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ABSTRACT OF THE DISSERTATION

Generating Functions for Composition/Word Statistics
by

Evan Fuller

Doctor of Philosophy in Mathematics
University of California San Diego, 2009

Professor Jeffrey Remmel, Chair

The statistics des, inv, maj are well-known statistics on .S,,. A central theme of this
dissertation is to extend these statistics and others to compositions. A composition,
or word on P, the set of positive integers, is simply a sequence of positive integers
V1,72, - - - s Yn. In Chapter 3, we derive generating functions for basic composition
statistics such as des, inv, maj, as well as statistics unique to compositions such as

lev and levmaj, defined by

Lev(y) = {@ RS %’+1},

lev(y) = [Lev(v)], and
levmaj(y) = Z i
i€Lev(y)
A permutation o € S, is called up-down if 01 < 09 > 03 < ---. When we con-

sider analogues for up-down words, we find that there are four classes to consider:
strict or weak increase, followed by strict or weak decrease. We derive generating
functions for all four classes in Chapter 4, and we also generalize previous results
to words that have a weakly/strictly increasing block of length s followed by a
weak /strict decrease. In order to handle all classes, we use an involution that re-
duces the original classes considered to ones that are easier to count. In Chapter
5, we generalize these results by forcing the final letter in each block of length s to

be in some set X C P.

x1



In Chapter 6, we apply an alternate method to find the generating functions for
certain classes of alternating words on alphabet P. In addition, we use the results

of previous chapters to find generating functions for statistics defined by

altdes(w) = |{2Z D W > w2i+1} U {22 +1: Wit < w2i+2}|7
Waltdes(w) = ’{22 LWy, Z w2i+1} U {2@ +1: W2i+1 S w2i+2}|,

altmaj(w) = Z i, and

i€ Altdes(w)

waltmaj(w) = Z i

1€Waltdes(w)

Finally, in Chapter 7 we find generating functions for additional composition
patterns. For instance, we can partition a composition into blocks of fixed length

and count levels between the maxima of these blocks.

x1i



Chapter 1

Introduction

1.1 General introduction

A permutation statistic is a function mapping permutations to nonnegative
integers. The modern analysis of such objects began in the early twentieth century
with the work of Percy MacMahon [31]. He popularized the “classic” notions of
the descents, rises, inversions, and major index statistics. Here if 0 = 01 --- 0, is

an element of the symmetric group .S,, written in one line notation, then
dGS(O') = ’{Z 0 > O'iJrl})‘ I'iSG(O') = H’l 0 < Ui+1}|
)

- Zi<]‘ x(oi > 0;) coinv(o) = Zi<j x(o; < 0;)

maj(o) = S0 ix(os > 0i41) comdes(o,7) = |{i : 0, > i1 & 7 > i},

inv(o

where for any statement A, x(A) is 1 if A is true and 0 if A is false. These
definitions make sense if 0 = o7 ... 0, is any sequence of natural numbers, not just
a permutation.

There has been a long line of research, [27], [28], [35], [37], [43], [33], showing
that a large number of generating functions for permutation statistics can be ob-
tained by applying homomorphisms defined on the ring of symmetric functions A
in infinitely many variables x1, x5, ... to simple symmetric function identities. For

example, the nth elementary symmetric function, e,, and the nth homogeneous



symmetric function, h,, are defined by the generating functions

E(t) =) ent"=]J(1 +ait) (1.1.1)

n>0 7

and

H(t) =) hat"=]] - _1m. (1.1.2)

n>0 i

Welet P(t) =}, -, pat", where p, =}, 2" is the n-th power symmetric function.

4

For any partition g = (p1,...,pe), we let h, = [[._; hu, €p = Hle e, and

Py = Hle Pu;- It is well known that
H(t)=1/E(-t) (1.1.3)

and
an1(_1)n_lnentn
E(-t)

A surprisingly large number of results on generating functions for various permuta-

P(t) =

(1.1.4)

tion statistics in the literature and a large number of new generating functions can
be derived by applying homomorphisms on A to simple identities such as (1.1.3)
and (1.1.4).

We shall use standard notation for ¢ analogues: [n], = 1+q+---+¢" 1 = ==
and [n],! = [n],[n — 1], [1],- In addition, let (z;¢)o = 1 and

(2;¢)n = (1 —2)(1 —2q) -+ (1 — z¢" ). Then all of the following results can be
proved by applying a suitable homomorphism to the identity (1.1.3).

1) ZZO:O TZ_T ZUESn zdes(@) = %

2) (Stanley 1976) [41]

oo u des(o) ,inv(o) __ 1—z
> om0 (]! Does, T = Tireg(u(z-1))

3) (Stanley 1976) [41]

00 u” des(o) ,coinv(o) __ 11—z
Do T Dves, TGO = s

4) (Fedou and Rawlings 1995) [16]



00 u” mdes(o,7) ,inv(c) ,inv(T) _ 1-z
Dm0 [lq'l,)! Z(U,T)ESnXSn Lo q p = et g pu(z—1))

5) (Garsia and Gessel 1979) [18]
k

Y20 TG Ses, TGN = 37 ey

(e 9]

where e,(u) = > [E]Z! (2)7 Ey(u) = 20#7:;7 and Jg,(u) = Zo [n}qu!Fn]p!'

One of the main goals of this dissertation is to extend these types of results
to more general sequences: compositions. Here a composition v is a sequence
of positive integers v = (71,...,7). We call the 7;’s the parts of v and let £(7)
denote the number of parts of v. We let |y| = v+ - -+, and 27 be the monomial
Loy + Ty

Brenti [9] used a ring homomorphism to find the generating function for
BEDI
n! '
n>0 gES,
Gessel gave a generating function for
Z xdes(a) e (o) qinv(o)
oc€Sn

both in his thesis and in a paper coauthored with Garsia [18, 19]. This function
was rederived by Mendes and Remmel [34] using a ring homomorphism.

Since compositions can have repeated entries, it is natural to have analogues
of des and maj where we replace > by > or = in the definition of des and maj.

That is, if v =1 ...7, is a composition, then we let
Des(vy) = {i:% >},
WDes(y) = {i:7 >7i1},and

Lev(y) = {i:vi=n}



Then we define

and

des(y) = |Des(v)],
wdes(y) = |WDes(v)|,and
lev(y) = [Lev(v)|

maj(y) = Y i,

i1€Des(v)
wmaj(y) = Z i, and

i€W Des(v)
levmaj(y) = Z i

i€Lev(y)

Notice that there are three analogues for des and maj, respectively. It turns

out that similar methods to those used to find the generating functions for permu-

tations can be extended to compositions. We will use these methods to find the

following generating functions:

S Yyt

n>0 yeP™

Z n Z ywdes('y)x'y

n>0  ~yePr
Z n Z yleV(’v) ol

n>0 'yE]Pm
§ 2y des(7) maJ()

yeP?

n>0 y Jnt1

§ E (L’V wdes(7) wmaj('y’ and
n+1

n>0 yeP™
E : § SL”Y lev(7y) levmaJ( )
n>0 Wty yepn

We say that o is an up-down permutation if

01 <09 >03<04>05"""



André [1, 2] found the following simple generating functions for U D,,, the number
of up-down permutations in .S,,.

n

t
1+ Z UDnm = sec(t) and

where E is the set of even positive integers and O is the set of odd positive integers.
When we consider analogues for up-down words, we find that there are four classes
to consider: strict or weak increase, followed by strict or weak decrease. We derive
generating functions for all four classes, and we also generalize previous results
to words that have a weakly/strictly increasing block of length s followed by a
weak /strict decrease. In order to handle all classes, we use an involution that
reduces the original classes considered to ones that are easier to count. In addition,
we can generalize these results by forcing the final letter in each block of length s
to be in some set X C P.

Chebikin [14] used up-down permutations to introduce the notion of alternating

descents for permutations, defined by
dA(O') = ‘{27, 09 < 0'22'+1} U {22 +1: 092i+1 > O'2i+2}|.

He also found the generating function for alternating Eulerian polynomials, defined
as A,(t) = > ves, t4@)+1 In addition, Remmel [39] introduced the notion of
alternating major index, defined by

altmaj(o) = Z i

i€ Altdes(o)
Remmel then found the following extension of Chebikin’s generating function:

altdes(o) altmaj(o)
ZUGSn 2 q

t
D R )

n>0

When we consider analogues for words, we can apply both strong and weak versions

of these statistics. Chebikin and Remmel defined alternating descents as places



where o deviates from an up-down pattern, but we find it more natural to define
alternating descents as places where o follows an up-down pattern. That is, we

will use the following definitions.

Altdes(w) = {2 : wy; > waipr } U {20 + 1 waip1 < waisa}
= (EN Des(w)) U (O N Ris(w)),
altdes(w) = |Altdes(w),
Waltdes(w) = {2 : wa; > wnipa} U {20+ 11 wyig1 < waiya}
= (ENWDes(w)) U (ONWRis(w)),
waltdes(w) = |Waltdes(w)|,
altmaj(w) = Z i, and

i€ Altdes(w)

waltmaj(w) = Z i.

1€Waltdes(w)

We will find the following generating functions:

Ztn Z xaltdes(w)

n>0  we[m]?

Ztn Z xwaltdes(w)

n>0  we[m|”

STt ST syt g

ZL Z ywaltdes(w)uwaltmaj(w)7

n>0 (y; u>n+1 wE[m]™

where [m] = {1,2,...,m}.

In Chapter 2, we develop background needed to prove results in the remaining
chapters. In Chapter 3, we examine analogues for the number of descents and
major index of a composition. In Chapter 4, we extend existing work on up-down
permutations and words to obtain four different analogues of generalized Fuler
numbers for words. That is, for any s > 2, we consider classes of words that can

be divided up into an initial set of blocks of size s followed by a block of size



j where 0 < 5 < s — 1. We then consider the classes of such words where all
the blocks are strictly increasing (weakly increasing) and there are strict (weak)
decreases between blocks. We show that the weight generating functions of such
words w = wy ... wy,, where the weight of a word is [}, z,,, is always the quotient
of sums of quasi-symmetric functions. Moreover, we give a direct combinatorial
proof of our results via simple involutions. In Chapter 5, we generalize the results
of Chapter 4 by considering the same classes of words with the added condition
that all entries at the end of a block lie in some set X C P. Chapters 4 and 5 only
examine words over a finite alphabet. In Chapter 6, we use a different method to
obtain generating functions for two of the classes of words from Chapter 4 over
an infinite alphabet. We also consider a variation on the block condition: words
with equal entries within each block, but inequalities between blocks. In addition,
we use the results of the previous chapters to find generating functions for the
number of alternating descents and the alternating major index of a word. Finally,
in Chapter 7, we again examine words that can be partitioned into blocks of fixed
length, but we consider other conditions on entries within the blocks. We introduce

these results in more detail in the next subsections.

1.2 Introduction to Chapter 3

The main goal of Chapter 3 is to develop generating functions for the number
of descents and major index of a composition. Gessel gave a generating function

for

Z wdes(a)umaj (o) qinv(o)
O'ESn

both in his thesis and in a paper coauthored with Garsia [18, 19]. Later, Mendes
and Remmel showed how Gessel’s result could be derived by applying a homo-
morphism defined on the ring of symmetric functions. In particular, Mendes and

Remmel proved the following formula, which is easily derived from the Garsia-



Gessel formula for the generating function of des(o), maj(o) and inv(o):

inv(o), coinv(c)

q p

Z l,des(a ris(o) maJ( ) comaj(a)

n>0 [n]pq (l‘ y’u v n+1 c€S,

k

s
- Z —t(u/v)0 —t(u/v)k "
k>0 ykﬂep,q( v "'epvq( /v

Here we use standard notation from hypergeometric function theory. For n > 1

and A F n, let

A S n-
=p" 7+ P
P—q

(n]p,q =
and
(M]pq! = [lpg - [Upa

be the p, g-analogues of n and n!. By convention, let [0],, =0 and [0],,! = 1. We
let (z;¢)p = 1 and

(25)n = (L —2)(1 —2q) -~ (1 —2¢" ™).
In addition, let (z,y;p,q)o = 1 and

n—1

(2,9;0,@)n = (x — y)(xp —yq) - - (xp" " —yg" ™).

Finally, €], , is a p, g-analog for the exponential function defined by

n>0 [n]pyq .

Since compositions can have repeated entries, it is natural to have analogues
of des and maj where we replace > by > or = in the definition of des and maj.

That is, if v =1 ...7, is a composition, then we let
Des(y) = {i:7 >},
WDes(y) = {i:7 >7i1},and

Lev(y) = {i:7i="%m}



Then we define

des(y) = [Des(y)l,
wdes(y) = |WDes(v)l|,and
lev(y) = |Lev(7)|

and

maj(y) = Y i,

i€Des(v)
wmaj(y) = Z i, and

1€W Des()
levmaj(y) = Z i

i€Lev(y)

Let [P denote the set of positive integers, and let 7 denote []}._, z,,. We will prove

the following theorems.

Theorem 1.2.1.

-y
tn ydes(’Y)x'Y — .
Z Z —y+ Lo (L + 1ty — Day)

n>0  ~yePpn

Theorem 1.2.2.

l—y
g ywdes(w)xv _ )
DD e ppp——

n>0  ~yePn —t(y—1)z;

Theorem 1.2.3.

g lev(v) v — 1 .
DO S

n>0  ~ePn y—1)z;

Theorem 1.2.4.

§ : § {L‘W des(y maJ v)
n>0 n+1

yepP™

yk

k>0 Hi21<xz’t; UWgi1
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where (7;¢), = (1 —2)(1 —zq) -+ (1 — zg" ).

Theorem 1.2.5.

wdes(7) Ve ()
Z o Z 2y ety iy

n>0 yeP™
E Yy H — it U) g1
k>0 i>1

Theorem 1.2.6.

yeP™

§ : § I'y lev(y levmaJ ()
n>0 n+1

S v
k>0 II?:O(E:nZOZ%lt_lﬂf)n)’

where p, = pp(21,22,...) = Y., ! is the nth power symmetric function. Each

of these theorems can be easily extended to compositions with parts in some set
S CP.

It should be noted that there has been considerable work on enumerating com-
positions by the number of occurrences of certain patterns in a composition. For ex-
ample, if v = (71,...,7,) is a composition and we define ris(y) = [{s : s < Ys+1},
then Carlitz [13] proved that

S 0 s st lev) — elqu(z — y),q) — elquz — ), 9)
ve(qu(z — ), q) — ye(qu(z — y), q)

yep*
where - -
" 1
o= o=

and (q)o = 1 and (q), = (1—q)(1—¢*) - - - (1—¢") for n > 1. Similarly, Heubach and
Mansour [25] found generating functions of compositions according to the number
of occurrences of various 3 letter patterns, and Mansour and Sirhan [32] extended
the work of Heubach and Mansour by finding generating functions of compositions
according to the number of occurrences of various [ letter patterns. Enumerating

various types of compositions according to other types of patterns can be found in
[24], [23], and [26].
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1.3 Introduction to Chapter 4

The main goal of Chapter 4 is to develop 4 different analogues of alternat-
ing permutations, proving that the weight generating functions of such words are
always quotients of sums of quasi-symmetric functions.

Let P = {1,2,3,...} denote the set of positive integers, E = {2,4,6,...} denote
the set of even integers in P, and O = {1, 3,5, ...} denote the set of odd integers in
P. Let P, = {1,...,n}, E, =ENP,, and O, = ONP,. Let S, denote the set of
all permutations of P,,. Then if ¢ = g105...0, € S, we define Des(c) = {i: 0; >

oir1} and Ris(o) = {i : 0; < 0;11}. We say that o is an up-down permutation if
01 <09 >03<04>05""",

or, equivalently, if Des(c) = E,_; and Ris(oc) = O,_1. Let UD, denote the
number of up-down permutations in S,,. Then André [1, 2] proved the following.

tn
sec(t) = 1+ ZUD”H and

nek

t'n
tan(t) = ZUD"E'

neo

Ifs>2and1<j<s—1,let sP={s,253s,...} and j+sP = {j,s+7,25+7,...}.
For any n > 0, let (sP),, = sPNP, and (j + sP),, = (j + sP)NP,. Let E, s denote
the number of permutations o € S,, such that Des(o) = (sP),—;. The E, ’s are
called generalized Euler numbers [29]. There are well-known generating functions
for g-analogues of the generalized Euler numbers; see Stanley’s book [42], page
148. Various divisibility properties of the ¢g-Euler numbers have been studied in
[4, 5, 17], and properties of the generalized ¢-Euler numbers were studied in [20, 40].
More general generating functions for statistics on permutations o € S, such that
Des(o) = (j + sPP),,_1 were given by Mendes, Remmel, and Riehl [36].

We extend the idea of up-down permutations to words by defining the following

four classes.

Definition 1.3.1. Let s > 2, WRis(w) = {i : w; < w41},
and W Des(w) = {i : w; > w41}
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1. SU*'SD, , is the set of all words w € P, of length m such that
Des(w) = (sP);,—1 and Ris(w) = Py — (8P)yp—1.
We let SU*'SD,, = Uneso SU*1SD,, m.

2. WUSflSDmm is the set of all words w € P} of length m such that
Des(w) = (sP),—1 and W Ris(w) = Ppq — (8P)yp—1.
We let WU*=1SD,, = Unnzo WU*1SD,, .

3. SU*"'W D, is the set of all words w € P} of length m such that
W Des(w) = (sP),,—1 and Ris(w) = Py — (sP)yp—1.
We let SU*~'WD,, = U0 SU*'W Dy, m.

4. WUS_1WDn,m is the set of all words w € P of length m such that
W Des(w) = (sP),—1 and W Ris(w) = Pp,—1 — (SP) 1.
We let WU*~'WD,, = Umzo WU "W D, .

Carlitz [12, 11] proved analogues of André’s formulas for strict up-down words.

In particular, he used recursions to prove the following formulas:

1+ > |SU'SD, |2 =

mek n(Z)
and
P,
N ISULS Dy ]2 = (2)
meQ Qn(z)
where

a n+k
P.(2) = Z(—l)k <2l<: N 1) 221 and
k=0

) = S ev(" T

k=0
Rawlings [38] developed more general recursions, a special case of which can

prove the following formulas:

w w) __ 1
1+Z Z gt = B2 )

MEE weWUW Dy m
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and

w| w)_An(Q>Z)
> > v = Bog )

meQ weWU'W Dy,m

where

B.(q,2) = Z(—l)qu(kH) [n;{k] 2% and
k>0 q

+k
A _ 1)k k21| T 2k+1
(0:2) = Sonn )

We define the following generating functions for any s > 2:

HEYY Pz, ) = 14> > z(w) and

mesP weSUS~1SDy m

Hfg;_lsD(Zh-u,Zn) = Z Z z(w) for j=1,...,s — 1.

mej+sPweSUS~1SDyp m

We define HZE/S[’JJ-SASD(zl, ey Zn), HS,Z;71WD(21, ..y Zn), and HZE;{];*IWD(zl, ey Zn)
for y =0,...,s — 1 similarly.

We will find explicit expressions for each of these generating functions in terms
of Gessel quasi-symmetric functions [21]. Our expressions can then be specialized

to explicit formulas from the literature. Let

Set(’y) = {’71’,71 + v,y +’7t—1}'

For example, if v = (2,3,1, 1,2), then |y| =9 and Set(y) = {2,5,6,7}. Gessel [21]
defined the quasi-symmetric function
Qy(21,. .., 2) = Z Ziy Zig *** By

1<ip <<y <n

ij<ijy1 if jE€Set(y)

Using a simple involution, we will prove the following theorems:

Theorem 1.3.2. Let s > 2. Then

HEY 5P (2, z) = 14 ) Y z(w)

mesP weSUS~1SDy m
1

1 + ZkZl(_1)kQ1(13_22)k_115_1(Zl? e 7Zn)’




HYE 7P (2, z) = 1+ ) S 2w)

mesPweWUs—1SDn,m
1

1 + Zkgl(_l)kQ(ks)('zla s 7271)’

HIU P () = 1YY 2(w)

mesP weSUS=1W Dy m
1

1 + Zk21(_1)kQ(1kS)(Z17 ey Zn)

I

and

HWUS_1WD

5.0 (z1,...,2p) = 1+ Z Z z(w)

mesP weWUs~1W Dy,
1

1 + ZkZI(—l)kQ(sk)(Zl, e ,Zn) ’
Theorem 1.3.3. Let s > 2 and1 <5 <s—1. Then

H;?Z;ASD(zl, ey Zp) = Z Z Z(w)

mej+sPweSUs~1SDy m
Zkzo(_l)kQ1(1s—22)k1j—1(2’1, RN ,zn)
]- + ZkZI(_1)kQ1(1s—22)k711571 (Zl, . e 727’1)7

-1
Hy 0 m) = 30 3 Hw)
mej+sPweWUs=15Dp m

Zkzo(_1>kQ(ks+j)(Zla cee 7Zn)
L+ (D*Qsy (21, - -5 20)

Hii;_1WD(z1, ceyZn) = Z Z z(w)

mej+sP weSUS—1W Dy m
Zk20<—1)kQ(1ks+j)(21, Ce ,Zn)
1 + Zk21(_1)kQ(1kS)(z17 ey Zn)’

14
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and

Hrm(fjs_IWD(zl, N Z Z z(w)

mesP weWUS=1W Dy, m
Zk20<_1)kQ(skj)<Zla s 7ZTL>
1+ ZkZI(—l)kQ(sk)(Zl, c. ,Zn)

1.4 Introduction to Chapter 5

In Chapter 4, we were able to enumerate four classes of up-down words via a
simple involution. In this chapter, we will enumerate these same classes of up-down
words with the added condition that all peaks—entries at the end of a block—are in
a certain set X C P. We will show that the same involution applies, although the
results can no longer be expressed in terms of quasi-symmetric functions.

Let s > 2. We extend our definition from Chapter 4 as follows.

Definition 1.4.1. SU*'SD,, x, is the set of all words w € P, of length m such
that wy; € X Vi, Des(w) = (sP),—1 and Ris(w) = Py — (sP)—1. We let
SU*T S Dnx = Uy SUT'S Dy

We define WU*'SD,, x.;m, WU 'SD,, x, SU'WD,, x mm, SU'WD,, x,
WU YWDy, x ., WU YW D,, x, SUS*WU, xm, SU WU, x, WU WU, xm,
WU'WU, x, SU'SU, xm, SU'SU, x, WU*1SU, xm, and WU*"1SU, x
similarly.

Also, define the following generating functions for any s > 2:

H P (2 z) = 143 Y z(w)and

mesP weSUS~1SD,, x m

Hi[)];;;SD(Zh---,Zn) = Z Z z(w) for j=1,...,s — 1.

mej+sPweSUS~1SD,, x.m

WU*~1SD SUSTIWD
We define H,'x ;27 (21, 2n), Hyx o (21505 2n),
—1 . . .
and HY'Z WP (21, ..., 2,) for j =0,...,5 — 1 similarly.
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We wish to define the following additional generating functions for s > 2:

SUs—lwu k
PY% s0 (21,..,20) = 1+ E (—1) g z(w) and
k>1 ’LUGSU571WUTL7X7}€S
SUSTIWU k -
o X.sj (Bl 2n) = E (—1) E z(w) for j=1,...,s—1.
k>0 wESU‘S*lWUn’X,kstj
WUs—twWuU SU~1SU wuUs—1su
We define P " (21, 2n), P xoi (21,0005 20), and Pl 2% (21,000, 2,)
for j = 0,...,s — 1 similarly. The same involution from Chapter 4 will give, for
example, the following theorem:
Theorem 1.4.2.
HSUS*SD( ) o 1
nXs0  \FlieeosZn) = ey ’
n,X,s,0 ("7’17 SR 7zn)
and )
SUSTIWU
HIY 5P ( Zn) = Boxsy (2155 %0)
n,X,s,j 1, yAN) T TS SUs—1WU :
Pn,s,O (2’1, s >Zn)

We then consider the special case s =2 and X =E or X = Q. Let

EVn‘?gSU(z, q) = Pﬁgﬁ%(zl, e Zn) | simgi
1Y YD stegl
k>1 weSUSUn’]E’Qk;
and
EV::{JSU(Za Q) = iggg(zh cee 7Zn)|zi:qiz
S S gl
k>0 weSUSUn7]E72k+1

Then we have theorems such as the following.

Theorem 1.4.3.

n k .
EVSUSU(Z C]) _ (_1)k22k Z q2j2_j+4k;2+2k—4k;j {n + ]:| |:k}
" 7 k=0 j=0 2k 7 J 7t
and
EVQSUl‘SU<Z, q) _ (_1)k22k+1([2]1/ ) Z q2j2,3j+4k2+6k74kj+2 [ n+J :| { :| .
" po R 2k +1] 2[5
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As the reader can see, the condition that all peaks must be in a set X forces us
to use more subtle reasoning to arrive at the right generating functions. Similar
theorems are proved for the other classes of words. In handling some of the cases,

we also exhibit a bijection between certain classes of words.

1.5 Introduction to Chapter 6

In this chapter, we will apply another method that allows us to count two of
the classes of up-down words from Chapter 4 with an infinite alphabet. Define
SU W Doy = {w € P* : WDes(w) = (sP),_1} and
WU 'SDy, = {w € P* : Des(w) = (sP),_1}. We will prove the following

theorem:

Theorem 1.5.1. Let s > 2 and 1 < J < s. Then

S v e (M)

n>0  weSU W Deo on i=1 k>1

sn—J o Zf:1 C;J sz1(1 + Gitzr)
Zt Z )= - Zf:l szl(l + Gitzy) ,

TLZl wESUS*1WDOO’Sn,J

1S 1 -
> o 3 z(w):(gzn—l_gt%) :

n>0 weWUS=1SD on i=1 k>1

and

S —J 1
Z psn—J Z Z(w) o Zi:l Cz Hk21 1—Citzy,

SR
n>1 wWEWUS™18D g on—y i=1 L1k>1 1-¢tz,

where (q,...,(s are all sth roots of —1.

We will also use results from previous chapters to enumerate words by alter-
nating descents and alternating major indexr. Chebikin [14] first introduced the

notion of alternating descents for permutations, defined by

d(o) = |{2i : 09; < 0951} U{2i + 1 : 021 > 0140}
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He also found the generating function for alternating Eulerian polynomials, defined
as A,(t) = > e, #d@+1 That is, he showed that

o (1= h(ult — 1))
;An(t)ﬁ T hu-1))—t

where h(x) = tan(z) + sec(z). In addition, Remmel [39] introduced the notion of

alternating major index, defined by
altmaj(o) = Z i.
i€ Altdes(o)

Remmel then extended Chebikin’s generating function to the following:

altdes(o) altmaj(o)
ZO’ESn € q

t
ZH(1—56)(1—ﬂrq)--‘(l—:cq”)

n>0

k

kzzo (sec(—t) + tan(—t))(sec(—tq) + tan(—tq)) - - - (sec(—tq*~1) + tan(—tg*=1))’

Remmel also obtained similar formulas for common alternating descents and major
index, as well as for the hyperoctahedral group B, and its subgroup D,,.

When we consider analogues for words, we can apply both strong and weak
versions of these statistics. Chebikin and Remmel defined alternating descents as
places where o deviates from an up-down pattern, but we find it more natural to

define alternating descents as places where o follows an up-down pattern. That



is, we will use the following definitions.

Altdes(w) = {22 D Wo > 'LUQ,L;H} U {2Z +1: Wit < w2i+2}

= (EnN Des(w)) U

altdes(w) = |Altdes(w)],

(ON Ris(w)),

Waltdes(w) = {22 . Wo; Z w2i+1} U {22 + 1: W2;+1 S w2i+2}

= (EnWDes(w))U

waltdes(w) = |Waltdes(w)|,
altmaj(w) = Z i, and
1€ Altdes(w)
waltmaj(w) = Z .
1€Waltdes(w)

Then we will prove the following theorems:

(ONWRis(w)),

Theorem 1.5.2.

§ tn 2 : xaltdes w)
n>0 we[m
and

Ztn Z xwaltdes(w) _

n>0  we[m|n
Theorem 1.5.3.

n>0 ) u)n+1

and
tn

=(1—-2)|—-z+
(1—2x)|—x+

tn
>

L+ 370 (—

1)# () (e -

1])2k+1'

2 kol

2k

L+ 3o (DR () (¢ —

—DR(MT) (te — 1))

1]>2k+1

Yo (=R (o) (Hr —

altdes(w) altmaj( w) _

Y

we[m]™

yp

—1)k+1 (m+k)(tuj)2k+1

1+> 0

p k= 0 2k+1

p>0 | | — -
I=0 S (=R () (tud )2k

Z ywaltdes(w)uwaltmaj(w) _

we[m]™

yp
Z 1+Zk 0( 1)k+l(m+k)(tu])2k+1 .

p>0 H

Lo (—DF (TR (b )2

1])2
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1.6 Introduction to Chapter 7

This chapter builds on Chapter 4, where we considered words that could be
partitioned into blocks of fixed length so that, within each block, the entries were
strictly or weakly increasing and there were strict or weak increases between blocks.
In this chapter, we still consider words that can be partitioned into blocks of fixed
length, but we examine more general patterns within the blocks. We will consider
blocks where the only condition is that the first element of each block is the (unique)
maximum of the block, as well as blocks with a fixed number of rises followed by
a fixed number of descents. Also, we will consider blocks with a fixed number
of levels followed by a descent. We then apply the statistics des, wdes, and lev
from Chapter 3 to these blocks, where we will sometimes compare maximal entries
within each block and sometimes compare the final entry of one block with the
first entry of the following block.

We first consider a relatively weak condition: each block has a strong maximum

at a particular place in the block (say, the first). Let
BlockMaz (K, Kn) = {w € PX" : wigyy > w; for j =iK +2,...,(i + 1)K}.

For words in this class, we will be interested in block levels, or places in which
maxima with the same value. Let
. (H)K (i+2)K
evKmax(w) = [{i nax j:(gl%>§(+l w; }H
For example, when K = 4, the word w =6 354|714 2|756 3 € BlockMax(4,12)

7

has levKmax(w) = 1, coming from the repeated maximal element 7 (“|” indicates

separations between blocks). We will prove the following theorem.

Theorem 1.6.1.

Z tKn Z xlevaaX(w)q|w|

n>0 we€BlockMax(K,Kn)

) th(j+K)([j]q)(K_l) R
- (1 -2 1T th (z — 1)q(j+K)([j]q)(K_1)>

Jj=1
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We will also consider the condition that each block has r (strong) rises followed
by d (strong) descents. Let K = r+d+ 1, and let SU”SD%(n) be the set of words
w € P" with this pattern. For example, one element of SU2SD?(12) is given by
137621]24854 3. We will prove the following theorem and corollary.

Theorem 1.6.2.

