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ABSTRACT OF THE DISSERTATION

Line Defects and Interfaces from Holography

by

Kevin Chen

Doctor of Philosophy in Physics
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Professor Michael Gutperle, Chair

In this dissertation, we discuss half-BPS solutions of gauged supergravity that are holo-

graphic realizations of conformal line defects and interfaces. These solutions are constructed

by taking a suitable ansatz for the geometry, consisting of a warped product of an AdS

spacetime and a sphere, if necessary, over a line, and solving the supersymmetry variations.

Quantities such as one-point functions in the presence of the defect and the entanglement

entropy are calculated holographically.

In chapter 1, we review the AdS/CFT correspondence and holography. In chapter 2,

we relate two different formulations of AdS6 solutions in type IIB supergravity. In chapter

3, we construct solutions in six-dimensional F (4) gauged supergravity that are dual to line

defects. In chapter 4, we construct solutions in four-dimensional N = 2 gauged supergravity

that are dual to line defects, obtained by a double-analytic continuation of BPS black hole

solutions. In chapter 5, we construct Janus solutions in three-dimensional N = 8 gauged

supergravity that are dual to interface CFTs.
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CHAPTER 1

Introduction

1.1 The AdS/CFT correspondence

The AdS/CFT correspondence [5] is an important tool for understanding quantum gravity

and field theories. It states that, in certain cases, a theory of gravity formulated on an anti-

de Sitter (AdS) background in d + 1 dimensions is equivalent, or dual, to a conformal field

theory (CFT) that lives on its d-dimensional boundary. This equivalence is a realization of

the holographic principle of quantum gravity [6, 7], and part of the work leading up to this

discovery had been on studying black hole thermodynamics using field theoretic methods [8].

In the end, both directions of the duality are important—observables of the strongly-coupled

field theory can be calculated in the gravitational theory [9, 10]. It is with this particular

application that this dissertation will mostly be concerned. For reviews and lecture notes on

the AdS/CFT correspondence, see [11–14].

To motivate discussion, let us briefly summarize the example given in [5]: consider N

coincident D3 branes in type IIB string theory. In the low-energy limit, where we send the

string length scale `s → 0 but keep N and the string coupling gs fixed, we only have massless

string states—namely those of four-dimensional N = 4 U(N) supersymmetric Yang-Mills on

the D-branes, in addition to the bulk free supergravity. On the other hand, we can take the

same low-energy limit in the D3 brane solution of supergravity,

ds2 = f−1/2
(
− dt2 + dx2

1 + dx2
2 + dx2

3

)
+ f 1/2

(
dr2 + r2 dΩ2

5

)
,

f = 1 +
R4

r4
, R4 ≡ 4πgsα

′2N . (1.1)
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The excitations coming from the near-horizon region around r = 0 are red-shifted to low

energies, as viewed by an observer at infinity, and they decouple from the bulk supergravity.

In the limit r � R, the geometry becomes that of AdS5 × S5,

ds2 ≈
[
r2

R2

(
− dt2 + dx2

1 + dx2
2 + dx2

3

)
+
R2

r2
dr2

]
+R2 dΩ2

5 . (1.2)

This suggests that four-dimensional N = 4 supersymmetric Yang-Mills theory is the same

as type IIB string theory on AdS5 × S5, and numerous checks support this correspondence.

For one, the global symmetries of both theories agree: the SO(4, 2) isometry group of AdS5

is the same as the conformal group in four dimensions, and the SO(6) group of S5 rotations

is identified with the SU(4) R-symmetry of the field theory.

The classical supergravity description is valid when N is large1 and the AdS5 radius R

is much larger than the string length,

1� R4

`4
s

∼ gsN . (1.3)

But since gsN ∼ g2
YMN , this regime corresponds to large ’t Hooft coupling in the field

theory. So the AdS/CFT correspondence is a strong-weak duality—a strongly-coupled field

theory is dual to a weakly-coupled gravitational theory, and vice versa. This allows us to

study the dual CFT using classical supergravity in a regime where traditional field theoretic

calculations may be intractable.

In this dissertation, we study line defects and interfaces in the CFT. These objects are

realized holographically in the gravitational theory as excitations above the AdS vacuum.

However, the equations of motion for fluctuations around the vacuum can be difficult to

analyze. In many cases, the ten- or eleven-dimensional supergravity can be consistently

truncated to a lower-dimensional gauged supergravity, where the infinite tower of Kaluza-

Klein modes of a compact submanifold is truncated to just a finite subset and the equations

1We can also interpret this as the AdS5 radius R being much larger than the Planck length, since
R4/`4p ∼ N . This suppresses loop contributions in the gravitational theory.
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of motion close on the remaining modes. Solutions to the equations of motion in the lower-

dimensional gauged supergravity are often easier to find as there are fewer fields to consider,

and they can be uplifted to solutions in the higher-dimensional supergravity. For instance,

type IIB supergravity on AdS5×S5 can be consistently truncated to five-dimensional SO(6)

gauged supergravity [15–17]. Even in cases where a consistent truncation has not yet been

established, it is still fruitful to study solutions of the lower-dimensional gauged supergravity

in order to study general properties of these excitations.

1.2 Holography

In this section, we outline how CFT observables can be computed from the gravitational

theory, according to [9, 10]. For concreteness, consider (Euclidean) AdSd+1 in Poincaré

coordinates,

ds2 =
1

z2

(
dz2 + dx2

1 + · · ·+ dx2
d

)
. (1.4)

The d-dimensional dual CFT is located at the z → 0 boundary. Note that the CFT vacuum

state is dual to this pure AdS solution; excited states are dual to asymptotically AdS solutions

of the supergravity, where the metric approaches an AdS metric at the boundary. The

asymptotic behavior of the bulk fields near the boundary determine correlation functions of

the CFT. To illustrate this, consider a free massive scalar in the bulk,∫
bulk

dd+1x
√
g

(
1

2
gµν∂µφ∂νφ+

1

2
m2φ2

)
. (1.5)

Solving the equations of motion on the AdS background and ignoring the backreaction, we

obtain two linearly independent solutions whose leading-order expansions in z are

φ(x, z) = φ0(x)zλ− + φ1(x)zλ+ + · · · , (1.6)

where

λ± =
d

2
±
√
d2

4
+m2 , (1.7)

3



are the roots of the equation λ(λ − d) = m2. Note that unitarity requires m2 ≥ −d2/4, so

λ± are real [18, 19]. The boundary value φ0(x) couples to an operator O(x) of the CFT via

a coupling term
∫

bdy
φ0O and we identify λ+ as the scaling dimension of this dual operator.2

The statement of the AdS/CFT correspondence is the identification of the bulk AdS

partition function as a generating function for correlation functions in the boundary CFT:〈
exp

∫
bdy

φ0O
〉

= exp(−Son-shell[φ0]) , (1.8)

where Son-shell[φ0] is the classical on-shell supergravity action. Then, CFT correlation func-

tions can be calculated by functional derivatives,

〈O(x1) · · · O(xn)〉 =
δ

δφ0(x1)
· · · δ

δφ0(xn)
Son-shell[φ0]

∣∣∣∣
φ0=0

. (1.9)

A similar procedure applies for other types of fields, such as vectors and tensors. This

identification is made more precise below.

Correlation functions in the CFT have UV divergences that require renormalization to

make them well-defined. Likewise, the gravitational on-shell action is divergent due to the

infinite region of integration at the boundary. To control the divergences of the gravitational

theory, we use holographic renormalization [21, 22]: we expand, as a power series in z near

the boundary, the bulk metric,

ds2 =
1

z2

(
dz2 + gij(x, z) dxi dxj

)
,

gij(x, z) = g(0)ij(x) + zg(1)ij(x) + · · ·+ zdg(d)ij(x) + zd log z g̃(d)ij(x) + · · · , (1.10)

and all bulk fields of the theory. For a general bulk field F(x, z), this expansion is

F(x, z) = zm
(
f(0)(x) + zf(1)(x) + · · ·+ znf(n)(x) + zn log z f̃(n)(x) + · · ·

)
, (1.11)

(for the scalar field, the powers m and m+n correspond to λ− and λ+ above). The boundary

value f(0) that multiplies the leading order term corresponds to the source for a CFT operator

2If −d2/4 < m2 < 1 − d2/4, there exists a second possible quantization where instead we take λ− to be
the scaling dimension and φ1(x) to be the source that couples to the dual operator [20].
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(e.g. g(0)ij sources the stress tensor [23]). If we plug these expansions into the equations of

motion and group the terms order by order in z, the coefficients f(1), . . . , f(n−1), f̃(n) can be

solved for entirely in terms of the f(0) sources. The coefficient f(n) is undetermined by the

equations of motion, and will be associated with the expectation value of the corresponding

CFT operator in the presence of the sources. The coefficient f̃(n) that multiplies a log z is

generically needed in order to satisfy the equations of motion, and will be related to the

conformal anomaly.

With these expansions, we can regulate the on-shell action by restricting the integral to

z ≥ ε for some small constant ε > 0. Upon integrating z, we obtain a regularized action on

the boundary with a finite number of divergences as ε→ 0,

Sreg =

∫
z=ε

ddx
√
g(0)

(
ε−ka(0) + ε−k+1a(1) + · · ·+ log ε a(k) +O

(
ε0
))
, (1.12)

where a(0), . . . , a(k) are local functions of f(0) and do not depend on f(n). The coefficient a(k)

that multiplies a log ε is associated with the conformal anomaly [24]. These divergences can

be canceled out by local counterterms Sct which are expressed in terms the boundary fields

F(x, ε) and induced metric hij(x) = gij(x, ε)/ε
2 on the boundary. In other words, we invert

the series in (1.11) to obtain f(0) = f(0)(F(x, ε), ε), which we substitute into the a(0), . . . , a(k)

coefficients. The renormalized action,

Sren = Sreg + Sct , (1.13)

is then finite as we take ε → 0 and can be used to calculate well-defined CFT correlation

functions in the presence of sources, in the manner described by (1.9). For instance, if O(x)

is the CFT operator dual to the bulk field F(x, z), the one-point function of O(x) in the

presence of sources is

〈O〉sources = lim
ε→0

1
√
g(0)

δSren

δf(0)

= lim
ε→0

(
εm−d

1√
h

δSren

δF(x, ε)

)
. (1.14)

Explicit evaluation of this limit yields

〈O〉sources ∼ f(n) + C(f(0)) , (1.15)

5



where C is a local function of the sources, and so leads to contact terms in higher order

functions.

Another quantity that we can calculate using the AdS/CFT correspondence is the entan-

glement entropy. Let A be a (d− 1)-dimensional static submanifold of the boundary CFT,

and let B denote its compliment. The entanglement entropy SEE of the region A can be

calculated holographically using the Ryu-Takayanagi prescription [25,26],

SEE =
Area(ΓA)

4G
(d+1)
N

, (1.16)

where ΓA is the (d − 1)-dimensional minimal surface in the bulk AdSd+1 whose boundary

coincides with that of A. Intuitively, since the entanglement entropy is defined in the CFT

by tracing out B and making that region inaccessible to an observer in A, we can think of

this from the bulk point of view as hiding the region B behind an event horizon. Then (1.16)

is a measure of entropy on the horizon, analogous to the Bekenstein-Hawking entropy of a

black hole [27]. A covariant version of this prescription was subsequently developed in [28],

and allows for time-dependence of the entanglement entropy.

1.3 Conformal defects

In addition to local operators, QFTs also contain important extended objects. The most

famous are Wilson and ’t Hooft lines in four-dimensional gauge theories, which play a role

in characterizing the phases of the theory [29, 30]. Related to these are Gukov-Witten

surface operators [31, 32], which generate one-form global symmetries that the Wilson and

’t Hooft lines are charged under [33, 34]. A special class of extended objects in CFTs are

conformal defects, which preserve a subgroup of the conformal symmetry. For example,

boundaries and line defects have been studied extensively in two-dimensional CFTs [35–40].

In general, a p-dimensional conformal defect in a d-dimensional CFT preserves a SO(p, 2)×

SO(d − p) subgroup of the SO(d, 2) conformal group, which corresponds to the residual

conformal transformations of the defect and the rotations in the transverse directions [41].

6



In a SCFT, an extended object that additionally preserves a superconformal subgroup is

called a superconformal defect.

In addition to the usual bulk CFT operators, whose operator product expansion (OPE)

take the schematic form,

O1(x)O2(y) ∼
∑
k

C12k|x− y|∆k−∆1−∆2Ok(y) , (1.17)

there can also be local operators Ô living on the defect, which can fuse amongst themselves

according to their own OPE. Also, when a bulk operator is brought towards the defect, it

excites defect operators according to a bulk-to-defect OPE,

O(x) ∼
∑
Ô

BOÔ|x⊥|
∆̂−∆Ô(x‖) , (1.18)

where we have assumed for simplicity a flat defect and separated x into the x⊥ perpendicular

and x‖ parallel directions. In particular, bulk operators acquire a non-vanishing one-point

function in the presence of the defect, due to the OPE with the defect identity operator,

〈O(x)〉 = AO|x⊥|−∆ . (1.19)

Conformal defects can be realized holographically in the gravitational theory by probe

branes. For example, the fundamental Wilson line in four-dimensional N = 4 U(N) super-

symmetric Yang-Mills corresponds to an insertion of a fundamental string in AdS5×S5 that

ends at the boundary along the curve of the Wilson line [42,43]. The generalization to higher

representations, which involves insertions of D3 branes in AdS5 × S5 carrying fundamental

string charge, was subsequently worked out in [44–48]. When the number of probe branes

becomes large, the backreaction can not be neglected and a fully backreacted supergravity

solution replaces the probe description. For the case of the Wilson lines mentioned above,

this solution was found in [49]. This is done by taking a geometry whose isometries match

the preserved SO(p, 2)× SO(d− p) subgroup, which is most easily done by taking a warped

product of AdSp+1 and Sd−p−1 over a line,

ds2 = f1(r) ds2
AdSp+1

+ f2(r) dΩ2
d−p−1 + f3(r) dr2 . (1.20)

7



In this dissertation, we use this ansatz geometry to consider holographic realizations

of two types of superconformal defects in gauged supergravity: line defects (p = 1) and

interfaces (p = d− 1). Interfaces, in this context, are conformal defects with the additional

requirement that the defect has no degrees of freedom itself—local operators on the interface

only involve fields of the bulk CFT. For example, the Janus solution in [50] is a deformation

of type IIB supergravity on AdS5 × S5 which divides the asymptotic AdS boundary into

two halves, and the bulk dilaton approaches a different constant value in each half. Since

the asymptotic value of the dilaton is associated with a source for the Lagrangian density of

four-dimensional N = 4 supersymmetric Yang-Mills,3 the corresponding dual CFT contains

a planar interface, across which the gauge coupling is discontinuous [51]. Solutions with a

spatially-varying axion are obtained by taking SL(2,R) transformations [52]. These Janus

solutions break all supersymmetries, but Janus solutions that preserve some supersymmetry

were subsequently discovered [52–55], which correspond to supersymmetric interfaces [56,57].

For a partial list of other examples of supergravity solutions corresponding to interfaces,

see [58–67].

3More precisely, it is dual to the fourth descendent Q4O of the ∆ = 2 chiral primary OIJ = Tr
(
Φ{IΦJ}

)
.
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CHAPTER 2

Relating AdS6 solutions in type IIB supergravity

Five-dimensional superconformal field theories take an interesting place among superconfor-

mal field theories. They realize a unique superconformal algebra F (4), they are strongly

coupled in the UV, and many exhibit unusual properties such as enhanced exceptional flavor

symmetries [68–70]. However, until recently, very few supergravity solutions in ten or eleven

dimensions dual to five-dimensional SCFTs were known. The first solutions [71–73] were

constructed in massive type IIA supergravity. Special examples of type IIB solutions were

constructed from the massive IIA solutions using (non-Abelian) T-duality in [74–76]. In [77],

type IIB supergravity solutions were constructed from first principles. The solutions take the

form of a fibration of AdS6 over a four-dimensional base manifold and pure spinor geometry

was used to determine the conditions for sixteen unbroken supersymmetries. It was found

that the manifold M4 is a S2 fibration over a two-dimensional space and the problem was

reduced to solving two partial differential equations on this two-dimensional space. In [78], a

different approach utilizing Killing spinors on an AdS6×S2 fibration over a two-dimensional

Riemann surface Σ2 was used to reduce the BPS equations of the bosonic background. It

was shown that local solutions can be expressed in terms of two holomorphic functions on

the Riemann surface Σ2. Later, regular global solutions were constructed [79,80] and shown

to be related to the conformal fixed-points of field theories derived from taking a conformal

limit of (p, q) 5-brane webs [81, 82]. Various aspects of these solutions have been studied

recently, see e.g. [83–95].

The goal of this chapter is to relate the form of the local IIB solutions found in [77]

9



to the ones found in [78] and determine the exact map between the two. In addition, we

analyze the regularity conditions and the map for global regular solutions. The structure

of this chapter is as follows. In sections 2.1 and 2.2, we briefly review the two supergravity

solutions of [77] and [78], respectively. In section 2.3, we determine the exact map between

these two solutions, and illustrate the relation with some explicit examples. In section 2.4,

we look at how the global regular solution of [80] is mapped into framework of [77]. We

conclude with a discussion in section 2.5.

2.1 Review of AFPRT solutions

Here we outline the solution in [77] by Apruzzi, Fazzi, Passias, Rosa, and Tomasiello (AF-

PRT). The spacetime takes the form of AdS6×S2×Σ2 and the supergravity fields depend on

the two-dimensional space Σ2 through four quantities (x, α,A, φ), two of which are actually

independent and can be used to parameterize Σ2. Following [77] we take (x, α) to be inde-

pendent and A = A(x, α) and φ = φ(x, α) to be dependent functions. Here eA is a warping

function and eφ is the dilaton. These quantities satisfy two partial differential equations,

d

[
e4A−φ

x
cotα d(e2A cosα) +

1

3x
e2A
√

1− x2 d(e4A−φ
√

1− x2 sinα)

]
= 0 ,

3 sin(2α) dA ∧ dφ = dα ∧
[
6 dA+ sin2 α

(
− d(x2)− 2(x2 + 5) dA+ (1 + 2x2) dφ

)]
. (2.1)

The metric in the string frame is

ds2
S =

cosα

sin2 α

dq2

q
+

1

9
q(1− x2)

sin2 α

cosα

[
1

x2

(
dp

p
+ 3 cot2 α

dq

q

)2

+ ds2
S2

]
+ e2A ds2

AdS6
, (2.2)

where p, q are quantities defined by

q = e2A cosα ,

p = e4A−φ sinα
√

1− x2 . (2.3)

The one-form field strength F1 is

F1 = s1s2
e−φ

6x cosα

[
12 dA

sinα
+ 4e−A(x2 − 1) d(eA sinα) + e2φ sinα d

(
e−2φ(1 + 2x2)

)]
, (2.4)

10



and the three-form NS-NS and R-R field strengths, H3 and F3, are

H3 = s1
1

9x
e2A
√

1− x2 sinα

[
−6 dA

sinα
+ 2e−A(1 + x2) d(eA sinα) + sinα d(φ+ x2)

]
∧ volS2 ,

F3 = s2
e2A−φ

54

√
1− x2

sin2 α

cosα

[
36 dA

sinα
+ 4e−A(x2 − 7) d(eA sinα)

+ e2φ sinα d
(
e−2φ(1 + 2x2)

) ]
∧ volS2 , (2.5)

where s1 and s2 are ± signs and volS2 denotes the volume form of S2 with unit radius. The

self-dual five-form field strength F5 vanishes in this background. These field strengths satisfy

the Bianchi identities,

0 = dF1 ,

0 = dF3 −H3 ∧ F1 ,

0 = dH3 . (2.6)

The signs s1, s2 depend on the specific supergravity solution, which we discuss later in this

chapter.

2.2 Review of DGKU solutions

Here we outline the solution in [78] by D’Hoker, Gutperle, Karch, and Uhlemann (DGKU).

The spacetime takes the form of AdS6×S2×Σ2, where Σ2 is a Riemann surface parametrized

by complex coordinates w, w̄. The supergravity fields depend only on Σ2 through two holo-

morphic functions A±(w). For completeness we present the following quantities which are

useful to express the supergravity fields in a concise form. We use the notation ∂ ≡ ∂w and

11



∂̄ ≡ ∂w̄.

