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A Computational Geometry Approach for Modeling Neuronal 
Fiber Pathways

S. Shailja, Angela Zhang, B. S. Manjunath
University of California, Santa Barbara, CA 93117, USA

Abstract

We propose a novel and efficient algorithm to model high-level topological structures of neuronal 

fibers. Tractography constructs complex neuronal fibers in three dimensions that exhibit the 

geometry of white matter pathways in the brain. However, most tractography analysis methods 

are time consuming and intractable. We develop a computational geometry-based tractography 

representation that aims to simplify the connectivity of white matter fibers. Given the trajectories 

of neuronal fiber pathways, we model the evolution of trajectories that encodes geometrically 

significant events and calculate their point correspondence in the 3D brain space. Trajectory 

inter-distance is used as a parameter to control the granularity of the model that allows local or 

global representation of the tractogram. Using diffusion MRI data from Alzheimer’s patient study, 

we extract tractography features from our model for distinguishing the Alzheimer’s subject from 

the normal control. Software implementation of our algorithm is available on GitHub (https://

github.com/UCSB-VRL/ReebGraph.

Keywords
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1 Introduction

Diffusion MRI (dMRI) tractography [2] constructs morphological 3D neuronal fibers 

represented by 3D images called tractograms. In recent years, analysis of fibers in 

dMRI tractography data has received wide interest due to its potential applications in 

computational pathology, surgery, and studies of diseases, such as brain tumors [3,10], 

Alzheimer’s [4], and schizophrenia [13]. Tractography datasets are huge and complex 

consisting of millions of fibers arising and terminating at different functional regions of 

the brain. Computational analysis of these fibers is challenging owing to their complex 

topological structures in three dimensions. Tractography produces white matter pathways 

that can be deduced as spatial trajectories represented by a sequence of 3D coordinates. 

To model the geometry of these trajectories, we utilize the concept of Reeb graphs 

[17] that have been successfully used in a wide variety of applications in computational 

geometry and graphics, such as shape matching, topological data analysis, simplification, 
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and segmentation. We assume that the groups of trajectories that are spatially close to each 

other share similar properties. Therefore, we compute a model to encode the arising & 

ending and the merging & splitting behavior for groups of trajectories (as shown in Fig. 1) 

along with their point correspondence. With these computations in place, we develop a finite 

state machine that can be used to query the state of any trajectory or its shared groups. The 

resulting model has tunable granularity that can be used to derive models with the desired 

level of geometrical details or abstract properties.

2 Related Work

Brain tractography datasets are constructed from the dMRI of an individual’s brain [23,24]. 

One way to analyze the fiber tracts is to generate a connectivity matrix that provides a 

compact description of pairwise connectivity of regions of interest (ROI) derived from 

anatomical or computational brain atlases. For example, the connectivity matrices can be 

used to compute multiple graph theory-based metrics to distinguish between the brains 

of healthy children and those with recent traumatic brain injury [21]. However, such 

methods overlook the geometrical characteristics within a region of interest. A number of 

inter-fiber distance-based approaches have been used to analyze the fibers [1,5,8,11,12,26] 

for clustering and segmentation but have some limitations. For example, one needs prior 

information about the number of clusters to be segmented in [8]. More sophisticated 

methods produce high-dimensional representations that are not efficient [20,25]. Due to 

the complex nature of tractography algorithms, another way to compare bundles is by using 

tract profiling techniques that quantifies diffusion measures along each fiber tract [22]. 

Notably, researchers in [7] introduced a representation that is sparse and can be integrated 

with learning methods for further study. However, their approach leads to possible loss of 

critical points of fibers (due to polynomial fitting) and ignores multi-fiber tractography. Our 

design addresses this by sequentially processing the group behavior emerging due to events 

of individual trajectories. Our method builds on previous work on time-dependent trajectory 

analysis using a Reeb graph. A deterministic algorithm for Reeb graph computation in 

O(n log n) time is shown in [14]. Reeb graph can be used to model the trajectory 

grouping structure defined by time as a parameter [6]. For tractography analysis, the concept 

of “bundling” and “unbundling” structure of trajectory data to compute a sparse graph 

is proposed in [18]. They show graph representation of brain tractography but do not 

present the algorithm or proofs for the computation, focusing instead on the novel problem 

definition.