Z tKn Z xlevaax(w)q\wl _

n>0 weSUTSD(Kn)
K
5 g+ E+(5)+(5) 1,0,

J
1_2 rlqgld

21— (= )eEg R R

-1

Corollary 1.6.3.

B el [)

n>0 weSUTSD(Kn) Jj=0

For any K > 3, let
LSD(K,m,n) ={w € [m|" : Vi,wixi1 = Wikio ="+ = Wik1Kk_1 > WiKk+K};

i.e. the set of words with a K — 2 level followed by a drop (in each block of length
K, we have K — 1 equal entries followed by a smaller entry). For example, one

element of LSD(4,9,8) is given by 555 2[99 9 3. Define
blockKwdes(w) = [{i : wjx > wix11}| and blockKdes(w) = [{i : wix > wix11}].

Then we will prove the following theorem:

Theorem 1.6.4. Let K > 3. Then

-1
1 m+n—1
Kn blockKwdes(w) _ . K(. n
E t E x (1 T E [t* (z —1)] < - ))

n>0 weLSD(K,m,n) n>1
and
-1
1 m
Kn blockKdes(w) __ . K(,. n
D Sl (REE D M AT ()
n>0 weLSD(K,m,n) n>1

1—a
a4+ (1= R - )
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Next, we will consider words that can be partitioned into blocks of length 3,
where each block has the pattern strict increase, strict decrease; and there are
weak increases between blocks. Let SUSDWU(m,n) be the set of such words on
alphabet [m] of length n. For example, one element of SUSDWU(7,6) is given
by 1633 75. Although we cannot find a simplified expression for the generating
function of SUSDWU in general, we will prove the following theorem

Theorem 1.6.5.

§|SUSDWU(m,n)yt = 0o

where P, and Q,, are polynomials.

Our method for proving this theorem will reduce the problem to counting
SUSDSD(?TL,TL) = {w € [m]" D Wsi—g < W3i—1 > Ws; > w3i+1‘v’i},

which we accomplish by recursion, working out several example cases. For instance,

Y

30 + 27x 4+ 1022 + 23
DSD =
|ISUSDSD(5,3n)| < 105 £ 2 )

an—1

so that

1+ 102 4 ¢6

SUSDWU(5,3n)|t>" = .
> (5,3n)] 1 — 1063 + 386 — 019 + {12

n>0




Chapter 2

Background

2.1 Permutation statistics

Let S,, denote the symmetric group, and consider a permutation o € S,, written
in one-line notation: o = oy - - - 0,,. Writing o in this way, it is natural to ask about
the distributions arising from patterns of rises and descents when reading o left-

to-right. The following statistics on S,, are well-known:

Des(o) ={i:0; > 0,11} Ris(o)={i:0; <041}
des(o) = |Des(o)| ris(o) = |Ris(o)|

inv(o) =3, x(0s > 0;) coinv(o) =3, . x(0i < 0j)
maj(o) = ZiGDes(J) i,

where for any statement A, y(A) = 1if A is true and 0 if A is false. These statistics
count the descents, rises, and inversions of o. The last statistic, called the major
index of o, is a weighted sum of the descents of 0. For example, suppose o € Sio
is given by

c=469112710352811.

Then Des(o) = {3,5,7,9}, so that des(c) = 4.
Ris(o) ={1,2,4,6,8,10,11}, so that ris(c) = 7.
maj(o) =3+5+7+9 =24

23
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inv(c) =3+84+64+0+54+0+2+3+0+1+1=29, since there are 3 elements
larger than 1 to its left, 8 elements larger than 2 to its left, etc.

2.2 qg-binomial coefficients

We use standard notation for g-analogues. For n > 1, let

1—
[n]y = l_qqn =1+q+¢+--+¢",
[ng! = [n]gln — g - - [,
and
[nl . [n]q!
ki, [kl!n— K"
By convention, let [0], = 0 and [0],! = 1. For a set S of finite sequences, we

will use the term g-count S to mean finding a simplified expression for
Z g,
seS
where [s| = s1 + 52+ ....
It is well known that

> gotartrar — |1 +k
k q

0<a1<az<-<ar<n

k+1\ [T
q

1<ai<az<-<ar<n

and

Equivalently, we have the following theorems:
g-binomial theorem
i . k+1 n
1 J) = ( 2 ) k .
[T +2a) =>4 { IJ z
j=1 k>0 q

g-binomial series

= 1 cn+k—1]
- 1_qu—2q{ k LZ'

j=1 k>0
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2.3 Partitions

A partition of n, written A F n, is an increasing sequence of positive integers
A= (A <Ay <o < \y) such that n = Zle Xi. In such a situation, we write
Al = n and ¢(\) = ¢. Let 2 = ' - 2. We will use several well known

generating functions for partitions, see [3]:

1+ Z Zq|)\|tparts()\) _ H . 1

n>1 A\Fn i>1 tqz
and
1
1+ Z Z l)\tparts()\) _ H :
n>1 AFn i>1 1 —ta;
as well as
1+ Z Z q|/\\tparts()\) _ H(l + tqz>
n>1 AFn, A has distinct parts i>1
and
1+ Z Z g gparts) — H(l +tx;).
n>1 AFn, A has distinct parts i>1

More generally, for any set S C P, let Ptn,(S) denote the set of partitions of
n with parts from S. Then

1+ Z Z I)\tparts()\) _ H - _]'tx’

n>1 AePtny(S) i€s

and

1+) > AP = TT(1 + tay).

n>1 AePtn,(S), A has distinct parts €S

2.4 Generating functions

The generating function for a sequence of integers ag, a1, . . . is the formal power
series Y .o, a;t" € Z[[t]]. More generally, we can let the a; themselves be power

series. Let f = Zizo a;t'. Define f | to be the coefficient of ¢ in f;i.e. f |;n= a,.
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We will wish to apply this idea to partition generating functions. For example,

1

can be interpreted as enumerating all partition with n parts, weighted by size:

S

A=(A1,An)

We will also make use of the following simple observation. Let f be any formal

).
L1

power series in 1, s, ... and suppose g = >, t'(f

Then g = f(t,x2,...).

2.5 Symmetric functions

The idea of extracting information about permutation statistics through
symmetric function theory has been used for decades, but the method of this
dissertation—defining a homomorphism on the elementary symmetric functions
and evaluating it on the homogeneous symmetric functions—was first given by
Francesco Brenti [10, 9]. Desiree Beck and Jeff Remmel reproved his results com-
binatorially [6, 8, 7]. It is this approach which is closest to our own.

A symmetric polynomial p in the variables z,...,xxy is a polynomial over a
field F' of characteristic 0 with the property that p(z1,...,2x5) = p(Tey, ..., Toy)
forall 0 = 0y---on € Sy. A symmetric function in the variables xq, z9,... may
be thought of as a symmetric polynomial in an infinite number of variables. Let
A be the ring of all symmetric functions (a more formal definition of A may be
found in [30]). The previously defined elementary symmetric functions e, and the

homogeneous symmetric functions h,, are both elements of A. We can also define
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these functions in an equivalent but more intuitive way:

1<i1 <--<in

en(T) = Z Xy - x;,, and

1<y <--<ip,
— n
(T) = g xy.
i
For example,

h3($1, T2, 173)
_ .3 2 2 2 2 3 2 2 3
=] + 21T + 213 + 125 + L1223 + 123 + 5 + X303 + Toky + X3,
e3(T1, T, T3, Ty) = T1T2T3 + T1T2T4 + T1T3%4 + ToT324, and
3 3 3 3
p3(z1, T2, 13, 14) = 27 + Ty + 5 + 1.

If A = (A1,...,\¢) is an integer partition, we let ey = ey, ---ey,. The well-

-
known fundamental theorem of symmetric functions says that

{ex : A is a partition} is a basis for A. Similarly, if we define hy = hy, --- h), and

4

Px = P - Dy, then {hy @ A is a partition} and {p, : A is a partition} are also

bases for A.

2.6 Transition matrices

In this subsection, we shall present the combinatorics of the transition matrices
between various bases of symmetric functions that will be needed for our methods.
Since the elementary symmetric functions e, and the homogeneous symmetric
functions h, are both bases for A, it makes sense to talk about the coeflicient of
the homogeneous symmetric functions when written in terms of the elementary
symmetric function basis. This coefficient has been shown to equal the size of a
certain set of combinatorial objects. A rectangle of height 1 and length n chopped
into “bricks” of lengths found in the partition A is known as a brick tabloid of shape
(n) and type A\, or a A-brick tabloid for short. One brick tabloid of shape (12) and
type (1,1,2,3,5) is displayed below.
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Figure 2.1: A brick tabloid of shape (12) and type (1,1,2,3,5)

A A-brick tabloid can be viewed as a sequence of brick lengths (b1, ba, ... byn)),
where the b; are a rearrangement of the parts of A\. For instance, the brick lengths
in Figure 2.1 are (3,1,5,1,2). Let By, denote the set of all A\-brick tabloids of
shape (n) and let By, = |By,|. Through simple recursions stemming from (1.1.3),

Egecioglu and Remmel proved in [15] that

hn = Z(—l)niz()\)B,\vne)\. (261)

AFn

More generally, suppose that R is a ring and we are given any sequence 4 =
(u1,ug,...) of elements of R. Then for any brick tabloid T' € B),, we set
wgz(T) = uyp,, where by is the length of final brick in 7. We then set wz(By,) =
ZTEBM wgz(T). For example if v = (1,2,3,...), then wz(T) = w(7T) is just the
length of the final brick of T. We have given w(7T) for each of the brick tabloids
in Figure 2.2.

T T2 Ts

W(T1)=1 W(T2)=1 W(T3)=2
Figure 2.2: w(By4) for A = (1,1,2)

This given, we can define a new family of symmetric functions p) z as follows.

First we let poz = 1 and
Pra =Y _(—1)" " Pwg(By e (2.6.2)
AFn

for n > 1. Finally if p = (p1, ..., ) is a partition, we set p,z = Duy.a - Dugit-

The functions p,, z were first introduced in [28] and [35]. It follows from the results
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of Egecioglu and Remmel [15] that if u = (1,2,3,...), then p, 7 is just the usual
power symmetric function p,. Thus we call p,z a generalized power symmetric
function.

Mendes and Remmel [35] proved the following:

Z >1<_1)n_1un€ntn
nat” = = d 2.6.3
n>1
L4 3s (1) (en — upen)t"
: mat" = = . 2.6.4
n>1
Note that if we take @ = (1,1,...), then (2.6.3) becomes
Yo (1) et 1
1+ pn,ﬁtn =1+ n= = =1+ hntn,
; Donzo(=D)ent™ 32 o(= 1) ent” ;

which implies py, (1,1,..) = hyn. Other special cases for @ give well-known generating
functions. For example, by taking u, = (—1)*x(n > k + 1) for some k > 1, p, 7 is

the Schur function corresponding to the partition (1%, 7).

2.7 Quasi-symmetric functions

Gessel [21] introduced quasi-symmetric functions to enumerate P-partitions.
We let P be a partial order on [n], and we use <, for the partial order P, < for
the usual total order.

A P-partition is a function f : [n] — P s.t.
1. i <, j implies £(i) < f(j)
2. i<,jandi>jimplies f(i) < f(j).

For example, one can view column-strict fillings of tableax as a special case of
P-partitions.
Symmetric functions are typically indexed by partitions, whereas

quasi-symmetric functions are indexed by compositions. Let v = (y1,...,7) be a
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composition, i.e. a sequence of nonnegative integers. Then we let |y| = v+ -+

and
Set(v) ={nm.m+72.-...mn+r+ -+l

For example, if v = (2,3,1,1,2), |y| = 9 and Set(y) = {2,5,6,7}. Then Gessel

[21] defined the quasi-symmetric function

Qy(21, ... 2n) = Z ZiyZiy " Zip - (2.7.1)
1<ig <<y

ij<iji if jeSet(y)

Thus, for example, if 7 = (2,3,1,1,2), then

Q,Y(Zl,...,Zn>: Z Hzij’

1< <o <ig <ig <is<ig<i7<ig<ig j=1

() is not symmetric unless v = 1" or v = n. However, it does have the property
thatifr) < azo < - <zxpandy; < ys < - -+ < Ym, then the coefficient ofxi1 - x;’f
is equal to the coefficient of y!' ---yim. Gessel called power series in Z[[X]] with
this property quasi-symmetric and showed that {Q), : v is a composition of n} is

a basis for QQsym,,, the homogeneous quasi-symmetric functions of degree n.



Chapter 3

Basic results on composition

statistics

A permutation statistic is a function mapping permutations to nonnegative
integers. The modern analysis of such objects began in the early twentieth century
with the work of Percy MacMahon [31]. He popularized the “classic” notions of the
descents, rises, inversions, coinversions, major index and comajor index statistics.
Here if 0 = 01 -+ -0, is an element of the symmetric group S,, written in one line

notation, then

n—1

des(o) = ZX(Ui > 041) ris(o) =1+ ZX(Ui < 0i41),

i=1 i=1
inv(o) = Z x(o; > 0j) coinv(o) = Z x(o; < 0j),
1<i<j<n 1<i<j<n

n—1 n—1
maj(o) = ZiX(Uz‘ >0511)  comaj(o) = ZiX(Ui < 0iy1),
i=1 i=1

where for any statement A, y(A) is 1 if A is true and 0 if A is false. These
definitions make sense if 0 = 07 ... 0, is any sequence of natural numbers.

The study of the properties of these statistics and subsequent generalizations
of these statistics to other groups and sequences remains an active area of research

today. In this chapter, we shall find analogues of the joint distribution of des(o),

31
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maj(o), and inv(c). That is, Gessel gave a generating function for

Z p4es(@) g maj(e) oinv(o) (3.0.1)
cESy,
both in his thesis and in a paper coauthored with Garsia [18, 19]. Later, Mendes
and Remmel showed how Gessel’s result could be derived by applying a homomor-
phism defined on the ring of symmetric functions A in infinitely many variables

X1, To, ... to the simple symmetric function identity

(3.0.2)

where H(t) is the generating function for the homogeneous symmetric functions
hp = hy(z1,29,...) and E(t) is the generating function for the elementary sym-
metric functions e, = e,(x1, za,...). That is,
1
H(t) =Y ht"=1]] (3.0.3)

n>0 n>1

and

E(t) =) ent" =1+ at). (3.0.4)

n>0 n>1
In particular, Mendes and Remmel proved the following formula, which is eas-
ily derived from the Garsia-Gessel formula for the generating function of des(o),

maj(o) and inv(o),

" des(o), ris(o), maj(c), comaj(c) inv(c), coinv(o)
T Yy u (% q P
nzzo []pg! (@, Y3, V)t UEZSH
= >
- —t(u/v)0 —t(u/v)k "
k>0 yk“ep’g( v "‘ep,ﬁz( v

Here we use standard notation from hypergeometric function theory. For n > 1

and A - n, let

— 9 _ a1 T

and
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be the p, g-analogues of n and n!. By convention, let [0],, = 0 and [0],,! = 1. We
let (z;¢9)o =1 and

(@:q)n = (1 —2)(1 —2q) -~ (1 — 2g"™ ).

In addition, let (z,y;p,q)o = 1 and

(2,9;,@)n = (x — y)(xp —yq) - - (xp" " —yg" ™).

. t . . .
Finally, e, , is a p, g-analog for the exponential function defined by

|
n>0 [n]pvq :

Mendes and Remmel also showed how their methods can be used to extend such
results to the hyperoctahedral group B,, and its subgroup D,,.

The main goal of this chapter is to show how the methods of Mendes and
Remmel can prove similar results for compositions. Here a composition 7 is a
sequence of positive integers v = (y1,...,7). We call the ~,’s the parts of v and
let ¢(vy) denote the number of parts of v. We let |y| = v1 + -+ - + vy and 27 be the
monomial z,, ---x,,. Since compositions can have repeated entries, it is natural
to have analogues of des and maj where we replace > by > or = in the definition

of des and maj. That is, if vy = ..., is a composition, then we let
Des(y) = {i:vi> i}
WDes(y) = {i:7v > i1}, and

Lev(y) = {i:vi="n}
Then we define

des() = |Des(y)],
wdes = |WDes(v)l|,and

lev = |Lev(7)|
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and

maj(y) = Y i,

i€Des(v)
wmaj(y) = Z i, and

i€W Des(7)
levmaj(y) = Z i

i€ Lev(y)

3.1 Descents and weak descents

Brenti [9] showed the following. Define a ring homomorphism

¢ : A, the ring of symmetric functions — Q[y] by setting

k=1
S(ek) = %v

where ey, is the k-th elementary symmetric function, and £(ep) = 1. Then:

n'f Z ydes o)

oESh

and

" es(o 1 -
Do =

n>0  o€Sy
We can readily extend this result to compositions, so that we obtain the fol-

lowing theorems:

Theorem 3.1.1.

-y
tn ydes x'y _ )
Z Z —y + Lo (L + 1ty — Day)

n>0 yeP™

Theorem 3.1.2.

n wdes(y 7 = 1_y
Zt Z _y+Hj21%'

n>0  ~ePn —t(y—1)z;
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Before proving these theorems, we will outline the general method beyond this
type of result, which will be used repeatedly throughout this dissertation. The

basic steps are as follows:

1. Define a homomorphism on the ring of symmetric functions by specifying its

action on the elementary symmetric functions e,,.

2. Apply this homomorphism to h, (or another class of symmetric functions)

and interpret the result in terms of labeled filled brick tabloids.

3. Perform an involution on the set of all possible labeled filled brick tabloids,

and characterize the fixed points of the involution.

4. Find a nice generating function using the relationship between h,, (or other

symmetric functions) and e,.

We will now use these steps to prove Theorem 3.1.2. Define ©; : A —
Q[[y7 L1, T2, .. H by

@1(671)

Il
—~
|
—_
S~—
i
AR
—~
Ny
|
—_
SN—
i
N
RS
Vi
—_
| —_
~
S
<
v
-

for n > 1, and O4(eg) = 1.
Claim:

01(h) = Y 5007

yepP®

We saw in Chapter 2 that

hy =Y (—1)"" VB e, (3.1.1)

AFn
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where B}, is the number of A-brick tabloids of shape n. Thus,

O1(hy) = 3 (~1)" VB, 04 (e2)

AFn
£(A) 1

_ _1\n—L(N) 1\l o\l
-y et (T )

A-n i=1 §>1

£(X) 1

= Z B)Hn H(y — 1>)\7;*1 (H 1 — tx) i - (312)

AFn i=1 5> J

Our goal is to interpret ©1(h,) as a sum of weighted combinatorial objects.
We interpret ), . B, as letting us choose some A - n and create a brick tabloid
T = (b1, ...,by»)) of shape n and type A. For instance, Figure 3.1 shows a brick
tabloid T' = (3,4, 2,2) of shape 12 and type (2,2, 3,4).

Figure 3.1: A brick tabloid of shape 12 and type (2,2, 3,4)

Recall from section 2.3 that (sz1 ﬁ)
titions p with \; parts, weighted by a* [3]. Thus, we can interpret the term

170
1% (o 5

brick, weighted by 2 n™  Within each brick, we write the chosen partition

»; 1s the sum over all possible par-

»; as letting us choose a partition p' with \; parts for each

in weakly decreasing order, with one part per cell. Figure 3.2 shows a possible

filling of the brick tabloid from Figure 3.1.

Figure 3.2: A filled brick tabloid of shape 12 and type (2,2,3,4) coming from
Equation 3.1.2

Next, the term Hf(:/\l (y — 1)* ! lets us leave the last cell of every brick alone,

and label every other cell of each brick with either a y or —1. We call the result
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a filled labeled brick tabloid (also, a decorated brick tabloid). Figure 3.3 shows an
example of a filled labeled brick tabloid.

-1
6

y z
313

9

y
6 | 4

Figure 3.3: A filled labeled brick tabloid of shape 12 and type (2,2,3,5) coming
from Equation 3.1.2

Let To,(n) be the set of filled labeled brick tabloids obtained by interpreting
every term in this sum. Thus, a C' € Tg,(n) consists of a brick tabloid T, a
composition 7 € P", and a labeling L of the cells of T" with elements from {y, —1}
such that

1. v is strictly decreasing within each brick, and
2. each cell which is not a final cell of a brick is labeled with y or —1.

We then define the weight W (C') of C' to be the monomial 27 = ., z., - - - T,
times the product of all the y labels in L and the sign sgn(C') of C to be the product
of all the —1 labels in L. For example, the weight of the object in Figure 3.3 is
Pirorizsrsrizerey” and its sign is —1. Then O4(h,) = 2 ceTo, (m SIUC)W(C).

Next, we wish to get rid of all objects with negative sign. To this end, we
define a weight-preserving, sign-reversing involution I : Tg,(n) — Jg,(n). To
define I(C'), we scan the cells of C' = (T,~, L) from left to right, looking for the
leftmost cell a such that either (i) a is labeled with —1 or (ii) a is at the end of
a brick b; and the brick b;;; immediately following b; has the property that ~ is
weakly decreasing in all the cells corresponding to b; and b; 4.

In case (i), I(C) = (T",+', L"), where

1. T" is the result of replacing the brick b in T' containing a by two bricks b*
and b**, where bx contains the cell a plus all the cells in b to the left of a and

b** contains all the cells in b to the right of a;
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2. v/ =~; and

3. L’ is the labeling that results from L by removing the —1 label of cell a.
In case (ii), I(C) = (T",~', L"), where

1. T" is the result of replacing the bricks b; and b;;; in 7" by a single brick b;

2. v/ =~; and

3. L' is the labeling that results from L by inserting a —1 label for cell a.

For instance, if C' is the element of Tg,(11) pictured in Figure 3.3, then I(C) is

given in Figure 3.4. In this case, a = 2, since the second cell of 7" has a —1.

-1
3

-1
5 |1

y
9

y
3

y

y
4 2 |7

T
1
1
1
1
1
1

Figure 3.4: The image I(C') for C' in Figure 3.3

It is easy to see that [ is a weight-preserving, sign-reversing involution. Hence,

I shows that

o)=Y sgnOW(C)

CeTe, (n):1(C)=C

Thus, we must examine the fixed points C' = (T, , L) of I. First, there can be no
—1 labels in L, so that sgn(C) = 1. Moreover, if b; and b;;; are two consecutive
bricks in T" and a is the last cell of b;, then it cannot be the case that v, > v441;
otherwise, we could combine b; and b;;;. For any such fixed point, we associate
the composition v. v must weakly decrease within each brick and strictly increase
between bricks. For example, Figure 3.5 is a fixed point corresponding to the
composition 96 64332751 1.

It follows that every cell with a weak decrease is labeled with y, and those

with increases are not, so that for a fixed point C' = (T, v, L), sgn(CYW(C) =



y y.y.y.y.y y .y
9 6 :6 4 :3 :3 7 5

=

Figure 3.5: A fixed point of I coming from Equation 3.1.2
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y"4es() 27 On the other hand, given any composition v, we can create a fixed point

C = (T,~, L) by having the bricks in 7" end at every cell a where a ¢ Wdes(7).

Therefore, we have shown that

O1(h) = 3 4100z

yeP™

as desired.

It remains only to use our identity relating the e,, and h,, to obtain a generating

function:

Ztn Z ywdes(w)x”y _ ZtnG)l(hn)

=0, (Z hnt”> =0, (Z en(—t)") 7
= (1 +) (=" (=) y - ! (H ] _1m,j) !w)
1 . 1 -
= (1 o1 n>1[t(y —1)] (}:11 - txj> |t">
1=y + Yoty — DI (T 15 ) I
—y+ ano [ty — 1) (Hj21 ﬁ) |
1—vy

Y

1
—y+ 11 1—t(y—Daz;

proving Theorem 3.1.2.

We will repeatedly use this method of defining an appropriate homomorphism,

interpreting the homomorphism applied to one symmetric function basis in terms
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of filled labeled brick tabloids, and characterizing the fixed points. Our interpre-
tations will typically be similar to that of Equation 3.1.2. To avoid burdening the
reader with detail, we will usually describe our interpretations less technically than
we did in this case. It is easier to process the filled labeled brick tabloids if they
are described as a set of choices. In addition, we collapse the weight and sign into
a single weight function. Nevertheless, each interpretation and involution can be
made fully formal, just as we did above.

The proof of Theorem 3.1.1 is so similar to the proof of Theorem 3.1.2 that
we omit even the detailed sketch. We use a related homomorphism ©, : A —
Ql[ly, 1, z2, . .. ]| defined by

Os(en) = (=1)" 'y — )" (H(l + twj)) |en
Jj=1
for n > 1 and Os(ep) = 1. Our interpretation of ©y(h,) is the same as that for
©1(h,), except that we fill in each brick using a partition with distinct parts.

3.2 Levels

Theorem 3.2.1.

—1
§ En E ev(y E ta;

n>0 yeP? 7>1

To prove Theorem 3.2.1, we define a homomorphism on the ring of symmetric
functions by
Os(en) = (=1)" My - 1)) 4]
j>1
for n > 1, and O3(eg) = 1.
Claim: O3(h,) =)

lev
~EePn y ('Y) x’y .
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Expanding h,, in terms of e,, we get

Os(hn) = Y (~1)""V By, 05(ex)

AFn
£(\)
=Y B -0 ) (3:2.1)
AFn i=1 j>1

Again, we interpret each term in this sum as creating a filled labeled brick tabloid
in stages, where the only difference is in the partitions we use to fill in each brick.
Y sin Ban lets us choose some A F n and create a brick tabloid of shape n and
type A. The term Hf(:’\l) > i>1 x;\ lets us choose a partition with identical parts for
each brick (i.e. choose a number j for each brick and fill every cell of the brick
with it), weighting the brick by zj‘ Next, the term Hf(:’\l)(y — 1)%7 ! lets us leave
the last cell of every brick alone, and label every other cell with either a y or —1.

For instance, Figure 3.6 is one such object.

-1y

77

-1
5

-1
5

y
S |7

y

y
7 7

Figure 3.6: A filled labeled brick tabloid coming from Equation 3.2.1

Let To,(n) denote the set of all such filled labeled brick tabloids. We define
the weight W (C') of C € Tg,(n) to be the monomial 27 = x.,,z., - - - x,, times the
product of all the y labels and the sign sgn(C) of C' to be the product of all the
—1 labels. For example, the weight of the object given in Figure 3.6 is z2x3xSy*
and its sign is 1. Then O3(h,) = ZTGT@3(H) sgn(CYW (C).

We define an involution as follows to get rid of all objects with negative weight;
the involution is very similar to that used in the previous section. Scan left to
right for a —1 or two consecutive bricks with a level between them (last entry of
the first brick is the same as first entry in the second brick). If a —1 is found,
break the brick in two after that cell and remove the —1 label. If a level between
bricks is found, insert a —1 label for the last cell in the first brick and combine the

bricks. For example, the image of Figure 3.6 is depicted in Figure 3.7.
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Figure 3.7: The image of Figure 3.6

The fixed points can be read as compositions that have identical entries within
each brick, but unequal entries between bricks, and only y labels. A fixed point

is displayed in Figure 3.8. > ;5 () sgn(C)W(C) reduces to a sum over fixed
3

n)

points, which is exactly given by Z'ye]P’" YV g,

y
5

y y 'y . .y.y.y
5 77 7 7T

Figure 3.8: A fixed point coming from Equation 3.2.1 when n = 11

Thus,
-1
s 5o (She) <o (Seco)
n>0 yePn n>0 n>0
-1
S COCIEETED o)
n>1 Jj=1
-1
= (1 — Z Zt”(y — 1)”1x?>
j21 n>1

-1
tx;
( = 1—t(y—1)z;

proving Theorem 3.2.1.

3.3 Major index

Let P denote the set of positive integers. We shall prove the following three

theorems.
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Theorem 3.3.1.

" d :
Z v Z gy des() g maity)
n>0 (y’ U)n+1 yeP™

yk

>0 Lot (@its i1

Theorem 3.3.2.

Z (yf;; - Z m'yywdesuwmaj('y)

yeP™
k .
E Yy H<_xit>u)k+1-
k>0 i1

Theorem 3.3.3.

Z Z ylevulevmaJ ()

0 "+1 vEP?
k

_ Y
N ; H?:O(ano Pn(_ujt)n) ’

where p, = p,(21,22,...) = Y.~ 2 is the power symmetric function.

It should be noted that there has been considerable work on enumerating com-
positions by the number of occurrences of certain patterns in a composition. For ex-
ample, if v = (71, ...,7) is a composition and we define ris(y) = [{s : 75 < Vs+1},
then Carlitz [13] proved that

Z ué(fy |'y| ris(y ydes('y) lev _ 6((]U(Z - y)? q) B €(QU(Z _ .T), q) (331)
ve(qu(z — 2).9) — yelgu(z — ).
where - -
z" 1
ewa)=> =1l

and (q)o = 1 and (q), = (1—q)(1—¢?) - - - (1—¢") for n > 1. Similarly, Heubach and
Mansour [25] found generating functions of compositions according to the number
of occurrences of various 3 letter patterns and Mansour and Sirhan [32] extended

the work of Heubach and Mansour by finding generating functions of compositions
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according to the number of occurrences of various [ letter patterns. Enumerating
various types of compositions according to other types of patterns can be found
in [24], [23], and [26]. In each case, one can find such generating functions by
applying the transfer matrix method, see [42], section 4.7 or [22]. The basic idea

is the following. Suppose you want to find the generating function

C(u,v,z) = Z ut O yhlgdest, (3.3.2)

~yeP*

Then one can define

C(iu,v,x) = Z ULy pdes()

~EPt y1=i

and we have simple recursions

C(i;u,v,2) = v’ + uvz(z xC(j;u,v,x) + Z C(j;u,v,x)) (3.3.3)

J<i Jj=i
for all ¢ > 1. Thus, if U and V are the infinite vectors U = [uv!,uv?,...] and
V = [C(L;u,v,x),C(2;u,v,x),...], we can write down an invertible matrix M
such that
Ut =Mv?T
and, hence, we can solve for V7 as
v =M"'UT.

Then, at least in some cases, one can simplify the expression for

1+ 2121 C'(i;u,v,x) to obtain nice formulas for the desired generating function.
Of course, this method is more straightforward if we restrict ourselves to finite
alphabets, but it can still work over infinite alphabets, as Carlitz basically showed
in [13]. However, when we try the same thing while adding a variable ¢ recording

the major index, we cannot derive such an equation. That is, define

Cliuv,z,q)= Y u@uPlgdetlgmaio), (3.3.4)

~yePt y1=1
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When we consider a composition v = (7y1,...,7) where 73 = j and add ¢ to the
front of v to obtain the composition § = (4,71, ...,7), then a descent 5 > Y511
which contributes s to maj(vy) will contribute 1 + s to maj(d) since that descent
will occur at position s+ 1 in . Thus maj(d) = 1 + des(y) + maj(y) if j < i and
maj(d) = des(y) +maj(y) if i < j. Hence, in this case we obtain the recursion
C(i;u,v,,q) = uwv' + uvl(z qzC(j;u, v, qz, q) + Z C(j;u,v,qx,q)). (3.3.5)
J<i Jj=i
The fact that C(j;u,v,qz,q) appears on the RHS of (3.3.5) as opposed to the
C(j;u,v,z,q) which appear on the RHS of (3.3.3) means that we cannot solve

directly for V7 in this case. Instead, if
V =V(u,v,z,q) = (C(1;u,v,qx,q),C(2;u,v,qx,q),C(3;u,v,qx,q), . ..)
and A = (uv,uv?,uv3,...), then we end up with an equation of the form
V(u,v,2,9)" = AT + B(u,v,z,q)V (u,v, xq, q)" (3.3.6)

where B(u,v,z,q) is a matrix. We can iterate (3.3.6) to obtain an expression for

V(u,v,2,q)" of the form

lg(uvlhiv;Q)13<U,1&iﬂq7q)fg(u,lhgﬁq2,q)/47'+-...