κ± = ∂A± ,

κ2 = −|κ+|2 + |κ−|2 ,

∂B = A+∂A− −A−∂A+ ,

G = |A+|2 − |A−|2 + B + B̄ ,

D =

(
1 +R

1−R

)2

= 1 +
2|∂G|2

3κ2G
. (2.7)

The metric in the Einstein frame is

ds2
E = f 2

6 ds2
AdS6

+ f 2
2 ds2

S2 + 4ρ2| dw |2 , (2.8)

where the metric factors are

f 2
6 =

κ2

ρ2

√
D ,

f 2
2 =

κ2

9ρ2

1√
D
,

(ρ2)2 =
κ4

6G
√
D . (2.9)

Note that to make contact with the parameterization in section 2.1, the metric should be

transformed into the string frame,

ds2
S = eφ/2 ds2

E . (2.10)

Here the dilaton is normalized in the standard fashion to τ = χ + ie−φ. The solution [78]

utilizes an SU(1, 1)/U(1) parametrization of the complex scalar field in terms of B, which

is related to the axion-dilaton field via

B =
1 + iτ

1− iτ
, (2.11)

and is given by [91] in terms of the defined quantities as

B =
S + T /

√
D

S̄ − T̄ /
√
D
, (2.12)
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where for notational convenience we introduced the quantities,

S = −A+ + Ā− ,

T =
κ+∂̄G + κ̄−∂G

κ2
. (2.13)

This gives expressions for the axion χ and the dilaton eφ,

eφ = −(S + S̄)2 − (T − T̄ )2/D
2(ST̄ + S̄T )/

√
D

,

χ = −i (S2 − S̄2)− (T 2 − T̄ 2)/D
(S + S̄)2 − (T − T̄ )2/D

. (2.14)

If we also define

U± = (κ+ ± κ−)∂̄G , (2.15)

then noting the relations,

U− + Ū− = κ2(S + S̄) , U− − Ū− = κ2(T − T̄ ) ,

U+ + Ū+ = κ2(T + T̄ ) , U+ − Ū+ = κ2(S − S̄) , (2.16)

we have yet another expression for the axion and dilaton,

eφ = − (ReU−)2 + (ImU−)2/D
(ReU−ReU+ + ImU− ImU+)/

√
D

=
(ReU−)2 + (ImU−)2/D

|∂G|2κ2/
√
D

, (2.17)

χ =
ReU− ImU+ − ImU−ReU+/D

(ReU−)2 + (ImU−)2/D
. (2.18)

The one-form field strength F1 is given in terms of the axion χ by

F1 = dχ . (2.19)

The complex two-form potential C2 is given by

C2 =
2i

9

[
T
D
− 3(A+ + Ā−)

]
volS2 . (2.20)

This can be written in terms of the real two-form potentials C2 and B2,

C2 = B2 + iC2 , (2.21)
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where now

B2 = − 1

9i

[
T − T̄
D

− 3(A+ + Ā− − Ā+ −A−)

]
volS2 ,

C2 =
1

9

[
T + T̄
D

− 3(A+ + Ā− + Ā+ +A−)

]
volS2 . (2.22)

This gives the R-R and NS-NS three-form field strengths F3 and H3,

F3 = dC2 −H3χ ,

H3 = dB2 . (2.23)

The self-dual five-form field strength F5 vanishes. These field strengths satisfy the same

Bianchi identities (2.6) given previously.

2.3 Mapping local solutions

Given these two different approaches to finding half-BPS solutions with AdS6 factors in type

IIB supergravity, our goal is to determine how they are related. We note that the difference

in the parameterization of the solution lies in the two-dimensional Riemann surface Σ2. The

DGKU solution uses a uniformized form with complex coordinates w, w̄ whereas the AFPRT

solution uses coordinates which are adapted to the pure spinor construction leading to the

PDEs (2.1).

In order to relate the DGKU solution with the AFPRT solution the goal is to identify the

four quantities (x, α,A, φ) of AFPRT in terms of the coordinates w, w̄ given the holomorphic

data A±(w) of DGKU. We use the fact that the four quantities (f 2
2 , f

2
6 , χ, φ) are scalars with

respect to Σ2 and hence are independent of coordinate choices. Consequently they can be

used to obtain a map between the two parameterizations. We show in the following that the

coordinates x and α and the independent functions A and φ can be expressed in terms of

the holomorphic functions A±(w) and that they satisfy the PDEs (2.1).

14



2.3.1 Positivity

We start by slightly adapting the discussion of positivity in [78]. On the Riemann surface Σ2,

we consider solutions where the supergravity fields remain finite and the metric components

are strictly positive,

0 < f 2
2 , f

2
6 , ρ

2 . (2.24)

Then the definitions (2.7) imply that κ2, G, and
√
D are non-zero, finite, and have the same

sign. From the definition of D, we necessarily have D ≥ 1. In taking the square-root we

have a sign ambiguity, so without loss of generality we can take
√
D ≥ 1. This gives us the

equivalent constraints,

0 < κ2,G <∞ on Σ2 . (2.25)

2.3.2 Matching metric factors

We can start by identifying the metrical factors of ds2
S2 and ds2

AdS6
in the two string frame

metrics (2.2) and (2.8),

f 2
2 e

φ/2 =
1

9
e2A(1− x2) sin2 α ,

f 2
6 e

φ/2 = e2A . (2.26)

Then using the definitions in (2.9) we have

D =
1

(1− x2) sin2 α
. (2.27)

The dilaton eφ is given explicitly in (2.17), and so is eA through (2.26). Then including

(2.27) above, we can express three quantities of AFPRT in terms of w, w̄:

(1− x2) sin2 α , eA , eφ .
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Only one more quantity needs to be matched. If we equate the remaining portions of the

two metrics, which correspond to ds2
Σ, we can simplify to get

cot2 α

(
dq

q

)2

+
1

9Dx2

(
dp

p
+ 3 cot2 α

dq

q

)2

=
2κ2

3G
dw dw̄ . (2.28)

We may also make the replacement cot2 α = D(1 − x2) − 1. This equation turns out to be

not very helpful because it contains derivatives of α in dq. We can write the left-hand side

in terms of α, its first-order derivatives ∂wα and ∂w̄α, and other quantities we already know

how to write in terms of w, w̄. Matching the differentials dw dw, dw dw̄, and dw̄ dw̄ on both

sides will give first-order non-linear PDEs for α(w, w̄). We will not attempt this approach

as it turns out there is a more direct way match the last remaining quantity.

2.3.3 Matching one-forms

The last remaining quantity can be matched using the one-form field strength. In AFPRT,

F1 is given in (2.4). In DGKU, we have an expression for the axion χ in (2.18). We can then

simplify the equation F1 = dχ to

4(3D − 1)(1− x2) dA− 2(1 + 2x2) dφ+ 2(1− x2) d lnD

= 6s1s2xe
φ dχ (D(1− x2)− 1)1/2 . (2.29)

It is important to note that the dα dependence drops out. Now apart from x2, every quantity

appearing in this equation (i.e. A, φ, D, and χ) can be written in terms of w, w̄. By making

the replacement d → ∂w and squaring of both sides of the equation, we obtain a complex-

valued quadratic equation for x2. This quadratic equation is very complicated for general

A± functions, but will always have a real root with the surprisingly simple form,

1− x2 =
(S + S̄)2 − (T − T̄ )2/D

(S + S̄)2 − (T − T̄ )2
. (2.30)

This was arrived at by firstly taking explicit examples for A± where the one-form equation

(2.29) was simple enough to be solved and guessing a general solution, and then verifying this
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solution algebraically for general A± using Mathematica. So far no insightful simplifications

have been found; due to the simplicity of the solution despite the complexity of the quadratic

equation, it is very possible that this conclusion can be obtained from simpler considerations.

Another useful form is given by

1− x2 =
(ReU−)2 + (ImU−)2/D

(ReU−)2 + (ImU−)2
. (2.31)

2.3.4 Explicit examples

Before continuing, let us verify this mapping for two established solutions which were dis-

cussed as examples in [77].

Example 1 – The first example of a type IIB solution in [77] is given by

eA =
c1

cos1/6 α
, eφ =

c2

sinα cos2/3 α
, x = 0 , (2.32)

for 0 < α < π/2. As the only independent variable is α, this solution is slightly degenerate.

The holomorphic data which reproduces this solution is given in [78], and is slightly changed

here for convenience,

A± = −a
2
w2 ± ibw , B(w = 0) =

ab

6
. (2.33)

Below we give some relevant derived quantities. In this example, we use coordinates w =

(X + iY )/2.

κ2 = 2abY ,

G =
1

3
ab(1− Y 3) ,

D =
1

1− Y 3
,

U− = 2ab2Y 2 ,

eφ =
2b

aY

1√
1− Y 3

,

17



eA =

√
2b

Y 1/4
,

χ =
aX

2b
. (2.34)

For positivity, we take 0 < Y < 1. The one-form equation (2.29) simplifies to

9x2Y (4− 20x2 + 25x2Y 3)

(1− Y 3)2
= 0 , (2.35)

and has a solution x2 = 0. This is consistent with our solution for x2 in (2.31) as U− has

zero imaginary part. Then the equation for D in (2.27) implies the coordinate change,

Y = cos2/3 α . (2.36)

Plugging this into our expressions for eφ and eA in (2.34) above gives exactly the desired

solution (2.32), with the identifications,

c1 =
√

2b , c2 = 2b/a . (2.37)

If we write out the metric starting from (2.8) with w = (X + i cos2/3 α)/2, we can match the

metric in [75, Eq. (A.1)] if we identify

1

4
Ŵ 2L̂2 =

2b

9

1

cos1/3 α
, θ̂ = α , φ̂3 =

2b

3
X , (2.38)

and the axion and dilaton if we identify

a =
27

16
L̂4m̂1/3 , b =

9

8
L̂2m̂−1/3 , (2.39)

where quantities with ˆ are those of [75]. Then the three-form field strengths F3 and H3 also

match. In the literature, this solution is obtained by a Hopf T-duality on the AdS6 × S4

Brandhuber-Oz solution to massive IIA supergravity [71].

Example 2 – A second solution given in [77] is

eA =
c1

cos1/6 α
, eφ =

xc2

sin3 α cos1/3 α
, (2.40)
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for 0 < α < π/2 and 0 < x < 1. The holomorphic data which reproduce this solution is

A± = −a
3
w3 ∓ ibw + i18a , B(w = 0) = 0 . (2.41)

Let us now try to rederive this AFPRT solution with this as our starting point. Below we

give some relevant derived quantities. In this example, we use coordinates w = X + 3iY .

κ2 = −24abXY ,

G = −144abX(1− Y 3) ,

D =
X2Y + (1− Y 3)2

X2Y (1− Y 3)
,

U− = 144ab2(XY 2 + i(1− Y 3)) ,

eφ =
b

6a

1√
Y (1− Y 3)(X2Y + (1− Y 3)2)

,

eA =

√
12b

Y 1/4
,

χ =
a

b
(−X2 + 15Y 2 − 6Y 5) . (2.42)

For positivity, we take 0 < Y < 1 and X < 0. The one-form equation (2.29) has two

solutions for x2: one complex-valued, which does not admit a simple expression, and one

which coincides with our solution (2.31),

x2 =
(1− Y 3)2

X2Y + (1− Y 3)2
. (2.43a)

From the equation for D in (2.27), we also have

sin2 α = 1− Y 3 . (2.43b)

Together, these imply the coordinate change,

X = − sin2 α

cos1/3 α

√
1− x2

x
,

Y = cos2/3 α . (2.44)
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This gives us the desired eφ and eA with the identifications,

c1 =
√

12b , c2 = b/6a . (2.45)

We can also match the metric, dilaton, and field strengths in [74, Eq. (11)] if we identify

1

4
Ŵ 2L̂2 =

4b

3

1

cos1/3 α
, θ̂ = α , r̂ =

4b

3

sin2 α

cos1/3 α

√
1− x2

x
,

a =
3

512
L̂6 , b =

3

16
L̂2m̂−1/3 , (2.46)

where quantities with ˆ are those of [74]. Then the three-form field strengths F3 and H3

also match. In the literature, this solution is obtained by a non-Abelian T-duality on the

Brandhuber-Oz solution.

2.3.5 Summary of the relation

We have shown in this section the four quantities (x, α,A, φ) of AFPRT can be expressed in

terms of the holomorphic functions of DGKU in the following way:

eφ =
(ReU−)2 + (ImU−)2/D

|∂G|2κ2/
√
D

,

e4A =
(ReU−)2D + (ImU−)2

|∂G|2κ2/6G
,

1− x2 =
(ReU−)2 + (ImU−)2/D

(ReU−)2 + (ImU−)2
,

sin2 α =
(ReU−)2 + (ImU−)2

(ReU−)2D + (ImU−)2
. (2.47)

We have verified that the map holds for two previously known solutions related to T-duals

of type IIA solutions. For general local solutions the algebra becomes very extensive. The

following steps in verifying the map of DGKU to AFPRT have been performed algebraically

for general A± using Mathematica:

1. Match the remaining parts of the metric corresponding to ds2
Σ. Much of the work has

already been done in (2.28), but now we are able to take derivatives on the left-hand

side with relative ease. It also turns out quite nicely that q2 = (S + S̄)2 and p = 6G.
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2. Match the three-form field strengths. We can check that the equations for H3 and F3

in the AFPRT solution match those of the DGKU solution. As our map only involves

x2 and sin2 α, it does not distinguish between the signs of x or cosα. These signs are

fixed by the sign convention,

s1 = − sign(x) sign(ImU−) , s2 = − sign(cosα) sign(ReU−) . (2.48)

Then the AFPRT three-form fields strengths in Eqs. (2.5) simplify to

H3 = − 2

9(D − 1)

(ReU−)2 + (ImU−)2

κ2 ImU−
×[

− 6 dA

sin2 α
+ (1 + x2)(2 dA+ d(ln sin2 α)) + dφ+ d(x2)

]
∧ volS2 ,

F3 = −G sin2 α

18

κ2

ReU−
×[

36 dA

sin2 α
+ 2(x2 − 7)(2 dA+ d(ln sin2 α))− 2(1 + 2x2) dφ+ 2 d(x2)

]
∧ volS2 .

(2.49)

These are equivalent to those of DGKU in Eqs. (2.23). This means that in section 2.3.4,

for Example 1 we take s2 = −1, and for Example 2 we take s1 = −1 and s2 = +1.

3. Check the two PDEs. We can simplify the first PDE of (2.1) to

d

[
GDReU−

ImU−
d

(
ReU−
κ2

)
+

1

3(D − 1)

(ReU−)2D + (ImU−)2

κ2 ImU−
dG
]

= 0 , (2.50)

while the second PDE has no significant simplification.

In summary we have shown that the general local DGKU solution can be mapped to the

AFPRT parametrization and satisfies the PDEs (2.1) as a consequence of the holomorphy

of the A±(w).

2.4 Mapping global solutions

After constructing a map from the local DGKU to AFPRT solutions, we now look at the

global solutions constructed in [80]. They constitute a class of solutions (i.e. specified A±
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functions) where Σ is taken to be the upper half-plane of the w complex plane, whose

boundary is the real axis. The ∂A± have poles on the boundary. The geometry is completely

regular everywhere, except for the location of the poles where the supergravity background

becomes that of a (p, q) five-brane. The supergravity solution can be viewed as the conformal

near-horizon limit of a (p, q) five-brane web and the poles are interpreted as the residues of

the semi-infinite external five-branes framing the web. If we take (x, α) to be alternative

coordinates of Σ, we can ask how these features are mapped over. We will find that while

these global solutions are represented by a single coordinate patch on the w complex plane,

mapping over to the (x, α)-coordinates requires multiple coordinate patches in order to have

single-valued supergravity fields.

For simplicity we define

1/
√
D = sinα

√
1− x2 . (2.51)

In particular, this means sinα ≥ 0. Then as x2 ≤ 1 by definition, the square,

−1 ≤ x ≤ 1 and 0 ≤ α ≤ π , (2.52)

becomes a very natural coordinate system for (x, α). We will adopt this coordinate system

for this section.

2.4.1 Boundary conditions

We are mainly interested in solutions where the AdS6 factor governs the entire non-compact

part of the geometry. Therefore, we will assume that Σ is compact, with or without boundary.

On a non-empty boundary ∂Σ, we enforce f 2
2 = 0 while keeping the other conditions the

same. Physically, this corresponds to shrinking the S2 sphere closing off the geometry and

forming a regular three-cycle which carries the five brane charges. This is equivalent to the

boundary conditions,

κ2 = G = 0 and 0 < G/κ2 <∞ on ∂Σ . (2.53)
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The 0 < G/κ2 constraint is relaxed at isolated points on the boundary to allow for sufficiently

mild singularities, such as at the poles corresponding to five-branes.

We can now make some general remarks on the boundary ∂Σ. As |∂G|2 6= 0 we have

1/D = 0. From the definition of U− in (2.16), we also have ReU− = 0. Therefore,

1− x2 =
(ReU−)2 + (ImU−)2/D

(ReU−)2 + (ImU−)2
−→ 0 ,

sin2 α =
(ReU−)2 + (ImU−)2

(ReU−)2D + (ImU−)2
−→ (ImU−)2

(ReU−)2D + (ImU−)2
. (2.54)

Thus x2 = 1 is fixed, but because (ReU−)2D ∼ κ2/G is non-zero and finite (away from

the five-brane poles), sin2 α can take generic values on the interval [0, 1]. Therefore we can

say that the boundary ∂Σ corresponds to (segments of) the x = ±1 edges of the

(x, α) square. Note that the boundary may not necessarily be mapped to the entire edge

0 ≤ α ≤ π, but can map to just a segment of the edge.

2.4.2 Example: non-Abelian T-dual

As a warm-up, let us return to the second example of section 2.3.4, with a = 1/4 and b = 1/6

for concreteness. We will first identify the Riemann surface Σ on the w complex plane, and

then see how this region maps into the (x, α) square. Recall that w = X + 3iY .

κ2 = −XY ,

G = −6X(1− Y 3) . (2.55)

We satisfy 0 < κ2,G on the semi-infinite strip X < 0 and 0 < Y < 1, which we take to be Σ.

Additionally, κ2 = G = 0 on the line segment X = 0 and 0 ≤ Y ≤ 1, which we take to be the

boundary ∂Σ. The semi-infinite lines at Y = 0 and Y = 1 are then coordinate singularities,
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(a) Σ in w-coordinates (b) Σ in (x, α)-coordinates

Figure 2.1: Showing Σ in different in coordinate systems.

where various metric components blow up,

f 2
2 =

2

3
X2Y 3/4(1− Y 3)5/4(X2Y + (1− Y 3)2)−3/4 ,

f 2
6 = 6Y −1/4(1− Y 3)1/4(X2Y + (1− Y 3)2)1/4 ,

ρ2 =
1

6
Y 3/4(1− Y 3)−3/4(X2Y + (1− Y 3)2)1/4 . (2.56)

The coordinate patch for Σ on the w complex plane is shown in Figure 2.1a. The black line

represents the boundary ∂Σ, and the red lines represent the coordinate singularities.

The coordinate change, given in (2.44), maps this semi-infinite strip on the w complex

plane into the quadrant [0, 1]× [0, π/2] of the (x, α) square. Explicitly,

x =

√
(1− Y 3)2

X2Y + (1− Y 3)2
,

α = sin−1
√

1− Y 3 . (2.57)

Features of this map are shown in Figure 2.1. The boundary maps onto the line segment

x = +1 as expected. We have also included contours for visual aid, represented by dotted

gray lines. On the left-hand side we have drawn some contours of constant X, and on the

right-hand side we show their images in the (x, α)-coordinates.
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2.4.3 Example: 3-pole global solution

Let us finally turn our attention to the global solutions. We summarize the relevant details

from [80] for the general case of L poles, and then specialize to a concrete example of three

poles.

Take Σ to be the upper half-plane of the w complex plane, and ∂Σ to be the real-axis.