3 Preliminaries

In the three dimensional Euclidean space ℝ3, we define the following terms that would help 

in setting up the problem in this section.

Trajectory: A trajectory T is as an ordered sequence of points in ℝ3. We denote a trajectory 

T as a sequence of points {p1, p2, …, pm}, where m is the number of points in T and pi∈ℝ3.
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ϵ-(dis)connected Points: For any pair of points p1 and p2 in ℝ3, we define d(p1, p2) as 

the Euclidean distance between the two points:

d p1, p2 = p1 − p2 2,

where ∥·∥2 represents the Euclidean norm. Two points p1, p2 are ϵ-connected if d(p1, p2) ≤ ϵ. 

Similarly, two points p1, p2 are ϵ-disconnected if d(p1, p2) > ϵ.

Appear Event: For each trajectory T, the initial point of its ordered sequence is labeled 

for the occurrence of the appear event. For example, for trajectory T1 = {p1, p2, …, pm}, we 

observe the appear event at the point p1.

Disappear Event: For each trajectory T, the final point of its ordered sequence is labeled 

for the occurrence of the disappear event. For example, for trajectory T1 = {p1, p2, …, pm}, 

we observe the disappear event at pm.

Connect Events: To define connect events for a pair of trajectories, consider two 

trajectories

T = p1, p2, …, pm , T ′ = p1′ , p2′ , …, pm′ ,

then a connect event for the pair (T, T′) is defined by (pi, pj′) such that pi ∈ T, pj′ ∈ T′ and,

d pi, pj′ ≤ ϵ, d pi − 1, pj − 1′ > ϵ, for i > 1 and j > 1.

If there is no such pair of points, it implies that T and T′ are disjoint. Moreover, if T and T′ 
are ϵ-connected at (pi, pj′) and if T′ and T* are also ϵ-connected at (pj′, pl*) where pl* ∈ T*, 

then we say that T and T* are ϵ-step connected at (pi, pl*).

Disconnect Events: Given a pair of trajectories (T, T′) with a connect event at (pi, pj′), 
we define a disconnect event by (pi+k, pj + k′ ) such that,

d pi + k, pj + k′ > ϵ, d pi + k − 1, pj + k − 1′ ≤ ϵ .

Max-width ϵ-Connected Trajectories: For an input ℐ, there are many possible ϵ-step 

connected trajectories. The maximal group of trajectories at a given step k are called 

max-width ϵ-step connected and there is no other possible set of sub-trajectories that can 

intersect with the maximal group at k.

Note that the trajectories estimated from dMRI tractography do not have a specific 

beginning or ending, as dMRI is not sensitive to the direction of connections. So, reversing 

the order of the points of a streamlines will produce similar results. Two events appear and 

disappear are used for convenience in describing the algorithm and its implementation.
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3.1 Problem Formulation

We set up the following central problem for this paper:

Input: A set of trajectories ℐ = T1, T2, …, Tn , such that Ti ∈ ℝ3 for all i ∈ {1, 2, …, 

n} where n is the number of trajectories.

Output: A finite state machine (FSM) S that models the evolution of trajectories and 

their critical points of interaction with all other trajectories.

S = (A, O, V , ℛ),
ℛ:(S × A) (S × O),

where A is the set of events associated with each trajectory Ti ∈ ℐ, O is the set 

of outputs encoding the location information of the critical events, V is the set of 

states that corresponds to a group of trajectories. ℛ is the state-transition and output 

function. When the machine is in a current state v ∈ V and receives an input a ∈ A 
it moves to the next state specified by R and produces an output location o ∈ O as 

shown in Fig. 2.