However, in this case, even when we restrict ourselves to finite alphabets {1,...,n}
so that the matrix B(u,v,,q) is finite, this leads to a complicated expression for
V(u,v,2,q)T. We were unable to see how we could simplify these expressions for
V(u,v,2,q)" or 14+3,_, C(i;u, v, z, q) to obtain anything as simple as the formula
in Theorem 3.3.1.

It should be noted, however, that various specializations easily follow from
Theorems 3.3.1, 3.3.2, and 3.3.3. That is, by setting the variables z; = 0 for
certain ¢, we can obtain formulas for an arbitrary alphabet A C P. By setting
x; = wv® for all i, we can also obtain generating functions like

Cl(u,v,z,q) = Z u Oyl des() gmai(),
yeP*
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To prove Theorem 3.3.1, define a ring homomorphism ©®*) by defining it on

the elementary symmetric function e, so that

@(k:)(en) _ Z g Do+ +ki [H H(l + l'izj)

00yeeeytg >0 7=01i>1
10+ +ig=n

0 ik
k

20

where expression|,» means to take the coefficient of t* in expression.

First we apply ©®) to h,. We have

0® (h,) (3.3.7)
— Z(_l)n*f(/\)BA’n@(lﬂ)(BA)
AFn
k
— Z( n 2\ B/\n H Z u0i0+...+kik [HH ]. —f—IlZJ
AFn = 105e-0y05 >0 =0 i>1 L0, ik
Zo+ Hi=Am 0 k

Our goal is to interpret ©*)(h,,) as a sum of weighted combinatorial objects.
We interpret the sum ), B, as all ways of picking a brick tabloid 7" of shape
(n). Then the factor (—1)"*™ allows us to place a —1 in each non-terminal cell
of a brick in 7" and place a 1 at the terminal cell of each brick in T". Next, for each
brick in T', choose nonnegative integers ig,...,7; that sum to the total length of
the brick. This accounts for the product and second sum in (3.3.7). Using powers
of u, these choices for 1, ..., i can be recorded in T'. In each brick, place a power
of uw in each cell such that the powers weakly increase from left to right and the
number of occurrences of u/ is 4;. At this point, we have constructed an object

which may look something like Figure 3.9 below.

Figure 3.9: One possible object when k£ = 3 and n = 12.
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Now, the term H?:o [Lin (T + mzzj)} LZOZ% lets us choose k+1 partitions with
distinct parts, 7@, ... 7 where (7)) - z'jkfor j=0,...,k, which we write in
strictly decreasing order. Each ¢ that occurs in such a configuration is weighted
with z;, so that we write these factors in the bottom row of each configuration.
Figure 3.10 gives one example of such an object created in this manner. The
weight of such a composite object is the product of the signs at the top of the
configuration times the product of the z;’s that appear in the bottom row of the
configuration times the products of the w/’s in the second row of the configuration.

Thus, the weight of the object in Figure 3.10 is —zx3xizizszeu'”.

—1{—1{ 1 —1{ —1{ —1{ —1{ —1{ 1 —1{ —1{ 1
11 1. 3 0 01 01 21 21 2 o 31 3
ururuu ety T U u 'uu
I I I I I I I I I
6. 1. 3 5,3, 2.4, 3 2 2., 4., 3
I I I I I I I I I
Xe1 X1 Xg| Xgi Xz Xop Xygo Xgu X Xo0 Xy Xg
I I I I I I I I I

Figure 3.10: An object coming from (3.3.7) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type A for some A F n have

the following properties:
1. the cells in each brick contain —1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is u*, and

3. T contains a composition of n which must strictly decrease between con-
secutive cells within a brick if the cells are marked with the same power of

u.

In addition, each entry 7 in the composition is weighted by z;. In this way, @(k)(hn)
is the weighted sum over all possible decorated brick tabloids of shape (n).
Next, we define a sign-reversing involution I which will allows us to cancel all

the terms T with a negative weight. To define I, scan the cells from left to right
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looking for either a cell containing —1 or two consecutive bricks which may be
combined to preserve the properties of this collection of objects. If a —1 is scanned
first, break the brick containing the —1 into two immediately after the violation
and change the —1 to 1. If the second situation is scanned first, glue the brick
together and change the 1 in the first brick to —1. For example, the image of
Figure 3.10 is displayed in Figure 3.11.

1 —1{1 —1{—1{—1{-1{ —1{ 1 -1{ —1{ 1
1 11 3 0 0 01 21 21 2 0 31 3

u u ' u u 'u 'u 'utuu u rutu
I I I I I I I I

6 1. 3 5.3, 2, 4, 3, 2 2, 4, 3
I I I I I I I I

Xe| Xq11 Xg| X5 Xgi Xpi Xy Xgo Xob X0 Xy Xg
I I I I I I I I

Figure 3.11: The image under [ of Figure 3.10.

It is easy to see that I is a sign-reversing, weight-preserving involution. Thus,
I shows that ©®)(h,) is equal to the sum of the weights of all the fixed points of
I.

Let us consider the fixed points of I. First, there can be no —1’s, so every brick
must be of size 1. Next, it cannot be the case that the power of u strictly increases
as we move from brick 7 to brick i+ 1, since then we could combine these two bricks
and still satisfy properties (1), (2), and (3). Thus, the powers of u must weakly
decrease as we read from left to right. Let v = (71,...,7,) denote the underlying
composition. We note that if the power of u is the same on brick ¢ and 7 4 1, then
it must be the case that v; < 7,11: otherwise, we could combine brick ¢ and brick

1+ 1. One example of a fixed point may be found in Figure 3.12.

1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 2 2 2 1 1 0| o0
u u u u u u u u u u u |u
1 2 3 3 5 3 3 6 2 2 3 4
X1 X, | Xg| Xg| Xg| Xg| Xg| Xg| X, X, Xg| X,

Figure 3.12: A fixed point when k£ = 3 and n = 12.
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We now turn our attention to counting fixed points. Suppose that the powers
of u in a fixed point are r{,...,r, when read from left to right. It must be the
case that k > r; > --- > r,. Define nonnegative integers a; by a; = r; — ;1 for
i1=1,...,n—1and let a,, = r,. It follows that i +---+r, = a1 +2as+- - -+ na,,
a; + ---+a, =r < k. Now suppose that v is the composition in a fixed point.
Then if 7; > 7,41, it cannot be that r; = r;;; because that would violate our
conditions for fixed points. Thus, it must be the case that a; > x(7; > 7viy1). Let
z” denote [[;_, z,. In this way, the sum of the weights of all fixed points of I

equals
Z 7 Z M T2a2+4nan
yepr ai+-4an<k
a;>x(i€Des(v))
— Z z7 Z . Z ya1+~~-+anua1+2a2+~~+nan ’
~yeP™ a1>x(1€Des(v)) an>x(n€Des(y)) y<k
where expression|,<s means to sum the coefficients of ¢/ for 7 = 0,...,k in

expression. Rewriting the above equation, we have

S > e Y ()

~eEP™ a1>x(1€Des(v)) an>x(n€Des(y) y<k
Z :Lv'Y(yu>X(1€Des(’y))(yu2)x(2€Des('y)) . (yun>x(n€Des('y))
- yePn (1 —yu)(I —yu?)--- (1 —yu) y<k
Z xvydeS(v)umaj(v)
T U= )|

Dividing by (1 — y) allows the above expression to be rewritten as

Zyes(7)mai(7)

2 (1=y)(X—yu)- (1 —yu")

yePn

yk
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Therefore, we have

§ : § :3:7 des (), maj(y)
n+1

n>0 yePn?

- Y (ztnhn)
k>0 n>0
k

B y
N Z (ano(_t>n@(k) (en))

k>0

.S y"
(

k>0 ano(_t)n Zz Iﬂ_""i];>0n w00+ +kiy H 0 HZ>1( + Z‘iZj) Zéo...zlik)
0 k

However,

DD DRREIEID | | (ERT

n>0 80 yerny i1y 20 j=0i>1
o+ Fig=n
k

S =t [T+ waiz)l=
n>0 j=0 i>1

k
HH(l — zult) =
j=0i>1
H(wit; U)ot 1-
i>1

Thus, we have shown that

E E Ty des(v) maJ () —
n+l

n20 yeP™

yk

k>0 Hi21(xit§ Uk i1 ,

which proves Theorem 3.3.1.
To prove Theorem 3.3.2, we define a homomorphism 0% on A by defining

0w (e,) = Z Vot tkik [HH g ]

0yenyip >0 j=0i>1 40
o+ Fip=n 0

i
ez,
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Again we apply ol to h,. We have

0w (h,) (3.3.8)
= D (~1)"'MB, 0% (ey)
AFn
L(N) k 1
_ _1\n—t(N) Oip+---+ki -
D YEICIN | (D DR ’“[H.Hl—xizj] N
A-n m=1 ig,...,ix>0 7=01i>1 280"'leck

0+ Fir=Am

Again we interpret ol )(hn) as a sum of weighted combinatorial objects. Ev-

S lets
zOO---zkk

erything is the same as before except that the term [H?:o [1is1 1_;}

Tz

us choose k + 1 partitions, 7%, ... 7®) where (7)) =i, for j = 0,..., k, which
we write in weakly decreasing order. Each 7 that occurs in such a configuration
is weighted with z;, so we write these factors in the bottom row of each configu-
ration. Figure 3.13 gives one example of such an object created in this manner.
The weight of such a composite object is the product of the signs at the top of the
configuration times the product of the x;’s that appear in the bottom row of the

configuration times the products of the u/’s in the second row of the configuration.

Thus, the weight of the object in Figure 3.13 is —z z3rixizeul”.
-1 w -1 w 1 -1 w -1 w -1 w -1 w —1{ 1 —1{ —1{ 1
11 11 3 0 01 01 21 21 2 or 31 3
u ot u U tu 'u urutu u ' u-ru
I I I I I I I I I
6 1 1. 3 3. 3.2 4. 3 2 2., 4. 4
I I I I I I I I I
Xgi X1 Xg| Xgi Xgi Xou Xy Xgo Xol Xor Xyt Xy
I I I I I I I I I

Figure 3.13: An object coming from (3.3.8) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type A for some A F n have

the following properties:
1. the cells in each brick contain —1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is u*, and
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3. T contains a composition of n which must weakly decrease between consec-
utive cells within a brick if the cells are marked with the same power of

u.

In addition, each entry ¢ in the composition is weighted by x;. In this way, @Sf )(hn)
is the weighted sum over all possible decorated brick tabloids.

We define a sign-reversing involution I exactly as before. That is, we scan
the cells from left to right looking for either a cell containing —1 or two consec-
utive bricks which may be combined to preserve the properties of this collection
of objects. If a —1 is scanned first, break the brick containing the —1 into two
immediately after the violation and change the —1 to 1. If the second situation
is scanned first, glue the brick together and change the 1 in the first brick to —1.
Thus, I shows that ol )(hn) is equal to the sum of the weights of all the fixed
points of 1.

Again, let us consider the fixed points of I. First, there can be no —1’s, so every
brick must be of size 1. Next, it cannot be the case that the power of u strictly
increases as we move from brick ¢ to brick ¢+ 1, since then we could combine these
two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must
weakly decrease as we read from left to right. Let v = (v1,...,7,) denote the
underlying composition. We note that if the power of u is the same on brick ¢ and
1+ 1, then it must be the case that v; < 7;11: otherwise, we could combine brick

1 and brick ¢ + 1. One example of a fixed point may be found in Figure 3.14.

1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 2 2 2 1 1 o| o
u u u u u u u u u u u |u
1 2 3 4 6 3 5 6 2 5 3 4
X1 Xo| Xg| X4| Xg| Xg| Xg| Xg| X, Xg| Xg| X,

Figure 3.14: A fixed point when k = 3 and n = 12.

We can then count the fixed points as before. That is, suppose that the powers

of u in a fixed point are ry,...,r, when read from left to right. It must be the
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case that k > r; > --- > r,. Define nonnegative integers a; by a; = r; — ;1 for
i1=1,...,n—1and let a,, = r,. It follows that i +---+r, = a1 +2as+ - - -+ na,,
a; +---+a, =1 < k. Now, suppose that v is the composition in a fixed point.
Then if 7; > 7,41, it cannot be that r; = r;;; because that would violate our
conditions for fixed points. Thus, it must be the case that a; > x(7; > 7iy1). Let

z7 denote [, z,,. In this way, the sum the weights of all fixed points of I equals

§ 7 E ua1+2a2+~~-+nan

yepn a1t tan<k
a;>x(t€W Des(7))

= E x’ E e E yal"r"'-‘ranua1+2a2+-~~+nan

YEP™  a1>x(1€WDes(v))  an>x(n€WDes(v)) <k

Rewriting the above equation, we have

> Yoo um- > u™

vEP™  a12x(1€W Des(v)) an>x(n€W Des(v)) <k
Z 27 (yu)XIEWDes() (2 )X(2EWDes(x) . . . (yqym )X(nEW Des(@))
- — —qu2) - (1 = yu™
~eP® (1 —=yu)(I —yu?)--- (1 —yu) »
Z $7ywdesuwmaj(y)
- — —qu2) - (1 — yu™
2 (U= yu)(1 =y (L= yur)|

y7
Dividing by (1 — y) allows the above expression to be rewritten as

mvywdesuwmaj(v)

2 (I=y)(1—yu)- (1 —yu)

yeP™

yk



Therefore, we have

> G

n>0

However,

§ l,'y wdes wmaJ i(v)

n+1

yeP™
> yrelp (Zt”hn>
k>0 n>0

>
= (Laso(-00(e)

R20 | 30 o(=0)" D2 dgigz0 uliot ki H?zo L = |0

Z< ’

0+ +ig=n

Z(_t)n Z Ozo+ ki, HH T o ZO Zk —

n>0 20,y >0 7=01i>1
i0+ Hip=n
Z PTI —s -
1 —wa; z
n>0 7=01>1
7=01:>1 + g

n(%

i>1 —x;t; U)k+1

Thus, we have shown that

Z tn Z Qj’y wdes wmaJ('y) _

n>0 )n+1 ~EPn

k .
E Yy H(—xﬂf, Uk,
k>0 i1

which proves Theorem 3.3.2.

—X;zj ZO

i
Zk )
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To prove Theorem 3.3.3, we define a homomorphism @gk)(en) on A by setting

k
@ék)(en) _ Z o Vio+-+ki Hpij'
=0

§0,0..,i >0
io+-Fip=n
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where p,, is the n-th power symmetric function.

As before, we apply @ék) to h,. We have

oM (h,) (3.3.9)
- Z(_l)n_z()\)B)\,n@(k)(e)\>
AFn
o)
_ Z(_l)n_g(A)BA,n H Z u0z0+...+kzkpi0 Dy
AFn m=1 ig,...,iz>0

o+ +ik=Am
Again we interpret @Ek)(hn) as a sum of weighted combinatorial objects. Ev-
erything is the same as before except that the term p;, - - - p;, lets us choose k + 1

partitions, 7(©)

..., ™% where 7U) = (n?) for some n; for j = 0,..., k. Each i that
occurs in such a configuration is weighted with x; so that we write these factors
in the bottom row of each configuration. Figure 3.15 gives one example of such
an object created in this manner. The weight of such a composite object is the
product of the signs at the top of the configuration times the product of the x;’s

that appear in the bottom row of the configuration times the products of the u’’s

in the second row of the configuration. Thus, the weight of the object in Figure

3.15 is —morSadziul’.
1 -1 1 [ -1 o1 -1 -1 11 -1 101
10 11 3 0r 01 01 21 21 2 0 3 3
uturu Uty Py Ut uTruT |y
I I I I I I I I I
6 1 6 3 313,31 4. 4. 4 2,31 3
I I I I I I I I I
X1 Xe. Xg| X3 Xz Xz Xgy Xy X, | X3 X3y X3
I I I I I I I I I

Figure 3.15: An object coming from (3.3.9) when k = 3 and n = 12.

These decorated brick tabloids of shape (n) and type A for some A F n have

the following properties:

1. the cells in each brick contain —1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is u*, and
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3. T contains a composition of n whose entries must be equal for any two
consecutive cells within a brick if the cells are marked with the same power

of u.

In addition, each entry ¢ in the composition is weighted by x;. In this way, @ék)(hn)
is the weighted sum over all possible decorated brick tabloids.

We define a sign-reversing involution I exactly as before. That is, we scan
the cells from left to right looking for either a cell containing —1 or two consec-
utive bricks which may be combined to preserve the properties of this collection
of objects. If a —1 is scanned first, break the brick containing the —1 into two
immediately after the violation and change the —1 to 1. If the second situation
is scanned first, glue the brick together and change the 1 in the first brick to —1.
Thus, I shows that @ﬁk)(hn) is equal to the sum of the weights of all the fixed
points of 1.

Again, let us consider the fixed points of I. First, there can be no —1’s, so every
brick must be of size 1. Next, it cannot be the case that the power of u strictly
increases as we move from brick ¢ to brick ¢+ 1, since then we could combine these
two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must
weakly decrease as we read from left to right. Let v = (v1,...,7,) denote the
underlying composition. We note that if the power of u is the same on brick ¢ and
7 + 1, then it must be the case that ~; # v;,1: otherwise, we could combine brick

1 and brick ¢ + 1. One example of a fixed point may be found in Figure 3.16.

1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 2 2 2 1 1 0| o
u u u u u u u u u u u |u
3 2 1 3 5 3 2 6 6 2 3 4
Xg| Xo| Xg| Xg| Xg| Xg| X,| Xg| Xg| X, Xg| X,

Figure 3.16: A fixed point when k = 3 and n = 12.

We can then count the fixed points as before. That is, suppose that the powers

of u in a fixed point are ry,...,r, when read from left to right. It must be the
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case that k > r; > --- > r,. Define nonnegative integers a; by a; = r; — ;1 for
i1=1,...,n—1and let a,, = r,. It follows that i +---+r, = a1 +2as+ - - -+ na,,
a; +---+a, =r < k. Now suppose that v is the composition in a fixed point.
Then if v; = 7,41, then it cannot be that r; = r;;1 because that would violate our
conditions for fixed points. Thus, it must be the case that a; > x(7; = viy1). Let

z7 denote [, z,,. In this way, the sum the weights of all fixed points of I equals

E 7 E ua1+2a2+~~-+nan

yeP™ ar+-+an<k
a;>x(i€Lev(y))

= E z” E R E yarF“+anual+20TF~+nan

yeP™ a1>x(1€Lev(7)) an>x(ne€Lev(y)) <k

Rewriting the above equation, we have

DoAY wre Y ()™

yEP™ a1>x(1€Lev(y)) an>x(n€Lev(y)) y<k
Z x’Y(yu)X(leLev(’Y))(yUQ)X(QELeU(fy)) L. (yun>X(nEL€U(’Y))
- — —yu2) - (1 — yum
ot (1 —yu)(I —yu?)--- (1 —yu") N

levulevmaj )

_ 7y
= 2 (1 —yu)(1 —yu?)--- (1 — yu)

yePn

y<k

Dividing by (1 — y) allows the above expression to be rewritten as

xwylevulevmaj y)

2 (I=y)(1—yu)- (1 —yu)

yeP™

yk
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Therefore, we have

E E SL’V lev levmaj v)
n+1

n>0 yePpn
- el (S
k>0 n>0
k

_ Yy
2 (Zozo(=076f" en)
. ( "

k20 ZnZO(_t)n zl$ik20 () tot kalo plj)
io+-+ig=n

However,

Z(_t)n Z u0i0+...+kikpi0 ey, =

n>0 20,.-y0 >0
10+ +ig=n

Y =TI pmle?z)™)z

n>0 J=0 m=>0

k

LI pu(=ut™)
7=0 m>0

Thus, we have shown that

lev levma 7 —
Z (y U)pt1 Z "y "

n>0 yeP®
k

Y
% H?=0(2021 pm<_ujt)m)’

which proves Theorem 3.3.3.

Now suppose that S is a subset of P. Then we can restrict to compositions

with parts from S by simply setting z; = 0 for all ¢ ¢ S. Thus, we immediately

have the following corollaries:

Corollary 3.3.4.

Z n Z ydes('y)xv _ l—y

n>0  ~ESn —y+ Hjes(l +t(y — 1)z )
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Corollary 3.3.5.

-y
" ywdes('y)x'y _
DS R | pp—

n>0  ~esn 1-tly=1)z;

Corollary 3.3.6.

Ztn Z yleV(W)x”/ — — Z 1 i

n>0 YyES™ jES l—t(y—l).rj

Corollary 3.3.7.

Z Z 2y des(v) ., maj(7)

n>0 n+1 ES”

yk

=0 [Lics(it;w)rer

Corollary 3.3.8.

§ ZE’Y wdes wmaJ( )
n+1

n>0 yeS™
Zy H —il; )1
k>0 €S
Corollary 3.3.9.
t" ylevulevmaj(v)

n>0 (ya )n—i—l ~esn
k

_ Y
kzzo H?:o (ano pn,S(_th)n) ’

where pns = Y o6 T3

In addition, we can replace x; by ¢/ in order to keep track of ¢hl = gnt-+m,

For example, we will have

Corollary 3.3.10.

-y
" ydeS(v)qlv\ — '
21D =y + [Les(L+ty — 1)¢7)

n>0  ~yesS"
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We can also derive analogues of our results for other partial orders on P by
specializing our results. For instance, suppose that < is the partial order where
all the odd numbers are incomparable, every even number is larger than every odd
number, and the even numbers are ordered as in the standard universe. In this

case, we define for any composition v = (7y1,...,7),

%(7) = {i:7% > Vs h

des(y) = [Des(y)], and
maj(y) = ) i
i€Des(7)

Then it easy to see that the generating function

des(y ma'( )
Z - Z 2y iy

n>0 (y n yeP™

arises by taking the generating function

des(y ma'( )
Z - Z 2y i

n>0 (y n yeEP™

1
1_27120 T2n+1

following corollary.

and setting r; = and setting x9;.1 = 0 for ¢ > 1. Thus, we have the

Corollary 3.3.11.

Z ( Z Ty des(y),,maj()
ysu n+1

n>0 yeP®
k

_ Y
o ZHk (1 uit

k>0 1lj=0\"* 1-3,.50 ;,;%H) HiZl(int; U)k+l

3.4 Common descents or levels

We can also generalize to looking at common descents or levels in m-tuples of
compositions. Define comlev(y!,~%,...,9™) to be number of places where each of

L, .. .,4™ has a level. Then we have the following theorem.
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Theorem 3.4.1.

S Y et g g™ = 1
e a
1 m 1-3 ty=Dgy g™
nZO 'Yl 7777 ’Y"LGPn Al yeeey anLZl l—t(y—l)qfl"'q?nm

The proof follows the same structure: apply the homomorphism

o (e) = (1" - [ "

i=1 j>1

to h, to obtain a brick tabloid in which we fill in m compositions and decorate in
the same manner as before. For example, one such object is displayed in Figure

3.17.

<
<
<

(6)]

(6]
______é;___-

~
______;i___-
______;J___-
______;J___-
______;i___-
______;J___-

=
______;;____

Figure 3.17: An object coming from ©%(hq;)

Next, we perform an involution on the resulting objects as follows. Scan left to
right for a —1 or two consecutive bricks with a level between them in each of the
m compositions. If a —1 is found, break the brick in two after that cell and remove
the —1 label. If a level between bricks for every composition is found, insert a —1
label for the last cell in the first brick and combine the bricks. For example, the
image of Figure 3.17 is displayed in Figure 3.18.

-1 -1: y 'y -1y 'y -1
5i51i5 7171717177111
6 i6 16|77 i7:!7i7 7|55

Figure 3.18: The image of Figure 3.17
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Thus, we will have

m comlev(yl,...,y™ m
o™ (h,) = Z yeomle (™) bl
71""7'ym€Pn
Therefore,

n comlev(yt,...,y™ 1 m
S Ny grl b

n20 4l ymepn

(e fise)

n>1 i=1 j>1
-1
= (14> (=ra =yt D (g -%‘i’“)”)
n>1 at,...,ap>1

= 1+_Z Z 1...qgk)n>

1 —
Yy n>1 ay,...,ap>1

(1 Y i ...qgk)n> )

al, Lap>1 n>1

-1
[+ ¥ tly — Dai* - g
1—y 1—ty— D" - g

al ...,akZI

Similarly, define comdes(y',~2,...,9™) to be number of places where each of
7L, ...,9™ has a descent and comwdes(y!, 72, ...,9™) to be number of places where
each of v1,...,7™ has a weak descent. Unfortunately, the generating functions
for common descents are less nice than those for common levels as they contain

Hadamard products that cannot be simplified. We can define the homomorphisms:

o = -0 T (T - ) o

Jj=1 Jj=1

and

05" (en) = (1) 1 KH (1 +tq;i>> o | -

j:l _]>1

The same extended involutions will give us fixed points with the appropriate
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weighting for the objects we want. However, the final results remain as

m comdes(y) 7! | [y™]
dom Yy ol gk

n>0 Al ymePn

1
Lt gy St = DI T (T = t4) i) I

and

n comwdes(7) ! | [v™
> >y @Gy

n>0 Al ymePn
1

L 75 oty = DI T [ (T (1 0)) o]

which provide little insight.

)

3.5 j-levels

We can look at j-levels, but we pay a price for it. The method of the previous
sections does not work well for statistics that look at more than 2 adjacent entries.
Thus, we must give up keeping track of the monomial 27, which also leads us to
restrict to a finite alphabet [m] = {1,2,...,m}. For any word v € [m]", define the
number of j-levels by jlev(y) = |{i : v = vix1 = -+ = Y+ }|, i.e. the number of

places a letter is repeated j + 1 times. Then we will prove the following theorem.

Theorem 3.5.1.

t—tJ tJ
Ztn Z yjlev('y 1+ 1—t + 1—ty
i i 1"
n>0  ~y€[m (m - 1)[% + 1ity]

To prove Theorem 3.5.1, we define a homomorphism on the ring of symmetric

functions by ¢,(ep) = 1 and, for n > 1,
(=)t (m —1) n<j
(=1)"Hm=1)y"7 n=j

_ (_1)n—1(m . 1)ymax(0,n—j)

pjlen) =
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Then
m m ey
i) = (1" N By, [T dien)
AFn i=1
. ) |
o LN § (S

AFn i=1
1N

m o
= S B[ o 3:51)

m—1 .
AFn =1

We still interpret each term as a filled labeled brick tabloid. The term ), By,
lets us choose a brick tabloid of shape A. For the first brick, the factor of —"=(m—1)
lets us choose any an entry € [m], which we use to fill every cell of the brick. For
every other brick, the factor of Hi(jl) (m — 1) lets us choose any entry € [m] except
the label of the previous brick, which we use to fill every cell. The factor of
[1 oo

> j by y~7. We can think of this as labeling the first \; — j cells with y.

) does nothing to bricks of length < j, and weights bricks of length

For instance, one filled labeled brick tabloid for j = 2 is displayed in Figure
3.19. The first brick has the first 3 — 2 = 1 cells labeled with y, the second brick
has the first 6 — 2 = 4 cells labeled with y, and the third brick has no cells labeled

with y since its length is not greater than 2.

y
5

y
S5 |7

y
7

y
7

y
7

Figure 3.19: A filled labeled brick tabloid coming from Equation 3.5.1 with j = 2
and n =11

Notice that there are no signs in our filled labeled brick tabloid. In this case,
we do not need to perform an involution in order to get the desired objects—we
already have them. Let T, (n) be the set of filled labeled brick tabloids that arise
in this way. Any C' € T4 (n) has equal entries within each brick, while adjacent

bricks cannot have equal entries. Moreover, there is a y at the beginning of every
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sequence of j+ 1 equal entries. On the other hand, for any v € [m]", we can create
a filled labeled brick tabloid by breaking a brick every time adjacent entries are
different and, within a brick b, labeling the first j — b cells with a y.

Therefore, for n > 1,

_m . _ jlev()
—— ()= D 0.
YE€[m]

Thus

n>0  ye[m] L+ (—

n jlev(y) __ m 1 -
Zt Zyﬂ w_1—|—m_1< 0765 (en) 1>

m 1
=1+ — —1
=1\ T X,y (07 (~ 1 — Dm0 )

=1+ = ! 1
= m_1 1= (m _ 1) anl tnymax(o,n—j)

1-t

14 ! 1
=1\ T (m - D+ )

1—-ty
t—t7 tJ
_ L+ 1-t + 1-ty
1= (m—1)[=2 + 2]

Of course, when j = 1 this reduces to the regular level generating function with

each x; = 1 and parts from [m)].



Chapter 4
Enumerating up-down words

Let P = {1,2,3,...} denote the set of positive integers, E = {2,4,6,...} denote
the set of even integers in P, and O = {1, 3,5, ...} denote the set of odd integers in
P. Let P, = {1,...,n}, E, =ENP,, and O, = ONP,. Let S, denote the set of
all permutations of P,,. Then if 0 = 0y09...0, € S,, we define Des(o) = {i : 0; >

oiy1}; and Ris(o) = {i: 0; < 0,41}. We say that o is an up-down permutation if
01 <09 >03<04>05""",

or, equivalently, if Des(c) =E,,_; and Ris(c) = Q,,_;. Similarly, we say that o is

a down-up permutation if
01 >09<03>04<05""",

or, equivalently, if Ris(o) = E,,_y and Des(o) = Q,,_y. Clearly, if 6 = 0y05...0, €

S, is an up-down permutation, then the complement of o,
cf=mn+1—-o0)n+1l—09)...(n+1—0y,)

is a down-up permutation. Thus, the number of up-down permutations in S, is

equal to the number of down-up permutations in S,,. Let UD,, denote the number

66
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of up-down permutations in S,,. Then André [1, 2] proved the following.

tn
sec(t) = 1+ ZUDnm and (4.0.1)
nel
mm)ziymﬁ. (4.0.2)
ne

Ifs>2and 1 <j<s—1,let sP={s,2s,3s,...} and j+sP = {j,s+J,2s+7,...}.
For any n > 0, let (sP),, = sPNP, and (j+ sP), = (j + sP) NP,. Let E, ; denote
the number of permutations o € S,, such that Des(o) = (sP),—;. The E, ’s are
called generalized Euler numbers [29]. There are well-known generating functions
for g-analogues of the generalized Euler numbers; see Stanley’s book [42], page
148. Various divisibility properties of the ¢-Euler numbers have been studied in
[4, 5, 17], and properties of the generalized ¢-Euler numbers were studied in [20, 40].
More general generating functions for statistics on permutations o € S,, such that
Des(o) = (j + sP),—1 were given by Mendes, Remmel, and Riehl [36].

