(w),

except that we fill each brick with a partition with distinct parts, written in strictly

increasing order. From this, it is a straightforward simplification to obtain the first

part of Theorem 6.1.3.

To prove the second part of Theorem 6.1.3, we define a weighting function for

the brick tabloids by ν(2n + 1) = 0 and

ν(2n) =

(∏
k≥1(1 + tzk)

) |t2n−1(∏
k≥1(1 + tzk)

) |t2n

.

We claim that, for all n > 0,

ΘSUWD(p2n,ν) =
∑

w∈P2n−1: w2j−1<w2j∀j
x2-ris(w)z(w).

To see this, we interpret each term in

ΘSUWD(p2n,ν) =
∑

λ`n

(−1)n−`(λ)wν(Bλ,n)

`(λ)∏
j=1

f(λj)
∏

k≥1

(1 + tzk) |tλj . (6.1.6)
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By the definition of f , this sum will contribute nothing unless each part of λ

is even, which also implies that n must be even. Thus, a term in the sum corre-

sponds to a brick tabloid with even bricks. Then (−1)n−`(λ)
∏`(λ)

j=1 f(λj) reduces to
∏`(λ)

j=1(x− 1)λj/2, which weights each brick with a factor of x or −1 in every other

nonterminal cell. The term
∏`(λ)

j=1

∏
k≥1(1 + tzk) |tλj lets us choose a partition πj

with λj distinct parts for each brick, where we write πj in strictly increasing order.

The main difference in our interpretation here as compared with that of Equation

6.1.1 is in the last brick, where the weight ν replaces the partition π`(λ) in the last

brick with a strictly increasing partition of length one less than the length of the

brick, leaving the last cell empty. This means that we end up with a word of length

n − 1 (which is odd) rather than a word of length n. We define the weight of a

filled labeled brick tabloid created in this manner to be the product of the x and

−1 labels times times the monomial z(w), where w denotes the underlying word.

For example, Figure 6.4 is one such object with weight −xz2
1z2z4z6z8z9.

1

−1 x

1 2 4 6 8 9

Figure 6.4: An object coming from Equation 6.1.6 when n = 8

Thus, Equation 6.1.6 corresponds to a weighted sum over all such brick tabloids.

We perform the usual involution, where bricks are scanned from left to right for

the first occurrence of either a −1 or a strict increase between bricks. For the

former, we break bricks and remove the −1; for the latter, we combine bricks and

insert a −1. For example, the image of Figure 6.4 is displayed in Figure 6.5.

Fixed points must have bricks of even length and weak decreases between bricks.

The power of x will register the number of double rises, where we specify by

convention that there is a rise for the last entry in the last brick. Figure 6.6 displays

one fixed point. Since we never break a brick at an odd place, we will always have
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x

1986421

Figure 6.5: The image of Figure 6.4

w2j−1 < w2j, where w denotes the underlying word. Thus, the weighted sum of

the fixed points is exactly given by

∑

w∈P2n−1: w2j−1<w2j∀j
x2-ris(w)z(w).

xx

1986421

Figure 6.6: A fixed point coming from Equation 6.1.6 when n = 8
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Thus,

∑
n≥1

t2n−1
∑

w∈P2n−1: w2j−1<w2j∀j
x2-ris(w)z(w)

=
1

t

∞∑
n=1

tnΘSUWD(pn,ν)

=
1

t
ΘSUWD

∑
n≥1(−1)n−1ν(n)entn∑∞

n=0(−t)nen

=
1

t

∑
n≥1(−1)n−1ν(n)f(n)

[∏
k≥1 1 + tzk

] |tn tn

1 +
∑

n≥1(−t)nf(n)
[∏

k≥1 1 + tzk

] |tn

=
1

t

∑
n≥1

[∏
k≥1 1 + tzk

] |t2n−1 (x− 1)n−1t2n

1−∑
n≥1 t2n(x− 1)n−1

[∏
k≥1 1 + tzk

] |t2n

=

√
x− 1

∑
n≥1

[∏
k≥1 1 + tzk

] |t2n−1 [t
√

x− 1]2n−1

x− 1−∑
n≥1

[∏
k≥1 1 + tzk

] |t2n [t
√

x− 1]2n

=

√
x−1
2

[∏
k≥1(1 + t

√
x− 1zk)−

∏
k≥1(1− t

√
x− 1zk)

]

x− 1
2

[∏
k≥1(1 + t

√
x− 1zk) +

∏
k≥1(1− t

√
x− 1zk)

]

=

√
x− 1

[∏
k≥1(1 + t

√
x− 1zk)−

∏
k≥1(1− t

√
x− 1zk)

]

2x− [∏
k≥1(1 + t

√
x− 1zk) +

∏
k≥1(1− t

√
x− 1zk)

] ,

which proves the second part of Theorem 6.1.3.

6.2 General up-down words on P

To generalize beyond the case s = 2, we define

s-ris(w) = |{i : wsi+1 < wsi+2 < · · · < ws(i+2)}|

and

ws-ris(w) = |{i : wsi+1 ≤ wsi+2 ≤ · · · ≤ ws(i+2)}|,

which are the number of places with a block of length 2s consisting of strict in-

creases or weak increases.
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6.2.1 SU s−1WD

Theorem 6.2.1. Let s ≥ 2 and 1 ≤ J < s. Then

∑
n≥0

tsn
∑

w∈Psn: WDes(w)⊆(sP)sn−1

xs-ris(w)z(w)

=
1− x

−x + 1
s

∑s
i=1

∏
k≥1(1 + ζit

s
√

1− xzk)
(6.2.1)

and

∑
n≥1

tsn−J
∑

w∈Psn−J : WDes(w)⊆(sP)sn−J−1

xs-ris wz(w)

=
( s
√

1− x)J
∑s

i=1 ζ−J
i

∏
k≥1(1 + ζit

s
√

1− xzk)

sx−∑s
i=1

∏
k≥1(1 + ζit

s
√

1− xzk)
, (6.2.2)

where ζ1, . . . , ζs are all sth roots of −1.

Corollary 6.2.2. Let s ≥ 2 and 1 ≤ J < s. Then

∑
n≥0

tsn
∑

w∈SUs−1WD∞,sn

z(w) =

(
1

s

s∑
i=1

∏

k≥1

(1 + ζitzk)

)−1

(6.2.3)

and

∑
n≥1

tsn−J
∑

w∈SUs−1WD∞,sn−J

z(w) =

∑s
i=1 ζ−J

i

∏
k≥1(1 + ζitzk)

−∑s
i=1

∏
k≥1(1 + ζitzk)

, (6.2.4)

where ζ1, . . . , ζs are all sth roots of −1

As before, Corollary 6.2.2 follows by setting x = 0 in Theorem 6.2.1. To prove

Theorem 6.2.1, define a function on nonnegative integers:

gs(n) =





1 n = 0

(−1)n−1(x− 1)(n/s)−1 n ≡ 0 mod s

0 otherwise

and a homomorphism

ΘSUs−1WD(en) = gs(n)

(∏

k≥1

(1 + tzk)

)
|tn .
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Claim:

ΘSUs−1WD(hsn) =
∑

w∈Psn: WDes(w)⊆(sP)sn−1

xs-ris(w)z(w). (6.2.5)

To see this, we interpret each term in

ΘSUs−1WD(hsn) =
∑

µ`sn

(−1)sn−`(µ)Bµ,sn

`(µ)∏
j=1

ΘSUs−1WD(eµj
)

=
∑

sλ`sn

(−1)sn−`(λ)Bsλ,sn

`(λ)∏
j=1

gs(sλj)

(∏

k≥1

(1 + tzk)

)
|tsλj

=
∑

λ`n

Bλ,n

`(λ)∏
j=1

(x− 1)n−1

(∏

k≥1

(1 + tzk)

)
|tsλj . (6.2.6)

By the definition of gs, this sum will contribute nothing unless each part of µ

is divisible by s, so we can obtain µ by taking any λ ` n and multiplying each part

of λ by s. Thus, we interpret the term
∑

λ`n Bλ,n as creating a brick tabloid with

bricks whose lengths are multiples of s. We interpret the term
∏`(λ)

j=1(x− 1)n−1 as

labeling each brick with a factor of x or −1 in every s’th nonterminal cell. Finally,

we interpret the term
∏`(λ)

j=1

(∏
k≥1(1 + tzk)

) |tsλj as choosing a partition πj with

sλj distinct parts to fill each brick, where we write πj in strictly increasing order

and weight by the monomial z(πj). For example, Figure 6.7 depicts a brick tabloid

with s = 3 and n = 9.

2

−1

98653154

Figure 6.7: An object coming from Equation 6.2.6 when s = 3 and n = 9

The weight is given by the product of the monomial weights for each brick

times the product of the x and −1 labels. For example, the weight of the object

in Figure 6.7 is −z1z2z3z4z
2
5z6z8z9. Thus, Equation 6.2.6 above corresponds to a

weighted sum over all such filled labeled brick tabloids.
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We perform the usual involution, where bricks are scanned from left to right

for the first occurrence of either a −1 or a strict increase between bricks; we break

bricks and remove the −1 for the former, combine bricks and insert a −1 for the

latter. For example, the image of Figure 6.7 is given in Figure 6.8. Thus, Equation

6.2.6 reduces to summing the weights of all fixed points.

