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The endogenous cannabinoid system is a new sign- 
aling system composed by the central (CB 1) and the 
peripheral (CB 2) receptors, and several lipid trans- 
mitters including anandamide and 2-arachidonylg- 
lycerol. This system is the target of natural 
cannabinoids, the psychoactive constituents of Can- 
nabis sativa preparations (marijuana, hashish). 
Acute and chronic cannabis exposure has been asso- 
ciated with subjective feelings of pleasure and relax- 
ation, but also to the onset of psychiatric syndromes, 
a decrease of the efficacy of neuroleptics and altera- 
tions in the extrapyramidal system regulation of 
motor activity. These actions points to a tight associ- 
ation of the cannabinoid system with the brain 
dopaminergic circuits involved in addiction, the 
clinical manifestation of positive symptoms of schiz- 
ophrenia and Parkinson's disease. The present work 
discuss anatomical, biochemical and pharmacologi- 
cal evidences supporting a role for the endogenous 
cannabinoid system in the modulation of dopamin- 
ergic transmission. Cannabinoid CB 1 receptors are 
present in dopamine projecting brain areas. In pri- 
mates and certain rat strains it is also located in 
dopamine cells of the A8, A9 and A10 mesencephalic 
cell groups, as well as in hypothalamic dopaminer- 
gic neurons controlling prolactin secretion. CB 1 
receptors co-localize with dopamine D1/D 2 receptors 
in dopamine projecting fields. Manipulation of 
dopaminergic transmission is able of altere the syn- 

thesis and release of anandamide as well as the 
expression of CB 1 receptors. Additionally, 
CBlreceptors can switch its transduction mechanism 
to oppose to the ongoing dopamine signaling. Acute 
blockade of CB 1 receptor potentiates the facilitatory 
role of dopamine D 2 receptor agonists on movement. 
CB 1 stimulation results in sensitization to the motor 
effects of indirect dopaminergic agonists. The 
dynamics of these changes indicate that the cannabi- 
noid system is an activity-dependent modulator of 
dopaminergic transmission, an hypothesis relevant 
for the design of new therapeutic strategies for 
dopamine-related diseases such as the psychosis and 
Parkinson's disease. 

I N T R O D U C T I O N  

The endocannabinoid system in the brain is con- 

figured by the central cannabinoid receptor, CB 1 

(Devane et al., 1988), and the endogenous  ligands 

anandamide (Devane et al., 1992) and 2-ara- 

chidonyl glycerol (Mechoulam et al., 1995; Stella 

et al., 1997). Acute and chronic effects of Cannabis 

sativa derivatives on central nervous  system 
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functioning are mediated through the action of 
THC, its main psychoactive constituent (Gaoni 
and Mechoulam, 1964) on specific brain CB 1 can- 
nabinoid receptors. The potential adverse effects 
of Cannabis consumption may include, among 
others, anxiety-like disorders (Halikas et al., 
1985; Rodrfguez de Fonseca et al., 1997), 
increased risk for the onset of psychotic syn- 
dromes (Andr6asson et al., 1987; Nufiez- 
Domfnguez and Gurpegui-Fernfindez, 1997) and 
a decrease of the therapeutic effectiveness of 
neuroleptics (Knudsen and Vilmar, 1984). The 
psychopathological features associated to acute 
and chronic Cannabis exposure points to a tight 
connection between the endogenous dopamine 
transmission systems (dopamine- releasing and 
dopamine receptor-expressing neurons) and the 
endogenous cannabinoid system. Dopamine 
neurons, mainly those from the nigrostriatal and 
the mesocorticolimbic pathways, have been con- 
sidered relevant for the process of reward and 
stress signals, drug addiction, and the positive 
symptoms of schizophrenia (Grace, 1991; Le 
Moal and Simon, 1991). 