Carlitz [12] and Rawlings [38] proved two different analogues of André’s results
for words. To state their results, we first need to introduce some more notation.
Let P* denote the set of all words over the alphabet P and Pt denote the set
of all non-empty words in P*. We let € denote the empty word. For any w =
WiWs . .. Wy, € P, we let £(w) = m denote the length of w, Jw| = > " w;, and
z(w) = 2, 2w,. For example, if w =12132454, then {(w) =8, |w| = 22,
and z(w) = 2222232225. Given w = wyws ... w, € PT, we define the descent set
Des(w), the weak descent set W Des(w), the rise set Ris(w), and the weak rise
set W Ris(w) as follows:

Des(w) = {i:w; > w1}, (4.0.3)
WDes(w) = {i:w;> w1}, (4.0.4)
Ris(w) = {i:w; <wy1}, and (4.0.5)
WRis(w) = {i:w; < wipi}. (4.0.6)

Definition 4.0.2. Let w = wyws ... w,, € PT.
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1. We say that w is a strict up-down word if wy < we > w3 < wy > ws - - -, oOr,

equivalently if Ris(w) = OQy,—1 and Des(w) = E,,_;.

2. We say that w is a strict down-up word if w; > we < w3 > wy < ws-- -, oOr,

equivalently if Des(w) = Qy,—1 and Ris(w) = E,,_;.

3. We say that w is a weak up-down word if w; < wy > wg < wy > ws-- -, or,

equivalently if W Ris(w) = Q,,—; and W Des(w) = E,,_;.

4. We say that w is a weak down-up word if wy > we < w3z > wy < ws-- -, or,
equivalently if W Des(w) = Q,,—1 and W Ris(w) = E,,,_;.

By convention, the empty word € and one letter word w; are considered to
be (all of) strict up-down words, strict down-up words, weak up-down words, and
weak down-up words. We let SUD,,, SDU,,, WU D,,, and W DU,, denote the sets of
all words in [P} which are strict up-down, strict down-up, weak up-down, and weak
down-up, respectively. Clearly, if w = wyw, ... w,, € P*, then w € SUD,(WUD,,)

if and only if the complement of w relative to n,
w"=m+1—-w)n+1—wy)...(n+1—wy,) € SDU,(WDU,).

We let SUD,, ,,,, SDU,, ,,, WU D, ,, and W DU, ,,, denote the sets of all words in
P* of length m which are strict up-down, strict down-up, weak up-down, and weak
down-up, respectively.

Carlitz [12, 11] proved analogues of André’s formulas for strict up-down words.

In particular, Carlitz [12] considered the following generating functions.

Fulzioz) = > > z(w), (4.0.7)

meQ weSU Dy, m

Gu(z1, . m) = 1+ Y z(w), (4.0.8)

mEE weSUDnp m

Fu(z) = Y _|SUD, 2", and (4.0.9)
me
Gu(z) = 1+ |SUD, 2" (4.0.10)

meRk
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For example, if n = 2, then clearly SUDy; = {1,2} and SU D52, = {(1 2)™} and
SUDsom+1 = {(12)"1} for m > 1. Thus

1
a -
2(21, 22) 1— 2123
Gal2) :
z) = ——
2 1 _ 22’
21 21+ 29 — zlzg
F = g
2(21’ 22) 2 + 1-— 2129 1-— 2129
2z — 28
F = )
() 1—22
In general, Carlitz [12] proved that
G ) ! d
(21,0 2p) = an
' Qu(z1, -, 20)
P, )
Fo(z1,...,2,) = w215 2n)
Qn(Zh 7Zn>
where
Poii(z1y oy 2pa1) = (1 — ZZH)Pn(Zl, ey Zn) F Zn1Qn(21, - -
and
Qn+1<21, ce ,Zn+1) = —zn+1Pn(z1, Ce ,Zn) —+ Qn(Zl, Ce

In particular, he used these recursions to prove the following formulas:

and

where

, and

 Zn)

) Zn)-

(4.0.11)

(4.0.12)

(4.0.13)

(4.0.14)

(4.0.15)

(4.0.16)

(4.0.17)

(4.0.18)
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Rawlings proved g-analogues of (4.0.15) and (4.0.16) for weak down-up words.
That is, let [n] = 1 +q+---¢"! = = [n]g! = [n]q[n — 1]g- - [1], and Bﬂq -

1—q’
[)g!
Al et
k

Bn(q,2) = Z(—l)qu(kH) {n;{ ] 2% and (4.0.19)
k>0 q

An(g,2) = Z(_1)qu2+3’f+1[n+k} 2L (4.0.20)
k>0 Qk + 1 q

Then Rawlings [38] proved that

1
1 wl e(w) — 4.0.21
T I S (1021

meE weW DUp,m

and

>y vt — Anla:2) (4.0.22)

mEQ wEW DUn,m Bn(q, 2)
This chapter was motivated by our attempt to give direct proofs via involu-

tions of the formulas of Carlitz and Rawlings described above. That is, Carlitz
[12] proved (4.0.15) and (4.0.16) by recursions. Rawlings [38] developed much
more general recursions for generating functions of words and proved (4.0.21) and
(4.0.22) as special cases of these recursions. The main goal of this chapter is to
show that all of the formulas of Carlitz and Rawlings described above can be
proved directly by simple involutions. In fact, we shall give direct combinatorial
proofs of generalizations of these formulas. That is, we shall prove formulas for
the analogues of generalized Euler numbers for words. To this end, we define the

following classes of words.
Definition 4.0.3. Let s > 2.

1. SUsflSDmm is the set of all words w € P of length m such that
Des(w) = (sP),,—1 and Ris(w) = Py g — (8P)yy_1.
We let SU*1SD,, = Unnso SU*~tSD,, .

2. WU*'SD,,, is the set of all words w € P} of length m such that
Des(w) = (sP)pm—1 and WRis(w) = Py — (SP) 1.
We let WU*"1SD,, = U0 WU*1SD,, .
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3. SU*"'W D, is the set of all words w € P, of length m such that
W Des(w) = (sP),—1 and Ris(w) = Pp—1 — (SP) 1.
We let SU*"'WD,, = Umzo SU*'W Dy, n.

4. WU$_1WDn,m is the set of all words w € P of length m such that
W Des(w) = (sP),,—1 and WRis(w) = Pp,—1 — (P) 1.
We let WU*~'WD,, = Umzo WU "W D, .

For example, SU*"1SD,, consists of all words that start out with s — 1 strict
increases followed by a strict decrease, then another sequence of s—1 strict increases
followed by a strict decrease, etc. For example, we can describe SU%SD,, as the
set of all words w = w;...w,, € P} such that w; > w;4; if ©+ = 0 mod 3 and
w; < wiyq if @ # 0 mod 3 or, alternatively, SU2SD,, consists of all words in

w=w...w, € P, such that
W < Wy <Wz > Wy < Wy < Wg > Wy <Wg < Wg > Wi -

Similarly, WU?2SD,, consists of all words w = wy ... w,, € P* such that w; > w;,,
if i =0 mod 3 and w; < w4 if i Z0 mod 3. That is, WU?SD,, denotes the set

of all words in w = w; ...w,, € P, such that
w) Swy S w3z >wy S ws S we > wr S wWg < W > Wig -t

It will be useful for later developments to have a pictorial representation of these
classes of words. The idea is that we are interested in words w that we can partition
into an initial sequence of blocks of size s and ending in a block of size j where
0 < j < s—1. The letters in any given block are either strictly increasing if we pick
SU*~! or weakly increasing if we pick WU*~!. Then, either we have strict decreases
between blocks as pictured in the top of Figure 4.1 if we are considering either
SU*=1SD or WU*~1SD or we have weak decreases between blocks as pictured at
the bottom of Figure 4.1 if we are considering either SU*™1W D or WU* 'W D.

It is then easy to see that the collection of words studied by Carlitz [12] is
SUD,, = SU*SD,, and the collection of words studied by Rawlings [38] is



72

s—|>=1

s— |z |21 ]

Figure 4.1: Pictorial representation of words in SU*~1SD, WU*1SD, SU*~'W D,
and WU*'WD.

WUD, = WUW D,,. This given, we define the following generating functions for
any s > 2:

qufsJ,EASD(zh cezn) = 1+ Z Z z(w) and

mesP weSUs~1SDy, m

Hffsjjflw(zh---,zn) = Z Z z(w) for j=1,...,s — 1.

mEj+sPweSUS~1SDy m

We define HXE/S%S_ISD(zl, ey Zn)s Hig?lWD(zl, ey Zn), and HXE/SI’]J»S_IWD(ZM ey Zn)
for j =0,...,s— 1 similarly. We shall give an explicit expression for each of these

generating functions in terms of Gessel quasi-symmetric functions [21]. Our expres-
sions can then be specialized to explicit formulas like (4.0.15), (4.0.16), (4.0.21),
and (4.0.22).

The outline of this chapter is as follows. In section 4.1, we shall define the
Gessel quasi-symmetric functions and some additional classes of words that can be

defined in terms of quasi-symmetric functions that we will need for our proofs. In

. . . s—1
section 4.2, we state and prove our generating functions for HY %P (21, ..., 2,),
SUS-'WD WUs~1SD WU~ 'WD :
HS (2155 20), Hy' o (215, 2n), and H " (z1,...,2,) and give

some specializations. Finally, in section 4.3, we shall end with a brief discussion

about some extensions of our work.
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4.1 Quasi-symmetric functions

Let v = (71, ...,%) be a composition, i.e. a sequence of positive integers. Then

we let |y =~ + -+ and

Set(’y) = {’71’,71 + v,y +7t—1}'

For example, if v = (2,3,1,1,2), |y| = 9 and Set(y) = {2,5,6,7}. Then Gessel
[21] defined the quasi-symmetric function
Qy(21, ... 2n) = Z ZiyZi """ Zipy - (4.1.1)

<< <ip g <
177,17 71‘%71@

15 <tj41 if jeSet(y)

Thus, for example, if 7 = (2,3,1,1,2), then

QW(Zl,...,Zn): Z szj

1< <i2<i3<14<i5<ie<i7<ig<ig<n j=1

We shall also need explicit expressions for the specializations

Qv(21, -, 2n)|5—e and Q4 (21, ..+, Zn) |2 —giz
Lemma 4.1.1.
n—+ |yl —¢
Quetre s 2o = ( g W))zv (412)
]
and
P
R I B P (113
7] .
Proof. For the specialization, Q+(z1,...,2n)|s;—2, We must count the number of

sequences 1 < iy < iy < -+ <4, < nosuch that i; < dj44 if j € Set(y). Let
5(v) = ai...aly where ay = 1 and a;1q = a; if i@ & Set(y) and a;41 = a; + 1
if © € Set(y); thus, §(v) is the minimal sequence of this type. For example, if
v = (2,3,1,1,2), then 5(y) = 112223455. Now if 1 < i3 < ... < i < n
is a sequence such that i; < i;11 if j € Set(y), then it easy to see that we

have designed 5(y) = ay...a}y so that if b; = i; —a; for j = 1,...,|y|, then
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0<b <by<--- < by <n—1—|St(y)]. Note that |Set(y)| = ¢(y) — 1. Thus,
the number of such sequences b; ...b, is the number of partitions contained in
the |y| x (n — £(v)) rectangle, which is well known to be ("H”l‘v_‘e(”’)). Thus, the
number of sequences 1 < iy < iy < --- <ipy) < nosuch that i; <4 if j € Set(y)
equals (”H”'L_'Z(“’)), which yields (4.1.2).

For the specialization Q- (21, ..., 2n)|s,—4i», Note that

3 et — {n + vl - E(V)L‘

0<b1 <ba <+ <byy <n—£(y) h/|
Thus

Z qi1+"'+il’vl _ q|§(7)| |:TL + h/‘ - g(fy):|
7] .

1<y Sig <<y <

ij<ijiq1 if jeSet(y)

_ S {n + [v| - 5(7)} ‘
7] .

]

Next, we define several more classes of words. In particular, we are interested
in words w that we can partition into blocks of size s and ending in a block of size j
where 0 < j < s — 1 like those considered for the classes in SU*~1SD, WU* 1SD,
SU*YW D, and WU 'WD. That is, letters in a given block are either strictly
increasing or weakly increasing, but this time we want either weak increases or
strict increases between the blocks. In pictures, we want to consider words as

pictured in Figure 4.2.

| <[=1 -]

s |<S—s—]< ... <S—s—]<s[Ej-

Figure 4.2: Pictorial representation of words in SU* WU, WU *WU, SU*~1SU,
and WU*~1SU.

Formally, we consider the following sets of words.
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Definition 4.1.2. Let s > 2.

1. SUS'WU,,, is the set of all words w = wy ... w,, € P} of length m such
that w; < w;yq if 7 € sP and w; < w1 if @ & sP.
We let SUS~'WU, = Umzo SU WU, .

2. WUS_1WUn7m is the set of all words w = wy ... w,, € P! of length m such
that w; < w;yq if 7 € sP and w; < w;yq if 7@ & sP.
We let WU WU, = U,,5o WU*'WU, . Thus WU 'WU, is just the

set of all weakly increasing words in P},

3. SUs_lSUmm is the set of all words w = w;...w, € P! of length m such
that w; < Wi+1 if 7 € sIP and wW; < Wiyl if 4 Q slP.
We let SU~'SU, = U,.>0 SU*'SU,;m. Thus SU*"'1SU, is just the set of

all strictly increasing words in ;.

4. WU*tSU, , is the set of all words w = wy ... w,, € P} of length m such
that w; < w;yq if i € sP and w; < w;yq if ¢ & sP.
We let SU~'WU,, = Um20 SU WU, .

We then define the following generating functions for any s > 2:

Py WUz, ) = 1+Z(—1)k Z z(w) and

k>1 weSU— WU, ks
SUs—twWuU k .
Pss (21, oy 2n) = E (—1) E z(w) for j=1,...,s — L
kZO wGSUS*WUn,kH_j
wuUs—twu SU~1SU wWUs—isU
We define P, (2155 2n), Bros 27(21,..,20), and P, (21, 2n)
for 7 =0,...,s—1 similarly. We can express each of these generating functions in
terms of quasi-symmetric functions. That is, for any s > 2,
SU—1WU
Pleo (z1,...,20) =1+ g Ql(ls 29)k-115-1(21, . . ., 2,) and

PnSg; 1WU(zl, N Z(—l) Qi1-22yk1i-1(21, .., 2n) for j=1,... s = 1.

k>0
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It then follows from Lemma 4.1.1 that for s > 2 and j=1,...,s — 1,

SUS—1WU

Pn,s,O (217 MR Zn) zi:qiz
— 1 e T
k>1 ks q
and
s—1
A TN 5 |
S0 [T ]
k>0 ks +7l,

(note that these are finite sums as ["Ijsk}q =0for k>2+1).
Similarly, for s > 2 and j =1,...,5 — 1,

PV () = 1+ > (1) Qe (21, -, 24) and
k>1
ngkg_lWU(Zl, ey Zn) = Z(_l)kQ(ks+j)<Zlu Ce ,Zn>
k>0

and with the specializations

s—1 Jn+ks—1 <
PTIL/Z% WU('Zla 7Zn) zi=qtz T 1+ Z k k [ Ios ] 2F , and
k>1 q
WUs—'WU S k kst [P ERS T =1 ey
- Zlyves Zn)|pmgizs = -1 ) z
T G = DR T

(sums are truly infinite).

We also have, for any s >2and 1 <75 <s—1,

s—1
Pﬁgg,o SU(/Zla'-'vzn> = 1+Z Q(1%9) (z1,...,2,) and
k>1
s—1
Pz, ) = Y (- DPQurey (21, 2)
k>0
with the specializations
P;Zg,(s)_ISU(Zl’ ceey Zn) zi=q'z — 1+ Z kéH LZJ st, and
k>1 q
s— ks+j+1 n .
PfSU] 1SU(21, .. .7Zn) vi=qiz — Z(—l)kq( 2 ) |: :| st-i—]
ks+3j],

k>0



7

(nonzero terms when ks + 7 < n).

Finally, for any s > 2 and j =1,...,s — 1,

PK%SilSU(Zl, c. >Zn) = 1+ Z(—l)kQ(sk)(Zl, c. ,Zn) and

k>1
s—1
ng SU(217"'7’Z7L) = Z(_l)kQ(skj)<Zlu"'7zn)
E>0
with the specializations
PK,’UOS_ISU(Zh vz g = 1 Z % 5 (1) [n + k]{gs — 1)} ks
E>1 o q
and
s—1
Kfé Uz, ..., 2n) =iz
_Z ) s (*31)+ik+1) {n +h(s—1)+7j- 11 kst
k>0 ks+j 4

(nonzero terms when k < n).

4.2 Main results

In this section, we shall prove our desired formulas. Our first theorem is the

following.

Theorem 4.2.1. Let s > 2. Then

Hfgz 1SD(zl,...,zn) = l—i-z Z z(w)

mesP weSUS~1SDy,

1

= 42.1
PG (215 2) (42.1)

1 + ZkZI(_1)kQ1(15—22)k711571 (Zl, ce ,Zn>7
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H%%sleD(zl, ceyzn) = 1+ Z Z 2(w)

mesP weWUs=1SDy,
1
= = (4.2.2)
P}ﬁ;{{] WU (21,000, 2)

1
L+ Zkz1(—1)kQ(ks)(2’1, ey Zn)

B ) = 18 Y s

mesPweSUS—W Dy, m,
1
= — (4.2.3)
PIYT U (2, 2)

1
1+ Zk21(—1)kQ(1ks)(21, ey Zn)’

and

Hm%g_IWD(zl, ceyZn) = 1+ Z Z z(w)

mesP weWUS=1W Dy, m
1
= — (4.2.4)
P){Z% 1SU(21, ey Zn)

1
1 + ZkZI(—l)kQ(sk)(Zl, e ,Zn) ’

Proof. We start by proving (4.2.1). We must show that

HSVT P (2, 2) - POV WY (21, 2) = 1 (4.2.5)

Now we can interpret the LHS of (4.2.5) as
> 2(a)z(b)(~1) O (4.2.6)
(a,b)eT

where T is the set of all pairs of words (a, b) such that

a € {e}UU,cp SU'SDyy and b € {e} U, cp SU WU, .-

The empty word € accounts for the leading 1 in the series of H;ig;ﬁlSD (2153 2n)
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and ngg”WU (21,..+,2,). Thus, in general, a consists of a number of strictly
increasing blocks of size s where there are strict decreases between blocks and b
consists of a number of strictly increasing blocks of size s where there are weak
increases between blocks. We will define a sign-reversing, weight-preserving invo-
lution /; on the collection of all such pairs of words (a,b). The definition of I,

proceeds in 4 cases.

Case 1. The last block of a is agsy1 < ... < agsts and the first block of b is
by < --+ < by.

If apsrs > by, then I1(a,b) = (a,b), where @ is the result of inserting the first block
of b at the end of a and b is the result of removing the first block of b from b. Clearly
(@,b) is again a pair in T. However if a5 < by, then we let I (a, b) = (@, b) where
a is the result of removing the last block of a from a and b is the result of inserting

the last block of a at the start of b. Clearly (a, l:)) is again a pair in 7.

Case 2. The first block of bis by < --- < by, and a = €.
Then I,(a,b) = (@,b), where @ = by ...b, and b is the result of removing the first
block of b from b. Clearly (a,b) is again a pair in 7.

Case 3. The last block of a is agsy1 < ... < apsys and b =e.
Then I,(a,b) = (@,b), where @ is the result of removing the last block of a from a

and b = aggiq ... Qsrs-

Case 4. a =b=c=¢.

Then I(a,b) = (a,b).

It is easy to see that I is a sign-reversing, weight-preserving involution with trivial
fixed point (¢, €), so that I proves (4.2.5).

The exact same involution will prove that

HYE 75 (2, 2) - PV WY (2, z) = 1, (4.2.7)
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since the only difference in this case is that the blocks are weakly increasing.

The same proof, with minor modifications, will also prove

HSUGT WP (2, 2) - POV (2 2) = 1 (4.2.8)
and
HYE WP z) - PR (2, 2) = 1 (4.2.9)

That is, we can interpret the LHS of (4.2.8) as
> z(a)z(b)(—1)1O (4.2.10)
(a,b)eU

where U is the set of all pairs of words (a,b) such that
a € {etUU,cp SU'WD,,,, and b € {e} U SU*1SU,, m.

Thus, in general, a consists of a number of strictly increasing blocks of size s where

mesP

there are weak decreases between blocks and b consists of a number of strictly in-
creasing blocks of size s where there are strict increases between blocks. Again,
we define a sign-reversing, weight-preserving involution I on the collection of all
such pairs of words (a,b). The definition of I proceeds in 4 cases just like the

definition of I;, where only Case 1 has to change. That is, I5 is defined as follows.

Case 1. The last block of a is agsi1 < ... < agsss and the first block of b is
by < -+ < bs.

If apeys > by, then Ir(a,b) = (a,b), where a is the result of inserting the first block
of b at the end of @ and b is the result of removing the first block of b from b. Clearly
(@,b) is again a pair in T. However, if ag.s < b1, then we let Ih(a,b) = (a,b),
where a is the result of removing the last block of a from a and b is the result of

inserting the last block of a at the start of b. Clearly (a, Z) is again a pair in U.

Case 2. The first block of bis by < --- < b, and a = €.
Then I»(a,b) = (a,b), where @ = by ...bs and b is the result of removing the first
block of b from b. Clearly (a,b) is again a pair in U.
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Case 3. The last block of a is agsy1 < ... < apsys and b =e.
Then Iy(a,b) = (@,b), where @ is the result of removing the last block of a from a

and b = aggy1 ... Qrsrs-

Case 4. a =b=c=¢.

Then we let I1(a,b) = (a,b).

Clearly I, proves the LHS of (4.2.8). Essentially the same involution will also
prove (4.2.9) since the only difference in that case is that the blocks are weakly
increasing.

]

Using Lemma 4.1.1, we immediately have the following corollaries.

Corollary 4.2.2. Let s > 2. Then

K(s—1+1) 4 (g_1)(*+! S
mesP weSU*~1SDy m 1+ Zk21(_1)kq( ? )+( 1)( : ) [ ks }qzk

1
14 ol ) _ ,
Z Z q 'z 1t Zk21(_1)qus |:n+k871j| qzks

mesPweWUs=1SDy, p, ks

1+Z Z q\w\zﬁ(w) - t o . and

mesP weSUS—1W Dy, 1, 1 +Zk21(_1> q( ? )[ks}qzks
1
mEsP weWUs—1W Dy 1+ ZkZI(_1>qu( 2 )[mkk(j_l)}qzks

Our next theorem will give the other generating functions mentioned in the

introduction.



Theorem 4.2.3. Let s> 2 and 1 < j<s—1. Then

s—1
HSU SD(Z17 )

n,s,j sy Zn)

WUs—18D
n,8,j (Zl, e

SUS~1WD
Hn,s,j (217...

and

s—1
HYUTWD(

n’s’]

HSUS_lsD

n,s,0

2. 2

mej+sPweSUs=1SDy m

(21,...

z(w)

ng;leU(zl, ey Zn)
Pﬁgg_IWU(zl, ey Zn)
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(4.2.11)

ZkZO(_]‘)le(ls_22)klj_l(Z]-7 e 7Zn)

]- + Zk21(_1)kQ1(1S*22)k*115*1(Zla . e ,Zn>7

=2 2

mEj+sP weWUs=1SDy

z(w)

B P,KYSZSAWU(ZI, ey Zn)
P%%silWU(zl, ey Zn)

Zkzo(_l)kQ(ks+j)(217 . ;Zn)

L4 i (m1D)F Qs (21, - -

S )
mej+sP weSUS—LW Dp.m
B Tﬁgj_ISU(zl,...,zn)
;?gg*SU(zl, ey Zn)

Zkzo(_l)kQuksﬂ)(Zl, ey Zn)

=2 2

mesP weWUs~1W Dy, m

WUs—1sU

z(w)

P (21, 2n)

PWUsflsU

n,s,0 (Zh .-

5 Zn)

(4.2.12)

S Zn)
(4.2.13)

) Zn)
(4.2.14)

Zkzo(_l)kQ(skj)(zla <o 7Zn)

L+ ZkZI(_l)kQ(sk)(zla EE
Proof. We start by proving (4.2.11). Since we know that

1

Zn) =
)y SUs—1WU
Pn,s,O

(21,...

 Zn)

Y

) Zn)
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we must show that

s—1 —1 i—1
H;ig’o SD(zl, N L Pfg; WU(zl, ey ) = Hgg; SD(zl, ooy Zn). (4.2.15)

Now we can interpret the LHS of (4.2.15) as
> z(a)z(b)(—1) (4.2.16)
(a,b)eV

where V' is the set of all pairs of words (a, b) such that a € {e}UU,,cep SU* 'S Dym
and b € |J

increasing blocks of size s where there are strict decreases between blocks and b

mejrspOU STIWU,, ;. Thus, in general, a consists of a number of strictly
consists of a number of strictly increasing blocks of size s followed by a strictly
increasing block of size j where there are weak increases between blocks. We will
define a sign-reversing weight preserving involution I3 on the collection of all such

pairs of words (a,b). The definition of I3 proceeds in 4 cases.

Case 1. The last block of a is agsy1 < ... < agsts and the first block of b is
by < --- < b,

If ajsis > by, then I3(a,b) = (@,b) where a is the result of inserting the first block
of b at the end of a and b is the result of removing the first block of b from b. Clearly
(@, b) is again a pair in V. However if ajeys < b1, then we let I(a, b) = (a, b) where
a is the result of removing the last block of a from a and b is the result of inserting

the last block of a at the start of b. Clearly (@, b) is again a pair in V.

Case 2. The first block of bis by < --- < b, and a = €.
Then I3(a,b) = (a,b) where @ = by ...b, and b is the result of removing the first
block of b from b. Clearly (a,b) is again a pair in V.

Case 3. The last block of a is agsy1 < ... < apsgs and b = by < -+ < b;
where agsis < by.
Then I5(a,b) = (a,b) where @ is the result of removing the last block of a from a

and b is the result of inserting the last block of a to the start of b.
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Case 4. The last block of a is agsy1 < ... < apsgs and b = by < -+ < by

where agss > 0.
Then I3(a,b) = (a,b).

It is easy to see that I3 is a sign-reversing, weight-preserving involution, so that
I3 proves that the LHS of (4.2.15) reduces to summing the weights of the pairs
of words (a,b) in Case 4. To do this, first observe that the signs of all the pairs
of words in Case 4 are positive. Moreover, it is easy to see that if we insert b at
SU*~'SD,, ., and that all words in

Une irspOU $~1SD,,  arise from the pairs of words in Case 4 in this way. Thus,

the end of a, we will create a word in Um€j+sp

the sum of the weights in Case 4 is equal to Hig;ﬁlSD(zl, ..., 2y) as desired.

The exact same involution will prove that

s—1 s— s—1
HYE 5P (2, 2) - PG IWU(zl,...,zn):HK;% SD(zy, . z)  (4.2.17)

since the only difference in this case is that the blocks are weakly increasing.
It is also the case that we can make the same type of modifications to the

involution as we did in Theorem 4.2.1 to prove

—1 —1 -1
H,ﬁli; WD(zl,...,zn) P;?[S]; SU(ZI,...,zn) :Hfg; WD(zl,...,zn) (4.2.18)
and
s—1 s—1 s—1
HE;% WD(zl,...,zn) PZVSZ SU(zl,...,zn) :H’TI:I;,Uj WD(zl,...,zn). (4.2.19)

]

Using Lemma 4.1.1, we immediately have the following corollaries.
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Corollary 4.2.4. Let s > 2 and 1 < j<s—1. Then

Zk>o(—1)kq(k(5712>+j+1)+(5*1) (*3") [nﬂﬂ Zhsti

Z Z g — kstilq

E(s—1)+1 (kL J
MEj+sP weSUS1S Dy m 1+ Zk21(_1)kq( 2 )+(s 1)( 2 ) [n]:rsk} qzks
s i— ,
T (1 [ A

3 O / 7
D C L Sil}qzks

mej+sPweWUs=18Dy, m, ks

Zkzo(_l)kq(kszﬂl) [ n }qzks+j

3 S ] J(w)  _ ketd d
q 'z Y , an
) [ks] qzks

meEj+sP weSUS—LW Dy, m 1+Zk21<_1)kq( 2

Zkzo(_l)kqs(k;1)+j(k+1) [n+k(s—1)+j—1] kst

w w ks+j
3 T gl = m(sil) ]

o(FF1 s
mEj+sPweWUS=1W Dy m 1+ Zk21<_1)kq ( : ) [ ks ]qzk

4.3 Extensions

It should be clear from our definitions of the involutions in section 3 that they
did not depend on the nature of what was in the blocks. We only needed that the
blocks in the pairs of words (a,b) are of the same type. Thus, the same type of
theorems will hold for any type of block conditions. For example, suppose that
we consider a block condition a ...as where we require that the a;,1 — a; > r for
1=1,...,s—1. That is fix s > 2 and r > 1. We then define the following classes

of words.

1. STU‘*’lSDmm is the set of all words w = wy ... w,, € P} of length m such
that w; > w;yq if i € sP and r 4+ w; < w;yq if 7 & sP.
We let S"U*"1SD,, = U0 S"U*S Dy -

2. S"U*'WU,,, is the set of all words w = wy ...w,, € P of length m such
that w; < w1 if i € sP and r + w; < w;,q if 1 € sP.
We let STU~'WU, = UmZO STUW Uy, .
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We can also define the following set of generating functions.

