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SUMMARY
Knowing the genes involved in quantitative traits provides an entry point to understanding the biological
bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral
change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related
traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and iden-
tified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the
fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA,
4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred pref-
erentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than
inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover
biology underlying behavior and prompt a reconsideration of expected relationships between genetic and
functional variation.
INTRODUCTION

A major challenge in behavior genetics is to turn genetic

information into mechanistic understanding of the sort that

would, for example, be useful in designing new treatments

for psychiatric disorders and, more generally, understanding

how genetic variation leads to behavioral variation. A key

step is progressing from quantitative trait locus (QTL) to

gene, which has only been achieved for any complex trait,

in any species, in a small number of cases.1,2 Of the 5,000

QTLs identified in rodents, less than 100 genes have been

identified, almost all on the basis of correlative evidence,

such as proximity of a gene to the QTL or alterations in tran-

script abundance, rather than by a causal test of a gene’s

candidacy.2 Currently, there is no consensus on how to pro-

ceed from QTL to gene.

Here, we demonstrate the power of a quantitative comple-

mentation (QC) test, first applied in Drosophila3 and later

shown to work in rodents,4 to directly query the causal gene

impacted by the QTL. Construction and phenotyping of F1 hy-

brids with and without a knockout (KO) of a candidate gene,

and of inbred strains with and without the KO of a candidate

gene, test whether the QTL operates through the gene under
Cell Genomics 4, 100545
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investigation. By separately assaying the joint effect of QTLs

(from the phenotypic difference between strains) and the ef-

fect of the mutation (from the phenotypic difference between

KOs and wild type [WT]), the QC test reveals a QTL whose ef-

fect depends on the presence of the candidate gene as a sig-

nificant interaction between the effect of mutation and the ef-

fect of strain. Applying the test requires access to inbred

animals carrying a KO on the same genetic background as

the QTL, which has been difficult to achieve when KOs were

generated using homologous recombination in 129 strains or

C57BL/6N. The development of the CRISPR-Cas9 technology

now lifts that restriction by enabling genetic manipulation in

any strain.5,6

We set out to apply the QC test to fear-related behaviors.

We chose these traits because we could use extensive infor-

mation available about the brain regions involved (ventral hip-

pocampus and amygdala7,8), and their underlying circuitry,9–12

to explore where and how in the brain genetic variation

results in behavioral change. We reasoned that by knowing

the causal genes, we could identify changes in their expres-

sion and regulation at a single-cell level, revealing the molec-

ular mechanisms that mediate the impact of genetic variants

on traits.
, May 8, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. Manhattan plots for three fear-related behaviors in mice

(A–C) The data show the results of a meta-analysis of (A) 1,931 mice for cue

conditioning (FC-cue), (B) 2,671 for contextual conditioning (FC-context), and

(C) 1,942 for entries into the open arms of the elevated plus maze (EPM-open

arms). Chromosome numbers are listed on the horizontal axis. The vertical

scale is the negative logarithm (base 10) of the association p value. A horizontal

dotted red line gives the location of the 5% significance threshold (from

simulation).
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RESULTS

Generating a large-scale set of phenotypes and
genotypes
Our first task was to identify QTLs involved in fear-related be-

haviors that ideally indicated one or a small number of genes

for QC testing. We chose a hybrid mouse diversity panel

(HMDP) for mapping because of its potential to deliver high

resolution2 (thus increasing the chance of finding QTLs con-

taining a small number of candidate genes) and because it in-

cludes recombinant inbreds derived from C57BL/6J, hence

providing many QTL alleles on a strain readily amenable to

CRISPR-Cas9 modification (the HMDP strains and numbers

of animals used are listed in Table S1). We mapped variation

in a conditioned fear assay in which animals were exposed

to an auditory cue associated with an aversive shock. Re-

exposure to the auditory cue elicits a fear response, measured

as the amount of time spent freezing13,14 and referred to in this

paper as FC-cue. The context in which conditioning occurs

also elicits freezing (FC-context),15 and we assayed this too.

We also mapped variation in an unconditioned fear assay us-

ing the elevated plus maze (EPM), whose open arms act as

anxiogenic environment. We counted the number of entries

into the EPM’s open arms as a measure of fear, referred to

henceforth as EPM-open.
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To enable us to perform a well-powered meta-analysis and

robustly identify loci at high resolution, we combined our data

with results from 29 publications.16–45 We implemented a

rigorous pipeline to harmonize phenotypes across the multiple

datasets (STAR Methods: harmonizing phenotyping data for

meta-analysis), generating phenotypes on a total of 6,544 mice

from seven cohorts (Tables S1 and S2).

Our next requirement was a set of genotypes at markers suf-

ficiently dense to capture most causative variants. Short-read

sequencing provides almost complete catalogs of genetic vari-

ants for sixteen inbred strains,46 which are also a resource for

imputing variants in the other mapping strains.47 We carried

out imputation using a hidden Markov model-based technique

with proven effectiveness in inbred model organisms.48 After

imputation, we obtained genotypes on 16,767,664 markers

(the imputation strategy and validation results are described in

STAR Methods: imputation of genotypes). For mapping, marker

sets were chosen that are polymorphic within the strains of each

dataset, a number varying from 4 to 16 million SNPs segregating

between the inbred strains, sufficient to identify causative vari-

ants at QTLs.49,50

Genetic mapping of conditioned and unconditioned fear
The phenotypic dataset we obtained is highly structured, con-

sisting of closely related individuals (recombinant inbreds share

half their genome, like full siblings) as well as distantly related in-

dividuals. Genome-wide association was carried out with

GEMMA, which implements a linear mixed-model marker asso-

ciation test,51,52 including a genomic relationship matrix to con-

trol for the population structure arising from the inclusion of indi-

viduals with different degrees of relatedness. We mapped each

phenotype in each cohort and carried out a meta-analysis of

the results using a random effects model implemented in META-

SOFT.53,54 We used Genome Reference Consortium Mouse

Build 38 (GCA_000001635.2, mm10), and all coordinates in

this paper refer to that build.

To assess significance, we used GCTA55 to simulate data for

each cohort and meta-analyzed the results in the same way as

we did for the real datasets. From 100,000 simulations, we ob-

tained a 5% threshold of negative logarithm (base 10) of the as-

sociation p value (logp) of 4.50, consistent with thresholds esti-

mated by others using the same experimental design.35–56

Applying this significance threshold, we identified 14 loci for

FC-context, 15 for FC-cue, and 72 for EPM-open (Table S3). At

a threshold corrected for testing three phenotypes (logp =

4.97) the number of loci for EPM-open fell to 60 while remaining

unchanged for the other two phenotypes. Four loci were com-

mon to FC-context and FC-cue and four were common to

EPM-open and FC-cue, giving 93 unique loci. The Manhattan

plots in Figure 1 show all loci that exceeded the logp threshold

of 4.5.

While the genetic architecture of fear-related behaviors was

highly polygenic, we found evidence for a few large-effect loci,

notably on chromosomes 7 and 13 for FC-cue (Figure 1A) and

chromosomes 4 and 13 for FC-context (Figure 1B). More than

five times as many QTLs were identified underlying EPM-open

than either of the fear-conditioning phenotypes, likely reflecting

higher polygenicity of the trait (Figure 1C). The size of the QTL



Figure 2. Quantitative complementation of five genes at a locus on chromosome 13 for cue fear conditioning

(A) QTL regional information from LocusZoom.59 The top part shows the association results from ameta-analysis, with the position of the highest-scoring variant

annotated in purple. The vertical scale is the negative logarithm (base 10) of the association p value. The bottom section gives the location and orientation of genes

at the locus. A red box identifies each gene used in the quantitative complementation tests.

(B) Design of the quantitative complementation test. Black boxes indicate the knockout (KO) allele, and strain is indicated by color, where blue is C57BL/6J and

red is DBA/2J. An ‘‘X’’ indicates a cross between the named groups above and below the X, and an arrow points to the progeny of each cross. The four groups

used in the quantitative complementation test are wild-type C57BL/6J (B6 WT), heterozygote KOs (B6 KOs), an F1 from crossing DBA/2J to C57BL/6J (D2 WT),

and the F1 KO by DBA/2J (D2 KO).

(C) Results of quantitative complementation testing of four annotated genes in the region. The vertical axis is the quantile normalized duration of freezing to a cue

from the fear-conditioning test. The horizontal axis lists the groups of mices used. Groups are B6.WT: WT C57BL/6J; B6.KO: heterozygote KOs on C57BL/6J;

D2.WT: F1 from crossing DBA/2J to C57BL/6J; D2.KO: the F1 from crossing the KO onto DBA/2J. These genes were not significant by quantitative comple-

mentation (Table 1).

(D) Results of the quantitative complementation test for the long non-coding RNA 4933413L06Rik. The axes labels are the same as in (C). The difference between

these groups yielded a significant interaction result in the quantitative complementation test (Table 1).
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intervals varied considerably from 0.02 to 19.6 Mb (confidence

intervals estimated by simulation57) with a median of 2.5 Mb,

and each locus contained a median of 23 genes (range from

0 to 329; Table S3).

