UCLA
UCLA Previously Published Works

Title

S-values: Conventional context-minimal measures of the sturdiness of regression
coefficients

Permalink
https://escholarship.org/uc/item/0025c3jd
Journal

Journal of Econometrics, 193(1)

ISSN
0304-4076

Author
Leamer, Edward E

Publication Date
2016-07-01

DOI
10.1016/j.jeconom.2015.10.013

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0025c3jc
https://escholarship.org
http://www.cdlib.org/

Last printed 1 October 2014

S-values: Conventional context-minimal measures of
the sturdiness of regression coefficients

Edward E. Leamer"
UCLA
October 2014
Abstract

This paper proposes a context-minimal range of alternative regression models that is used to
generate a range of alternative estimates. If the range of estimates for a regression coefficient
excludes zero, the sign of the coefficient is judged to be sturdy. The proposed measure of
sturdiness is the s-value, which is the average of the minimum and maximum of the estimates
divided by their difference.

The proposed range of alternative models is built on a Bayesian foundation in which doubt
about the relevance of each variable is captured by a prior distribution for the regression
coefficients located at zero with a particular variance. If this prior variance were known or
estimable, we would have an estimation problem not a model ambiguity problem. The choice
of the prior variance is facilitated by transformation to standardized variables which makes the
prior expected R?equal to the sum of the prior variances. Three different ranges of the prior
expected R” are used to define three different intervals of prior covariance matrices which are
used to produce three different sets of s-values.

The approach is illustrated with a reexamination of the regression equation of Sala-i-Martin,
Doppelhofer and Miller (2004) which has 67 variables that are intended to explain the growth in
real per capita incomes of eighty-seven countries from 1960 to 1996. In contrast with the
conclusion of Sala-i-Martin, Doppelhofer and Miller, | do not find many of these coefficient
estimates to be sturdy, meaning their signs are ambiguous. Thus | conclude that context-
minimal inference in this setting is not very productive, and if something of value can come from
these data it depends on context-dependent information that establishes a compelling
preference for some variables or some combinations.

! Prepared with the research assistance of Shekhar Mittal. Comments from my colleagues at UCLA
including Sebastian Edwards and Romain Wacziarg are gratefully acknowledged. Special thanks to Paola
Guiliano and Christian Dippel for suggestions that | have incorporated here. The discussion of g-priors
included in this version is a response to a comment from Gary Chamberlain and to references brought to
my attention by Mark Steel. | have also benefited much from discussions with Carlos Cinelli.
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1 Introduction

Inferences from limited data sets are afflicted by both sampling uncertainty and model
ambiguity. T-statistics and p-values are ubiquitous context-free conventional measures of
sampling uncertainty of estimated coefficients in linear regression. These measures are
designed to reveal if the signs of the estimated coefficients are statistically reliable. When
drawing inferences from nonexperimental data it is usually acknowledged that these measures
depend on untested assumptions concerning which variables should be included in the model
and which should be excluded. This kind of model ambiguity is normally handled in an ad hoc
manner by reporting the results from a variety of alternative models.’

| propose here context-minimal conventional measures of the extent to which the signs of
regression coefficients are free of model ambiguity concerns. This requires a context-minimal
convention regarding the range of allowable alternative models among which there is
indifference, not meaning equal prior probabilities but instead hard-to-assess prior probabilities.
The key innovation comes from the fact that an R? is a measure of the size of the coefficients
and the prior expected R? is a function of the prior covariance matrix — larger prior expected R’
corresponding with greater prior covariance matrix and more freedom for the coefficients to
wander from zero. The minimal contextual input is taken to be an interval for the expected
prior R?, which corresponds with a set of prior covariance matrices, which in turn corresponds
with sets of posterior means and posterior variances, from which extreme values can be
selected.

The proposal here is to standardize the variables to have unit variance, to adopt a Bayesian
approach that shrinks the coefficients to zero (prior mean equal to zero), and to allow an
interval of prior covariance matrices with upper and lower bounds that depend on conventional
context-free upper and lower values for the expected R? of the equation. The logic for this
convention is explained herein.

If model ambiguity is extreme and the prior covariance matrix is free to vary over all positive
definite matrices, then almost no coefficient has a sturdy sign, since there are prior covariance
matrices that imply either positive or negative signs for all but one special linear combination of
regression coefficients. It is surely sensible to have a lower bound on the prior covariance
matrix, and thus to exclude dogmatic priors with zero variances since these allow the imposition
of hard linear constraints on the coefficients which are completely impervious to the data
evidence.

To let the data speak freely as the sample size grows, we need a lower bound for the prior
covariance matrix, but we do not need an upper bound. On the contrary, an upper bound rules
out the unconstrained ordinary least-squares estimate and thus prevents the data from
speaking freely except asymptotically when the message is so loud it cannot be ignored. | had

2| have written extensively about this, e.g. Leamer(1978), as have others.
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thus thought that an upper bound would not also be essential, but | changed my mind when the
intervals of possible estimates became uselessly wide as the number of variables increased. An
upper bound for the prior variance is thus also essential since it limits the reduction in
sturdiness of the coefficients that comes from adding variables to the equation.

Both upper and lower bounds that are proposed here have the prior variance inversely
proportional to the number of variables in the model, in other words greater doubt about the
statistical importance of individual variables as the number of variables increases. This makes it
less likely in a large model that any particular variable has a large beta-coefficient, while keeping
constant across models of different size the total ignorance measured by the sum of the prior
variances. >

The recommended first step toward defining context-minimal upper and lower bounds for the
prior covariance matrix is the transformation to standardized variables with unit variance, thus
using “beta-values” as the regression coefficients. With this parameterization | propose using
upper and lower bounds for the prior covariance matrix proportional to the identity matrix, but
explore also the possibility of upper and lower bounds of the prior covariance matrix
proportional to the sample covariance matrix. An argument in favor of the identity matrix is
that with all other information about the setting hidden from the analyst, the regression
coefficients are exchangeable, and the only possible choice for a conventional prior distribution
seems i.i.d., since there is no information that would allow anything else.* Still, it needs to be
emphasized that the proposed measures of model ambiguity are invariant to changes in scales
of the variables (via the standardization), but not invariant to rotations, meaning if you use x;
and x,, while | use x;-x,, and x;+x,, we will get different answers regarding the sturdiness of the
effect of x; holding fixed x,. In other words, the use of an identity prior covariance matrix is
context-dependent.” However, the proposed s-values use covariance matrices proportional to

* Incidentally, in the model-selection framework discussed in a companion paper, Leamer(2014), it is the
product of the variances (or the sum of the logarithms of the variances) that must be held constant in
order for the larger models to compete on a level playing field with the smaller models.

* | understand that exchangeable does not rule out the equicorrelated case, but if the common correlation
is treated as a known number, as done here, and nothing is known about the context, the only option
seems zero correlation.

> This brings to mind Hoerl and Kennard’s(1970) “ridge regression” which uses exactly the same
formula for estimating the regression coefficients as a Bayesian analysis with a spherical prior,
namely adding the same value to each and every diagonal element of the sample moment
matrix of the explanatory variables. Hoerl and Kennard(1970) demonstrate that there exists a
scalar to be added to all these diagonals which lowers the mean-squared-error of the estimator,
reducing the variance by more than it increases the bias. Unfortunately, that secret scalar
depends on the unknown size of the coefficient vector and this is not a way to do better than
ordinary least squares regardless of the regression coefficients.
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the identity matrix only to establish upper and lower bounds for the prior covariance matrix,
which relieves but does not eliminate the coordinate-dependence of the approach. Basically,
you have to be comfortable setting coefficients to zero (omitting variables) and not particularly
interested in, at least initially, imposing other homogenous linear restrictions. Thus the
adjective: context-minimal.®

Fully context-free s-values are obtained with upper and lower prior covariance matrix bounds
proportional to the sample covariance matrix, the assumption of the “g-prior” of Zellner(1986).
This produces s-values which are invariant to any linear transformations, but at the cost of using
a prior covariance matrix that treats prior information as if it were a previous experiment with
exactly the same sample covariance matrix as the data being analyzed. In other words, the g-
prior structure is mathematically convenient but rarely applicable.

With the prior covariance matrix equal to v2times the identity matrix, it is shown below that v
is equal to the prior expected R* divided k, the number of coefficients, v> = E(R?)/k. For
defining a range of alternative prior distributions all that is needed is a conventional range for
the prior expected R%.. Three ranges for the prior expected R? are proposed. The broadest
context-free range allows the expected R? to be any value between 0.1 and 1.0. Two other
ranges are formed by splitting this interval in two, from 0.1 to 0.5, and from 0.5 to 1.0. The
context would have to be referenced implicitly or explicitly to choose one of these narrow
ranges of models. The context question is: Are you studying a setting in which the R? is likely to
be in the higher range?

Although it is of interest to map out the estimates as the scalar v? is varied, something that
Hoerl and Kennard (1970) called the “ridge trace,” this produces a one-dimensional set of
estimates that is context-dependent, namely a context in which i.i.d. actually applies. Itis
proposed here that the assumption of an identity prior covariance matrix be used only to assist
in selecting upper and lower bounds for prior variances of linear combinations of parameters.
Then the context-limited set of allowable estimates is based on any prior covariance matrix that
produces prior variances of linear combinations of coefficients between these upper and lower
bounds. In mathematical terms we use a positive-semi-definite ordering with the prior
covariance matrix bounded from above or below. Prior covariance matrices compatible with
these two inequalities will be close to proportional to identity matrices at the extremes but
between the extremes can have substantial non-zero covariances, and less reliance on the
coordinate system.

Corresponding to any interval of prior covariance matrices there is a maximum and minimum
estimate for each coefficient estimate. These bounds are recorded in a sturdiness indicator
which | will call the s-value to accompany the t-value and the p-value. The s-value is the average

®1f you prefer, you may call it instead: context-forgotten, meaning that temporarily even the names of the
variables are forgotten.
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of the minimum and maximum estimates divided by half the difference between them. The s-
value summarizes the interval of estimates in exactly the same way a t-value summarizes the
one-standard error confidence interval — an s-value or a t-value greater than one means the
corresponding interval is bounded away from zero.

The lower bound for the prior covariance matrix assures that, as the sample size increases and
the data become more informative, the range of allowable estimates will diminish and will
collapse on the unconstrained estimate. Thus both sampling uncertainty and model ambiguity
are reduced as the sample size increases. That raises the question: Are sampling uncertainty
and model ambiguity essentially-the-same ways of looking at the same problem — not enough
data? More specifically, are the s-values some simple function of the t-values? An affirmative
answer to this question is suggested by the result in Leamer(1975) that the omission of a
variable can change the sign of another coefficient only if the t-value on the retained variable is
less than the t-value of the omitted variable. Beyond just the suggestion of that result, if the
interval of prior covariance matrices is expanded to include any positive definite matrix, the s-
values are proportional to the t-values, and the difference between sampling uncertainty and
model ambiguity is only what the t-value is compared with, respectively, the number 2.0 or the
chi-square for testing the joint significance of call coefficients. (explained below) In addition, if
the upper and lower covariance bounds are proportional not to the identity matrix but
proportional to the sample covariance matrix, then there is a one-to-one exact correspondence
between s-values and t-values, also explained below.

Though the actual s-value of a coefficient depends on its t-value and also on the correlation with
other coefficients, for the data set studied here there is a substantial correlation between t-
values and s-values, which in a sense is a comforting result, suggesting that we haven’t gone too
far astray by focusing on t-values.

Section 2 illustrates the main results with a graph of estimates for a two-variable regression
model. Section 3 lays out the notation of regression used here. Section 4 surveys the limited
literature on sensitivity analysis for linear regression. Section 4 explains the way that
standardized coefficients can be used to produce conventional prior distributions with upper
and lower prior covariance matrices. Two treatments are suggested: one in which all variables
are treated the same and a second in which the energy of the data is concentrated on a set of
“favorite” variables. Section 7 reviews the theorem in Leamer(1978) which is the basis for the
ambiguity measures proposed here. This result describes the set of Bayes estimates of
regression coefficients when the prior covariance matrix is bounded from above and below. A
special case from Chamberlain and Leamer (1976) describes the set of Bayes estimates
corresponding to the set of all prior covariance matrices. Other relevant sensitivity results are
reported in Leamer, Edward E. (1975) Chamberlain and Leamer(1976), Leamer and
Chamberlain(1976), Leamer, Edward E. (1978) and Leamer, Edward E. (1982).

| offer here some new sensitivity results for linear regression that extend these results. Worthy
of special note are results that highlight the critical role of the simple correlations in determining
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the range of allowable estimates. | show below that, for the intervals of prior covariance
matrices considered here, when the data are weak relative to the prior, the estimates will
conform in sign with the simple correlations. It is this result that has led to my suggestion to
include the simple one-variable-at-a-time regressions alongside the multivariate regression.
These one-at-a-time regressions are a feature of the data, while the “partial” regression
coefficients are cooked up by the analyst when he or she selects the control variables. This
cooking needs special scrutiny when a simple correlation and a partial correlation are opposite
in sign, in which case we need some way of deciding which is the better estimate of the sign. |
argue that there is no preference for either sign when the ambiguity in the prior is great relative
to the strength of the data information, something which is captured precisely with the
proposed s-values.

Section 8 offers is an example based on data of the Sala-i-Martin et.al.(2004) study of
determinants of the growth rate of per capita real incomes from 1960 to 1996 in a sample of 87
countries. For dispositive purposes, | first report s-values for a regression with only 14 “favorite”
explanatory variables selected “wisely” from the full set of 67 used by Sala-i-Martin et.al.(2004).
Next are invariant s-values in a regression with the full set of 67 variables. Then come the
context-minimal s-values for the same regression equation, and last a proposed conventional
concentration of the data information on the 14 favorites among the 67 variables. | conclude
that without some favoritism, there is little to be learned from these data. This conclusion
contrasts with the much more optimistic conclusion of Sala-i-Martin et.al.(2004) which has a
parallel study of these data also using a Bayesian approach, though a different one. Both
methods are built on doubt about the importance of the explanatory variables and both assume
ambiguity in defining that doubt. Some brief comments on the similarities and differences are
provided in Section 4.2 and in the conclusions, but a full discussion is relegated to a companion
paper, Leamer(2014), titled “S-values and All-Subsets Regressions.”

Finally, in Section 9, | offer concluding comments and some final promotional words in support
of the convention proposed here.

2 Visual Illustration of the Proposed Reporting Style

Jumping ahead to the finish line, Figure 1 illustrates the features that form the proposed
reporting style. This figure has the OLS estimate of the two parameters in the positive quadrant,
surrounded by two concentric likelihood ellipses (or confidence sets). Two circles centered at
the origin represent the prior opinion that these beta coefficients are probably small. The
optimal compromises between the data and the prior are points of tangency between a
likelihood ellipse and a prior circle. Two such points are illustrated, the one closer to the OLS
estimate corresponding to the “strongest” sensible prior opinion (minimum expected R?) and
the other one corresponding to the “weakest” sensible prior opinion (maximum expected R?).