There is a growing literature confirming the 
above proposed contribution of the endogenous 
cannabinoid system in dopamine-related dis- 
eases such as addiction (Gardner and Vorel, 
1998; Navarro et al., 1998), stress (Rodrfguez de 
Fonseca et al., 1997), psychoses (Andr6asson et 
al., 1987;  Knudsen and Vilmar, 1984; 
Nufiez-Domfnguez and Gurpegui-Fernfindez, 
1997) or extrapyramidaI disorders such as Par- 
kinson's disease or dystonias (Clifford, 1983; 
Glass et al., 1997; Rodrfguez de Fonseca et al., 
1994b and 1998). However, in order to under- 
stand that contribution to dopamine-related 
neuropsychiatric conditions we need to solve 
one of the striking challenges in the cannabinoid 
field: the explanation of the physiological rote of 
a system densely present in dopamine-project- 
ing brain areas, with a highly preserved neuro- 
biological properties throughout the evolution, 
but with a low tonic activity as revealed by func- 
tional antagonism studies (Howlett, 1995; Gueu- 

det et al., 1995; Navarro et al., 1997). In the 
present work we will briefly discuss the bio- 
chemical, anatomical and behavioral compo- 
nents of the interaction between dopamine and 
endocannabinoid systems. We will propose a 
model under which explore the potential rele- 
vance of these interactions for the understanding 
and treatment of neurodegenerative disorders 
such as Parkinson's disease, and psychiatric syn- 
dromes such as schizophrenia. 

N E U R O N A T O M I C A L  A N A L Y S I S  OF THE 
PRESENCE OF C A N N A B I N O I D  RECEPTORS 

IN BRAIN D O P A M I N E  CIRCUITS 

Cannabinoid CB 1 receptors are distributed in the 
mammalian brain at a higher levels than any 
other known G-protein-coupled receptor (Herk- 
enham et al., 1990; Mailleux and Vanderhaeghen, 
1992; Matsuda et al., 1990 and 1993; Tsou et al., 
1998). They are expressed in areas of the central 
nervous system that contribute to the control of 
movement (caudate-putamen, globus pallidum, 
entopeduncular nucleus, substantia nigra and 
cerebellum), memory and cognition (hippocam- 
pal formation, cingulate cortex), processing of 
emotions and motivational responses (amy- 
gdalar complex, nucleus accumbens, olfactory 
cortex), pain perception (central gray matter, 
dorsal horn of spinal medulla), and neuroendo- 
crine integration (paraventricular, arcuate, 
supraoptic and ventromedial hypothalamic 
nuclei). (Mailleux and Vanderhaeghen, 1992; 
Matsuda et al., 1993). The analysis of this distri- 
bution reveals that the pharmacological profile 
described for CB 1 agonists (Dewey, 1986; 
Howlett, 1995) matches with the anatomical dis- 
tribution of both CB 1 -agonist binding sites and 
CB 1 mRNA. Interestingly, cannabinoid receptor 
antagonist SR141716A (Rinaldi-Carmona et al., 
1994) has been used to confirm this specific neu- 
roanatomical profile, and has revealed the exist- 
ence of an endogenous cannabinoid tone in the 
hippocampus, substantia nigra and limbic sys- 
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FIGURE 1 Neuroanatomical distribution of CB I receptors in the substantia nigra of the Wistar rat brain, as revealed by immu- 
nocytochemical double labelling and confocal microscopy. Red flourescence corresponds to tyrosine hydroxylase (TH) immu- 
nopossitive cells, whereas green flourescence reveals the location of cannabinoid CB l receptors. Double labelling appears as a 
yellow/orange flourescence. Details on the method have been previously described (Rodrfguez de Fonseca et al., 1999). A. Pan- 
oramical view of the substantia nigra pars compacta showing cells labelled only for TH (white arrow) or double-labelled for TH 
and CB 1 (yellow arrow). B and C. Higher magnification of the external border of the pars compacta, showing those cells and 
cells only labelled for CB 1 receptor (red arrow). D. Panoramical view of the substantia nigra showing TH-labelled dendrites 
from the pars compacta (white arrow) penetrating into the pars reticulata which expres CBl-receptor immunopossitive termi- 
nals (white arrow) (See Color Plate I at the back of this issue) 
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tem which also correlates with the neuroanatom- 
ical distribution of CB 1 receptors (Gessa et al., 
1997; Gueudet et al., 1995; Navarro et al., 1997; 
Rodrfguez de Fonseca et al., 1997). 