QC testing identifies six genes for fear-related behavior
Which of the genes at a locus is causal for the phenotype? To

answer this for specific loci, we first chose a 2 Mb QTL at the

end of chromosome 13 associated with FC-cue (logp = 7.6), pre-

viously identified in a panel of BXD recombinant inbreds,27 that

includes a hyperpolarization-activated cyclic nucleotide-gated
channel 1 (Hcn1). Since pharmacological blockade of HCN1 re-

duces freezing, Hcn1 has been proposed as the causal gene at

this locus27 (although deletion ofHcn1 does not alter conditioned

fear58). We used an exon-excision CRISPR-Cas9 strategy to

knock out out all four annotated and one unannotated gene lying

within the 95% confidence intervals of the QTL (Figure 2A) (we

omitted the single-exon unannotated transcript Gm6416). We

used a quantitative polymerase chain reaction to confirm that

the engineered mutations altered RNA abundance. The

CRISPR-Cas9 strategy and characterization of the mutants is

described in STAR Methods and Tables S4 and S5.
Cell Genomics 4, 100545, May 8, 2024 3



Table 1. Quantitative complementation testing of fourteen genes at six QTLs for fear-related behavior

Phenotype Gene Strain p value KO p value Interaction p value QTL location N

FC-cue Emb 5.33E�02 1.20E�01 3.73E�01 chr13:116.4–118.4 73

FC-cue Hcn1 8.12E�02 9.93E�01 5.02E�01 chr13:116.4–118.4 100

FC-cue Mrps30 5.67E�05 4.18E�01 8.53E�01 chr13:116.4–118.4 94

FC-cue Parp8 2.32E�02 3.94E�01 7.00E�01 chr13:116.4–118.4 85

FC-cue 4933413L06Rika 5.37E�01 6.04E�02 1.45E�03a chr13:116.4–118.4 87

FC-context Megf9 1.30E�01 3.44E�01 4.69E�01 chr4:70.1–78.2 48

FC-context Ptprda 5.15E�01 2.69E�02 1.95E�04a chr4:70.1–78.2 137

FC-context Psip1a 2.68E�01 2.83E�02 1.09E�03a chr4:78.7–85.2 92

FC-context Sh3gl2a 5.43E�02 3.09E�01 3.35E�04a chr4:78.7–85.2 117

FC-context Snapc3 8.48E�01 8.59E�01 3.00E�02 chr4:78.7–85.2 82

FC-context Ttc39b 4.52E�01 7.28E�01 2.99E�02 chr4:78.7–85.2 75

EPM-open Nptx2a 1.97E�02 2.27E�01 1.74E�03a chr5:144.2–145.0 96

EPM-open Stim2 1.85E�03 1.84E�04 1.72E�01 chr5:54.1–54.3 105

EPM-open Lsampa 2.26E�01 9.06E�02 1.17E�03a chr16:41.3–41.4 79

The table shows the p values of an analysis of variance testing for an interaction between strain and knockout (KO) in the four groups of the quantitative

complementation test. QTL locations are given in Mb and the name of the phenotype tested. N is the total number of animals used for the quantitative

complementation test. QTL location coordinates are to mouse Genome Reference Consortium Mouse Build 38 (mm10).
aResults exceeding a multiple testing corrected p value of 0.0035.

Article
ll

OPEN ACCESS
Each KOwas subject to a QC test (Figure 2B) to find out which

gene was mediating the effect of the locus on FC-cue. Four

genes tested negative (Figure 2C), while one was positive (Fig-

ure 2D), which to our surprise was an unannotated long non-cod-

ing RNA (lncRNA), 4933413L06Rik. To interpret Figures 2C and

2D, consider that the first two groups in Figure 2B (C57BL/6J

wild type [B6.WT] and DBA/2J wild type [DBA.WT]) measure a

strain effect arising from a single copy of the D2 genome in the

F1 animals (assuming strict additivity, the strain effect should

be about half that found in inbred strain comparisons, consistent

with our results). Any difference between the B6.WT and B6.KO

groups is attributable to the presence of the KO.

The pattern of results in Figure 2C for the four genes tested

looks identical: a strain effect can be seen but no discernable dif-

ference between groups carrying the KO and the WTs. By

contrast, Figure 2D shows a different pattern. Animals with the

KO do differ from their respective WTs, indicating that the KO in-

fluences the phenotype but with differences between the two

strains. The B6.KO animals spend less time freezing than their

WT siblings (B6.WT), while the DBA.KO group freezes more

than their WT siblings (DBA.WT). In other words, the effect of

the mutation depends on the strain background, which we as-

sume to be due to a nearby QTL.

We tested this relationship between strain and KO by analysis

of variance and found a significant interaction (p = 0.0015; Ta-

ble 1), indicating that the effect of the QTL is mediated by the un-

annotated gene 4933413L06Rik. We found no evidence of the

involvement of Hcn1, demonstrating that QC testing can unam-

biguously identify genes mediating the effects of QTLs.

We next tackled the most significant region of association for

FC-context, a 15-Mb region on chromosome 4 (between 70 and

85). There were two QTLs here (70–78 and 79–85 Mb; Figure 3),

together containing 46 genes. To narrow the choice of genes, we

tested genes close to the most highly associated markers and
4 Cell Genomics 4, 100545, May 8, 2024
with confirmed gene expression in the hippocampus and amyg-

dala (from published sources60–67). At the first locus, the interac-

tion p value of Ptprd exceeded a multiple correction testing

threshold (p < 0.0036 for testing 14 genes listed in Table 1), while

at the second two genes, Psip1 and Sh3gl3, exceeded the

threshold (results shown in Figure 3 and Table 1).

Finally, we chose three loci contributing to variation in EPM-

open behavior (Figure 4). The first, on chromosome 16, had a

highly significant association (logp = 9.48) and lies in an intron

of a cell adhesion molecule, Lsamp (limbic system-associated

membrane protein), whose deletion is known to alter behavior

in the EPM.68,69 We found a significant interaction (p = 0.001; Ta-

ble 1), indicating that the effect of the QTL is mediated by the

Lsamp gene. We tested Stim2 and Nptx2 at two other loci using

the same CRISPR-Cas9 exon deletion approach. While the QC

test confirmed the candidacy of Nptx2, it was negative for

Stim2. Table 1 summarizes the results of the QC tests for all

genes at the six loci we examined.

Strain differences in gene expression, open chromatin,
and methylation are concentrated in excitatory
hippocampal neurons
One hypothesis about how QTLs act is that they alter gene

expression, which in our case would manifest as a difference

in the abundance of transcripts from C57BL/6J and DBA/2J ge-

nomes in relevant cell types.With six genes in hand, we set out to

test this assumption. We generated single-nucleus RNA-

sequencing (snRNA-seq) datasets in C57BL/6J and DBA/2J

animals from the ventral hippocampus and amygdala. We iden-

tified 17 cell types in the ventral hippocampus and 22 in the

amygdala with two replicates per strain per region (Figure 5, joint

uniform manifold approximation and projection). The clusters

included excitatory (glutamatergic) and inhibitory (GABAergic)

neurons, as well as several types of non-neuronal cells that



Figure 3. Quantitative complementation of four genes at two QTLs on chromosome 4 for contextual fear conditioning
(A and C) QTL regional information from LocusZoom.59 The top part shows the association results from a meta-analysis, with the position of the highest-scoring

variant annotated in purple. The vertical scale is the negative logarithm (base 10) of the association p value. The bottom section gives the location and orientation

of genes at the locus. A red box identifies each gene used in the quantitative complementation tests.

(B and D) Results of quantitative complementation testing of six annotated genes. The vertical axis is the quantile normalized duration of freezing to the context

from the fear-conditioning test. The horizontal axis lists the groups of mice used. Groups are B6.WT: WT C57BL/6J; B6.KO: heterozygote KOs on C57BL/6J;

D2.WT: F1 from crossing DBA/2J to C57BL/6J; D2.KO: the F1 from crossing the KO onto DBA/2J. Genes significant by quantitative complementation are shown

in gray (results in Table 1).
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were annotated based on known marker genes. We define indi-

vidual neuronal cell types based on neurotransmitter expression

and region or top marker gene (for example, Exc-DG in the

ventral hippocampus refers to excitatory cells in the dentate gy-

rus, and Exc-Tafa1 in the amygdala refers to excitatory cells

marked by the gene Tafa1), and we define neuronal cell class

as either excitatory or inhibitory through combining all excitatory

or all inhibitory cell types, respectively (one amygdala neuronal

type was excluded from both cell classes due to the expression

of both excitatory and inhibitory markers). Non-neuronal cell

types were not further defined due to an enrichment step for

neuronal nuclei during sample processing limiting the number

of non-neuronal nuclei captured.