Trace out with your mind’s eye the locus of tangencies, and you will notice that it begins in the
positive quadrant at the OLS point, but then experiences a sign change for Beta2. That suggests
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the sign of Beta2 is fragile. However, the estimates for the weakest and strongest prior both
have Beta2 negative, so perhaps the sign of Beta2 is sturdy. Finally, the shaded ellipse is the set
of estimates associated with the set of priors between the weakest and the strongest cases,
meaning that the prior variances of any and all linear combinations are bounded from above
and below by the prior variances for these linear combinations implied by the weakest and
strongest priors. This set of prior opinions allows estimates off the locus of tangencies between
the circles and the likelihood ellipses because noncircular priors are allowed. The shaded
region is the full set of these estimates. This shaded “model-ambiguity” region includes both
positive and negative estimates of Beta2, and we would thus conclude that the sign of Beta2 is
fragile while the sign of Betal is sturdy.

Figure 1 OLS and Two Estimates Closer to Zero: Spherical Prior

Beta?2

OoLS
[

Betal

The proposed reporting style describes the sampling uncertainty in terms of the OLS estimate,
and also several alternatives on the locus of tangencies between the likelihood ellipsoids and
the prior spheres. The model ambiguity is conveyed by the extreme estimates taken from the
shaded model-ambiguity region.

The critical assumptions are (1) sphericity of the reference prior and (2) sensible choices of the
two extreme priors. Sphericity seems a “natural” consequence ignorance about the setting
combined with transformation to beta-coefficients — without knowing more about the setting it
is impossible to select non-zero prior covariances or non-identical prior variances.” To find the

’ Warning: this statement presumes normality. There are countless other distributions that could
describe the prior state of mind and circles are not the only way to express the idea that the coefficients
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extremes, | will show below that it is enough to have extreme values of the expected R
Specifically, | propose reporting s-values corresponding to three different intervals of the prior
expected R*: from 0.1 to 1.0, and the non-overlapping subintervals, 0.1 to 0.5, and 0.5 to 1.0.

This proposal is not genuinely context-free since the shaded model-ambiguity region in Figure 1
is not invariant to all linear transformations of the data. Thus if you use B; and B, as your
parameters, while | use B;+B, and B:-B, , we are going to draw different conclusions regarding
the sturdiness of the estimates of B, and B,. To get invariance, we need the upper and lower
prior precision matrices proportional not to the identity matrix but to the sample precision
matrix, X’X, per the g-prior proposed by Zellner(1986). This case is illustrated in Figure 2. Here
the prior ellipses are not spherical but have the same shape as the likelihood ellipses around the
OLS point. As a consequence the locus of tangencies that represent efficient compromises
between the data and the prior lie on a straight line connected OLS with the origin. This means
that there cannot be any sign changes in any of the estimated coefficients — just multiply the
OLS vector by a suitably selected positive scalar less than one. In addition, the shaded
sturdiness ellipse for measuring model ambiguity has exactly the same shape as a likelihood
ellipse used for measuring statistical uncertainty. For these two reasons, as further explained
below, s-values and t-values are proportional to each other. To determine if sampling
uncertainty is small compare a t-value with a suitably selected number; to determine if model
ambiguity is small, compare a t-value with a different number. Aside from this (disappointing)
fact that these g-priors make statistical uncertainty and model ambiguity numerically the same,
the use of g-priors requires some very strange behavior by the analyst and her audience, you are
all forced to wait until you see the X matrix before you can express yourself regarding the sense
in which the regression coefficient vector is close to the origin. Caveat: the same critique
applies to my use of standardized variables, but, as argued already, in a nonexperimental
setting, exchangeable beta-coefficients seems more natural than exchangeable coefficients or
exchangeable t-values.

are probably small. For example, one might suppose that the product of the absolute beta values is small
and instead of circles we would have hyperbolas, and thus shrink toward the sides of the quadrants.
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Figure 2 OLS and Two Estimates Closer to Zero: g-prior

Beta2

OLS

u Betal

3 Setting
This section describes the linear regression setting in which the data are analyzed: the sampling
process and the prior state of mind, both assumed to be distributed normally.

3.1 Sampling Process

The data are assumed to consist of an (nx1) “dependent” variable vector y and an (nxk)
“explanatory” variable matrix X. It is assumed that the vector y conditional on X is normally
distributed with mean Xp and covariance matrix 6°l, were B is a (kx1) vector of unknown
“regression coefficients” that link y with X, and where o is a scalar equal to the variance of
each element of y given XB. The ordinary least squares estimate of B is then

b=(XX)"Xy=N"r, where
N= X’X, and
r=X'y

The corresponding sampling variance and precision matrices are
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Variance(b) = ¢?(X'X)"! = H™!
Precision(b) = H =(X’X)/ o2

It is recommended that the prior for conventional sturdiness measures be built off the
standardized coefficients, with variables defined to have mean zero and variance one. Then,
with variables with the means removed, with the constant suppressed and with X, referring to
the sample covariance matrix with ones down the diagonal, X'X = nX,, and H = (n/d?)X,,

3.2 Prior State of Mind and Approximate Posterior Mean

Prior to the observation of y and X it is assumed that the analyst and possibly the analyst’s
audience have the opinion that the vector of coefficients f is probably close to zero. This vague
statement allows for doubtful variables that probably have small coefficients and also allows for
similar variables with coefficients that are probably about the same.

This state of mind is approximated with a normal prior distribution for B with mean vector 0 and
variance matrix V. Then the posterior mean is a matrix weighted average of the OLS estimate b
and prior mean 0, with weights proportional to the sample and prior precision matrices:

[?(V) = (H + V‘l)_le. This approximation of the prior state of mind is mostly for
mathematical convenience, and it’s a huge and incredulous step from the vague statement that
the coefficients are probably small to the precise statement that the coefficients are drawn from
a normal distribution with known variance matrix. Because of that, we need to know how
sensitive the posterior mean is to changes in the prior variance matrix. That is the way we will
be expressing model ambiguity problems.

The prior opinions, if not dogmatic, are irrelevant when the sample is sufficiently informative,
but in most samples studied by economists the prior state of mind matters and can affect the
inferences drawn. The two related questions addressed in this paper are thus: (1) Is the data
evidence strong enough that we can ignore the prior state of mind? (2) If the answer to (1) is
negative, does ambiguity in the prior state of mind cause ambiguity in the signs of the regression
coefficients?

For studying nonexperimental data, specification ambiguity is especially important because the
absence of experimental controls makes the list of potential regressors unlimited, and this
makes the signs of the coefficients sensitive to the choice of explanatory variables.
Consequently, it isn’t easy to tease persuasive inferences from nonexperimental data. It is going
to take some wisdom and some judgment and possibly some collective delusion to limit the list
of explanatory variables in a way that allows useful and credible inferences.

3.3 Treatment of the residual variance

In what follows, the value of the sample precision H is taken as given and compared with
hypothetical prior precision matrices, but in fact H depends on the uncertain residual variance
o2 which has to be estimated. While the best estimate of a2 surely depends on the prior

10
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information, the most interesting and easily computable measures of specification ambiguity
discussed below require a value of H that is fixed independent of the prior. Accordingly, | will
use a traditional sample of estimate of o2 to determine the scale of the precision matrix H, and |
ignore any impact of the prior information about the coefficients B on the best estimate of 2.

4 Treatments of Estimation Uncertainty and Model Ambiguity

This section describes traditional and some nontraditional ways to uncover and to communicate
estimation uncertainty and model ambiguity. These approaches compete with the proposals
offered in this paper.

4.1 Tables of Alternative Constrained Regressions

It is common practice when estimating a regression to try different specifications with different
subsets of variables or with other linear constraints imposed on the coefficients. This kind of
specification search usually combines in an unclear way both estimation uncertainty and
specification ambiguity.

If the model selection algorithm is predetermined, (e.g. omitting variables with t-values less
than 2), then this procedure implicitly ignores specification ambiguity completely and is only a
solution to the same estimation problem that gives rise to the unconstrained unbiased
estimator. The design of an estimation algorithm with sample-dependent restrictions on the
coefficients requires a study of the properties of this implicit and complex mapping of data sets
into estimates, for example, studying the mean squared error of these biased estimators.

Usually, however, specification ambiguity is acknowledged by the way the results are reported —
not one estimate, but a table of alternatives with different subsets of the restrictions imposed.
If it is taken as given that each of the reported models is an equally reliable summary of the
statistical uncertainty regardless of its statistical fit, then this table of alternative estimates is
exclusively helping to define the amount of specification ambiguity. But if the evidence is said
by the analyst to favor one model over another, because of a better fit or more plausible
coefficients, then the table is serving partly to reveal the underlying details of a complex
estimator that mixes the results from many models. The standard-operating-procedure of
professional economists is presentation of a table of results interpreted informally in a way that
mixes estimation uncertainty with specification ambiguity. One goal of this paper is to design a
style of reporting that clearly distinguishes these two, and clearly reveals the prior state of mind
that is the foundation for whatever are the reported inferences.

4.2 Averaging of Constrained Regressions

The coordinate system in which the omission of variables is appropriate is one in which the
parameters are independent in the prior distribution, meaning “you” begin the study of the data
with a state of mind such that if “you” learn something about B, alone that tells “you” nothing
about B,. The connection between the prior and the coordinate system comes from the result
in Leamer and Chamberlain (1976) that when the prior covariance matrix V is diagonal, the

11
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—~ -1

Bayes estimator B(V) = (H + V‘l) Hb can be written as a weighted average of the 2"
regressions formed by combinations of included variables selected from the full set of k
explanatory variables.

If the diagonal elements of V are fixed, the weights on the 2* regressions do not depend on how
well a model that includes a subset of variables fits, which is a feature of a study with a normal
prior distribution and a normal sampling distribution. But if the prior distribution has a
nonnormal shape with a stronger central tendency and flatter tails, something that captures the
idea that the restriction is probably true, but if it isn’t then not much is really known, then the
diagonal elements of the prior precision matrix Vshould be thought to be data-dependent.

This is an elliptical way of introducing Bayesian Model Averaging (BMA) used by Raftery(1995)
and by Fernandez, Ley and Steel(2001), and the same but misnamed BACE estimator used by
Sala-i-Martin, Doppelhofer and Miller(2004). BACE stands for Bayesian Averaging of Classical
Estimators, but in fact this estimator is an approximate Bayesian posterior mean for a special
kind of prior distribution, which has an atom of mass (positive probability) assigned to each
restriction but is otherwise diffuse (uninformative).

There is a technical problem with this kind a prior distribution that combines the dogmatic with
the uninformed, since it wants to strongly favor the model with the fewest number of
coefficients.® This technical problem is described in Leamer(1978) and repeated in Sala-i-Martin
et.al(2004), but the solution to this technical problem chosen by Sala-i-Martin et. al.(2004) is
eminently sensible, in other words it conforms with Leamer(1978) who provides warning labels
and with Schwartz(1978) who does not provide warning labels.

In any case, BACE is solving an estimation problem in a more thoughtful way than stepwise
regression, but it’s not about model ambiguity. However, Sala-i-Martin, Doppelhofer and
Miller(2004) do have a treatment of model ambiguity (a sensitivity analysis) carried out with
respect the expected number of included variables, and Ley and Steel (2009) explore both
estimation and sensitivity analysis with respect to the prior covariance multiplier “g”.

4.3 Posterior Bounds Given A Range of Prior Distributions

The traditional sensitivity analysis involves a study of the way estimates change when some
variables are omitted or some linear constraints are imposed. These estimates presume an
unlikely combination of knowledge and ignorance — complete confidence that some constraints
apply but total ignorance about the validity of other constraints. An appealing feature of a
Bayesian approach is that it allows the intermediate imposition of “soft” constraints, some

III

& The problem is that the diffuse prior puts “almost all” the weight at plus or minus infinity where the
likelihood value is zero, and as the dimension of the model increases in a certain sense more and more of
the weight is placed where the likelihood is zero, and thus the weighted likelihoods for larger models are

infinitely smaller than the weighted likelihoods for small models.

12
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harder than others. The (Bayesian) estimates considered here are matrix weighted averages of
the OLS vector b and the vector 0:

BW)=(H+Vv1)"Hb (1)

where V is the prior variance matrix. This is the Bayes estimator with a normal prior for the
parameter vector B with mean 0 and precision matrix V. What lies behind this assumption is
the same thing that lies behind the usual procedure of dropping variables with small t-values,
namely, we begin with doubt about the importance of each variable and expect the data to
overcome that doubt. That doubt is expressed precisely in Bayesian terms by the assumption
that B'V~1 is probably small. If the prior variance matrix is large enough, then the constraints
are essentially ignored, and if the prior vaiance matrix is small enough, the constraints are
imposed with little regard for the data evidence.

The leap from the feeling that B is probably small to the technical Bayesian assumption that B is
drawn from a normal distribution with mean vector 0 and known covariance matrix Vis
preposterously large, so large that no one dares to make the jump except in the dreams of
theorists. But that leap seems more comfortable if instead of a known value of the prior
covariance matrix V we allow for a range of alternatives.

The title question “What are the signs of the coefficients?” is here translated into the specific
mathematical question: “What alternative sign patterns emerge for the vector of estimates as
the prior precision matrix V is varied?” This question emerges in a setting in which prior
opinions have two special features: (1) There is wide agreement that the psychological starting
point for the data analysis is one of doubt about the signs and sizes of the coefficients B.° (2)
There is wide disagreement/confusion over how exactly to describe the nature of the doubt
other than to say that, absent the data, the best estimate of B is the zero vector.'®

5 Seeking context-minimal measures of model ambiguity

The central message of Bayesian statistics is also its greatest shortcoming: the context matters.
To do a Bayesian analysis of a data set, an analyst is expected to think long and hard about what
are the probable values of the parameters in the context under study, and then find just the
right words to convince her clients and readers about the wisdom of her choice of informative
prior distribution. The large literature on diffuse priors is an attempt to automate around

% |f there is wide agreement on some location for the prior other than zero, then by a change of
parameters, the problem is mathematically identical to an omitted variables problem.

°The proposed reporting separates sampling uncertainty and model ambiguity but a question
that combines the two is: “How sure are you that the sign is positive?” That question could be
translated into: “What range of t-values for this coefficient can be found from these data?”
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these difficult tasks by recommending a conventional prior that can be used in a wide set of
applications in which the prior information is weak compared with the data information. That
allows automated conventional Bayesian measures of sampling uncertainty which typically are
the same as sampling theory measures. Parenthetically, economists who routinely study what
happens to estimates when variables are omitted from regressions are implicitly rejecting this
advice, and resorting to ad hoc specification searches to input the contextual information.

While a diffuse prior distribution can be used under some circumstances to measure the amount
of sampling uncertainty, a model with a diffuse prior cannot be a starting point for measuring
model ambiguity since there is no (hyper) parameter that can be perturbed to perform the
sensitivity analysis. The goal of this paper is find a measure of model ambiguity which has an
ideally chosen minimal context dependence, enough so that measures of model ambiguity are
useful, but not so much that the required inputs place an unbearably heavy credibility burden
on the analyst and her readers.

Essentially what a prior distribution does is to establish a probable domain for the parameters.
Instead of making a direct choice of probable domain, | allow a range of expected prior R*values
to determine a range of prior distributions that are located at zero and vary in their degree of
concentration, more concentrated for small expected R® and less concentrated (i.e. probably
larger coefficients) for large expected R”.