Although cannabinoid CB 1 receptors were for- 
merly described in specific brain locations 
related to dopamine circuits, such as the basal 
ganglia, the extended amygdala and the limbic 
cortices, they seemed to be absent in brain 
dopaminergic neurons (Herkenham et al., 1990; 
Matsuda et al., 1993). However recent studies 
(Ong and Mackie, 1999; Rodrfguez deFonseca et 
al, unpublished, see Figure 1) have revealed 
strain and species-specific differences in the dis- 
tribution of CB 1 receptors in brain dopamine 
cells. We have found that in the Wistar rat, as 
opposed to the deeply studied Sprague-Dawley 
strain (Herkenham et al., 1991; Matsuda et al., 
1993; Tsou et al., 1998), dopaminergic cells 
express low to moderate amount of CB 1 recep- 
tors. Similar findings were reported in the pri- 
mate brain, (Ong and Mackie, 1999), supporting 
the possibility of a direct action of CB 1 receptor 
agonists on dopamine neurons, as suggested in 
early electrophysiological studies using pharma- 
cological antagonists of the CB 1 receptor (French 
et al., 1997; Guedet et al., 1995) 

It is generally accepted is that CB 1 receptors 
co-localize with dopamine receptors in neurons 
of dopamine-projecting fields such as the basal 
ganglia and limbic cortex (Herkenham et al., 
1991; Mailleux and Vanderhaeghen, 1993). Both 
kind of receptors are mostly found in GABAer- 
gic projecting neurons, (although glutamatergic 
neurons expressing CB 1 receptors have been 
reported, including those from the cortex and 
the subthalamic nuclei, Rodrfguez de Fonseca et 
al. 1998; Safiudo-Pefia and Walker, 1997). In the 
basal ganglia circuitry, GABAergic 
medium-spiny striatal neurons that express CB 1 
receptors, receive afferents from dopamine neu- 
rons of the substantia nigra pars compacta and 
show co-expression of dopamine D 1, D 2 and D 3 
receptors (Surmeier et al., 1996). Their axon ter- 

minals innervating the globus-pallidum, sub- 
stantia nigra pars reticulata and subthalamic 
nucleus contain high amounts of CB 1 receptors 
(Herkenham et al., 1991). Figure 2 illustrates a 
typical image of functional cannabinoid CB 1 
receptors in the mesencephalom of the rat, 
mapped by CB 1 agonist-stimulated GTPyS incor- 
poration (Sim et al., 1996). The dense activation 
of the substantia nigra, mainly the pars reticu- 
lata, indicates the potential relevance of the 
endogenous cannabinoid system in basal ganglia 
functioning. 

FUNCTIONAL ASPECTS 

OF C A N N A B I N O I D - D O P A M I N E  

INTERACTIONS 

In the brain areas described above, relevant for 
most neuropsychiatric diseases, CBlstimulation 
might either directly modulate the activity of 
dopaminergic neurons or interfere with the 
transduction of dopamine signal at postsynaptic 
dopamine receptors co-localized with CB 1. The 
presence of CB 1 receptors in dopamine cells 
allow a direct regulation of dopaminergic activ- 
ity (i.e. spontaneous and evoked firing, synthesis 
and release of dopamine, etc...) by the endog- 
enous cannabinoid system. 