Given that QTL action is believed to have its effect on

transcription through the alteration of the sequence at

regulatory regions, we also generated single-nucleus data for

CpG methylation70 and from a single-nucleus assay of transpo-

sase-accessible chromatin (snATAC-seq).71 Both epigenetic

modalities can be used to identify regulatory elements, such as

promoters and enhancers.72 Cell-type clusters generated from

snRNA profiles were propagated to snATAC andmethylation da-

tasets through joint embedding (Figure 5). We confirmed that cell

types were integrated bymodality (Figures 5A and 5D), that there

was no obvious strain bias for cell types (Figures 5B and 5E), and

that cell types were well defined (Figures 5C and 5F). Importantly

for interpreting our analyses, the three epigenetic datasets were
obtained independently from different animals, with two inde-

pendent replicates per modality.

Five out of six genes showed significant differences in expres-

sion between C57BL/6J and DBA/2J (significance defined as

exceeding a 10% p value [logp > 1.0], adjusted for the total num-

ber of transcripts tested, from DEseq273 output; negative log2

fold change [log2FC] indicates higher expression in B6):

4933413L06Rik (in eleven cell types; median log2FC = �0.74,

range = �1.63 to �0.53), Lsamp (in eleven cell types; median

log2FCc = �0.21, range = �0.78 to 1.1), Psip1 (in five cell types;

median log2FC = 0.41, range = 0.30 to 0.49), Nptx2 (in one cell

type; log2FC = 1.82), and Ptprd (in eight cell types; median

log2FC =�0.31, range =�1.24. to 1.85). Of the 36 cell types ex-

hibiting differential expression for these genes, 31 were within

the hippocampus. Different hippocampal cell types showed

different degrees of overlap for differential gene expression of

genes; for example, four of the five genes were differentially ex-

pressedwithin Exc-CA1-Galntl6 cells, while only 4933413L06Rik

was differentially expressed within Exc-CA1-Camk2d cells. We

noted that 22 of the 31 significant differences in the hippocam-

pus and three out of five significant differences in the amygdala

occurred in cell types categorized as excitatory neurons. Results

of the DESeq2 analyses are given in Table S6.

We asked if the pattern of gene expression also held for snA-

TAC-seq and methylation profiles, namely showing more strain

differences in the hippocampus with an enrichment in excitatory
Cell Genomics 4, 100545, May 8, 2024 5



Figure 4. Quantitative complementation of

three genes at three QTLs for the number

of entries into the open arms of the EPM

(A, C, and E) QTL regional information from Lo-

cusZoom.59 The top part shows the association

results from a meta-analysis, with the position of

the highest-scoring variant annotated in purple.

The vertical scale is the negative logarithm (base

10) of the association p value. The bottom section

gives the location and orientation of genes at the

locus. A red box identifies each gene used in the

quantitative complementation tests.

(B, D, and F) Results of quantitative complemen-

tation testing. The vertical axis is the quantile

normalized duration of the number of entries into

the open arms of the elevated plus maze. The

horizontal axis lists the groups of mice used.

Groups are B6.WT: WT C57BL/6J; B6.KO: het-

erozygote KOs on C57BL/6J; D2.WT: F1 from

crossing DBA/2J to C57BL/6J; D2.KO: the F1 from

crossing the KO onto DBA/2J.
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neurons. To do this, we made an inventory of variable snATAC-

seq and methylation sites. We counted differential ATAC sites

(using a 5% threshold from adjusted p values derived from DE-

Seq273) that contained sequence variants under the assumption

that differences at these sites were more likely genetic in origin

than those without such differences (more than 90% of the

significantly different ATAC sites contain a sequence variant

compared to 35% of non-variable sites). For the methylation

data, we counted the number of fully methylated CpG sites in

each cell type and divided them into those with and without mu-

tations that disrupted methylation.

Figure 6 plots differential methylation and ATAC sites in the

hippocampus and amygdala at the five QTLswhere we identified

causal genes. Three general observations arose from the data
6 Cell Genomics 4, 100545, May 8, 2024
presented in Figure 6. First, there were

more strain differences in the hippocam-

pus than amygdala, as reflected in the

greater number of dots compared to

crosses. Second, at each locus, the strain

differences were found primarily in excit-

atory neurons, in both the hippocampal

and amygdala, as shown by the prepon-

derance of red. Third, the pattern of strain

differences for each modality varied be-

tween loci and genes, providing no un-

equivocal location or molecular signature

to identify causal variants. The Ptprd lo-

cus (Figure 6A) contained a concentration

of methylation, ATAC sites, and sequence

differences at the 30 end of the gene, sug-

gesting a location for one or more causal

variants here. At the Psip1 and Sh3gl2 lo-

cus (Figure 6B), strain differences were

spread across the region with no indica-

tion of which might be relevant. The

QTLs containing 4933413L06Rik (Fig-

ure 6C) and Nptx2 (Figure 6D) included a

concentration of strain differences in

methylation sites around the genes but
with no obvious candidates for causative variants. One possible

exception was the single ATAC site that exceeded a corrected

significance threshold (logp = 6) in an intron of the Lsamp gene

(Figure 6E) coinciding with a 2-kb deletion in DBA/2J. The func-

tion of this site and the consequences of its deletion are not

known.

The apparent enrichment of genetically mediated variation in

excitatory neurons at the five QTLs containing the causal genes

led us to examine whether the same was true for all the QTLs we

had identified. We compared gene expression and epigenetic

variation at 93 QTLs with the rest of the genome, expecting

that any enrichment would be confined to, or more prominent

at, the QTLs. Surprisingly, although the QTLs occupy about

0.01% of the genome, the percentage of significantly different



Figure 5. Cell-type uniform manifold

approximation and projection for ventral

hippocampus and amygdala in B6 and DBA

from single-nucleus RNA, ATAC, and

methylation sequencing. In all panels, verti-

cal and horizontal axes represent UMAP

space.

(A–C) Ventral hippocampal clusters plotted by

(A) modality, (B) strain, and (C) cell-type identity.

(D–F) Amygdala neuronal clusters plotted by

(D) modality, (E) strain, and (F) cell-type identity.
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transcripts (again defined as exceeding a 5% threshold from

adjusted p values derived from DESeq273) in QTL regions was

indistinguishable from the percentage of significantly different

transcripts in the genome (Figure 6F), a finding replicated for

methylation and snATAC-seq data (Tables S7 and S8). In other

words, therewas no enrichment in QTLs for genetically mediated

variation in excitatory neurons; all regions of the genome

contribute to this phenomenon.

Is the enrichment of genetic variants in excitatory neurons sig-

nificant? It certainly seems so, but at least two confounds could

produce this result. For the snATAC-seq and snRNA-seq data,

identification of significant strain differences is more likely with

higher read coverage, and for methylation, the more sites we

identify, the higher the likelihood that some will coincide with a

sequence variant. To assess the contribution of sequence

coverage, we compared a null model, in which sequence

coverage predicted the number of differentially expressed

genes, ATAC peaks, or methylation sites with mutations, to

one that additionally included cell type and found highly signifi-

cant improvements in fit (all p values < 2.2E�16; Table S9),

demonstrating that cell type was an important contributor, over
C

and above the contribution of sequence

coverage. A generalized linear model to

predict differences also showed that

sequence coverage does not account

for the differences between excitatory

and inhibitory neurons (Table S10).

Second, the inclusion of more excit-

atory cell types than inhibitory types could

bias findings (eight excitatory cell types

compared to three inhibitory in the hippo-

campus) because the addition of extra

cell types increases the chances of

finding variant sites. Against this, we

note that in the amygdala, there were

more inhibitory than excitatory cell types

(eight versus six). We ran a test of this hy-

pothesis, by comparing the contribution

of class (excitatory and inhibitory) to cell

type, considering that cell type was

completely nested within class. We re-

sorted to a Bayesian analysis, which re-

vealed a significant effect of class (the

95% confidence intervals do not overlap

zero) (Table S11).

Is the enrichment in excitatory cells a pe-

culiarity of the difference between C57BL/
6J and DBA/2J?We answered this question for the hippocampus

using methylation data from six other strains. Using CAST/EiJ as

an outgroup, we compared the number of mutations in CpG sites

at excitatory and inhibitory neurons in the ventral hippocampus.

Table S12 shows that for each strain, compared to CAST/EiJ,

the proportion of mutated CpG sites was higher in excitatory

than inhibitory neurons, supporting our finding that at least for

methylation, alterations in functional elements directly attributable

to genetic variationwere enriched in excitatory neurons compared

to other cell types. Together, these results suggest a model

whereby genetic effects act on specific hubs of circuits/cell types.