Let p` ∈ R be the locations of L poles on the real-axis, and sn ∈ H be the locations of N

zeros strictly in the upper half-plane, where L = N + 2. Then let

∂A±(w) =
L∑
`=1

Z`
±

w − p`
, (2.58)

where Z`
± for ` = 1, 2, . . . , L are constants defined by

Z`
+ = iC0

N∏
n=1

(p` − sn)
L∏

`′=1
`′ 6=`

1

(p` − p`′)
, Z`

− = −Z`
+ , (2.59)

and C0 ∈ C is a complex-valued normalization constant.4 If we integrate the expressions for

∂A±(w), we have

A+(w) = A0 +
L∑
`=1

Z`
+ ln(w − p`) , (2.60a)

A−(w) = −A0 +
L∑
`=1

Z`
− ln(w − p`) , (2.60b)

where A0 ∈ C is a constant satisfying the equation below for k = 1, 2, . . . , L,

A0Zk
− +A0Zk

+ +
L∑
`=1
` 6=k

(Z`
+Z

k
− − Z`

−Z
k
+) ln |p` − pk| = 0 . (2.61)

This makes κ2 and G vanish on the real-axis, according to the usual definitions in (2.7) after

some consideration of branch cuts. G contains dilogarithms, so any quantity containing it

in undifferentiated form (such as D) will not admit a simple form. However, near a pole

4In terms of the original paper, iC0 = ω0λ0 where ω̄0 = −ω0 and |λ0| = 1.
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we can look at the asymptotic behavior. Let us consider a pole pm and take the semi-circle

w = pm + reiθ, where 0 ≤ θ ≤ π and 0 < r � |pm − p`| for all ` 6= m. Then we have the

following relevant leading behaviors:

D ≈ | ln r|
3 sin2 θ

, (2.62a)

ReU− ≈ κ2
m(Zm

+ − Zm
− )
| ln r|
r

sin θ , (2.62b)

ImU− ≈ κ2
m(Zm

+ − Zm
− )
| ln r|
r

cos θ , (2.62c)

where

κ2
m = −2i

L∑
`=1
` 6=m

Zm
+Z

`
− − Zm

−Z
`
+

pm − p`
, (2.63)

so that near a pole as r → 0,

1− x2 =
(ReU−)2 + (ImU−)2/D

(ReU−)2 + (ImU−)2
−→ sin2 θ , (2.64a)

sin2 α =
(ReU−)2 + (ImU−)2

(ReU−)2D + (ImU−)2
−→ 3

| ln r|
−→ 0 . (2.64b)

Therefore, small semi-circles around a pole on the w complex plane map to lines of constant

α on the (x, α) square, which approach either the α = 0 or α = π edge as r → 0. Because

x is approximately ± cos θ, these semi-circles necessarily map to the entire line segment

running between −1 ≤ x ≤ 1. This can all be loosely summarized by saying poles on the

boundary ∂Σ correspond to the α = 0, π edges of the (x, α) square.

For concreteness let us take the 3-pole solution, which is the simplest global solution with

the fewest number of poles. We pick the locations of the three poles,

p1 = 1 , p2 = 0 , p3 = −1 , (2.65)

the location of the one zero,

s =
1

2
+ 2i , (2.66)
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and the normalization constant,

C0 = 1 . (2.67)

The relations (2.61) are solved by A0 = iC0s ln 2.

This defines a coordinate change (w, w̄) → (x, α) from the upper half-plane into the

square [−1, 1] × [0, π]. This map does not admit a simple form as it contains dilogarithms,

but its general features are shown in Figure 2.2. The left-hand diagrams show an unshaded

region on the w complex plane, and the right-hand diagrams show the corresponding region

on the (x, α) square. Solid black lines represent the boundary ∂Σ. “X” marks on the w

complex plane represent locations of the five-brane poles, which map to black dashed lines

on the (x, α) square. Two contours C1, C2 are included for visual aid.

There are three important considerations which make this map well-defined:

1. For convenience, we pick a map which obeys the sign convention (2.48) with s1 = s2 =

+1. On the w complex plane, we have represented the curve where ImU− = 0 with

an orange dotted line. This curve is mapped to x = 0. The side of the curve where

ImU− > 0 gets mapped to the x < 0 side of the (x, α) square, and the side where

ImU− < 0 gets mapped to x > 0. Similarly, the curve where ReU− = 0 is represented

with a blue dotted line.5

2. In order to map the entire upper half-plane of the w complex plane into (x, α)-

coordinates in a one-to-one manner, we need to introduce multiple coordinate patches.

This follows from a simple counting argument: each of the three poles needs to be

mapped their own α = 0 or α = π edge, only two of which exist on the square. We can

accommodate a one-to-one map at the expense of introducing multiple (x, α) squares

and gluing them together.

5ReU− also vanishes on the boundary ∂Σ, but we exclude this.

27



For instance, the p2 = 0 pole maps to the α = 0 edge, and the boundary segments

p3 < Rew < p2 and p2 < Rew < p1 map to the x = −1 and x = 1 edges, respectively.

The p1 = 1 and p3 = −1 poles then map to the α = π edge of two different (x, α)

squares 2.2d and 2.2h, respectively. These two patches are glued together along the

orange line “b”. Figure 2.2b shows these two patches glued together at the expense of

introducing a branch cut, represented by the red jagged line.

3. The Jacobian J of the map vanishes on the solid red line,

J = det

∂x ∂̄x

∂α ∂̄α

 ∝
[
∂

(
ReU−
ImU−

)
∂̄D − ∂̄

(
ReU−
ImU−

)
∂D
]
. (2.68)

In the present example, if a contour on the w complex plane passes through this line,

the image of the contour in (x, α)-coordinates will instead bounce off this line. This

means that we need an additional coordinate patch to maintain a one-to-one map.

For instance, consider the contour C2 in (x, α)-coordinates: it starts on the coordinate

patch 2.2d, hits the red line “f”, and then bounces off onto another coordinate patch

2.2f.

To summarize, Σ is represented on the w complex plane by a single coordinate patch,

taken to be the upper half-plane. When we map over to (x, α)-coordinates, we need at least

three coordinate patches to represent the whole Σ: 2.2d, 2.2f, and 2.2h. 2.2d is glued to 2.2h

along “b”, 2.2d to 2.2f along “f”, and 2.2f to 2.2h along “e”.

2.5 Discussion

In this chapter, we have found an explicit map between the type IIB AdS6 solutions formu-

lated in [77] and in [78]. This mapping is given by a coordinate change (w, w̄) → (x, α) for

the surface Σ2 and was explicitly verified for two previously known examples. This result

shows that the two solutions are indeed equivalent and that therefore the solutions of [78] are

the most general type IIB solutions with an AdS6 factor preserving sixteen supersymmetries.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.2: Coordinate patches needed for the 3-pole solution.
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Furthermore, we mapped over the global solutions of [80] and found that multiple coor-

dinate patches in (x, α) were necessary in order to have single-valued solutions. This arose

from a simple counting argument that each five-brane pole of the global solution needs to

be mapped to its own horizontal edge of the (x, α)-coordinate square, but global solutions

have ≥ 3 poles whereas each (x, α) square has 2 horizontal edges. Thus, an advantage of

the complex coordinate parametrization of [78] is that a global solution can be represented

in a single coordinate chart. Note that in [77], the four quantities (A, φ, x, α) were initially

treated on the same footing and subsequently (x, α) were chosen to be coordinates of the

two-dimensional space Σ2. It is an interesting open question whether the global solutions

can be formulated by making different coordinate choices.

In [96,97], the AFPRT solution was reduced on AdS6 and an effective scalar coset theory

was constructed. The symmetries of the coset can be used to generate new solutions. It would

be interesting to investigate how the coset transformations act on the DGKU solutions using

the mapping constructed in this chapter. Another interesting direction would be to see how

the alternative formulation in [98] can be related to the DKGU solutions.
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CHAPTER 3

Holographic line defects in F (4) gauged supergravity

In this chapter, we construct supergravity solutions that are holographically dual to line de-

fects in five-dimensional superconformal field theories. One approach to construct such line

defects is to consider probe branes. Our aim is to construct non-singular supergravity solu-

tions that correspond to the fully back-reacted solution, which should describe the system

when the number of probe branes becomes large. The fact that the ten-dimensional type

IIA and IIB undeformed AdS6 vacuum solutions [71–80,85,96] are already warped products

makes the construction of holographic defect solutions in ten dimensions quite challenging.

Here, we consider a simpler system, namely Romans’ six-dimensional F (4) gauged super-

gravity [99]. Recent results [91,92,100] show that any solution of this six-dimensional theory

can be uplifted and embedded in the general IIB solutions of [78–80]. This implies that

the solutions in this chapter lift to ten-dimensional holographic defect solutions. Recently,

various supersymmetric solutions of F (4) supergravity without additional matter multiplets

have been constructed in [101–103]. Examples of solutions of F (4) gauged supergravity with

matter couplings can be found in [64,104–106].

Five-dimensional SCFTs have a unique superconformal algebra, F (4) [107, 108], and

its subalgebras were classified in [109, 110]. This analysis shows that superconformal de-

fects should exist, such as the half-BPS Janus solution found in [64]. In this chapter,

we construct supergravity solutions corresponding to half-BPS superconformal line defects

preserving eight of the sixteen supersymmetries of F (4), falling into a D(2, 1; 2) × SU(2)

sub-superalgebra. The structure of this chapter is as follows. In section 3.1, we present
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the necessary background on F (4) gauged supergravity. In section 3.2, we derive the non-

singular line defect solution using the BPS equations first derived in [111]. In section 3.3, we

perform some holographic calculations using the solution presented in section 3.2. In par-

ticular, we calculate the on-shell action and the one-point function of the stress tensor using

holographic renormalization. Some implications of our solution and directions for future

research are given in section 3.4. In the appendices, we present our conventions and details

of the calculation of the counterterms using the method of holographic renormalization.

3.1 F (4) gauged supergravity

In this section we review the features of F (4) gauged supergravity [99] which will be relevant.

Six-dimensional F (4) gauged supergravity contains the following bosonic fields: a metric Gµν ,

a real scalar φ, a 2-form gauge potential B, a non-Abelian SU(2) vector field Ai for i = 1, 2, 3,

and an Abelian vector field A0. The bosonic Lagrangian of the theory takes the following

form,6

L =R ∗6 1− 4X−2 ∗6 dX ∧ dX − V (X) ∗6 1

− 1

2
X4 ∗6 H ∧H −

1

2
X−2

(
∗6F

i ∧ F i + ∗6F ∧ F
)

−B ∧
(

1

2
dA0 ∧ dA0 +

1√
2
mB ∧ dA0 +

1

3
m2B ∧B +

1

2
F i ∧ F i

)
, (3.1)

where the field strengths derived from the potentials are given by

H = dB ,

F i = dAi +
g

2
εijkA

j ∧ Ak ,

F = dA0 +
√

2mB , (3.2)

and, for convenience, the scalar field φ has been redefined in terms of X by

X = exp

(
− 1

2
√

2
φ

)
. (3.3)

6See appendix 3.A for our conventions regarding differential forms.
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Then the potential produced by the gauging of the supergravity is given by

V (X) = m2X−6 − 4
√

2gmX−2 − 2g2X2 , (3.4)

which can be rewritten in terms of a superpotential f(X) as

V (X) = 16X2(∂Xf(X))2 − 80f(X)2 ,

f(X) =
1

8
(mX−3 +

√
2gX) . (3.5)

The equations of motion following from the variation of the Lagrangian (3.1) are

Rµν = 4X−2∂µX∂νX +
1

4
V (X)Gµν +

1

4
X4

(
H αβ
µ Hναβ −

1

6
HαβγHαβγGµν

)
+

1

2
X−2

(
F α
µ Fνα −

1

8
FαβFαβGµν + F i α

µ F i
να −

1

8
F iαβF i

αβGµν

)
,

d
(
X4 ∗6 H

)
= − 1

2
F ∧ F − 1

2
F i ∧ F i −

√
2mX−2 ∗6 F ,

d
(
X−2 ∗6 F

)
= − F ∧H ,

D
(
X−2 ∗6 F

i
)

= − F i ∧H ,

d
(
X−1 ∗6 dX

)
=

1

8
X−2

(
∗6F ∧ F + ∗6F

i ∧ F i
)
− 1

4
X4 ∗6 H ∧H −

1

8
X∂XV (X) ∗6 1 , (3.6)

where D is the gauge covariant derivative,

DF i = dF i + gεijkA
j ∧ F k . (3.7)

The supersymmetry variations of the fermionic fields can be expressed in terms of an SU(2)-

doublet of symplectic-Majorana-Weyl Killing spinors ζa for a = 1, 2 as

δψaµ =∇µζ
a + gAiµ(T i)abζ

b − if(X)ΓµΓ∗ζ
a +

X2

48
HνρσΓνρσΓµΓ∗ζ

a

+ i
X−1

16
√

2

(
Γ νρ
µ − 6e ν

µ Γρ
)(
Fνρδ

a
b − 2Γ∗F

i
νρ(T

i)ab
)
ζb , (3.8)

δχa =X−1Γµ∂µXζ
a + 2iX∂Xf(X)Γ∗ζ

a − X2

24
HµνρΓ

µνρΓ∗ζ
a

− iX
−1

8
√

2
Γµν
(
Fµνδ

a
b − 2Γ∗F

i
µν(T

i)ab
)
ζb , (3.9)
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where Γm for m = 1, 2, . . . , 6 generate the (5 + 1)-dimensional Clifford algebra in an or-

thonormal frame and Γ∗ = Γ123456. The T i = −iσi/2 are the generators of SU(2) satisfying

[T i, T j] = εijkT
k.

The space of inequivalent theories are labeled by the couplings m and g, modulo the

parameter rescaling g → a−1g, m → a3m accompanied by appropriate field redefinitions.

The choice,

g =
3m√

2
, (3.10)

is a canonical choice, so that in the supersymmetric AdS6 vacuum the scalar takes the value

X = 1. We will make this choice throughout this chapter, using m in lieu of g. The potential

then takes the form,

V (X) = m2
(
X−6 − 12X−2 − 9X2

)
. (3.11)

In [112] it was shown that six-dimensional F (4) gauged supergravity is a consistent non-

linear Kaluza-Klein reduction of the warped AdS6 solutions of type IIA massive supergravity.

Recently an analogous statement has been shown [91,92] for the warped AdS6×S2 solutions

of type IIB supergravity found in [78–80]. The fact that such a consistent truncation exists

implies that any solution of F (4) gauged supergravity can be lifted to ten-dimensional solu-

tions, which have precise holographic duals. For example, the massive type IIA solution is

dual to a d = 5, USp(N) gauge theory for large N [71]. Consequently, the defect solution

we construct in section 3.2 also exists in the AdS6 solutions of massive type IIA and type

IIB and corresponds to a line defect in the dual CFT.

3.2 Line defect solution

In this section we find a non-singular line defect solution by solving the BPS equations. An

appropriate ansatz can be obtained by considering the unbroken sub-superalgebra of the

superconformal algebra F (4) suitable for a conformal line defect, namely D(2, 1; 2)× SU(2),
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which has a bosonic part SO(2, 1)× SU(2)3. We can associate the SO(2, 1) with the global

isometry of an AdS2 factor. The three SU(2) factors can be interpreted as the isometry

SO(4) ∼ SU(2)×SU(2) of a three sphere S3 and unbroken SU(2) R-symmetry. Consequently,

the isometries are realized by an AdS2 × S3 geometry warped over an interval Iα,

ds2 = e2U(α) ds2
AdS2

+ e2V (α) dα2 + e2W (α) ds2
S3 , (3.12)

where ds2
AdS2

and ds2
S3 are unit-radius metrics. Note that the warp factor V is non-dynamical,

but it is introduced because its gauge-fixing will turn out to simplify the BPS equations

drastically. The isometries and unbroken R-symmetry imply that all gauge fields have to

vanish, but there can be a non-vanishing B potential along the AdS2 factor and a non-trivial

scalar profile,

B = b(α) volAdS2 , X = X(α) , A0 = Ai = 0 , (3.13)

where volAdS2 is a unit-radius volume 2-form.

3.2.1 BPS equations

The BPS equations for the ansatz (3.12) and (3.13) have been derived in [111], where it was

shown that solutions which preserve eight of the sixteen supercharges satisfy the following

system of first-order ordinary differential equations (ODEs),7

θ′ = −eV sin(2θ)(f −X∂Xf) ,

X ′ = −1

4
eVX cos(2θ)−1(e−U sin(2θ) + 2 sin(2θ)2f + (7 + cos(4θ))X∂Xf

)
,

U ′ =
1

4
eV cos(2θ)−1(e−U sin(2θ) + (5 + 3 cos(4θ))f + 6 sin(2θ)2X∂Xf

)
,

W ′ = −1

4
eV cos(2θ)−1(−e−U sin(2θ) + (−9 + cos(4θ))f + 2 sin(2θ)2X∂Xf

)
,

b′ = −e
V+2U

X2
cos(2θ)−1(e−U + 2 sin(2θ)(f + 3X∂Xf)

)
,

Y ′ =
Y

8
eV cos(2θ)−1(e−U sin(2θ) + (5 + 3 cos(4θ))f + 6 sin(2θ)2X∂Xf

)
, (3.14)

7We have set L = 1 in the equations of [111].
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where ′ denotes the derivative with respect to α. Y and θ are functions related to the spinor

parameters ζa.

The first three equations for θ′, X ′, and U ′ should be treated as a coupled system of

ODEs. Once these are solved, the last three equations for W ′, b′, and Y ′ should be treated

as three independent ODEs, the right-hand sides acting as inhomogenous terms. In fact,

assuming we have a solution of the first three equations, the solution for W (α) and b(α) is

b = b0 −
e2U

m
X
(
e−U + 2 sin(2θ)(f −X∂Xf)

)
,

e−W = mr
(
e−U cos(2θ)−1 + 2 tan(2θ)(3f +X∂Xf)

)
, (3.15)

where b0 and r are (real) integration constants. b0 is set to zero in order to satisfy the

equations of motion. r can be interpreted as the S3 radius. The solution for Y (α) is

inconsequential for our considerations in this chapter, but for completion is

Y = Y0e
U/2 , (3.16)

where Y0 is a constant.

To simplify the first three equations in (3.14), we pick a gauge on the warp factor V [111],

e−V = sin(2θ)(f −X∂Xf) , (3.17)

so that the first equation in (3.14) becomes θ′ = −1. The associated integration constant

involves constant shifts of α, which has no physical consequence. So we can set

θ(α) = −α . (3.18)

Then the two remaining equations become

X ′ =
X

4m sin(2α) cos(2α)

(
m(−5− cos(4α))− 2e−U sin(2α)X3 + 6mX4

)
,

−U ′ = 1

4m sin(2α) cos(2α)

(
m(−1 + 3 cos(4α))− 2e−U sin(2α)X3 + 6mX4

)
. (3.19)
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We can note that

U ′ +
X ′

X
+

2 cos(2α)

sin(2α)
= 0 , (3.20)

so if we set

e−U(α) = mpX(α) sin(2α) , (3.21)

for some (real) integration constant p, which can be interpreted as the curvature radius of

the AdS2 factor, then (3.19) is equivalent to solving a single ODE for X(α),

X ′ =
X

4 sin(2α) cos(2α)

(
−5− cos(4α) + 2

(
3− p sin(2α)2)X4

)
. (3.22)

The solution to this equation is

X = cos(2α)1/2(1− p sin(2α)2 + q sin(2α)3)−1/4
, (3.23)

for some (real) integration constant q. Then using (3.15), (3.17), and (3.21), we have a

family of solutions to the BPS equations, labeled by real numbers p, q, and r,

e2U =
1

p2m2

(
1− p sin(2α)2 + q sin(2α)3)1/2

sin(2α)−2 cos(2α)−1 ,

e2W =
1

r2(3− p)2m2

(
1− p sin(2α)2 + q sin(2α)3)1/2

sin(2α)−2 cos(2α) ,

e2V =
4

m2

(
1− p sin(2α)2 + q sin(2α)3)−3/2

sin(2α)−2 cos(2α)3 ,

b =
1− p+ q sin(2α)3

p2m2
sin(2α)−1 cos(2α)−2 ,

X =
(
1− p sin(2α)2 + q sin(2α)3)−1/4

cos(2α)1/2 . (3.24)

In the next section we analyze how the regularity of the solutions depends on the integration

constants.

3.2.2 Defect solution

The positivity of the metric factors in (3.24) implies that the maximal range for the coordi-

nate α is the interval Iα is α ∈ [0, π/4]. Matching the metric to that of AdS6 asymptotically
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at the conformal boundary α→ 0 requires equating the e2U and e2W factors, which implies

r2(3− p)2 = p2 . (3.25)

This should be viewed as a condition fixing r in terms of p. Near the conformal boundary,

the AdS6 radius is ` = m−1. We can also observe that X → 1, which is the appropriate

value for the global AdS6 vacuum.

The solutions (3.24) with the condition (3.25) give a family of half-BPS solutions with

AdS6 asymptotics, labeled by two constants p and q. The q = 0 solutions coincide with those

given in [111]. Incidentally, the q = 0, p = 1 case describes global AdS6,

e2U =
1

m2
sin(2α)−2 , e2W =

1

m2
sin(2α)−2 cos(2α)2 ,

e2V =
4

m2
sin(2α)−2 , b = 0 , X = 1 . (3.26)

Under the coordinate transformation,

cosh ρ = sin(2α)−1 , (3.27)

the metric becomes

ds2 =
1

m2

[
cosh2 ρ ds2

AdS2
+ sinh2 ρ ds2

S3 + dρ2
]
. (3.28)

Let us now describe the behavior of these solutions at α → π/4, which corresponds to

the center of the space. The cos(2α) in the metric factors vanishes here so we generically

expect to have a singularity. However, the factor,

∆(α) ≡ 1− p sin(2α)2 + q sin(2α)3 , (3.29)

may also vanish at some 0 < α0 < π/4 by tuning the constants p and q, in which case we can

expect to have a singularity located at α0 < π/4. If we call β ≡ α0−α, then we have enough

freedom to arrange for ∆ to vanish as either O(β1) or O(β2). We can also have α0 = π/4, in

which case ∆ vanishes as either O(β2) or O(β4) and we have to consider the cos(2α) factors.
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This gives us five distinct cases, which are characterized by the behavior of the metric and

fields as β → 0. These are summarized in Table 3.1, and the corresponding regions on the

pq-plane are illustrated in Figure 3.1. A “1” denotes approaching a constant, i.e. O(β0).