2 98653154

Figure 6.8: The image of Figure 6.7

Fixed points must have bricks whose lengths are multiples of s and weak de-

creases between bricks. The power of x will register the number of s-rises, as

desired. For example, a fixed point is given in Figure 6.9. Since entries increase

within bricks and we can never break a brick other than at a multiple of s, weak

descents can only occur at multiples of s; i.e. WDes(w) ⊆ (sP)sn−1. Thus, the

weighted sum of fixed points is exactly counted by

∑
n≥0

tsn
∑

w∈Psn: WDes(w)⊆(sP)sn−1

xs-ris(w)z(w).

x

986531542

Figure 6.9: A fixed point of Equation 6.2.6 when s = 3 and n = 9
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Thus,

∑
n≥0

tsn
∑

w∈Psn: WDes(w)⊆(sP)sn−1

xs-ris(w)z(w)

=
∞∑

n=0

tnΘSUs−1WD(hn) = ΘSUs−1WD

( ∞∑
n=0

(−t)nen

)−1

=

(
1 +

∞∑
n=1

(−t)sn(−1)sn−1(x− 1)n−1

(∏

k≥1

(1 + tzk)

)
|tsn

)−1

=
1− x

1− x +
∑

n≥1(−1)n[t s
√

1− x]sn
(∏

k≥1(1 + tzk)
) |tsn

=
1− x

−x + 1
s

∑s
i=1

∏
k≥1(1 + ζit

s
√

1− xzk)
,

where ζ1, . . . , ζs are all sth roots of −1 (for details on how these play a role, see

section 6.6).

We now turn our attention to proving the 2nd part of Theorem 6.2.1. To this

end, define a weighting function νs,J by νs,J(n) = 0 unless n ≡ 0 mod s and

νs,J(sn) =

(∏
k≥1(1 + tzk)

) |tsn−J(∏
k≥1(1 + tzk)

) |tsn

With this weighting function, we can see that

ΘSUs−1WD(psn,νs,J
) =

∑

w∈Psn−J : WDes(w)⊆(sP)sn−J−1

xs-ris(w)z(w) (6.2.7)

by the same reasoning as that for Equation 6.2.5, where our interpretation in

terms of brick tabloids is identical except that the weighting function νs,J will

leave the last J cells of the final brick empty (by convention, we count these as



130

strict increases. Therefore,

∑
n≥1

tsn−J
∑

w∈Psn−J : WDes(w)⊆(sP)sn−J−1

xs-ris wz(w)

=
1

tJ

∞∑
n=0

tnΘSUs−1WD(pn,νs,J
) =

1

tJ
ΘSUs−1WD

(∑
n≥1(−1)n−1ν(n)entn∑∞

n=0 en(−t)n

)

=
1

tJ

∑
n≥1(−1)n−1νs,J(n)gs(n)

[∏
k≥1 1 + tzk

] |tn tn

1 +
∑∞

n=1 gs(n)
[∏

k≥1(1 + tzk)
] |tn (−t)n

=
1

tJ

∑
n≥1

[∏
k≥1(1 + tzk)

] |tsn−J (x− 1)n−1tsn

1−∑
n≥1

[∏
k≥1(1 + tzk)

] |tsn tsn(x− 1)n−1

=
1

tJ

∑
n≥1

[∏
k≥1(1 + tzk)

] |tsn−J (−1)n[t s
√

1− x]sn

x− 1−∑
n≥1

[∏
k≥1(1 + tzk)

] |tKn [t K
√

1− x]Kn

=
( s
√

1− x)J
∑s

i=1 ζ−J
i

∏
k≥1(1 + ζit

s
√

1− xzk)

sx−∑s
i=1

∏
k≥1(1 + ζit

s
√

1− xzk)
,

which proves the second part of Theorem 6.2.1.

6.2.2 WU s−1SD

Theorem 6.2.3. Let s ≥ 2 and 1 ≤ J < s. Then

∑
n≥0

tsn
∑

w∈Psn: Des(w)⊆(sP)sn−1

xws-ris(w)z(w)

=
1− x

−x + 1
s

∑s
i=1

∏
k≥1

1
1+ζit

s√1−xzk

, (6.2.8)

and

∑
n≥0

tsn−J
∑

w∈Psn: Des(w)⊆(sP)sn−J−1

xws-ris wz(w)

=
( s
√

1− x)J
∑s

i=1 ζ−J
i

∏
k≥1

1
1−ζit

s√1−xzk

sx−∑s
i=1

∏
k≥1

1
1−ζit

s√1−xzk

, (6.2.9)

where ζ1, . . . , ζs are all sth roots of −1.



131

Corollary 6.2.4. Let s ≥ 2 and 1 ≤ J < s. Then

∑
n≥0

tsn
∑

w∈WUs−1SD∞,sn

z(w) =

(
1

s

s∑
i=1

∏

k≥1

1

1− ζitzk

)−1

(6.2.10)

and
∑
n≥1

tsn−J
∑

w∈WUs−1SD∞,sn−J

z(w) =

∑s
i=1 ζ−J

i

∏
k≥1

1
1−ζitzk

−∑s
i=1

∏
k≥1

1
1−ζitzk

, (6.2.11)

where ζ1, . . . , ζs are all sth roots of −1.

The proofs of Theorem 6.2.3 and Corollary 6.2.4 are essentially the same as

those of Theorem 6.2.1 and Corollary 6.2.2, except that they use the homomor-

phism

ΘWUs−1SD(en) = gs(n)

(∏

k≥1

1

1 + tzk

)
|tn

and the weighting function defined by ν ′s,J(n) = 0 unless n ≡ 0 mod s and

ν ′s,J(sn) =

(∏
k≥1

1
1+tzk

)
|tsn−J

(∏
k≥1

1
1+tzk

)
|tsn

.

For brevity, we omit the full details.

6.3 Level alternating words

We define level-alternating words as having the pattern =, 6=; i.e., LNL∞,n =

{w ∈ Pn : w1 = w2 6= w3 = w4 . . . } or the set of words s.t. Lev(w) = On−1.

Also, define 2-lev(w) = |{i : w2i+1 = w2i+2 = w2i+3 = w2i+4}|. Then we have the

following theorem and corollary:

Theorem 6.3.1.

∑
n≥0

t2n
∑

w∈P2n: w2j−1=w2j∀j
x2-lev(w)z(w) =

(
1−

∑
i≥1

t2z2
i

1− t2(x− 1)z2
i

)−1

. (6.3.1)
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Corollary 6.3.2.

∑
n≥0

t2n
∑

w∈LNL∞,2n

z(w) =

(
1−

∑
i≥1

t2z2
i

1 + t2z2
i

)−1

. (6.3.2)

As before, Corollary 6.3.2 follows from setting x = 0 in Theorem 6.3.1. To

prove Theorem 6.3.1, define a homomorphism by

ΘLNL(en) = f(n)pn(z1, z2, . . . ) = f(n)
∑
i≥1

zn
i .

Claim:

ΘLNL(h2n) =
∑

w∈P2n: w2j−1=w2j∀j
x2-lev(w)z(w).

To see this, we interpret each term in

ΘLNL(hn) =
∑

λ`n

(−1)n−`(λ)|Bλ,n|
`(λ)∏
j=1

f(λj)
∑
i≥1

z
λj

i . (6.3.3)

By the definition of f , this sum will contribute nothing unless each part of λ is

even, which also implies that n must be even. Thus, a term in the sum corresponds

to a brick tabloid with bricks of even length. Then (−1)n−`(λ)
∏`(λ)

i=1 f(λj) reduces

to
∏`(λ)

j=1(x − 1)λj/2, which weights each brick with a factor of x or −1 in every

other nonterminal cell. The term
∏`(λ)

j=1

∑
i≥1 z

λj

i lets us choose a number i for each

brick, which we use to fill every cell of the brick and weight by z
λj

i . The weight

is given by the product of the monomial weights for each brick times the product

of the x and −1 labels. For example, Figure 6.10 is one such object with weight

xz2
1z

6
6 .

661

x

1 6 6 6 6

Figure 6.10: An object coming from Equation 6.3.3 with n = 8
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Thus, Equation 6.3.3 corresponds to a weighted sum over all such brick tabloids.

We perform the usual involution on these brick tabloids, where bricks are scanned

from left to right for the first occurrence of either a−1 or the same entry in adjacent

bricks. If a −1 is encountered first, we break the brick after it and remove the −1.

If the same entry is found first, we combine the bricks and insert a −1. For

instance, the image of Figure 6.10 is given in Figure 6.11. Thus, Equation 6.3.3

can be reduced to summing over fixed points.