4 Reeb Graph

The central part of solving the problem as stated above is to compute ℛ—the state transition 

and output function. Towards that end, we compute an undirected graph ℛ called the Reeb 

graph. In this section, we define the Reeb graph and then proceed to develop an algorithm 

that can compute this graph for a set of trajectories. Formally, a Reeb graph ℛ is defined 

on a manifold ℳ ∈ ℝ3 using the evolution of level sets L [9]. To adapt this definition 

of ℛ for the case of neuronal fiber trajectory evolution problem, we define a manifold 

ℳ in ℝ3 as the union of all points in the tractogram. The set of points of trajectories at 

step k is the level set of k. The connected components in the level set of k correspond 

to the max-width ϵ-connected trajectories at step k. Unlike previous studies [6], here, any 

number of trajectories can become ϵ-(dis)connected at the same location. Reeb graph ℛ
describes the evolution of the connected components over sequential steps. At every step k, 

the changes in connected components (states of FSM) are represented by vertices in ℛ.

4.1 Computing the Reeb Graph

In Sect. 3, for a given trajectory, we defined appear and disappear events. For a pair of 

trajectories, we defined connect and disconnect events. These events (a ∈ A) describe the 

branching structure of the trajectories. To compute the Reeb graph, we process these events 

sequentially. We maintain a graph G = (V′, E′) where the vertices represent the set of 

trajectories. G is a graph that changes with steps representing the connect and disconnect 

relations between different trajectories. At each step k, we insert new nodes at appear 

events and delete nodes at disappear events. At connect events, we insert edges in G and at 

disconnect events, we delete edges. At each step k, an edge (T1, T2) in G shows that T1 and 

T2 are directly connected. Therefore the max-width ϵ-connected trajectories correspond to 

the connected components in G at step k.
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Initialization: We spend O(N2) time to store the appear, disappear, connect, and disconnect 

events for all pair of the trajectories. We store a mapping M from the current components 

in G to the corresponding vertices in ℛ. We start from one of the trajectories and add 

other trajectories of interest on the way of following its points sequentially. We maintain a 

data structure to flag the points for which the events are already processed and store their 

mappings to the vertices of the Reeb graph in D. Note that although the computational time 

is O(N2), this step is massively parallelizable.

Split and Merge: To handle a disconnect event of trajectories T1 and T2 at step k, we 

delete the edge (T1, T2) from Gk. Similarly, for a connect event of trajectories T1 and T2 at 

step k, we add the edge (T1, T2) to Gk. We do this for all the connect and disconnect events 

as shown in Fig. 3 for trajectory T1. For the disconnect event, we query Gk−1 to get the 

connected component C consisting of trajectories T1 and T2 and locate the corresponding 

u in ℛ. We query Gk to get the connected components C1 and C2 consisting of trajectories 

T1 and T2, respectively. C1 = C2 implies that the trajectories T1 and T2 are still ϵ-step 

connected. If C1 ≠ C2, we add a new split vertex v to ℛ and a new edge (u, v) and update M 
accordingly.

Computing ℛ from G: We query Gk and Gk−1 to get the connected components at 

step k and k−1 respectively. For each connected component Cc in Gk, if Cc is present 

in the connected components of Gk−1, then we do not modify ℛ. This implies that no 

such event occurred in the trajectories of Cc which could result in any critical points. 

Otherwise, using M, we locate the corresponding nodes in ℛ for the connected components 

in Gk−1, we call it previous connected components. The corresponding nodes in ℛ for the 

connected components in Gk are called present connected components. For each component 

in present connected components, we add a node v in ℛ if not already present in the 

previous connected component and assign the location (o ∈ O) as the coordinates of one 

of the points in the connected components. If that is the case, we also add an edge (u, v), 

where u is the node corresponding to previous connected component C1 and v is the node 

corresponding to present connected component C2, if |C1 ∩ C2| > 0. Finally, we update M 
accordingly.

At next step k+1, if we encounter the point of a trajectory T for which the events have 

already been processed, we query D to locate the vertex u and v in ℛ for pk and 

pk+1 respectively. We add an edge (u, v) to ℛ as shown in Fig. 4 and delete the node 

corresponding to trajectory T in G and update M.