Region on pq-plane e2U e2W e2V B X R

I: ∆ does not vanish region I β−1 β β3 β−2 β1/2 β−5

II: ∆ ∼ β , α0 < π/4 region II β1/2 β1/2 β−3/2 1 β−1/4 β−1/2

III: ∆ ∼ β2 , α0 < π/4 q = 2(p/3)3/2 for p > 3 β β β−3 1 β−1/2 β−1

IV: ∆ ∼ β2 , α0 = π/4 q = p− 1 for p < 3 1 β2 1 1 1 β−2

IV′: ∆ ∼ β2 , α0 = π/4 (p, q) = (1, 0) or (−3,−4) 1 β2 1 1 1 1

V: ∆ ∼ β4 , α0 = π/4 (p, q) = (3, 2) β β3 β−3 1 β−1/2 β−3

Table 3.1: Leading-order behavior of metric factors, 2-form potential, scalar field, and Ricci

scalar as β → 0 for each distinct case.

Figure 3.1: Distinct cases shown on the pq-plane.

Case IV looks the most promising, so we will start there. In the limit β ≡ π/4− α→ 0,

the metric has the following leading behavior,

ds2 ≈ 32

(6− 2p)3/2m2

[
dβ2 +

(6− 2p)2

16p2
β2 ds2

S3 +
(6− 2p)2

64p2
ds2

AdS2

]
. (3.30)
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We can avoid an angular deficit/excess at β = 0 when (6 − 2p)2/16p2 = 1, i.e. when p = 1

or p = −3. These two special cases are denoted IV′ on the table. The former is just global

AdS6, so this leaves a single non-trivial defect solution which remains finite as α → π/4,

corresponding to substituting (p, q) = (−3,−4) into (3.24),

ds2 = f 2
1 dα2 + f 2

2 ds2
AdS2

+ f 2
3 ds2

S3 ,

f 2
1 =

4

m2

(
1 + 3 sin(2α)2 − 4 sin(2α)3)−3/2

sin(2α)−2 cos(2α)3 ,

f 2
2 =

1

9m2

(
1 + 3 sin(2α)2 − 4 sin(2α)3)1/2

sin(2α)−2 cos(2α)−1 ,

f 2
3 =

1

9m2

(
1 + 3 sin(2α)2 − 4 sin(2α)3)1/2

sin(2α)−2 cos(2α) ,

b =
4

9m2

(
1− sin(2α)3) sin(2α)−1 cos(2α)−2 ,

X =
(
1 + 3 sin(2α)2 − 4 sin(2α)3)−1/4

cos(2α)1/2 . (3.31)

As a check, we have verified that the equations of motion (3.6) hold for this solution. In

summary, we have found a new non-singular solution in case IV′, whereas all other cases I-V

are singular. We will focus our analysis on the non-singular solution (3.31) in the rest of the

chapter.

3.2.3 Asymptotics

We will now calculate the asymptotic behavior of the defect solution (3.31) near the conformal

boundary α → 0. Recall that the AdS6 radius is ` = m−1, which we will set to unity from

here on. Following a prescription similar to [21, 22], we want to put the metric into the

Fefferman-Graham (FG) form,

ds2 =
1

z2

(
dz2 + gij(x, z) dxi dxj

)
,

g(x, z) = g0(x) + zg1(x) + z2g2(x) + · · · , (3.32)

where i, j = 1, 2, . . . , 5 run over the AdS2 and S3 indices, and z → 0 is the conformal

boundary. This is done by taking z = z(α) so that the appropriate coordinate change is
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obtained by a solution to the ODE,

f1(α) dα =
dz

z
. (3.33)

Expanding in α and integrating term by term gives a perturbative expansion,

z(α) = 3α− 17α3 + 24α4 +
722

5
α5 − 2504

5
α6 − 103009

105
α7 + · · · , (3.34)

which can be inverted,

α(z) =
1

3
z +

17

81
z3 − 8

81
z4 +

241

1215
z5 − 752

3645
z6 − 12275

45927
z7 + · · · . (3.35)

This gives the following expansions in the z coordinate,

f 2
2 =

1

z2

(
1

4
− 1

18
z2 +

1

324
z4 +

16

1215
z5 +

56

2187
z6 + · · ·

)
,

f 2
3 =

1

z2

(
1

4
− 1

6
z2 − 31

324
z4 +

32

405
z5 − 184

2187
z6 + · · ·

)
,

b =
2

3
z−1 − 2

27
z +

16

81
z3 − 896

3645
z4 +

2768

6561
z5 + · · · ,

X = 1− 4

9
z2 +

8

27
z3 − 16

81
z4 +

56

243
z5 − 172

729
z6 +

1072

3645
z7 − 34304

98415
z8 + · · · . (3.36)

For the metric, we see that g1 = g3 = 0 as expected and g5 will be related to the expectation

value of the stress tensor. We do not have to worry about the gravitational conformal

anomaly as d = 5 is odd, which is consistent with the fact that no terms which are logarithmic

in the FG coordinate z appear in the expansion.

The conformal dimensions of the dual operators in the CFT corresponding to the scalar

φ and tensor field B are determined by the linearized bulk equations of motion (3.6) near

the AdS boundary. For instance, we can plug φ ∼ z∆φ into the linearized equation of motion

for the scalar in AdS6 to obtain the relation,

∆φ(∆φ − 5) = −6 , (3.37)

where the −6 is the mass-squared of the φ field from expanding the potential V (X), with

m = 1. The mass is within the window where both standard and alternative quantization
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is possible [20], which implies that the scaling dimension of dual can be either ∆φ = 2 or

∆φ = 3. However, we can argue that because the dual operators in the gravity multiplet

fall into a superconformal multiplet with the stress tensor as the top component [113], we

should have ∆φ = 3 for the bottom scalar operator dual to the scalar φ. It follows from the

near boundary expansion (3.36) that the defect solution has a non-trivial source as well as

expectation value for the scalar operator.

Similarly, plugging B = z∆B−2 dx1 ∧ dx2 into the linearized equation of motion for the

B-field gives

(∆B − 2)(∆B − 3) = 2 , (3.38)

and so we have ∆B = 4 for the operator dual to 2-form potential B. It follows from (3.36)

that the defect solution turns on a source for the operator dual to B.

3.3 Holographic calculations

In this section we use the formalism of holographic renormalization [21,22] to calculate two

quantities: (i) the on-shell action of the solution, which gives the expectation value of the

dual defect operator, and (ii) the expectation value of the boundary stress tensor in the

presence of the line defect.

3.3.1 Counterterms

For a well-defined variational principle of the metric, we need to add to the bulk action given

by the Lagrangian (3.1) the Gibbons-Hawking boundary term,

Ibulk =
1

16πGN

∫
M

L ,

IGH =
1

8πGN

∫
∂M

d5x
√
−h Tr

(
h−1K

)
, (3.39)
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where hij is the induced metric on the boundary and Kij is the extrinsic curvature. In the

FG coordinates (3.32) these take the form,

hij =
1

z2
gij , Kij = −z

2
∂zhij . (3.40)

This action diverges due to the infinite volume of integration. To regulate the theory, we

restrict the bulk integral to the region z ≥ ε and evaluate the boundary term at z =

ε. Divergences in the action then appear as 1/εk poles.8 Counterterms are added on the

boundary which subtract these divergent terms, leaving a renormalized action. In all,

Iren = Ibulk + IGH + Ict . (3.41)

The counterterms can be expressed in terms of local quantities on the boundary. They have

been explicitly worked out in appendix 3.B, which mirrors the derivation in [114].9

Ict =
1

8πGN

∫
∂M

dx5
√
−h
(
− 4− 1

6
R[h] +

1

8
BijBij − 4(1−X)2

+
5

288
R[h]2 − 1

18
Rij[h]Rij[h]− 7

192
R[h]BijBij

− 1

6
Ri

j [h]Bj
kB

k
i +

13

512
(BijBij)

2 − 1

8
Bi

jB
j
kB

k
`B

`
i

)
, (3.42)

where the inverse boundary metric hij is used to raise all indices and construct R[h] and

Rij[h], and Bij is the induced 2-form on the boundary. Note that this is only a subset of

the most general counterterms; we have only included the terms which are non-zero for our

defect solution.

Having a renormalized action allows us to obtain a finite result when computing the

on-shell action of a solution. Using the equations of motion (3.6), we can put the on-shell

“bulk” action into the more convenient form,

Ibulk

∣∣∣∣
on-shell

= − 1

8πGN

∫
M

X−2(2 + 3X4) ∗6 1 +
1

8πGN

∫
∂M

(
1

6
X4 ∗6 H ∧B +

1

3
X−1 ∗6 dX

)
.

(3.43)

8In even boundary dimensions, a logarithmic term proportional to log ε also appears.

9This fixes a typo in Eq. (5.37), where the coefficient +9/32
√

2 should be +7/32
√

2 instead.
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The second integral over the boundary can be written more explicitly using the boundary

metric hij as ∫
∂M

d5x
√
−h z

(
1

12
X4BijHijz +

1

3
X−1∂zX

)
. (3.44)

The bulk integral can be performed for α ∈ [0, π/4] and the boundary integral, including

IGH and Ict, can be evaluated at z = 0. All divergences should cancel out, by construction

of the counterterms. The on-shell action was calculated for both the global AdS6 (3.26) and

defect (3.31) solutions.

Iren(AdS6) = −2

3
· 1

8πGN

Vol(AdS2) Vol(S3) ,

Iren(defect) =
2

81
· 1

8πGN

Vol(AdS2) Vol(S3) , (3.45)

where Vol(S3) = 2π2 and Vol(AdS2) = −2π is the regularized volume of AdS2 [115,116].

3.3.2 Stress tensor

Given the renormalized action, we can calculate the expectation value of the boundary stress

tensor. This contains two parts, one coming from the regularized action and one coming from

the counterterms,

Tij[h] = T reg
ij [h] + T ct

ij [h] . (3.46)

As usual [117], the former is given by

T reg
ij [h] = − 2√

−h
δ(Ibulk + IGH)

δhij
= − 1

8πGN

(
Kij − hij Tr

(
h−1K

))
. (3.47)

The latter can be calculated by taking the variation of the counterterms in (3.42), which is

straightforward to compute [23],

T ct
ij [h] = − 2√

−h
δIct

δhij
. (3.48)
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The expectation value of the boundary stress tensor is then related to Tij[h] by taking the

leading term in z, or more concretely,

〈Tij〉 ≡ −
2√
−g0

δIren

δgij0
= lim

ε→0

(
ε−3 Tij[h]

∣∣∣∣
z=ε

)
. (3.49)

By construction of the counterterms, this limit exists and we are left with a finite result,

which we are able to write in terms of FG expansion coefficients. Taking the following

expansion of fields,

z2h = g = g0 + z2g2 + z4g4 + z5g5 +O
(
z6
)
,

B = z−1B−1 + zB1 + z2B2 +O
(
z3
)
,

X = 1 + z2X2 + z3X3 +O
(
z4
)
, (3.50)

where B−1, B1, and B2 are 2-forms on the x1, x2, . . . , x5 coordinates excluding z, the expec-

tation value of the boundary stress tensor is

〈Tij〉 =
1

8πGN

[
5

2
g5ij −

5

2
g0ij Tr

(
g−1

0 g5

)
− 1

4
g0ij Tr

(
g−1

0 B−1g
−1
0 B2

)
+

1

2
B−1ikg

k`
0 B2`j +

1

2
B2ikg

k`
0 B−1`j − 8g0ijX2X3

]
. (3.51)

This quantity depends on the FG coefficients left undetermined by the equations of motion,

namely g5, B2, and X3, as expected. Taking the trace with the conformal boundary metric

g0 gives,

〈
T ii
〉

=
1

8πGN

[
−10 Tr

(
g−1

0 g5

)
− 1

4
Tr
(
g−1

0 B−1g
−1
0 B2

)
− 40X2X3

]
. (3.52)

This result is accompanied by a Ward identity encoding the spontaneous breaking of scale

invariance,

5

2
Tr
(
g−1

0 g5

)
+

1

4
Tr
(
g−1

0 B−1g
−1
0 B2

)
− 1

4
X3 Tr

(
g−1

0 B−1g
−1
0 B−1

)
+ 12X2X3 = 0 , (3.53)

which comes from the bulk Einstein equation (3.6), expanded in FG coordinates to order

O(z3). Explicitly evaluating these two expectation values for our defect solution, using the
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expansion coefficients in (3.36), yields

〈Tij〉 =

− 88
243
gAdS2 0

0 −16
81
gS3

 ,
〈
T ii
〉

= −1280

243
, (3.54)

where gAdS2 and gS3 are unit radius.

3.4 Discussion

In this chapter, we found a non-singular solution of F (4) gauged supergravity, which is of the

form AdS2 × S3 warped over an interval. It preserves eight of the sixteen supersymmetries

and represents a holographic dual of a half-BPS superconformal line defect. This solution is

uniquely determined by the symmetries of the ansatz and the fact that it is half-BPS. So-

lutions of F (4) gauged supergravity can be consistently lifted to AdS6 solutions of massive

type IIA [112] or type IIB solutions [91, 92]. Consequently, the solution found in this chap-

ter lifts to a holographic line defect for the ten-dimensional theories. The ten-dimensional

warped AdS6 solutions have a holographic field theory dual, such as USp(N) gauge theories

for massive type IIA and long quiver theories coming from (p, q) five-brane webs for type

IIB.

The lifted solution should correspond to a heavy line defect in these ten-dimensional

theories and is universal in the sense that it exists in all of the ten-dimensional AdS6 solutions.

However, unlike the holographic Wilson line solutions for N = 4 SYM found in [49], we do

not know which representation the line defect corresponds to and we do not have families

of solutions corresponding to different representations in a given AdS6 vacuum. One way

to obtain such solutions is to start in the ten-dimensional theory, but since even the AdS6

vacuum has the form of a warped product this is considerably harder than in the AdS5×S5

case. The form of the lifted solution may give hints on how a more general ansatz should look

like. Furthermore, generalizing the solution found in this chapter to theories which include

additional vector multiplets may be useful, since a consistent truncation in some cases was
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found recently [100]. We leave these interesting questions for future work.

3.A Conventions

AdS2 S3 Iα

µ = 1 2 3 4 5 6

xµ = t r ψ θ φ α or z

Table 3.2: Choice of coordinate ordering.

The six-dimensional Hodge dual is given by

∗6(dxµ1 ∧ · · · ∧ dxµr) =

√
−G

(6− r)!
ε µ1...µr
ν1...νD−r

dxν1 ∧ · · · dxνD−r , (3.55)

where ε123456 = 1. More concretely, we use the coordinates give in Table 3.2,

ds2
AdS2

= −(1 + r2) dt2 + (1 + r2)−1 dr2 ,

ds2
S3 = dψ2 + sin2 ψ dθ2 + sin2 ψ sin2 θ dφ2 . (3.56)

The norm of a p-form is defined as

‖F‖2
g =

1

p!
F µ1...µpFµ1...µp , (3.57)

where all indices are raised using the specified metric g. For the Riemann curvature tensor,

we use the sign convention,

Rρ
σµν = ∂µΓρνσ + ΓρµλΓ

λ
νσ − (µ↔ ν) ,

Rµν = Rρ
µρν . (3.58)
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3.B Counterterms

Here we briefly outline the calculation for obtaining the counterterms in (3.42). We will

follow the steps in [114], making some simplifications suited for our purposes.

Using the Einstein equation (3.6) we can write the on-shell bulk action as

Ibulk

∣∣∣∣
on-shell

=
1

16πGN

∫
M

[
1

2
V (X) ∗6 1− 1

2
X4 ∗6 H ∧H −

1

2
X−2 ∗6 B ∧B −

1

3
B ∧B ∧B

]
,

(3.59)

where we have set m = 1 and ignored terms involving Ai and A0. The on-shell action also

includes the Gibbons-Hawking term,

IGH =
1

16πGN

∫
∂M

d5x
(
−2z∂z

√
−h
)
. (3.60)

We assume the following expansions of the fields,

g = g0 + z2g2 + z4g4 +O
(
z5
)
,

B = z−1B−1 + dz ∧ A0 + zB1 +O
(
z2
)
,

H = −z−2 dz ∧B−1 + z−1 dB−1 − dz ∧ dA0 + dz ∧B1 +O(z) ,

X = 1 + z2X2 +O
(
z3
)
, (3.61)

where B−1 and B1 are 2-forms on the x1, x2, . . . , x5 coordinates excluding z, and A0 is a

1-form on the same coordinates. The general strategy is to plug these expansions into the

on-shell action, integrate the bulk terms over z ≥ ε, and evaluate the boundary terms at

z = ε. We will have order O(ε−5), O(ε−3), and O(ε−1) divergences, which are worked

out order-by-order and then canceled out by appropriate counterterms. It is important to

remember that the counterterm added to cancel the O(ε−5) divergence will also contribute

to the O(ε−3) divergence, and so forth.

Along the way, we will need to use the equations of motion (3.6) expanded in the FG

coordinates (3.32). This requires the expansion of the six-dimensional Ricci tensor in these
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coordinates,

Rzz =
1

4
Tr
(
g−1g′g−1g′

)
− 1

2
Tr
(
g−1g′′

)
+ z−1 1

2
Tr
(
g−1g′

)
− 5z−2 ,

Riz =
1

2
gjk∇kg

′
ij −

1

2
gjk∇ig

′
jk ,

Rij =
1

2
g′ikg

k`g′`j −
1

4
g′ij Tr

(
g−1g′

)
− 1

2
g′′ij +Rij[g] + z−1

(
2g′ij +

1

2
gij Tr

(
g−1g′

))
− 5z−2gij ,

(3.62)

where Rij[g] and ∇i are constructed using the five-dimensional metric,

g = g0 + g1z + g2z
2 + · · · , (3.63)

and ′ denotes the derivative with respect to z. For instance, the orderO(z0) Einstein equation

implies that

g2ij = −1

3

(
Rij[g0]− 1

8
g0ijR[g0]

)
− 3

16
g0ij‖B−1‖2

g0
− 1

2
B−1ikg0

k`B−1`j ,

Tr
(
g−1

0 g2

)
= −1

8
R[g0] +

1

16
‖B−1‖2

g0
. (3.64)

Another useful expansion is the determinant,

√
−g =

√
−g0

[
1 +

1

2
z2 Tr

(
g−1

0 g2

)
+

1

2
z4

(
Tr
(
g−1

0 g4

)
− 1

2
Tr
(
g−1

0 g2g
−1
0 g2

)
+

1

4
Tr2(g−1

0 g2)

)
+ · · ·

]
. (3.65)

For each order in ε, we will give the contributing divergence from each term in the action

(3.59, 3.60), omitting an implicit
√
−g0/16πGN factor.