Several experimental approaches have shown 
both possibilities (for review see Gardner and 
Vorel, 1998; Rodrfguez de Fonseca et al, 1998). 
Interaction between dopamine receptors and 
CB 1 receptors has a neurobiological support in 
the similar structure of both receptorial systems. 
These receptors belong to the family of G-protein 
coupled receptors for neurotransmitters (Mat- 
suda et al., 1990; Howlett, 1995). Both types of 
receptors are coupled to the same transduction 
systems, including the control of cAMP synthe- 
sis, and the regulation of Ca2+and K + channels 
(Hampson et al., 1995; Howlett, 1995; Mackie and 
Hille, 1992). 
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FIGURE 2 Coronal autoradiography showing the stimulatory effects of the cannabinoid CB 1 receptor agonist WIN 55,212-2 on 
GTPT-S incorportion in the mesencephalon of the rat brain. WIN 55,212-2 (5 I~M) produced a marked incorporation of GTPT-S in 
the substantia nigra of the rat brain, which appear heavy labelled (SN, red color). Other areas specifically labelled were the ven- 
tral tegmental area (VTA), the periaqueductal graymatter (PAG) and the superficial layer of the superior colliculus (SC) (See 
Color Plate II at the back of this issue) 

Dopamine-cannabinoid interactions 
in the nigrostriatal system 

At the level of the different dopamine  circuits, 
the role of the endogenous  cannabinoid sys tem 

seemed to be different. In the nigrostriatal path-  

w a y  mos t  of the effects observed  after CB 1 recep- 

tor s t imulat ion point  to an indirect  regulat ion of 

dopaminerg ic  activity, th rough  the action of CB1 
receptor  expressing GABAergic neurons  of the 

out f low nuclei of basal  ganglia (Maneuf  et al., 
1996, Nava r ro  et al., 1993b; Per twee and  Green- 
tree, 1988). Striatal dopamine  turnover  was  not 

found to be affected after acute T H C  exposure  

neither in Sprague-Dawley  (Rodrfguez de Fon- 

seca et al., 1992) nor  in Wistar rats (Navar ro  et al., 
1993b). However ,  acute systemic adminis t ra t ion  
of cannabinoid receptor  agonists were  found  to 

induce a small  increase in the spontaneous  activ- 
ity of nigrostriatal  dopaminerg ic  neurons  meas-  

u red  by either extracellular recordings (French et 
al., 1997) or by  in vivo v o l t a m m e t r y  in the stria- 

turn (Ng Cheong et al., 1988). The direct or indi- 
rect nature  of these effects remains  to be 

conclusively determined.  However ,  a recent 



28 FERNANDO RODRIGUEZ DE FONSECA et al. 

study has partially clarified the links between 
the endogenous cannabinoid system and 
dopamine transmission. (Giuffrida et al., 1999). 
In this study we have demonstrated by in vivo 
microdialysis that the extracellular levels of 
anandamide in the dorsal striatum are greatly 
increased after the activation of dopamine 
D2family of receptors (i.e. after quinpirole 
infused by reverse dialysis), but not after stimu- 
lation of dopamine D 1 receptors (i.e. after infu- 
sion with the D 1 agonist SKF 38393). The D 2 
-receptor evoked anandamide release may serve 
to limit the extent of behavioral activation 
induced by dopamine in the striatum. These 
findings are in agreement with other reports 
showing an increased behavioral response to the 
indirect dopamine receptor agonist ampheta- 
mine in animals chronically treated with the can- 
nabinoid receptor agonist THC and displaying 
down-regulated CB 1 receptors (Gorriti et al., 
1999; Rodrfguez de Fonseca et al., 1994a). As 
shown in figure 3, the pretreatment with the CB 1 
antagonist SR141716A potentiates the stimula- 
tion of motor behavior elicited by systemic 
administration of quinpirole. This effect was not 
observed when the facilitatory effect on move- 
ment was induced by a D 1 agonist (Figure 4). 
Other laboratories have described pharmacolog- 
ical interactions between dopamine D 2 receptor 
and cannabinoid CB 1 receptors which support 
this model. Thus, the group of J.M. Walker has 
shown that regional administration of D 2 family 
of agonists opposes the behavioral responses to 
the injection of CBlagonists (Safiudo-Pefia et al., 
1996; Safiudo-Pefia and Walker, 1998). 