DISCUSSION

We have established the feasibility of combining mapping with

QC testing for gene identification, breaking open a bottleneck

in the genetic dissection of complex traits in mice, and provided

a set of six genes for further mechanistic understanding of fear-

related behavior. Unexpectedly, genetically mediated variation

in three independent molecular analyses, methylation, snRNA-

seq, and snATAC-seq, was found to occur preferentially in
ell Genomics 4, 100545, May 8, 2024 7



Figure 6. ATAC-seq and methylation data at five QTLs in the ventral hippocampus and amygdala

(A–E) Data from the hippocampus are marked by dots (,) and data from the amygdala by crosses (+). In each image, the lowest row shows the distribution of

genetic variants (black). The next two tracks, immediately below the genes and indicated by the blue background, show the location of methylation sites that

coincide with a sequence variant and are thus present in only one of the two strains. These sites are colored according to the class of cell type in which they occur:

red for excitatory neurons, blue for inhibitory neurons, and gray for non-neuronal cell types. Above the methylation tracks are shown ATAC sites, which differ

significantly between the strains. The vertical axis shows the absolute value of log2 fold change for these ATAC sites. Sites are again colored according to the

class of cell type in which they occur using the same color scheme as for methylation. The vertical positioning of the genes is only for ease of plotting and carries

no meaning.

(F) Comparison of the percentage of significantly different RNA species in QTL regions and in the genome for the hippocampus. The vertical axis is the percentage

of transcripts that are significantly different between the two strains, and the horizontal axis lists the cell types. Data from QTL intervals are indicated by dots

colored according to class: excitatory (red), inhibitory (blue), and non-neuronal (gray). Data from the entire genome are indicated by black crosses.
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excitatory neurons and to be enriched in the hippocampus

compared to the amygdala. These observations demonstrate

the possibility of moving quickly from locus to gene, identify un-

explored biology underlying fear-related behavior, and raise

questions about expected relationships between genetic and

functional variation.

Our findings highlight the power of unbiased genetic examina-

tion of the biological basis of behavioral variation. At a locus on

chromosome 13, we made the unexpected discovery that an

lncRNA (4933413L06Rik) is involved in cue fear conditioning. Little

is known about 4933413L06Rik (one study found it to be differen-

tially expressed during development of the auditory forebrain74).

Our finding opens the possibility for clarifying the function of this

lncRNA in fear-related behavior. Two other causal genes (Psip1,

Sh3gl2) have also never been studied in the context of fear-related

behaviors. We note that of the five genes with known functions,

four (Lsamp, Ptprd, Nptx2, and Sh3gl2) are implicated in synapse

development or function.75–79 Ptprd belongs to the type IIA recep-

tor-type protein tyrosine phosphatase family of phosphatases,

involved in synaptic formation and structure during development

and neurogenesis.76 Lsamp is a cell surface adhesion molecule
8 Cell Genomics 4, 100545, May 8, 2024
that is involved in neuritogenesis and axon guidance (and is also

implicated in thematuration of serotonergic80 and thalamocortical

circuits81). Nptx2 is a secreted glycoprotein that localizes to both

pre- and post-synaptic compartments of excitatory synapses

containing AMPA receptors and is involvedwith synaptogenesis82

and adult neurogenesis.83Sh3gl2 (endophilin1), a cytoplasmic Src

homology 3 domain-containing protein,84 localizes to presynaptic

nerve terminals, where it functions in synaptic vesicle endocy-

tosis85 and the regulation of exocytosis.86 The significance of

these functional observations is difficult to assess, but it at least

suggests that variation in fear-related behavior in part originates

in synaptic development.

The QC test could serve as a gold standard for gene identifica-

tion following QTL mapping in inbred mice. Following mapping,

the construction of KOs is relatively straightforward, and the

test requires a simple breeding protocol. We recommend power-

ing the QC tests based on results from the mapping experiment

(the effect size of the locus in the mapping population will be

lower than that in QC test87), but note that our failure to detect

a candidate gene at a locus on chromosome 5 could be due to

low power or because we tested the wrong gene.
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Our instantiation of the QC test is not the only one; alterna-

tive designs are possible. For example, in an experiment to

test the candidacy of a gene at a QTL for resistance to obesity

in mice, a QC test was constructed from a KO, a subcongenic

containing the QTL, and their corresponding background

strains (a cross giving rise to four genotypes on a uniform ge-

netic background).88 However, it is essential to use KOs on an

isogenic background so as to avoid the complication of the ef-

fect of additional QTLs that may be present on the non-

isogenic DNA.

Interpretation of the QC results is subject to some qualifica-

tions. First, while a positive QC test result reveals a gene through

which a QTL has its effect, it does not necessarily mean that the

QTL is the one containing the candidate gene. The QC test will

detect the effect of any QTL that requires the gene to be present.

Typically, that QTL will be the one local to the gene tested, but

that assumption is not essential for the functioning of the QC

test. Second, the QC test makes no assumptions about how

the QTL and KO interact. Does this matter? It may, because in

the QC test, non-additive interactions are typically easier to

detect than additive ones. Under an additive model, the KO re-

moves the effect of one of the QTLs so that the phenotypic effect

is reduced by the allelic effect of that QTL. In non-additive

models, the presence of the KO could reduce one QTL effect

to zero (recessive effect) or increase it, potentially in a multiplica-

tive fashion. In these cases, the effect of the interaction is to

augment the allelic effect over that of the additive interaction.

We have some evidence that non-additive interactions predom-

inate in our results.

QC tests results from four genes (Lsamp, Ptprd,

4933413L06Rik, and Psip1) are consistent with a non-additive

interaction between QTL and KO. In each case, the phenotype

of the KO on the hybrid background is larger than either the

WT DBA/2J or the KO on the C57BL/6J (Figures 2, 3, and 4).

One interpretation is that non-additivity is common. Another

interpretation is that we failed to detect additive interactions

because non-additivity is easier to detect: the larger effect attrib-

utable to the interaction confers greater power for the QC test.

This may contribute to false negative findings, but it does not un-

dermine the conclusion that the effect of the QTL is mediated by

the gene. Under both additive and non-additive models, a signif-

icant result means that the effect of the QTL requires the gene.

One tantalizing corollary emerging from the analysis of gene

causality in fear-related behaviors is that genetic variation may

act preferentially in excitatory, rather than inhibitory, neurons.

We note that any patterns of strain differences could not be

attributed solely to coverage, as even downsampling our RNA-

seq and ATAC-seq data to as low as 25% of the total uniquemo-

lecular identifiers still resulted in substantial detection of signifi-

cant strain differences (see https://dx.doi.org/10.6084/m9.

figshare.25521304). We had expected that the pattern of strain

differences might point to the involvement of a particular cell

type in one region of the brain. Instead of finding cell-type enrich-

ment, we observed that strain differences in three different mo-

dalities, snRNA-seq, methylation, and snATAC-seq, were more

prevalent in excitatory than inhibitory neurons, particularly in

the hippocampus compared to the amygdala. Moreover, we

found this enrichment pattern to be true not just for the QTL re-
gions but for the entire genome. There was little evidence of

strain differences in non-neuronal tissues, although we can be

less confident in this assertion because our sample was enriched

for neuronal cells andmay not be representative of non-neuronal

variation.

Whatmight explain this finding?One possibility is that it is spe-

cific to a comparison between C57BL/6J and DBA/2J. We think

that this is unlikely and provide some evidence against this idea

by running a similar analysis for methylation data in other strain

comparisons, though we have not extended this observation to

other modalities. Alternatively, the finding represents a prefer-

ence for genetic effects in excitatory neurons. Why might this

be so?

The idea that genetic effects operate preferentially in excit-

atory neurons fits with a neuronal circuit model where inhibitory

neurons sculpt behaviors driven by excitatory neurons. Excit-

atory neurons are extremely diverse, resulting in high-dimen-

sional and sparse coding,89 consistent with the expectation

that such an architecture permits highly efficient information

transfer.90 Consequently, encoding within excitatory networks

cannot be predicted from their transcriptome alone. In contrast,

activity within inhibitory neuronal networks is lower dimensional,

with correlations between inhibitory cell types determined pri-

marily by cell type, so that cells belonging to a single transcrip-

tomic class are highly correlated.91–93 In this model, genetic vari-

ation is more permissible in excitatory neuronal networks than

inhibitory, suggesting that disturbances of inhibitory networks

are more likely to be pathological. If this interpretation is correct,

then identifying genetic effects that disturb function at a circuit

level may be more fruitful than looking for cell-type-specific ge-

netic effects.
Limitations of the study
Our results are subject to some limitations. First, the results from

the meta-analysis have not been replicated, so it is possible that

some of the loci may be false positive. This may explain why the

QC test was negative for Stim2 on chromosome 5. Second,

some of the negative QC test results may be due to relatively

low power to detect additive effects compared to non-additive

effects. Third, we did not test every expressed transcript at every

QTL. For instance, it is possible that single-exon unannotated

transcripts (e.g., Gm6416, which we did not test at the chromo-

some 13 locus) might also contribute. However, the failure to

detect the involvement of additional genes does not mitigate

the main result of our experiment, namely, that the QC test can

be used in a systematic fashion to identify genes mediating the

QTL effect.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

NeuN-488 Millipore Sigma MAB377X; RRID:AB_2149209

NeuN-405 Novus Biologicals NBP1-92693AF405

Critical commercial assays

Next GEM scATAC-Seq v1.1 10X Genomics PN-1000175

Chromium Next GEM Automated Single Cell 30

Library and Gel Bead Kit v3.1

10X Genomics PN-100014

Deposited data

snmC-seq2 data of 8 mouse strains, amygdala This study GEO: GSE262259

snATAC-seq data of 2 mouse strains, amygdala This study GEO: GSE262259

snRNA-seq data of 2 mouse strains, amygdala This study GEO: GSE262259

snmC-seq2 data of 8 mouse strains, vhippocampus Flint et al.94 GEO: GSE245367

snATAC-seq data of 2 mouse strains, vhippocampus Flint et al.94 GEO: GSE245367

snRNA-seq data of 2 mouse strains, vhippocampus Flint et al.94 GEO: GSE245367

CRISPR mouse KO generation This study https://doi.org/10.6084/m9.figshare.25521283