Order O(ε−5):

1

2
V (X) ∗6 1 : −2

−2z∂z
√
−h : 10

Adding these two contributions and restoring the
√
−g0/16πGN factor, theO(ε−5) divergence

of the on-shell action is

I5 =
ε−5

16πGN

∫
z=ε

d5x
√
−g0 8 . (3.66)
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A suitable counterterm which cancels this at leading order is

Ict,5 =
1

16πGN

∫
∂M

d5x
√
−h (−8) . (3.67)

Order O(ε−3):

1

2
V (X) ∗6 1 : −5

3
Tr
(
g−1

0 g2

)
−1

2
X4 ∗6 H ∧H : −1

6
‖B−1‖2

g0

−1

2
X−2 ∗6 B ∧B : −1

6
‖B−1‖2

g0

−2z∂z
√
−h : 3 Tr

(
g−1

0 g2

)
−8
√
−h : −4 Tr

(
g−1

0 g2

)
I3 =

ε−3

16πGN

∫
z=ε

d5x
√
−g0

(
1

3
R[g0]− 1

2
‖B−1‖2

g0

)
, (3.68)

where we used (3.64). Thus,

Ict,3 =
1

16πGN

∫
∂M

d5x
√
−h
(
−1

3
R[h] +

1

2
‖B‖2

h

)
. (3.69)

In order to write down the O(ε−1) divergences, we need the FG expansion of R[h] =

z2R[g]. A particularly convenient expansion is obtained from the order O(z2) Einstein

equation, which implies that

R[g] =R[g0] + z2

(
− 8 Tr

(
g−1

0 g4

)
+ 5 Tr

(
g−1

0 g2g
−1
0 g2

)
+ Tr2(g−1

0 g2)

− 20X2
2 −X2‖B−1‖2

g0
− 1

2
Tr
(
g−1

0 B−1g
−1
0 B1

)
+

1

2
Tr
(
g−1

0 B−1g
−1
0 B−1g

−1
0 g2

)
+

1

2
‖A0‖2

g0

)
+O

(
z4
)
,

Tr
(
g−1

0 g4

)
=

1

4
Tr
(
g−1

0 g2g
−1
0 g2

)
− 5

2
X2

2 − 3

8
X2‖B−1‖2

g0
− 1

8
Tr
(
g−1

0 B−1g
−1
0 B1

)
+

1

16
Tr
(
g−1

0 B−1g
−1
0 dA0

)
− 3

16
‖A0‖2

g0
+

1

16
‖dB−1‖2

g0
. (3.70)

We will also further assume A0 = 0 and dB−1 = 0, which is not true in general but is true

for our solution and vastly simplifies calculations.
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Order O(ε−1):

1

2
V (X) ∗6 1 : −5 Tr

(
g−1

0 g4

)
+

5

2
Tr
(
g−1

0 g2g
−1
0 g2

)
− 5

4
Tr2(g−1

0 g2)− 12X2
2

−1

2
X4 ∗6 H ∧H : −1

4

(
Tr
(
g−1

0 g2

)
+ 8X2

)
‖B−1‖2

g0
− 1

2
Tr
(
g−1

0 B−1g
−1
0 B1

)
−1

2
Tr
(
g−1

0 B−1g
−1
0 B−1g

−1
0 g2

)
−1

2
X−2 ∗6 B ∧B : −1

4

(
Tr
(
g−1

0 g2

)
− 4X2

)
‖B−1‖2

g0
+

1

2
Tr
(
g−1

0 B−1g
−1
0 B1

)
−1

2
Tr
(
g−1

0 B−1g
−1
0 B−1g

−1
0 g2

)
−2z∂z

√
−h : Tr

(
g−1

0 g4

)
− 1

2
Tr
(
g−1

0 g2g
−1
0 g2

)
+

1

4
Tr2(g−1

0 g2)

−8
√
−h : −4 Tr

(
g−1

0 g4

)
+ 2 Tr

(
g−1

0 g2g
−1
0 g2

)
− Tr2(g−1

0 g2)

−1

3
R[h]
√
−h :

8

3
Tr
(
g−1

0 g4

)
− 5

3
Tr
(
g−1

0 g2g
−1
0 g2

)
+ Tr2(g−1

0 g2)

+
20

3
X2

2 +
1

3
X2‖B−1‖2

g0
− 1

12
‖B−1‖2

g0
Tr
(
g−1

0 g2

)
−1

6
Tr
(
g−1

0 B−1g
−1
0 B−1g

−1
0 g2

)
+

1

6
Tr
(
g−1

0 B−1g
−1
0 B1

)
1

2
‖B‖2

h

√
−h :

1

4
‖B−1‖2

g0
Tr
(
g−1

0 g2

)
− 1

2
Tr
(
g−1

0 B−1g
−1
0 B1

)
+

1

2
Tr
(
g−1

0 B−1g
−1
0 B−1g

−1
0 g2

)

I1 =
ε−1

16πGN

∫
z=ε

d5x
√
−g0

(
8X2

2 − 5

144
R[g0]2 +

1

9
Tr
(
g−1

0 Ric[g0]g−1
0 Ric[g0]

)
+

7

48
‖B−1‖2

g0
R[g0] +

1

3
Tr
(
g−1

0 Ric[g0]g−1
0 B−1g

−1
0 B−1

)
− 13

64
‖B−1‖4

g0
+

1

4
Tr
[
(g−1

0 B−1)4
]

− 2

3
Tr
(
g−1

0 B−1g
−1
0 B−1g

−1
0 g2

)
+

1

3
Tr
(
g−1

0 B−1g
−1
0 B1

)
− 1

3
‖B−1‖2

g0

(
Tr
(
g−1

0 g2

)
− 4X2

))
,

(3.71)

where we used (3.64) and (3.70). The terms on the last line cancel out using the order

O(z−1) B-field equation of motion,

B1ij = 2X2B−1ij −
1

2
Tr
(
g−1

0 g2

)
B−1ij + g2ikg

k`
0 B−1`j +B−1ikg

k`
0 g2`j . (3.72)
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Thus, a suitable choice of counterterms is

Ict,1 =
1

16πGN

∫
∂M

d5x
√
−h
(
− 8(1−X)2 +

5

144
R[h]2 − 1

9
Tr
(
h−1Ric[h]h−1Ric[h]

)
− 7

48
‖B‖2

hR[h]− 1

3
Tr
(
h−1Ric[h]h−1Bh−1B

)
+

13

64
‖B‖4

h −
1

4
Tr
[
(h−1B)4

])
. (3.73)

This fixes a typo in Eq. (5.37) of [114], where the coefficient +9/32
√

2 should be +7/32
√

2

instead.
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CHAPTER 4

Holographic line defects in 4d N = 2 gauged

supergravity

In this chapter, we construct supergravity solutions that are holographically dual to half-

BPS line defects in three-dimensional N = 2 superconformal field theories. We consider

four-dimensional N = 2 gauged supergravity, which has been used in the past to describe

condensed matter systems in three dimensions in order to find holographic models for su-

perfluids and superconductors, see e.g. [118–120]. We generalize the analysis of [121], which

considered pure gauged supergravity, to the case of matter couplings. The structure of this

chapter is as follows. In section 4.1, we review our conventions for four-dimensional N = 2

gauged supergravity coupled to vector multiplets. In section 4.2, we give a general solution

describing a half-BPS line defect, obtained by a double analytic continuation of the black hole

solutions first found by Sabra [122]. Since the behavior of the vector multiplet scalars can

only be determined implicitly, we consider three examples, namely a single scalar model, the

gauged STU model, and the SU(1, n) coset model to obtain explicit solutions. In section 4.3,

we use the machinery of holographic renormalization to calculate holographic observables

for the solutions, namely the on-shell action and the expectation values of operators dual to

the supergravity fields. In section 4.4, we explore the conditions for a regular geometry and

calculate their consequences. In section 4.5, we discuss our results and possible directions

for future research. Our conventions and some details of the calculations presented in the

main body of the chapter are relegated to several appendices.
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4.1 Four-dimensional N = 2 gauged supergravity

In this section, we review four-dimensional N = 2 gauged supergravity coupled to n vector

multiplets. We use the conventions and notations of [123–125].

The field content of the gauged supergravity theory is as follows. The supergravity

contains one graviton eaµ, two gravitinos ψiµ, and one graviphoton A0
µ. The gravity multiplet

can be coupled to N = 2 matter, and in particular we consider n vector multiplets, which are

labeled by an index α = 1, 2, . . . , n. Each vector multiplet contains one vector field Aαµ, two

gauginos λαi , and one complex scalar τα. In this chapter we do not consider adding N = 2

hypermultiplets.

It is convenient to introduce a new index I = 0, 1, . . . , n and include the graviphoton with

the other vector fields as AIµ. The complex scalars τα parametrize a special Kähler manifold

equipped with a holomorphic symplectic vector,

v(τ) =

ZI(τ)

FI(τ)

 , (4.1)

where the Kähler potential K(τ, τ̄) is determined by

e−K(τ,τ̄) = −i 〈v, v̄〉 ≡ −i(ZIF̄I −FIZ̄I) . (4.2)

In the models we will consider, there exists a holomorphic function F(Z), called the prepo-

tential, that is homogeneous of second order in Z such that

FI(τ) =
∂

∂ZI
F
(
Z(τ)

)
. (4.3)

The supergravity theory is fully specified by the prepotential F(Z) and the choice of gauging

of the SU(2) R-symmetry. We will choose the U(1) Fayet-Iliopoulos (FI) gauging. The only

charged fields of the theory are the gravitinos, which couple to the gauge fields through

the linear combination ξIA
I , for some real constants ξI . The two gravitinos have opposite

charges ±gξI for each U(1) gauge factor, where g is the gauge coupling.
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The bosonic action is10

e−1Lbos =
1

2
R− gαβ̄∂µτα∂µτ̄ β̄ − V (τ, τ̄)

+
1

4
(ImN )IJF

IµνF J
µν −

1

8
(ReN )IJe

−1εµνρσF I
µνF

J
ρσ ,

where F I
µν = ∂µA

I
ν − ∂νAIµ are the field strengths and gαβ̄ = ∂α∂β̄K is the Kähler metric of

the scalar manifold. We use Gµν to denote the four-dimensional metric, so e =
√
− detG.

The scalar potential is

V (τ, τ̄) = −2g2ξIξJ
(
(ImN )−1|IJ + 8eKZ̄IZJ

)
, (4.4)

where the kinetic matrix NIJ is given by

NIJ(τ, τ̄) = F̄IJ + 2i
(ImFIL)(ImFJK)ZLZK

(ImFMN)ZMZN
, FIJ ≡

∂

∂ZI

∂

∂ZJ
F(Z) . (4.5)

This is equivalently defined as the matrix which solves the equations,

FI = NIJZJ , DᾱF̄I = NIJDᾱZ̄J , (4.6)

where D is the Kähler covariant derivative,

Dαv = (∂α + ∂αK)v ,

Dᾱv̄ = (∂ᾱ + ∂ᾱK)v̄ ,

Dαv̄ = ∂αv̄ = 0 ,

Dᾱv = ∂ᾱv = 0 . (4.7)

The equations of motion are obtained by varying the Lagrangian (4.4),

Rµν = 2gαβ̄∂µτ
α∂ν τ̄

β̄ + V Gµν + (ImN )IJ

(
−F I ρ

µ F J
νρ +

1

4
F IρσF J

ρσGµν

)
,

∂µ

(
egαβ̄∂

µτ̄ β̄
)

= e

(
(∂αgβγ̄)∂

µτβ∂µτ̄
γ̄ − 1

4
∂α(ImN )IJF

IµνF J
µν + ∂αV

)
+

1

8
∂α(ReN )IJε

µνρσF I
µνF

J
ρσ ,

0 = ∂µ

(
e(ImN )IJF

Jµν − 1

2
(ReN )IJε

µνρσF J
ρσ

)
. (4.8)

10We set 8πGN = 1.
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The supersymmetry transformations are given in appendix 4.A.

4.2 Line defect solutions

In this section, we give a general solution describing a half-BPS line defect in four-dimensional

N = 2 gauged supergravity, and then construct the solution for three specific choices of the

prepotential.

A conformal line defect in three dimensions is a codimension-two defect which breaks

the three-dimensional conformal group SO(3, 2) down to an SO(2, 1) × SO(2) subgroup.

The subgroup factors represent the unbroken conformal symmetry along the defect and

transverse rotations about the defect, respectively. Minkoswski space R1,2 is related by a

Weyl transformation to AdS2 × S1, namely

− dt2 + dr2 + r2 dφ2 = Ω(r)

(
− dt2 + dr2

r2
+ dφ2

)
. (4.9)

Hence in the holographic dual, the SO(2, 1)×SO(2) symmetry can be realized as the isome-

tries of AdS2×S1, which we choose as the boundary of the four-dimensional asymptotically

anti-de Sitter space. Therefore we consider a metric ansatz with AdS2 × S1 warped over a

radial coordinate. We note that the location of the defect at r = 0 in Minkowski space gets

mapped to the boundary of AdS2 in the AdS2 × S1 geometry. Secondly, the absence of a

conical singularity on the boundary fixes the periodicity of the angle φ to be 2π.

The superconformal algebras in three dimensions are OSp(N|4), where N = 1, 2, . . . , 6, 8.

For the CFT dual of four-dimensional N = 2 gauged supergravity, the relevant superalgebra

is OSp(2|4) which has four Poincaré and four conformal supercharges. A conformal line

defect is called superconformal if it preserves some supersymmetry. In the present chapter,

we will consider half-BPS defects which preserve an OSp(2|2) superalgebra and hence four

of the eight supersymmetries.
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4.2.1 General solution

Four-dimensional N = 2, U(1) FI gauged supergravity admits half-BPS black hole solutions

first found in [122]. The line defect solutions with AdS2 × S1 geometry are constructed by

a double analytic continuation of the black hole solution. The metric and gauge fields are

given by

ds2 = r2
√
H(r) ds2

AdS2
+

f(r)√
H(r)

ds2
S1 +

√
H(r)

f(r)
dr2 ,

f(r) = −1 + 8g2r2H(r) ,

H(r)1/4 =
1√
2
eK/2ZIHI(r) ,

HI(r) = ξI +
qI
r
, I = 0, 1, . . . , n ,

AI =
(
−2H(r)−1/4eK/2ZI + µI

)
dθ , I = 0, 1, . . . , n , (4.10)

for some real constants qI and µI , where ZI = Z̄I . Given a prepotential F(Z) and choice of

parametrization of the symplectic sections ZI(τ), the scalars τα are given implicitly by the

equation,

iH1/4eK/2(FI − F̄I) =
1√
2
HI . (4.11)

At the conformal boundary where r →∞, in order to have asymptotic AdS4 we need 2
√

2gθ

to be 2π-periodic, i.e. θ ∼ θ + π/
√

2g. The AdS4 length scale is then given by

L−2 = 8g2H(r =∞)1/2 . (4.12)

We will set 8g2 = 1 to obtain the usual S1 periodicity θ ∼ θ + 2π.

The center of the space11 r = r+ corresponds to the largest value of r where f(r) = 0.

We consider radii taking values in the range r ∈ [r+,∞). Demanding a regular geometry

also requires r+ > 0 and the absence of a conical singularity at the center of the space, both

11For the black hole geometry this is the location of the horizon.
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of which can be done by tuning the qI and ξI parameters. This is explored in further detail

in section 4.4.

For a general prepotential, the equation (4.11) is very complicated and can only be

solved numerically. Consequently, we will explicitly work out the line defect solution for

three specific prepotentials, for which we can find explicit expressions for the scalars. An

important requirement is the existence of an AdS4 vacuum, which not all prepotentials admit,

see e.g. [125,126].

4.2.2 Single scalar model

Consider a single (n = 1) vector multiplet with the prepotential F(Z) = −iZ0Z1. This the-

ory has a single complex scalar τ and the scalar manifold is SU(1,1)
U(1)

. Using the parametrization

(Z0, Z1) = (1, τ), we can calculate the Kähler potential, kinetic matrix, and scalar potential,

eK(τ,τ̄) =
1

2(τ + τ̄)
,

N (τ, τ̄) = −i

τ 0

0 1/τ

 ,

V (τ, τ̄) = − 1

2(τ + τ̄)

(
ξ2

0 + 2ξ0ξ1(τ + τ̄) + ξ2
1τ τ̄
)
. (4.13)

The potential has extrema at τ = ±ξ0/ξ1, but only τ = ξ0/ξ1 maintains eK > 0 for ξI > 0.

The cosmological constant at this extremum gives the AdS4 length scale,

L−2 =
1

2
ξ0ξ1. (4.14)
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We choose ξ1 = 2/ξ0 to set the AdS4 length scale to unity. The line defect solution (4.10)

has the explicit form,

ds2 = r2
√
H ds2

AdS2
+

f√
H

ds2
S1 +

√
H

f
dr2 ,

f(r) = −1 + r2H(r) ,√
H(r) =

1

2
H0H1 ,

HI(r) = ξI +
qI
r
, I = 0, 1 ,

AI =

(
−
√

2

HI

+ µI

)
dθ , I = 0, 1 . (4.15)

The scalar is given by

τ =
H0

H1

. (4.16)

We have verified that the above fields obey the equations of motion (4.8).

4.2.3 Gauged STU model

The STU model is given by considering n = 3 vector multiplets with the prepotential,

F(Z) = −2i
√
Z0Z1Z2Z3 . (4.17)

This theory has three complex scalars τ 1, τ 2, τ 3 and the scalar manifold is three copies of

SU(1,1)
U(1)

. When all ξI = ξ > 0 are equal, this theory is a consistent truncation of N = 8 gauged

supergravity [127, 128]. For reference on this model, see [129]. Using the parametrization

(Z0, Z1, Z2, Z3) = (1, τ 2τ 3, τ 1τ 3, τ 1τ 2), the Kähler potential is

eK(τ,τ̄) =
1

(τ 1 + τ̄ 1)(τ 2 + τ̄ 2)(τ 3 + τ̄ 3)
. (4.18)

The expressions for the kinetic matrix and scalar potential are complicated, but simplify for

real scalars τα = τ̄ ᾱ, which will be the case for the line defect solution.

N (τ, τ̄ = τ) = −i diag

(
τ 1τ 2τ 3,

τ 1

τ 2τ 3
,
τ 2

τ 1τ 3
,
τ 3

τ 1τ 2

)
,

V (τ, τ̄ = τ) = −1

2

(
ξ0

(
ξ1

τ 1
+
ξ2

τ 2
+
ξ3

τ 3

)
+
(
τ 1ξ2ξ3 + ξ1τ

2ξ3 + ξ1ξ2τ
3
))

. (4.19)
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The potential has extrema at

τ 1 = ±

√
ξ0ξ1

ξ2ξ3

, τ 2 = ±

√
ξ0ξ2

ξ1ξ3

, τ 3 = ±

√
ξ0ξ3

ξ1ξ2

. (4.20)

Positivity of eK requires us to choose the positive root. The cosmological constant at this

extremum gives the AdS4 length scale,

L−2 =
√
ξ0ξ1ξ2ξ3 . (4.21)

We pick the non-zero constants ξI in a way that sets the AdS4 length scale to unity. The

line defect solution (4.10) has the explicit form,

ds2 = r2
√
H ds2

AdS2
+

f√
H

ds2
S1 +

√
H

f
dr2 ,

f(r) = −1 + r2H(r) ,

H(r) = H0H1H2H3 ,

HI(r) = ξI +
qI
r
, I = 0, 1, 2, 3 ,

AI =

(
− 1√

2HI

+ µI
)

dθ , I = 0, 1, 2, 3 . (4.22)

The scalars are

τ 1 =

√
H0H1

H2H3

, τ 2 =

√
H0H2

H1H3

, τ 3 =

√
H0H3

H1H2

. (4.23)

This solution is also the double analytic continuation of the hyperbolic black hole solution

in [130]. As consistency checks, we have verified that the above solution obeys the equations

of motion (4.8) and is half-BPS. The latter was done by a direct calculation, independent

of [122], which can be found in appendix 4.A.

4.2.4 SU(1, n) coset model

Another model which admits an AdS4 vacuum has the prepotential F(Z) = i
4
ZIηIJZ

J , and

can be formulated with any number of vector multiplets. ηIJ is a Minkowski metric, which
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we will take to be η = diag(−1,+1, . . . ,+1). The scalar manifold of this theory is SU(1,n)
U(1)×SU(n)

.

Using the parametrization (Z0, Zα) = (1, τα), the Kähler potential is

eK(τ,τ̄) =
1

1−
∑

α τ
ατ̄α

. (4.24)

Once again, the kinetic matrix and scalar potential have simpler forms for real scalars τα =

τ̄ ᾱ. The matrix ηIJ is used to lower indices, e.g. ZI = ηIJZ
J .

NIJ(τ, τ̄ = τ) = − i
2
ηIJ − ieK(τ,τ)ZIZJ ,

V (τ, τ̄ = τ) =
1

2
ξIη

IJξJ −
(ξ0 +

∑
α ξατ

α)2

1−
∑

α(τα)2
. (4.25)

This potential has an extremum at τα = −ξα/ξ0.12 The cosmological constant at this

extremum gives us the AdS4 length scale,

L−2 = −ξ2/2 , (4.26)

where ξ2 = ξIη
IJξJ . We pick a time-like ξI with ξ2 = −2 that will set the AdS4 length scale

to unity. The line defect solution (4.10) has the explicit form,

ds2 = r2
√
H ds2

AdS2
+

f√
H

ds2
S1 +

√
H

f
dr2 ,

f(r) = −1 + r2H(r) ,√
H(r) = −1

2
HIη

IJHJ ,

HI(r) = ξI +
qI
r
, I = 0, 1, . . . , n ,

AI =

(√
2ηIJHJ√
H

+ µI

)
dθ , I = 0, 1, . . . , n . (4.27)

The scalars are

τα = −Hα

H0

. (4.28)

We have verified that the above fields obey the equations of motion (4.8).