Theorem 1.—For a given set of trajectories, ℐ = T1, T2, …, Tn  with a total of N points, 

the Reeb graph ℛ of ℐ can be computed in O(N log N) time.

Proof.: It is possible to compute the connected components of a graph G(V′, E′) with |V′| 

vertices and |E′| edges using Breadth First Search (BFS) or Depth First Search (DFS) in 

O(N2) time. But, since we know all of the points of the given input ℐ at which any event 

occurs, we can use a dynamic graph connectivity approach [14] to improve the computation 

time. This method allows connectivity operations, inserts, and deletes, in O(logN) time. In 
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the worst case, we modify and query the graph G to get the connected components for all the 

points in ℐ. Hence, the total time required for the construction of ℛ is O(NlogN).

5 Examples and Applications

To the best of our knowledge, there are no existing modeling methods in the literature 

for brain fibers that can be used to compare our method directly. To provide the proof 

of concept and demonstrate utility, we evaluate our proposed algorithm on real data and 

validate manually as illustrated in Fig. 5. To design a case study demonstrating the utility 

of ℛ, we randomly select 22 subjects (11 Normal and 11 Alzheimer’s patient) from the 

publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) [15] dataset (http://

adni.loni.usc.edu/). We evaluate the qualitative representation of critical points using our 

model on fibers for random ROIs. All the analytically significant points are captured by ℛ
through nodes and edges, which are highly consistent across subjects. The proposed model 

can be employed in the existing deep learning and machine learning algorithms to provide 

new insights into the structure and the function of the brain. Similar to recent research works 

where graph theory-based features are utilized for classification tasks, we compute the total 

number of max-width ϵ-connected groups that is |E| and the aggregate of significant points 

on fibers that is |V|. We also calculate network properties such as clustering, centrality, 

modularity, and efficiency of ℛ. We choose two ROIs: Posterior Cingulate Gyrus and 

Middle Occipital Gyrus from the left hemisphere based on the Automated Anatomical 

Labelling (AAL) atlas [16,19] and compute tractography consisting of 1000 fibers in each 

ROI for each subject. We used Q-Space Diffeomorphic Reconstruction as implemented 

in DSI Studio [23] to compute the fibers. In Fig. 6, we show the distribution of a set 

of properties that can be used to facilitate comparisons between Alzheimer’s and normal 

subjects. By comparing the p-value for the ROIs shown in Fig. 6, we can conclude that 

Posterior Cingulate Gyrus (lesser p-value) is a more significant ROI than Middle Occipital 

Gyrus. This is in accordance with the study [16] that highlights the relevant ROIs for 

Alzheimer’s disease. The average run time of our implementation for examples consisting of 

132,000 points on average was 42 s on Intel Core CPU 4 GHz processor with 32 GB RAM.

6 Conclusion

Our paper proposes the study of the spatial evolution of neuronal trajectories including the 

algorithmic analysis. We also demonstrate how our proposed reduced graph encodes the 

critical points of the pathways. Point correspondence of the critical coordinates in the 3D 

brain space calculated in our algorithm is an essential requirement of the tract-orientated 

quantitative analysis which is overlooked in the previous works. This aids in localizing 

and underpinning the points of interest in white matter tracts. Through our preliminary 

experiments, we show a set of properties of the Reeb graph that can be used to distinguish 

between the Alzheimer’s patients and control subjects. In future, we plan to utilize graph­

theoretic concepts to analyze the Reeb graph models of white matter fibers. We intend 

to further evaluate the reproducibility of our approach on additional datasets. Integrating 

graph-theoretic features of the Reeb graph with data-driven learning approaches can greatly 

improve our understanding of various human disease pathways.
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Fig. 1. 
A basic example of a set of trajectories displaying the arising, merging, splitting, and ending 

behaviour. These qualitative behaviors of group of trajectories emerge due to the events 

(appear, connect, disconnect, and disappear) of individual trajectory. Events of trajectories 

are used to define behavior of the group of trajectories.
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Fig. 2. 
An example of state diagram for trajectory T1. T1 is either directly (dis)connected with T2 or 