−1

61

x

1 6 6 6 6 6

Figure 6.11: The image of Figure 6.10

Fixed points must have bricks of even length, equality within a brick, and

inequalities between bricks. The power of x will register the number of double

levels, as desired. Since all brick lengths are even, we will always have w2j−1 = w2j,

where w denotes the underlying word. For example, the fixed point in Figure 6.12

has weight x2z2
1z

6
6 . The sum of the weights of all fixed points is exactly given by

∑

w∈P2n: w2j−1=w2j∀j
x2-lev(w)z(w).

x

666661

x

1 6

Figure 6.12: A fixed point coming from Equation 6.3.3 when n = 8
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Thus, we can use Equation 6.3.3 to obtain:

∑
n≥0

t2n
∑

w∈P2n: w2j−1=w2j∀j
x2-lev(w)z(w)

=
∞∑

n=0

tnΘLNL(hn) = ΘLNL

( ∞∑
n=0

(−t)nen

)−1

=

(
1 +

∞∑
n=1

−(x− 1)n−1t2n
∑
i≥1

z2n
i

)−1

=

(
1−

∑
i≥1

∞∑
n=1

(x− 1)n−1(tzi)
2n

)−1

=

(
1−

∑
i≥1

t2x2
i

1− t2(x− 1)z2
i

)−1

,

which proves Theorem 6.3.1.

In this case, Corollary 6.3.2 could also have been derived by replacing txi with

t2z2
i and setting y = 0 in Theorem 3.2.1. This should be obvious, since a level-

alternating word can be reduced to a word with no levels by replacing each repeated

letter by a single occurrence. For example, the level-alternating word 2 2 4 4 3 3

reduces to 2 4 3. In fact, the same reduction will work for s-level-alternating words,

which yields the following corollary:

Corollary 6.3.3.

∑
n≥0

tsn
∑

w∈Ls−1NL∞,sn

z(w) =

(
1−

∑
i≥1

tsxs
i

1 + tszs
i

)−1

, (6.3.4)

where Ls−1NL∞,sn = {w ∈ Psn : Lev(w) = Pn−1 − sPn−1}.

6.4 Alternating descents

Chebikin [14] first introduced the notion of alternating descents for permuta-

tions, defined by

d̂(σ) = |{2i : σ2i < σ2i+1} ∪ {2i + 1 : σ2i+1 > σ2i+2}|.
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He also found the generating function for alternating Eulerian polynomials, defined

as Ân(t) =
∑

σ∈Sn
td̂(σ)+1. That is, he showed that

∑
n≥1

Ân(t)
un

n!
=

t(1− h(u(t− 1)))

h(u(t− 1))− t
, (6.4.1)

where h(x) = tan(x) + sec(x). In addition, Remmel [39] introduced the notion of

alternating major index, defined by

altmaj(σ) =
∑

i∈Altdes(σ)

i.

Remmel then extended Chebikin’s generating function to the following:

∑
n≥0

tn

n!

∑
σ∈Sn

xaltdes(σ)qaltmaj(σ)

(1− x)(1− xq) · · · (1− xqn)
= (6.4.2)

∑

k≥0

xk

(sec(−t) + tan(−t))(sec(−tq) + tan(−tq)) · · · (sec(−tqk−1) + tan(−tqk−1))
.

Remmel also obtained similar formulas for common alternating descents and major

index, as well as for the hyperoctahedral group Bn and its subgroup Dn.

The central goal of the next two sections is to develop analogues of (6.4.1) and

(6.4.2) for words instead of permutations. When we consider analogues for words,

we can apply both strong and weak versions of these statistics. Chebikin and

Remmel defined alternating descents as places where σ deviates from an up-down

pattern, but we find it more natural to define alternating descents as places where

σ follows an up-down pattern (the two statistics are equidistributed over words

on a finite alphabet, so it makes no difference). That is, we will use the following

definitions.

Altdes(w) = {2i : w2i > w2i+1} ∪ {2i + 1 : w2i+1 < w2i+2}
= (E ∩Des(w)) ∪ (O ∩Ris(w)), and

altdes(w) = |Altdes(w)|.
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Similarly, define

Waltdes(w) = {2i : w2i ≥ w2i+1} ∪ {2i + 1 : w2i+1 ≤ w2i+2}
= (E ∩WDes(w)) ∪ (O ∩WRis(w)), and

waltdes(w) = |Waltdes(w)|.

Also define

altmaj(w) =
∑

i∈Altdes(w)

i and

waltmaj(w) =
∑

i∈Waltdes(w)

i.

Again, altdes measures how often a word matches the up-down pattern, and

waltdes measures how often a word matches the weak up-down pattern. Since

an up-down word is also weak up-down, altdes(w) ≤ waltdes(w) for any w. We

will prove the following theorem.

Theorem 6.4.1.

∑
n≥0

tn
∑

w∈[m]n

xaltdes(w) = (1− x)

[
−x +

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(t[x− 1])2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
(t[x− 1])2k

]−1

and

∑
n≥0

tn
∑

w∈[m]n

xwaltdes(w) = (1− x)

[
−x +

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(t[x− 1])2k+1

∑m
k=0(−1)k

(
m+k
2k

)
(t[x− 1])2k

]−1

Our method for proving these theorems will be to use the generating functions

for up-down words to define a homomorphism on the ring of symmetric functions.

Recall from Chapter 4 that Carlitz [13] showed that

∑

m∈O
|SUDn,m|zm =

1

Qn(z)

and

1 +
∑

m∈E
|SUDn,m|zm =

Pn(z)

Qn(z)
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where

Pn(z) =
n∑

k=0

(−1)k

(
n + k

2k + 1

)
z2k+1 and

Qn(z) =
n∑

k=0

(−1)k

(
n + k − 1

2k

)
z2k.

Also, Rawlings [38] showed that

∑

m∈O
|WUDn,m|zm =

1

Bn(z)

and

1 +
∑

m∈E
|WUDn,m|zm =

An(z)

Bn(z)

where

An(z) =
n∑

k=0

(−1)k

(
n + k

2k + 1

)
z2k+1 and

Bn(z) =
n∑

k=0

(−1)k

(
n + k

2k

)
z2k.

We will also make use of the fact (noted in Chapter 4) that up-down words and

down-up words over a finite alphabet are equinumerous: |SUDm,n| = |SDUm,n|
and |WUDm,n| = |WDUm,n|. This observation is key for proving Theorem 6.4.1.

To prove the first part of Theorem 6.4.1, we fix some alphabet [m] and define

a homomorphism on the ring of symmetric functions by Θaltdes(e0) = 1 and, for

n ≥ 1,

Θaltdes(en) = (−1)n−1(x− 1)n−1|SUDm,n|

= (−1)n−1(x− 1)n−1
1 +

∑m
k=0(−1)k

(
m+k
2k+1

)
z2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
z2k

|zn

Claim:

Θaltdes(hn) =
∑

w∈[m]n

xaltdes(w) (6.4.3)
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To see this, we interpret each term in

Θaltdes(hn) =
∑

λ`n

(−1)n−`(λ)Bλ,n

`(λ)∏
i=1

(−1)λi−1(x− 1)λi−1|SUDm,λi
|

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(x− 1)λi−1
1 +

∑m
k=0(−1)k

(
m+k
2k+1

)
z2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
z2k

|zλi .

The term
∑

λ`n Bλ,n lets us choose some λ ` n and create a brick tabloid of

shape n and type λ. The term
∏`(λ)

i=1

1+
∑m

k=0(−1)k(m+k
2k+1)z2k+1

∑m
k=0(−1)k(m+k−1

2k )z2k
|zλi lets us fill in each

brick with either an up-down or a down-up word. If the brick starts at an odd place,

we fill it with an up-down; if it starts at an even place, we fill it with a down-up.

This is the step that requires up-down and down-up words to be equinumerous,

and which prevents us from tracking more information (the bijection between does

not preserve the sum of the entries, so we cannot q-count). Finally, the term
∏`(λ)

i=1 (x − 1)λi−1 lets us leave the last cell of every brick alone, and label every

other cell with either an x or −1. We define the weight of a filled labeled brick

tabloid created in this manner to be the product of the x and −1 labels. For

example, Figure 6.13 displays one such object with weight x4. The first brick

contains an up-down word, while the second and third bricks contain down-up

words, since they begin at even places.

−1

2 4 33 6 8 2 6 3

xx x−1 x

Figure 6.13: An object coming from Θaltdes(h9)

We perform an involution on the decorated brick tabloids that result, breaking

a brick at the first −1 encountered or combining bricks if this will preserve their

up-down or down-up nature. The image of Figure 6.13 under this involution is

depicted in Figure 6.14.

We now consider the fixed points of Θaltdes(hn). Fixed points will thus have no

−1 weights and up-down or down-up behavior within each brick, but not between.
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−1

2 4 33 6 8 2 6 3

xx x x

Figure 6.14: The image of Figure 6.13

The factors of x will thus give us exactly altdes(w), which verifies Equation 6.4.3.

One fixed point is depicted in Figure 6.15.

xx x x

452 4 3 6 2 6 3

xx x

Figure 6.15: A fixed point of Θaltdes(h9)

Thus,

∑
n≥0

tn
∑

w∈[m]n

xaltdes(w) =

(
1 +

∑
n≥1

(−t)nΘaltdes(en)

)−1

=
1− x

1− x +
∑

n≥1[t(x− 1)]n
1+

∑m
k=0(−1)k(m+k

2k+1)z2k+1

∑m
k=0(−1)k(n+k−1

2k )z2k
|zn

= (1− x)

[
−x +

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(t[x− 1])2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
(t[x− 1])2k

]−1

The second part of Theorem 6.4.1 is proved in a similar manner, interpreting as

brick tabloids and using the generating function for WUD (WDU) to fill in bricks.