Subsampling of single-nucleus RNA and ATAC

sequencing data and significant genes detected

This study https://doi.org/10.6084/m9.figshare.25521304

Experimental models: Organisms/strains

C57BL/6J JAX Strain ID: 000664

DBA/2J JAX Strain ID: 000671

CAST/EiJ JAX Strain ID: 000928

FVB/NJ JAX Strain ID: 001800

A/J JAX Strain ID: 000646

WSB/EiJ JAX Strain ID: 001145

PWK/PhJ JAX Strain ID: 003715

BALB/cJ JAX Strain ID: 000651

C57BL/6J-Megf9-KO This study N/A

C57BL/6J-Emb- KO This study N/A

C57BL/6J-Hcn1-KO This study N/A

C57BL/6J-Ptprd-KO This study N/A

C57BL/6J-Lsamp-KO This study N/A

C57BL/6J-Nptx2-KO This study N/A

C57BL/6J-Stim2-KO This study N/A

C57BL/6J-Mrps30-KO This study N/A

C57BL/6J-Parp8-KO This study N/A

C57BL/6J-Psip1-KO This study N/A

C57BL/6J-Sh3gl2-KO This study N/A

C57BL/6J-Snapc3-KO This study N/A

C57BL/6J-Ttc39b-KO This study N/A

C57BL/6J-4933413L06Rik-KO This study N/A

Software and algorithms

Cell Ranger V6.0.2 10X Genomics https://www.10xgenomics.com/support/software/

cell-ranger/downloads

Cell Ranger ATAC V2.0.0 10X Genomics https://support.10xgenomics.com/single-cell-atac/

software/downloads/latest

Bismark V0.20.0 Krueger and Andrews95 https://github.com/FelixKrueger/Bismark

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 V1.34.0 Love et al.73 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

Seurat 4.0.5 Stuart et al.96 https://github.com/satijalab/seurat

Signac 1.5.0 Stuart et al.97 https://github.com/stuart-lab/signac

Model-based Analysis for ChIP-Seq (MACS) V3.0.0a7 Zhang et al.98 https://github.com/macs3-project/MACS

DoubletFinder V2.0.3 McGinnis et al.99 https://github.com/chris-mcginnis-ucsf/DoubletFinder

Scanpy V1.9.3 Wolf et al.100 https://pypi.org/project/scanpy/

Harmony V0.0.9 Korsunsky et al.101 https://github.com/immunogenomics/harmony

SCTransform V0.3.2 Hafemeister et al.102 https://github.com/satijalab/sctransform

EMINIM Beta 1.01 Kang et al.48 http://genetics.cs.ucla.edu/eminim/index.html

GEMMA V0.94 Zhou and Stephens51 https://github.com/genetics-statistics/GEMMA

PLINK V1.90b3.38 Purcell et al.103 https://zzz.bwh.harvard.edu/plink

METASOFT V2.0.1 Han and Eskin53 http://genetics.cs.ucla.edu/meta_jemdoc/

GCTA V1.93.1 Yang et al.55 https://yanglab.westlake.edu.cn/software/gcta

Wrappers for genetic mapping and

quantitative complementation

in inbred mouse strains

This study https://doi.org/10.5281/zenodo.10892164
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Lead contact
Further information and requests for reagents and resources should be directed to and will be fulfilled by the lead contact, Jonathan

Flint (JFlint@mednet.ucla.edu).

Materials availability
All mutant KO animals are deposited as frozen sperm at the Transgenic and Genome Editing Core Facility at Augusta University.

Ordering information can be found at https://doi.org/10.6084/m9.figshare.25521283.

Data and code availability
d Raw and processed sequencing data generated for this study were deposited to NCBI GEO/SRA with accession number

GSE245367 and GSE262259 and are publicly available at the time of publication.

d Mapping data (including imputed genotypes of all mouse inbred strains and F1s, together with results from themeta-analysis of

the three phenotypes) https://figshare.com/s/7fcb1eebfd9c607afd12.

d Detailed CRISPR KO mouse generation for each gene, including exon targeted, sgRNA sequences, genotyping primers, and

DNA gel images https://doi.org/10.6084/m9.figshare.25521283.

d Knockout interaction data, including phenotypes and genotypes for all quantitative complementation tests https://figshare.

com/s/cc86ed5777cb95b99cec.

d Processed single nucleus epigenetic and gene expression data https://figshare.com/s/39e1c671ec0dc09d5b27.

d All original code has been deposited at https://doi.org/10.5281/zenodo.10892164.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mouse strains
All experimental procedures using live animals were approved by UCLA’s Animal Care and Use Committee (protocol number ARC-

2018-026). Male mice from eight inbred strains A/J, C57BL/6J, BALB/cJ, FVB/J, DBA/2J, WSB/EiJ, PWK/PhJ, and CAST/EiJ were

purchased from Jackson Laboratories at 8 weeks of age and transferred to UCLA where they were kept for at least 7 days before

tissue extraction. Animals were housed with ad libitum food and water in a 12 h light-dark cycle. Mutant KO animals were generated

on a C57BL/6J background.
Cell Genomics 4, 100545, May 8, 2024 e2

mailto:JFlint@mednet.ucla.edu
https://doi.org/10.6084/m9.figshare.25521283
https://figshare.com/s/7fcb1eebfd9c607afd12
https://doi.org/10.6084/m9.figshare.25521283
https://figshare.com/s/cc86ed5777cb95b99cec
https://figshare.com/s/cc86ed5777cb95b99cec
https://figshare.com/s/39e1c671ec0dc09d5b27
https://doi.org/10.5281/zenodo.10892164
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://github.com/satijalab/seurat
https://github.com/stuart-lab/signac
https://github.com/macs3-project/MACS
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://pypi.org/project/scanpy/
https://github.com/immunogenomics/harmony
https://github.com/satijalab/sctransform
http://genetics.cs.ucla.edu/eminim/index.html
https://github.com/genetics-statistics/GEMMA
https://zzz.bwh.harvard.edu/plink
http://genetics.cs.ucla.edu/meta_jemdoc/
https://yanglab.westlake.edu.cn/software/gcta
https://doi.org/10.5281/zenodo.10892164


Article
ll

OPEN ACCESS
METHOD DETAILS

Mouse phenotyping and mapping
Published data were obtained from three sources: the Jackson Laboratory website (https://phenome.jax.org), the Gene Network

website (https://genenetwork.org) and PubMed. PubMed articles were identified using search terms including ‘fear’, ‘anxiety’,

‘elevated plus maze’, and ‘fear conditioning’. This identified 29 potentially useful datasets.16–45

Harmonizing phenotyping data for meta-analysis
To harmonize the phenotypic data for themeta-analysis, we had to deal with the heterogeneity of the datasets collected. Each exper-

iment used different protocols, different testing equipment and often reported different, though related, assays. Different studies

used different names for what was supposedly the same phenotype. For example, for fear conditioning some studies reported

the time freezing,26 other reported its opposite, the amount of activity.19 Some recorded 3 min of freezing, some 5 min, or more.

EPM behavior was recorded in apparatus of different dimensions, under different lighting conditions, at different times of day, all

of which are known to affect behavior.104

To deal with this, after downloading data and examining what was most collected, we decided to use the time freezing during a

5-min period after exposure to an altered context (contextual freezing), and the mean time spent freezing during exposure to a condi-

tioned stimulus (most usually a tone). For the elevated plusmazewe used the number of entries into the open arms.We created a data

dictionary to convert the different phenotype names to a common set, and this is provided in Table S2.

Some studies also provided information about sex and age, and we tested, using a linear model, whether there was an effect on

phenotypes of either. Since we found no significant effects (at a 5% threshold after correcting for multiple testing) and since some

studies did not provide this information, we did not include covariates in downstream analyses.

We examined the relationship between phenotypes from different studies in two ways. First, for each strain for each study we ob-

tained the trait mean and then calculated the correlation between the same strains in different studies. Not every study tested the

same strains, so although there were 42 possible pairwise comparisons for FC-context, only 30 comparisons could be carried

out. One study (Palmer5) was dropped because of insufficient overlap in the strains usedwith other studies. Therewas a considerable

range in the correlations between studies (from �0.04 to 0.93), though only 13 comparisons were significant (at a p < 0.05, uncor-

rected for multiple testing), in part reflecting differences in the variation in the number of strains in each comparison (from 3 to

31). In some cases, a pair of studies were correlated, but not with other studies (for example for the FC-cue phenotype, study Bolivar2

is correlated with Bothe-2005 (r = 0.85) but neither study was highly correlated with others).