Although the triggering of anandamide 
release seems to be dependent on D 2 receptor 
stimulation, the dopamine D 1 receptors plays 
also an important role in these cannabi- 
noid-dopamine interaction. Thus, a previous 
report (Mailleux and Vanderhaeghen, 1993) 
demonstrated that the chronic blockade of D 1 
receptors, which induce a compensatory hyper- 
activity in nigrostriatal dopaminergic cells, dra- 
matically upregulated the expression of the CB 1 

receptor mRNA in the dorsal striatum. Addi- 
tional behavioural studies showed that CB 1 ago- 
nists blocked rotational behaviour induced by 
dopamine D 1 receptor agonists (Anderson et al., 
1995) whereas repeated stimulation of dopamine 
D 1 receptors (Rodriguez de Fonseca et al., 1994) 
resulted in a potentiation of cannabinoid ago- 
nist-induced catalepsy and akinesia. These data 
suggest the existence of differences in the inter- 
actions between dopaminergic and cannabinoid 
systems regarding the different receptors 
involved. A current working hypothesis on the 
interaction between cannabinoid and dopamine 
receptors in the striatum is depicted in figure 5. 

Whether these pharmacological effects are 
selective for the dorsal striatum or appear in 
other brain areas remains to be determined. 
Regional differences on the role of CB 1 receptors 
in controlling basal ganglia activity at mesen- 
cephalic sites have been proposed because of the 
dense presence of cannabinoid receptors in the 
substantia nigra (Glass et al., 1997a). Thus, it has 
been found that cannabinoids activate substantia 
nigra pars reticulata neurons, probably by inhib- 
iting GABA release from striatonigral projec- 
tions through the stimulation of presynaptic CB 1 
receptors (Tersigni and Rosemberg, 1996). This 
blockade of GABA release may be responsible 
for the in vivo observed increased activity of 
nigrostriatal dopamine neurons after acute can- 
nabinoid exposure since they are under the 
influence of the striatonigral pathway (French et 
al., 1997; Gueudet et al., 1995; Ng Cheong et al., 
1988). An additional indirect source of regula- 
tory inputs to the substantia nigra comes from 
the striatum through the subthalamic nucleus, 
whose activity may be modulated by 
CBlstimulation (Safiudo-Pefia and Walker, 
1997). On the other hand, cannabinoid receptors 
in the striatum seem to be negatively coupled to 
K+-stimulated (Navarro et al., 1993) or electri- 
cally-evoked (Cadogan et al., 1997) dopamine 
release, as revealed by in vitro studies. A balance 
between the activity of converging influences to 
the substantia nigra and local regulatory activi- 
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FIGURE 3 Effects of pretreatment with the cannabinoid CB 1 receptor antagonist SR141716A (1 mg/kg, i.p. 30 min. prior to sec- 
ond drug administration) on the acute effects of the dopamine D 2 receptor agonist quinpirole (0.025, 0.25 and 1 mg/kg,  s.c.) on 
motor activity in male Wistar rats. Data were collected at different times after the injection of quinpirole (5, 60 or 120 min) to 
reveal the characteristic time and dose-dependent biphasic components of dopamine D 2 receptor agonists on motor behavior: 
an initial early inhibitory component derived of the stimulation of presynaptic D2 receptors, and a late stimulatory component 
derived of the activation of postsynaptic receptors. Data were expressed as total time spent in absolute quietness (immobility, 
upper pannels) or the number of crossings scored in a standard open field test (crossings, lower panels). Blockade of CB 1 recep- 
tors with SR141716A potentiates quinpirole-induced alterations on behavior, supporting for a role of the endogenous cannabi- 
noid system in regulating dopamine facilitation of motor behavior. P < 0.05 vehicle v e r s u s  SR141716A-treated animals, # P < 
0.05 v e r s u s  vehicle-treated (0 dose) animals of the same pretreatment, Newman-Keuls 