For brevity, we omit the full details.

6.5 Alternating major index

In this section, we will prove two analogues of (6.4.2) for compositions. Define

alternating major index and weak alternating major index as follows.
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altmaj(w) =
∑

i∈Altdes(w)

i and

waltmaj(w) =
∑

i∈Waltdes(w)

i.

Then we have the following theorems.

Theorem 6.5.1.

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

yaltdes(w)ualtmaj(w) =

∑
p≥0

yp

∏p
j=0

1+
∑m

k=0(−1)k+1(m+k
2k+1)(tuj)2k+1

∑m
k=0(−1)k(m+k−1

2k )(tuj)2k

.

Theorem 6.5.2.

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

ywaltdes(w)uwaltmaj(w) =

∑
p≥0

yp

∏p
j=0

1+
∑m

k=0(−1)k+1(m+k
2k+1)(tuj)2k+1

∑m
k=0(−1)k(m+k

2k )(tuj)2k

.

In order to prove these theorems, we will combine the methods of the previous

section and section 3.3. The idea behind these theorems is similar to Theorem

3.3.1, except that we use the generating function for up-down words to fill in our

brick tabloid with up-down (down-up) words, instead of simply partitions.

To prove Theorem 6.5.1, define a ring homomorphism Θ(p) by defining it on

the elementary symmetric function en so that

Θ(p)(en) =
∑

i0,...,ip≥0
i0+···+ip=n

u0i0+···+pip

p∏
j=0

|SUDm,ij |

=
∑

i0,...,ip≥0
i0+···+ip=n

u0i0+···+pip

[
p∏

j=0

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
z2k+1

j∑m
k=0(−1)k

(
m+k−1

2k

)
z2k

j

]∣∣∣∣∣
z

i0
0 ···z

ip
p

,

where expression|tp means to take the coefficient of tp in expression.



141

First we apply Θ(p) to hn. We have

Θ(p)(hn) =
∑

λ`n

(−1)n−`(λ)Bλ,nΘ(p)(eλ)

=
∑

λ`n

(−1)n−`(λ)Bλ,n

`(λ)∏
r=1

∑
i0,...,ip≥0

i0+···+ip=λr

u0i0+···+pip (6.5.1)

×
[

p∏
j=0

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
z2k+1

j∑m
k=0(−1)k

(
m+k−1

2k

)
z2k

j

]∣∣∣∣∣
z

i0
0 ···z

ip
p

.

Our goal is to interpret Θ(p)(hn) as a sum of weighted combinatorial objects.

We interpret the sum
∑

λ`n Bλ,n as all ways of picking a brick tabloid T of shape

(n). Then the factor (−1)n−`(λ) allows us to place a −1 in each non-terminal cell

of a brick in T and place a 1 at the terminal cell of each brick in T . Next, for each

brick in T , choose nonnegative integers i0, . . . , ip that sum to the total length of

the brick. This accounts for the product and second sum in (6.5.1). Using powers

of u, these choices for i0, . . . , ip can be recorded in T . In each brick, place a power

of u in each cell such that the powers weakly increase from left to right and the

number of occurrences of uj is ij. At this point, we have constructed an object

which may look something like Figure 6.16 below.

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

1 1 1

Figure 6.16: A partial object coming from Equation 6.5.1

Now, the term

[∏p
j=0

1+
∑m

k=0(−1)k(m+k
2k+1)z2k+1

j∑m
k=0(−1)k(m+k−1

2k )z2k
j

]∣∣∣∣
z

i0
0 ···z

ip
p

lets us choose p+1 up-down

(or down-up) words w(0), . . . , w(p) where `(w(j)) = ij for j = 0, . . . , p. We write

these words in the order chosen, where we insert an up-down word if the starting

cell is odd (e.g. it is the 5th cell in the overall tabloid) and a down-up word if the

starting cell is even. Figure 6.17 gives one example of an object created in this
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manner. We call these objects filled labeled brick tabloids. The weight of such a

4

−1 −1 −1 −1 −1 −1 −1 −1 −1

u u u u u u u u u u u
1 1 3 0 0 0 2 2 2 0 3 3

33

1 1 1

3 42 6 4 2

u

1 6 55

Figure 6.17: An object coming from Equation 6.5.1 when n = 12

composite object is the product of the signs at the top of the configuration times

the products of the uj’s in the second row of the configuration. Thus, the weight

of the object in Figure 6.17 is −u17.

These filled labeled brick tabloids of shape (n) and type λ for some λ ` n have

the following properties:

1. the cells in each brick contain −1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is up, and

3. T contains a composition of n which must

strictly decrease between consecutive cells within a brick if the cells are

marked with the same power of u and the first cell is even, and must

strictly increase between consecutive cells within a brick if the cells are

marked with the same power of u and the first cell is odd.

In this way, Θ(p)(hn) is the weighted sum over all possible filled labeled brick

tabloids of shape (n).

Next, we define a sign-reversing involution I which will allows us to cancel all

the terms T with a negative weight. To define I, scan the cells from left to right

looking for either a cell containing −1 or two consecutive bricks which may be

combined to preserve the properties of this collection of objects. If a −1 is scanned

first, break the brick containing the −1 into two immediately after the violation

and change the −1 to 1. If the second situation is scanned first, glue the brick
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together and change the 1 in the first brick to −1. For example, the image of

Figure 6.17 is displayed in Figure 6.18.

−1 1

45 561

u

2462 43

111

33

330222000311
uuuuuuuuuuu

−1−1−1−1−1−1−1

Figure 6.18: The image under I of Figure 6.17.

It is easy to see that I is a sign-reversing, weight-preserving involution. Thus,

I shows that Θ(p)(hn) is equal to the sum of the weights of all the fixed points of

I.

Let us consider the fixed points of I. First, there can be no −1’s, so every

brick must be of size 1. Next, it cannot be the case that the power of u strictly

increases as we move from brick i to brick i+1, since then we could combine these

two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must

weakly decrease as we read from left to right. Let w = (w1, . . . , wn) denote the

underlying composition. We note that if the power of u is the same on brick i and

i + 1, then it must be the case that

1. wi ≥ wi+1 if i is odd, and

2. wi ≤ wi+1 if i is even.

Otherwise, we could combine brick i and brick i + 1. One example of a fixed point

may be found in Figure 6.19.

u

7365

u

6

00122233

8

 1 1 1 1 1 1 1 1 1

4 56

u

46

111

33

2223
uuuuuuuuu

Figure 6.19: A fixed point coming from Equation 6.5.1

We now turn our attention to counting fixed points. Suppose that the powers

of u in a fixed point are r1, . . . , rn when read from left to right. It must be the
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case that p ≥ r1 ≥ · · · ≥ rn. Define nonnegative integers ai by ai = ri − ri+1 for

i = 1, . . . , n−1 and let an = rn. It follows that r1 + · · ·+ rn = a1 +2a2 + · · ·+nan,

a1 + · · · + an = r1 ≤ p. Now suppose that w is the composition in a fixed point.

Then if wi > wi+1 and i is even or wi < wi+1 and i is odd, it cannot be that

ri = ri+1 because that would violate our conditions for fixed points. Thus, it must

be the case that

ai ≥ χ(wi > wi+1)χ(i ∈ E) + χ(wi < wi+1)χ(i ∈ O) = χ(i ∈ Altdes(w)).

In this way, the sum of the weights of all fixed points of I equals

∑

w∈[m]n

∑
a1+···+an≤p

ai≥χ(i∈Altdes(w))

ua1+2a2+···+nan

=
∑

w∈[m]n

∑

a1≥χ(1∈Altdes(w))

· · ·
∑

an≥χ(n∈Altdes(w))

ya1+···+anua1+2a2+···+nan

∣∣∣∣∣∣
y≤p

,

where expression|t≤k means to sum the coefficients of tj for j = 0, . . . , k in

expression. Rewriting the above equation, we have

∑

w∈[m]n

∑

a1≥χ(1∈Altdes(w))

(yu)a1 · · ·
∑

an≥χ(n∈Altdes(w))

(yun)an

∣∣∣∣∣∣
y≤p

=
∑

w∈[m]n

(yu)χ(1∈Altdes(w))(yu2)χ(2∈Altdes(w)) · · · (yun)χ(n∈Altdes(w))

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣∣
y≤p

=
∑

w∈[m]n

yaltdes(w)ualtmaj(w)

(1− yu)(1− yu2) · · · (1− yun)

∣∣∣∣∣∣
y≤p

.

Dividing by (1− y) allows the above expression to be rewritten as

∑

w∈[m]n

ydes(w)ualtmaj(w)

(1− y)(1− yu) · · · (1− yun)

∣∣∣∣∣∣
yp

.
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Therefore, we have

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

yaltdes(w)ualtmaj(w)

=
∑
p≥0

ypΘ(p)

(∑
n≥0

tnhn

)

=
∑
p≥0

yp

(∑
n≥0(−t)nΘ(p)(en)

)

=
∑
p≥0

yp

∑
n≥0(−t)n

∑
i0,...,ip≥0

i0+···+ip=n
u0i0+···+pip

[∏p
j=0

1+
∑m

k=0(−1)k(m+k
2k+1)z2k+1

j∑m
k=0(−1)k(m+k−1

2k )z2k
j

]∣∣∣∣
z

i0
0 ···z

ip
p

.