An analyst who can comfortably select a prior expected R* has limited the set of potential prior
covariance matrices, perhaps enough that further refinement of the prior wouldn’t matter very
much. The R* with standardized variables is equal to 'E,, 8 where X, is the covariance matrix
of the explanatory variables. This scalar has prior expected value equal to trace(Z,,V) where V
is the prior covariance matrix. The set of prior covariance matrices compatible with a given
prior expected R” is

O, = {V|trace(Z,,V) = E(R?),0 <V}

If an analyst could convince herself and her audience that some particular value of the prior
expected R’is the unique value that applies, then a sensitivity analysis could perturb the prior
covariance matrix only within the range ;. This state of public opinion is surely rare and the
sensitivity analysis would be more inclusive if it encompassed variability in the prior expected R%.
This implies a set of prior covariance matrices that depends only on the interval of prior

expected R”s:
Q, = {VIMin(E(R?)) < trace(Z,V) < Max(E(R?)),0 < V}

Carrying out the sensitivity analysis with regard to this set of prior covariance matrices has
appeal but is analytically difficult because of the complexity of the set of prior covariance
matrices compatible with any given prior expected R%. To make progress, | thus restrict the set
of prior covariance matrices to lie within an interval vfcb <V< vLZ,CD where the inequality
vZ® < V means that V — v ® is positive semi-definite, where @ is a selected matrix to be
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discussed next, and where the upper and lower scalars, vf and vLZ,, are selected to assure that
that the prior expected R’ lies between lower and upper value,
Min(E(R?)) < vitrace(Z,,®) < Max(E(R?)).

For reasons already discussed, my preferred choice of @ is the identity matrix. This comes from
the exchangeability of the beta-coefficients, absent additional information. Then the set of prior
covariance matrices is

Q3 = {VIMin(w?)I <V < Max(v®)I, Min(E (R?)) < v?trace(E,d) < Max(E(R?))}
where trace(Z,,I) = k.

This is best thought as the first step in inputting context into the data analysis. If the model
ambiguity is small when a minimal of contextual information is used, there is no need to be
more careful, but if the model ambiguity is great, more work is needed to choose the contextual
inputs.

The set of estimates of the regression coefficients implied by the set (), is invariant to linear
transformations, while the set of estimates implied by Q3 is not. In other words, we have
allowed context to matter beyond the prior expected R’ — when the prior is extreme, the
covariance is proportional to the identity matrix. This is a setting in which the coordinate
system matters. Expressed simply, you have to think omitting variables makes sense, and
imposing other constraints like equality of coefficients would require more thought and
introspection.

A mathematically convenient way to obtain invariant results is to have the upper and lower
bounds be proportional to the sample covariance matrix, ® = H~1, the case illustrated in Figure
2. It will be shown below that this assumption yields measures of model ambiguity that are
proportional to the usual measures of statistical uncertainty.

Q, = {VIMin(w?»)H™ ! <V < Max(v®)H?,
Min(E(R?)) < vitrace(Z,H™ 1) < Max(E(R?))}

where H™1 = 62(X'X)™! = 62(nZ,,) ! and trace(Z,H™ 1) = a%(k/n).

6 Conventional Upper and Lower Prior Variance for Beta

coefficients
A conventional prior needs to compare the effects of different explanatory variables in a way
that does not depend on arbitrary units of measurement. The usual t-statistics have this
invariance property but these t-values depend in very complex ways on the matrix of
covariances of the explanatory variables, which makes it unlikely that analysts could confidently
claim prior knowledge of t-values. In settings in which the variables are strictly positive, a
logarithmic model could be used and would have parameters that are unit-free.
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When a log-linear model is not possible and even for a log-linear model, we can find
conventional priors for “beta” coefficients, based on data normalized to have sample means
equal to zero and sample variances all equal to one. The “beta” coefficients with these
normalized data do not depend on the units of measurement of either the dependent variable
or the explanatory variables. These coefficients measure the number of standard deviations of
the dependent variable that is induced by a one-standard deviation change in an explanatory
variable."

Here is how to find a conventional prior when variables are normalized to have unit variance. A
regression equation with k explanatory variables can be written as y; = x;'f + & where t
indexes the observations, x;is a vector of k observables, y; is a scalar observable, 8 is a vector of
k parameters to be estimated and &; is an unobservable assumed to be normally distributed
with mean zero and unknown variance 62. The corresponding variance of the dependent
variable is 033 = B'E,B + o where X,, refers to the covariance matrix of the explanatory
variables. With standardized variables, the variance of the dependent variable is one and the
variance of the residual is 1-R* where R? is the squared multiple correlation coefficient.
Substituting these into the variance equation 03% = B'E,.B + 02 we obtain the result that the
R%is the generalized beta-coefficient, R = B'Z,,f8.

For a conventional prior, we cannot claim knowledge of the relative importance of the variables,
nor can we claim any knowledge of the relationships between the coefficients. This, | propose,
requires the conventional prior to have covariance matrix proportional to the identity matrix,
Var(B) = v2I, where v? is the variance that applies to all coefficients.

The quadratic form B'E,, B can be written as trace(B'E,,B) = trace(Z,,BB"), and we can
replace matrix BB’ with it’s prior expectation E(BB") = Var(B)+ E(B)E(B’) = Var(B) = v?I,
to obtain E(R?) = trace(Vv?Z,,) = vZk. Thus we have the prior variance of each beta-
coefficient equal to the R? divided by the number of parameters, k, v = E(R?) /k .

Finally, to select a range of prior variances, we need to select a range of expected R

min E(R?) max E(R?)
2 _ 2 _ 1,2
Vp=——7—"—"<v'{—=v
L k k U
Both ends of this interval of prior variances shift toward zero as the number of explanatory

variables increases. The posterior ambiguity need not increase, however; that depends on the
contribution of the additional variables to the model.

' An economic theorist who chooses to explore the impact of x; on y but makes no mention in the theory
of x,, X3, ... must have chosen to focus on x; because of the probable importance of this variable
compared with the others. That | conclude must be a reference to a beta coefficient, since | cannot think
of any alternative that makes sense.
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So here is my recommendation based on my own experience with regressions with economic
data: The wideset context-minimal bound for the expected R? extends from 0.1 to 1.0. In
anticipation that this interval implies fragile signs of the coefficients, the interval is split in half:
a pessimistic view about the fit of the model with an expected R* extending from 0.1 to 0.5, and
an optimistic view with an expected R? extending from 0.5 to 1.0. Thus there are three s-values
reported: the context free s-values, and two context dependent s-values: pessimistic and
optimistic regarding the quality of the fit of the model.

The prior standard errors associated with these three values for expected R? decline with the
square root of the number of coefficients per the table below.

Conventional Prior Standard Errors

k (0.1/k)".5 (0.5/k)*.5 (1/k)7.5
0.31623 0.70711 1.00000

5 0.14142 0.31623 0.44721
10 0.10000 0.22361 0.31623
20 0.07071 0.15811 0.22361
50 0.04472 0.10000 0.14142
100 0.03162 0.07071 0.10000

This choice is analogous to the choice of conventional levels of statistical significance, 10%, 5%,
or 1% and it plays the same role of determining the extent to which the hypothesis of no effect
can be overcome by the data. If the expected R* is low, powerful data information is needed to
overcome this class of priors, but if the expected R” is high, relatively weak data can be enough.

6.1 Favorite Variables Conventional Prior

The previous section offers a data analysis that is completely context-minimal. Press a button
and you get the t-values and the s-values. No need to think. This section allows for “favorite”
variables that are expected to be more important than the other variables. | have previously
captured this idea with the words “free” and “doubtful” and used infinite prior variances for the
free coefficients and any prior variance matrix on the doubtful variables. The free and doubtful
variables bounds are usually too large to be useful, especially when the number of doubtful
variables is large. The basic problems with this approach are two: the infinite prior variance on
the free variables surely overstates their potential importance and the unbounded interval of
prior covariance matrices is way too wide, allowing at the same time completely dogmatic
opinions (zero prior variances) and completely uninformed opinions (infinite prior variances).

17



Last printed 1 October 2014

Here, to think about bounds for the prior variance we can use a block diagonal structure for the
vEl

rior variance E N =
p BB") [ 0 v

doubtful variables. Then the expected value of (R?) = trace(X,E(BB’)) = kpvE + kpvh .

] where the subscripts F and D refer to the free and

So here is my proposal. Take the overall lower bound of the expected R* to be 0.5. Let’s
suppose that the favorite variables are expected by themselves to make the R? at least 0.4 and
the collection of other doubtful variables is expected to add another 0.1 to the R?, thus adding
up to 0.5 Then the lower bound prior variances depend on the number of free and doubtful
variables (kr and kp) per the inequalities:

°
S
SN

0.
, VB> —
F kp

vE >

=

Similarly, hold the upper value of the expected R? at one and distribute that between the free
and doubtful variables, 0.8 to the free and 0.2 to the doubtful variables:

2 2
VF<— VDSE

7 Specification Ambiguity With The Prior Variance Bounded

From Above and Below
The basis of the proposed conventional sturdiness measures is the following theorem which
takes the prior covariance matrix to be bounded from both above and below. The lower bound
for the prior covariance matrix excludes dogmatic priors that would impose hard linear
restrictions which would be completely impervious to the data evidence, no matter how large
the sample may be. The upper bound is necessary to limit the influence of unimportant
variables in models with many explanatory variables.

Theorem 1 Leamer(1982,p729) Given that the prior variance matrix V is bounded from above

and below, V* >V >V, then the Bayes estimate B(V) = (H + V‘l)_le lies in the
ellipsoid

(B-f)6B-f)<c

where
G=H+W) )W) r-WH ) (H+WH )+ H+W)Y
f=[H+@) " [Hb+ (W) = ) ) (H+ ) ™)  Hb/2
c=bH[H + W) [w) 1= W) [H+ W)Y Hb/4
From this ellipsoid, the extreme estimates of the linear combination ¥'B(V) are
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W' + (W6 1p) (012

The proposed measure of model sturdiness is the center of this interval divided by half the
length

vy
G EEGED

S

Four ellipses of estimates implied by this theorem are illustrated in Figure 3. The largest ellipse
has an unshaded interior. This “feasible ellipsoid” is the set of estimates corresponding to the
full set of symmetric positive-semi-definite prior variance matrices, 0 < V. The skin of this
feasible ellipsoid is the set of estimates subject to homogenous linear restrictions. (e.g. lines
through the origin) This skin includes the OLS estimate b, and the prior mean 0. Properties of
this feasible ellipsoid are discussed in an Appendix.

This figure has two lightly shaded ellipses, each of which includes one and only one point on the
feasible ellipse. The set of prior covariance matrices only bounded from above, < V*, produces
the ellipse that includes the origin but excludes the OLS estimate b, which needs an infinite prior
covariance matrix to be obtained. The set of prior covariance matrices only bounded from
below,V, <V, produces the ellipse the excludes the origin, which requires a zero prior
covariance matrix to be obtained, butincludes the OLS estimate b.

The darkest ellipse in the interior of all the others is the ellipse corresponding to a set of prior
covariance matrices bounded both from below and from above, V, < V < V*. The extreme
values of the coefficients on this ellipse determine the proposed measures of model ambiguity —
when this ellipse is large alternative “reasonable” ways to describe the prior state of mind lead
to substantially different estimates, but when this ellipse is small, details of the prior are less
important. As the sample size grows and the data become more important, this ellipse will
shrink and move toward the OLS point b. In other words, the treatment for model ambiguity is
the same as the treatment for estimation uncertainty: more and better data.

Figure 3 Four Ellipses of Estimates
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7.1 g-priors

| am advocating that the upper and lower prior covariance matrices be proportional to the
identity matrix but an alternative to the identity matrix is the sample variance with the interval
of prior covariance matrices bounded above and below by a “g-prior” covariance matrix,
v2H 1 <V < v2H"L. Using Theorem 1, the s> value then becomes:

2

E*(RZ)E*(R2)+E*(R2)+E*(RZ)

$2 = ((wfb)z/wfﬂ-lw) 2GR
B b'Hb (E*(R2)—E.(R?))

(2)

The first term in parentheses in this expression is (¥'b)? /3'H™ 13 , the square of the Z-statistic
for testing Y’ = 0, divided by b’Hb , the x’-statistic for testing the multivariate hypothesis

B = 0. This ratio is the only data-dependent part of the expression and is invariant to linear
transformations of the data. Moreover the s-value is proportional to the t-value.

While the Z statistic is normally compared with 1.96 to determine statistical certainty, for
sturdiness the comparison should be with the y’-statistic b’ Hb, which like a Z statistic grows
with sample size, which means that this first part of the sturdiness statistic does not grow with
sample size.  If the lower expected R? is zero, the other part of the expression is equal to one.
In other words, if you are willing to entertain the dogmatic zero prior as a possibility, increasing
the sample size is not going to increase the sturdiness of the inference. If the lower bound for
E.(R?) is greater than zero, as the sample size grows, the second term grows like

2

(E) 2E,(R*)E*(R?)
k/ (1 - R2)(E*(R?) — E.(R?))
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which increments with n/k, guaranteeing that as the sample size grows, the sturdiness grows
without limit, and therefore both model ambiguity and statistical uncertainty dissipate. (Best to
have a non-zero lower bound to eliminate dogmatic priors.)

8 Reporting Style for the Determinants of Economic Growth

This section offers a proposed reporting style that combines estimation information with model
ambiguity information in a single table. The example is a country growth regression based on
data from Sala-i-Martin, Doppelhofer and Miller (2004) which includes the sixty-seven
explanatory variables listed in Table 1. The dependent variable is the average rate of growth of
real (PPP adjusted) GDP per capita from 1960 to 1996 of eighty-seven countries.

Three different treatments are provided. For expository purposes, | begin in Section 8.1 with an
equation that includes only 14 explanatory variables. These are my favorites, not necessarily
yours. This is for discussion only, and is not an endorsement of a study with a subset. Better to
cast the net widely from the start, which is what is done in Section 8.2 which has an analysis of
the growth equation with the full set of 67 explanatory variables. Then in Section 8.4, | report a
regression equation with all 67 explanatory variables but with the 14 treated as favorites per the
discussion above. In other words, | first concentrate all the energy on the data on 14 favorite
coefficients, then | spread the data over all 67, and last spread the data over all 67 but in a way
that favors the 14.

8.1 Fourteen of Sixty-Seven Explanatory Variables

Table 2 has the proposed format for reporting regressions with a model with my 14 favorite
variables. To try to gain some intellectual control over the crowded shelf of alternative
explanatory variables, | have assigned each to one of five categories: (1) catch-up based on
initial per capita GDP, (2) culture, (3) geography, (4) government, and (5) resources. The full
mapping of variables into categories can be found in the regression equation with all 67
variables reported in Table 6.