12The other extrema at ξ0 +
∑
α ξατ

α = 0 do not admit AdS4 vacua while maintaining eK positive.
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4.3 Holographic calculations

In this section, we use the machinery of holographic renormalization [21,22] to calculate the

on-shell action and the one-point functions of dual operators of the boundary CFT in the

presence of the defect, namely the stress tensor, scalar, and currents. This is done explicitly

for the three examples in sections 4.2.2–4.2.4.

4.3.1 General procedure

First, we put the metric into the Fefferman-Graham (FG) form,

ds2 =
1

z2

(
dz2 + gij(x, z) dxi dxj

)
, (4.29)

where i, j = 1, 2, 3 run over the AdS2 and S1 indices and z → 0 is the conformal boundary.

This is done by taking z = z(r) so that the appropriate coordinate change is obtained by

the solution to the ordinary differential equation,

−H(r)1/4

f(r)1/2
dr =

dz

z
, (4.30)

which can be integrated perturbatively in 1/r. This coordinate change gives the FG expan-

sions of the fields, which we assume will take the form,

gij = g0ij + z2g2ij + z3g3ij +O
(
z4
)
,

AI = AI0 + zAI1 +O
(
z2
)
,

τα = τα0 + zτα1 + z2τα2 +O
(
z3
)
,

τ̄ ᾱ = τα0 + zτα1 + z2τα2 +O
(
z3
)
, (4.31)

where AI0 and AI1 are 1-forms on the x1, x2, x3 coordinates. The constants τα0 are the AdS4

vacuum values of the scalars, which depend on the model. There is no gravitational con-

formal anomaly (i.e. a term proportional to z3 log z in the expansion of gij) since d = 3 is odd.
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In the three-dimensional boundary CFT, the conformal dimensions of the dual operators

corresponding to the scalars τα and vector fields AI are determined by the linearized bulk

equations of motion near the AdS boundary. For instance, using the expansion τα ∼ τα0 +z∆τ

in the linearized equation of motion for the scalar, we find that the scaling dimension of the

dual operator is related to the mass-squared of the field by the equation,

∆τ (∆τ − 3) = −2 . (4.32)

The mass-squared is −2 for all scalars of the three examples considered in this chapter. This

mass-squared is within the window where both standard and alternative quantization are

possible [20], which implies that the scaling dimension of the dual operator can be either

∆τ = 1 or ∆τ = 2. Similarly, using the expansion AI ∼ z∆A−1 dθ in the linearized equation

of motion for the vector field gives us

(∆A − 1)(∆A − 2) = 0 . (4.33)

We must have ∆A = 2 as the vector field sources a conserved current of the boundary CFT.

These scaling dimensions naturally fit into the flavor current multiplet A2A2[0]
(0)
1 of the

d = 3, N = 2 boundary CFT, using the notation of [131]. This short multiplet contains, in

addition to the spin-1 operator [2]
(0)
2 with scaling dimension ∆ = 2, two scalar operators [0]

(0)
1

and [0]
(0)
2 as bottom and top components with scaling dimensions ∆ = 1 and 2 respectively.

The stress tensor multiplet A1A1[2]
(0)
2 is also present, as usual.

In the four-dimensional gauged supergravity, for a well-defined variational principle of the

metric we need to add to the bulk action given by the Lagrangian (4.4) the Gibbons-Hawking

boundary term,

Ibulk =

∫
M

d4xLbos ,

IGH =

∫
∂M

d3x
√
−h Tr

(
h−1K

)
, (4.34)
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where hij is the induced metric on the boundary and Kij is the extrinsic curvature. In FG

coordinates, these take the form,

hij =
1

z2
gij , Kij = −z

2
∂zhij . (4.35)

The action Ibulk + IGH diverges due to the infinite volume of integration. To regulate the

theory, we restrict the bulk integral to the region z ≥ ε and evaluate the boundary term

at z = ε. Divergences in the action then appear as 1/εk poles.13 Counterterms Ict are

added on the boundary which subtract these divergent terms. The counterterms have been

constructed in [129] and are compatible with supersymmetry. They are

Ict =

∫
∂M

d3x
√
−h
(
W − 1

2
R[h]

)
, W ≡ −

√
2eK/2

∣∣ξIZI
∣∣ , (4.36)

where R[h] is the Ricci scalar of the boundary metric and W is the superpotential. In all,

the renormalized action,

Iren = Ibulk + IGH + Ict , (4.37)

is finite. We can then take functional derivatives to obtain finite expectation values of the

dual CFT operators. Let Tij be the boundary stress tensor, Oα be the operators dual to τα,

and JI i be the current operators dual to AIµ.

4.3.1.1 Stress tensor expectation value

The expectation value of the boundary stress tensor is defined to be [23]

〈Tij〉 ≡
−2√
−g0

δIren

δgij0
. (4.38)

The variation decomposes into two contributions: one coming from the regularized action

and one coming from the counterterms. As usual [117], the former is given by

T reg
ij [h] ≡ −2√

−h
δ(Ibulk + IGH)

δhij
= −Kij + hij Tr

(
h−1K

)
. (4.39)

13In even boundary dimensions, a term proportional to log ε may also appear.
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The latter is straightforward to compute, and is given by

T ct
ij [h] ≡ −2√

−h
δIct

δhij
= hij

(
W − 1

2
R[h]

)
+Rij[h] . (4.40)

Therefore,

〈Tij〉 = lim
ε→0

[
ε−1

(
T reg
ij [h] + T ct

ij [h]
)∣∣∣∣

z=ε

]
. (4.41)

By construction of the counterterms, this limit exists.

4.3.1.2 Scalar expectation values

The expectation value of the operator Oα is similarly defined by

〈Oα〉 ≡
1√
−g0

δIren

δτα1
= lim

ε→0

[
ε−2 1√

−h
δIren

δτα

∣∣∣∣
z=ε

]
. (4.42)

The variation has contributions from the bulk action and the counterterms, and is

1√
−h

δIren

δτα
= gαβ̄z∂z τ̄

β̄ + ∂αW . (4.43)

For real scalars, supersymmetry implies 〈Oα〉 = 0. A proof of this statement can be found

in appendix 4.B.

4.3.1.3 Current expectation values

The expectation value of the current operator JI is defined by

〈
J iI
〉
≡ 1√
−g0

δIren

δAI0i
= lim

ε→0

[
ε−3 1√

−h
δIren

δAIi

∣∣∣∣
z=ε

]
. (4.44)

The only contribution to the variation comes from the bulk action, and is

1√
−h

δIren

δAIi
= −(ImN )IJh

ijz∂zA
J
j . (4.45)
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4.3.1.4 On-shell action

We can evaluate the on-shell action for the line defect solution by further simplifying the

bulk action to a total derivative [132],

Ibulk

∣∣∣∣
on-shell

= Vol(AdS2) Vol(S1)

[
−H

′(r)

4H(r)
r2f(r)− r

(
f(r) + 1

)]∣∣∣∣∞
r+

, (4.46)

where Vol(S1) = 2π and Vol(AdS2) = −2π is the regularized volume of AdS2 [115,116].

We will now use the general expressions derived in this section to compute observables

for the three examples considered in this chapter.

4.3.2 Single scalar model

Let us consider the defect solution (4.15, 4.16) for the single scalar model. The FG expansion

of the radial coordinate r from solving the ordinary differential equation (4.30) is

1

r
= z +

1

2

(
1∑
I=0

qI
ξI

)
z2 +

−16 + (3q1ξ0 + q0ξ1)(3q0ξ1 + q1ξ0)

64
z3 (4.47)

+
(q1ξ0 + q0ξ1)(−16 + 12q0q1ξ0ξ1 + 3(q0ξ1 + q1ξ0)2)

384
z4 +O

(
z5
)
. (4.48)

Using this coordinate change, the metric, gauge fields, and scalar can be expanded in FG

coordinates. The one-point functions in the presence of the line defect can then be evaluated

by computing the limits (4.41, 4.42, 4.44) directly. For the renormalized on-shell action

(4.37), the finite terms at the conformal boundary cancel, leaving just the term obtained by

evaluating (4.46) at r = r+. In the end, we obtain the following expectation values:

Iren = Vol(AdS2) Vol(S1)r+ ,

〈Tij〉 =
1

2

(
1∑
I=0

qI
ξI

)−gAdS2 0

0 2gS1


ij

,

〈
T ii
〉

= 0 ,

〈O〉 = 0 ,
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〈JI i〉 =
qI√

2
δiθ . (4.49)

4.3.3 Gauged STU model

Let us consider the defect solution (4.22, 4.23) for the gauged STU model. Some of the

calculations for this model are identical to those found in [130]. The FG expansion of the

radial coordinate r from solving the ODE (4.30) is

1

r
= z +

A

4
z2 +

−16 +B1 + 10B2

64
z3 +

−16A+ C1 + 11C2 + 62C3

384
z4 +O

(
z5
)
, (4.50)

where we have defined the constants,

A =
3∑
I=0

qI
ξI
, B1 =

3∑
I=0

(
qI
ξI

)2

, B2 =
∑
I<J

qIqJ
ξIξJ

,

C1 =
3∑
I=0

(
qI
ξI

)3

, C2 =
∑
I 6=J

(
qI
ξI

)2
qJ
ξJ

, C3 =
∑

I<J<K

qIqJqK
ξIξJξK

. (4.51)

Using this coordinate change, the fields of the defect solution can be expanded in FG coor-

dinates. We obtain the following on-shell action and one-point functions,

Iren = Vol(AdS2) Vol(S1)r+ ,

〈Tij〉 =
1

4

(
3∑
I=0

qI
ξI

)−gAdS2 0

0 2gS1


ij

,

〈
T ii
〉

= 0 ,

〈O1〉 = 〈O2〉 = 〈O3〉 = 0 ,

〈JI i〉 =
qI√

2
δiθ . (4.52)

Note that the expression for Iren is identical to that of the single scalar model, but the radius

r+ = r+ (ξI , qI) will be different.
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4.3.4 SU(1, n) coset model

For the defect solution (4.27, 4.28) of the SU(1, n) coset model, the FG expansion of the

radial coordinate r is

1

r
= z − 1

2
qIξ

Iz2 − 1

4

[
1 +

1

2
qIq

I − 3

4
(qIξ

I)2

]
z3

+
1

12
qIξ

I

[
1 +

3

2
qIq

I − 3

4
(qIξ

I)2

]
z4 +O

(
z5
)
, (4.53)

where ηIJ is used to raise the indices of ξI and qI . Using this coordinate change and expanding

the fields in FG coordinates, the on-shell action and one-point functions are

Iren = Vol(AdS2) Vol(S1)r+ ,

〈Tij〉 = −qIξ
I

2

−gAdS2 0

0 2gS1


ij

,

〈
T ii
〉

= 0 ,

〈Oα〉 = 0 ,

〈JI i〉 =
qI√

2
δiθ . (4.54)

4.4 Regularity

In this section, we impose two regularity conditions on the solutions. First, we demand

that the geometry smoothly closes off at the largest positive zero of f(r) without a conical

singularity in the bulk spacetime. This condition is analogous to the regularity condition

imposed on Euclidean black hole solutions. Second, we fix the periodicity of the S1 at the

conformal boundary such that when the AdS2 × S1 boundary is conformally mapped to

R1,2 there is no conical deficit on the boundary. This condition is different from the one

imposed in the holographic calculation of supersymmetric Rényi entropies [133–136], which

use solutions that are related by double analytic continuation. For these solutions, the

periodicity is related to the Rényi index n.
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The regularity conditions will impose constraints on the parameters of the solutions.

Since the general solution is only implicit, a detailed analysis is performed for the examples

presented in this chapter. We will show that for the single scalar and coset models, these

conditions imply a bound on the expectation value of the boundary stress tensor.

4.4.1 General statements

Given the metric,

ds2 = r2
√
H(r) ds2

AdS2
+

f(r)√
H(r)

ds2
S1 +

√
H(r)

f(r)
dr2 , (4.55)

the center of the space r = r+ is defined to be the largest zero of f(r) = −1 + r2H(r). We

can identify four criteria a regular geometry should satisfy:

(a) positivity of the zero, r+ > 0,

(b) 0 < H(r) <∞ on r ∈ [r+,∞),

(c) 0 < f(r) <∞ on r ∈ (r+,∞), and

(d) no conical singularity at r = r+.

Criteria (b) and (c) are satisfied if H(r) is continuous: the AdS length scale (4.12) is well-

defined if and only if the limit H(r =∞) is positive and finite. Since a zero of H(r) occurs

at f(r) < 0, positivity of H(r) at large r and continuity imply that the spacetime closes off

before a zero of H(r) is ever encountered.

By expanding the metric around the center of the space, criterion (d) is satisfied when

f ′(r+)2 = 4H(r+) . (4.56)

This can be simplified to

H ′(r+)(r2
+f
′(r+) + 2r+) = 0 . (4.57)
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As the second factor is the sum of two positive quantities, a conical singularity can be avoided

if we satisfy the condition H ′(r+) = 0. As r+ is determined implicitly in terms of the qI , ξI

constants through the equation f(r+) = 0, this condition can be viewed as a constraint on

the possible values qI , ξI can take. Additionally, we will see that criterion (a) manifests as

an inequality on qI , ξI that we must satisfy.

4.4.2 Single scalar model

The single scalar model is simple enough that the conditions for a regular geometry can be

solved exactly. Let us define xI ≡ qI/ξI , but still pick the AdS length scale to be unity,

i.e. keep ξ0ξ1 = 2. The metric functions become

H(r) =
(

1 +
x0

r

)2(
1 +

x1

r

)2

,

f(r) = −1 +
1

r2
(r + x0)2(r + x1)2 . (4.58)

Let us first satisfy the criterion r+ > 0. Solving f(r) = 0,

0 =
(
r2 + r(x0 + x1 − 1) + x0x1

)(
r2 + r(x0 + x1 + 1) + x0x1

)
. (4.59)

When the first factor is zero, we have a solution,

r1 =
1

2

(
−(x0 + x1 − 1) +

√
(x0 + x1 − 1)2 − 4x0x1

)
, (4.60)

where we took the + sign to get the largest root. This solution exists when (x0 + x1− 1)2−

4x0x1 ≥ 0, which is a region on the x0x1-plane bounded by a parabola, shown in Figure

4.1a. The red shaded region indicates where r1 does not exist and the blue shaded region

indicates where r1 > 0. When the second factor of (4.59) is zero, we have another solution,

r2 =
1

2

(
−(x0 + x1 + 1) +

√
(x0 + x1 + 1)2 − 4x0x1

)
, (4.61)

where we also took the + sign. We have also marked regions where this solution exists and

is positive in Figure 4.1b. In regions where r1 and r2 both exist and r1 > 0, we have r1 > r2.
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Therefore, we can take r+ = r1 and restrict the (x0, x1) parameter space to the blue shaded

region of Figure 4.1a.

(a) r1 (b) r2

Figure 4.1: Candidate r+ for the single scalar model.

Let us now avoid the conical singularity by satisfying H ′(r+) = 0. Calculating the

derivative of H(r) in (4.58) and plugging in r+ = r1 from (4.60), we get the condition,

0 = (x0 − x1)2 − 2(x0 + x1) . (4.62)

This is a parabola, marked by the black curve in Figure 4.1a in the region where r+ > 0.

For the single scalar model to admit a regular geometry, the parameters xI = qI/ξI must

satisfy this condition. As a corollary, we can note that

0 ≤ x0 + x1 < 2 . (4.63)

This implies that the components of the boundary stress tensor (4.49) have bounded expec-

tation value. Additionally, the pure AdS4 vacuum (x0 = x1 = 0) is the only solution with

regular geometry and 〈Tij〉 = 0.
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4.4.3 SU(1, n) coset model

The coset model is also simple enough that the conditions for a regular geometry can be

solved exactly. We can note that

H(r) =

(
1− qIξ

I

r
− qIq

I

2r2

)2

, (4.64)

actually has the same form as (4.58), where

x0 =
−qIξI −

√
(qIξI)2 + 2qIqI

2
, x1 =

−qIξI +
√

(qIξI)2 + 2qIqI

2
. (4.65)

This map is always well-defined as (qIξ
I)2 + 2qIq

I ≥ 0, which can be checked by rotating to

the frame where ξI = (
√

2, 0, 0, . . . ). Thus all our results for the single scalar model can be

carried over. The bound (4.63) for the single scalar model translates to the same bound on

〈Tij〉 for the coset model,

0 ≤ −qIξI < 2 . (4.66)

The condition (4.62) for a regular geometry translates to

0 = (qIξ
I)2 + 2qIq

I + 2qIξ
I . (4.67)

We can show that the only regular geometry with vanishing 〈Tij〉 is the AdS4 vacuum. If

we rotate to the frame where ξI = (
√

2, 0, 0, . . . ), the only q which satisfies qIξ
I = 0 and

qIq
I = 0 is qI = 0. A general ξ then has a q in the orbit of qI = 0, which is still the zero

vector.

4.4.4 Gauged STU model

For the gauged STU model, it is not practical to solve f(r) = 0 to find r+ as f is a quartic

polynomial. However, we still expect the criterion r+ > 0 to impose an inequality on the

four-dimensional parameter space (x0, x1, x2, x3) and the condition of avoiding a conical

singularity to reduce this to a three-dimensional hypersurface. However, note that unlike
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the single scalar and coset models, the expectation value 〈Tij〉 is not bounded. In appendix

4.C we give special cases of the STU model with regular geometry which can have arbitrarily

large x0 + x1 + x2 + x3.

4.5 Discussion

In this chapter, we constructed solutions of four-dimensional N = 2 gauged supergravity by

a double analytic continuation of the half-BPS black hole solutions first found by Sabra [122].

While the black hole solutions exist for arbitrary prepotentials, explicit expressions for the

scalars fields involve algebraic equations which in general can only be solved numerically.

We considered three explicit examples of matter-coupled gauged supergravities, namely the

single scalar model, the gauged STU model, and the SU(1, n)/U(1)× SU(n) coset model to

find solutions and calculate holographic observables.

The solutions we find are holographic duals to line defects in three-dimensional SCFTs.

The defect is characterized by a non-trivial expectation value of the R-symmetry and flavor

currents along the S1 factor in the AdS2 × S1 description of the defect. After conformally

mapping to Minkowski space, this corresponds to a holonomy when encircling the line defect.

The expectation values of the real scalar operators vanish for general models as a consequence

of supersymmetry.

For a conformal defect on AdS2 × S1, the expectation value of the stress tensor can be

parameterized by a single coefficient h,

〈Tab〉 = h gAdS2
ab , 〈Tθθ〉 = −2h gθθ , (4.68)

in analogy to the scaling dimension of local operators [137,138]. However, there are in general

no unitarity bounds on h which follow from the superconformal algebra. For line operators in

N = 4 SYM and ABJM theories, h can be related to the so-called Bremsstrahlung function

B [139–143] which has been used in the application of conformal booostrap techniques to the

study of defects [41,144–146]. For the single scalar and coset models studied in this chapter,
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we find that −2 < h ≤ 0, where the upper bound is saturated only by the AdS4 vacuum.

However, such a bound does not seem to generally hold, since for the gauged STU model, h

can become arbitrarily negative. Based on numerical searches, we conjecture that only the

AdS4 vacuum has vanishing h. Note that recently, the relation of h and B, as well as the

negativity of h has been established on the SCFT side for various defect theories [147–150]

and the arguments should carry over to the defects dual to the solutions studied in this

chapter.14

The solutions we find are related to supergravity solutions [130,134–136] which are holo-

graphic duals for a supersymmetric version of Rényi entropy first formulated in [133]. We

note two differences. First, the solutions we find in Minkowski time signature have real

gauge fields, unlike the duals cited above.15 Second, we impose the condition that the peri-

odicity of the circle in AdS2 × S1 boundary is such that after a conformal map, we obtain

flat space without a conical singularity. On the other hand, in the holographic duals to

the Super-Rényi entropy, the conical singularity is related to the Rényi index n. We note

that in [130, 134–136], the holographic calculation of the Rényi entropy was compared to a

localization calculation and agreement was found, and it would be interesting to see whether

such a calculation can be performed for the holonomy defects described in this chapter.

Another interesting question is whether more general solutions going beyond the exam-

ples discussed in this chapter can be found. First, it would be interesting to study (nu-

merical) solutions for more complicated superpotentials. Second, it would be interesting to

see whether one can go beyond the gauged supergravity approximation and find solutions

dual to holonomy defects in ten- or eleven-dimensional duals of three-dimensional N = 2

SCFTs. Uplifting the solutions found in this chapter might prove to be a useful guide in this

direction [128].

14We thank Marco Meineri and Lorenzo Bianchi for a useful correspondence regarding these matters.