However,

∑
n≥0

(−t)n
∑

i0,...,ip≥0
i0+···+ip=n

u0i0+···+pip

[
p∏

j=0

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
z2k+1

j∑m
k=0(−1)k

(
m+k−1

2k

)
z2k

j

]∣∣∣∣∣
z

i0
0 ···z

ip
p

=

∑
n≥0

(−t)n

p∏
j=0

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(ujz)2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
(ujz)2k

∣∣∣∣∣
zn

=

p∏
j=0

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
(−tuj)2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
(−tuj)2k

=

p∏
j=0

1 +
∑m

k=0(−1)k+1
(

m+k
2k+1

)
(tuj)2k+1

∑m
k=0(−1)k

(
m+k−1

2k

)
(tuj)2k

Thus, we have shown that

∑
n≥0

tn

(y; u)n+1

∑

w∈[m]n

yaltdes(w)ualtmaj(w) =

∑
p≥0

yp

∏p
j=0

1+
∑m

k=0(−1)k+1(m+k
2k+1)(tuj)2k+1

∑m
k=0(−1)k(m+k−1

2k )(tuj)2k

which proves Theorem 6.5.1.

The proof of Theorem 6.5.2 is very similar and will be omitted; it uses a ho-
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momorphism defined by

φ(p)(en) =
∑

i0,...,ip≥0
i0+···+ip=n

u0i0+···+pip

p∏
j=0

|WUDm,ij |

=
∑

i0,...,ip≥0
i0+···+ip=n

u0i0+···+pip

[
p∏

j=0

1 +
∑m

k=0(−1)k
(

m+k
2k+1

)
z2k+1

j∑m
k=0(−1)k

(
m+k
2k

)
z2k

j

]∣∣∣∣∣
z

i0
0 ···z

ip
p

.

Notice that the only difference in the homomorphisms–and thus the theorems–is

the binomial coefficient in the denominators:
(

m+k
2k

)
instead of

(
m+k−1

2k

)
.

6.6 Appendix: roots of -1

In section 6.2, our generating functions turned out to involve roots of −1. In

this section, we provide a general theorem that explains their origin.

Let ζ1, . . . , ζk be all of the kth roots of −1.

Theorem 6.6.1. For any sequence a,

∑
n≥0

(−1)naknt
kn =

1

k

k∑
j=1

∑
n≥0

an(ζjt)
n. (6.6.1)

Proof. It suffices to show that, for any n,

k∑
j=1

ζn
j =





(−1)mk n = km

0 k - n
(6.6.2)

The first case is obvious: if n = km, then

k∑
j=1

ζn
j =

k∑
j=1

(ζk
j )m =

k∑
j=1

(−1)m = (−1)mk.

For the second case, we wish to write down the roots of −1 explicitly:
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ζj = e
πi
k e

2π(j−1)
k . Then we have

k−1∑
j=0

(e
πi
k e

2πj
k )n

= e
nπi
k

k−1∑
j=0

(e
2πn

k )j

= e
nπi
k

1− (e
2πn

k )k

1− e
2πn

k

= e
nπi
k

1− 1

1− e
2πn

k

If k - n, then the denominator is not 0, whereas the numerator is, so we get the

desired result.

We can shift the start of the summation and our sequence entries to obtain the

following corollary.

Corollary 6.6.2. Let J < k. Then

∑
n≥N0

(−1)nakn−Jtkn−J =
1

k

k∑
j=1

ζ−J
j [

∑
n≥N0

an(ζjt)
n].



Chapter 7

Results on other composition

patterns

This chapter builds on Chapter 4, where we considered words that could be

partitioned into blocks of fixed length so that, within each block, the entries were

strictly or weakly increasing and there were strict or weak increases between blocks.

In this chapter, we still consider words that can be partitioned into blocks of fixed

length, but we examine more general patterns within the blocks. We will consider

blocks where the only condition is that the first element of each block is the (unique)

maximum of the block, as well as blocks with a fixed number of rises followed by

a fixed number of descents. Also, we will consider blocks with a fixed number

of levels followed by a descent. We then apply the statistics des, wdes, and lev

from Chapter 3 to these blocks, where we will sometimes compare maximal entries

within each block and sometimes compare the final entry of one block with the

first entry of the following block.

7.1 Block maxima

In this section, we will consider words that are made up of blocks of size K,

where each block has a strong maximum at a particular place in the block. Without

148
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loss of generality, we can let this be the first place in the block. That is, let

BlockMax(K, Kn) = {w ∈ PKn : wiK+1 > wj for j = iK + 2, . . . , (i + 1)K}.

For words in this class, we will be interested in block levels, or places in which

adjacent block maxima have the same value. Let

levKmax(w) = |{i :
(i+1)K
max

j=iK+1
wj =

(i+2)K
max

j=(i+1)K+1
wj}|.

For w ∈ BlockMax(K,n), levKmax(w) = |{i : wiK+1 = w(i+1)K+1}|. For example,

when K = 4, the word w = 6 3 5 4|7 1 4 2|7 5 6 3 ∈ BlockMax(4, 12) has

levKmax(w) = 1, coming from the repeated maximal element 7 (“|” indicates

separations between blocks). Then we have the following theorem and corollary.

Theorem 7.1.1.

∑
n≥0

tKn
∑

w∈BlockMax(K,Kn)

xlevKmax(w)q|w|

=

(
1−

∑
j≥1

tKq(j+K)([j]q)
(K−1)

1− tK(x− 1)q(j+K)([j]q)(K−1)

)−1

.

Corollary 7.1.2.

∑
n≥0

tKn
∑

w∈BlockMax(K,Kn)

q|w| =

(
1−

∑
j≥1

tKq(j+K)([j]q)
K−1

)−1

.

To prove Theorem 7.1.1, we define a homomorphism to choose a value j for the

maximum spots, then fill in the rest of each block with entries < j. That is, we

let ΘlevKmax(eN) = 0 if K - N , ΘlevKmax(e0) = 1, and for n ≥ 1

ΘlevKmax(eKn) = (−1)Kn−1(x− 1)n−1
∑
j≥2

qjn(q + q2 + · · ·+ qj−1)(K−1)n

= (−1)Kn−1(x− 1)n−1
∑
j≥2

qjnq(K−1)n([j − 1]q)
(K−1)n

= (−1)Kn−1(x− 1)n−1
∑
j≥1

q(j+K)n([j]q)
(K−1)n.



150

Claim:

ΘlevKmax(hKn) =
∑

w∈BlockMax(K,Kn)

xlevKmax(w)q|w| (7.1.1)

To see this, we interpret each term in

ΘlevKmax(hKn) =
∑

µ`Kn

(−1)Kn−`(µ)Bµ,Kn

`(µ)∏
i=1

ΘlevKmax(eµi
)

=
∑

λ`n

(−1)Kn−`(λ)Bλ,n

`(λ)∏
i=1

ΘlevKmax(eKλi
)

=
∑

λ`n

(−1)Kn−`(λ)Bλ,n

`(λ)∏
i=1

(−1)Kλi−1(x− 1)λi−1
∑
j≥1

q(j+K)λi([j]q)
(K−1)λi

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(x− 1)λi−1
∑
j≥1

q(j+K)λi([j]q)
(K−1)λi

By the definition of ΘlevKmax, this sum will contribute nothing unless each

part of µ is divisible by K, so we can obtain µ ` Kn by taking some λ ` n and

multiplying each part of λ by K. Thus, the term
∑

λ`n Bλ,n can be interpreted

as creating a brick tabloid with bricks whose lengths are Kλ1, Kλ2, . . . , Kλ`(λ).

Within a brick, we fill in each block of size K with a word having first entry j

and other entries all smaller. We also label each nonterminal block of size K with

an x or −1. We define the weight of a filled labeled brick tabloid created in this

manner to be the product of the x and −1 labels times q raised to the sum of the

entries. For example, the object depicted in Figure 7.1 has blocks of size 4 and

weight −q66.

4 774848

−1

33 46 6 5

Figure 7.1: A filled labeled brick tabloid coming from ΘlevKmax(h12) with K = 4

We perform an involution on the set of filled label brick tabloids that results,

breaking a brick at the first −1 encountered or combining bricks if the first entries
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of adjacent blocks are equal. For example, the image of Figure 7.1 is depicted in

Figure 7.2.

4 774848 33 46 6 5

Figure 7.2: The image of Figure 7.1

Fixed points will thus have no −1 labels, and blocks of K will have equal

maximum (first) entries within each brick, but not between bricks. The factors

of x will thus give us exactly xlevKmax(w), which verifies Equation 7.1.1. One fixed

point is depicted in Figure 7.3.