We have to include the catch-up effect of initial per capita GDP. Surely unpriced technological
transfer is a big part of the growth story. My favorite fourteen variables includes only one from
the culture category. | am an economist after all and | chose a variable that | think would
facilitate contracting across national borders: the fraction who speak a foreign language. |
really wanted to include the fraction English speaking population, but | held myself back on that
one. From the geography variables | chose absolute latitude. A hot climate has traditionally
been bad for the critical manufacturing sector because it is hard to operate (expensive)
machinery for long hours at high pace in hot and humid climates. To spread the fixed capital
costs over the largest number of units produced, manufacturing clustered together in the
northern latitudes of both North America and Europe. In addition to cool climates, footloose
manufacturing needs logistics infrastructure to get the goods to the global market, thus | have
included the fraction of the land near navigable water. Also because | am an economist, | am
inclined to think that the government’s job is not to mettle too much with the private enterprise
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system, so the size of government might be a problem as would interference with cross-border
trade which may or may not be captured by the outward orientation variable. Wars can’t be
good for growth, while the former British colonies might have a better government than most,
something which represents unwarranted prejudice on my part. Among the resource variables,
| chose higher education as one of my favorites. It's what | do and probably you too. It must be
important. Based on my understanding of the lifetime profile of earnings which peaks in midlife,
I include the youth variable which should be good for growth and the elderly variable which
should not. Last are two variables that measure non-manufacturing exports, primary exports
and oil producing, which will be good only in periods of elevating terms of trade.

| know. | am totally prejudiced for no good reason but these are my favorites, nonetheless. If
you were doing the hard work, you could pick your own.

The fourteen explanatory variables in Table 2 are organized by category and are sorted within
these categories by the OLS t-values which are reported in the eighth column. All variables are
standardized to have unit standard errors, and the coefficients consequently are “beta-
coefficients” which measure the number of standard deviations in growth of real GDP per capita
that is associated with a one standard deviation change in an explanatory variable.

The table is divided between columns that describe the sampling uncertainty and columns that
describe the model ambiguity. > The first five columns report five different sets of estimates of
these beta-coefficients and the next five columns report the corresponding t-values. These are
measuring sampling uncertainty. The last three columns have three different sets of s-values
that characterize the model ambiguity

The fifth column labelled b-OLS reports the usual regression estimate with all 14 variables
included. To the left of this column of OLS estimates are three “Bayes” estimates which shrink
the OLS coefficients toward zero, greater shrinkage as we move toward the left in this table as
the prior distribution gets more concentrated around zero. The first column labelled “b-
SIMPLE” refers to 14 different regressions, each with one and only one explanatory variable.
Although these one-at-a-time estimates are not obtainable with the kind of shrinkage estimator
that is used here, a theorem presented in an appendix indicates that the most extreme
shrinkage (all estimates close to zero) produces estimates with the same signs as b-SIMPLE, and
the estimation problem roughly speaking is to seek compromises between the signs of the b-
SIMPLE estimates and the signs of the b-OLS estimates. When these signs are in conflict the b-
SIMPLE coefficient is printed in bold. The initial per capita GDP is an example, with a positive
SIMPLE coefficient, suggesting that the rich get richer, while the b-OLS estimate is negative,
suggesting that, after controlling for all the other “initial conditions” in the equation, there is a
convergence effect picked up by this variable. To put the point a bit aggressively, the simple

2 The Knightian words, “risk” and “uncertainty”, in modern usage do not convey the Knightian distinction
between known and unknown probabilities, and | prefer to use “uncertainty” and “ambiguity”.
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regression is a feature of the data, but the OLS multiple regression coefficient is something
cooked up by the analyst when he or she chose the control variables. The s-values in the last
three columns are intended to determine if that “cooking” is credible, answering whether
reasonable changes in the choice of control variables can alter the sign of the estimates. More
on the subtle meaning of the coefficient of initial GDP per capita below.

Outward orientation also has a positive simple correlation but a negative partial correlation in
this 14 variable regression. In other words, outward orientation seems favorable to growth
when it stands alone but unfavorable (though statistically insignificant) when one controls for
the other 13 variables. Also of note, on a variable-by-variable basis, youth are bad for growth
but elderly are good according to their simple correlations, but controlling for all the other
variables, the opposite signs emerge.

The first row labelled “Prior R-square” refers to the prior expected R-squared, with values equal
to “0”, 0.1, 0.5, 1.0 and infinite. The quotations around “0” alert you to the fact that what is
placed in this column is not a shrunken estimate like the ones in the other columns but only the
one-variable-at-a-time regression. To interpret this as a shrunken OLS estimate, it is important
that you ignore the magnitudes and look only at the signs, and think of “0” as “almost zero.”
When the shrinkage is extreme, the estimates all conform in sign with the bivariate correlations.

The estimates as a function of the prior expected R-square are illustrated in Figure 4 with the
univariate regressions at the extreme left indicated by “0” and separated with a vertical line to
make sure you remember that these are not shrinkage estimates in the same family as the other
estimates. Use these to identify the signs when the shrinkage is extreme and to contrast with
the signs of the OLS estimate corresponding to the “infinite” prior R-squared. The labelling in
this figure is ordered by the size of the OLS beta-coefficient, from the largest positive (primary
schooling) to the largest negative (initial per capita GDP).

As the “Prior R-square” decreases, the prior variances get small, which allows less play in the
estimates and more shrinkage toward the origin, something which is very evident in this figure.
The coefficient of initial per capita GDP stands out in this picture with a large negative OLS
estimate that dives toward zero as the vector of estimates is shrunk toward zero. This might be
taken as a reminder that this coefficient and in general the hypothesis of “convergence” is not
well defined, since it depends on the other variables in the equation that identify the initial
conditions, such as population fractions and education levels. If variables were included that
perfectly explained the variability of per capita GDP in 1960, this variable would drop out from
the equation. Referring to the usual growth accounting, the coefficient on initial per capita GDP
could thus be interpreted as the effect of TFP (total factor productivity), meaning the
component of variability that is not explained by all the other variables in the equation. To
pursue this idea, | report in Table 3 a regression explaining the logarithm of initial per capita
GDP with the other 13 variables (including the concurrent war variable), and the residuals from
this equation in Table 4. If this is really TFP, it’s a strange estimate with Trinidad and Tobago
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have the greatest TFP followed by Venezuela and South Africa, and with Taiwan and Korea
among the worst.

This should really raise alarm bells about the difference between simple and partial correlations,
and in particular the fact that the partial correlations depend on the control variables in the
equation. What do those 14 coefficients really represent? Even more so: What could the
coefficients in a 67 variable regression possibly refer to? Is there a sensible hypothetical that
holds sixty six fixed and varies only one???

Figure 4 Estimates of Beta Coefficients: 14 Variable Model
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The expected prior R-square in Figure 4 applies when the prior covariance matrix is proportional
to the identity matrix, with the beta-coefficients independent and identically distributed. Larger
variances (more diffuse priors) are needed to allow the estimates to conform more closely with
the ordinary least squares estimates. Indeed it takes infinite variances to reproduce the OLS
estimates exactly. But | am proposing that an expected R-squared equal to one with the i.i.d.
assumption on the beta-coefficients is as diffuse a prior as we need to entertain. The estimates
with expected R-squared equal to one are all the same signs as OLS estimates and close in
magnitude. Thus this amount of shrinkage does not change individual estimates very much,
though as reported in the last two rows of Table 2 the R-squared has been reduced from 0.537
to 0.436 and the averaged squared coefficient from 0.058 to 0.036.
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The t-values in excess of two in absolute value are shaded in Table 2. In the 14-variable OLS
equation initial per capita GDP, latitude, primary schooling and primary exports all have
statistically significant coefficients. These t-values generally decline as the coefficients are
shrunk toward the origin. Only primary schooling and primary exports maintain their statistical
significance as the coefficients are shrunk closer to zero.

The last three columns report three different sets of s-values. The s-values in excess of one are
shaded. These are the sturdy coefficients. The first column of s-values is built on the broad
range of prior expected R® between 0.1 and 1.0. Only primary schooling has a sturdy coefficient
with this broad set of prior distributions. From this we conclude: The presence of a population
with a high rate of primary school education has a statistically significant and sturdy effect on
predicted economic growth, holding fixed the other 13 variables in the equation. (Does that
mean anything?)

The next two columns split this interval in two, from 0.1 to 0.5, and from 0.5 to 1.0. The sub-
interval with a prior expected R? pessimistically between 0.1 and 0.5 produces s-values reported
in the second column of s-values that are pretty close to the first column of s-values
corresponding with the broad range of priors, while the third column has larger s-values. The
interpretation of this result is that the ambiguity in signs of the coefficients occurs when priors
are allowed that shrink the estimates close to the origin. This seems apparent in Figure 4
because the effect of the prior isn’t that great for expected R? of 0.5 and above, while the
shrinkage is substantial from 0.5 to 0.1.

If one were more optimistic about the collective explanatory power of these 14 variables, and
adopted the lower bound of 0.5 for the expected R-squared, then 10 of the 14 coefficients are
judged to be sturdy. The losers which are fragile even at the 0.5 level are: outward orientation,
higher education, and the two demographic variables (fraction less than 15 and fraction over 65)

Both s-values and t-values grow with the sample size, since more data relieve both sampling
uncertainty and model ambiguity, but in a finite sample, as we have seen, it is possible for these
measures to diverge, but it is also possible that they offer essentially similar information. In this
fourteen variable study, the s-values and t-values are highly correlated, as illustrated in Figure 5
which includes the s-values in the last two columns of Table 2 with the non-overlappping high
and low R? intervals. > Moreover, the scatter of the two s-values reveals they are related
almost perfectly 5:1.

3 (Referring back to Figure 1 a sufficient condition for the s-values and t-values to be proportional to each
other is if the shape of the shaded ellipse of estimates is the same as the shape of a likelihood ellipse and
if the center of this shaded ellipse is on a line from OLS to the origin.)
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Figure 5 s-values and t-values, 14 variable case
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8.2 Invariant s-values, Sixty Seven Explanatory Variables

Table 5 compares the OLS t-values with the invariant s-values calculated with the formula(2) for
three different intervals of the prior expected R? : (0.1,1.0), (0.1,0.5) (0.5, 1.0). The variables
are sorted first within major category and then by t-values, highest to lowest. The first column

reports the t-values, only one of which (investment price) is larger than 2.0 and thus

“statistically significant” at the traditional .05 level.

In other words, sampling uncertainty is

very great unless there is credible prior information that can be added to the information in this

data set. The next column reports the ratio of the z-value to the chi-value that captures the
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data information in the invariant s-value. If dogmatic priors are allowed, that is if the range of
the prior expected R? includes zero, then the ratio z/chi has to exceed one for the sign to be
insensitive to the choice of prior covariance matrix. As shown in the appendix, the ratio z/chi is
less than one except in one highly rare case, but don’t have to be as small as they are. To
decide just how small they are, we need to multiply them with the second factor in (2) which
depends on the number of observations(n=87), the number of explanatory variables (k=67), the
true R? estimated by the adjusted R2 (R?=0.64) and minimum and maximum prior expected R’
The three multipliers are 2.024, 2.402, 10.214 for the three intervals of prior expected R’ :
(0.1,1.0), (0.1,0.5) (0.5, 1.0). To put it another way, the inverse of the multiplier is the critical
level that the ratio Z/Chi must exceed for the sign of the coefficient to be sturdy. The critical
values for the three cases are 0.494, 0.416, 0.098. The widest interval of prior covariance
matrices corresponding to prior expected R* between 0.1 and 1.0 produces no s-values in excess
of one, and thus no sturdy coefficients. This data set is too weak to overcome that amount of
prior ambiguity. When this range is split in two, the lower range (0.1,0.5) also produces no
sturdy coefficients, but the upper range (0.5, 1.0) has 3 sturdy coefficients. One message here
is that the sign ambiguity comes especially from tight ambiguous priors with high shrinkage
rates, and less so from loose ambiguous priors.

8.3 Sixty-Seven Explanatory Variables

Table 6 contains the results for a regression with the full set of 67 variables used by Sala-i-
Martin et. al. (2004) with the range of prior covariance matrix defined by upper and lower
bounds proportional to the identity matrix. The t-values in excess of two in absolute value are
shaded. Except for the simple univariate regressions there are not many of these. For the OLS
estimate, only the price of investment goods is statistically significant.

The outliers among the beta-estimates are highlighted with a box. These are the coefficients for
variables 34 and 35, two ways of measuring the size of government. One coefficient is the huge
negative -3.401 and the other is the huge positive 3.379, almost equal but opposite in sign.

Both are statistically insignificant and they have a correlation of -0.999. This is a symptom of
two variables measuring the same thing, but notice how well the shrinkage has performed in
erasing this abnormality. With the expected prior R* equal to one, the estimates of these two
coefficients are -0.40 and -0.47, essentially the same effect for essentially the same variable. In
this case, Bayesian shrinkage is working nicely. But Bayesian shrinkage doesn’t create
statistically significant coefficients except that it allows the East Asian Dummy to have a t-value
in excess of 2. In other words, there remains a lot of sampling uncertainty here, even when the
data are helped out with an informative prior distribution.

The third from last column in this table reports the s-values from the broadest range of prior
covariances associated with the interval of prior expected R? from 0.1 to 1.0. The s-values in
excess of one would be shaded but there are none; everything is fragile. As we discovered from
the study of the 14 variable model, the s-values reported in the next to last column are about
the same as the s-values reported in the third from last column, none greater than one in
absolute value, while the it is the last column with a restricted set of prior covariance matrices
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with the interval of prior expected R? from 0.5 to 1.0 where there are some sturdy coefficients.
These are the Fraction Confucian, the fraction Buddhist, the East Asian Dummy, the real
exchange rate distortions, the price of investment goods and the primary school enrollment
rate. In other words, there is a lot of model ambiguity here.

There are some important similarities in these results and the 14-variable results. As can be
seen in Figure 7, here as before there is a high degree of correlation between the OLS t-values
and the Bayesian s-values at the 0.1 level. The correlation is substantial but far from one, which
means that s-values are offering information not captured by the t-values. As can be seen in
Figure 8 the narrower interval of priors with a lower bound for the prior expected R? of 0.5
provides s-values that are about three times as large as the wider interval of priors with a lower
bound for the prior expected R? of 0.1, compared with five times in the 14 variable case.

In summary, when we jump from a subset of 14 variables to a full complement of 67 variables,
things have gone from not-so-good to really troubling since the fairly weak data resource has
been spread very thinly over such a large set of parameters that only one regression coefficient
is statistically certain and no coefficient is sturdy. Next we will see what happens if we focus
the data resource on the same 14 variables we have studied separately.

Figure 7 t-values and s-values are correlated, 67 variable case.

Scatter Comparing OLS t-values and s-values (0.5)
Uncertain and Fragile Estimates Shaded

2.0

505 Value

OLS: t-value
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Figure 8 The Two Sturdiness Measures Are Highly Correlated
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8.4 Fourteen Favorites among Sixty Seven Explanatory Variables

In an effort to make these data speak more clearly | will focus the sample energy on a subset of
explanatory variables per the discussion above of favorite variables priors. For my favorites, |
chose one from each category. Table 7, which has the new results, is headed by my 14 favorite
variables.

The reason that the OLS t-values are so low is that the energy of the sample has been dissipated
over 67 parameters. The Bayes t-values show what happens if the data wealth is concentrated
on the fourteen favorite variables. Most of the Bayes t-values are larger in absolute value than
the OLS t-values, but only primary schooling has emerged as statistically significant at traditional
levels.

There are six s-values in excess of one in absolute value in the 67 variable, no-favorite case in
Table 6 and also six in the 67 variable, 15 favorite results in Table 7. These have been
summarized in Table 8 to make comparison easier. The effect of the favoritism has allowed the
favorites, initial per capita GDP, fraction speaking a foreign language, and primary exports to
emerge with sturdy signs, and has allowed a substantial increase in the s-value for primary
schooling, which is sturdy in both cases. The East Asian Dummy and the Investment price are in
both lists, and thus survive even though they are not favorites, while fraction Confucian, fraction
Buddhist, and real exchange rate distortions are no longer sturdy when other variables are
favored.