As a secondmeasure of the relationship between studies, we ordered themeans of each strain, and ranked them.We then applied

the order for one study to another to examine the extent to which studies agreed on the order of strain means. We decided to use the

pattern of correlations to select studies for the genetic analysis, requiring the presence of more than 5 strains in common, and a pos-

itive correlation greater than 0.2 (though we did not require this to be significant since). The studies we chose, together with the num-

ber of animals and the phenotype names, is given in Table S1.

Behavioral phenotyping
Mice from the Mouse Diversity Panel (HMDP) were used for the behavioral analyses. Mice (n = 700) were obtained through Jackson

Laboratory at approximately 60 days old and housed for a 14-day acclimation period prior to testing. Mice were housed in groups (3–

4 per cage) under a 12h/12h day/night cycle with ad libitum access to food and water. Testing was carried out between 10 a.m. and 4

p.m. Auditory background stimulus in the form of white noise (80db) was delivered through overhead speakers. All protocols con-

formed to NIH Care and Use Guidelines and were approved by UCLA’s Animal Care and Use Committee (protocol number ARC-

2018-026).

Behavioral tests
All tests were completed at the Behavioral Testing Core at UCLA. Animals were handled for 5 days prior to experiments. The order of

experiments for genetic mapping was EPM -> FC cue/context. EPM -> 7 days-> FC training -> 24 h -> FC context -> 24 h -> FC tone.

Elevated plus maze
Animals were placed into an elevated plusmaze apparatus (arms 5 cm3 30 cm) for 5min with 15 lux at the center. Wemeasured time

spent in open/closed arms, and total entries into open/closed.

Fear-conditioning
Mice were placed in the conditioning chamber (context A) for 3 min before the onset of the discrete conditioned stimulus. The pa-

rameters were as follows:

Tone: pure tone, 2700Hz, 80dB, rise/fall 50, duration 30s.

Shock: 0.75 mAmps, duration 1s, inter-trial interval 180s.
e3 Cell Genomics 4, 100545, May 8, 2024
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Animals were exposed to three pairings of the CS and US. After the CS-US pairings, the mice were left in the conditioning chamber

for another 60 s and then placed back in their home cages. FC boxes and software to control the boxes were purchased from

MedAssociates.

Fear-conditioning context test: 24 h after conditioning, mice were returned to the same context (context A) with no shock or tone

and freezing was measured for 8 min.

Fear-conditioning cued test: 24 h after the context test, mice were placed in a novel context (context B) where, they are exposed to

the same procedure as the training but without any shocks (3 min exposure followed by 3 CS-US pairings, with parameters equal to

fear acquisition). Freezing was measured during the initial 3 min exposure, during tone, and during the inter-trial interval.

Behavioral analysis
Behavior was recorded digitally from a camera mounted above each test chamber at 30 FPS. Following the completion of experi-

ments, each recorded EPM video was analyzed using ANY-maze for positional tracking of the animal along the apparatus. For

EPM mapping we measured open arm entries, time spent in open arms, and closed arm. VideoFreeze (MedAssociates) was used

to measure animal freezing in QC testing from recorded videos. Freezing was determined as an absence of all visible movement

except that required for respiration; in VideoFreeze, we set the motion threshold to 18 au with a minimum freeze duration of 1 s

(30 frames). Contextual fear was assessed by total freezing time over the first 3 min of the test. Cued fear was assessed by total

freezing time in response to the presentation of the first, second, and third CS during ITI. One exception was with freezing measure-

ments during genetic mapping with BXD lines. Due to the variable coat color across lines, we used ANY-maze for animal tracking and

freezing measurements as it performed better than VideoFreeze.

Genotyping
Our starting point for genotyping each mouse strain was variant calls from sequencing reads for those strains that have been

sequenced,46,105 and genotypes from high density arrays for those that have not106 (https://www.informatics.jax.org/). We confirmed

genotypes in the BxD recombinant inbred lines by randomly choosing 24 lines and subjecting to genotyping them on the GigaMUGA

mouse array (140 thousand SNPs).107 This genotyping was done commercially (Neogen GeneSeek Operations, 4131 N 48th St.

Lincoln, NE 68504). All lines were of the expected genotype.

Imputation of genotypes
We used imputation to generate a near complete set of genotyped markers for all strains. The highest density set of genotyped

markers is that derived from 16 strains for which we have complete sequence data46 but this does not include any recombinant in-

breds and lacks some of the strains used for mapping. Since the missing strains are descendants of a small number of founder hap-

lotypes,106 we can impute the genotypes in the non-sequenced strains. Using genotypes from arrays as a scaffold56–93,104–108 we

imputed missing genotypes using data from sequenced animals. Most imputation algorithms are designed for fully outbred popula-

tions, where a key problem is correctly phasing haplotypes (e.g.,109). Alternative methods are needed for efficient imputation in

mouse strains and so we used the software tool EMINIM,48 which requires a reference file, containing strains with known haplotypes,

and a target file for imputation, containing strains genotyped at some SNPs. We ran this with the recommended parameter settings

for inbred mice given according to the software documentation.

We prepared these two files by placing strains that were genotyped at all SNPs in the reference file, while strains with one or more

missing SNPs were placed in the target file. For the BXD mice, SNPs between genotype markers from the same founder haplotype

were pre-filled due to the negligible likelihood of multiple recombination events between consecutive genotyped SNPs. This resulted

in 27 reference strains and 227 target strains.We then ran EMINIM imputation on each chromosome separately and obtained calls on

16,767,664 SNPs (triallelic SNPs, constituting 1%of the total, were discarded). Since EMINIM outputs high confidence values for one

of the alleles, we translated a 90% or higher confidence for an allele into a hard call for that allele, with lower confidence calls being

called asmissing.We combined these imputation results with the genotyped data. The rate of missing calls was less than 0.8% for 18

of 19 autosomal chromosomes (chromosome 19 had a missing call rate of 1.03%).

We validated the imputation results by comparing imputed calls to genotypes from sequenced BXD strains obtained from.110 The

sequence-derived set contained 4,325,552 SNPs, of which 3,812,095 variant sites overlapped with our imputation. Across all chro-

mosomes, each BXD strain was imputed with between 93% and 99% accuracy. Imputation accuracy for all strains combined varied

between 89% and 99% per chromosome, with 96.29% overall. Due to the pre-filling procedure described previously, this accuracy

reflects only the most challenging SNPs to impute: those between genotyped SNPs from different founder haplotypes. When

including the genotyped and pre-filled SNPs, the accuracy for each chromosome was greater than 99.64%.

We performed a second assessment of imputation accuracy by removing the C57BL/6J and DBA/2J strains from our reference

panel, randomly masking 50% of the bases of those strains, and using the remaining inbred strains in the reference panel to impute

themasked bases. Once again, we used EMINIMwith its default inbred imputation parameter settings and translated a 90%or higher

confidence call for an allele into a hard genotype call. Calls with less than 90%confidencewere translated to amissing call, leading to

a missing genotype rate of 0.09%–0.59% per chromosome. The accuracy of imputation on the masked bases was 95.6–99.7% per

chromosome, and 97.9% overall.
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Genetic mapping
All phenotypes were mapped in a two-stage approach. First, we used a mixed model, implemented in GEMMA51,52 (obtained from

https://github.com/genetics-statistics/GEMMA), to map each study separately. Input files for GEMMA were generated using

PLINK,103 obtained from https://zzz.bwh.harvard.edu/plink.We used the PLINK binary format of the required files, including all alleles

with a frequency greater than 10%. A genetic relationship matrix was generated using the command:

gemma -bfile input.file -gk -o kinship.file.

Mapping was carried out using the command:

gemma -bfile pl input.file -k kinship.file -lmm -o output.file.

After mapping with GEMMA, the results files were combined with purpose written perl scripts into a format suitable for meta-anal-

ysis with METASOFT.53,54 METASOFT (downloaded from http://genetics.cs.ucla.edu/meta_jemdoc/) was invoked with the following

command:

java -jar Metasoft.jar -input input.file -mvalue -output output.file.

GEMMA assigns effects to the minor allele, as determined by the.bim files from PLINKwhich means there is considerable variation

between studies as to which allele gets an effect (due to allele frequency variation). After running each study though GEMMA we

swapped alleles to the most common arrangement, before proceeding to the meta-analysis.

METASOFT calculates a genomic-control inflation factor for themean effect (lambda_Mean Effect) and a genomic-control inflation

factor for heterogeneity (lambda_heterogeneity). These values were calculated for each run, and the software was run a second time,

to include the effect of these variables. For example:

java -jar Metasoft.jar -input input.file -mvalue -output output.file -lambda_hetero 2.738124 -lambda_mean 2.430179.