ties will then establish the nature of the actions 
of CB 1 agonists on the dopamine release in the 
striatum. Pharmacological manipulations of the 
acute sensitivity to cannabinoids by concurrent 
administration of GABAA and GABAB receptor 
acting drugs (Pertwee and Greentree, 1988; 
Romero et al., 1995) support the involvement of 
GABA neurons in the mediation of cannabinoid 

effects. This contribution can also be deduced 
from the finding of CB 1 receptor ago- 
nist-induced changes in striatal dopamine recep- 
tors (Navarro et al., 1993b; Rodrfguez de Fonseca 
et al., 1992) or by the profound alterations in neu- 
ropeptide gene expression found in striatal 
GABAergic cells of CB 1 receptor-knockout mice 
(Steiner et al., 1999). 
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FIGURE 4 Lack of effects of pretreatment with the cannabinoid CB 1 receptor antagonist SR141716A (1 mg/kg, i.p. 30 min. prior 
to second drug administration) on the acute facilitatory effects of the dopamine D 1 receptor agonist SKF 38393 (5 mg/kg, s.c.) 
on motor activity in male Wistar rats. Data were expressed as total time spent in absolute quietness (immobility, upper pan- 
nels). They were collected at different times (5, 30, 60 or 120 min) after the injection of the D1 agonist. P < 0.05 versus 
saline-treated animals, Newman-Keuls 

Dopamine-cannabinoid interaction 
in the mesocorticolimbic circuits 

The me soc or t i c o l imb ic  dopaminergic  system has 

been found to be more sensitive than the nigros- 

triatal pa tway  to the acute administration of can- 

nabinoids (Gardner and Vorel, 1998). First 

descriptions of THC actions in the brain pointed 

to an stimulation of mesocorticolimbic dopamin-  

ergic activity (Chen et  al., 1990;). Direct extracel- 

lular recordings showed that systemic 

administration of CB1 agonists increased the 

activity of ventral tegmental  area dopaminergic  

neurons (French et  al., 1997), associated to an 

increased dopamine  release in the mesolimbic 

targets (Chen et al., 1990; Gardner  et  al., 1988; 

Gardner and Vorel 1998). However ,  whether  this 

effect is produced by direct stimulation of CB1 

receptors present in dopaminergic  cells or by 

transynaptic stimulation remains to be conclu- 

sively determined. In this respect, further 

research is required to establish a role for 
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dopamine D 2 and D 1 receptors on the response 
of mesocorticolimbic dopaminergic cells to acute 
cannabinoid exposure. On the other hand, block- 
ade of CB1 receptors with SR 141716A does not 
affect ventral tegmental area activity (Gueudet et 
al., 1995), whereas ~t-opioid receptor antagonists 
(naloxone, naloxonazine) block the increased 
dopamine release induced by CB1 agonists 
administration, acting probably both at the ven- 
tral tegmental area neurons (Tanda et al., 1997) 
and at their projecting terminals in the nucleus 
accumbens (Chen et al., 1990; Gardner and Vorel, 
1998). An interesting additional hypothesis is the 
possible glucocorticoid dependence of CB1 ago- 
nists-induced mesolimbic activation. Cannabi- 
noids are chemical stressors which activate the 
pituitary adrenal axis by stimulating ACTH 
release (Martfn-Calder6n et al., 1998). They also 
induce anxiety-like responses (Rodrfguez de 
Fonseca et al., 1997). Acute stress is associated 
with a rapid activation of mesolimbic circuitry 
that can be mediated by glucocorticoid receptors 
present in mesolimbic dopaminergic neurons 
(Piazza et al., 1996). Whether cannabi- 
noid-induced activation of mesolimbic activity 
depends on the activation of pituitary-adrenal 
axis remains to be conclusively determined, but 
its demonstration may help support clinical 
observations on the role of Cannabis comsump- 
tion as a vulnerability factor for the onset of psy- 
chosis or drug addiction (Andreasson et al., 1987; 
Rodrfguez de Fonseca et al., 1997). 