7

x

4 566 4338 4 8 4 7

Figure 7.3: A fixed point coming from ΘlevKmax(h12) with K = 4

Thus,

∑
n≥0

tKn
∑

w∈BlockMax(K,Kn)

xlevKmax(w)q|w| =
∑
n≥0

tKnΘlevKmax(hKn)

=

(
1 +

∑
n≥1

(−t)Kn(−1)Kn−1(x− 1)n−1
∑
j≥1

q(j+K)n([j]q)
(K−1)n

)−1

(7.1.2)

=

(
1− 1

x− 1

∑
n≥1

tKn(x− 1)n
∑
j≥1

q(j+K)n([j]q)
(K−1)n

)−1

=

(
1− 1

x− 1

∑
j≥1

∑
n≥1

[
tK(x− 1)q(j+K)([j]q)

(K−1)
]n

)−1

=

(
1− 1

x− 1

∑
j≥1

tK(x− 1)q(j+K)([j]q)
(K−1)

1− tK(x− 1)q(j+K)([j]q)(K−1)

)−1

=

(
1−

∑
j≥1

tKq(j+K)([j]q)
(K−1)

1− tK(x− 1)q(j+K)([j]q)(K−1)

)−1

,
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proving Theorem 7.1.1.

Corollary 7.1.2 follows by setting x = 1 in Equation 7.1.2. Thus, all terms

vanish except when n = 1, which simplifies into

(
1−

∑
j≥1

tKq(j+K)([j]q)
K−1

)−1

.

7.2 SU rSDd

In this subsection, we will consider the condition that each block has r strict

increases followed by d strict decreases. Let K = r + d + 1, and let SU rSDd(n)

be the set of words w ∈ Pn with this pattern. For example, one element of

SU2SD3(12) is given by 1 3 7 6 2 1|2 4 8 5 4 3. Then we have the following

theorem and corollary.

Theorem 7.2.1.

∑
n≥0

tKn
∑

w∈SUrSDd(Kn)

xlevKmax(w)q|w| =


1−

∑
j≥1

tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q

1− (x− 1)tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q



−1

.

Corollary 7.2.2.

∑
n≥0

tKn
∑

w∈SUrSDd(Kn)

q|w| =

(
1− tK

∑
j≥0

qj+K+(r
2)+(d

2)
[
j

r

]

q

[
j

d

]

q

)−1

.

To prove Theorem 7.2.1, we define a homomorphism that chooses a value j for

the block maxima, then independently selects r distinct numbers less than j and

d distinct numbers less than j. That is, let
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φSUrSDd(e0) = 1, φSUrSDd(eN) = 0 for N 6= 0 mod K and, for n ≥ 1,

φSUrSDd(eKn) = (−1)Kn−1(x− 1)n−1
∑
j≥2

(
qj+(r+1

2 )+(d+1
2 )

[
j − 1

r

]

q

[
j − 1

d

]

q

)n

= (−1)Kn−1(x− 1)n−1
∑
j≥1

(
qj+1+(r+1

2 )+(d+1
2 )

[
j

r

]

q

[
j

d

]

q

)n

= (−1)Kn−1(x− 1)n−1
∑
j≥1

(
qj+K+(r

2)+(d
2)

[
j

r

]

q

[
j

d

]

q

)n

,

where the last step follows from the fact that

j +1+

(
r + 1

2

)
+

(
d + 1

2

)
= j +(1+ r + d)+

(
r

2

)
+

(
d

2

)
= j +K +

(
r

2

)
+

(
d

2

)
.

Claim:

φSUrSDd(hKn) =
∑

w∈SUrSDd(Kn)

xlevKmax(w)q|w|.

To see this, we interpret each term in:

φSUrSDd(hKn) =
∑

µ`Kn

(−1)Kn−`(µ)Bµ,Kn

`(µ)∏
i=1

φK(eµi
)

=
∑

λ`n

(−1)Kn−`(λ)Bλ,n

`(λ)∏
i=1

φK(eKλi
)

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(x− 1)λi−1q(
r
2)+(d

2)
∑
j≥1

qλi(j+1)

[
j

r

]λi

q

[
j

d

]λi

q

. (7.2.1)

By the definition of φSUrSDd , this sum will contribute nothing unless each part

of µ is divisible by K, so we can obtain µ ` Kn by taking some λ ` n and

multiplying each part of λ by K. Thus, the term
∑

λ`n Bλ,n can be interpreted

as creating a brick tabloid with bricks whose lengths are Kλ1, Kλ2, . . . , Kλ`(λ).

The term
∏`(λ)

i=1 (x − 1)λi−1 labels each non-terminal block of K with either x or

−1. The term
∏`(λ)

i=1 q(
r
2)+(d

2)
∑

j≥1 qλi(j+1)
[
j
r

]λi

q

[
j
d

]λi

q
selects some j ≥ 2 to be the

maximum for each brick and fills in each block of the bricks with a sequence

w1 < w2 < · · · < wr < j > wr+2 > · · · > wr+d+1, weighted by q|w|. We then define



154

the weight of such a filled labeled brick tabloid to be the product of the −1 and

x labels times q|w|, where w denotes the underlying word. Figure 7.4 depicts one

such filled labeled brick tabloid.

7 185372 4 66 3

−1

4

Figure 7.4: An object coming from Equation 7.2.1 with K = 4, n = 3

Thus, Equation 7.2.1 above corresponds to a weighted sum over all such brick

tabloids. We perform an involution on these tabloids to cancel in pairs. The

involution proceeds as follows. Scan left to right looking for the first occurrence

of either 2 bricks with adjacent blocks of size K having same maxima or a −1. If

a −1 is scanned first, break the brick after the −1 and remove it. If 2 adjacent

bricks have blocks with the same maxima j, we combine the bricks and insert a

−1 into the final block of the first brick. For instance, the image of Figure 7.4 is

given in Figure 7.5.

7 185372 4 66 34

Figure 7.5: The image of Figure 7.4

Therefore, Equation 7.2.1 reduces to summing over the fixed points. A fixed

point is displayed in Figure 7.6. Fixed points will have no −1’s and no adjacent

bricks with the blocks having the same maxima. Thus, they must have an x

corresponding to each pair of adjacent blocks with the same maxima, which is

exactly counted by ∑

w∈SUrSDd(Kn)

xlevKmax(w)q|w|.
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1

x

74 36 642 7 3 5 8

Figure 7.6: A fixed point of Equation 7.2.1

Therefore,

∑
n≥0

tKn
∑

w∈SUrSDd(Kn)

xlevKmax(w)q|w| =
∑
n≥0

tKnφSUrSDd(hKn)

=

(
1 +

∑
n≥1

(−t)Kn(−1)Kn−1(x− 1)n−1
∑
j≥1

(
qj+K+(r

2)+(d
2)

[
j

r

]

q

[
j

d

]

q

)n)−1

=

(
1− 1

x− 1

∑
n≥1

(
(x− 1)tK

)n
∑
j≥1

(
qj+K+(r

2)+(d
2)

[
j

r

]

q

[
j

d

]

q

)n)−1

=

(
1− 1

x− 1

∑
j≥1

∑
n≥1

(
(x− 1)tKqj+K+(r

2)+(d
2)

[
j

r

]

q

[
j

d

]

q

)n)−1

(7.2.2)

=


1− 1

x− 1

∑
j≥1

(x− 1)tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q

1− (x− 1)tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q



−1

=


1−

∑
j≥1

tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q

1− (x− 1)tKqj+K+(r
2)+(d

2)
[
j
r

]
q

[
j
d

]
q



−1

,

which proves Theorem 7.2.1.

To prove Corollary 7.2.2, we wish to set x = 1 in Equation 7.2.2. Thus, all

terms vanish except when n = 1, which gives

∑
n≥0

tKn
∑

w∈SUrSDd(Kn)

q|w| =

(
1 + (−t)K(−1)K−1

∑
j≥1

qj+K+(r
2)+(d

2)
[
j

r

]

q

[
j

d

]

q

)−1

,

which simplifies to Corollary 7.2.2.
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7.3 LSD

In this section, we consider words in which each block has the condition that

all entries are equal, except for the last entry in the block, which is smaller. For

any K ≥ 3, let

LSD(K,m, n) = {w ∈ [m]n : ∀i, wiK+1 = wiK+2 = · · · = wiK+K−1 > wiK+K}; i.e.

the set of words with K − 2 levels followed by a strict decrease (in each block of

length K, we have K − 1 equal entries followed by a smaller entry). For example,

one element of LSD(4, 9, 8) is given by 5 5 5 2|9 9 9 3. Define

blockKwdes(w) = |{i : wiK ≥ wiK+1}| and blockKdes(w) = |{i : wiK > wiK+1}|.
Then we have the following theorem:

Theorem 7.3.1. Let K ≥ 3. Then

∑
n≥0

tKn
∑

w∈LSD(K,m,n)

xblockKwdes(w) =

(
1− 1

x− 1

∑
n≥1

[tK(x− 1)]n
(

m + n− 1

2n

))−1

and

∑
n≥0

tKn
∑

w∈LSD(K,m,n)

xblockKdes(w) =

(
1− 1

x− 1

∑
n≥1

[tK(x− 1)]n
(

m

2n

))−1

=
1− x

1− x + (1 +
√

tK(x− 1))m + (1−
√

tK(x− 1))m
.

To prove the first part of Theorem 7.3.1, we can define a homomorphism on Λ

by ΘLSD(e0) = 1, ΘLSD(eN) = 0 for N 6= 0 mod K, and, for n ≥ 1,

ΘLSD(eKn) = (−1)Kn−1(x− 1)n−1

(
m + n− 1

2n

)
.