15After analytic continuation to Euclidean signature, the gauge fields in both cases are real.
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4.A Supersymmetry

We use the metric conventions η = (−+ ++) and ε0123 = −ε0123 = 1. The gamma matrices

are defined as usual, e.g.

{γa, γb} = 2ηab , γab =
1

2
[γa, γb] , γ5 = iγ0γ1γ2γ3 . (4.69)

The two chiral gravitinos can be written in terms of a single complex (Dirac) spinor ψµ, and

likewise for the gauginos λα. The supersymmetry transformations of the four-dimensional

gauged supergravity are [124]

δψµ =

(
∂µ +

1

4
ωabµ γab +

i

2
Qµγ5 + igξIA

I
µ + geK/2γµξI

(
ImZI + iγ5 ReZI

)
+
i

4
eK/2γab(ImN )IJ

(
Im(F−Iab Z

J)− iγ5 Re(F−Iab Z
J)
)
γµ

)
ε ,

δλα =

(
γµ∂µ(Re zα − iγ5 Im zα) + 2geK/2ξI

(
Im(Dβ̄Z̄Igαβ̄)− iγ5 Re(Dβ̄Z̄Igαβ̄)

)
+
i

2
eK/2γab(ImN )IJ

(
Im(F−Iab Dβ̄Z̄

Jgαβ̄)− iγ5 Re(F−Iab Dβ̄Z̄
Jgαβ̄)

))
ε , (4.70)

where ε is a complex spinor, and we have defined

F±Iab ≡
1

2
(F I

ab ± F̃ I
ab) , F̃ I

ab ≡ −
i

2
εabcdF

cd . (4.71)

The Kähler connection Qµ is

Qµ = − i
2

(∂µτ
α∂αK − ∂µτ̄ ᾱ∂ᾱK) . (4.72)

For the gauged STU model defect solution (4.22), we can work with the explicit coordi-

nates (x0, x1, x2, x3) = (t, η, θ, r) and the metric,

ds2 = r2
√
H

(
− dt2 + dη2

η2

)
+

f√
H

dθ2 +

√
H

f
dr2 . (4.73)

The non-vanishing spin connection 1-forms of the metric are

ω01 = −dt

η
, ω03 =

f 1/2

H1/4

d

dr
(rH1/4)

dt

η
,

ω13 =
f 1/2

H1/4

d

dr
(rH1/4)

dη

η
, ω23 =

f 1/2

H1/4

d

dr

(
f 1/2

H1/4

)
dθ . (4.74)
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For the following calculations, we use the parametrization (Z0, Z1, Z2, Z3) = (i, iz2z3, iz1z3, iz1z2).

The BPS equations (4.70) simplify to

0 = δψµ =

(
∂µ +

1

4
ωabµ γab + igξIA

I
µ +
√

2gγµ
d

dr
(rH1/4)− i

2
γ23γµ

d

dr
(H−1/4)

)
,

0 = δλα =
dzα

dr

(
f 1/2

H1/4
γ3 + 2

√
2grH1/4 +

i

H1/4
γ23

)
ε . (4.75)

The gaugino equation implies the projector,

0 =

(
1 +

2
√

2gr
√
H√

f
γ3 −

i√
f
γ2

)
ε . (4.76)

The µ = t, η, θ components of the gravitino equation then simplify to

0 =

(
∂t −

1

2η
γ01 −

i

2η
γ023

)
ε ,

0 =

(
∂η −

i

2η
γ123

)
ε ,

0 =

(
∂θ + i

√
2g

(
−1 +

1√
2
ξIµ

I

))
ε . (4.77)

These can be integrated to

ε = exp

(
− i
√

2gθ

(
−1 +

1√
2
ξIµ

I

))
exp

(
i

2
γ123 ln η

)
exp

(
t

2
(γ01 + iγ023)

)
ε̃(r) . (4.78)

We can see that we need ξIµ
I ∈ 2

√
2Z in order for ε to be anti-periodic under the identifi-

cation θ ∼ θ + π/
√

2g. The µ = r component of the gravitino equation simplifies to(
∂r +

1

8

H ′

H
+

f ′

8
√

2gr
√
H
√
f
γ3

)
ε . (4.79)

The gaugino projector (4.76) and the radial equation (4.79) take the form of the equation

solved in the appendix of [151], by identifying

x ≡ 2
√

2gr
√
H√

f
, y ≡ −i√

f
,

Γ1 ≡ γ3 , Γ2 ≡ γ2 . (4.80)

The solution is

ε̃(r) =
1

H1/8

(√√
f + 2

√
2gr
√
H − γ2

√√
f − 2

√
2gr
√
H

)
(1− γ3)ε0 , (4.81)

where ε0 is a constant spinor.
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4.B Vanishing of scalar one-point functions from supersymmetry

The scalar one-point function is given by

〈Ōᾱ〉 = lim
ε→0

[
1

ε2

(
zgβᾱ∂zτ

β + ∂ᾱW
)]

. (4.82)

The derivative of the superpotential W simplifies to

∂ᾱW = ∂ᾱ

(
−
√

2eK/2ξI |ZI |
)

(4.83)

= − 1√
2
eK/2ξI

(√
ZI

Z̄I
∂ᾱZ̄

I + (∂ᾱK)|ZI |

)
, (4.84)

where |ZI |2 = ZI(τ)Z̄I(τ̄). For real scalars, we can choose a parameterization such that

Z̄I = ZI . This implies

∂ᾱW = − 1√
2
eK/2ξI

(
∂ᾱZ̄

I + (∂ᾱK)Z̄I
)

= − 1√
2
eK/2ξIDᾱZ̄I , (4.85)

so that

〈Ōᾱ〉 = lim
ε→0

[
1

ε2

(
zgβᾱ∂zτ

β − 1√
2
eK/2ξIDᾱZ̄I

) ∣∣∣∣
z=ε

]
. (4.86)

The gaugino BPS variation in FG coordinates is(
zγ3∂zτ

β − 2igeK/2ξIg
βᾱDᾱZ̄Iγ5

)
ε+O(z3)ε = 0 , (4.87)

since Fab ∼ 1/r2 ∼ O(z2). At O(z2), the BPS equations imply

z∂zτ
β = ±2igeK/2ξIg

βᾱDᾱZ̄I . (4.88)

Without loss of generality, we can choose the upper sign by sending g → −g if necessary.

After setting g2 = 1/8 we have

〈Ōᾱ〉 = 〈Oα〉 = 0 . (4.89)

4.C STU model special cases

Here we give a construction for STU models with regular geometry and arbitrarily large

x0 + x1 + x2 + x3. The approach we took to find these models was different than that of
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section 4.4.2. Instead of solving the condition f = 0 and then H ′ = 0, we first solved H ′ = 0

and then f = 0. The benefit is that H ′ is a lower-degree polynomial and is technically

simpler to solve. The downside is that this generates spurious solutions: it is possible that

r+ does not satisfy the equation H ′ = 0, so the r we obtain from this analysis do not contain

the largest root r+. These spurious solutions then need to be removed by hand.

To summarize our findings, consider the following construction:

1. Let x0 be any positive number.

2. Numerically solve the equation,

27x1(x0 − x1)4 = −16x0(x0 + 3x1)2 . (4.90)

Let x1 be the unique solution satisfying −x0/3 < x1 < 0.

3. Consider an STU model with unit AdS4 length scale where

x0 =
q0

ξ0

, x1 =
q1

ξ1

=
q2

ξ2

=
q3

ξ3

. (4.91)

Numerically solve the equation f(r) = 0 for r,

(r + x0)(r + x1)3 = r2 . (4.92)

There exist exactly two solutions: a positive solution greater than −x1, and a negative

solution less than −x0. Let r+ be the positive solution.

4. Check that H ′(r+) = 0. This is guaranteed by the following argument. Consider

r∗ = −4x0x1/(x0 + 3x1) > 0 which satisfies H ′(r∗) = 0. This also satisfies f(r∗) = 0,

as plugging r = r∗ into (4.92) simplifies to (4.90), which is satisfied by construction of

x1. But as the positive solution to f = 0 is unique, we must have r+ = r∗.

The steps above give a STU model with regular geometry. To prove that x0+3x1 is arbitrarily

large, we need a better bound than −x0/3 < x1 < 0. To satisfy (4.90) for large x0, we have

x1 ∼ −
16

27x0

. (4.93)
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Therefore x0 + x1 + x2 + x3 ≈ x0 for large x0, and can be arbitrarily large.
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CHAPTER 5

Janus solutions in 3d N = 8 gauged supergravity

In this chapter, we construct Janus solutions in three-dimensional N = 8 gauged supergrav-

ity. Such supergravity theories are naturally related to AdS3×S3×M4 compactifications of

type IIB, where M4 is either T4 or K3. We consider one of the simplest non-trivial settings

where we find half-BPS solutions that preserve eight of the sixteen supersymmetries of the

AdS3 vacuum and only two scalars in the coset have a non-trivial profile. One interesting

feature of these solutions is that one scalar is dual to a ∆ = 2 marginal operator with a

source term that has a different value on the two sides of the interface. This behavior is

the main feature of the original Janus solution [50]. On the other hand, the second scalar

is dual to a ∆ = 1 relevant operator with a vanishing source term and a position-dependent

expectation value. This behavior is a feature of the Janus solution in M-theory [59]. The

structure of this chapter is as follows. In section 5.1, we review N = 8 gauged supergravity

in three dimensions. In section 5.2, we construct the half-BPS Janus solutions and inves-

tigate some of their properties using the AdS/CFT dictionary, including the calculation of

the holographic entanglement entropy. We discuss some generalizations and directions for

future research in section 5.3. Some technical details are relegated to appendix 5.A.

5.1 Three-dimensional N = 8 gauged supergravity

In this section, we review the N = 8 gauged supergravity first constructed in [152]. The

theory is characterized by the number n of vector multiplets. The bosonic field content

consists of a graviton gµν , Chern-Simons gauge fields BMµ , and scalars fields living in a
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G/H = SO(8, n)/ SO(8) × SO(n) coset, which has 8n degrees of freedom before gauging.

This theory can be obtained by a truncation of six-dimensional N = (2, 0) supergravity on

AdS3×S3 coupled to nT ≥ 1 tensor multiplets, where nT = n− 3. The cases nT = 5 and 21

correspond to compactifications of ten-dimensional type IIB on T 3 and K3, respectively. See

[153] for a discussion of consistent truncations of six-dimensional N = (1, 1) and N = (2, 0)

using exceptional field theory.

For future reference, we use the following index conventions:

• I, J, . . . = 1, 2, . . . , 8 for SO(8),

• r, s, . . . = 9, 10, . . . , n+ 8 for SO(n),

• Ī , J̄ , . . . = 1, 2, . . . , n+ 8 for SO(8, n), and

• M,N , . . . for generators of SO(8, n).

Let the generators of G be {tM} = {tĪJ̄} = {XIJ , Xrs, Y Ir}, where Y Ir are the non-compact

generators. Explicitly, the generators of the vector representation are given by

(tĪJ̄)K̄L̄ = ηĪK̄δJ̄L̄ − η
J̄K̄δĪL̄ , (5.1)

where ηĪJ̄ = diag(+ + + + + + + +− · · · ) is the SO(8, n)-invariant tensor. These generators

satisfy the usual commutation relations,

[tĪJ̄ , tK̄L̄] = 2
(
ηĪ[K̄tL̄]J̄ − ηJ̄ [K̄tL̄]Ī

)
, (5.2)

The scalars fields can be parametrized by a G-valued matrix L(x) in the vector represen-

tation, which transforms under H and the gauge group G0 ⊆ G by

L(x)→ g0(x)L(x)h−1(x) , (5.3)

for g0 ∈ G0 and h ∈ H. The Lagrangian is invariant under such transformations. We can

pick a SO(8)× SO(n) gauge to put the coset representative into symmetric gauge,

L = exp
(
φIrY

Ir
)
, (5.4)
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for scalar fields φIr.

The gauging of the supergravity is accomplished by an embedding tensor ΘMN (which has

to satisfy various identities [154]) that determines which isometries are gauged, the coupling

to the Chern-Simons fields, and additional terms in the supersymmetry variations and action

depending on the gauge coupling. In the following, we will make one of the simplest choices

and gauge a G0 = SO(4) subset of SO(8). Explicitly, we further divide the I, J indices into

• i, j, . . . = 1, 2, 3, 4 for G0 = SO(4), and

• ı̄, ̄, . . . = 5, 6, 7, 8 for the remaining ungauged SO(4) ⊂ SO(8).

The embedding tensor we will employ in the following has the non-zero entries,

Θij,k` = εijk` . (5.5)

As discussed in [152], this choice of embedding tensor produces a supersymmetric AdS3

ground state with a SU(2|1, 1)L × SU(2|1, 1)R superalgebra of isometries.

From the embedding tensor, the G0-covariant currents can be obtained,

L−1(∂µ + gΘMNB
M
µ tN )L =

1

2
QIJµ XIJ +

1

2
Qrsµ Xrs + PIrµ Y Ir . (5.6)

It is convenient to define the VMA tensors,

L−1tML = VMA tA =
1

2
VMIJX

IJ +
1

2
VMrsX

rs + VMIrY
Ir , (5.7)

and the T -tensor,

TA|B = ΘMNVMAVNB . (5.8)

The T -tensor is used to construct the tensors A1,2,3 which will appear in the scalar potential

and the supersymmetry variations,

AAB1 = − 1

48
ΓIJKLAB TIJ |KL ,

AAȦr2 = − 1

12
ΓIJK
AȦ

TIJ |Kr ,

AȦrḂs3 =
1

48
δrsΓIJKL

ȦḂ
TIJ |KL +

1

2
ΓIJ
ȦḂ
TIJ |rs , (5.9)
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where A,B and Ȧ, Ḃ are SO(8)-spinor indices. Our conventions for the SO(8) Gamma

matrices are presented in appendix 5.A.1.

We take the spacetime signature ηab = diag(+−−) to be mostly negative. The bosonic

Lagrangian is

e−1L = −1

4
R +

1

4
PIrµ Pµ Ir +W − 1

4
e−1εµνρgΘMNB

M
µ

(
∂νB

N
ρ +

1

3
gΘKLf

NK
PB

L
ν B
P
ρ

)
,

W =
1

4
g2

(
AAB1 AAB1 − 1

2
AAȦr2 AAȦr2

)
. (5.10)

The supersymmetry variations are

δχȦr =
1

2
iΓI

AȦ
γµεAPIrµ + gAAȦr2 εA ,

δψAµ =

(
∂µε

A +
1

4
ωabµ γabε

A +
1

4
QIJµ ΓIJABε

B

)
+ igAAB1 γµε

B . (5.11)

5.1.1 The n = 1 case

In this section we will consider the n = 1 theory, i.e. the scalar fields lie in a SO(8, 1)/ SO(8)

coset. The reason for this is that the resulting expressions for the supersymmetry variations

and BPS conditions are compact and everything can be worked out in detail. Furthermore,

we believe that this case illustrates the important features of more general solutions.

As the index r = 9 takes only one value in this case, the scalar fields in the coset

representative (5.4) are denoted by φI ≡ φI9 for I = 1, 2, . . . , 8. We define the following

quantities for notational convenience,

Φ2 ≡ φIφI = φ2
1 + φ2

2 + φ2
3 + φ2

4 + φ2
5 + φ2

6 + φ2
7 + φ2

8 ,

φ2 ≡ φiφi = φ2
1 + φ2

2 + φ2
3 + φ2

4 ,

φ̄2 ≡ φı̄φı̄ = φ2
5 + φ2

6 + φ2
7 + φ2

8 . (5.12)

The components of the VMA tensor are, with no summation over repeated indices and
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I, J,K, L being unique indices,

VIJIJ = 1 + (φ2
I + φ2

J)
cosh Φ− 1

Φ2
, VIJIK = φJφK

cosh Φ− 1

Φ2
,

VIJKL = 0 , VI9I9 = cosh Φ− φ2
I

cosh Φ− 1

Φ2
,

VI9J9 = −φIφJ
cosh Φ− 1

Φ2
, VIJI9 = VI9IJ = φJ

sinh Φ

Φ
,

VIJK9 = VK9
IJ = 0 . (5.13)

The u-components of the QIJµ and PIµ currents are

QIJu = (φ′IφJ − φIφ′J)
cosh Φ− 1

Φ2
+ gΘMNB

M
u VNIJ ,

PIu = φ′I
sinh Φ

Φ
− φIΦ′

sinh Φ− Φ

Φ2
+ gΘMNB

M
u VNI9 , (5.14)

where the prime ′ ≡ ∂/∂u denotes the derivative with respect to u. The terms involving the

gauge field have different forms depending on whether I, J are in i or ı̄,

ΘMNB
M
u VNij = εijk`

[
1

2
Bk`
u

(
1 + (φ2

i + φ2
j)

cosh Φ− 1

Φ2

)
+
(
φiB

ik
u φ` + φjB

jk
u φ`

)cosh Φ− 1

Φ2

]
,

ΘMNB
M
u VNīı =

1

2
εijk`φı̄φjB

k`
u

cosh Φ− 1

Φ2
,

ΘMNB
M
u VNı̄̄ = 0 ,

ΘMNB
M
u VNi9 =

1

2
εijk`φjB

k`
u

sinh Φ

Φ
,

ΘMNB
M
u VNı̄9 = 0 . (5.15)

The T -tensor has non-zero components,

Tij|k` = εijk`

(
φ2 cosh Φ− 1

Φ2
+ 1

)
,

Tij|kı̄ = εijk`φ`φı̄
cosh Φ− 1

Φ2
,

Tij|k9 = εijk`φ`
sinh Φ

Φ
. (5.16)
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Taking ε1234 = 1, we can use the T -tensor to compute

AAB1 = −1

2
Γ1234
AC

[(
φ2 cosh Φ− 1

Φ2
+ 1

)
δCB + (Γi

CȦ
φi)(Γ

ı̄
ȦB
φı̄)

cosh Φ− 1

Φ2

]
,

AAȦ2 = −1

2
Γ1234
AB (Γi

BȦ
φi)

sinh Φ

Φ
,

AȦḂ3 = −AAB1 δAȦδBḂ . (5.17)

Note that AAB1 = ABA1 and

AAC1 ABC1 =
1

4
δAB

(
φ2 sinh2 Φ

Φ2
+ 1

)
,

AAȦ2 ABȦ2 =
1

4
δAB

φ2 sinh2 Φ

Φ2
, (5.18)

so the scalar potential (5.10) becomes

W =
g2

4

(
φ2 sinh2 Φ

Φ2
+ 2

)
. (5.19)

5.2 Janus solutions

In this section, we construct Janus solutions which preserve eight of the sixteen supersym-

metries of the AdS3 vacuum. Our strategy is to use an AdS2 slicing of AdS3 and make the

scalar fields as well as the metric functions only dependent on the slicing coordinate. One

complication is given by the presence of the gauge fields; due to the Chern-Simons action,

the only consistent Janus solution will have vanishing field strength. We show that the gauge

fields can be consistently set to zero for our solutions.
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5.2.1 Janus ansatz

We take the Janus ansatz for the metric, scalar fields and Chern-Simons gauge fields,

ds2 = e2B(u)

(
dt2 − dz2

z2

)
− e2D(u) du2 ,

φI = φI(u) ,

BM = BM(u) du . (5.20)

The AdS3 vacuum solution given by φI ≡ 0 and eB = eD = L secu has a curvature radius

related to the coupling constant by L−1 = g. The spin connection 1-forms are

ω01 =
dt

z
, ω02 = −B

′eB−D

z
dt , ω12 = −B

′eB−D

z
dz , (5.21)

so the gravitino supersymmetry variation δψAµ = 0 is

0 = ∂tε+
1

2z
γ0

(
γ1 −B′eB−Dγ2 + 2igeBA1

)
ε ,

0 = ∂zε+
1

2z
γ1

(
−B′eB−Dγ2 + 2igeBA1

)
ε ,

0 = ∂uε+
1

4
QIJu ΓIJε+ igeDγ2A1ε , (5.22)

where we have suppressed the SO(8)-spinor indices. As shown in appendix 5.A.2, the inte-

grability conditions are

0 =
(
1− (2geBA1)2 + (B′eB−D)2

)
ε ,

0 = 2igeB
(
A′1 −

1

4
[A1,QIJu ΓIJ ]

)
ε+

(
− d

du
(B′eB−D) + (2geBA1)2eD−B

)
γ2ε . (5.23)

The first integrability condition gives a first-order equation which must be true for all ε,

using the replacement for A2
1 in (5.18),

0 = 1− g2e2B

(
φ2 sinh2 Φ

Φ2
+ 1

)
+ (B′eB−D)2 . (5.24)

The derivative of this simplifies the second integrability condition to

0 =

(
A′1 −

1

4
[A1,QIJu ΓIJ ]

)
ε+

igeD

4B′
d

du

(
φ2 sinh2 Φ

Φ2

)
γ2ε . (5.25)
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The BPS equation δχȦ = 0 is(
− i

2
e−DΓIPIuγ2 + gA2

)
AȦ

εA = 0 . (5.26)

When A2 6= 0, this equation can be rearranged into the form of a projector,

0 = (iMABγ2 + δAB)εA , (5.27)

where MAB is given by

MAB =
e−D

g

Φ

φ2 sinh Φ
(ΓI

AȦ
PIu)(Γi

ȦC
φi)Γ

1234
CB . (5.28)

For consistency of the projector, we must have

MABMBC = δAC . (5.29)

As M2 = 1, every generalized eigenvector of rank ≥ 2 is automatically an eigenvector, so

M is diagonalizable and has eight eigenvectors with eigenvalues ±1. M is traceless as it

is a sum of products of 2 or 4 Gamma matrices, so it has an equal number of +1 and −1

eigenvectors. The operator iMABγ2 in the projector (5.27) squares to one and is traceless,

and projects onto an eight-dimensional space of unbroken supersymmetry generators. If this

is the only projection imposed on the solution, it will be half-BPS and hence preserve eight

of the sixteen supersymmetries of the vacuum.