C A N N A B I N O I D - D O P A M I N E  

I N T E R A C T I O N S  A N D  
D O P A M I N E - R E L A T E D  

DISEASES:  W H A T  IS NEXT? 

As described above, endogenous cannabinoids 
are local mediators released to regulate informa- 
tion processing within the main relays of the 
basal ganglia nuclei. The suggested constitutive 
activity of the CB1 receptor and its potential 
bidirectional coupling to the adenylate cyclase 

suggest that this regulatory function affects 
processes of opposed nature within the striatum, 
indicating a potential role for this system as an 
homeostatic set-point mechanism (Glass and 
Felder, 1997b; Maneuf and Brotchie, 1997; 
Rodrfguez de Fonseca et al., 1998). The induction 
of a functional blockade of neurotransmitter 
uptake processes derived from CB 1 stimulation 
can affect to neurotransmitters of opposed 
nature, such as glutamate and GABA, support- 
ing again this buffering role for the endogenous 
cannabinoid signalling within striatum (Maneuf 
et al., 1996). Much work is needed in order to 
identify the potential regional variabilities in 
these mechanisms, as well as the pathological 
conditions on which a clear contribution of the 
endogenous cannabinoid system may enhance 
our knowledge of neurological disorders. 

The research findings discussed in this manu- 
script suggest that the endogenous cannabinoid 
system may serve as a target for the develop- 
ment of new strategies for the treatment of 
dopamine-related diseases, such as motor syn- 
dromes. Among those movement disorders, Par- 
kinson's Disease and neuroleptic-induced 
dyskinesias and dystonias are firmly clinical 
entities that may be benefitiated from therapy 
based on the endogenous cannabinoid system, 
together with Gilles de la Tourette syndrome 
and Huntington's chorea (Rodrfguez de Fonseca 
et al., 1998). As a potential practical utility of the 
model we can propose cannabinoid agonist for 
reducing unwanted effects of L-DOPA or 
dopaminergic agonists in Parkinson's disease or 
neuroleptic associated tardive dyskinesias, as 
well as a cannabinoid antagonist for reducing 
the effective dose of L-DOPA or dopamine ago- 
nists needed to alleviate akinesia (Maneuf et al. 
1997; Rodrfguez de Fonseca et al., 1998). 

Besides motor disorders several neuropsychi- 
atric conditions could also benefit from the avail- 
ability of new compounds acting at the 
cannabinoid receptors, such as new and selective 
antagonists. That goal can also be addressed by 
designing drugs which may interfere with new 
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FIGURE 5 A proposed model for the interactions between dopaminergic transmission and the endogenous cannabinoid system 
in the dorsal striatum. Dopamine released from axon terminals of substantia nigra pars compacta neurons facilitates motor 
behavior through the activation of both dopamine D 2 and D 1 receptors located in medium-spiny GABAergic neurons of the 
dorsal striatum. Simultaneously, activation of dopamine D 2 receptors triggers the release of anandamide from a plasmalemma 
precursor, which in turn limited the activatory effects of dopamine by stimulating CB 1 receptors. Although depicted as a posts- 
ynaptic mechanism, anandamide could be originated through the activation of presynaptic D 2 receptors, and eventually may 
act at presynaptic CB 1 receptors 

m o l e c u l a r  m e c h a n i s m s  i n v o l v e d  in  c a n n a b i n o i d  h y p e r d o p a m i n e r g i c  state.  A d e p i c t e d  in  f igu re  5, 

t r a n s m i s s i o n ,  such  as  the  r e c e n t l y  d e s c r i b e d  a n a n d a m i d e  can  act  as a local  m e d i a t o r  r e g u l a t -  

a n a n d a m i d e  t r a n s p o r t e r  (Be l t r amo et al., 1997). i ng  d o p a m i n e  ac t iv i ty .  If a n a n d a m i d e  r e l ease  is 

This  l a tes t  t a rge t  has  o p e n  m u l t i p l e  poss ib i l i t i e s  

for  the  t r e a t m e n t  of  d o p a m i n e - r e l a t e d  d iseases .  