ϵ-step (dis)connected.
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Fig. 3. 
The figure shows an input ℐ = T1, T2, T3, T4  exhibiting arising, merging, splitting, and 

ending behaviour. After processing the sequence of points in T1, at k = 0, 2, 5, 7, 14, 17, 

18, 21 steps, we modify the Gk respectively. Connect, disconnect, appear, and disappear 

events associated with T1 are marked by black circles. Delete node and edge queries are 

represented by dashed circle and dashed line in Gk.
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Fig. 4. 
Continuing the same example from Fig. 3, we show representation of ℛ from Gk. Edges of 

ℛ encodes the maximal group of trajectories and vertices of ℛ records the significant points 

of the trajectories.
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Fig. 5. 
(A) shows the fiber tracts created by DSI Studio (http://dsi-studio.labsolver.org/Manual/

Fiber-Tracking for an example ROI. (B) shows the example white matter fiber tracts in 

3D. (C) exhibits the corresponding ℛ for the example fibers. (D) shows three fibers from 

B to form a qualitative impression of our proposed algorithm. (E) indicates the nodes of 

ℛ overlapped on the trajectories. (F) represents the proposed grouping structure with the 

vertices and edges.
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Fig. 6. 
Statistical analysis results for different values of ϵ showing the comparison between normal 

and Alzheimer’s subjects across properties of ℛ for ROI A) Posterior Cingulate Gyrus and 

B) Middle Occipital Gyrus

Shailja et al. Page 14

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Related Work
	Preliminaries
	In the three dimensional Euclidean space , we define the following terms that would help in setting up the problem in this section.Trajectory: A trajectory T is as an ordered sequence of points in . We denote a trajectory T as a sequence of points {p1, p2, …, pm}, where m is the number of points in T and .ϵ-(dis)connected Points: For any pair of points p1 and p2 in , we define d(p1, p2) as the Euclidean distance between the two points:where ∥·∥2 represents the Euclidean norm. Two points p1, p2 are ϵ-connected if d(p1, p2) ≤ ϵ. Similarly, two points p1, p2 are ϵ-disconnected if d(p1, p2) > ϵ.Appear Event: For each trajectory T, the initial point of its ordered sequence is labeled for the occurrence of the appear event. For example, for trajectory T1 = {p1, p2, …, pm}, we observe the appear event at the point p1.Disappear Event: For each trajectory T, the final point of its ordered sequence is labeled for the occurrence of the disappear event. For example, for trajectory T1 = {p1, p2, …, pm}, we observe the disappear event at pm.Connect Events: To define connect events for a pair of trajectories, consider two trajectoriesthen a connect event for the pair (T, T′) is defined by (pi, ) such that pi ∈ T,  and,If there is no such pair of points, it implies that T and T′ are disjoint. Moreover, if T and T′ are ϵ-connected at (pi, ) and if T′ and T* are also ϵ-connected at () where , then we say that T and T* are ϵ-step connected at (pi, ).Disconnect Events: Given a pair of trajectories (T, T′) with a connect event at (pi, ), we define a disconnect event by (pi+k, ) such that,Max-width ϵ-Connected Trajectories: For an input , there are many possible ϵ-step connected trajectories. The maximal group of trajectories at a given step k are called max-width ϵ-step connected and there is no other possible set of sub-trajectories that can intersect with the maximal group at k.Note that the trajectories estimated from dMRI tractography do not have a specific beginning or ending, as dMRI is not sensitive to the direction of connections. So, reversing the order of the points of a streamlines will produce similar results. Two events appear and disappear are used for convenience in describing the algorithm and its implementation.
	Trajectory:
	ϵ-(dis)connected Points:
	Appear Event:
	Disappear Event:
	Connect Events:
	Disconnect Events:
	Max-width ϵ-Connected Trajectories:

	Problem Formulation

	Reeb Graph
	Computing the Reeb Graph
	Initialization:
	Split and Merge:
	Computing R from G:
	Theorem 1.
	Proof.



	Examples and Applications
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.