Lemma 7.3.2.
(

m + n− 1

2n

)
= |{w ∈ LSD(K,m, Kn) : blockKwdes(w) = n− 1}|.

To see this, we interpret
(

m+n−1
2n

)
as first choosing a sequence m+n−1 ≥ a1 >

a2 > · · · > a2n−1 > a2n ≥ 1. Next, we obtain a new sequence b by subtracting

n − 1 from a1 and a2, n − 2 from a3 and a4, and so on, leaving a2n−1 and a2n
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alone. We will have m ≥ b1 > b2 ≥ b3 > · · · ≥ b2n−1 > b2n ≥ 1. Then the word

w = w1w2 . . . wKn ∈ LSD(K, m,Kn) that we obtain is given by

w1 = w2 = · · · = wK−1 = b1

wK = b2

wK+1 = wK+2 = · · · = w2K−1 = b3

w2K = b4

. . .

w(n−1)K+1 = w(n−1)K+2 = · · · = wnK−1 = b2n−1

wnK = b2n

Notice that we have forced weak descents between blocks at every possible place,

so that blockKwdes(w) = n− 1. As the reader can see, this lemma does not allow

us to keep track of the sum of the entries in the word.

Claim:

ΘLSD(hKn) =
∑

w∈LSD(K,m,n)

xblockKwdes(w).

To see this, we interpret each term in

ΘLSD(hKn) =
∑

µ`Kn

(−1)Kn−`(µ)Bµ,Kn

`(µ)∏
i=1

ΘLSD(eµi
)

=
∑

λ`n

(−1)Kn−`(λ)Bλ,n

`(λ)∏
i=1

ΘLSD(eKλi
)

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(x− 1)λi−1

(
m + λi − 1

2λi

)
. (7.3.1)

By the definition of ΘLSD, this sum will contribute nothing unless each part

of µ is divisible by K, so we can obtain µ ` Kn by taking some λ ` n and

multiplying each part of λ by K. Thus, the term
∑

λ`n Bλ,n can be interpreted as

creating a brick tabloid with bricks whose lengths are Kλ1, Kλ2, . . . , Kλ`(λ). By

Lemma 7.3.2, we interpret
∏`(λ)

i=1

(
m+λi−1

2λi

)
as filling in a word with K − 1 equal

entries followed by a smaller entry for each block of length K, and forcing weak
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decreases between blocks within the same brick. In addition, we interpret the term
∏`(λ)

i=1 (x−1)λi−1 as labeling each nonterminal block with either x or −1. The weight

of a brick tabloid is given by the product of the x and −1 labels. One such filled

labeled brick tabloid is depicted in Figure 7.7.

1

−1

55513377 47 3

Figure 7.7: An object coming from Equation 7.3.1 with K = 4, n = 3

Thus, Equation 7.3.1 above corresponds to a weighted sum over all such brick

tabloids. We perform an involution on these tabloids to cancel in pairs. The

involution proceeds as follows. Scan left to right looking for the first occurrence

of either 2 bricks with a weak decrease between adjacent blocks, or a −1. If a −1

is scanned first, break the brick after the −1 and remove it. If 2 adjacent bricks

have a weak decrease between blocks, we combine the bricks and insert a −1 into

the final block of the first brick. For instance, the image of Figure 7.7 is given in

Figure 7.8.

155513377 47 3

Figure 7.8: The image of Figure 7.7

Therefore, Equation 7.3.1 reduces to summing over the fixed points. One fixed

point is displayed in Figure 7.9. Fixed points will have no −1’s and no adjacent

bricks with weak decreases between blocks. Thus, they must have an x correspond-

ing to each pair of adjacent blocks with a weak decrease, which is exactly counted

by ∑

w∈LSD(K,m,n)

xblockKwdes(w).
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5 137 4

x

7 7 3 3 1 5 5

Figure 7.9: A fixed point of Equation 7.3.1

Thus

∑
n≥0

tKn
∑

w∈LSD(K,m,n)

xblockKwdes(w) =
∑
n≥0

tKnΘLSD(hKn)

=

(
1 +

∑
n≥1

(−t)Kn(−1)Kn−1(x− 1)n−1

(
m + n− 1

2n

))−1

=

(
1− 1

x− 1

∑
n≥1

[tK(x− 1)]n
(

m + n− 1

2n

))−1

,

proving the first part of Theorem 7.3.1. The second part of Theorem 7.3.1 is

proved in a similar manner using the homomorphism φLSD(e0) = 1, φLSD(eN) = 0

for N 6= 0 mod K and, for n ≥ 1,

φLSD(eKn) = (−1)Kn−1(x− 1)n−1

(
m

2n

)
.

We make a few notes here. First of all we could have defined level-alternating

words to have j-levels in each position:

{w : w1 = w2 = · · · = wj < wj+1 = wj+2 = . . . w2j > w2j+1 = · · · = w3j < . . . }.

However, these would have been isomorphic to up-down words of shorter length (as

we noted in Corollary 6.3.3 ). Also, we could have applied the same method from

Chapter 4 to LSD; that is, we can relate level strict-down words to level weak-up

words via an involution. However, since level weak-up words are no easier to count

than level strict-down, this method does not yield additional insight. For this

reason, we used the alternative method of defining an appropriate homomorphism

to count weak descents between blocks.
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7.4 SUSDWU

As we mentioned in Section 3.3, our method of defining a homomorphism on

the ring of symmetric functions complements the usual technique of writing down

recursions for the desired objects (often in terms of the starting letter) and using

the transfer matrix method (see [42], section 4.7 or [22]). This section is a prime

example of this interplay, where the homomorphism method reduces our original

task to one that can be easily accomplished through solving recursions.

Suppose we consider words that can be partitioned into blocks of length 3,

where each block has the pattern strict increase, strict decrease; and there are

weak increases between blocks. Let SUSDWU(m,n) be the set of such words on

alphabet [m] of length n. For example, one element of SUSDWU(7, 6) is given by

1 6 3 3 7 5. Then we have the following theorem.

Theorem 7.4.1. ∑
n≥0

|SUSDWU(m,n)|tn =
Pm(t)

Qm(t)
,

where Pm and Qm are polynomials.

To prove Theorem 7.4.1, we will first enumerate a more general class of words

by block descents. Let

SUSDA(m,n) = {w ∈ [m]n : w3i−2 < w3i−1 > w3i∀i}

(the acronym coming from strict-up, strict-down, anything). We will continue to

use our block descent statistic from the previous section, where our blocks are now

of length 3: block3des(w) = |{i : w3i > w3i+1}|. In addition, we use a third class

of words in order to define our homomorphism. Let

SUSDSD(m,n) = {w ∈ [m]n : w3i−2 < w3i−1 > w3i > w3i+1∀i}.

We wish to define a homomorphism by Θblock(0) = 1, Θblock(ej) = 0 for j 6= 0

mod 3 and, for n ≥ 1,

Θblock(e3n) = (−1)3n−1(x− 1)n−1|SUSDSD(m, 3n)|. (7.4.1)
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Claim:

Θblock(h3n) =
∑

w∈SUSDA(m,3n)

xblock3des(w).

To see this, we interpret each term in

Θblock(h3n) =
∑

µ`3n

(−1)3n−`(µ)Bµ,3n

`(µ)∏
i=1

Θblock(eµi
)

=
∑

λ`n

(−1)3n−`(λ)Bλ,n

`(λ)∏
i=1

Θblock(e3λi
)

=
∑

λ`n

Bλ,n

`(λ)∏
i=1

(x− 1)λi−1|SUSDSD(m, 3λi)|. (7.4.2)

By the definition of Θblock, this sum will contribute nothing unless each part of

µ is divisible by 3, so we can obtain µ ` 3n by taking some λ ` n and multiplying

each part of λ by 3. Thus, the term
∑

λ`n Bλ,n can be interpreted as creating a

brick tabloid with bricks whose lengths are 3λ1, 3λ2, . . . , 3λ`(λ). We fill every brick

with a SUSDSD word, and we label every third cell–except the final one in a

brick–with x or −1. Thus, Equation 7.4.2 can be interpreted as a sum over all

1

x

31 757 52 5534

Figure 7.10: An object coming from Equation 7.4.2

such filled labeled brick tabloids. We perform an involution to cancel out negative

terms in this sum. The involution proceeds as follows. Scan from left to right

looking for the first occurrence of either 2 bricks with a strict decrease between

them, or a −1. If a −1 is scanned first, break the brick after the −1 and remove

it. If 2 adjacent bricks have a strict decrease between them, we combine the bricks

and insert a −1 into the final cell of the first brick. The image of Figure 7.10 is

given in Figure 7.11.

Therefore, Equation 7.4.2 reduces to summing over the fixed points. A fixed

point is depicted in Figure 7.12. Fixed points will have no −1’s and no adjacent



162

1

−1x

31 757 52 5534

Figure 7.11: the image of Figure 7.10

bricks with a decrease between them. Thus, they must have an x corresponding

to each block descent. This is exactly counted by

∑

w∈SUSDA(m,3n)

xblock3des(w).