B P ) = 1YY )

k>1 ’LUGSrUsflsDn,kS

H,f;gfj_lSD(Zb---,Zn) = Z Z z(w) for j=1,...,8—1,

k>0 weSTUS 18Dy oot s

rrrs—1
Pf,s,Ur,o WUz, zn) = 1+ Z(—l)k Z z(w) and
k>1 wESTUSIWU,, 1s
rrrs—1 .
Pf,sfi,j WU(Zlv ey Zp) = Z(—l)k Z z(w) for j=1,...,s—1.
k>0 weSTUS WU, ks+j

Then we can use the same proofs as in Theorems 4.2.1 and 4.2.3 to prove that

1

STUs=1SD
n,s,r,0 (217 s ;Zn) STUS—1WU y (431)
P?’LST‘O ( 1 "7Zn)
and
STUSTIWU
STU5715D<Z » ) o P’VL,S,T‘,j (Zl, e ,Zn) (4 3 2)
n,s,1,j 1y 34n) — PSTU571WU<Z - ), .O.
n,s,r,0 1y---5%n
: rrrs—1 .
In this case, we cannot express the Pfsﬁfj WU(2,...,2,) as a sum of quasi-

symmetric functions, but we can still give explicit expressions for the specializa-
tions where we replace z; by ¢'z for i = 1, ..., n. That is, suppose that m = ks +j
where 0 < j < s—1, and we are given a word a; . .. a,, € STUS_1WUn7m. Then, let
b=0b;y...bysyj besuch that by =1 and b1 —b; = rifi & sPand by = b; if i € sP.
For example if s =3, r =2, and m = 10, then b;...b;p =1355799 11 13 13.
Note that the largest letter in b is byss; = 1+ 7((s — 1)k + [j — 1]7), where
[7 —1]" = max(j — 1,0), and that

(s—1)+j—-1 k
b = Z (L+ir)+ Y i(s—1)r+1
=1

k(

+j-1
= ks+j+r
0

=0
k
Z il +r(s—1) Zz

= ks+j+7"(k(s 21)+ ) s—l( 1).
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It is then easy to see that we have designed b so that if ¢; = a; — b;, then
0<c¢ <ecag <+ <oy <n—(14+r(k(s—1)+[j—1]")). Thus, the sequences
€= C1...Crsy; that arise in this way are just the partitions that lie in the (ks +

J)x (n—(1+r(k(s—1)+[j —1]"))) rectangle. Since

0<c1<ea < Lepsqy <n—(1+r(k(s—1)+[—1]1))
Cntks+i— (1 +rk(s=1)+[j—1]7))
ks +j q7

it follows that

a1...aks+jESTUS_1WUn’ks+j
kstj+r(FE D) pr(s—1) (1) [n ths+j—(Q+rk(s—1)+[ - 1“))}
q

a ks+j

Thus, fors >2, r>1,and j=1,...,s — 1,

rrrs—1
1:?:5,2,0 WU(Zla R Zn) zi—qtz
- _ n+kr—(r—1ks—1

1 1 k ks—l—r(k(Q 1)>+T‘(8 1)(k;1) n ks d

+ %( )¥q _ Ls qz an

SV T WU (21, 2) =
Z(_1)qus+j+r(’“<s‘;)+j)+r(s—1)(’“;1) n+kr—(r— 1)<k3 +J - 1)1 kst
k>0 L ks+j q

Thus, we have the following theorem.

Theorem 4.3.1. Fors>2,r>1,andj=1,...,5s—1,

1+ Y gl -

mesPweSTUS=1SDy, m

1

St (R6=DY L (s— 1) (5L rrdkr — (r—1)ks— s
1+Zk21(_1>qu+( 5 ) +r( 1)(2)[—1—14: (ksl)k l}qzk




and

3 S gl =

mej+sP ’LUGSTUsilSDn,m

ks+j+r(k(s_21)+j>+r(s—1)(k'gl) [n+kr—(r—1)(/€s+j—l)

q ks+j

kis+j
)

1+ Zkzl(_1)qus+r(k(s2—1)>+r(s—1)(k;q) |:n+k:r—(]7;s—

Dks—1 ’
ks ] qzks

38



Chapter 5

Enumerating up-down words with

peak conditions

In Chapter 4, we were able to enumerate 4 classes of up-down words via a
simple involution. In this chapter, we will enumerate these same classes of up-down
words with the added condition that all peaks—entries at the end of a block—are
in a certain set X C P. We will see that the same involution applies, although
the resulting generating functions can no longer be expressed in terms of quasi-

symmetric functions.
Definition 5.0.2. Let s > 2.
1. SU'SD,, x.m is the set of all words w € P} of length m such that

wg € X Vi, Des(w) = (sP),,—1 and Ris(w) = Ppi1 — (8P)yp—1.
We let SU*"'SD,, x = Um0 SU*'SD,, x.m-

2. WU*'SD,, xm is the set of all words w € P, of length m such that
wg; € X Vi, Des(w) = (sP),,—1 and WRis(w) = Pp,—1 — (sP)p—1.
We let WU*"'SD,, x = Unnso WU*'SD,, x.m-

3. SU*"'WD,, xm is the set of all words w € P, of length m such that
wg; € X Vi, WDes(w) = (sP),—1 and Ris(w) = Pp,—1 — (sP)p—1.
We let SU*"'WD,, x = Unnso SU "W Dy, x.m-

89
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4. WU* W D,, xm is the set of all words w € P, of length m such that
wg € X Vi, WDes(w) = (sP),—1 and WRis(w) = Py — (8P)p—1.
We let WU 'WD,, x = UmZO WU W Dy, x.m-

We define SU'WU,, xm, SU'WU, x, WU WU, xm, WU'WU, x,
SUS’lSUn7X7m, SUS’lSUmX, WUS%SU,LXM, and WUSASUMX similarly.
Also, define the following generating functions for any s > 2:
HT‘?’()](S,;BSD(ZM ceyzn) = 1+ Z Z z(w) and

mesPweSUS~1SD, x m
SUs~1SD

Hn,X,s,j (Zlv s 7Zn) - Z Z Z(U)) for j = 1, e 1.

mej+sP weSUs~1SD,, x.m

WU*='SD SUST'WD
We define H,'y ;"7 (21, 2n), Hyx o7 (21505 20), and
s—1 . . .
HY VP (2, 2,) for j =0,...,5 — 1 similarly.

We wish to find simple expressions for each of these generating functions. The
results from the previous chapter can be viewed as the special case when X = P.
The proof technique we use to find the above generating functions will be identical
to that from Chapter 4. Thus, we wish to define the following additional generating

functions for s > 2:

Pyi)U(f;(l)WU(Zh ceZn) = 14 Z(—l)k Z z(w) and

k>1 U)GSUSf:lWUn’X’kS
Pi)U;;}WU(zl,...,zn) = Z(—l)k Z z(w) for j=1,...,s — 1.
k>0 wESUS_IWUn,XYkSJFj

We define Pf)g:jlWU(zl, ey Zn)s ng;,lf[](zl, e.yZy), and Pf)g:jleU(zl, ey Zn)
for j =0,...,s5 — 1 similarly.
5.1 Involution

We have the following theorem.
Theorem 5.1.1. Let s > 2. Then

s—1 1
Hil)](,s,OSD(Zb R Zn) = PSUsS—IWU ! (5'1'1)

n,X,s,0 (217 st ,Zn)
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. 1
HWUTISD () = 5.1.2
R S Enes 12
H WP (2, 2) = ! (5.1.3)
n,X,s,0 ) ) AN Pfg(f;(l)SU(zh o ,Zn)7
and
. 1
HYU WD (o z) = — . (5.1.4)
n,X,s,0 ) ) “n PK£S7015U<21, o ,Zn)

We start by proving (5.1.1). We must show that

s—1 s—1
H?ig(g,s,OSD<Zla s 7ZTL) ’ gg,s,OWU(Zh ce 7Zn) =1 (515)

If the reader reflects on the proofs given in Chapter 4, she will realize that they
will carry through regardless of any condition on the peaks (or any entries, for that
matter). Thus, this proof is essentially the same as the proof of (4.2.1).

We can interpret the LHS of (5.1.5) as

> a)z(b)(~1) 0, (5.1.6)
(a,b)eT

where T is the set of all pairs of words (a, b) such that
a€{etUU,cp SU'SD,, x 1 and
be {etUU,,cp SUWU, x,m, where € denotes the empty word.

The empty word € accounts for the leading 1 in the series of Hil)]é;loSD (21,...,2n)
and Pﬁ%ﬁ;gWU (21,...,2,). Thus, in general, a consists of a number of strictly

increasing blocks of size s where there are strict decreases between blocks and b
consists of a number of strictly increasing blocks of size s where there are weak
increases between blocks. We will define a sign-reversing, weight-preserving invo-
lution /; on the collection of all such pairs of words (a,b). The definition of I,

proceeds in 4 cases.

Case 1. The last block of a is ags11 < ... < agsys and the first block of b is
by < -+ < bs.
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If apsys > by, then I1(a,b) = (a,b), where a is the result of inserting the first block
of b at the end of @ and b is the result of removing the first block of b from b. Clearly
(@, b) is again a pair in 7. However if ag, < by, then we let I1(a, b) = (@, b) where
a is the result of removing the last block of a from a and b is the result of inserting

the last block of a at the start of b. Clearly (a, Z) is again a pair in 7T'.

Case 2. The first block of bis by < --- < by, and a = €.
Then I,(a,b) = (a,b), where @ = by ...b, and b is the result of removing the first
block of b from b. Clearly (a,b) is again a pair in 7.

Case 3. The last block of a is agsy1 < ... < apsys and b =e.
Then I (a,b) = (@,b), where @ is the result of removing the last block of a from a

and b = aggyq ... Qrsrs-

Case 4. a=b=c¢e.
Then I;(a,b) = (a,b).

It is easy to see that I is a sign-reversing, weight-preserving involution with trivial
fixed point (¢, €), so that I; proves (5.1.5).

The analogous proofs will carry over to show 5.1.2, 5.1.3, and 5.1.4. Moreover,
analogous proofs will also give us results with a final block of length j. Thus, we

have the following theorem.

Theorem 5.1.2. Let s > 2 and 1 < j < s—1. Then

s—1
HSUS”‘SD(ZI %) = Pﬁgg(fs,jWU(Zl’ Cey Zn) (5.1.7)
n,X,s,j ’ » AN Pi%ﬁ;gWU<Zl, o ’Zn)y
s—1
HWUS*}SD(Z - ) _ PK)Q,SJ WU(’Zl? e >Zn> (5 1 8)
n,X,s,J 1y+++3”n Pyg;leU<Zl, o 72:”)7 1.
s—1
S0P () = Tty (oo 20) (5.1.9)
n,X,8,J 1y-+-y2n Pi)U(T;E)SU(Zla'--,Zny 1.
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and wuUs—lsu
HW)((V]S*‘IWD( 1 Py ) _ Pn,X,s,j <Zl’ e ’Zn) (5 1 10)
yeresn) — —1 . .
n,X,8,] P?K/XU,Z,O SU(Zl, L 7Zn)

Thus, we have reduced our original task to finding the generating functions

SUS—IWU WUs—1WU SUs-1gU
Pn,X,S,j (217'.'7271)7 Pn,X,s,j (Zl,...,zn), Pn,X,s,j (Zl,...72n)7 and
WUs—18U .
pn,X,s,j (Zlv"-yzn)for]—O,...,S—l.

Unfortunately, there does not seem to be any direct way to find compact ex-
pressions for these generating functions for arbitrary X and s. One can develop
recursions for such generating functions, but they are not easy to solve in general.
However, in the special case where X =E or X = O, s = 2, and z; = ¢'z, we can
find compact expressions for these generating functions. This will be the subject
of our next section. Future work could extend these results to more general values

s and sets X.

5.2 Special case: s=2and X =K or O

Define
EVV%USU<Z7 Q) = 7%[,]2%](217 s 7Zn) zi=q'z
SRS SR S
k>1 U)GWUSUny]E,Qk
EVn‘f[{USU(z, q) = P%%‘?l[](zl, e Zn) | g
— Z(_l)k Z L) gl

k>0 wEWUSUn,]E,QIH-l
ODZ‘,/OUSU(Z? CI) - X@l{gg(Zlv SR 7Z”>|Zi:qiz

R T N L L P

k>1 weWUSU, 0,2k



and
0D, %Y (2,q) = Pghy (21, 20)|eimgi
S Y g,
k>0 wGWUSUny(D),QkJrl

Similarly define
EvsUWU( ) EVs'UWU< ) EVWUWU(Z,(]),
EVnVKUWU( ) EVSUSU< ) EvsUSU( ,Q),
and
ODZ " (2,q), OD;T"Y (2, q), ODJ Y (2, q),
ODZ[,/lUWU( ) ODSUSU( ) ODSUSU< ,Q)
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The following observation reduces our work slightly. Consider, for example,

SUSDsp+15. No word in SUSDsg, 11 can contain 2n + 1 except the singleton

word wy = 2n + 1, because any other word must have some even peak above that

entry. Similarly, no word in SUSDs, o can contain 2n except the singleton word

w; = 2n. The same reasoning applies to SUW D, WUSD, and WUW D. Thus,

we get the following lemma.

Lemma 5.2.1. Let n > 1. Then

KEF{E% O(Zh ce ZTL) = ;Z%V;/OD(ZM s ,Zn),

Hyn {121 (21, o 2n) = Hy gl 1 (21, 2n) + Z2ns1,
Higrvillng 0(217 tee Zn) = HégnUIg/Z%(zlv s 7Zn)>
Hés;gi-villlE)Q 1(217 R Zﬂ) = HégnUIIEAé[i(Zla v 7271) + 2241,
Hég?gF%DIEQO(Z17 try Zn) = HgnU§2DO(Zla R Zn)7
Hy 301 (21s o oz) = Hy 801 (21, 20) + 2201,
H;/Z—(iiggQ O(Zlv ERR) Zn) = H;Z[@JE:S;,DO(ZM ) Zn)a

;/Z-i({igng 1(217 R Zn) = ;Z[IJE%%(ZD R Zn) + Zon+1,



and

the specialization z; = ¢z, it suffices to find the generating functions EV3, ; and

ODsy,,_1; for j € {0,1}. In the following subsections, we will find compact expres-

WUWD
2n ,0,2,0

FWUWD
H,, ,0,2,1

SUWD

(
(

Hy, ,0,2,00%15 - - -

SUWD

Hy, 0,2,1 %15 - - -

SUSD
2n ,0,2,0

SUSD

WUSD

H,, 0,2,00715 - - -

WUSD

H,, 0,21 %1, - -

FATERE

FATERE

K1y

(
(

(
Hyygoq(21,-
(

(

WUWD

2n—1,@,2,0 Rly- -

(
WUWD
2n—1 ,0,2, 1(

SUWD

Hy,” 1,0,2,0\%1 - - -

SUWD

Hy,” 1,0,2,1\%1, - - -

SUSD
2n 1,0,2,0

(
(
(
SUSD (
(
(

Hy.” 1,0,2,1\”Ly - - -

WUSD

Hy,”~ 1,0,2,0\%Ly - - -

WUSD

Hy,”~ 1,0,2,1\”Ly - - -

Zlyee-

ATERE
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Based on this lemma, in order to find all the H generating functions under

sions for the generating functions EV5, ; and OD,,_;; for j € {0, 1}, sketching
the proof for each by directly counting the desired objects. Although the bijection

from Chapter 4 is the same, finding the generating functions for the classes of

words that we reduce to is different in each case and cannot be handled with a

general lemma. We treat the first case more carefully, illustrating both the subtle

reasoning involved and the simplification steps. We present other cases in slightly

less detail. It will be useful to note that, when g-counting words, the power of ¢

in an expression is equal to the sum of the letters in the minimal possible word of

the type considered. This provides a check for our reasoning.

5.2.1 SUSU

Theorem 5.2.2.

T
L

o(z,q) =

?
o

k—

,_.

k 2k 2j2+4k%+3j—4jk
q q

=0

.

n-+j
2k

J.l

k—1
J

l,
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and
= it n+j k—1
OD§7LUSlU1(27 q) _ Z( 1 k 2k+1 2 qu+2g +4k—4jk+4k [ ] [ . ] '
k=0 j=0 2k+1 @l J dg

We shall classify the words w = wy ... wy; in SUSUs,—1 02r by the number of
odd positions 2t + 1 > 1 such that wq;q is even. First, label the odd positions
> 1 from left to right with 1,2,..., k — 1. Thus, position 3 gets label 1, position
5 gets label 2, and so on. Let 1 <143 < iy <--- <1i; <k — 1 be the labels of the
odd positions 2t + 1 > 1 such that wo; ;1 is even. To arrive at a possible word w,

we first choose some sequence
0<a1<ay<---<ay <n+j—2k.

The set of such sequences is g-counted by [”ﬂ} . Next, we consider the sequence
b defined by b,, = 2a,, + 1, so that our g-count becomes ¢?* ["ﬂ} We will have
bor < 2(n+2—2k)+1. Now, we want to force < everywhere except at the specified
locations i1, %9, ...,7;. Thus, we add 0,2,4,6, etc to our sequence entries, except
at the specified locations, where we add the same number again. For instance,
suppose j = 2, i1 = 1, and iy = 3. After we have our sequence b, then we choose a

new sequence c, where
Cl:bl,Cg:bg+2,03:bg+2,04:b4+4,05:b5—|—6,C6:b6—|—8,C7:b7+8,...

What do we add to the place corresponding to i,,7 It turns out we need to add
4i, — 2m. For instance, in our example above, we added 4(3) — 2(2) = 8 to
b7, which corresponds to i, = 3. Thus, moving from sequence b to ¢ multiplies
our g-count by a factor of ¢ 2(*37)+@i=D+@ia=24++25-3)  We will have Cor, <
(2n+2j —4k + 1)+ 2(2k — j — 1) = 2n — 1, as needed. Next, we add 1 to each
of the locations specified by 41,2, ...,%; to obtain a new sequence d = d ... da.
This multiplies our g-count by an additional factor of ¢’. Overall, the g-count of
our word d is given by:

k—1
e {"WL]} Q(Qk;j)+j Z q2((2i171)+(2i272)+-~-+(2ij7j))' (5.2.1)

=0 1<iy <ig<---<i;<k—1
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The largest 7 can be is & — 1, since that’s how many odd places > 1 there are.

Equation 5.2.1 simplifies to

N

-1

qj+2k+2(2k;j) {n + J} Z q_g(jgl)(qgt)iﬁiﬁ.““j
=0 2k P 1<y <ig<--<iy<k—1

k—1 - A
=N ()= | T ittt

21 o |, 2 @)

j=0 - 47 1< <dp << <k—1

k-1 - "
_ N gy [t {’f - 1}

L 2k |2l 7 Jp

o

j=
We can obtain our final word w by either leaving d; alone or adding 1 to d;.

This multiplies our g-count by an additional factor of (1 + ¢), so we get (after

simplifying):
— 1 k=1
Z gl = (1+q) Zq2j2+4k2+j(3—4k) n+j - ’
- 2k 2| g A
’Ll)GSUSUQn,1,@,2]c 7= q q

which proves the first part of Theorem 5.2.2.
Recall that we can also ascertain the smallest power of ¢ present in our g-count
by summing the entries in the minimal word of the desired type. For a given j,

the minimal word will be
1,3,3,5,5,...,27+ 1,274+ 1,2j+3,...22k—j—2)+3

This gives 2(j+1)2 — 14 (2k—j)*— (j+1)?+j = 2j°+ j(3 — 4k) + 4k?, confirming
that our power of ¢ is correct.

Our reasoning for the second part of Theorem 5.2.2 is similar. To g-count
SUSUsp-1,0,2k+1, we classify the words wyws . .. w1 by the number of odd posi-
tions 2t + 1 with 1 < 2¢ +1 < 2k 4 1 such that wo; ;1 is even. First, label the odd
positions 1 < 2t +1 < 2k + 1 from left to right with 1,2,...,k — 1. Thus, position
3 gets label 1, position 5 gets label 2, and so on. Let 1 <4y <ip <--- <i; <k—1
be the labels of the odd positions 1 < 2t + 1 < 2k + 1 such that wo;y; is even. To

arrive at a possible word w, we first choose some sequence

0<ar<ay<---<agy <agp <n+j—2k—1
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n-+j

The set of such sequences is g-counted by [Qk I

]q. Next, we consider the sequence b

2k+1 [ n+j

defined by b,, = 2a,, +1, so that our g-count becomes ¢ 2ert

L,?' Now, we want
to force < everywhere except at the specified locations 1,19, . ..,7; and before the
last entry boyy1. Thus, we add 0, 2,4, 6, etc to our sequence entries, except at the
specified locations and the last entry, where we add the same number again. For
instance, suppose j = 2, i; = 1, and 75 = 3. After we have our sequence b, then

we choose a new sequence ¢, where
C1 :bl,CQ :Z)Q+2,C3 :b3+2,C4 :b4+4,C5 :b5+6,C6 :b6+8,07 :b7+8,

We then add 1 to the specified locations to obtain a sequence d = d . .. ds 1 that
is g-counted by
k—1

okt1| T 2(* ) +2(2k—j—1)+j 2((261—1)4(2i2—2)+-+(2i;—5))
> >

J= 1<i<io<--<i;<k—1

Finally, we have 2 choices to make in order to extend d to our final word w.
We can increase d; by 1 or not, and increase dogq by 1 or 2. Thus, we will have
W1 < 2(n+j—2k—1)+1+2(2k—j—1)4+2 = 2n—1, as needed. These

multiply our g-count by a factor of (1 + ¢)(q + ¢*), so that

k—1 .
Z g™ =(1+¢)(q+ ¢ el {lej‘] ] q2(2’“2_j)+2(2k—j—1)+j
weSUSUzyp_1,0,2k+1 Jj=0 2k +1 9
« Z q2((2i1—1)+(2i2—2)+~--+(2ij—j))’

1<y <ip << <k—1

which simplifies to give the second part of Theorem 5.2.2.
We can again check the power of ¢ using the minimal word of this type. For a

given j, the minimal word will be
1,3,3,5,5,...,2j+ 1,25+ 1,25 +3,...2(2k —j—2+ 1)+ 3

with the last entry reduced by 1. This gives 2(j + 1)> =1+ 2k — 5+ 1)> — (j +
1)2+5—1=252+47 — 45k + 4k*
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Theorem 5.2.3.

n k .
BV = S-S e[ (1
k=0 j=0 2k J@plilg
and
a i n-+j k
2 o 2 S .
EVQiUlSU<Z7 q) = (_1)kz2k+1([2h/q) Zqzj 3j-+4k2+6k 4k]+2|: } [ ] .
7 k=0 §=0 2k +1 ¢ L1 gt

Our reasoning for even peaks is similar to that used in Theorem 5.2.2. To
g-count SUSUy, g ok, We classify the words wiwsy ... we, € SUSUsp g ok by the
number of odd positions 2¢+1 such that wq;, 1 is odd. First, label the odd positions
2t + 1 from left to right with 1,2,..., k. Thus, position 1 gets label 1, position 3
gets label 2, and so on. Let 1 <4y < iy < --- < ¢; <k be the labels of the odd
positions 2t + 1 such that wy;1 is odd. To arrive at a possible word w, we first

choose some sequence

0<a <ay<---<agy, <n+j—2k.

n+j

The set of such sequences is g-counted by [ ok

}q. Next, we consider the sequence

4k |:n+j

b defined by b, = 2a,, + 2, so that our g-count becomes ¢**|";

}qQ. Now, we want
to force < everywhere except at the specified locations iy, 49, ...,7;. Thus, we add
0,2,4,6, etc to our sequence entries, except at the specified locations, where we
add the same number again. Thus, cop < 2(n+j — 2k) +2+2(2k —j — 1) = 2n,
as needed. We will end up adding 4a,, — 2(m + 1) to the place with label ,,. For
instance, suppose j = 2, i, = 1, and 75 = 3. After we have our sequence b, then

we choose a new sequence c, where
C1 :bl,Cg:b2,63:b3+2,64:b4+4,65:b5+6,06:b6—|—6,07:b7—|—6,...

We then subtract 1 from the specified locations to obtain the final sequence w,

which is g-counted by

k .
ak| MDA o) 2((201-2)+ (2i2—3)+-+(2i;—j—1))
21 {2k+1} X D !
j=0 q 1§11<22<~~-<Z]'§k:
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which simplifies to give the first part of Theorem 5.2.3.
We can again check the power of ¢ using the minimal word of this type. For a

given j, the minimal word (before reduction) will be
2,2,...,25,25,25 + 2,25 +4,....22(k — j) +j + 1)

This gives 4(*3") +2 [(*F™?) — (7IN)] — 7 =252 — j + 4k* + 2k — 4kj.

To g-count SUSUsy, g 2k+1, We classify the words wyws . .. wag41 by the number
of odd positions 2t + 1 with 2t +1 < 2k + 1 such that w11 is odd. First, label the
odd positions 2t + 1 < 2k 4 1 from left to right with 1,2,..., k. Thus, position 1
gets label 1, position 3 gets label 2, and so on. Let 1 <13 <y <--- <14; <k be
the labels of the odd positions 2¢ +1 < 2k + 1 such that w4 is odd. To arrive at

a possible word w, we first choose some sequence

0<ar<ay<---<agy <ag <nt+j—2k—1

n+j

The set of such sequences is g-counted by [% 11

}q. Next, we consider the sequence

4k+2 [ n+j

b defined by b,, = 2a,, + 2, so that our g-count becomes ¢ A

L?' Now, we
want to force < everywhere except at the specified locations 4y, s, ...,%;. Thus,
we add 0,2,4,6, etc to our sequence entries, except at the specified locations
and the last entry, where we add the same number again. Thus, we will have
Cor+1 <2(n+75—2k—1)+2+2(2k — j) = 2n, as needed. We will end up adding
4a,, — 2(m + 1) to the place with label i,,. For instance, suppose j = 2, i; = 1,

and 75 = 3. After we have our sequence b, then we choose a new sequence ¢, where
C1 :bl,CQ = bQ,Cg == b3+2,04 = b4+4,05 = b5+6,06 = b6+6,07 = b7—|—6,

We then subtract 1 from the specified locations to obtain a sequence d = d . . . dog11

that is g-counted by

n+j 2k—j+1\_ i o) e (25— —
e {2k+1} 2qz( EAR R Z 2@ =2) (202 =3) (21 —j—1))
q

k
7=0 1<i1<in<-<i; <k
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We can obtain our final word w by either leaving dox, 1 alone or subtracting 1 from

dag+1. This multiplies our g-count by a factor of (1 + 1/¢), so that

k .
| _ 1 dki2 | M T 2(2k72j+1>_j
2. " =+1/) ijoq [2k+1q2q

weSUSUQn’E’2k+1
% E q2((2i1—2)+(2i2—3)+"’+(2i]'—j—l))

1<y <ig << <k

Y

which simplifies to give the second part of Theorem 5.2.3.
We can again check the power of ¢ using the minimal word of this type. For a

given j, the minimal word (before reduction) will be
2.2,...,25,20,25 + 2,2 +4,...,22(k — j) +j +1).

This gives 4("7") + 2 [(**7?) — (/3] — j = 4k® — 4jk + 6k + 2% — 35 + 2.

5.2.2 WUSU

Theorem 5.2.4.

EvzvnvoUSU(Za q) = Z(—l)kz%([2]1/q)kq2k2+2k [

n+k
2k

and

" k
BVIUSU(z, g) = 3 (—1)F2241 (2], oH g4k Bﬁ 1]
q2

["*k} . Next, we consider the sequence

4k [n-‘rk]

The set of such sequences is g-counted by
b defined by b,, = 2a,, + 2, so that our g-count becomes ¢ . Then, we want
to force < every other place, so generate a new sequence ¢ by adding 0 to b; and
ba, 2 to by and by, 4 to bs and bg, and so on, ending by adding 2(k — 1) to by,_1 and

bar. We will have cop < 2(n—Fk)+2+2(k—1) = 2n, as needed. This increases our
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qeount by 2+2+4+4+-- +2(k—1)+2(k—1) =41+ -+ k—1) =4(§), so
that we have q4k+4(g) [";kk] e We obtain our final word w from the sequence ¢ by
choosing whether or not to subtract 1 from each odd place cy,cs, ..., cop_1. This

multiplies our g-count by a factor of (1 + 1/¢)¥, so that we have.

w K [n+k
> g = (1+1/q)Fg**G) :
2k |
weEWUSUzn &, 2k q
which simplifies to give the first part of Theorem 5.2.4.

To obtain a word w € WUSUs,, g 2k+1, We first choose some sequence

0<a;<ay<az---<agy <n—Fk—1

n+k

The set of such sequences is g-counted by [% "

]q. Next, we consider the sequence b

4k+2 [n-i—k

defined by b,, = 2a,,+2, so that our g-count becomes ¢ ot

i|q2. Then, we want
to force < every other place, so generate a new sequence ¢ by adding 0 to b; and
b, 2 to bs and by, 4 to bs and bg, and so on, ending by adding 2k to bogy 1. Thus, we
will have copr1 < 2(n—k —1)+2+ 2k = 2n, as needed. This increases our g-count

by 2+2+4+4+- - +2(k—1)+2(k—1)+2k = 4(1+- - +k— 1)+ 2k = 4(%) + 2k,

ak+2+4(k)+2k [n+k}
¢

so that we have ¢ 2%ht1

We obtain our final word w from the sequence ¢ by choosing whether or not to
subtract 1 from each odd place ¢y, cs, ..., coryr1. This multiplies our g-count by a

factor of (1 + 1/q)**1, so that we have

Z gl = (1+ 1/q)k+1q4k+2+4(’;)+2k BlkvL ICJ |
wEWUSUQn,]E,Qk+1 + q2

which simplifies to give the second part of Theorem 5.2.4.

Theorem 5.2.5.

0Dy 75 (2,0) = 3 _(=1)*2*([2]1/9)"
k=

0
n—k—1 .
a2 [+ k=1 okage [P+ k=1 )
2 j
X(Q {Qk_1]q2+[]1/qzq 2% — 1 2

Jj=1
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and
- 2 n -+ k -1
ODYVS (2,0) = D2 (= 1) =2 (2] ) (242! { o }
k=0 q?
n n—j+k—1
9 2k2+45k-+2k+25+1 | TV — - ) _
+ 2y Z q S

To g-count WUSUsp—1,0.2k, We classify words wiws ... way, € WUSUsz,—102k
by the first letter wy. If w; = 1, we obtain a word w as follows. First, choose a
sequence

O0<az<az<ay <. <ay <n-—Fk,

n+k—1

which is g-counted by [ o 1

}q. Next, we consider the sequence b defined by b; = 1
and b,, = 2a,, + 1 for m > 1, so that our g-count becomes ¢** [”;!‘7__11} 2 Then,
we want to force < every other place, so generate a new sequence ¢ by adding 0
to by and by, 2 to by and by, 4 to by and bg, and so on, ending by adding 2(k — 1)
to bo_1 and bog. Thus, we will have ¢ < 2(n — k) +1+2(k—1) =2n — 1, as
needed. This increases our q-count by 2+2+4+4+4---+2(k—1)+2(k—1) =
414+ ---4+k—-1) = 4(’;), so that we have q2k+4(§) [";!:1} 2 We then obtain our
final word w from the sequence ¢ by choosing whether or not to subtract 1 from
each odd place except the first: cs3,cs5,¢7,. .., cop—1. This multiplies our g-count by

a factor of (1+ 1/¢)*7!, so that we have

Yo = (/g G {n v 1] @

2k — 1
wEWUSU2n717©72k
wi=1

If wy = 25 or wy = 25 + 1, we obtain a word w as follows. First, note that since
we must have k — 1 strict increases after wq, the largest j can beisn —k—1. We

choose a sequence

0<ay<az<ay<---<ay, <n-—j—k,

n—j+k— 1:|

which is g-counted by [ k1

Next, we consider the sequence b defined by

by = 25+ 1 and b,, = 2a,, +2j + 1 for m > 1, so that our g-count becomes
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g2 +1(2k) [”;;’f__ll} 2 Then, we want to force < every other place, so generate a

new sequence c¢ by adding 0 to b, and be, 2 to b3 and by, 4 to b5 and bg, and
so on, ending by adding 2(k — 1) to box_1 and box. Thus, we will have cop <
2(n—j—k)+2j+142(k—1) =2n—1, as needed. This increases our g-count by
2+2+4+4+ - +2(k—1)+2(k—1) =4(1+---+k—1) = 4(%), so that we have

2j+1)(2k)+4(*) rn+k—1
I DER) (2)[%71}

choosing whether or not to subtract 1 from each odd place: ¢, ¢3,¢5,¢7, ..., Cop_1.