Significance threshold for the genome-wide association studies
Simulations to estimate the appropriate significance threshold were carried out using GCTA,55 obtained from https://yanglab.

westlake.edu.cn/software/gcta. Phenotypes were simulated using real genotype data under a simple additive genetic model. A

set SNPs was chosen as the causal variants that were seen to have effects in the mapping studies. We obtained estimated effect

sizes for these SNPs from GEMMA output files and converted the beta estimate from the linear model to the values required by

GCTA using

Beta gcta = beta orig � sqrtð2 � p � ð1 � pÞÞ
(where p is the allele frequency from the GEMMA output file)

Input SNP files were those used for the mapping with GEMMA. 1000 simulations were carried out using the command:

gcta64 –bfile input.SNP.file –simu-qt –simu-causal-loci causal.snplist –simu-hsq 0.2 –simu-rep 3 –out.

After simulating data for each component study, fileswere processed throughGEMMAandMETASOFT exactly as for the real data.

To investigate the contribution of genotype structure to the inflation seen in quantile-quantile plots we simulated data in the same

way, but with no causal SNPs.

Generating knockout animals for QC testing
We identified genes lying within QTLs, and determine whether they are expressed in brain tissue from in situ hybridization data (Allen

Brain Atlas,60 themouse ENCODE transcription dataset61), and RNA-seq data obtained from the following publications: 62–67 For ISH

data from the Allen dataset, we looked for presence of expression. For ENCODE transcriptome data we set a cutoff for an RPKM>5 in

at least one brain region category, and for RNA-seq studies we ranked expression of each gene and averaged across studies; any

gene in the top 25% of all genes (or >rank 6000) was considered expressed. For the Allen institute scRNA-seq dataset, we only

included sequencing data from cell type clusters from CA1-CA3 of the hippocampus. Genes that passed expression thresholds

for all three datasets were included for further consideration.

Where an existing knockout had been successfully created for the gene, usually on aC57BL/6N background, we adopted the same

design, targeting the same part of the gene but in the C57BL/6J strain. To generate each KO, we used a CRISPR-Cas9 genome edit-

ing approach. For each gene, two single guide RNA (sgRNA) were generated by Synthego Corp. (Redwood City, California, USA) for

targeting, except for 4933413L06Rik where we carried out a knock-in with a single-stranded DNA synthesized by IDT, Inc (Coralville,

Iowa, USA). Guide RNAs (gRNAs) were designed to maximize both efficiency and specificity scores.111 The sgRNA and/or ssDNA,

and Cas9 protein (Alt-R SpCas9 Nuclease V3 from IDT) were co-injected into zygotes of C57BL/6J mice (Jackson Laboratory,

Stock#009086). After microinjection, zygotes were transferred into the oviduct of pseudo-pregnant Swiss Outbred mice (Jackson

Laboratory, Stock#034608) to generate founder mice. Founder mice were obtained and confirmed by PCR genotyping and Sanger

sequencing. The correctly targeted founders were bred with C57BL/6J mice, and PCR genotyping and Sanger sequencing were

again performed to confirm germline transmission. We used quantitative PCR to confirm that the deletion affected abundance of

RNA transcript in hippocampal tissue from F1 animals. Full descriptions of each knockout design, and sgRNA sequences are given

at dx.doi.org/10.6084/m9.figshare.25521283. Genotyping primers are listed in Table S4.
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Quantitative polymerase chain reactions
To confirm the effect of the deletion on RNA production at each locus we ran quantitative polymerase chain reactions using a stan-

dard RT–qPCR assay (Taqpath COVID-19 Combo Kit). We analyzed RNA extracted from the hippocampus of heterozygous knock-

outs on C57BL6/J animals. Primer sequences can be found in Table S5.

Quantitative complementation testing
We generated offspring from four crosses.4 C57BL/6J animals were mated to DBA/2J, and to heterozygote C57BL/6J animals

where one allele was the knockout. DBA/2J animals were also mated to the heterozygote knockout mice. This generated four

groups: wildtype C57BL/6J, F1 DBA/2J/C57BL/6J (wildtype), heterozygote C57BL/6J knockouts, and F1 DBA/2J/C57BL/6J

(knockout). All four groups were assayed for the relevant phenotypes associated with the QTL, using the phenotyping protocols

described above.

Evidence that the gene is theQTL genewas thendetected as a statistical ‘cross’ (mutantorwildtype) by ‘strain’ (DBA/2J orC57BL/6J)

interaction in a linear model, using the R statistical programming language.112 Batch and sex were included as covariates, using the R

command

summary ðlm ðphenotype � sex +batch + cross � strain;data = dataÞÞ

Ventral hippocampus microdissections
Adult male animals (Jackson Laboratories) were euthanized at 10–16 weeks old in an isoflurane chamber and decapitated. The brain

was removed and the ventral region of the hippocampus was microdissected, snap frozen in dry ice, and stored at �80�C until pro-

cessing. Tissue from �2 animals were combined into a single tube and considered a replicate, with 2 replicates per strain for snmC-

seq2, snRNA-seq, and snATAC-seq experiments.

Amygdala microdissections
Adult male animals (Jackson Laboratories) were euthanized at 10–16 weeks old in an isoflurane chamber and decapitated. The brain

was removed and coronal brain slices containing amygdala tissue were generated on a 1mm brain matrix (World Precision Instru-

ments). Amygdala tissue was micro-dissected from these slices under a dissecting scope in cold PBS, snap frozen in dry ice, and

stored at�80 until processing. Tissue from�2 to 3 animals were combined into a single tube and considered a replicate, with 2 rep-

licates per strain for snmC-seq2, snRNA-seq, and snATAC-seq experiments.

Generating snmC-seq2 libraries
We carried out snmC-seq2 on microdissected tissue as previously described.70 Briefly, frozen tissue was homogenized into single

nuclei suspensions with Dounce homogenization, then immediately sorted on into a 384-well plate with a FACSAria sorter (BD Bio-

sciences) at the UCLA Flow Cytometry Core. We selected for a 75-25 enrichment of neuronal vs. non-neuronal nuclei during FACS

sorting using NeuN-488/DAPI counterstains (Millipore Sigma MAB377X). Bisulfite conversion and single-cell methylome libraries

were generated following this step.

Generating snRNA-seq libraries
Single nuclei suspension and library generation were completed at the Cedars Sinai Applied Genomics, Computation and Transla-

tional Core and followed the 10X protocol for the Chromium Next GEM Automated Single Cell 30 Library and Gel Bead Kit v3.1 (cat#

PN-100014) as described except for the following modifications:

Suspensions from cell nuclei were generated using the recommended method from the 10X scMultiome protocol

(CG000375 Rev C) to lyse cells and obtain nuclei. Following single nuclei suspension generation, nuclei were counterstained

for 7-AAD and NeuN-405 antibody (Novus Biologicals, 1:200) and sorted on a MACSQuant Tyto (Miltenyi Biotech) prior to

GEM generation. We selected for a 75-25 split of NeuN+/7-AAD+ nuclei for neurons and NeuN-/7-AAD+ for non-neuronal nuclei

respectively.

We captured �10,000 nuclei per genotype per region per replicate on a single 10X GEM chip. All downstream library preparation

was done according to the 10X Genomics protocol (CG000286) and sequenced on a Novaseq 6000 with a target of �40-50k reads

per nucleus.

Generating snATAC-seq libraries
Single nuclei suspension and library generation were completed at the Cedars Sinai AGCT core and followed the 10X protocol for

Next GEM scATAC-Seq v1.1 (PN-1000175) as described except for the following modifications:

Nuclei suspensions were generated using the recommendedmethod from the 10X scMultiome protocol (CG000375 Rev C) to lyse

cells and obtain nuclei.

Following single nuclei suspension generation, nuclei were counterstained for 7-AAD and sorted on a MACSQuant Tyto prior to

GEM generation. NeuN was not used for neuronal enrichment due to dye incompatibility between our NeuN antibody and a nuclear

counterstain. After the sort, we carried out permeabilization of nuclei as per the protocol. We aimed to capture 10,000 nuclei per well x

8 wells, for a total of 80,000 nuclei over 8 total samples (�10,000 nuclei per genotype per region per replicate). All downstream library
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preparation was done according to the 10XGenomics protocol (CG000209) and sequenced on a Novaseq 6000 with a target of >35k

reads per nucleus.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-nucleus RNA sequencing data quality control and pre-processing
All quality control and pre-processing were done under the Seurat package framework.96 Per biological sample, we filtered out cells

that (1) fall below the 5th percentile of the total UMI counts (nCount_RNA) or the 5th percentile total number of unique genes ex-

pressed (nFeature_RNA) or 700 unique genes expressed, whichever was more stringent; (2) are over the 95th percentile quantile

in terms of either the total UMI counts or the total number of unique genes expressed; (3) have larger than 5%mitochondria fraction

(percent.mt).

Global coverage normalization: counts per million (CPM) was applied to each cell followed by log transformation (‘‘LogNormalize’’).