My bottom line: it’s pretty hard to squeeze something of value from cross-country regressions
with inclusive lists of explanatory variables.

29



Last printed 1 October 2014

9 Concluding Comments

Table 8 compares s-values of my fourteen favorite variables and other coefficients that are
sometimes sturdy for different intervals of prior expected R2 and for three treatments of
favoritism: 67 variables with no favoritism, 14 favorites among the 67, and only the 14 favorite
variables included. The important but not altogether surprising message from this table is that
there is not much to be learned from a study of these data unless you are willing to favor some
of the 67 variables over others. To get ten sturdy coefficients out of fourteen, we need to
include only these 14 variables and also adopt the high expected R? interval. With only 14
variables, only the primary school enrollment rate is sturdy if for the broad class of priors. And
at the extreme left in this table we find no sturdy coefficients with 67 variables and no favorites.
Of these 14 favorite variables, it is primary school enrollment that stands out, with the highest s-
value in every instance, and with an s greater than one in absolute value except in the kitchen-
sink regression reported at the far left.

Though thousands of regressions with growth as the dependent variable have probably been
estimated by economists, the intensive mining of these data was much stimulated by
Barro(1991). My negative conclusions™ about the usefulness of data mining in this setting
contrast with more optimistic conclusions of Sala-i-Martin et. al.(2004, p.833): “In fact, we find
that about one-fifth of the 67 variables used in the analysis can be said to be significantly related
to growth while several more are marginally related. The strongest evidence is found for
primary schooling enrollment, the relative price of investment goods and the initial level of
income where the latter reflects the concept of conditional convergence.” | consider their
approach quite interesting and a worthy competitor to the treatment described in this paper.
Their method is a Bayesian mixture of the all-subsets estimation formed by including and
excluding the 67 variables in all 2% different ways, with a prior on the size of the model that
favors models that are not “too big.” Commenting on the similarities and differences takes too
much space to include in this paper and instead forms a companion paper Leamer(2014): “S-
values and All-Subsets Regressions.” | like mine better, but | like theirs too.™

% For other pessimistic voices see Brock, Durlauf, and West(2003), Brock and Durlauf (2001),
Durlauf(2000), Levine and Renelt (1992), and Rodrik(2012) but a more optimistic view is offered by
Fernandez, Ley and Steel(2001), who like Sala-i-Martin also use Bayesian Model Averaging.

B Foreshawdowing: To study the model ambiguity, Sala-i-Martin et. al.(2004) produce a one-dimensional
set of results as the prior expected model size is varied, which would be analogous to the one dimensional
“ridge trace” when the prior expected R’ is varied. Either one of these traces takes the basic structure of
the prior as given, and makes nt allowance of potential context-dependent changes in variables, e.g. using
sums and differences. In contrast, my model ambiguity ellipsoid, which is a consequence of upper and
lower bounds for the prior covariance matrix, has full k-dimensional volume, a does allow for “local”
reparameterizations.
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The goal of this paper is something that many Bayesians would object to: formulation of a
conventional prior distribution that can be used in many if not all settings. One of the big
messages of the Bayesian approach is that the context matters, and thus conventional priors
need to be strongly discouraged. While | share that opinion, | note that it tells us what not to
do, but not what to do. The Bayesian “what to do” is hopelessly naive — simply describe your
state of mind with a specific probability distribution. No analyst is going to feel honestly
comfortable with that task, and all but the true believers are going to feel extreme discomfort
when the results are described to an incredulous audience. In any case, the proof of the failure
of Bayesian thinking about context-dependent prior distributions is the near complete absence
of any such Bayesian studies.

The tension between knowing for sure what not to do, but having no real idea what to do, can
be relieved with a conventional starting point that is not intended to be the final say, but only a
wisely chosen point to begin the conversation about how the context matters.

As with any tool, there is room for mischief and abuse. |and others'® are greatly concerned with
the unwise use of hypothesis testing at conventional levels of statistical significance'’, and the
confusion of “significant” with “important” when “statistically significant” only means
“measurable”. Conventional measures of model ambiguity could also be misused, but | think
that the conventional measures of model ambiguity proposed here are not so dangerous as the
conventional choices of significance levels for hypothesis testing since at least the s-values are
appropriately sensitive to both the sample size and the number of regression coefficients.
Where nontransparent mischief can surely be done is in the choice of statistical “horizon” — the
set of variables within which estimation and sensitivity analysis are performed.

But the reality is that until we have a cultural understanding about how the context should be
allowed to matter when data are studied, data analysis will combine context-free measures of
statistical uncertainty and (I hope) context-minimal measures of model ambiguity,
supplemented with verbally expressed wisdom offered by analysts who understand the context.
The s-values when there are favorite variables are an important first step in the direction of
context-dependent data analysis.

¢ Leamer(1978, pp.93-98), Kruskal (1978), Ziliak and McCloskey (2008),

7 A critical problem with any fixed level of statistical significance is that Type Il error is
altogether ignored, and as the sample size increases the added information in the data is fully
deployed in reducing the probability of Type Il error. Except for highly unlikely lexicographic
preferences, it is necessary to use the additional information to reduce both error probabilities,
and thus make the level of statistical significance decline with sample size. Thus fixed
conventional significance levels are both arbitrary and mistaken, while a conventional expected
R?is only arbitrary.
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The sturdiness statistics proposed here fit the circumstances in the sense of depending
appropriately on the breadth of alternative models as measured by the number of variables
considered and also in the sense of increasing properly as the sample becomes more
informative and model ambiguity is relieved. These statistics are thus going to raise alarms in
settings with an abundance of variables and weak data, such as a study of the determinants of
long-run economic growth. That’s a good thing. We shouldn’t be pretending that there is a lot
to learn about what makes countries grow from context-free regressions with countless
variables.
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11 Appendix: Properties of the Feasible Ellipsoid

The most extreme special case of Theorem 1, discussed in Leamer and Chamberlain(1976), has
no constraint on the prior variance matrix except that it is positive semi-definiite. This produces
an ellipsoid of feasible estimates which has the same shape as a likelihood ellipse, but located at
the OLS estimate divided by two, passing through both the OLS estimate b and the prior mean 0.

Theorem 2 (Feasible Ellipsoid) The matrix weighted average [A?(V) = (H + V‘l)_lﬂb for any
positive semidefinite matrix V lies in the ellipsoid

(-2 (p-2) <22

and conversely any point in or on this ellipsoid is equal to a Bayes estimate E(V) =

(H + V‘l)_le for some value of V..

Discussion: This set of equally valid estimates is so large that it is practically useless. The good
news is very limited: the only orthant that is not attainable is the orthant opposite the orthant
of the simple correlations, which is demonstrated below.

If this were an accurate description of your state of mind, you might as well not study any data
since no data set is capable of materially relieving your extreme state of ambiguous doubt. To
make some progress, you need to deploy a narrower set of prior covariance matrices.

This extreme ambiguity is a surprising property of matrix weighted averages. If b were a single
parameter, the weighted average would lie between zero and the OLS estimate. For matrix
weighted averages it cannot be as simple as that, but still B , Which is an average of the zero
vector and the OLS vector b, must in some sense lie between the two. One might conjecture
that the orthant of the OLS estimate b would at least be minimally preferred in the sense that ﬁ
and b would necessarily have at least one sign in common. Expressed differently, this
conjecture is that it is impossible for ﬁ and b to lie in opposite orthants. It is surprising that this
is not true, and it is doubly surprising that it is the vector of unconditional covariances, X’y that
actually plays this role. | show below that ﬁ and X’y must have at least one sign in common.

Thus the advice: For determining the signs of the coefficients, be sure to take a look at the
simple correlations.

The results of this section are illustrated in Figure 9 which includes an OLS estimate b in the
positive quadrant. Surrounding the OLS estimate b is a typical likelihood ellipse. The other
shaded ellipse in this figure is the set of all possible compromise estimates mapped out as the
prior covariance matrix V is varied over all symmetric positive semi-definite matrices. The skin of
this ellipse is the set of constrained estimates when some linear combination is set exactly to
zero.
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This shaded “feasible ellipse” covers three quadrants, including the (-,-) quadrant with signs
opposite the OLS b. The quadrant that this feasible ellipse does not intersect is the (-,+)
guadrant. The two small circles on this ellipse are the two constrained estimates when one or
the other coefficient is set to zero. Thus the vector of simple correlations is (+,-), which is the
preferred orthant in the sense that the compromise estimates between b and zero take on all
signs accept the opposite of (+,-).

The vector X’y is the inward normal of this feasible ellipse at the origin, and fi'X'y =0 is the
tangent hyperplane to that inward normal. The picture has a feasible ellipse which includes
values in all orthants but one: the orthant opposite the vector of simple correlations. Note also
that the direction of feasibility (relative sizes of the coefficients) is unlimited in the orthant of
the simple correlations, X'y, but is limited in the other orthants. That is another sense that the
orthant of the simple correlations is special.

Figure 9 The Feasible Ellipse and the Impossible Orthant

RN Feasible Directions in
RN Quadrant of b

Impossible N

- . \

Quadrant of Simple

Correlations
(@] X'y

B'X'y=0

Generally, there is only one excluded orthant — the orthant opposite the orthant of the simple

correlations.

Theorem 3: By varying the prior covariance matrix, the vector of estimates E(V) =

-1
(H +V~1) "Hb can lie in any orthant but one: the orthant opposite the vector of simple

correlations, X’y.
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Proof: The impossibility of the orthant opposite the orthant of the simple correlations is
straightforwardly established by premultiplying the posterior mean B(V) = (H + V‘l)_le =
(H+ V‘l)_lX’y/a2 by the vector of covariances X’y to obtain y'XB(V) = y'X(H +
V‘l)_lX’y/a2 which must be positive because (H+V™) ! is positive definite. At least one of the

elements of this inner product B' X'y must be positive for the sum to be positive which means

at least one of the elements is the product of two numbers with the same sign.

We next show that the feasible ellipsoid covers every orthant except the orthant opposite the

simple regressions X’y. Consider the estimate § = AAs where s is a vector of ones and minus

ones selecting an orthant, and A is a positive diagonal matrix selecting the direction within the
orthant and Ais a scalar that is used to shrink the size of vector. This vector is feasible if

P P

A%s'AHAs — 1s'AHb +b'Hb/4 <b'Hb/ 4
As'AHAs <s'AHb =s'AX'y/ o’

The expression on the left side of this inequality is a positive number that converges to zero as A
converges to zero. Thus this inequality is satisfied for some A if the item on the right is positive.
If s and X’y have at least one element with a common sign, then the positive diagonal matrix A
can have the corresponding element with a large enough value that offsets whatever negatives
might come from the other elements. Thus by choice of A and A, this inequality can be
satisfied for all s but the one with signs all opposite X’y.

The choice of the diagonal positive matrix A doesn’t matter if s and X’y conform in sign, but
otherwise has to be chosen to emphasize the common signs of s and X'y. Thus the corollary:

= -1
Corollary 3.1: The relative magnitudes of the elements of B(V) = (H + V‘l) Hb are
unlimited in the orthant of the simple correlations, X'y, but otherwise the relative magnitudes

A are limited by the inequality s' AX'y =s'Ar = Z:SiAi r,>0.

Note that this condition depends on the simple correlations, X'y, not the partial correlations
(regression coefficients), (X’X)™ X’y, which is yet another reason for interest in these simple
correlations:

Corollary 3.2: The range of the relative magnitudes of the elements of B(V) = (H +

-1
V‘l) Hb depends on the simple correlations r=X"y = Nb, not on the regression estimates b.

Corollary 3.3: The OLS multiple regression and the one-at-a-time simple regressions must
have at least one sign in common.
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This follows from the fact that the inner product of the OLS estimate and the covariance vector
must be positive: b’X’y = y'X(X’X) * X’y >0

11.1 Extreme Bounds Analysis

That concludes the discussion of the orthants (sign patterns). Next we can find the intervals of
estimates of linear combinations of parameters 'B over the feasible ellipsoid. Since we are
trying to determine if a coefficient or linear combination can be bounded away from zero, it is
discouraging that all but one special linear combination has an interval of estimates that
includes both positive and negative values.

First we report a result on the extreme values of linear combinations constrained to the feasible
ellipsoid

Theorem: The linear combination 'S with B constrained to the feasible ellipsoid (f? -

g) H (E - g) < % must lie in the interval

1 1
‘b '"H 1) (b'Hb)\? _ ‘b '"H 1) (b'Hb)\?
1/12 _<(¢ 1/;)( )> sw’ﬁswz +((¢ IZ)( ))

Proof: The problem of finding the extremes of {’x subject to ellipsoidal constraint:
(x - %) ‘A (x - g) < % leads to the Lagrangian derivative: i — 14 (x - %) = 0. From this

vector of equations we can solve for (x - %) = A~14 /2, and can insert this into the ellipsoidal

. ! A1 A .
constraint (x — g) H (x - 5) S - C’4C which allows us to solve for the Lagrange

2 A2
sA-1
multiplier, 12 = 22 Thus the solution is
4
_c LAy cAc \"?
=T 4y ATy
1 1
Y'c c'Ac \2 Y'c  (P'A NPc'Ac)\?
=t A Y| — | =t | ———
V= AT Ty 2~ 4

An s-value (sturdiness measure) is equal to the center of the ambiguity interval divided by half

the length. The s-value corresponding to the feasible ellipsoid per the theorem above is equal
1/2

to the z-statistic Y’b/ (' H™14) /2 for testing 'S = 0, divided by the square root of the chi-

squared statistic (b’ Hb) for testing the multivariate hypothesis that $=0.

P'b _zZy
'TH-1y)1/2(p'Hp)1/2 — 1/2
W H V2B HDYE (2

s-value =
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This is confirmation that sampling uncertainty and model ambiguity can be two sides of the
same coin. To determine if an estimate is adequately certain, compare the z-value with 1.96.
To determine if an estimate is sturdy, compare the z-value with the square root of the chi-
squared for testing £=0.

This has a geometric interpretation. A confidence interval for B, in Figure 9 can be found by
projecting a suitably chosen likelihood ellipse onto the x-axis. The ambiguity interval can be
found by projecting the feasible ellipse onto the x-axis. Because the feasible ellipse and the
likelihood ellipse have exactly the same shape, projections in all directions behave similarly. The
shaded ellipse in Figure 3 describes the set of estimates that are attainable when the prior
variance matrix is bounded from above and from below. This ellipse of estimates does not have
same shape as the likelihood ellipse which raises the possibility that at least sometimes sampling
uncertainty and model ambiguity; sometimes t-values and s-values are not identically ordered.

Next we can confirm that the s-value is less than one for all but one linear combination of
coefficients, in other words, almost all model ambiguity intervals overlap zero.

Corollary: If the linear combination is proportional to the vector of covariances, p = Hb «< X'y
then the interval of feasible estimates extends from zero to the OLS estimate ’b.

1 1
'g—1 ! > 1] , ’ =
(@'H 'y)(b Hb))z is H o ((b Hb)(b Hb))z

!
Proof: For i = Hb the interval of estimates Ipr + ( " > "

=b’Hb+b’Hb:1p_’b+1p_b
2 T 2 2 — 27

Corollary: If the linear combination ¥ is anything other than proportional to the vector of
covariances, then the interval of feasible estimates overlaps zero.