2 We then obtain our final word w from the sequence ¢ by

This multiplies our g-count by a factor of (1 + 1/¢)¥, so that we have

w ; min+k—1
oo M=+ 1/Q)'“q(2”1)(2’“)+4(2){ 1 .
q2

2k —1
weWUSUszp,—1,0,2k
wi €{25,25+1}

Simplifying
n—k—1
w w
P D DD D
weWUSUszp_1,0,2k j=1 weWUSUszn,_1,0,2k
wi=1 w1 €{25,25+1}

yields the first part of Theorem 5.2.5.

We can again check the power of ¢ using the minimal word of this type. If
wi = 1, the minimal word before reducing will be 1,1,3,3...2k — 1,2k — 1. It is
twice the sum of the first £ odd numbers, so 2k2.

If wy = 2541, the minimal word (after reductions) will be 25,2j+1,...,2j+2k—1,
which gives 2j + (V3%%) — (1) + k — 1 = 2k* + 4jk.

To g-count WUSUs,,—1,0,2k+1, We use essentially the same reasoning. We clas-

sify words wiws . .. wopr1 € WUSUsz,—1 02k+1 by the first letter wy. If wy =1, we

obtain a word w as follows. First, choose a sequence

O0<ay<az<as<---<agpy <n—Fk—1,

n+k—1

which is g-counted by [ ok

}q. Next, we consider the sequence b defined by b; = 1

and b,, = 2a,,+1 for m > 1, so that our g-count becomes ¢?+* ["J;’Z*l} ,. Then, we
q

want to force < every other place, so generate a new sequence ¢ by adding 0 to by

and bs, 2 to by and by, 4 to bs and bg, and so on, ending by adding 2k to boy1. Thus,
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we will have cop 1 < 2(n—k—1)4+142k = 2n—1, as needed. This increases our g-

count by 2+2+4+4+- - -+2(k—1)+2(k—1)+2k = 4(1+- - -+k—1)+2k = 4(%) +2k,

2k+1+4(5)+2k [n+k—1

so that we have ¢ ok

]qQ. We then obtain our final word w from the
sequence ¢ by choosing whether or not to subtract 1 from each odd place except
the first: c3,cs, ¢r, .. ., Copyp1. This multiplies our g-count by a factor of (1+1/q)*,s0

that we have

Z qlwl =(1+ 1/q)kq4k+1+4(§) {n +k— 1} .

2k
weWUSUszp—1,0,2k+1

wi=1
If wy =27 or wy = 25+ 1, we obtain a word w as follows. First, note that since we
must have k strict increases after wy, the largest 7 can be is n — k — 2. We choose
a sequence

O0<a<az<ay<--<ag1 <n—j—k-—1,

nfjJrkfl}

which is g-counted by [ k1

Next, we consider the sequence b defined by

by = 25+ 1 and b,, = 2a,, +2j + 1 for m > 1, so that our g-count becomes

(2j+1)(2k+1) [n—i—k—l

ok }qg. Then, we want to force < every other place, so generate

q
a new sequence c¢ by adding 0 to b; and by, 2 to b3 and by, 4 to b5 and bg, and
so on, ending by adding 2k to bg,yq. Thus, we will have copyq < 2(n—j — k —
1)+ 2j+ 1+ 2k = 2n — 1, as needed.. This increases our g-count by 2 + 2 +
A+d+- 42k =1 +20k —1)+2k =41+ +k— 1)+ 2k = 4(}) + 2k,

so that we have q(2j+1)(2k+1)+4(’5)+2k ["*212*1]

2 We then obtain our final word w
from the sequence ¢ by choosing whether or not to subtract 1 from each odd place:
C1,C3,C5,C1, ..., Copyp1. This multiplies our g-count by a factor of (1 + 1/¢)**!,s0

that we have

; E—1

Z gl = (1+ 1/q)k:+1q(2g+1)(2k+1)+4(’;)+2k {n —i—2k } .

weWUSUszp—1,0,2k41 7
w1€{25,2j+1}

Simplifying
n—k—2

3 S 3 g

weEWUSUzp—1,0,2k+1 J=1 weWUSUz;—1,0,2k+1
wi=1 w1 €{25,25+1}
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yields the second part of Theorem 5.2.5.
We can again check the power of ¢ using the minimal word of this type. If

wy = 1, the minimal word before reducing is
1,1,3,3...2k— 1,2k — 1,2k + 1,

which gives 2k2 + 2k + 1.

If wy =27 + 1, the minimal word before reducing is
27+ 1,274+ 1,274+3,25+3,...,2) + 2k, 25 + 2k, 25 + 2k + 1,

which gives 2(j + k)? — 252 + 25 + 2k + 1 = 2k + 45k + 2k + 25 + 1.

5.2.3 SUWU

Theorem 5.2.6.

EVio" (2, 4)

n—k+1 .
_Z )22k ([2],)k 1( Z q2k2+4kjf4k+1 n—j+k—1
20k —1) Jp

Jj=1

+k-1
9 2k2 44k | T
e

and

EVy" (2,9)
n—k+1 .
= E k S2k+1 (12] )k—l( Z q1+2k;2+4k:j—4k: n+k—j—1
! — 20k —1) |,
]7
2 + k-1
9 2k2+ak | TV )
+ ([2hy)a w |

n—k .
. . 2_1|M—] + k—1
+<[2]q)k<§ :q2] 2k+45k+2k“—1 [ oh 1 }
q2

J=1

+k-1
9 22 16k+2 | T > _
* [2y/qa { %1 |,
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To g-count SUW Uy, g 2x,, We classify words wyws . .. wey, by the difference wq —
wy. If wy —wy; = 1, then we let wy = 27, w; = 27 — 1 and obtain a word w as
follows. First, note that the largest j can be is n — k + 1, since wsy is followed by

k — 1 strict increases. We choose some sequence

0<az<ay<as<---<ag <n+1-j—k,

n—j+k—1
2(k—1) }

by =25 — 1, by = 25, and b,,, = 2a,, + 25 for m > 2, so that our g-count becomes

which is g-counted by [ Next, we consider the sequence b defined by

q2k(2j)—1 [”;(J]:_'Sl} 2 Then, we want to force < every other place, so generate a new

sequence ¢ by adding 2 to by and bs, 4 to bg and b7, and so on, ending by adding
2(k — 1) to by. Thus, we will have co, <2(n+1—j —k)+2j+2(k —1) = 2n,
as needed. This increases our g-count by 2 +2+4+4+--- +2(k —2) + 2(k —

2)+ 2k —1) =41+ +k—2)+2k —2 = 4(*}") + 2k — 2, so that we

2k (25)—1+4(", 1) +2k—2 [n—j—i—k—l

2(k1) } ,- We then obtain our final word w from the

q
sequence ¢ by choosing whether or not to add 1 to each odd place except the first:

have ¢

C3,Cs,Cr, - . ., Cor—1. This multiplies our g-count by a factor of (1+ ¢)*~!,so that we

have

S M = (1 gt {n —j+k- 1} |
wESUWUQn,]E,Zk 2(k - 1) q2
wo=w1+1=2j

On the other hand, if wy — w; > 1, we obtain a word w as follows. We choose
a sequence

0<ai<aw<az<ay<---<ag, <n—-1-k,

n+k_1] Next, we consider the sequence b defined by

which is g-counted by [ ok

b, = 2a,, + 2, so that our q-count becomes ¢** ["Jrkfl

ok i|q2' Then, we want to force

< every other place, so generate a new sequence ¢ by adding 0 to by, 2 to by and
b3, 4 to by and bs, and so on, ending by adding 2k to bgp. Thus, we will have
o < 2(n—1—k)+ 2+ 2k = 2n, as needed. This increases our g-count by
2424444+ +2(k—1)+2(k—1)+2k =41+ +k—1) +2k = 4(§) + 2k,
6k+4(%) [n+212—1]

so that we have ¢ e We then obtain our final word w from the
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sequence ¢ by choosing whether or not to add 1 to each odd place except the first
and choosing whether or not to subtract 1 from ¢;. This multiplies our g-count by

a factor of (1 + 1/q)(1+ q)¥1,s0 that we have

w _ nin+k—1
>, =0+l +of 1q6k+4(2)[ 2k } '
weSUWUay, k25 o
wo—wi>1
Simplifying

n—k+1

IS SIVCTIND DS

j=1 weSUWUa, g 2k weSUWUay, E 2k

wo=w1+1=2j w2 —wi>1
yields the first part of Theorem 5.2.6.
We can again check the power of ¢ using the minimal words of this type. If

wy = wy + 1 = 27, the minimal word (before increasing) is

which gives 4 [(71%) — ()] + 25 —1—2(j + k — 1) = 2k* + 45k — 4k + 1.

If wy —w; > 1, the minimal word (before increasing) is
2.4,4,6,6,....2k 2k 2k + 2,

which gives 4(’“51) + 2k = 2k?* + 4k.

To g-count SUW Usy, g 2k+1, We classify words wyws . .. war41 by both the value
of way11 and the difference wy — wy. If wor1 = 2n, then we obtain w by taking
any element of SUW Uy, o, and inserting the letter 2n at the end. Thus, such
words are g-counted by z¢*"EV5 (WY (2, q).

If wop1 < 2n and wy — wy = 1, then we let wy = 27, w; = 25 — 1 and obtain
a word w as follows. First, note that the largest j can be is n — k, since ws is

followed by k — 1 strict increases. We choose some sequence

0<az<as<as<---<agpy <n—j—Kk,

n—j+k— 1}

which is g-counted by [ k1

Next, we consider the sequence b defined by

by =25 —1, by = 24, and b,, = 2a,, + 25 for m > 2, so that our g-count becomes
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2j(2k+1)—1 [n—j+k—1

q 2k—1

new sequence ¢ by adding 2 to by and b5, 4 to bg and b7, and so on, ending by adding
2(k—1) to bog and bogr1. Thus, we will have cop 1 < 2(n—j—k)+2j+2(k—1) =

}q2' Then, we want to force < every other place, so generate a

2n — 2, as needed (since wog41 < 2n in this case). This increases our g-count by

2+2+4+4+ - +2k—-1)+20k—1) =41+ +k—1) = 4(}), so that

2j(2k+1)—1+4(%) [n—j+k—1

we have ¢ S 1

j|q2' We then obtain our final word w from the

sequence ¢ by choosing whether or not to add 1 to each odd place except the first:

C3,Cs,C1, . . ., Cart1. This multiplies our g-count by a factor of (1 + ¢)*, so that we
have
Z gl = (1 4 q)F g @D-144(3) n—j+k—1 '
2]{: - 1 2
weSUWUazp E 2k+1 q

Wopy1<2n, Wa=w1+1=2]
If wop1 < 2n and we — wy > 1, we obtain a word w as follows. We choose a
sequence
0<a <ay<az<ay < - <agpr <n—2—k,

n+k—1

which is g-counted by [2k 1

]q. Next, we consider the sequence b defined by

4k+2 [n+k71

b, = 2a,, + 2, so that our g-count becomes ¢ AW

}q? Then, we want to force
< every other place, so generate a new sequence ¢ by adding 0 to by, 2 to by and
bs, 4 to by and bs, and so on, ending by adding 2k to by and bopiy. Thus, we
will have cop11 < 2(n—2 — k) + 24 2k = 2n — 2, as needed. This increases our

g-count by 2+2+44+4+4---+2k+2k=4(1+---+ k) :4(k;“1),sothat we have

ak+2+4(F) [n—l—k—l

q 2k+1

choosing whether or not to add 1 to each odd place except the first and choosing

:|q2' We then obtain our final word w from the sequence ¢ by

whether or not to subtract 1 from ¢;. This multiplies our g-count by a factor of

(1+1/¢)(1 + q)*, so that we have

> =Ygty () {

wGSUWUgnYEygkle
Wok+1<2n, we—wi>1

n+k—1
2k +1 2

The second part of Theorem 5.2.6 follows by combining

2q*" BV 0" (2, )
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with
n—=k
§ |wl |wl
q + q .
7=0 weSUWUap  2k41 weSUWUap k2541
Wap41<2n, we=w1+1=2j Wok+1<2n, we—wi>1

We can again check the power of ¢ using the minimal word of this type. For

wy = 27, wy = 25 — 1, the minimal word is

Whichgives2j—1+4(j—|—(j+1)+---+j+/£—1):2j—1+4[(j;k)—(g)} =
2§ — 2k + 45k + 2k* — 1.

For w; < wy — 1, the minimal word is
2,4,4,6,6,...,2k, 2k, 2k + 2,2k + 2,
which gives 4(1+2+ -+ k+1) =2 =4("}%) — 2 = 2k* + 6k + 2.

Theorem 5.2.7.

n

2 n+k—1
ODFMS () = S (-1 |
k=0 s

u 2 n— n+k—1
ODENS (20) = (-1 (g s [ R
k=0 q

2 + k-1
9] Yh+1 2k +4k+1 n '
+ (120 e Q

To obtain a word w € SUW Us,,—1,0,2k, We first choose some sequence

0<a;<ay<az---<ayp<n—k-1

n+k—1

The set of such sequences is gq-counted by [ ok

]q. Next, we consider the sequence
b defined by b,, = 2a,, + 1, so that our g-count becomes ¢** [“J’;z—l} e Then, we
want to force < every other place, so generate a new sequence ¢ by adding 0 to
b1, 2 to by and b3, 4 to by and by, and so on, adding 2k to by,. Thus, we will have

cor < 2(n—k—1)+1+ 2k =2n—1, as needed. This increases our g-count by
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2424+4+4+- 42k —1)+2(k—1)+2k =41+ -+ k—1)+2k = 4(%) + 2k,
so that we have q4k+4(g) ["g’;;l] e We obtain our final word w from the sequence
¢ by choosing whether or not to add 1 to each odd place ¢y,cs,...,cor_1. This

multiplies our g-count by a factor of (1 + ¢)*, so that we have

S M= (14 ) G) {n i 1} .

2k
wESUWUgn_LQQk

which simplifies to give the first part of Theorem 5.2.7.

To g-count SUW Us,,—1 0,2k+1, We classify words wyws . . . w41 by the value of
Wopt1. If wopy1 = 2n — 1, we obtain w by taking any element of SUWUsy,—1.0,2k
and inserting the letter 2n — 1 at the end. Thus, such words are g-counted by
S ODEI (2, ).

If wory1 < 2n — 1, we obtain w as follows. First, we first choose some sequence

0<a<ay<azg-- <agp1 <n—2-k

n+k—1

The set of such sequences is gq-counted by [ ket 1

] . Next, we consider the sequence
q

2k+1 [n+k—1

b defined by b,, = 2a,, + 1, so that our g-count becomes ¢ AW

}qT Then, we
want to force < every other place, so generate a new sequence c by adding 0 to by, 2
to by and b3, 4 to by and b;, and so on, ending by adding 2k to by and bogy 1. Thus,
we will have cop 1 < 2(n—2—k)+142k = 2n—3, as needed (since wagy1 < 2n—1).
This increases our g-count by 2+2+4+4+4+---4+2k+2k =4(1+---+k) = 4(’“;1),
so that we have q2k+1+4<k;1> [;:‘ﬂ o

We obtain our final word w from the sequence ¢ by choosing whether or not to
subtract 1 from each odd place ¢y, cs, ..., cory1. This multiplies our g-count by a

factor of (1+ 1/¢)*!, so that we have

w 1\ [+ k
Z ql | — (1+ 1/q)k+1q2k+1+4( ) [21{; N J .

weWUSUQn’]E72k+1 q2
Combining this with

2" 'OD3Y (2, q)

simplifies to give the second part of Theorem 5.2.7.
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We can again check the power of ¢ using the minimal word of this type. If

Wops1 < 2n — 1, the minimal word is
1,3,3,5,5,...,2k— 1,2k — 1,2k + 1,2k + 1,

which gives 2(14+3+---+2k+1) —1=2(k+ 1) — 1 = 2k* + 4k + 1.

5.2.4 WUWU
The results in this subsection are all based on the following lemma.

Lemma 5.2.8. Define level weak-up words by
IWU, x2i={1<a1=ay<az=as <as--- < agi—1 = ag <n:ay € XVp}.

Then
[k/2]

U LWU, x2i x SUSU, x p—2: =2 WUWU,, x.
i=0
The bijection proceeds as follows. Given any pair (a,w) in U}i{fj LWU, x 2 %

SUSU,, x j—2i, we send (a,w) to the word obtained by inserting each element of a
into w so as to keep weak increases between entries. This is clearly well-defined
and reversible, thus a bijection for any peak condition X.
For example, the image of
(11113377,1379) is
(111113337779).

Thus, we wish to g-count LWU,, x 9;. Define

EVn%VU(z, q) =1+ Z(—l)k Z ) glvl and

k>1 ’wELWU"’]Eygk
ODi Y (zq) =1+ (-1)F Y =g
k>1 weLWU, 0,2k

Theorem 5.2.9.

n+k—1 - 1
EViitU(zq) = > (—1)F2*¢* =1l——= (5.2.2)
>0 k g i1 lt2%g
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and

n+k—1 ~ 1
ODEYY (2,q) = Y (—1)F2%¢* =1l (5.2.3)
k>0 k ¢ =1 L+ 2%q

To q-count LW Uy, g 2, We first choose a sequence 1 < a; < as--- < ap < n,

n+k—1

which is counted by q"[ i

]q. Then, double and repeat each entry to get a new

sequence b given by
bl = bg = 2@1,b3 = b4 = 2&2, .. .bgk_l — bgk = 2ak

This affects our g-count by replacing ¢ with ¢*. Applying g-binomial series, we get
(5.2.2).

To g-count LW Us,,—1 0,2k, We can take any element of LW Uy, g 2, and subtract
one from each entry. Thus, we reduce the power of ¢ by 2k, which yields (5.2.3).

Therefore, we immediately get the following corollary:

Corollary 5.2.10.

EVyyg" U (2,0) = EVyig" (2, ) EVan5™ (2, 9)

n n k .
1 2 2 TR + ] k’
_ I | : E —1 kz2k E : 274 —j+4k=+2k—4kj |: :| |: :| ’
( 1+ 22q41> Y §=0 ! 2k ¢ L1t

i=1 k=0

EVy WUz, q) = BV Y (2, BV 1Y (2,9)

n n k .
1 2 o 2 AL n -+ J k
— | | : E -1 kZQk—H 2 E 2j°—3j+4k“+6k 4k]+2|: :| |: :| ’
( 1 + 22(]41) ( ) [ ]1/q j:0 q 2k q2 j q4

=1 k=0

0Dy 10 (2,0) = 0Dy (2, 0)OD3, % (2, q)

n n k—1 .
_ 1 k 2k 97244k +3j—akj |0+ 1+ k—1
- (H 1+ 22q21> Z( )"z [Q]qu 2k el J 14

i=1 k=0 §=0



114

and

0Dy, 1Y (2,9) =0D3," o(2,9) O D3 (2, 9)

= (H ﬁ) Z(—l)kZQkH([?]q)z

i1 k=0
k-1 .

« Z B +J k=1
P VY Y A

5.3 Further specializations

A few of the formulas from the previous subsections simplify significantly if we

set ¢ = 1. Thus, we get the following corollaries:

Corollary 5.3.1.

- L [(n+k-1 n+k\]
ODR Y0 (2,1) = (—1)F 22! K o )+( ol )

k=0

and

- n+k—1 n+k\]
ODL U (2,1) = ) (—1)Fz2 12k K o1 ) + (2k+1> .

k=0
Corollary 5.3.2.
< +k—1 n+k—1
EVSUWU (5, 1) — _q)k2k |ok—1( ok
2n,0 (Z7 > kzg( ) z 2% — 1 + 2%

and

n

+k—1 n+k
EVSUWU(, 1) — 1)k 2kt |gh—1 [T ok-+1 ‘
Now that we have successfully found generating functions for up-down words
with peaks in E or @, we can ask how this might relate to results on up-down
permutations. We note that the analogous condition for permutations would be

trivial, as there would be at most one alternating permutation with even peaks:

when n is even, this would ben —1,n,n—3,n—2,n—5n—4,...3,4,1,2. Thus,



115

enumerating up-down permutations with peaks in some specialized set is not likely
to be an interesting problem in general. A related issue is how to find the distribu-
tion of peaks from some set X over up-down permutations or words. Addressing

this issue is beyond the scope of this dissertation.

5.4 Extensions

The reasoning used in the previous sections can be extended to count our classes
of words with peaks in ulP or j 4+ uP (i.e. congruent to 7 mod u). For example,

we have the following theorem.

Theorem 5.4.1. Let u > 2. Then

n+k
e = L (e "]
qu

k=0

Piia0(21, - 2n)

The reasoning is essentially identical to that for WUSUs, g or. To obtain a

word w € WUSUsy, yp 2k, We first choose some sequence

n+k

The set of such sequences is g-counted by [ oh

}q. Next, we consider the sequence b

2ku [n+k

defined by b,, = ua,, + u, so that our g-count becomes ¢ oh

]qu. Then, we want
to force < every other place, so generate a new sequence ¢ by adding 0 to b; and bs,
u to by and by, 2u to by and bg, and so on, ending by adding u(k — 1) to by,_; and
bor. We will have cop < u(n—k)+u+u(k—1) = un, as needed. This increases our

q-count by u+u+2u-+2u+- - +ulk—1)+ul(k—1) = 2u(1+-- -+ k—1) = 2u(}),

2ku+2u(}) [n+k

so that we have ¢ ok

]qu. We obtain our final word w from the sequence
¢ by choosing to reduce each odd place c¢y,c3,...,cor_1 by some number v with

0 < v < w. This multiplies our g-count by a factor of ([u];/4)*, so that we have.

Z q|w| _ ([U]l/q)kQQUk+2u(g) |:n2—|]-C ]{J:| qu’

weWUSU2n,u]P’,2k
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which simplifies to give Theorem 5.4.1. Counting other classes of words with peaks
in ulP for u > 2 requires more subtle modifications but can be accomplished with
similar reasoning.

The reader may also wonder about the difficulty in extending these results to
other values of s. To illustrate why this is more difficult, consider WU?2S Usnpke =
{w:1<w <w <ws <wy <ws < wg < 2n; wy,wg € E} (so that s = 3).
The key to our reasoning for WU SUy, g 2r Was that, given any sequence of even
numbers 2 < ¢; < ¢ < g3 < -+ < g < 2n, we could always subtract one from
any set of odd positions and still obtain an element of WU SUsy,, g 2.

If we try to apply the same reasoning to WU2SUs,, g6, we would need to reach
an intermediate stage involving some sequence of even numbers 2 < ¢; < ¢y < ¢3 <
cs < c5 < cg < 2n. We would then obtain a word w € WU?S Usn r 6 by subtracting
appropriate amounts from entries in this sequence. The difficulty is that what
we are allowed to subtract from ¢; and co, as well as ¢4 and c¢5, depends on the
particular sequence ¢ we chose. For example, if we have ¢; = ¢o = 2, then we can
extend ¢ to a word w by having (wy,ws) equal (1,1), (1,2), or (2,2). This gives
3 possibilities for extending our sequence to an element of WU?SUs, zs. On the
other hand, if we initially chose ¢; = 4, ¢y = 6, then we can extend ¢ to a word w
by having (wy,ws) equal (4,5), (3,6), (3,5), or (4,6). This gives 4 possibilities for
extending our sequence ¢ to an element of WU?2S Usn 6. Thus, even when ¢ = 1
we have a problem in trying to uniformly alter our intermediate sequences. Things
only get worse when we factor in the possibilities for w4 and ws. Thus, in order to
proceed, we would need to create a complicated function based on the distribution
of letters within our starting sequences. Such an approach is beyond the scope of

this dissertation.



Chapter 6

Enumerating up-down words on

an infinite alphabet

In this chapter, we will extend the results of Chapter 4 by enumerating two of
the classes of up-down words with an infinite alphabet. That is, we will obtain
generating functions for SUS'W D, ,, = {w € P" : WDes(w) = (sP),_1} and
WU*'SDy,, = {w € P" : Des(w) = (sP),_1} by counting multiple rises. In
addition, we will enumerate compositions by alternating descents and alternating

major index.

6.1 Up-down words on P with s =2

We first consider SU*'W D, ,, and WU*'SD,,,, with s = 2. Define double

rises and weak double rises as follows:
2—I'iS(U)> = ’{Z W1 < Woigo < Waigs < w2i+4}]

and

w2-ris(w) = [{7 1 waip1 < Waio < Wais < Waigat|.

117
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6.1.1 WUSD

Theorem 6.1.1. Let z(w) denote the monomial Zy, Zu, ** * Zw,(w)- Then

Z $2n Z xw2-ris(w)z(w> _

n>0 weP?: wa;_1<wa;Vj
1—=x

1 1 1
T+ 2 [szl 1—tv/z—1z + Hk‘zl 1+t\/zflzk]

Corollary 6.1.2.

-1
=~ o 1 1
Zot2 2 Z(w):2<H1—itqk+H1+it2k> ’

n= WEWUSDoo 2n k>1

where 1 = v/—1.

Corollary 6.1.2 follows by setting £ = 0 in Theorem 6.1.1. This comes from
the fact that weak-up, strict-down words can be counted by looking at words with
weak increases in the appropriate places and no weak double rises.

Note that the combinatorial interpretation of these expressions ensures that all
coefficients are positive integers, which would not be at all obvious out of context.

To prove Theorem 6.1.1, define a function on nonnegative integers by

0 n is odd
f(”): 1 n=>0
—(z =1t n=2k>0

and define a homomorphism on the ring of symmetric functions by

Owusp(en) = f(n) <H 1 —1tzk> |in

k>1

Claim:

Owusp(hn) = > 22T 2 (),

weP2n: ng_lgngVj
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To see this, we interpret each term in

7%
Owvsp(hn) =Y _(=1)" "V [By,| Hf()‘j) (H . _ltzk> |5 - (6.1.1)

AFn k>1

By the definition of f, this sum will contribute nothing unless each part of A is
even, which also implies that n must be even. Thus, a term in (6.1.1) corresponds
to a brick tabloid with even bricks. Then (—1)"~*® Hf(;\l) f(A;) reduces to
Hf(:’\f (z — 1)%/2, which weights each brick with a factor of 2 or —1 in every other
nonterminal cell. The term Hﬁ(:)‘% (Hk21 ﬁ) |, lets us choose a partition 77
with A; parts for each brick, where we write the partition in weakly increasing order
and weight by z(77). We define the weight of a filled labeled brick tabloid created
in this manner to be the product of the z and —1 labels times the monomial z(w),
where w denotes the underlying word. For example, the weight of Figure 6.1 is

given by x2125222425.

1 :2 |3 4 15 |2 2

Figure 6.1: A brick tabloid coming from Equation 6.1.1 with n =8

Thus, Equation 6.1.1 corresponds to a weighted sum over all such brick tabloids.
We perform the usual involution on these brick tabloids, where bricks are scanned
from left to right for the first occurrence of either a —1 or a weak increase between
bricks. If a —1 is encountered first, we break the brick after it and remove the
—1. If a weak increase is found first, we combine the bricks and insert a —1. For
instance, the image of Figure 6.1 is given in Figure 6.2. Thus, Equation 6.1.1 can
be reduced to summing over fixed points.

Fixed points must have bricks of even length and decreases between bricks.
Since we never break a brick at an odd place, we will always have wy;_1 < w9;Vj.

In addition, the power of x will register the number of weak double rises, as desired.



120

3 4 15 |2

Figure 6.2: The image of Figure 6.1

For example, the fixed point in Figure 6.3 has weight 2?21 25222425. Thus, the sum

over all fixed points of Equation 6.1.1 is given by

Z wa—ris(w) P (w) )

weP2n; ’wzj,lgngv‘j

X X

1 :2 :3 :3 14 :5 |2 2

Figure 6.3: A fixed point coming from Equation 6.1.1 when n = 8

Thus, we can use Equation 6.1.1 to obtain:

Z 2f2n Z wa—ris(w) p (?,U)

n>0 weP2n: wyj_1 <wg;
0 0 -
=1+ Zt"@WUSD(h = Owusp (Z )
n=1 n=0
00 1 =
. n—142n
- (1+Z—(m—1) t (Hl—tzk> |t2”>
n=1 k>1
1—=x
1—x+z >1[t\/l'— ] (Hk>11 tzk) |t2n
11—z

Y

—r+3 |:Hk>1 - tﬁzk + i 1+t\/ 1ZJ

which proves Theorem 6.1.1.



6.1.2 SUWD

Theorem 6.1.3.

Z 20

Z x2-ris(w)z(w)

n>0 weP2n: waj—1<wa;Vj

1—=x

=2+ 3 [[loa (T4 8V = 120) + [[on (1 — 02 = T24)]

and

Z t2n+1

n>0

Vo —1 [Hk21(1 + itV — 1z) — szl(l —tv/x — 1zk)]

Z x2—ris(w)z(w>

weP2nF1: wo;_ 1 <wg;Vj

= Top _ [szl(l + itV — 1zg) + szl(l —tx — 1zk)]

Corollary 6.1.4

i 75271

n=0 weS

and

where 1 = v/—1.

UW Do 2n k>1 k>1

o0

DS

n=0 ’wESUWDOO’QnJFl

Sy

n=0 ’wEWUSDOO’QnJFl
—i [szl(l +itzg) = [Ty (1 — itzy,)]

z(w) =

Yoo M=o (H(1 +itz) + [ J(1 - z’tzk)) )

Hk21<1 + itzg) + sz1(1 —itzg)
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(6.1.2)

(6.1.3)

(6.1.4)

(6.1.5)

Corollary 6.1.4 follows from setting = 0 in Equations 6.1.2 and 6.1.3 and

from the following lemma.