The condition M2 = 1 gives an equation first-order in derivatives of scalars.

M2 =

(
e−DΦ

gφ2 sinh Φ

)2(
φ2(−P iuP iu + P ı̄uP ı̄u)− 2φ2(Γı̄P ı̄u)(ΓiP iu)

+ 2(Pjuφj)(Γı̄P ı̄u + ΓiP iu)(Γkφk)
)
. (5.30)

For this to be proportional to the identity, we need all Γı̄Γi and ΓiΓj terms to vanish.

Vanishing of the latter requires us to impose the condition,

P iuφj = Pjuφi . (5.31)
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As the ratio P iu/φi is the same for all i, this implies∑
i

P iuφi =
∑
i

P iu
φi
φ2
i =
P1
u

φ1

φ2 =⇒ −φ2P iu + φi
∑
j

Pjuφj = 0 . (5.32)

This means that imposing (5.31) also ensures that the Γı̄Γi terms vanish. Note that∑
i

P iuP iu =
∑
i

P iu
φi

P iu
φi
φ2
i =

(
P1
u

φ1

)2

φ2 , (5.33)

so the M2 = 1 condition becomes

M2 =

(
e−DΦ

gφ2 sinh Φ

)2

φ2(P iuP iu + P ı̄uP ı̄u) = 1 . (5.34)

We now give the argument why the Chern-Simons gauge fields can be set to zero. Since

we demand that the BMµ only has a component along the u direction and only depends on u,

the field strength vanishes, consistent with the equation of motion coming from the variation

of the Chern-Simons term in the action (5.10) with respect to the gauge field. However, there

is another term which contains the gauge field, namely the kinetic term of the scalars via

(5.14). For the gauge field to be consistently set to zero, we have to impose

δL
δBk`

u

∣∣∣∣
BMu =0

= 0 . (5.35)

For the Janus ansatz, we find

δL
δBk`

u

∣∣∣∣
BMu =0

= egεijk`P i uφj
sinh Φ

Φ
, (5.36)

which indeed vanishes due to (5.31) imposed by the half-BPS condition.

For a half-BPS solution, the second integrability condition (5.25) should be identical to

the projector (5.27). Indeed, we have the simplification,

A′1 −
1

4
[A1,QIJu ΓIJ ] = −1

2

φ2 sinh2 Φ

Φ2
M> , (5.37)

so the Gamma matrix structures of the two equations match. Equating the remaining scalar

magnitude gives us an equation for the metric factor eB,

−B′ = d

du
ln
φ sinh Φ

Φ
. (5.38)
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We can now solve for the metric. Let us define

α(u) ≡ φ sinh Φ

Φ
, (5.39)

and set the integration constant for B to be

eB =
|C|
gα

. (5.40)

Plugging this into the first integrability condition (5.24) and picking the gauge e−D ≡ g, we

have a first-order equation for α,

0 = α2 − C2(α2 + 1− α′2/α2) . (5.41)

The solution depends on the value of C ∈ [0, 1] and up to translations in u is

α = e±u , if C = 1 ,

α =
|C|√

1− C2
sechu , if 0 ≤ C < 1 . (5.42)

We will take the case 0 ≤ C < 1. This implies that the metric is

ds2 = g−2

[
(1− C2) cosh2 u

(
dt2 − dz2

z2

)
− du2

]
. (5.43)

The choice C = 0 corresponds to the AdS3 vacuum.

5.2.2 φ4, φ5 truncation

We have yet to fully solve the half-BPS conditions (5.31) and (5.34). For simplicity, let us

consider the case where only φ4, φ5 are non-zero and the other scalars are identically zero,

which trivially satisfies (5.31). It turns out that the important features of the Janus solution

are captured by this truncation.

We introduce the following abbreviations,

Φ2 = φ2
4 + φ2

5 , φ = |φ4| , φ̄ = |φ5| . (5.44)
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Let us define

β(u) ≡ φ5 sinh Φ

Φ
, (5.45)

so that

α2 + β2 = sinh2 Φ ,

P4
u = α′ + αΦ′

1− cosh Φ

sinh Φ
,

P5
u = β′ + βΦ′

1− cosh Φ

sinh Φ
. (5.46)

Plugging these into (5.34) simplifies to

α′2 + β′2 − (α′α + β′β)2

1 + α2 + β2
= α2 . (5.47)

This can be rearranged into a first-order equation in f ≡ β/
√

1 + α2,

f ′ =
α2/C

1 + α2

√
1 + f 2 , (5.48)

where a sign ambiguity from taking a square-root has been absorbed into C, which is now

extended to C ∈ (−1, 1). Using the explicit solution (5.42) for α, by noting that

d

du
tanh−1(C tanhu) =

C sech2 u

1− C2 tanh2 u
=

α2/C

1 + α2
, (5.49)

the general solution is

f(u) =
sinh p+ C cosh p tanhu√

1− C2 tanh2 u
,

β(u) =
1√

1− C2
(sinh p+ C cosh p tanhu) , (5.50)

for some constant p ∈ R. For later convenience, we also redefine C = tanh q for q ∈ R.

In summary, we have solved for the scalars φ4, φ5 implicitly through the functions α, β,

|φ4| sinh Φ

Φ
= | sinh q| sechu ,

φ5 sinh Φ

Φ
= sinh p cosh q + cosh p sinh q tanhu , (5.51)
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for real constants p, q. Note that the reflection φ4 → −φ4 also gives a valid solution. We have

explicitly checked that the Einstein equation and scalar equations of motion are satisfied.

The φ4 scalar goes to zero at u = ±∞ as it is a massive scalar degree of freedom, and has

a sech-like profile near the defect. The φ5 scalar interpolates between two boundary values

at u = ±∞, and has a tanh-like profile. The constant p is related to the boundary values of

the φ5 scalar, as we can note that

φ5(±∞) = p± q . (5.52)

The constant q is then related to the jump value of the φ5 scalar. The defect location u = 0

can also be freely translated to any point along the axis. Figure 5.1 below gives a plot of the

solution for the choice (p, q) = (0, 1).

Figure 5.1: Plot of φ4 and φ5 for (p, q) = (0, 1).

5.2.3 Holography

In our AdS-sliced coordinates, the boundary is given by the two AdS2 components at u =

±∞, which are joined together at the z = 0 interface. Using C = tanh q, the metric (5.43)

becomes

ds2 = g−2

[
sech2 q cosh2 u

(
dt2 − dz2

z2

)
− du2

]
. (5.53)
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Note that this is not AdS3 unless q = 0, which corresponds to the vacuum solution with all

scalars vanishing. The spacetime is, however, asymptotically AdS3. In the limit of u→ ±∞,

the sech2 q can be eliminated from the leading e±2u term in the metric (5.53) by a coordinate

shift. In the following, we will set the AdS length scale to unity for notational simplicity,

i.e. g ≡ 1.

According to the AdS/CFT correspondence, the mass m2 of a supergravity scalar field

is related to the scaling dimension ∆ of the dual d = 2 CFT operator by

m2 = ∆(∆− 2) . (5.54)

This relation comes from the linearized equations of motion for the scalar field near the

asymptotic AdS3 boundary. Expanding the supergravity action (5.10) to quadratic order

around the AdS3 vacuum shows that the φ4 field has mass m2 = −1, so the dual operator

is relevant with ∆ = 1 and saturates the Breitenlohner-Freedman (BF) bound [18,19]. Note

that we choose the standard quantization [20], which is the correct one for a supersymmet-

ric solution. The φ5 field is massless, so the dual CFT operator is marginal with scaling

dimension ∆ = 2.

The coordinates (z, u) can be mapped to Fefferman-Graham (FG) coordinates (ρ, x)

where the asymptotic AdS3 boundary is located at ρ = 0.16 In FG coordinates, the general

expansion for a scalar field near the boundary is

φ∆=1 ∼ ψ0 ρ ln ρ+ φ0 ρ+ · · · ,

φ∆ 6=1 ∼ φ̃0 ρ
2−∆ + φ̃2 ρ

∆ + · · · . (5.55)

16Recall that the AdS3 metric in Poincaré coordinates,

ds2 =
−dρ2 + dt2 − dx2

ρ2
,

is related to an AdS2-sliced metric by the coordinate change,

z =
√
x2 + ρ2 , sinhu = x/ρ .
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Since the ∆ = 1 scalar saturates the BF bound, holographic renormalization and the holo-

graphic dictionary are subtle due to the presence of the logarithm [155]. As we show below

for the solution (5.51), there is no logarithmic term present and φ0 can be identified with

the expectation value of the dual operator [155, 156]. For the ∆ = 2 scalar, we can identify

φ̃0 with the source and φ̃2 with the expectation value of the dual operator.

It is difficult to find a global map which puts the metric (5.53) in FG form. Here, we

limit our discussion to the coordinate region away from the defect, where we take u→ ±∞

and keep z finite [157, 158]. This limit probes the region away from the interface on the

boundary. The coordinate change suitable for the u→∞ limit can be expressed as a power

series,

z = x+
ρ2

2x
+O(ρ4) ,

eu = cosh q

(
2x

ρ
+

ρ

2x
+O(ρ3)

)
. (5.56)

The metric becomes

ds2 =
1

ρ2

[
− dρ2 +

(
1− ρ2 tanh2 q

2x2

)
(dt2 − dx2) +O(ρ3)

]
. (5.57)

In the u → −∞ limit, the asymptotic form of the metric is the same and the coordinate

change is (5.56) with the replacements eu → e−u and x→ −x.

Using this coordinate change, the expansions of the scalar fields near the boundary are

|φ4| = | tanh q| p+ q̃

sinh(p+ q̃)
· ρ
|x|

+O(ρ3) ,

φ5 = (p+ q̃)− 1

2 sinh(p+ q̃)

(
p+ q̃

sinh(p+ q̃)
tanh2 q +

sinh p tanh q̃

cosh q

)
· ρ

2

x2
+O(ρ4) , (5.58)

where q̃ ≡ qx/|x| (see appendix 5.A.3 for details). The defect is located on the boundary at

x = 0. We can see that the relevant operator corresponding to φ4 has no term proportional

to ρ ln ρ in the expansion. This implies that the source is zero and the dual operator has

a position-dependent expectation value. The marginal operator corresponding to φ5 has a

source term which takes different values on the two sides of the defect, corresponding to a
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Janus interface where the modulus associated with the marginal operator jumps across the

interface.

Another quantity which can be calculated holographically is the entanglement entropy

for an interval A using the Ryu-Takanayagi prescription [25],

SEE =
Length(ΓA)

4G
(3)
N

, (5.59)

where ΓA is the minimal curve in the bulk which ends on ∂A.

There are two qualitatively different choices for location of the interval in an interface

CFT, as shown in Figure 5.2. First, the interval can be chosen symmetrically around the

defect [159,160]. The minimal surface for such a symmetric interval is particularly simple in

the AdS-sliced coordinates (5.53), and is given by z = z0 and u ∈ (−∞,∞). The regularized

length is given by

Length(ΓA) =

∫
du = u∞ − u−∞ . (5.60)

We can use (5.56) to relate the FG cutoff ρ = ε, which furnishes the UV cutoff on the CFT

side, to the cutoff u±∞ in the AdS-sliced metric,

u±∞ = ±
(
− log ε+ log(2z0) + log(cosh q)

)
. (5.61)

Putting this together and using the expression for the central charge in terms of G
(3)
N gives

SEE =
c

3
log

2z0

ε
+
c

3
log(cosh q) . (5.62)

Note that the first logarithmically divergent term is the standard expression for the

entanglement entropy for a CFT without an interface present [161], since 2z0 is the length

of the interval. The constant term is universal in the presence of an interface and can

be interpreted as the defect entropy (sometimes called g-factor [162]) associated with the

interface.
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Figure 5.2: (a) The entangling surface A is symmetric around the interface I, (b) The

entangling surface A is ends at the interface I.

Second, we can consider an interval which lies on one side of the interface and borders

the interface [163,164]. As shown in [165], the entangling surface is located at u = 0 and the

entanglement entropy for an interval of length l bordering the interface is given by

S ′EE =
c

6
sech q log

l

ε
. (5.63)

5.2.4 All scalars

For completeness, we also present the general solution with all φI scalars turned on. Let us

define

αi(u) ≡ φi sinh Φ

Φ
, i = 1, 2, 3, 4 ,

βı̄(u) ≡ φı̄ sinh Φ

Φ
, ı̄ = 5, 6, 7, 8 . (5.64)

As a consequence of (5.31), the ratio φ′i/φi is the same for all i so all the φi scalars are

proportional to each other. In other words, we have αi = niα for constants ni satisfying

nini = 1, where α is given in (5.42). Then (5.34) becomes

α′2 + β′ı̄β
′
ı̄ −

(α′α + β′ı̄βı̄)
2

1 + α2 + βı̄βı̄
= α2 . (5.65)

We can note that there exists a family of solutions where all βı̄ functions satisfy

βı̄ = nı̄β , (5.66)
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for some function β and constants nı̄ satisfying nı̄nı̄ = 1. When this is the case, (5.65) then

further simplifies to

α′2 + β′2 − (α′α + β′β)2

1 + α2 + β2
= α2 , (5.67)

which has already been solved in the previous section. We can prove that these are the

only solutions to (5.65) which satisfy the equations of motion. The scalar dependence of the

Lagrangian is

e−1L ⊃ −g
2

4
PIuPIu +W

= −g
2

4

(
α′2 + β′ı̄β

′
ı̄ −

(α′α + β′ı̄βı̄)
2

1 + α2 + βı̄βı̄
− (α2 + 2)

)
. (5.68)

If we write the βı̄ in spherical coordinates, where we call the radius β, this becomes

= −g
2

4

(
α′2 + β′2 + β2K2 − (α′α + β′β)2

1 + α2 + β2
− (α2 + 2)

)
, (5.69)

where K2 is the kinetic energy of the angular coordinates.17 We can treat α, β, and the

three angles as the coordinates of this Lagrangian. The equation of motion from varying the

Lagrangian with respect to α will only involve α and β and their derivatives. Plugging-in

(5.42) for α, satisfying this equation of motion fixes the form of β to be what was found

previously in (5.50). This means that (5.65) simplifies to β2K2 = 0 and the three angles

must be constant.

Therefore, the general solution is

φ sinh Φ

Φ
= | sinh q| sechu ,

β = sinh p cosh q + cosh p sinh q tanhu ,

φi = niφ , nini = 1 ,

φı̄ sinh Φ

Φ
= nı̄β , nı̄nı̄ = 1 . (5.70)

17Explicitly, let K2 = θ′2 + sin2 θ φ′2 + sin2 θ sin2 φψ′2.
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5.3 Discussion

In this chapter, we have presented Janus solutions for three-dimensional N = 8 gauged

supergravity. We constructed the simplest solutions with the smallest number of scalars,

namely the SO(8, 1)/ SO(8) coset. The solutions we found have only two scalars displaying a

non-trivial profile. One scalar is dual to a marginal operatorO2 with scaling dimension ∆ = 2

and the other scalar is dual to a relevant operator O1 with scaling dimension ∆ = 1. We used

the holographic correspondence to find the dual CFT interpretation of these solutions. It is

given by a superconformal interface, with a constant source of the operator O2 that jumps

across the interface. For the operator O1, the source vanishes, but there is an expectation

value that depends on the distance from the interface. It would be interesting to study

whether half-BPS Janus interfaces that display these characteristics can be constructed in

the two-dimensional N = (4, 4) SCFTs.

We considered solutions for the SO(8, 1)/ SO(8) coset, but these solutions can be trivially

embedded into the SO(8, n)/
(
SO(8)× SO(n)

)
cosets with n > 1. Constructing solutions

with more scalars with non-trivial profiles is in principle possible, but the explicit expressions

for the quantities involved in the BPS equations are becoming very complicated. We also

believe that the n = 1 case already illustrates the important features of the more general

n > 1 cosets. Another possible generalization is given by considering more general gaugings.

One important example is given by replacing the embedding tensor (5.5) with

ΘIJ,KL = αεijk` + εı̄̄k̄ ¯̀ . (5.71)

This is a deformation that produces an AdS3 vacuum which is dual to a SCFT with a large

D(2, 1;α)×D(2, 1;α) superconformal algebra. As discussed in [152], this gauging is believed

to be a truncation type II supergravity compactified on AdS3 × S3 × S3 × S1 [166, 167].

It should be straightforward to adapt the methods for finding solutions developed in this

chapter to this case.

We calculated the holographic defect entropy for our solution. It would be interesting to
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investigate whether this quantity can be related to the Calabi diastasis function following

[168,169]. For this identification to work, we would have to consider the case n = 2 for which

the scalar coset is a Kähler manifold.

We leave these interesting questions for future work.

5.A Technical details

In this appendix, we present various technical details which are used in the main part of the

chapter.

5.A.1 SO(8) Gamma matrices

We are working with 8 × 8 Gamma matrices ΓI
AȦ

and their transposes ΓI
ȦA

, which satisfy

the Clifford algebra,

ΓI
AȦ

ΓJ
ȦB

+ ΓJ
AȦ

ΓI
ȦB

= 2δIJδAB . (5.72)

Explicitly, we use the basis in [170],

Γ8
AȦ

= 1⊗ 1⊗ 1 , Γ1
AȦ

= iσ2 ⊗ iσ2 ⊗ iσ2 .

Γ2
AȦ

= 1⊗ σ1 ⊗ iσ2 , Γ3
AȦ

= 1⊗ σ3 ⊗ iσ2 .

Γ4
AȦ

= σ1 ⊗ iσ2 ⊗ 1 , Γ5
AȦ

= σ3 ⊗ iσ2 ⊗ 1 .

Γ6
AȦ

= iσ2 ⊗ 1⊗ σ1 , Γ7
AȦ

= iσ2 ⊗ 1⊗ σ3 . (5.73)

The matrices ΓIJAB, ΓIJ
ȦḂ

and similar are defined as unit-weight antisymmetrized products of

Gamma matrices with the appropriate indices contracted. For instance,

ΓIJAB ≡
1

2
(ΓI

AȦ
ΓJ
ȦB
− ΓJ

AȦ
ΓI
ȦB

) . (5.74)
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5.A.2 Integrability conditions

For BPS equations of the form,

∂tε = − 1

2z
γ0

(
γ1 + f(u) + g(u)γ2

)
ε ,

∂zε = − 1

2z
γ1

(
f(u) + g(u)γ2

)
ε ,

∂uε =
(
F (u) +G(u)γ2

)
ε , (5.75)

where f, g, F,G are matrices acting on ε that commute with γa, the integrability conditions

are

t, z : 0 = (1 + f 2 + g2)ε+ [f, g]γ2ε , (5.76)

t, u : 0 = (f ′ + [f, F ]− {g,G})ε+ (g′ + [g, F ] + {f,G})γ2ε , (5.77)

z, u : same as for t, u .

5.A.3 Scalar asymptotics

The asymptotic expansions of the φ4 and φ5 scalar fields, as given in (5.51), in the limits

u→ ±∞ are

|φ4| = 2| sinh q| p± q
sinh(p± q)

e∓u

− 2| sinh q|
sinh2(p± q)

(
p± q

sinh(p± q)
(sinh2 p+ sinh2 q)± 2 sinh p sinh q

)
e∓3u +O(e∓5u) ,

φ5 = (p± q)− 2

sinh(p± q)

(
p± q

sinh(p± q)
sinh2 q ± sinh p sinh q

)
e∓2u +O(e∓4u) . (5.78)
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