Proof: We need to show that center of the interval of estimates is less that the amount that is
added and subtracted, in other words, (y'b)? < (¥'H14)(b’'Hb), or equivalently,
(@'b)?/(Y'H 1) < (b'Hb). Itis enough to find the maximum of the expression on the left
(the y-statistic for testing 1’8 = 0) and show that it is less than the expression on the right (the
X’-statistic for testing 8 = 0). The maximum is found by setting the vector of derivatives to
zero:

2bb'y 2H 1y

@'b)? YH Y

Confirm that this vector of derivatives is zero when ¥ = Hb, and the xz-statistic in that case
becomes (¥'b)2/(y¥'H 1) = (b'Hb)?/(b'Hb) = (b'Hb).

0 = oln ((W'b)*/(WH W) /0w =
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12 Appendix: Some Implications and non-implications of the
diagonal case

As just discussed, the vector of signs of simple correlations take on special meaning since it is

impossible to devise a shrinkage estimator with all signs opposite these, but any other sign

pattern is attainable with a suitably chosen shrinkage “metric.” If the prior precision matrix is

restricted to be diagonal the vector of simple correlations is even more important. Here is one

reason:

Theorem: If the prior covariance matrix is diagonal, then the compromise estimates closest to
zero are in the orthant of the simple correlations.

This is illustrated in Figure 10. Rather than proving this one, | prove a more general result next.

Figure 10 Compromise Estimates with Diagonal Prior Precision

Quadrant of Partial
Correlations

Quadrant of Simple
Correlations

Theorem: If the prior precision matrix is diagonal, then estimates may not lie in opposite
orthants.

Proof: Suppose, to the contrary, that ﬁ 1 and the orthant opposite |§ 1 are both feasible. Then

there exists positive diagonal matrices such that:

D,B, =N(b—p,)D, = diag{d,,, di, ...y, } > 0
D,, =N(b-§,) D, = diag{d,,.d,,,....d,, } >0
B, =-AB,, A =diag{i,1,,..4 }>0
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Substitute the third line into the second to obtain the two equations:
DB, =Nb—NB,
~D,APB, = Nb + NAB,
Subtract the second from the first:
(D, + D,A)B, = -N(I+A)B,
Then premultiply by (I + A)[Ail to obtain:
Bll(l + A)(Dl + DZA)Bl = _Bll(I + A)N(I T A)Bl

which is a contradiction because the expression to the left of the equal sign is positive because it

is the weighted sum of squares of the elements of B ; while the expression to the right is

negative because the quadratic form involves a positive definite matrix.

Corollary: If the prior precision matrix is diagonal, then the orthant opposite the OLS vector b
is not possible.

Corollary: There can be at most 2"/2 orthants of estimates.
Corollary: In the two dimensional case there can be at most two orthants of estimates.
False k-orthant generalization: There can be at most k different orthants of estimates.

Counterexample available on request. (I had high hopes this would be true.)
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Table 1
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Sala-i-Matin et. al. (2004) variables

Table 1 - Data Description and Sources: SDM(2005)

Rank Variable Description and Source
Average growth rate of GDP hof . hasi ities b d
per capita 1960-1996 Growth of GDP per capita at purchasing power parities between 1960 and 1996. From
Alan Heston et al. (2001).
1 East Asian dummy Dummy for East Asian countries.
2 Primary schooling in 1960 Enrollment rate in primary education in 1960. Barro and Jong-Wha Lee (1993).
3 Investment price . i . i
Average investment price level between 1960 and 1964 on purchasing power parity
basis. From Heston et al. (2001).
4 GDPin 1960 (log) Logarithm of GDP per capita in 1960. From Heston et al. (2001).
Fraction of tropical area . o . .
Proportion of country's land area within geographical tropics. From John L. Gallup et al.
(2001).
6 Population density coastal in L . . .
1960's Coastal (within 100 km of coastline) population per coastal area in 1965. From Gallup et
al. (2001).
Malaria prevalence in 1960's Index of malaria prevalence in 1966. From Gallup et al. (2001).
Life expectancy in 1960 Life expectancy in 1960. Barro and Lee (1993).
Fraction Confucian Fraction of population Confucian. Barro (1999).
10 African dummy Dummy for Sub-Saharan African countries.
11 Latin American dummy Dummy for Latin American countries.
12 Fraction GDP in mining Fraction of GDP in mining. From Robert E. Hall and Charles I. Jones (1999).
13 Spanish colony Dummy variable for former Spanish colonies. Barro (1999).
14  Years open 1950-1994
Number of years economy has been open between 1950 and 1994. From Jeffrey D.
Sachs and Andrew M. Warner (1995).
15 Fraction Muslim Fraction of population Muslim in 1960. Barro (1999).
16  Fraction Buddhist Fraction of population Buddhist in 1960. Barro (1999).
17  Ethnolinguistic
fractionalization Average of five different indices of ethnolinguistic fractionalization which is the
probability of two random people in a country not speaking the same language. From
William Easterly and Ross Levine (1997).
18 Government consumption i . .
share 1960's Share of expenditures on government consumption to GDP in1961. Barro and Lee
(1993).
19 Population density 1960 Population per area in 1960. Barro and Lee (1993).
20  Real exchange rate distortions  pagj exchange rate distortions. Levine and Renelt (1992).
21  Fraction speaking foreign
language Fraction of population speaking foreign language. Hall and Jones(1999).
22 Openness measure 1965-1974 . . . .
Ratio of exports plus imports to GDP, averaged over 1965 to 1974. This variable was
provided by Robert Barro.
23 Political rights Political rights index. From Barro (1999).
24 Government share of GDP in .
1960's Average share government spending to GDP between 1960-1964. From Heston et al.
(2001).
25 Higher education in 1960 Enrollment rates in higher education. Barro and Lee (1993).
26  Fraction population in tropics . . . X
Proportion of country's population living in geographical tropics. From Gallup et al.
(2001).
27  Primary exports 1970
Fraction of primary exports in total exports in 1970. From Sachs and Warner (1997).
28  Public investment share . . .
Average share of expenditures on public investment as fraction of GDP between 1960
and 1965. Barro and Lee (1993).
29  Fraction Protestant

Fraction of population Protestant in 1960. Barro (1999).
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30
31

32

33

34
35
36
37
38
39
40
41
42
43
44
45

46
47

48

49
50
51
52

53
54
55
56

57

58

59
60

61
62
63
64
65
66

67

Fraction Hindu

Fraction population less than
15
Air distance to big cities

Nominal government GDP
share 1960's

Absolute latitude

Fraction Catholic

Fertility in 1960's

European dummy

Outward orientation
Colony dummy

Civil liberties

Revolutions and coups
British colony
Hydrocarbond deposits in 1993
Fraction population over 65

Defense spending share

Population in 1960

Terms of trade growth in
1960's

Public education spending
share in GDP in 1960's
Landlocked country dummy
Religious intensity

Size of economy

Socialist dummy

English-speaking population
Average inflation 1960-1990
Qil-producing country dummy

Population growth rate 1960-
1990
Timing of independence

Fraction of land area near
navigable water
Square of inflation 1960-1990

Fraction spent in war 1960-
1990
Land area

Tropical climate zone

Terms of trade ranking
Capitalism

Fraction Orthodox

War participation 1960-1990

Interior density
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Fraction of the population Hindu in 1960. Barro (1999).

Fraction of population younger than 15 years in 1960. Barro and Lee (1993).

Logarithm of minimal distance (in km) from New York, Rotterdam, or Tokyo. From
Gallup et al. (2001).

Average share of nominal government spending to nominal GDP between 1960 and
1964. Calculated from Heston et al. (2001).

Absolute latitude. Barro (1999).

Fraction of population Catholic in 1960. Barro (1999).

Fertility in 1960's. Barro and Sala-i-Martin (1995).

Dummy for European economies.

Measure of outward orientation. Levine and Renelt (1992).

Dummy for former colony. Barro (1999).

Index of civil liberties index in 1972. Barro (1999).

Number of revolutions and military coups. Barro and Lee (1993).

Dummy for former British colony after 1776. Barro (1999).

Log of hydrocarbond eposits in 1993. From Gallup et al. (2001).

Fraction of population older than 65 years in 1960. Barro and Lee(1993)

Average share public expenditures on defense as fraction of GDP between 1960 and
1965. Barro and Lee (1993).

Population in 1960. Barro (1999).

Growth of terms of trade in the 1960's. Barro and Lee (1993).

Average share public expenditures on education as fraction of GDP between 1960 and
1965. Barro and Lee (1993).

Dummy for landlocked countries.

Religion measure. Barro (1999).

Logarithm of aggregate GDP in 1960.

Dummy for countries under Socialist rule for considerable time during 1950 to 1995.
From Gallup et al. (2001).

Fraction of population speaking English. From Hall and Jones (1999).

Average inflation rate between 1960 and 1990. Levine and Renelt(1992).

Dummy for oil-producing country. Barro (1999).

Average growth rate of population between 1960 and 1990. Barro and Lee (1993).

Timing of national independence measure: 0 if before 1914; 1 if between 1914 and
1945; 2 if between 1946 and 1989; and 3 if after 1989. From Gallup et al. (2001).

Proportion of country's land area within 100 km of ocean or ocean-navigable river. From
Gallup et al. (2001).
Square of average inflation rate between 1960 and 1990.

Fraction of time spent in war between 1960 and 1990. Barro and Lee (1993).
Area in km2. Barro and Lee (1993).

Fraction tropical climate zone. From Gallup et al. (2001).

Barro (1999).

Degree Capitalism index. From Hall and Jones (1999).

Fraction of population Orthodox in 1960. Barro (1999).

Indicator for countries that participated in external war between 1960 and 1990. Barro
and Lee (1993).

Interior (more than 100 km from coastline) population per interior area in 1965. From
Gallup et al. (2001).
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Table 2

10

11

12

13

14

Proposed Reporting Style for a 14 variable Regression

Models Explaining Growth Rates of Real per capita Income from 1960 to 1966: 87 Countries

Data Source: Sala-i-Martin, Doppelhofer and Miller (2004)

Standardized Variables (Unit variance and zero mean)

All Variables Treated the Same

Sorted First by Category and then by OLS t-value
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Prior Expected R-sq "o" 0.1 0.5 1 Infinite "o" 0.1 0.5 1 Infinite  (0.1,1.0) (0.1,0.5) (0.5,1.0)
Category Description b-SIMPLE b-BAYES b-BAYES b-BAYES b_OLS t-SIMPLE  t-BAYES  t-BAYES  t-BAYES  t-OLS s-val s-val s-val
catchup GDP in 1960 (log) 0.318 -0.023 -0.195 -0.283 -0.462 3.09 -0.32 -1.60 -1.99 -2.61 -0.48 -0.48 -2.72
culture Fraction Speaking Foreign Language 0.258 0.092 0.127 0.133 0.145 2.46 1.52 1.54 1.51 1.50 0.67 0.85 3.36
geography Absolute Latitude 0.394 0.105 0.209 0.249 0.314 3.95 1.53 1.90 2.02 2.18 0.67 0.80 3.36
geography Fraction of Land Area Near Navigable Water 0.404 0.113 0.145 0.149 0.155 4.07 1.83 1.70 1.64 1.57 0.76 0.96 3.79
Government | British Colony Dummy 0.076 0.066 0.104 0.108 0.107 0.70 1.11 1.30 1.27 1.17 0.56 0.70 3.06
Government | Government GDP Share 1960s -0.073 -0.048 -0.073 -0.076 -0.079 -0.67 -0.81 -0.94 -0.93 -0.90 -0.42 -0.52 -2.34
Government | Fraction Spent in War 1960-90 -0.135 -0.029 -0.038 -0.041 -0.050 -1.25 -0.50 -0.48 -0.50 -0.57 -0.24 -0.29 -1.22
Government | Outward Orientation 0.030 0.009 -0.008 -0.017 -0.032 0.28 0.16 -0.10 -0.20 -0.36 -0.03 0.01 -0.38
resources Primary Schooling in 1960 0.574 0.201 0.365 0.424 0.525 6.47 3.03 3.61 3.81 4.14 1.34 1.62 6.89
resources Primary Exports 1970 -0.491 -0.157 -0.271 -0.302 -0.342 -5.19 -2.34 =2.63 -2.65 -2.61 -0.96 =1.19 -4.81
resources Oil Producing Country Dummy -0.019 0.017 0.055 0.072 0.102 -0.18 0.28 0.70 0.86 1.14 0.29 0.30 1.94
resources Higher Education 1960 0.308 0.034 0.035 0.045 0.082 2.98 0.51 0.34 0.40 0.62 0.16 0.19 0.66
resources Fraction Population Less than 15 -0.228 0.024 0.082 0.099 0.122 -2.16 0.34 0.63 0.62 0.53 0.17 0.21 0.82
resources Fraction Population Over 65 0.234 -0.025 -0.085 -0.098 -0.102 2.22 -0.35 -0.65 -0.62 -0.44 -0.17 -0.22 -0.83

R-squared 0.210 0.378 0.436 0.537

Mean Squared Coefficient 0.008 0.026 0.036 0.058
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Table 3 Regression of Initial Per Capita GDP on 13 Explanatory Variables

Dependent Variable: Log of Real GDP per Capita, 1960

Standardized Variables

Included observations: 87

Variable

Fraction Speaking Foreign Language

Absolute Latitude

Fraction of Land Area Near Navigable Water

British Colony Dummy
Government GDP Share 1960s
Fraction Spent in War 1960-90
Outward Orientation

Primary Schooling in 1960
Primary Exports 1970

Oil Producing Country Dummy
Higher Education 1960
Fraction Population Less than 15
Fraction Population Over 65
Constant

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic

Prob(F-statistic)

Coefficient

0.151
0.068
0.081
-0.008
-0.028
-0.075
-0.021
0.234
0.042
0.071
0.345
-0.126
0.241
0.000

0.795
0.759
0.494
17.8
-54.5
21.8
0

Std. Error

0.062
0.095
0.064
0.061
0.058
0.058
0.059
0.079
0.087
0.058
0.078
0.151
0.150
0.053

t-Statistic

2.45
0.71
1.25

-0.14

-0.48

-1.29

-0.36
2.95
0.48
1.21
4.44

-0.84
1.61
0.00

Mean dependent var

S.D. dependent var

Akaike info criterion

Schwarz criterion

Hannan-Quinn criter.
Durbin-Watson stat

Prob.