Lemma 6.1.5. |SUW D, 9+1| = [WUSD,, 9n41] for any n,m

(including m = oo).
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To prove this lemma, we define a weight-preserving bijection
p: SUW Dy, 0n401 — WUSDy, 941 by
plwy,wa, ..., Wont1) = (Wapi1, Wop,y . ., W1).
That is, p simply reverses the order of letters in w. Since w; < we > ws ... implies
that wy,11 < wy, > woy,_1 ..., this gives the desired bijection. Note that no such
result extends to words of even length or with increasing blocks of length s.

We now turn our attention to proving Theorem 6.1.3. Define a homomorphism

on the ring of symmetric functions by

Osuvwp(en) = f(n) (H(l + tzk)> |¢n

E>1
Claim:
Osvwp(hn) = > 22 5 ().

weP2n; w2j—1 <w2jVj

The proof for this claim is identical to our proof that

@WUSD (hn> _ Z wa—ris(w)Z(w)’

wEP?™: woj_1 <wa,Vj
except that we fill each brick with a partition with distinct parts, written in strictly
increasing order. From this, it is a straightforward simplification to obtain the first
part of Theorem 6.1.3.
To prove the second part of Theorem 6.1.3, we define a weighting function for
the brick tabloids by v(2n + 1) = 0 and

(Hk21<1 + tZk)) ’t2n—1

v(2n) = (Hk21(1 —i—tzk)) o

We claim that, for all n > 0,

Osuwp(P2n,y) = > 227 5 (),

weP2n—1; U)Qj_1<w2]'Vj
To see this, we interpret each term in

)

Osvwp(p2nw) = > (=1 PDw,(Bin) [T FO) [[A +t2) [0 - (6.1.6)

AFn j=1 E>1
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By the definition of f, this sum will contribute nothing unless each part of A
is even, which also implies that n must be even. Thus, a term in the sum corre-
sponds to a brick tabloid with even bricks. Then (—1)"" Hﬁ(il) f(A;) reduces to
Hﬁ(z’\l) (x — 1)%/2 which weights each brick with a factor of z or —1 in every other
nonterminal cell. The term Hj(:)‘f [Tjs:(1+t2) [, lets us choose a partition 7/
with A; distinct parts for each brick, where we write 7/ in strictly increasing order.
The main difference in our interpretation here as compared with that of Equation
6.1.1 is in the last brick, where the weight v replaces the partition 7/ in the last
brick with a strictly increasing partition of length one less than the length of the
brick, leaving the last cell empty. This means that we end up with a word of length
n — 1 (which is odd) rather than a word of length n. We define the weight of a
filled labeled brick tabloid created in this manner to be the product of the x and
—1 labels times times the monomial z(w), where w denotes the underlying word.

For example, Figure 6.4 is one such object with weight —x 2225242625 29.

-1 X

1 :2 :4:6:8:9]1

Figure 6.4: An object coming from Equation 6.1.6 when n =8

Thus, Equation 6.1.6 corresponds to a weighted sum over all such brick tabloids.
We perform the usual involution, where bricks are scanned from left to right for
the first occurrence of either a —1 or a strict increase between bricks. For the
former, we break bricks and remove the —1; for the latter, we combine bricks and
insert a —1. For example, the image of Figure 6.4 is displayed in Figure 6.5.

Fixed points must have bricks of even length and weak decreases between bricks.
The power of x will register the number of double rises, where we specify by
convention that there is a rise for the last entry in the last brick. Figure 6.6 displays

one fixed point. Since we never break a brick at an odd place, we will always have
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2 |4 8 :9 |1

Figure 6.5: The image of Figure 6.4

wyj—1 < wWgj, Where w denotes the underlying word. Thus, the weighted sum of

the fixed points is exactly given by

Z x2—ris(w)z(w>.

weP2n—1: waj—1<wa;Vj

1 4 8 19 |1

Figure 6.6: A fixed point coming from Equation 6.1.6 when n =8
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Thus,
Z $2n—1 Z x2-riS(w)Z<w)
n>1 weP2n—1: woj_ 1 <wg;Vj
1 (oo}
=7 Z t"Osuwp(Pny)
n=1
1@ Zn>1(_1)n_1’/(n)e"tn
= 7Y9suwbD 00
t Zn:O(_t)nen

_ EZHZI(—l)”_ly(n)f(n) [Hk21 1+ tZk] |¢n "
b 1Y (=0 f () [Ty T+ tzk] Jen
1 2 [Tisy 1+ t2k] liens (= 1)1

t1— anl t2n(x — 1)t [Hk21 1+ tzk} |¢2n
_ \/mznzl [sz1 1+ tzk} N AVl
1= [Ty L+ t2] fen Vo — 120
T [y 0+ e =T — [T, (1 = 17— 12y
2= 3 [T (L Ve = 12k) + [Tisy (1 — V2 — 12)]
VI T[T (U + 7 = Tg) — Tl (1= /7 — T2
20— [, (0 Vo = 1o + [Ty (L= Ve = 12)]

which proves the second part of Theorem 6.1.3.

6.2 General up-down words on P

To generalize beyond the case s = 2, we define

s-ris(w) = [{i : weig1 < Weiga < -+ < We(igo)
and
ws-ris(w) = [{i 1 Weip1 < Weigo < -0 < Woi2)

which are the number of places with a block of length 2s consisting of strict in-

creases or weak increases.



6.2.1 SU'WD

Theorem 6.2.1. Let s >2 and 1 < J < s.

>t 2

Then

xs—ris(w) P (w)

n>0 wePs”: W Des(w)C(sP)sn—1

1

— X

ot D [T (1 + GtV — x2)

and

Sey

n>1 wePsn—J: W Des(w)C(

_ (V1-— x)J Zf:l Ci_J Hk21(1 + GtV — wz)

xs—ris wz(w)

sP)sn—g-1

st = 3 iy [esy (1 + GEv/1 — 22)

where (q,...,(s are all sth roots of —1.

Corollary 6.2.2. Let s > 2 and 1 < J < s.

IS N

n>0  weSUS~1WDeo sn

and

Then

i=1 k>1

é YT+ Gz

Y

;

Z tsan Z Z(’U)) _ Zj:l CZ'_J HkZI(]' + Cltzk)

n>1 WESUS "W Doy sn_ s

where (q,...,(s are all sth roots of —1

As before, Corollary 6.2.2 follows by setting x = 0 in Theorem 6.2.1.

Theorem 6.2.1, define a function on nonnegative integers:

n=2~0

- Zf:1 sz1(1 + Gitz)

gs(n) = ¢ (=1)" Yz — 1)™~1 n=0 mod s

and a homomorphism

®SUS*1WD(€n) = gs(n) (

otherwise

[T +tz)

k>1

)-
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(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)

To prove
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Claim:
Osvs-1wp(hsn) = Z 25T 2 (). (6.2.5)
wePsm: WDes(w)C(sP)sn—1

To see this, we interpret each term in

€
6SUS—ll/VD(hsn) - Z (_1)8n_€(u)Bu,sn H @SUS_IWD<€MJ‘)
pEsn Jj=1
2(N)
= Z (—1)" B, Hgs(s/\j) (H(l + tzk)> oy
sAksn 7j=1 k>1
€

AFn j=1 k>1

By the definition of g, this sum will contribute nothing unless each part of u
is divisible by s, so we can obtain u by taking any A = n and multiplying each part
of XA by s. Thus, we interpret the term ), B,, as creating a brick tabloid with
bricks whose lengths are multiples of s. We interpret the term Hf(z)‘l) (x —1)" ! as
labeling each brick with a factor of z or —1 in every s’th nonterminal cell. Finally,
we interpret the term Hf(:’\f (ITis1 (1 +t21)) |,2, as choosing a partition / with
sA; distinct parts to fill each brick, where we write 7/ in strictly increasing order
and weight by the monomial z(77). For example, Figure 6.7 depicts a brick tabloid
with s =3 and n = 9.

-1
5

2 +4 :5 |1 .3 6 :8 :9

Figure 6.7: An object coming from Equation 6.2.6 when s =3 and n =9

The weight is given by the product of the monomial weights for each brick
times the product of the x and —1 labels. For example, the weight of the object
in Figure 6.7 is —2129232422262829. Thus, Equation 6.2.6 above corresponds to a

weighted sum over all such filled labeled brick tabloids.
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We perform the usual involution, where bricks are scanned from left to right
for the first occurrence of either a —1 or a strict increase between bricks; we break
bricks and remove the —1 for the former, combine bricks and insert a —1 for the
latter. For example, the image of Figure 6.7 is given in Figure 6.8. Thus, Equation

6.2.6 reduces to summing the weights of all fixed points.

511:3:5 |6 :8

Figure 6.8: The image of Figure 6.7

Fixed points must have bricks whose lengths are multiples of s and weak de-
creases between bricks. The power of z will register the number of s-rises, as
desired. For example, a fixed point is given in Figure 6.9. Since entries increase
within bricks and we can never break a brick other than at a multiple of s, weak
descents can only occur at multiples of s; i.e. WDes(w) C (sP)g,—1. Thus, the

weighted sum of fixed points is exactly counted by

Z £5n Z xs—ris(w)z(w)‘

n>0 wePs™: WDes(w)C(sP)sn—1

2 +4 :5 |1 .3 6 :8 :9

Figure 6.9: A fixed point of Equation 6.2.6 when s =3 and n =9
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Thus,
Z £5n Z xs—ris(w)z<w)
n>0 wePs™: W Des(w)C(sP)sn—1
o) 00 -1
= Ztn@smflwz)(hn) = Ogsys—1wp <Z(_t)n€n>
n=0 n=0
o -1
_ (1 + Z(—t)sn(—l)sn_l(I N 1>n—1 (H(l + tzk)) tsn)
n=1 k>1
B 1—2
L=z o (=)L — a]n (Hk21(1 + tzk)) |t
B 11—z
—r+ %ijl [Tisn (1 + Gt/ = w2y)’
where (1, ...,(; are all sth roots of —1 (for details on how these play a role, see

section 6.6).
We now turn our attention to proving the 2nd part of Theorem 6.2.1. To this

end, define a weighting function v ; by v s(n) = 0 unless n =0 mod s and

(Hk21<1 + tZk)) |gsn—
(T2 (1 + t20))

With this weighting function, we can see that

Vs y(sn) =

tsn

@SUS*WVD(psn,Vs,J) = Z xs—ris(w)z(w) (627)

wePsn—J: WDes(w)C(sP)sn—Jj_1
by the same reasoning as that for Equation 6.2.5, where our interpretation in
terms of brick tabloids is identical except that the weighting function v ; will

leave the last J cells of the final brick empty (by convention, we count these as
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strict increases. Therefore,

Z tsn—J Z xs—ris wz(w)

n>1 wePsm—J: W Des(w)C(sP)sn_y_1
o0 n—1 n

- %;tn@wslw@%‘,) - <Zn>lz<zolo>en(i§;2ent )
- iznx(_ )n Vs J( )gs(n) [Hk>1 1 "’tzk] |gn 27
130 go(n) [Ty (1 + t20)] |en (=)
_ l ZnZl [Hk21<1 + tzk)} penes (@ — 1)1

71 =3 oy (TLest (14 t2)] Jeon t57 (2 — 1)1
o i ZnZl [szl(l + tzk)] |gsn— (=1)"[t/1 — 2]"
e —1- P [szl(l + t21)] Jpxcn [t /1 — 2] K7
o (V1 —x)’ > et gi_J Hk21(1 + GtV — z2)
a =30 Tl (1 + Gt/ — 22) 7

which proves the second part of Theorem 6.2.1.

6.2.2 WU 1SD

Theorem 6.2.3. Let s >2 and 1 < J < s. Then

Z £5n Z st—ris(w)z(w)

n>0 wePs™: Des(w)C(sP)sn—1

11—
= S bl (628)
—z+ % Dt szl m

and

Z tsn—J Z st-ris w, (w)

n>0 wePs": Des(w)C(sP)sp— g1

T = 2) J

( ) Zz 1C Hk>1 1 Qt\/l fJCZk
ST — Ez 1 Hk>1 - Qt\/l T2

(6.2.9)

where (q,...,(s are all sth roots of —1.
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Corollary 6.2.4. Let s> 2 and 1 < J <s. Then

> ot 3 ( Z I1 — cltzk> R (6.2.10)

n=0 WEWU*=1S8Doo sn i=1 k>1
and p
S e > 2(w) = ic1 & Lo - Wk (6.2.11)
n>1 WEWUS=1SD oy sy o El 1 Hk>1 1- CLtZk
where (q,...,(s are all sth roots of —1.

The proofs of Theorem 6.2.3 and Corollary 6.2.4 are essentially the same as
those of Theorem 6.2.1 and Corollary 6.2.2, except that they use the homomor-
phism

Owversp(en) = g:(n) (H 1 jmk) o

k>1

and the weighting function defined by v ;(n) = 0 unless n =0 mod s and

1
(szl m)
(Mot 75 ) Lo

tsn—J

For brevity, we omit the full details.

6.3 Level alternating words

We define level-alternating words as having the pattern =, #; i.e., LN Ly, ,, =
{w e P": w; = wy # w3 = wy...} or the set of words s.t. Lev(w) = O,,_;.
AISO, define 2—lev(w) = ‘{Z P W41 = W22 = W43 = w2i+4}|. Then we have the

following theorem and corollary:

Theorem 6.3.1.

-1
3 g 3 e w) = (1) the . (6.3.1)
—~1-t*(z — 1)z?

n>0 weP2n; IUQj,1=w2jVj
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Corollary 6.3.2.

S % 4@:(1-2%) | (6.3.2)

n>0  wELNLeo2n i>1

As before, Corollary 6.3.2 follows from setting = 0 in Theorem 6.3.1. To

prove Theorem 6.3.1, define a homomorphism by

Ornclen) = f(n)pn(z1,22,...) = f(n) ZZ?

i>1
Claim:
Ornr(han) = Z 21V 2 (w).
weP2n: ng_liwzijVj
To see this, we interpret each term in
£
Orvi(h) = Y (1" VB [T S0 D2 (6.3.3)
AFn j=1 i>1

By the definition of f, this sum will contribute nothing unless each part of A is
even, which also implies that n must be even. Thus, a term in the sum corresponds
to a brick tabloid with bricks of even length. Then (—1)"~*W) Hf(:’\l) f(A;) reduces
to Hj(:’\% (r — 1)%/2, which weights each brick with a factor of z or —1 in every
other nonterminal cell. The term Hf(:)‘f D is1 z;\ 7 lets us choose a number i for each
brick, which we use to fill every cell of the brick and weight by z? 7. The weight
is given by the product of the monomial weights for each brick times the product
of the x and —1 labels. For example, Figure 6.10 is one such object with weight

2.6
T21%g-

1 :1 |6 6 16 [6 ;6

Figure 6.10: An object coming from Equation 6.3.3 with n =8
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Thus, Equation 6.3.3 corresponds to a weighted sum over all such brick tabloids.
We perform the usual involution on these brick tabloids, where bricks are scanned
from left to right for the first occurrence of either a —1 or the same entry in adjacent
bricks. If a —1 is encountered first, we break the brick after it and remove the —1.
If the same entry is found first, we combine the bricks and insert a —1. For
instance, the image of Figure 6.10 is given in Figure 6.11. Thus, Equation 6.3.3

can be reduced to summing over fixed points.

X -1

1 |16 :16 ;6 :6 .6

Figure 6.11: The image of Figure 6.10

Fixed points must have bricks of even length, equality within a brick, and
inequalities between bricks. The power of x will register the number of double
levels, as desired. Since all brick lengths are even, we will always have wy;_1 = ws;,
where w denotes the underlying word. For example, the fixed point in Figure 6.12

has weight 222728, The sum of the weights of all fixed points is exactly given by

Z x2—lev(w)z(w).

weP2n: ’u)2j71=UJ2jVj

1 :1 |6 6 6 .6

Figure 6.12: A fixed point coming from Equation 6.3.3 when n = 8
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Thus, we can use Equation 6.3.3 to obtain:

Z $2n Z mQ-lev(w)z<w)

n>0 weP?™: woj_1=ws;Vj
) o !
= Ztn@LNL(hn) = OLnL <Z<_t)n€n>
n=0 n=0
. -1
= (14> —@-1r ey 23”>
n=1 121
- -1
- (- ST )
i>1 n=1
202 -
x4
=1 -
Zl—t2 x—1)22> ’

which proves Theorem 6.3.1.

In this case, Corollary 6.3.2 could also have been derived by replacing tx; with
t?z? and setting y = 0 in Theorem 3.2.1. This should be obvious, since a level-
alternating word can be reduced to a word with no levels by replacing each repeated
letter by a single occurrence. For example, the level-alternating word 2 24 4 3 3
reduces to 2 4 3. In fact, the same reduction will work for s-level-alternating words,

which yields the following corollary:

Corollary 6.3.3.

S Y w) = (1 = 1:;) : (6.3.4)

n>0 weLsilNLoo,sn i>1

where L* *N Ly ¢ = {w € P*": Lev(w) =P, — sP,_1}.

6.4 Alternating descents

Chebikin [14] first introduced the notion of alternating descents for permuta-

tions, defined by

CZ(O') = ‘{2@ 109 < 0'2,'+1} U {2@ +1: 09i4+1 > 0'22‘+2}|.
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He also found the generating function for alternating Eulerian polynomials, defined
as A,(t) = > e, #d@+1 That is, he showed that

N u  t(1 —h(u(t—1
;An(t)m = (h(u(t(_(l))_)t”, (6.4.1)

where h(x) = tan(z) + sec(z). In addition, Remmel [39] introduced the notion of

alternating major index, defined by
altmaj(o) = Z i.
i€ Altdes(o)

Remmel then extended Chebikin’s generating function to the following:

n ZUGS xaltdes(cr) qaltmaj(o)

ZH(1—56)(1—ﬂrq)--‘(l—:cq”)

n>0

= (6.4.2)

LL’k

kzzo (sec(—t) + tan(—t))(sec(—tq) + tan(—tq)) - - - (sec(—tq*~1) + tan(—tg*=1))’

Remmel also obtained similar formulas for common alternating descents and major
index, as well as for the hyperoctahedral group B, and its subgroup D,,.

The central goal of the next two sections is to develop analogues of (6.4.1) and
(6.4.2) for words instead of permutations. When we consider analogues for words,
we can apply both strong and weak versions of these statistics. Chebikin and
Remmel defined alternating descents as places where o deviates from an up-down
pattern, but we find it more natural to define alternating descents as places where
o follows an up-down pattern (the two statistics are equidistributed over words
on a finite alphabet, so it makes no difference). That is, we will use the following

definitions.

Altdes(w) = {22 D W > w27;+1} U {2Z +1: Wit < w2i+2}
= (EN Des(w)) U (0N Ris(w)), and
altdes(w) = |Altdes(w)|.
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Similarly, define

= (ENWDes(w)) U (ONWRis(w)), and
waltdes(w) = |Waltdes(w)|.

Waltdes(w) = {22 L Wo; > w2i+1} U {22 +1: W2i+1 S w2i+2}

Also define
altmaj(w) = Z i and

i€ Altdes(w)

waltmaj(w) = Z i

i€Waltdes(w)
Again, altdes measures how often a word matches the up-down pattern, and
waltdes measures how often a word matches the weak up-down pattern. Since
an up-down word is also weak up-down, altdes(w) < waltdes(w) for any w. We

will prove the following theorem.

Theorem 6.4.1.

Ztn Z xaltdes(w) _ (1 _ I)

n>0  we[m]”

_x-+

L S o (DR (R (¢ — IDQ’““] B
S oro (DR ) (te — 1))

and

Ztn Z xwaltdes(w) _ (1 . ZL’)

n>0  welmn

Ly MDD ) (e 1]>2k+1] 71

St (=R (") (e — 1))

Our method for proving these theorems will be to use the generating functions
for up-down words to define a homomorphism on the ring of symmetric functions.

Recall from Chapter 4 that Carlitz [13] showed that

> |SUDy ™ = Ql

meQ n(Z)

and

1S [SUD, 2™ =
> ] 0

meR
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where

Qule) = n0<1>k(”+2’; He

k=

Also, Rawlings [38] showed that

1
> WUD,, 2" =
meQ Bn(z)
and )
A, (z
1 D m_ 1
+Z|WU | % B.(2)
mek
where

Az — Z(—nk(;ﬁﬁ)z%ﬂ and

k=0

Bu(z) — i(—l)k (”;kk> 2.

k=0
We will also make use of the fact (noted in Chapter 4) that up-down words and
down-up words over a finite alphabet are equinumerous: |[SUD,,,| = |SDU,, |
and |WUD,, | = |WDU,,,|. This observation is key for proving Theorem 6.4.1.
To prove the first part of Theorem 6.4.1, we fix some alphabet [m] and define
a homomorphism on the ring of symmetric functions by ©gy4es(€9) = 1 and, for

n>1,

@altdes(en) = (_1)1171(1, - 1>n71‘SUDm7n‘
1 R ()

B v NV e

|Z”

Claim:
@altdes(hn): Z l,altdes(w) (643)

we[m]™
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To see this, we interpret each term in

()
®altdes<hn) == Z<_1)n76(>\)B)\,n H(_1>)\i71(']” - 1))\i71|SUDm,/\i
AFn i=1

£ m m
T L (DGR
=> B [Jz-1)* T |
AFn i=1 oo (DR )2
The term ) ,,, By, lets us choose some A - n and create a brick tabloid of
() HE (=D ()220
shape n and type A. The term [[) —= TR T
=L DR )z
brick with either an up-down or a down-up word. If the brick starts at an odd place,

| lets us fill in each

we fill it with an up-down; if it starts at an even place, we fill it with a down-up.
This is the step that requires up-down and down-up words to be equinumerous,
and which prevents us from tracking more information (the bijection between does
not preserve the sum of the entries, so we cannot g-count). Finally, the term
Hf(:’\l) (r — 1)%7! lets us leave the last cell of every brick alone, and label every
other cell with either an x or —1. We define the weight of a filled labeled brick
tabloid created in this manner to be the product of the z and —1 labels. For
example, Figure 6.13 displays one such object with weight x*. The first brick

contains an up-down word, while the second and third bricks contain down-up

words, since they begin at even places.

~-1! X

3(8:2

-1
4

X
2

X
3 |6

Figure 6.13: An object coming from ©,4es(ho)

We perform an involution on the decorated brick tabloids that result, breaking
a brick at the first —1 encountered or combining bricks if this will preserve their
up-down or down-up nature. The image of Figure 6.13 under this involution is
depicted in Figure 6.14.

We now consider the fixed points of ©yzges(hy,). Fixed points will thus have no

—1 weights and up-down or down-up behavior within each brick, but not between.
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4 [3 |6

3812

Figure 6.14: The image of Figure 6.13

The factors of « will thus give us exactly altdes(w), which verifies Equation 6.4.3.

One fixed point is depicted in Figure 6.15.

X
2

X
4

X
3

X
6

X

S5 |4

Figure 6.15: A fixed point of O 44es(ho)

Thus,

Ztn Z xaltdes(w) = (1 + Z(—t)ngaltdes(en>)

n>0  welm]n n>1
1l—2z

? k
n I E R (DR (1)) =4

l—z+ Zn21[t($ —1)] T (CR ()2 |n

L+ Bl (D () (e — 1)+t
S (= DR () (e — 1)

The second part of Theorem 6.4.1 is proved in a similar manner, interpreting as

brick tabloids and using the generating function for WUD (WDU) to fill in bricks.

1

=(1—-2)|—-z+

For brevity, we omit the full details.

6.5 Alternating major index

In this section, we will prove two analogues of (6.4.2) for compositions. Define

alternating major index and weak alternating magjor index as follows.



altmaj(w) = Z i and
1€ Altdes(w)

waltmaj(w) = Z i.
1€Waltdes(w)

Then we have the following theorems.

Theorem 6.5.1.

S
n>0 (y? u)n+1 we[m]n

Z yaltdes(w)ualtmaj(w) —

yp
2 LS (- DR () (b2

p
w20 o =5, o eom

Theorem 6.5.2.

tn
2 o

n>0 Y; u)n+1

Z ywaltdes(w)uwaltmaj(w) _

> we[m]"
> y’”
» 1M (—1)k+1 (;’]Lcili)(tuj)Zk+1 .
p=0 Hj:O Zgbzo(_l)k(m;]gk)(tujpk
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In order to prove these theorems, we will combine the methods of the previous

section and section 3.3. The idea behind these theorems is similar to Theorem

3.3.1, except that we use the generating function for up-down words to fill in our

brick tabloid with up-down (down-up) words, instead of simply partitions.

To prove Theorem 6.5.1, define a ring homomorphism ©® by defining it on

the elementary symmetric function e, so that

P
@(p)(en) = E : w0ty H ’SUDm,ij’
§0,0ryip>0 j=0
io+-Fip=n

)2,

2k+1

P m kL (m+k
Vot +pip H L+ 2 ko(=1) (21<;+1

- z‘o,.;pzo §=0 Z;n:o(_l)k<

i0+Fip=n

where expression|» means to take the coefficient of t? in expression.

m-+k—1
2k

)z

2k
j

|

zZ

)
to.

ip

“Zp

?
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First we apply ©® to h,. We have

@(p)(hn) _ Z(_l)n_E(A)B)\,n@(p)(e)\)

AFn
)
=SB YD wtee (6.5.1)
A-n r=1 ig,...,ip=>0

7:0+"'+ip:)\r
m m~+k\ 2k+1
ﬁ 1+ Zk:()(_1>k(2k+1)zj i ]

m m+k—1
=0 Zk:o(_l)k( —;k )Z]%

ig..
%0 " Rp

Our goal is to interpret ©®(h,,) as a sum of weighted combinatorial objects.
We interpret the sum ), B, as all ways of picking a brick tabloid 7" of shape
(n). Then the factor (—1)"~“™ allows us to place a —1 in each non-terminal cell
of a brick in T" and place a 1 at the terminal cell of each brick in 7. Next, for each
brick in T, choose nonnegative integers i, ..., 7, that sum to the total length of
the brick. This accounts for the product and second sum in (6.5.1). Using powers
of u, these choices for ig, ..., 7, can be recorded in T". In each brick, place a power
of u in each cell such that the powers weakly increase from left to right and the
number of occurrences of u/ is ¢;. At this point, we have constructed an object

which may look something like Figure 6.16 below.

Figure 6.16: A partial object coming from Equation 6.5.1

lets us choose p+1 up-down

Now, the term P 1+Z?—o(—1)k(§?€ﬁ)7ik+l}

. =
7=0 Yho(=1)F (mzk 1)'2]%

o _ip
' %0 Ep
(or down-up) words w®, ... w® where ¢(wV)) = i; for j = 0,...,p. We write

these words in the order chosen, where we insert an up-down word if the starting
cell is odd (e.g. it is the 5th cell in the overall tabloid) and a down-up word if the

starting cell is even. Figure 6.17 gives one example of an object created in this
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manner. We call these objects filled labeled brick tabloids. The weight of such a

-1 —15 1 —15 —15 —15 —15 —15 1 -1 —15 1
11 1. 3 0+ 0+ 01 21 21 2 0r 31 3
u ru tu u ruot U ru ru Tt
1 1 1 1 1 1 1 1 1
2., 6., 5 : V40 2 1 6., 4., 5

Figure 6.17: An object coming from Equation 6.5.1 when n = 12

composite object is the product of the signs at the top of the configuration times
the products of the u/’s in the second row of the configuration. Thus, the weight
of the object in Figure 6.17 is —u!7.

These filled labeled brick tabloids of shape (n) and type A for some A F n have

the following properties:
1. the cells in each brick contain —1 except for the final cell, which contains 1,

2. each cell contains a power of u such that the powers weakly increase within

each brick and the largest possible power of u is u”, and

3. T contains a composition of n which must

strictly decrease between consecutive cells within a brick if the cells are

marked with the same power of u and the first cell is even, and must

strictly increase between consecutive cells within a brick if the cells are

marked with the same power of u and the first cell is odd.

In this way, ©®)(h,) is the weighted sum over all possible filled labeled brick
tabloids of shape (n).

Next, we define a sign-reversing involution I which will allows us to cancel all
the terms T with a negative weight. To define I, scan the cells from left to right
looking for either a cell containing —1 or two consecutive bricks which may be
combined to preserve the properties of this collection of objects. If a —1 is scanned
first, break the brick containing the —1 into two immediately after the violation

and change the —1 to 1. If the second situation is scanned first, glue the brick
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together and change the 1 in the first brick to —1. For example, the image of
Figure 6.17 is displayed in Figure 6.18.

1 —151 —15—15—15—15—151 —15—151
1 3 01 01 01 21 21 2 01 31 3
u u ru u ru tu rururu u ru'u
2| 6:!5| 41314 2:3:1|6!4'5

Figure 6.18: The image under I of Figure 6.17.

It is easy to see that I is a sign-reversing, weight-preserving involution. Thus,
I shows that ©®)(h,,) is equal to the sum of the weights of all the fixed points of
I.

Let us consider the fixed points of I. First, there can be no —1’s, so every
brick must be of size 1. Next, it cannot be the case that the power of u strictly
increases as we move from brick i to brick 7+ 1, since then we could combine these
two bricks and still satisfy properties (1), (2), and (3). Thus, the powers of u must
weakly decrease as we read from left to right. Let w = (wy,...,w,) denote the
underlying composition. We note that if the power of u is the same on brick ¢ and

1+ 1, then it must be the case that
1. w; > w;yq if 7 is odd, and
2. w; < wgyq if i is even.

Otherwise, we could combine brick ¢ and brick i 4+ 1. One example of a fixed point

may be found in Figure 6.19.

1 1 1 1 1 1 1 1 1 1 1 1

3 3 3 2 2 2 2 2 2 1 0 0
u u u u u u u u u u u u

8 6 6 4 5 4 6 3 3 6 7 5

Figure 6.19: A fixed point coming from Equation 6.5.1

We now turn our attention to counting fixed points. Suppose that the powers

of u in a fixed point are ry,...,r, when read from left to right. It must be the
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case that p > ry > --- > r,. Define nonnegative integers a; by a; = r; — ;1 for
1=1,...,n—1and let a,, = r,. It follows that i +---+r, = a1 +2as+ - - - + na,,
a1+ -+ a, =r1 < p. Now suppose that w is the composition in a fixed point.
Then if w; > w;4; and @ is even or w; < w;4q and ¢ is odd, it cannot be that
r; = ;31 because that would violate our conditions for fixed points. Thus, it must

be the case that
a; = X(w; > win)X(i € B) + x(w; < wiy1)x(i € 0) = x(i € Altdes(w)).