We then projected cells from each biological sample to low dimensional space using principal components analysis (PCA) on highly

variable features selected by Seurat. Potential doublets were identified and subsequently removed from the downstream analysis by

DoubletFinder,99 ran in the top 15 principal components space with the expected doublet rate set to the recommended amount from

10X genomics based on high quality yield volume.

Single-nucleus ATAC sequencing data quality control and pre-processing
All quality control and pre-processing were done under the Seurat and Signac package framework.97 Per sample, we first used

Model-based Analysis for ChIP-Seq (MACS) to call sample specific de-novo peaks from its fragments file.98 We then merged sam-

ple-specific sets of peaks to a unified peaks set while removing peaks with length larger than 10000bp or smaller than 20bp. A unified

peaks by cells count matrix was constructed from the fragments file while removing cells with lower than 200 peaks detected and

peaks only present in less than 10 cells. Cells were filtered based on the following criteria: (1) appropriate number of non-duplicate,

usable read-pairs (passed_filters fromCell Ranger’s output singlecell.csv). Specifically, we set it to larger than 3000, 4000, 2500, and

5000 for the 2 BL6 and 2 DBA samples collected in the hippocampus region. Similarly, we set it to be larger than 7500, 5000, 7500,

and 7500 for their amygdala counterpart. (2) number of fragments overlapping peaks (peak_region_fragments from Cell Ranger’s

output singlecell.csv) falls within the 5th percentile and the 95th percentile. (3) ratio of fragments overlapping peaks over the total

number of non-duplicate, usable read-pairs falls within the 5th percentile and the 95th percentile. (4) nucleosome_signal: the ratio

of fragments between 147 bp and 294 bp (mononucleosome) to fragments <147 bp (nucleosome-free) is smaller than 4 (5) TSS

enrichment score is larger than 2. We did not include a filter for ratio of peaks in black list regions over the total number of non-dupli-

cate, usable read-pairs as this was removed during the construction of the DBA SNP-swapped reference genome. We normalized

the count data with Text Frequency Inverse Document Frequency (RunTFIDF) and performed Singular Value decomposition

(RunSVD) on top 90% informative features selected by Signac (FindTopFeatures). The first low dimensional embedding was

excluded from downstream doublet detection and clustering analysis due to high correlation with sequencing depth. Potential dou-

blets were identified and subsequently removed from downstream analysis by DoubletFinder,99 ran on the 2nd - 11th low dimensional

embedding with the expected doublet rate set to the recommended amount from 10X genomics based on high quality yield volume.

Finally, we built a gene-by-cell transcriptional activity matrix that counts per cell, at the gene body and 2000bp upstream to capture

the promoter region, the total number of ATAC-seq counts.

Single-nucleus methylation data quality control and pre-processing
Cells were filtered on the basis of several metadata metrics: (1) mCCC level <0.03; (2) global mCG level >0.5; (3) global mCH level

<0.2; (4) total mapped reads >100,000; (5) Bismarck mapping rate >0.5; and 6 (percent genome covered >2). Methylation features

were calculated as fractions of methylcytosine over total cytosine across gene bodies ± 2kb flanking regions and 100kb bins span-

ning the entire genome. Methylation features were further split into CG and CH methylation types. Features overlapping our methyl-

ation mm10 blacklist were removed. 100kb bin features were then filtered on minimum mean coverage >500 and maximum mean

coverage <3000. Gene body featureswere filtered onminimumcoverage >5 and all remaining featureswere normalized per cell using

the beta binomial normalization technique in allcools.72 Individual CpG sites were only counted when they had R5 reads covering

the site.

Single-nucleus RNA sequencing data integration, clustering and annotation
Gene counts were normalized using SCTransform,102 and regressed out percentage of reads from mitochondrial genes. We then

integrated cells from all samples using reciprocal principal components analysis (rPCA) implemented in Seurat 4.0.596 on the top

5000 integration genes and in the top 30 reciprocal principal components space. For clustering, we standardized the integrated

data, performed PCA on all integrated genes and ran de-novo Louvain clustering algorithm in the top 15 principal components space

with resolution set to 0.1. Cluster markers that are conserved between the strains were called using non-parametric Wilcoxon rank-

sum test and subsequently used for annotation. We annotated hippocampals clusters by manually checking conserved markers

against the ALLENBRAINMAP’sMouseWhole Cortex andHippocampus dataset. For cells collected in the amygdala, we performed

a second round of analysis restricted to those identified to be neuronal in the initial annotation to increase our annotation resolution.
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We used the same integration pipeline and parameters described above except when clustering we ran de-novo Louvain clustering

algorithm in the top 25 principal components spacewith resolution set to 0.75, due to the increased expected complexity of cell types

in this brain region. All clusters were first grouped into broad types of inhibitory or excitatory neurons except for one cluster that simul-

taneously expressed Gad2 and Slc17a7. We thus simply annotated it as ‘‘Neuronal’’ followed by its by cluster marker gene names.

We also manually compared our clusters to those that were previously reported in amygdala,113 and adapted their annotation for

clusters with high concordance in top marker genes.

Single-nucleus ATAC sequencing data integration, clustering and annotation
We first jointly projected all cells’ ATAC peak profile to uncorrected Latent Semantic Indexing (LSI) embeddings with TFIDF trans-

formation followed by calculating SVD on the top 90% most informative peaks. Peak profile embeddings were then integrated in

shared low dimensional space via integration anchors identified in the 2nd to 30th reciprocal LSI space as implemented in Signac

1.5.0. We then integrated cell transcriptional activity profiles by performing SCTransform after regressing out percentage of activity

from mitochondrial genes and carried out rPCA integration on integration genes identified from the single-nucleus RNA experiment

and in the top 10 reciprocal principal components. We transferred the single-nucleus RNA annotation onto the single-nucleus ATAC

cells by linking the RNA’s expression profile with ATAC’s transcriptional activity profile through canonical correlation analysis (CCA)

described in Seurat. Pairs of cells from each modality that are mutual nearest neighbors in the top 15 canonical components space

were identified as ‘‘transfer anchors’’. ‘‘Anchors’’ were further filtered and weighted by distances in the integrated peak embeddings

prior to imputing ATAC cells’ annotation of cell type. For amygdala cells, after the initial assignment to cell type, we repeated the

above-mentioned pipeline only on those cells predicted to be neuronal to obtain a set of higher resolution annotation. The second

round of analysis was performed on integration genes identified from the subset of single-nucleus RNA data also categorized as

neuronal.

Single-cell methylation data integration, clustering and annotation
We used the negative of the averagemCH fraction of the gene body ± 2kb as the proxy of methylation cells’ transcriptional activity as

described previously.72 We first integrated, across strains, single-nucleus methylation gene-body mCH profiles on RNA integration

genes via ‘‘integration anchors’’ identified in the top 30 reciprocal PCA space. Gene body mCH profiles were then linked to single-

nucleus RNA expression profiles via ‘‘transfer anchors’’ identified in the top 15 canonical components space. ‘‘Transfer anchors’’

were further filtered and weighted by distances in the integrated mCH embeddings prior to imputing methylation cells’ annotation

using their RNA counterpart as reference. For amygdala, we directly linked to the higher resolution annotation used on the neuronal

cells in RNA. These served as our final annotation for all the neuronal cells in both hippocampus and amygdala. Since mCH methyl-

ation, used to construct the ‘‘transfer anchors’’, is largely not present in the non-neuronal population,114 we further performed de-

novo annotation on methylation cells using both the genome wide mCG and mCH fraction at 100kb as described previously.115

Non-neuronal clusters were annotated by their canonical marker genes (gene-body hypo-methylation). These served as our final

annotation for all the non-neuronal cells in both hippocampus and amygdala.

Co-embedding of single-nucleus RNA, single-nucleus ATAC, and single-nucleus methylation sequencing data
Both single-nucleus methylation and single-nucleus ATAC cells’ expression profiles were imputed with previously computed ‘‘trans-

fer anchors’’. All threemodalities weremerged on their integrated or imputed expression profiles, projected to low dimensional space

via PCA, and visualized by UMAP (performed on the top 15 principal components).

Cell-type specific differential test for single-nucleus ATAC and single-nucleus RNA
We used DESeq273 for cell-type specific pseudobulk level differential expression analysis and differential accessibility analysis. Per

cell type, raw counts were aggregated to replicate level and DESeq2 was run under default parameters to detect statistical evidence

of strain differences. Any genes with no coverage in either or both strains were excluded.

Testing class and cell type effects on strain differences
We used the brms package in R to test for the effect of class analysis.116 We defined a Bayesian model using brms with a negative

binomial distribution for the number of significant differences (for RNA and ATAC data) or the number of mutations for methylation.

We used up to eight chains and visually inspected the output to ensure chains were mixed. We used the following code to define the

model:

brmðsignificant difference � 1 + ð1 j class = celltypeÞ + logðcoverageÞ;data = data; chain = 8;

control = listðadapt delta = 0:95Þ; family = negbinomialðlink= 00log00ÞÞ
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