0.02
0.48
0.21
0.89
0.63
0.20
0.72
0.00
0.63
0.23
0.00
0.41
0.11

1

2.04E-17
1.01
1.57
1.97
1.73
2.03
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Table 4 Extreme TFP estimates

Top Ten and Bottom Ten of Residuals from Regression in Table 3

Actual Residual
Actual Rank Residual  Rank
Trinidad & Tobago 1.47 11 1.65 1
Venezuela 1.60 8 1.10 2
South Africa 0.40 26 0.81 3
Papua New Guinea -0.25 46 0.71 4
Mexico 0.69 24 0.69 5
Finland 1.40 14 0.64 6
Guatemala 0.09 36 0.64 7
Australia 1.84 2 0.60 8
Zambia -0.53 59 0.55 9
Senegal -0.43 56 0.50 10
Taiwan -0.23 45 -0.46 78
Tanzania -1.78 85 -0.60 79
Korea -0.60 62 -0.66 80
Togo -1.62 84 -0.69 81
Malawi -1.58 83 -0.73 82
Egypt -0.72 65 -0.75 83
Philippines -0.34 52 -0.78 84
Portugal 0.22 30 -0.81 85
Indonesia -0.99 73 -0.88 86
Lesotho -1.80 86 -1.41 87
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Table 5 Invariant s-values: 67 variable model
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s-values
Category Description t-OLS  Z/CHI (0.1,1.0) (0.1,0.5) (0.5,1.0)
catchup GDP in 1960 (log) -0.78 -0.0528 -0.11 -0.13 -0.54
culture Fraction Confucian 1.33 0.0902 0.18 0.22 0.92
culture Fraction Buddhist 1.13 0.0762 0.15 0.18 0.78
culture Fraction Muslim 0.97 0.0659 0.13 0.16 0.67
culture Fraction Speaking Foreign Language 0.95 0.0640 0.13 0.15 0.65
culture English Speaking Population 0.87 0.0592 0.12 0.14 0.60
culture Fraction Protestants 0.7 0.0477 0.10 0.11 0.49
culture European Dummy 0.51 0.0345 0.07 0.08 0.35
culture Fertility in 1960s -0.43 -0.0294 -0.06 -0.07 -0.30
culture Spanish Colony 0.42 0.0286 0.06 0.07 0.29
culture Ethnolinguistic Fractionalization 0.32  0.0217 0.04 0.05 0.22
culture Fraction Catholic 0.31  0.0211 0.04 0.05 0.22
culture Fraction Othodox 0.3 0.0202 0.04 0.05 0.21
culture Religion Measure 0.12 0.0080 0.02 0.02 0.08
culture Fraction Hindus 0.12  0.0079 0.02 0.02 0.08
geography Absolute Latitude -1.18 -0.0799 -0.16 -0.19 -0.82
geography Fraction of Tropical Area -1.06 -0.0716 -0.14 -0.17 -0.73
geography Fraction GDP in Mining 0.97 0.0657 0.13 0.16 0.67
geography African Dummy -0.89 -0.0599 -0.12 -0.14 -0.61
geography Latin American Dummy -0.72  -0.0486 -0.10 -0.12 -0.50
geography Fraction Population In Tropics -0.52 -0.0351 -0.07 -0.08 -0.36
geography Tropical Climate Zone -0.49 -0.0335 -0.07 -0.08 -0.34
geography Land Area -0.4 -0.0269 -0.05 -0.06 -0.27
geography East Asian Dummy 0.39 0.0262 0.05 0.06 0.27
geography Fraction of Land Area Near Navigable Water -0.33  -0.0226 -0.05 -0.05 -0.23
geography Landlocked Country Dummy 0.21  0.0142 0.03 0.03 0.15
geography Population Density Coastal in 1960s 0.19 0.0130 0.03 0.03 0.13
geography Air Distance to Big Cities -0.18 -0.0122 -0.02 -0.03 -0.12
Government  Public Investment Share -1.77  -0.1197 -0.24 -0.29 -1.22
Government  Revolutions and Coups -1.29 -0.0872 -0.18 -0.21 -0.89
Government  Capitalism -1 -0.0678 -0.14 -0.16 -0.69
Government  Defense Spending Share 0.99 0.0671 0.14 0.16 0.69
Government  Public Education Spending Share in GDP in 1960s 0.99 0.0667 0.13 0.16 0.68
Government  Government Share of GDP in 1960s -0.99 -0.0672 -0.14 -0.16 -0.69
Government  Gov. Consumption Share 1960s 0.95 0.0640 0.13 0.15 0.65
Government  Timing of Independence -0.6  -0.0406 -0.08 -0.10 -0.41
Government  Square of Inflation 1960-90 0.57 0.0384 0.08 0.09 0.39
Government  Years Open 1950-94 -0.55 -0.0375 -0.08 -0.09 -0.38
Government  Nominal Govertnment GDP Share 1960s -0.52  -0.0355 -0.07 -0.09 -0.36
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Government  Real Exchange Rate Distortions 0.52  0.0349 0.07 0.08 0.36
Government  Average Inflation 1960-90 0.4 0.0271 0.05 0.07 0.28
Government  Political Rights -0.39 -0.0264 -0.05 -0.06 -0.27
Government  War Particpation 1960-90 -0.38 -0.0254 -0.05 -0.06 -0.26
Government  Socialist Dummy 0.09 0.0060 0.01 0.01 0.06
Government  Fraction Spent in War 1960-90 -0.08 -0.0052 -0.01 -0.01 -0.05
Government  Colony Dummy 0.05 0.0034 0.01 0.01 0.03
Government  British Colony Dummy 0.04  0.0029 0.01 0.01 0.03
Government  Civil Liberties -0.02 -0.0014 0.00 0.00 -0.01
Government  Openess measure 1965-74 0.02 0.0012 0.00 0.00 0.01
Government  Outward Orientation -0.01 -0.0010 0.00 0.00 -0.01
resources Investment Price -2.48 -0.1680 -0.34 -0.40 -1.72
resources Primary Schooling in 1960 1.47 0.0993 0.20 0.24 1.01
resources Fraction Population Less than 15 0.96  0.0651 0.13 0.16 0.67
resources Population in 1960 0.96 0.0649 0.13 0.16 0.66
resources Size of Economy -0.72  -0.0484 -0.10 -0.12 -0.49
resources Malaria Prevalence in 1960s 0.71  0.0481 0.10 0.12 0.49
resources Higher Education 1960 -0.66  -0.0445 -0.09 -0.11 -0.45
resources Fraction Population Over 65 0.57 0.0387 0.08 0.09 0.40
resources Life Expectancy in 1960 -0.52 -0.0353 -0.07 -0.08 -0.36
resources Primary Exports 1970 -0.47 -0.0320 -0.06 -0.08 -0.33
resources Hydrocarbon Deposits in 1993 0.35 0.0239 0.05 0.06 0.24
resources Population Growth Rate 1960-90 -0.3 -0.0201 -0.04 -0.05 -0.21
resources Population Density 1960 0.26 0.0175 0.04 0.04 0.18
resources Oil Producing Country Dummy 0.25 0.0172 0.03 0.04 0.18
resources Terms of Trade Ranking -0.21  -0.0142 -0.03 -0.03 -0.15
resources Terms of Trade Growth in 1960s -0.19 -0.0131 -0.03 -0.03 -0.13
resources Interior Density 0.05 0.0030 0.01 0.01 0.03
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Table 6 Regression on 67 Variables, No Favorites
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Models Explaining Growth Rates of Real per capita Income from 1960 to 1966: 87 Countries

Data Source: Sala-i-Martin, Doppelhofer and Miller (2004)

Standardized Variables (Unit variance and zero mean)
All Variables Treated the Same
Sorted First by Category and then by OLS t-value

Prior Expected R-sq 0 0.1 0.5 1 Infinite 0 0.1 0.5 1 Infinite (0.1, 1.0) (0.1,0.5) (0.5,1.0)
Category Description b-SIMPLE  b-BAYES b-BAYES b-BAYES b_OLS | t-SIMPLE t-BAYES t-BAYES t-BAYES t-OLS s-val s-val s-val
catchup GDP in 1960 (log) 0.318 -0.01 -0.073 -0.121  -0.329 3.09 -0.28 -0.95 -1.18 -0.78 -0.17 -0.18 -0.77
culture Fraction Confucian 0.474 0.068 0.115 0.131 0.276 4.96 1.99 1.84 1.71 1.33 0.37 0.50 1.48
culture Fraction Buddhist 0.445 0.063 0.1 0.111 0.337 4.58 1.82 1.60 1.41 1.13 0.31 0.44 1.21
culture Fraction Muslim 0.012 0.012 0.023 0.032 0.253 0.11 0.35 0.35 0.38 0.97 0.07 0.09 0.28
culture Fraction Speaking Foreign Language 0.258 0.029 0.055 0.074 0.2 2.46 0.84 0.83 0.88 0.95 0.17 0.21 0.67
culture English Speaking Population 0.065 -0.014 -0.021 -0.011 0.146 0.60 -0.40 -0.33 -0.14 0.87 -0.04 -0.09 -0.18
culture Fraction Protestants 0.086 -0.024 -0.051 -0.056 0.348 0.80 -0.67 -0.76 -0.64 0.70 -0.13 -0.19 -0.53
culture European Dummy 0.256 0 0.011 0.03 0.412 2.44 0.00 0.14 0.28 0.51 0.04 0.02 0.15
culture Fertility in 1960s -0.435 -0.018 -0.022 -0.028 -0.259 -4.46 -0.49 -0.28 -0.26 -0.43 -0.06 -0.08 -0.18
culture Spanish Colony -0.109 -0.02 -0.042 -0.048 0.159 -1.01 -0.56 -0.59 -0.52 0.42 -0.10 -0.14 -0.40
culture Ethnolinguistic Fractionalization -0.431 -0.033 -0.049 -0.054 0.073 -4.40 -0.91 -0.72 -0.61 0.32 -0.14 -0.20 -0.51
culture Fraction Catholic 0.051 -0.009 -0.021 -0.031 0.195 0.47 -0.26 -0.28 -0.31 0.31 -0.06 -0.07 -0.21
culture Fraction Othodox 0.069 0.011 0.022 0.024 0.036 0.64 0.34 0.38 0.35 0.30 0.08 0.10 0.34
culture Religion Measure -0.202 -0.019 -0.007 0.003 0.018 -1.90 -0.56 -0.12 0.04 0.12 -0.03 -0.07 -0.03
culture Fraction Hindus 0.061 0.013 0.015 0.01 0.026 0.57 0.37 0.24 0.13 0.12 0.04 0.07 0.14
geography Absolute Latitude 0.394 0.018 0.017 0.009 -0.629 3.95 0.50 0.22 0.09 -1.18 0.04 0.07 0.10
geography Fraction of Tropical Area -0.429 -0.034 -0.058 -0.071  -0.517 -4.38 -0.94 -0.78 -0.70 -1.06 -0.14 -0.20 -0.51
geography Fraction GDP in Mining -0.051 0.023 0.069 0.092 0.191 -0.47 0.65 1.09 1.16 0.97 0.20 0.24 0.92
geography African Dummy -0.571 -0.05 -0.082 -0.101 -0.362 -6.42 -1.38 -1.09 -1.00 -0.89 -0.20 -0.29 -0.73
geography Latin American Dummy -0.115 -0.022 -0.043 -0.051 -0.541 -1.07 -0.62 -0.58 -0.51 -0.72 -0.10 -0.14 -0.37
geography Fraction Population In Tropics -0.575 -0.044 -0.054 -0.051 -0.191 -6.47 -1.22 -0.73 -0.52 -0.52 -0.13 -0.22 -0.44
geography Tropical Climate Zone -0.242 -0.019 -0.032 -0.037  -0.085 -2.30 -0.55 -0.49 -0.46 -0.49 -0.10 -0.13 -0.39
geography Land Area -0.011 -0.008 -0.015 -0.018 -0.158 -0.10 -0.24 -0.22 -0.21 -0.40 -0.04 -0.06 -0.16
geography East Asian Dummy 0.53 0.079 0.131 0.149 0.128 5.77 2.26 1.93 1.68 0.39 0.35 0.51 1.33

Fraction of Land Area Near Navigable
geography Water 0.404 0.019 0.004 -0.005 -0.11 4.07 0.53 0.06 -0.05 -0.33 0.02 0.05 0.00
geography Landlocked Country Dummy -0.234 -0.009 -0.011 -0.019 0.039 -2.22 -0.26 -0.18 -0.25 0.21 -0.05 -0.05 -0.18
geography Population Density Coastal in 1960s 0.427 0.048 0.05 0.04 0.067 4.36 1.37 0.76 0.47 0.19 0.14 0.25 0.45
geography Air Distance to Big Cities -0.345 -0.008 0.006 0.01 -0.051 -3.38 -0.22 0.08 0.11 -0.18 0.00 -0.01 0.07
Government Public Investment Share 0.05 -0.001 -0.046 -0.082 -0.254 0.47 -0.02 -0.76 -1.13 -1.77 -0.16 -0.13 -0.85
Government Revolutions and Coups -0.215 -0.019 -0.047 -0.068 -0.248 -2.03 -0.54 -0.75 -0.88 -1.29 -0.16 -0.18 -0.70
Government Capitalism 0.255 0.016 0.011 0.002 -0.171 2.43 0.47 0.19 0.02 -1.00 0.03 0.08 0.08
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Government Defense Spending Share 0.277 0.024 0.025 0.019 1.152 2.66 0.68 0.39 0.23 0.99 0.07 0.13 0.24