In this way, the sum of the weights of all fixed points of I equals

E E u™ +2az+--+nan

welm]®  a1+-+an<p
a;>x(t€Altdes(w))

= g e E yal+---+anua1+2a2+---+nan :

we[m|™ a1 >x(1€Altdes(w)) an>x(n€Altdes(w))

ygp
where expression|,<s means to sum the coefficients of ¢/ for 7 = 0,...,k in
expression. Rewriting the above equation, we have
oY wwree Y
we[m|™ a1 >x(1€Altdes(w)) an>x(neAltdes(w)) y<p
Z (yu)x(leAltdes(w)) (yu2)x(2€Altdes(w)) . (yun)x(neAltdes(w))
B . (1= yu)(1 = yu?)--- (1 — yur)
wE[m] <
y_P

yaltdes(w)ualtmaj (w)

= 2 (1= yu)(1 —yu?)--- (1 — yur)

wE[m]™

ySP

Dividing by (1 — y) allows the above expression to be rewritten as

des(w),,altmaj(w)

u

y
2 (=1 —yu)- - (1 —yur)

wE[m|™

yP
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Therefore, we have

Z( Z yaltdesw altmaj(w)
n+1

n>0 we[m]n
— Zyp@(p) (Z t"hn>
p=>0 n>0

_ y
N Z (ano(_t)n@(p) (en))

p=>0
yp
o ) ) 1+Zm: (—l)k m+k 22k+1
P20 D nz0( )" 22 oy >0 UOMMW%[ =0 S Fl)k(i"f:l?);k } 0.5
io+-+ip=n k=0 2k J 260...Z;p
However,
p m k (m+kY  2k+1

S Y i [H 1+%k:0(_1) (fifi)zék ] _
n>0 10y eyip>0 j=0 Zk:o(_l)k( 2k )Zj L0 P

i+ tip=n o
PR | i G
n>0 =0 S (DR (M) (wiz) o

m m+k j
ﬁ 1+ Zk:o(_l)k(zkil)(_tuj)zkH _
o (DR ()

m m-+k j
ﬁ 1+ 3o (=D (G (b)) 2o+

m m—+k— i
=0 Do (DR 1)(t“])2k

Thus, we have shown that
Z " Z ltdes(w) . altmaj(w)
ya es(w), altmaj(w) _
yp
Z 1+Zm ( )k+1(m+k)(tu])2k+l
p>0 H (71) (m+k 1)(tu1)2k

which proves Theorem 6.5.1.

The proof of Theorem 6.5.2 is very similar and will be omitted; it uses a ho-
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momorphism defined by

p
P (e,) = Z o Vio-++pip H (WUD,,, |

10yeryip>0 =0
i+ +ip=n

_ Z o Vot ip ﬁ 1+ Z?:o(—l)’“(;’}:j) ijk+1]

Tk
i0mmyip>0 J=0 Z;nzo(_uk(mzk )ZJ%

ig..p
%o "Ep

Notice that the only difference in the homomorphisms—and thus the theorems—is

the binomial coefficient in the denominators: (mQZk) instead of (mzifl)

6.6 Appendix: roots of -1

In section 6.2, our generating functions turned out to involve roots of —1. In
this section, we provide a general theorem that explains their origin.

Let (1,...,(, be all of the kth roots of —1.

Theorem 6.6.1. For any sequence a,

> (1) apt™ = %Z an(Git)" (6.6.1)

n>0 j=

—_
3

v
o

Proof. 1t suffices to show that, for any n,

k (=1)"™k n=km

G = 6.6.2

The first case is obvious: if n = km, then

k k

Z g=>

j=1 j=1

[
0
=

3

[
0
=
3
o

For the second case, we wish to write down the roots of —1 explicitly:
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mi  2m(j—1)

Cjzeke & . Then we have

If k£ 1 n, then the denominator is not 0, whereas the numerator is, so we get the

desired result. O

We can shift the start of the summation and our sequence entries to obtain the

following corollary.

Corollary 6.6.2. Let J < k. Then

S (<) g gt = %Zgﬂ S (¢t

n>No n>No



Chapter 7

Results on other composition

patterns

This chapter builds on Chapter 4, where we considered words that could be
partitioned into blocks of fixed length so that, within each block, the entries were
strictly or weakly increasing and there were strict or weak increases between blocks.
In this chapter, we still consider words that can be partitioned into blocks of fixed
length, but we examine more general patterns within the blocks. We will consider
blocks where the only condition is that the first element of each block is the (unique)
maximum of the block, as well as blocks with a fixed number of rises followed by
a fixed number of descents. Also, we will consider blocks with a fixed number
of levels followed by a descent. We then apply the statistics des, wdes, and lev
from Chapter 3 to these blocks, where we will sometimes compare maximal entries
within each block and sometimes compare the final entry of one block with the

first entry of the following block.

7.1 Block maxima

In this section, we will consider words that are made up of blocks of size K,

where each block has a strong maximum at a particular place in the block. Without

148
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loss of generality, we can let this be the first place in the block. That is, let
BlockMaz (K, Kn) = {w € PX" : wigyy > w; for j =iK +2,...,(i + 1)K}.

For words in this class, we will be interested in block levels, or places in which

adjacent block maxima have the same value. Let

+1) K +2) K
levKmax(w) = |{i : ik w; = o w; .
j=iK+1 j=(i+1)K+1

For w € BlockMax(K,n), levKmax(w) = [{7 : wix4+1 = Wii+1)k+1}|- For example,
when K = 4, the word w = 6 354|714 2|75 6 3 € BlockMax(4,12) has
levKmax(w) = 1, coming from the repeated maximal element 7 (“|” indicates

separations between blocks). Then we have the following theorem and corollary.

Theorem 7.1.1.

Z tKn Z xlevaax(w)q|w|

n>0 w€ BlockMax(K,Kn)
1
HK gU+E) ([4] J(K-1)
i (1 - G TR
= q Jlq

Corollary 7.1.2.

S 3 e ()

n>0 weBlockMax(K,Kn) j>1

To prove Theorem 7.1.1, we define a homomorphism to choose a value j for the
maximum spots, then fill in the rest of each block with entries < j. That is, we

let Oeviemaz(en) = 01if K1 N, Oepkmaz(€0) = 1, and for n > 1

Orcusimas (esen) = (=1 (& = 1" 3P (a4 gD
Jj=22

= () 1) 3 g ([ — 1],

Jj=2

= (DT = T[T

Jj=1
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Claim:
@levaax(hKn) == Z l,leVKmax(w)q|w| (711)

we€BlockMax(K,Kn)

To see this, we interpret each term in

&(p)
@levaax<thn) = Z (_1)Kn_£(u)Bu,Kn H @levaax(eui)
puEKn =1
L(N)
= Z(_l)Kn_g(/\)B)\,n H @levaa:c(eK)\J
AFn =1
€(N)
= SO B TT -1 = N3 O () K0
AFn =1 7j>1
4N
—ZBA"Hx_l LN GUHON ([5], ) KD
AFn j>1

By the definition of ©c,kmaz, this sum will contribute nothing unless each
part of p is divisible by K, so we can obtain u - Kn by taking some A F n and
multiplying each part of A\ by K. Thus, the term ), = B,, can be interpreted
as creating a brick tabloid with bricks whose lengths are KAi, KXo, ..., KAyy)
Within a brick, we fill in each block of size K with a word having first entry j
and other entries all smaller. We also label each nonterminal block of size K with
an  or —1. We define the weight of a filled labeled brick tabloid created in this
manner to be the product of the x and —1 labels times ¢ raised to the sum of the
entries. For example, the object depicted in Figure 7.1 has blocks of size 4 and
weight —¢%

8 64,4181 41713716 415

Figure 7.1: A filled labeled brick tabloid coming from ©jeyxmas(h12) with K =4

We perform an involution on the set of filled label brick tabloids that results,

breaking a brick at the first —1 encountered or combining bricks if the first entries
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of adjacent blocks are equal. For example, the image of Figure 7.1 is depicted in

Figure 7.2.

81 6 4

4|1 8141737

6 ' 4 5

Figure 7.2: The image of Figure 7.1

Fixed points will thus have no —1 labels, and blocks of K will have equal
maximum (first) entries within each brick, but not between bricks. The factors
of x will thus give us exactly z'®vKmax(®) which verifies Equation 7.1.1. One fixed

point is depicted in Figure 7.3.

6 ' 45

81 6 4

Figure 7.3: A fixed point coming from O, g maz(h12) with K =4

Thus,
ZtKn Z xleVKmaX(w)q|w| — ZtKn@levaax(hKn)
n>0 weBlockMax(K,Kn) n>0
-1
= {1+ ) (= (=@ -1ty q(j+K)n([j]q)(K_1)"> (7.1.2)
n>1 j>1
—1
1 p |
_ _ n _1\n G+E)n (1,1 \(K=1)n
=|1-— 2 t""=-1) qu (i) )
n>1 j>1
-1
1 , » an
= (1= 77 X 2 [~ D () "] )
i>1 n>1

— (1= 1 Z tK(x_ 1)q(j+K) [j]q)(K_l) >1

=12 T— Kz — g0 ((j],)FD

_ £ ([]) Y :
_ 1—21_mx_1>q<j+K><mq><K—”> |

j=1
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proving Theorem 7.1.1.
Corollary 7.1.2 follows by setting = 1 in Equation 7.1.2. Thus, all terms

vanish except when n = 1, which simplifies into

(1 - Zth(”K’([j]q)Kl> :

Jj=1

7.2 SU'SD?

In this subsection, we will consider the condition that each block has r strict
increases followed by d strict decreases. Let K = r +d + 1, and let SU"SD%(n)
be the set of words w € P" with this pattern. For example, one element of
SU%SD?(12) is given by 1 3 76 2 1|2 4 8 5 4 3. Then we have the following

theorem and corollary.

Theorem 7.2.1.

ZtKn Z xlevaax(w)q\w\ —

n>0 weSUTSDI(Kn)
. r da\ . . —1
oy 5 K+ (5)+(5) 7], Eﬂq
=1 1— (7 — 1)thj+K+(g)+(2) [ﬂq[ﬂq

Corollary 7.2.2.

S ST gl (1_txij+K+(;)+(‘é) H m )_1.

n>0 weSUTSD(Kn) Jj=0

To prove Theorem 7.2.1, we define a homomorphism that chooses a value j for
the block maxima, then independently selects r distinct numbers less than j and

d distinct numbers less than j. That is, let
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¢SU7»5Dd(60) = 1, ¢SUT‘SD(1(€N> =0 for N 7£ 0 mod K and, for n Z 1,

bsvrspa(exn) = (1) (@ =11 Y (qj*<r;1>+<d?> [j , 1] : [j a 1] ) ”

j>2 r d
e (e ] [))
e g e of] )

where the last step follows from the fact that

(1) () reeren (e e ()0

Claim:
¢5UTSDd (hKn) — Z I.IEVKmax(w) q|w| .
weSUTSD(Kn)

To see this, we interpret each term in:

()
¢SUTSDd(hKn> = Z (_1>KH_Z(N)BH,KH H ¢K(€M>
p=Kn =1
£(N)
= Z(—l)K"_Z(A)B,\,n H brc(exr,)
AFn i=1
(N . AN TN
= B[ - 1 tg ) 3 g H H . (72.1)
AFn =1 j>1 r q d q

By the definition of ¢grgpa, this sum will contribute nothing unless each part
of u is divisible by K, so we can obtain u F Kn by taking some A\ + n and
multiplying each part of A by K. Thus, the term ), B, can be interpreted
as creating a brick tabloid with bricks whose lengths are KA;, KXo, ..., KAy .
The term [J2%Y (2 — 1)1 labels each non-terminal block of K with either z or

d

—1. The term J[.% g+ (2) > s U] 2i 7] ;\i selects some j > 2 to be the

maximum for each brick and fills in each block of the bricks with a sequence

Wy < Wy < -0 < Wp < J > Wpyg > -0 > Weagrl, weighted by ¢!, We then define
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the weight of such a filled labeled brick tabloid to be the product of the —1 and
x labels times ¢!, where w denotes the underlying word. Figure 7.4 depicts one

such filled labeled brick tabloid.

-1
4

Figure 7.4: An object coming from Equation 7.2.1 with K =4,n =3

Thus, Equation 7.2.1 above corresponds to a weighted sum over all such brick
tabloids. We perform an involution on these tabloids to cancel in pairs. The
involution proceeds as follows. Scan left to right looking for the first occurrence
of either 2 bricks with adjacent blocks of size K having same maxima or a —1. If
a —1 is scanned first, break the brick after the —1 and remove it. If 2 adjacent
bricks have blocks with the same maxima j, we combine the bricks and insert a
—1 into the final block of the first brick. For instance, the image of Figure 7.4 is

given in Figure 7.5.

Figure 7.5: The image of Figure 7.4

Therefore, Equation 7.2.1 reduces to summing over the fixed points. A fixed
point is displayed in Figure 7.6. Fixed points will have no —1’s and no adjacent
bricks with the blocks having the same maxima. Thus, they must have an x

corresponding to each pair of adjacent blocks with the same maxima, which is

Z xlevaax(w)q\w\ )

weSUTSD(Kn)

exactly counted by
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216 7 6 ' 8

1

Figure 7.6: A fixed point of Equation 7.2.1

Therefore,

Z tKn Z levaax |w| Z ¢ ¢SUT spd (hKn)

n=0 weSUTSD4(Kn) n>0

= (14> () (=)@ -1m Y (q]+K+( 5)+(5) m

—[1- - i - Z ((z - 1)tK)"Z (qj+K+(

— ((x thjJrK*(S)*(g) {ﬂ B > >

(1o g e OORL,
RRN=REC 1>th1”“< *EIELL,

) OO [, )

-\ ]21—( — g R EE] g

which proves Theorem 7.2.1.

(7.2.2)

To prove Corollary 7.2.2, we wish to set x = 1 in Equation 7.2.2. Thus, all

terms vanish except when n = 1, which gives

Z Kn Z 1)K Z qj+K+(g)+(g‘)

g = (1 +(—)¥
n>0 weSUTSD(Kn) Jj=1

which simplifies to Corollary 7.2.2.

16
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7.3 LSD

In this section, we consider words in which each block has the condition that
all entries are equal, except for the last entry in the block, which is smaller. For
any K > 3, let
LSD(K,m,n) ={w € [m]": Vi,wixi1 = Wixio =+ = Wik+Kk_1 > Wik+K }; 1.€.
the set of words with K — 2 levels followed by a strict decrease (in each block of
length K, we have K — 1 equal entries followed by a smaller entry). For example,
one element of LSD(4,9,8) is given by 555 2|9 9 9 3. Define
blockKwdes(w) = |{i : wix > wix+1}| and blockKdes(w) = {7 : w;jx > wix i1}

Then we have the following theorem:

Theorem 7.3.1. Let K > 3. Then

-1
1 m+mn—1
Kn blockKwdes(w) _ . K(. n
E t 5 x (1 7 E [t* (z —1)] < on ))

n>0 weLSD(K,m,n) n>1
and
1 —1
Kn blockKdes(w) __ . K(,. __ nf M
D S (REE D M AT ()
n>0 weLSD(K,m,n) n>1
1—2z

a4+ (= R - )

To prove the first part of Theorem 7.3.1, we can define a homomorphism on A

by Orsp(eg) =1, Opsp(en) =0 for N #0 mod K, and, for n > 1,

m+n—1)

Orsplen) = (- (o - 1 ("

Lemma 7.3.2.

(m—l—n—l

on ) = |{w € LSD(K,m, Kn) : blockKwdes(w) = n — 1}|.

m+n—1

o ) as first choosing a sequence m+n—1 2> a; >

To see this, we interpret (
as > -+ > 9,1 > ao, > 1. Next, we obtain a new sequence b by subtracting

n — 1 from a; and as, n — 2 from a3 and a4, and so on, leaving as, 1 and as,
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alone. We will have m > b; > by > bg > -+ > by,_1 > by, > 1. Then the word
W= wwWy ... Wk, € LSD(K,m, Kn) that we obtain is given by

Wy =Wy =+ =wWxg_1 = by

WK = bQ

WK+1 = WK42 = -+ = WaKk—-1 = b3

Wag = by

Wn-1)K+1 = Wn-1)K+2 = = WpKk-1 = ban—1
WpKg = b2n

Notice that we have forced weak descents between blocks at every possible place,
so that blockKwdes(w) = n — 1. As the reader can see, this lemma does not allow
us to keep track of the sum of the entries in the word.

Claim:
@LSD (hKn) = Z beOCkKWdes(w) '

weLSD(K,m,n)

To see this, we interpret each term in

£(p)
@LSD(hKn) = Z (_1)Kn_e(u)B/L,Kn H @LSD(G,U,Z-)
pKn =1
o)
= Z(—l)Kn_g(’\)BA,n H Orsp(exa,)
An i=1
o)
. + N =1
NN x—l%—l(m i ) 7.3.1
S Il (") 73.1)

By the definition of ©pgp, this sum will contribute nothing unless each part
of p is divisible by K, so we can obtain u F Kn by taking some A + n and
multiplying each part of A by K. Thus, the term ), = B,, can be interpreted as
creating a brick tabloid with bricks whose lengths are KA1, KXo, ..., KAyy). By
Lemma 7.3.2, we interpret Hf(:)‘l) (mzx_l) as filling in a word with K — 1 equal
entries followed by a smaller entry for each block of length K, and forcing weak
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decreases between blocks within the same brick. In addition, we interpret the term
Hf(:’\l) (x—1)*~! as labeling each nonterminal block with either z or —1. The weight
of a brick tabloid is given by the product of the x and —1 labels. One such filled
labeled brick tabloid is depicted in Figure 7.7.

-1
4

Figure 7.7: An object coming from Equation 7.3.1 with K =4,n =3

Thus, Equation 7.3.1 above corresponds to a weighted sum over all such brick
tabloids. We perform an involution on these tabloids to cancel in pairs. The
involution proceeds as follows. Scan left to right looking for the first occurrence
of either 2 bricks with a weak decrease between adjacent blocks, or a —1. If a —1
is scanned first, break the brick after the —1 and remove it. If 2 adjacent bricks
have a weak decrease between blocks, we combine the bricks and insert a —1 into
the final block of the first brick. For instance, the image of Figure 7.7 is given in
Figure 7.8.

Figure 7.8: The image of Figure 7.7

Therefore, Equation 7.3.1 reduces to summing over the fixed points. One fixed
point is displayed in Figure 7.9. Fixed points will have no —1’s and no adjacent
bricks with weak decreases between blocks. Thus, they must have an x correspond-

ing to each pair of adjacent blocks with a weak decrease, which is exactly counted

by
Z xblockKwdes(w) '

weLSD(K,m,n)
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Figure 7.9: A fixed point of Equation 7.3.1

Thus

Z tKn Z xblockKwdes(w) _ Z tKn Orsp (hKn)

n>0 weLSD(K,m,n) n>0
-1
+n—1
=[1 _N\Kn/_ 1\Kn—1 __ 1\n—1 m
(14 3o (!
n>1
-1
1 m+n—1
( (", )) ,

proving the first part of Theorem 7.3.1. The second part of Theorem 7.3.1 is
proved in a similar manner using the homomorphism ¢sp(eg) = 1, ¢rsp(en) =0
for N #0 mod K and, for n > 1,

dusolern) = (-0 a1y (1),

We make a few notes here. First of all we could have defined level-alternating

words to have j-levels in each position:
{U)I Wy =Wy =+ =W; <Wjq1 = Wjg2 = ... W > Wajq1 = -+ = W35 < }

However, these would have been isomorphic to up-down words of shorter length (as
we noted in Corollary 6.3.3 ). Also, we could have applied the same method from
Chapter 4 to LSD; that is, we can relate level strict-down words to level weak-up
words via an involution. However, since level weak-up words are no easier to count
than level strict-down, this method does not yield additional insight. For this
reason, we used the alternative method of defining an appropriate homomorphism

to count weak descents between blocks.
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7.4 SUSDWU

As we mentioned in Section 3.3, our method of defining a homomorphism on
the ring of symmetric functions complements the usual technique of writing down
recursions for the desired objects (often in terms of the starting letter) and using
the transfer matrix method (see [42], section 4.7 or [22]). This section is a prime
example of this interplay, where the homomorphism method reduces our original
task to one that can be easily accomplished through solving recursions.

Suppose we consider words that can be partitioned into blocks of length 3,
where each block has the pattern strict increase, strict decrease; and there are
weak increases between blocks. Let SUSDWU(m,n) be the set of such words on
alphabet [m] of length n. For example, one element of SUSDWU(7,6) is given by
1633 75. Then we have the following theorem.

Theorem 7.4.1.

P
> |SUSDWU (m,n)|t" = :
n>0 Qm(t)

where P, and Q,, are polynomials.

To prove Theorem 7.4.1, we will first enumerate a more general class of words

by block descents. Let
SUSDA(m,n) ={w € [m|" : wszj_o < wsg;_1 > ws;Vi}

(the acronym coming from strict-up, strict-down, anything). We will continue to
use our block descent statistic from the previous section, where our blocks are now
of length 3: block3des(w) = |{i : ws; > ws;i+1}|. In addition, we use a third class

of words in order to define our homomorphism. Let
SUSDSD(m,n) ={w € [m]" : ws;_o < wz;—1 > wz; > wz;41Vi}.

We wish to define a homomorphism by Opoer(0) = 1, Opoer(e;) = 0 for j # 0
mod 3 and, for n > 1,

Obioek (€3n) = (—1)*" 1 (x — 1)1 |SUSDSD(m, 3n)|. (7.4.1)
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Claim:

block3des(w
@block(h?m) - E X ( )
weSUSDA(m,3n)

To see this, we interpret each term in

()
@block(h?m) - Z (_]-)3”_“”) Bu,?m H ®block(6ui)
pE3n i=1
£(N)
= (1" NBy, T Ovtoc (€31,)
A-n i=1
2(N)
=> B |J(x = )N SUSDSD(m, 3))]. (7.4.2)
AFn =1

By the definition of Oy, this sum will contribute nothing unless each part of
w is divisible by 3, so we can obtain p = 3n by taking some A = n and multiplying
each part of A by 3. Thus, the term ), B, can be interpreted as creating a
brick tabloid with bricks whose lengths are 3A;, 3Ag, ..., 3Ayn). We fill every brick
with a SUSDSD word, and we label every third cell-except the final one in a

brick—with  or —1. Thus, Equation 7.4.2 can be interpreted as a sum over all

Figure 7.10: An object coming from Equation 7.4.2

such filled labeled brick tabloids. We perform an involution to cancel out negative
terms in this sum. The involution proceeds as follows. Scan from left to right
looking for the first occurrence of either 2 bricks with a strict decrease between
them, or a —1. If a —1 is scanned first, break the brick after the —1 and remove
it. If 2 adjacent bricks have a strict decrease between them, we combine the bricks
and insert a —1 into the final cell of the first brick. The image of Figure 7.10 is
given in Figure 7.11.

Therefore, Equation 7.4.2 reduces to summing over the fixed points. A fixed

point is depicted in Figure 7.12. Fixed points will have no —1’s and no adjacent
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2175

Figure 7.11: the image of Figure 7.10

bricks with a decrease between them. Thus, they must have an z corresponding

to each block descent. This is exactly counted by

E : xblock3des(w) ]

weSUSDA(m,3n)

| P X

2715

3:5: 1

Figure 7.12: A fixed point of Equation 7.4.2

Setting x = 0 in this expression eliminates any terms with block descents, forc-
ing a weak rise between blocks. Thus, we can obtain )~ o [SUSDWU (m, 3n)|t*"
by taking ano t"Opiock (hn) |z=0, so that:

> [SUSDWU (m, 3n)|t*" = [Z(—t)“(%block(en)]

> >
n>0 n>0 =0

= [Z(—t)?’n(—l)gn_l(x — 1) SUSDSD(m, 3n)|]

— [Z t3(—=1)"|SUSDSD(m, 3n)|

n>0

The reasoning for words of length other than a multiple of three will be similar;
we can use the same homomorphism along with a weighting, which will yield a
polynomial numerator. Thus, we have reduced Theorem 7.4.1 to finding a rational
polynomial expression for )=~ t*"(=1)*|SUSDSD(m, 3n)|.

We now turn our attention to counting SUS DS D(m,3n), which we will accom-

plish via recursions. Fix some m and let By ; = {w € SUSDSD(m,3k) : wy = j},
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the set of patterns containing k blocks of this type, where the first block begins
with j and there are strict decreases between blocks. Let by ; = |By;|. We can
enumerate By ; for each j. For example, when m = 3, By, = {132,121,131} and
By, = {232,231}

It is easy to see that by ; satisfy the recurrence:

m—1

bk,j: E aj,rbk—l,ra

r=1
where a;, counts the number of 1-block patterns starting with j and ending with
an entry > r. Moreover, we can find a simple formula for the a;,. For a block
to start with 7 and end with something greater than r, the middle entry must be
larger than both j and r + 1. The number of such entries is m — max(j,r + 1).
For each such entry, we can end with anything between it and r» + 1. It is useful

to separate cases, so that we get:

5 r<j
("7) =7
The case r > j is obvious: we simply choose r < wy < w3 < m. When r < j, we
consider first choosing w3 < j, which gives m — j choices for wy and 7 — r choices
for ws. On the other hand, if ws > j, we choose j < wy < w3 < m. Then we have

m—j> _ (m—7)(m+j—2r—1)
2 2

oy = =) =)+ (

Thus, we can write

Jj—1 . . m—2
(m—j)m+j—2r—1) m—r
bk,j = ;:1 9 bmfl,r + ;:j 9 bkfl,r-

Imagining a block of 0s following a single block (so that » = 0), we also obtain

m—j)m+j—1)
5 :

bl,j - (

These recursions can be solved for any particular value of m. We will illustrate

the first few cases here.
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When m = 3, we have already noted that

b171 = 3 and
bro = 2.

For n > 1, we get the following recursions:

2
3 —
bn,l - Z ( 9 T) bn—l,r - bn—l,l and

1

3—-2)3+2-2-1
bn,2 - ( )( 9 )bn—l,l - bn—l,l-

Thus, for k > 2, |[SUSDSD(3,3k)| =3+ 3 = 6. Then

46
§t3"(—1)”|SUSDSD(3,3n)\ =6
Let m = 4. Then we have:
By = {132,121,131, 142, 141, 143}, b1 =6.
By o = {232,231, 242,241, 243}, bia=5.
B 3 = {341, 342, 343}, b1z =3.

For n > 1, we obtain the recursions:

bn,l = 3bn—l,l + bn—1,27
bn2 = 3bp—11 +by_12, and
bps =2bp_11 + bp_12.

Let

Ci(z) = Z b,

n>1

Cy(x) = Z bpox™ ', and

n>1

Cg(l‘) = Z bnygﬂfn_l.

n>1
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Applying our recursion, we get:

Ci(r) =6+ Z(3bn—1,1 + bn—l,Q)QUn_1

n>1

=6 + 3 Z bn,l,lxnfl + Z bn,LQl’nil

n>2 n>2

=6+ 32C(x)(x) + xCs(x) (7.4.3)

It is clear from the recursions and initial conditions that Ci(x) = 1 + Cy(x), so

Equation 7.4.3 becomes

14 Cy(x) =6+ 3z(1 + Ca(x)) + 2Cy(x)
(1 —4z)Cy(x) =54+ 3z

Co(z) = i) i— zz
Therefore,
5+ 3z
Ci(z) =1+ -
_ 6—x
1 —4x
Similarly,

Cs(z) = 3+ 22(Cy(x)) + 2Cy(x)
(3 —12z) + (122 — 22%) + (5z + 32?)
1—4x

_ 345z +a?
o 1—da

From the nice linear form of our denominators (or solving the recursions more

directly), we find that:

by = bpo =23-4"7% (n > 2) and
bpz = 694" (n > 3),

while by 3 = 17. Thus, |[SUSDSD(4,3n)| = 253 - 4773 for n > 3, so that

—9
£ (—1)" DSD(4 =253 ——.
;3 (=1)"|SUSDSD(4, 3n)| e TE
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Let m = 5. We have by ; = 10,092 = 9,b13 = 7,014 = 4.

Our recursions will be

bn,l = bn,Q = 6bn—l,l + bn—1,2 + bn—1,37
b3 = 9bp_11 +by_12 + by_13, and
bpa = 3bp_11 +2b,_12 + bp_13.

Let

Dl(l') = Z bn’ll’nil,

n>1

Dy(z) = Z bz !,

n>1

Ds(x) = Z bnsz" "', and

n>1

D4(l‘) = Z bn74l'n_1.

n>1

As before, Dy(x) = 1+ Dy(x). Using this, our recursions become:

Di(x) =10+ 62Dy (x) + 3x(Dy(x) — 1) + xD3(x),
Ds(x) =7+ bxD;(x) + 3x(D1(x) — 1) + 2D3(x), and
Dy(x) =4+ 32Dy (x) + 2x(D1(x) — 1) + 2D3(x).

We can solve for D3(z) in terms of D;(x):
(1 — 2)Ds(x) = 7 — 3z + 82D (x), s0 Dy(x) = =248,
Then

7 — 3z + 8xDy(x)
11—z

Di(z) =10+ 62Dy () + 3x(Dy(z) — 1) + =

(1 —2)D;(z) = 10 — 10z + 92(1 — z)D;(2) — 3z + 322 + Tz — 322 + 822D, (z)

=10 — 62 — 22D () + 92D; ()
10 — 62

Dy(z) = 1—10x + x2



and
7 — 3z + 8r 0
Dsy(z) = - _x1 102+
7 —T0x + Ta* — 3z + 302 — 32° + 80z — 4827
B (1-10z+2%)(1 —x)
B 7+ 7x — 112? — 323
- (1= 102 + 22)(1 — =)
T+ 14z + 327
1 — 10z + 22
and

Dy(z) =4 — 2z + 5xD;(z) + xDs(x)

A— 9545 10 — 6x 7+ l4x + 322
=4 —2x+ 5z x
1—10x + 22 1—10x + 22

_ 4—40z + 422 — 22 4+ 202% — 223 + 502 — 3022 + Tz + 1422 + 323

1 —10x + x2
44150+ 82" +4°

1 — 10z + 2
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Although we do not obtain a nice formula for the coefficients of these generating

functions, we can conclude that

|SUSDSD(5,3n)| = [Di(z) + Do(z) + Ds(x) + Dy(x)]]pn-1

Y
gn—1

~ [30+27x 4 1022 4 27
B 1 —10x + 22

so that

> " (—1)"[SUSDSD(5, 3n)|

n>0

30 + 272 + 1022 + 23
_ 3n n
_1+;t (=1) [ 1 — 10z + 2 }

pn—1

30 4+ 27x + 1022 + 23
—1_4 _ 43\n—1
tZ( t) [ 1 — 10z + 22 }

nZl an—1

1 —10(—t3) + (—t3)?
1 —198° +38t° — 97 + ¢
B 1+ 103 + ¢

g {30 +27(=1%) +10(—#°)* + (=°)* 1}
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As the reader can see, similar reasoning will continue to work for larger values of

m, so that we still get rational expressions for Y - t*"(=1)"[SUSDSD(m, 3n)|.
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