1

xx

31 757 52 5534

Figure 7.12: A fixed point of Equation 7.4.2

Setting x = 0 in this expression eliminates any terms with block descents, forc-

ing a weak rise between blocks. Thus, we can obtain
∑

n≥0 |SUSDWU(m, 3n)|t3n

by taking
∑

n≥0 tnΘblock(hn) |x=0, so that:

∑
n≥0

|SUSDWU(m, 3n)|t3n =

[∑
n≥0

(−t)nΘblock(en)

]−1
∣∣∣∣∣∣
x=0

=

[∑
n≥0

(−t)3n(−1)3n−1(x− 1)n−1|SUSDSD(m, 3n)|
]−1

∣∣∣∣∣∣
x=0

=

[∑
n≥0

t3n(−1)n|SUSDSD(m, 3n)|
]−1

The reasoning for words of length other than a multiple of three will be similar;

we can use the same homomorphism along with a weighting, which will yield a

polynomial numerator. Thus, we have reduced Theorem 7.4.1 to finding a rational

polynomial expression for
∑

n≥0 t3n(−1)n|SUSDSD(m, 3n)|.
We now turn our attention to counting SUSDSD(m, 3n), which we will accom-

plish via recursions. Fix some m and let Bk,j = {w ∈ SUSDSD(m, 3k) : w1 = j},
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the set of patterns containing k blocks of this type, where the first block begins

with j and there are strict decreases between blocks. Let bk,j = |Bk,j|. We can

enumerate B1,j for each j. For example, when m = 3, B1,1 = {132, 121, 131} and

B1,2 = {232, 231}.
It is easy to see that bk,j satisfy the recurrence:

bk,j =
m−1∑
r=1

aj,rbk−1,r,

where aj,r counts the number of 1-block patterns starting with j and ending with

an entry > r. Moreover, we can find a simple formula for the aj,r. For a block

to start with j and end with something greater than r, the middle entry must be

larger than both j and r + 1. The number of such entries is m − max(j, r + 1).

For each such entry, we can end with anything between it and r + 1. It is useful

to separate cases, so that we get:

aj,r =





(m−j)(m+j−2r−1)
2

r < j
(

m−r
2

)
r ≥ j

.

The case r ≥ j is obvious: we simply choose r < w2 < w3 ≤ m. When r < j, we

consider first choosing w3 ≤ j, which gives m− j choices for w2 and j − r choices

for w3. On the other hand, if w3 > j, we choose j < w2 < w3 ≤ m. Then we have

aj,r = (m− j)(j − r) +

(
m− j

2

)
=

(m− j)(m + j − 2r − 1)

2
.

Thus, we can write

bk,j =

j−1∑
r=1

(m− j)(m + j − 2r − 1)

2
bm−1,r +

m−2∑
r=j

(
m− r

2

)
bk−1,r.

Imagining a block of 0s following a single block (so that r = 0), we also obtain

b1,j =
(m− j)(m + j − 1)

2
.

These recursions can be solved for any particular value of m. We will illustrate

the first few cases here.
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When m = 3, we have already noted that

b1,1 = 3 and

b1,2 = 2.

For n > 1, we get the following recursions:

bn,1 =
2∑

r=1

(
3− r

2

)
bn−1,r = bn−1,1 and

bn,2 =
(3− 2)(3 + 2− 2− 1)

2
bn−1,1 = bn−1,1.

Thus, for k ≥ 2, |SUSDSD(3, 3k)| = 3 + 3 = 6. Then

∑
n≥2

t3n(−1)n|SUSDSD(3, 3n)| = 6
t6

1 + t3
.

Let m = 4. Then we have:

B1,1 = {132, 121, 131, 142, 141, 143}, b1,1 = 6.

B1,2 = {232, 231, 242, 241, 243}, b1,2 = 5.

B2,3 = {341, 342, 343}, b1,3 = 3.

For n > 1, we obtain the recursions:

bn,1 = 3bn−1,1 + bn−1,2,

bn,2 = 3bn−1,1 + bn−1,2, and

bn,3 = 2bn−1,1 + bn−1,2.

Let

C1(x) =
∑
n≥1

bn,1x
n−1,

C2(x) =
∑
n≥1

bn,2x
n−1, and

C3(x) =
∑
n≥1

bn,3x
n−1.
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Applying our recursion, we get:

C1(x) = 6 +
∑
n>1

(3bn−1,1 + bn−1,2)x
n−1

= 6 + 3
∑
n≥2

bn−1,1x
n−1 +

∑
n≥2

bn−1,2x
n−1

= 6 + 3xC1(x)(x) + xC2(x) (7.4.3)

It is clear from the recursions and initial conditions that C1(x) = 1 + C2(x), so

Equation 7.4.3 becomes

1 + C2(x) = 6 + 3x(1 + C2(x)) + xC2(x)

(1− 4x)C2(x) = 5 + 3x

C2(x) =
5 + 3x

1− 4x

Therefore,

C1(x) = 1 +
5 + 3x

1− 4x

=
6− x

1− 4x

Similarly,

C3(x) = 3 + 2x(C1(x)) + xC2(x)

=
(3− 12x) + (12x− 2x2) + (5x + 3x2)

1− 4x

=
3 + 5x + x2

1− 4x

From the nice linear form of our denominators (or solving the recursions more

directly), we find that:

bn,1 = bn,2 = 23 · 4n−2 (n ≥ 2) and

bn,3 = 69 · 4n−3 (n ≥ 3),

while b2,3 = 17. Thus, |SUSDSD(4, 3n)| = 253 · 4n−3 for n ≥ 3, so that

∑
n≥3

t3n(−1)n|SUSDSD(4, 3n)| = 253
−t9

1 + 4t3
.
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Let m = 5. We have b1,1 = 10, b2,2 = 9, b1,3 = 7, b1,4 = 4.

Our recursions will be

bn,1 = bn,2 = 6bn−1,1 + bn−1,2 + bn−1,3,

bn,3 = 5bn−1,1 + bn−1,2 + bn−1,3, and

bn,4 = 3bn−1,1 + 2bn−1,2 + bn−1,3.

Let

D1(x) =
∑
n≥1

bn,1x
n−1,

D2(x) =
∑
n≥1

bn,2x
n−1,

D3(x) =
∑
n≥1

bn,3x
n−1, and

D4(x) =
∑
n≥1

bn,4x
n−1.

As before, D1(x) = 1 + D2(x). Using this, our recursions become:

D1(x) = 10 + 6xD1(x) + 3x(D1(x)− 1) + xD3(x),

D3(x) = 7 + 5xD1(x) + 3x(D1(x)− 1) + xD3(x), and

D4(x) = 4 + 3xD1(x) + 2x(D1(x)− 1) + xD3(x).

We can solve for D3(x) in terms of D1(x):

(1− x)D3(x) = 7− 3x + 8xD1(x), so D3(x) = 7−3x+8xD1(x)
1−x

.

Then

D1(x) = 10 + 6xD1(x) + 3x(D1(x)− 1) + x
7− 3x + 8xD1(x)

1− x

(1− x)D1(x) = 10− 10x + 9x(1− x)D1(x)− 3x + 3x2 + 7x− 3x2 + 8x2D1(x)

= 10− 6x− x2D1(x) + 9xD1(x)

D1(x) =
10− 6x

1− 10x + x2
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and

D3(x) =
7− 3x + 8x 10−6x

1−10x+x2

1− x

=
7− 70x + 7x2 − 3x + 30x2 − 3x3 + 80x− 48x2

(1− 10x + x2)(1− x)

=
7 + 7x− 11x2 − 3x3

(1− 10x + x2)(1− x)

=
7 + 14x + 3x2

1− 10x + x2

and

D4(x) = 4− 2x + 5xD1(x) + xD3(x)

= 4− 2x + 5x
10− 6x

1− 10x + x2
+ x

7 + 14x + 3x2

1− 10x + x2

=
4− 40x + 4x2 − 2x + 20x2 − 2x3 + 50x− 30x2 + 7x + 14x2 + 3x3

1− 10x + x2

=
4 + 15x + 8x2 + x3

1− 10x + x2
.

Although we do not obtain a nice formula for the coefficients of these generating

functions, we can conclude that

|SUSDSD(5, 3n)| = [D1(x) + D2(x) + D3(x) + D4(x)]|xn−1

=

[
30 + 27x + 10x2 + x3

1− 10x + x2

]∣∣∣∣
xn−1

,

so that

∑
n≥0

t3n(−1)n|SUSDSD(5, 3n)|

= 1 +
∑
n≥1

t3n(−1)n

[
30 + 27x + 10x2 + x3

1− 10x + x2

]∣∣∣∣
xn−1

= 1− t3
∑
n≥1

(−t3)n−1

[
30 + 27x + 10x2 + x3

1− 10x + x2

]∣∣∣∣
xn−1

= 1− t3
[
30 + 27(−t3) + 10(−t3)2 + (−t3)3

1− 10(−t3) + (−t3)2
− 1

]

=
1− 19t3 + 38t6 − 9t9 + t12

1 + 10t3 + t6
.
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As the reader can see, similar reasoning will continue to work for larger values of

m, so that we still get rational expressions for
∑

n≥0 t3n(−1)n|SUSDSD(m, 3n)|.
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