Public Education Spending Share in GDP in
Government 1960s 0.242 0.018 0.04 0.053 0.47 2.30 0.53 0.64 0.68 0.99 0.13 0.16 0.55
Government Government Share of GDP in 1960s -0.34 -0.033 -0.042 -0.040 -3.401 -3.33 -0.93 -0.59 -0.43 -0.99 -0.10 -0.17 -0.35
Government Gov. Consumption Share 1960s -0.446 -0.041 -0.051 -0.047 3.379 -4.60 -1.15 -0.71 -0.48 0.95 -0.12 -0.21 -0.40
Government Timing of Independence -0.166 0.008 0.02 0.017 -0.194 -1.55 0.24 0.29 0.19 -0.60 0.04 0.07 0.18
Government Square of Inflation 1960-90 -0.06 -0.002 0.008 0.017 0.232 -0.56 -0.07 0.12 0.18 0.57 0.02 0.01 0.11
Government Years Open 1950-94 0.619 0.055 0.082 0.084  -0.188 7.26 1.53 1.14 0.91 -0.55 0.21 0.31 0.75
Government Nominal Govertnment GDP Share 1960s -0.073 -0.018 -0.051 -0.072 -0.118 -0.67 -0.51 -0.78 -0.87 -0.52 -0.15 -0.18 -0.65
Government Real Exchange Rate Distortions -0.515 -0.055 -0.087 -0.093 0.099 -5.54 -1.56 -1.34 -1.16 0.52 -0.26 -0.37 -1.02
Government Average Inflation 1960-90 -0.096 -0.005 0.007 0.018 0.156 -0.89 -0.14 0.10 0.19 0.40 0.02 0.00 0.11
Government Political Rights -0.408 -0.019 -0.03 -0.039 -0.122 -4.12 -0.53 -0.41 -0.40 -0.39 -0.08 -0.11 -0.30
Government War Particpation 1960-90 -0.131 -0.011 -0.022 -0.027 -0.06 -1.22 -0.31 -0.35 -0.35 -0.38 -0.07 -0.09 -0.29
Government Socialist Dummy -0.097 0.005 0.024 0.032 0.013 -0.90 0.15 0.40 0.45 0.09 0.07 0.09 0.39
Government Fraction Spent in War 1960-90 -0.135 -0.01 -0.005 0.004  -0.015 -1.25 -0.29 -0.08 0.05 -0.08 -0.01 -0.04 -0.01
Government Colony Dummy -0.357 -0.026 -0.048 -0.061 0.016 -3.52 -0.74 -0.68 -0.66 0.05 -0.13 -0.17 -0.49
Government British Colony Dummy 0.076 0.02 0.046 0.061 0.009 0.70 0.59 0.73 0.76 0.04 0.14 0.18 0.60
Government Civil Liberties 0.221 -0.015 -0.061 -0.085 -0.006 2.09 -0.43 -0.90 -0.98 -0.02 -0.16 -0.19 -0.73
Government Openess measure 1965-74 0.265 0.036 0.055 0.062 0.007 2.53 1.03 0.80 0.69 0.02 0.15 0.22 0.54
Government Outward Orientation 0.03 -0.003 -0.025 -0.035 -0.003 0.28 -0.09 -0.42 -0.49 -0.01 -0.08 -0.08 -0.41
resources Investment Price -0.444 -0.063 -0.128 -0.16 -0.383 -4.57 -1.83 -2.14 -2.23 -2.48 -0.44 -0.55 -1.97
resources Primary Schooling in 1960 0.574 0.057 0.116 0.149 0.457 6.47 1.59 1.63 1.62 1.47 0.31 0.40 1.22
resources Fraction Population Less than 15 -0.228 0.01 0.035 0.047 0.584 -2.16 0.27 0.45 0.45 0.96 0.07 0.09 0.31
resources Population in 1960 0.14 0.021 0.052 0.07 0.214 1.30 0.60 0.83 0.89 0.96 0.16 0.20 0.70
resources Size of Economy 0.33 0.009 -0.01 -0.029 -0.393 3.22 0.25 -0.14 -0.28 -0.72 -0.03 0.00 -0.15
resources Malaria Prevalence in 1960s -0.557 -0.047 -0.06 -0.052 0.222 -6.18 -1.29 -0.82 -0.55 0.71 -0.14 -0.24 -0.49
resources Higher Education 1960 0.308 0 -0.03 -0.047 -0.156 2.98 0.01 -0.42 -0.52 -0.66 -0.07 -0.07 -0.36
resources Fraction Population Over 65 0.234 -0.004 0 0.015 0.253 2.22 -0.12 0.01 0.15 0.57 0.01 -0.01 0.06
resources Life Expectancy in 1960 0.548 0.038 0.068 0.086 -0.236 6.03 1.02 0.87 0.82 -0.52 0.16 0.22 0.58
resources Primary Exports 1970 -0.491 -0.033 -0.039 -0.039 -0.125 -5.19 -0.91 -0.55 -0.41 -0.47 -0.10 -0.16 -0.35
resources Hydrocarbon Deposits in 1993 0.07 0.006 0.027 0.04 0.063 0.65 0.18 0.44 0.53 0.35 0.09 0.09 0.42
resources Population Growth Rate 1960-90 -0.371 -0.008 0.006 0.017 -0.143 -3.68 -0.21 0.07 0.17 -0.30 0.01 0.00 0.09
resources Population Density 1960 -0.115 0.01 0.05 0.068 0.051 -1.07 0.29 0.79 0.88 0.26 0.14 0.16 0.69
resources Oil Producing Country Dummy -0.019 0.006 0.012 0.012 0.055 -0.18 0.17 0.18 0.15 0.25 0.03 0.05 0.13
resources Terms of Trade Ranking 0.066 -0.015 -0.017 -0.015 -0.056 0.61 -0.43 -0.24 -0.17 -0.21 -0.05 -0.08 -0.15
resources Terms of Trade Growth in 1960s 0.013 0.004 0.013 0.021 -0.044 0.12 0.11 0.20 0.26 -0.19 0.04 0.04 0.18
resources Interior Density 0.121 -0.006 -0.012 -0.007 0.007 1.12 -0.17 -0.20 -0.10 0.05 -0.03 -0.05 -0.12

R-squared 0.3531 0.6239 0.707 0.92

Mean Squared Coefficient 0.0008 0.0026 0.004 0.4194
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Table 7 Regression on 67 Variables, 14 Favorites
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Models Explaining Growth Rates of Real per capita Income from 1960 to 1966: 87 Countries
Data Source: Sala-i-Martin, Doppelhofer and Miller (2004)

Standardized Variables (Unit variance and zero mean)

First 14 Favorite Variables

Sorted First by Category and then by OLS t-value

Prior R-sq 0 (0.4,0.1) (0.8,0.2) Infinite 0 (0.4,0.1) (0.8,0.2) Infinite
Category Description b-SIMPLE b-BAYES  b-BAYES b_OLS | t-SIMPLE t-BAYES t-BAYES t-OLS s-value
catchup GDP in 1960 (log) 0.318 -0.201 -0.274  -0.329 3.091 -1.773 -1.989 -0.78 | -1.416
culture Fraction Speaking Foreign Language 0.258 0.123 0.133 0.2 2.457 1.575 1.478 0.946 1.338
geography Absolute Latitude 0.394 0.128 0.12 -0.629 3.948 1.213 0.933 -1.181 0.794
geography Fraction of Land Area Near Navigable Water 0.404 0.048 0.021 -0.11 4.075 0.57 0.216  -0.334 0.304
Government Nominal Government GDP Share 1960s -0.073 -0.083 -0.098 -0.118 -0.672 -1.107 -1.128 -0.524 -0.976
Government Fraction Spent in War 1960-90 -0.135 -0.022 -0.014  -0.015 -1.254 -0.309 -0.182  -0.076 | -0.249
Government British Colony Dummy 0.076 0.073 0.071 0.009 0.702 0.983 0.838 0.043 0.839
Government Outward Orientation 0.03 -0.041 -0.055 -0.003 0.278 -0.587 -0.732 -0.014 -0.74
resources Primary Schooling in 1960 0.574 0.31 0.338 0.457 6.466 3.352 3.165 1.468 2.822
resources Fraction Population Less than 15 -0.228 0.084 0.105 0.584 -2.156 0.704 0.697 0.963 0.478
resources Higher Education 1960 0.308 -0.014 -0.028 -0.156 2.981 -0.15 -0.259 -0.658 -0.178
resources Fraction Population Over 65 0.234 -0.015 0.028 0.253 2.223 -0.124 0.189 0.572 0.035
resources Primary Exports 1970 -0.491 -0.155 -0.137 -0.125 -5.193 -1.633 -1.236 -0.472 -1.194
resources Oil Producing Country Dummy -0.019 0.04 0.044 0.055 -0.179 0.539 0.518 0.255 0.481
culture Fraction Confucian 0.474 0.056 0.074 0.276 4.957 1.437 1.447 1.332 0.911
culture Fraction Buddhist 0.445 0.059 0.075 0.337 4.578 1.552 1.506 1.126 0.972
culture Fraction Muslim 0.012 0.021 0.031 0.253 0.108 0.53 0.581 0.974 0.34
culture English Speaking Population 0.065 -0.008 -0.005 0.146 0.598 -0.199 -0.101 0.875 -0.09
culture Fraction Protestants 0.086 -0.019 -0.025 0.348 0.799 -0.473 -0.467 0.704 -0.287
culture European Dummy 0.256 0.004 0.009 0.412 2.442 0.087 0.154 0.509 0.073
culture Fertility in 1960s -0.435 -0.015 -0.023 -0.259 -4.457 -0.362 -0.382  -0.435 | -0.214
culture Spanish Colony -0.109 -0.025 -0.032 0.159 -1.009 -0.629 -0.589 0.422 | -0.364
culture Ethnolinguistic Fractionalization -0.431 -0.019 -0.026 0.073 -4.398 -0.482 -0.487 0.321 -0.294
culture Fraction Catholic 0.051 -0.024 -0.034 0.195 0.467 -0.593 -0.611 0.312 | -0.357
culture Fraction Othodox 0.069 0.016 0.02 0.036 0.642 0.437 0.424 0.298 0.284
culture Religion Measure -0.202 -0.023 -0.025 0.018 -1.899 -0.61 -0.496 0.118 | -0.346
culture Fraction Hindus 0.061 0.012 0.015 0.026 0.565 0.324 0.287 0.117 0.191
geography Fraction of Tropical Area -0.429 -0.025 -0.033 -0.517 -4.378 -0.605 -0.573 -1.058 -0.339
geography Fraction GDP in Mining -0.051 0.03 0.048 0.191 -0.473 0.779 0.939 0.971 0.549
geography African Dummy -0.571 -0.038 -0.051 -0.362 -6.419 -0.922 -091 -0.885 | -0.538
geography Latin American Dummy -0.115 -0.033 -0.043 -0.541 -1.072 -0.82 -0.775 -0.718 -0.466
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geography Fraction Population In Tropics -0.575 -0.028 -0.033 -0.191 -6.473 -0.689 -0.587 -0.519 -0.371
geography Tropical Climate Zone -0.242 -0.002 -0.001 -0.085 -2.301 -0.04 -0.025 -0.495 -0.02
geography Land Area -0.011 -0.002 -0.002 -0.158 -0.099 -0.062 -0.04 -0.398 -0.03
geography East Asian Dummy 0.53 0.079 0.104 0.128 5.768 1.991 1.952 0.387 1.194
geography Landlocked Country Dummy -0.234 -0.008 -0.015 0.039 -2.218 -0.209 -0.302 0.21 -0.165
geography Population Density Coastal in 1960s 0.427 0.037 0.044 0.067 4.359 0.949 0.846 0.192 0.547
geography Air Distance to Big Cities -0.345 -0.007 -0.009 -0.051 -3.385 -0.163 -0.171 -0.181 -0.1
Government Public Investment Share 0.05 -0.005 -0.018 -0.254 0.466 -0.125 -0.366 -1.77 -0.169
Government Revolutions and Coups -0.215 -0.015 -0.023 -0.248 -2.032 -0.379 -0.465 -1.289 -0.273
Government Capitalism 0.255 0.013 0.014 -0.171 2.43 0.341 0.278 -1.001 0.196
Government Defense Spending Share 0.277 0.017 0.018 1.152 2.661 0.428 0.348 0.992 0.234
Government Public Education Spending Share in GDP in 1960s 0.242 0.013 0.02 0.47 2.302 0.341 0.392 0.985 0.234
Government Government Share of GDP in 1960s -0.34 -0.019 -0.021 -3.401 -3.335 -0.477 -0.383 -0.993 -0.254
Government Gov. Consumption Share 1960s -0.446 -0.025 -0.027 3.379 -4.599 -0.617 -0.496 0.946 -0.327
Government Timing of Independence -0.166 0.011 0.013 -0.194 -1.549 0.271 0.246 -0.6 0.155
Government Square of Inflation 1960-90 -0.06 -0.002 0.004 0.232 -0.558 -0.042 0.074 0.568 0.015
Government Years Open 1950-94 0.619 0.049 0.061 -0.188 7.257 1.222 1.121 -0.554 0.7
Government Real Exchange Rate Distortions -0.515 -0.051 -0.067 0.099 -5.541 -1.306 -1.285 0.516 -0.806
Government Average Inflation 1960-90 -0.096 -0.008 -0.005 0.156 -0.892 -0.194 -0.09 0.401 -0.082
Government Political Rights -0.408 -0.013 -0.021 -0.122 -4.123 -0.31 -0.372  -0.391 | -0.205
Government War Particpation 1960-90 -0.131 -0.015 -0.023 -0.06 -1.221 -0.392 -0.455 -0.376 | -0.269
Government Socialist Dummy -0.097 0.009 0.014 0.013 -0.903 0.234 0.28 0.089 0.169
Government Colony Dummy -0.357 -0.03 -0.041 0.016 -3.521 -0.75 -0.737 0.05 -0.445
Government Civil Liberties 0.221 -0.018 -0.027 -0.006 2.09 -0.46 -0.509 -0.021 -0.298
Government Openess measure 1965-74 0.265 0.032 0.042 0.007 2.533 0.822 0.799 0.018 0.492
resources Investment Price -0.444 -0.067 -0.097 -0.383 -4.572 -1.776 -1.991 -2.483 -1.241
resources Population in 1960 0.14 0.013 0.017 0.214 1.303 0.328 0.343 0.959 0.212
resources Size of Economy 0.33 0 -0.003 -0.393 3.222 0.011 -0.059 -0.716 -0.017
resources Malaria Prevalence in 1960s -0.557 -0.03 -0.035 0.222 -6.181 -0.733 -0.633 0.71 -0.4
resources Life Expectancy in 1960 0.548 0.022 0.031 -0.236 6.033 0.51 0.524 -0.521 0.299
resources Hydrocarbon Deposits in 1993 0.07 0.017 0.029 0.063 0.648 0.431 0.576 0.354 0.327
resources Population Growth Rate 1960-90 -0.371 -0.007 -0.008 -0.143 -3.679 -0.173 -0.139 -0.297 -0.089
resources Population Density 1960 -0.115 0.03 0.05 0.051 -1.07 0.78 1 0.259 0.575
resources Terms of Trade Ranking 0.066 -0.016 -0.016 -0.056 0.611 -0.389 -0.296 -0.21 -0.204
resources Terms of Trade Growth in 1960s 0.013 -0.008 -0.014 -0.044 0.123 -0.203 -0.257 -0.194 -0.143
resources Interior Density 0.121 -0.003 -0.003 0.007 1.121 -0.075 -0.054 0.045 -0.041

R-squared 0.512 0.611 0.920

Mean Squared Coefficient, favorites 0.0156 0.0195 0.0877

Mean Squared Coefficient, others 0.0008 0.0014 0.5071
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Table 8 Summary table: s-values of the Favorites
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s-values of the favorites at the 0.50 level: Three Approaches
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# of Explanatory Variables 67 67 67 14 14
Favoritism No Fav | No Fav | 14 Fav

Lower R-square 0.1 0.5 0.5 0.1 0.5
Upper R-square 1 1 1 1 1
FAVORITE VARIABLES

catchup GDP in 1960 (log) -0.17 -0.77 -1.42 | -0.48 | -2.72
culture Fraction Speaking Foreign Language 0.17 0.67 134 | 0.67 | 3.36
geography Absolute Latitude 0.04 0.10 0.79 | 0.67 | 3.36
geography Fraction of Land Area Near Navigable Water 0.02 0.00 030 | 0.76 | 3.79
Government Nominal Government GDP Share 1960s -0.15 -0.65 -0.98 | -0.42 | -2.34
Government Fraction Spent in War 1960-90 -0.01 0.00 -0.25 | -0.24 | -1.22
Government British Colony Dummy 0.14 0.60 0.84 | 0.56 | 3.06
Government Outward Orientation -0.08 -0.41 -0.74 | -0.03 | -0.38
resources Primary Schooling in 1960 0.31 1.22 2.82 | 134 | 6.89
resources Fraction Population Less than 15 0.07 0.31 0.48 | 0.17 | 0.82
resources Higher Education 1960 -0.07 -0.36 -0.18 | 0.16 | 0.66
resources Fraction Population Over 65 0.01 0.06 0.04 | -0.17 | -0.83
resources Primary Exports 1970 -0.10 -0.35 -1.19 | -0.96 | -4.81
resources Oil Producing Country Dummy 0.03 0.13 048 | 0.29 | 1.94
OTHER STURDY COEFFICIENTS

Culture Fraction Confucian 0.37 1.48 0.91

Culture Fraction Buddhist 0.31 1.21 0.97

geography East Asian Dummy 0.35 1.33 1.19

Government Real Exchange Rate Distortions -0.26 -1.02 -0.81

Resources Investment Price -0.44 -1.97 -1.24
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