A c a r d i n a l  e x a m p l e  c o u l d  be  the  acu te  s y m p -  

t o m s  of  s c h i z o p h r e n i a ,  w h i c h  a re  c u r r e n t l y  

a t t r i b u t e d ,  a m o n g  o the r  m e c h a n i s m s ,  to an  

also t r i g g e r e d  in  cor t ica l  a reas  u p o n  d o p a m i n e  

D 2 r e c e p t o r  ac t iva t ion ,  as  d e c r i b e d  in  the  d o r s a l  

s t r i a t u m  (Giu f f r ida  et al., 1999), a n  e n h a n c e m e n t  

of  a n a n d a m i d e  leve ls  t h r o u g h  the  p h a r m a c o l o g i -  

cal b l o c k a d e  of a n a n d a m i d e  u p t a k e  or  h y d r o l y -  
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sis m a y  act  as  a n e u r o l e p t i c  t h r o u g h  its 

i n h i b i t o r y  ac t i on  o n  d o p a m i n e  r e c e p t o r - e v o k e d  

r e s p o n s e s .  In  s u p p o r t  of  th is  h y p o t h e s i s ,  p r e l i m i -  

n a r y  r e p o r t s  h a v e  d e s c r i b e d  the  p r e s e n c e  of  ele-  

v a t e d  leve ls  of  a n a n d a m i d e  in  the  c e r e b r o s p i n a l  

f lu id  of  s c h i z o p h r e n i a  p a t i e n t s  (Leweke  et al., 

1999). A n  a d d i t i o n a l  a d v a n t a g e  of  such  the ra -  

p e u t i c  a p p r o a c h  d e r i v e s  f r o m  the  fact  t ha t  a n a n -  

d a m i d e  is a p a r t i a l  agonis t :  the  u p t a k e  

b l o c k e r - i n d u c e d  r ise  in  s y n a p t i c  a n a n d a m i d e  

m a y  n o t  p r o d u c e  the  u n w a n t e d  s ide  effects,  

i n c l u d i n g  ca t a l epsy ,  acu t e  s t ress - l ike  r eac t i ons  or  

the  for t  r e c e p t o r  d e s e n s i t i z a t i o n  tha t  cha r ac t e r i z e  

the  ac t i on  of  ful l  CB1 r e c e p t o r  agon i s t s  (Dewey ,  

1986; H o w l e t t ,  1995). 

The  b u f f e r i n g  effects  of  c a n n a b i n o i d s  on  syn-  

ap t i c  t r a n s m i s s i o n  p r o c e s s e s  p o i n t s  to a n e u r o -  

p r o t e c t a n t  ro le  for  d r u g s  a i m e d  to p o t e n t i a t e  

c a n n a b i n o i d  t r a n s m i s s i o n .  A l t h o u g h  g lucocor t i -  

c o i d - d e p e n d e n t  n e u r o n a l  loss  in  the  h i p p o c a m -  

p u s  h a s  b e e n  f o u n d  in ra ts  af ter  ch ron ic  

t r e a t m e n t  w i t h  T H C  (Landf i e ld  et  al, 1988) neu -  

r o p r o t e c t i v e  ac t ions  d e r i v e d  of  c a n n a b i n o i d  CB 1 

r e c e p t o r  s t i m u l a t i o n  h a v e  b e e n  d e s c r i b e d  b o t h  in 

vivo a n d  in vitro ( N a g a y a m a  et  al., 1999). These  

f i n d i n g s  i n d i c a t e  tha t  a rational use  of  d r u g s  

a i m e d  to the  c a n n a b i n o i d  C B l r e c e p t o r  m a y  p r o -  

tect  n e u r o n s  f r o m  d i f f e ren t  t y p e s  of  in jur ies  

d e r i v e d  of  o v e r s t i m u l a t i o n  of  g l u t a m a t e  or  

d o p a m i n e  r e l ease  in  cen t ra l  synapses .  
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