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Abstract. On the Tibetan Plateau, the limited ground-
based rainfall information owing to a harsh environment has
brought great challenges to hydrological studies. Satellite-
based rainfall products, which allow for a better coverage
than both radar network and rain gauges on the Tibetan
Plateau, can be suitable alternatives for studies on inves-
tigating the hydrological processes and climate change. In
this study, a newly developed daily satellite-based precipita-
tion product, termed Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks – Cli-
mate Data Record (PERSIANN-CDR), is used as input for a
hydrologic model to simulate streamflow in the upper Yellow
and Yangtze River basins on the Tibetan Plateau. The results
show that the simulated streamflows using PERSIANN-CDR
precipitation and the Global Land Data Assimilation System
(GLDAS) precipitation are closer to observation than that
using limited gauge-based precipitation interpolation in the
upper Yangtze River basin. The simulated streamflow using
gauge-based precipitation are higher than the streamflow ob-
servation during the wet season. In the upper Yellow River
basin, gauge-based precipitation, GLDAS precipitation, and
PERSIANN-CDR precipitation have similar good perfor-
mance in simulating streamflow. The evaluation of stream-
flow simulation capability in this study partly indicates that
the PERSIANN-CDR rainfall product has good potential to
be a reliable dataset and an alternative information source of
a limited gauge network for conducting long-term hydrolog-
ical and climate studies on the Tibetan Plateau.

1 Introduction

Precipitation is one of the essential meteorological inputs
of a hydrologic model and the key driving force for a hy-
drologic cycle. Errors in precipitation estimation can bring
significant uncertainties in streamflow simulation and pre-
diction (Sorooshian et al., 2011). Three methods are gener-
ally used to measure precipitation: traditional gauge obser-
vations, meteorological radar observations, and satellite ob-
servations (Ashouri et al., 2015). In many remote regions and
mountainous areas, rain gauges and meteorological radar net-
works are either sparse or non-existent. Thus, satellite-based
precipitation is of great importance in such regions. For in-
stance, there is a great potential for using satellite-based
precipitation estimates on the Tibetan Plateau known as the
“roof of the world” with an average elevation of over 4000 m
(Yao et al., 2012). Owing to a harsh environment, the ex-
isting meteorological stations managed by the Chinese Me-
teorological Administration only form an extremely sparse
network, which creates great challenges for water resources
management and operation. For example, on average, there
is only 0.3 and 1 station per grid of 1◦× 1◦ in the upper
Yangtze and upper Yellow river basins, respectively (Xue et
al., 2013a). Moreover, the spatial distribution of the meteo-
rological stations is highly uneven and most stations are lo-
cated around the river channel with relatively low elevation
(Fig. 1). Therefore, streamflow simulation using the limited
gauge-based rainfall information might not be reliable due
to the input uncertainties with such a poor spatial resolution.
Satellite-based rainfall products have the advantage of good
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Figure 1. The selected river basins (the upper Yellow River and
Yangtze River basin) on the Tibetan Plateau and location of rainfall
stations and river outlets.

spatial coverage, which could allow for an accurate stream-
flow simulation on the Tibetan Plateau. Besides precipitation
estimation from satellites, the Global Land Data Assimila-
tion System (GLDAS), as a global-scale terrestrial modeling
system, is also capable of providing good spatial coverage to
solve the issue of insufficient observation data over the Ti-
betan Plateau area (Wang et al., 2011).

According to Kidd and Levizzani (2011), during the last
decade satellite-based precipitation estimates have reached
a good level of maturity. Currently, many satellite rainfall
products are available and have been extensively used glob-
ally (e.g., Sorooshian et al., 2000; Huffman et al., 2001;
Adler et al., 2003; Xie et al., 2003; Joyce et al., 2004;
Turk and Miller, 2005; Miao et al., 2010, 2011). Recently,
a new satellite-based precipitation product was released by
the National Climatic Data Center (NCDC), which is termed
Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks – Climate Data Record
(PERSIANN-CDR) (Ashouri et al., 2015). PERSIANN-
CDR is a multi-satellite, high-resolution and post-time rain-
fall product that provides daily precipitation estimates at
0.25◦ spatial resolution from 1 January 1983 to the present.
According to Ashouri et al. (2015), the PERSIANN-CDR
rainfall product uses the archive of gridded satellite (GridSat-
B1) infrared radiation (IR) data (Knapp, 2008) as the input
to the artificial neural network algorithm. The retrieval al-
gorithm uses IR satellite data from global geosynchronous
satellites as the primary source of precipitation informa-
tion. To meet the calibration requirement of PERSIANN, the
model is pre-trained using the National Centers for Environ-
mental Prediction stage IV hourly precipitation data. Then,
the parameters of the model are kept fixed and the model is
run for the full historical record of GridSat-B1 IR data. To re-
duce the biases in the estimated precipitation, while preserv-
ing the temporal and spatial patterns in high resolution, the

resulting estimates are then adjusted using the Global Pre-
cipitation Climatology Project (GPCP) monthly 2.5◦ precip-
itation products. The performance of the PERSIANN-CDR
rainfall product has been tested and reported in different re-
gions (e.g., Ashouri et al., 2015; Miao et al., 2015; Zhu et
al., 2016). Ashouri et al. (2015) found that PERSIANN-CDR
precipitation is performing reasonably well when compared
with radar and ground-based observations in the 1986 Syd-
ney flood event of Australia and the 2005 Hurricane Katrina
of the United States. Zhu et al. (2016) compared precipi-
tation estimation from PERSIANN-CDR, Tropical Rainfall
Measuring Mission 3B42 Version 7 (TRMM-3B42-V7), and
Climate Prediction Center morphing technique (CMORPH)
over the Xiang and Qu River basins in China and demon-
strated the accuracy of PERSIANN-CDR. Miao et al. (2015)
showed that PERSIANN-CDR rainfall product is able to cap-
ture the spatial and temporal characteristics of extreme pre-
cipitation events at daily scale in the eastern China mon-
soon region when compared with a ground-based precip-
itation dataset. Miao et al. (2015) also pointed out that
the correlation between the PERSIANN-CDR precipitation
and ground-based precipitation is not strong on the Ti-
betan Plateau and speculated that the sparse ground-based
gauge stations may result in uncertainties with the use of
ground-based precipitation estimates as a reference on the Ti-
betan Plateau. Building on Miao et al. (2015), in this study,
PERSIANN-CDR is further applied to a conceptual hydro-
logical model to simulate streamflow of two river basins on
the Tibetan Plateau, and is compared with the limited gauge
information, and the precipitation from GLDAS with regard
to their streamflow simulation capabilities.

Many studies have been carried out to evaluate the suitabil-
ity of a number of satellite-based precipitation estimate prod-
ucts in forcing hydrologic models and simulating stream-
flow for various regions around the world (e.g., Yilmaz et al.,
2005; Artan et al., 2007; Su et al., 2011; Bitew et al., 2012;
Yong et al., 2012, Yang et al., 2015). However, there are few
evaluation studies focusing on hydrological modeling driven
by satellite rainfall products on the Tibetan Plateau. Among
a limited number of studies, Tong et al. (2014) evaluated
the streamflow simulation capability of four satellite prod-
ucts (TRMM-3B42-V7, TRMM-3B42RT-V7, PERSIANN,
and CMORPH) using the variable infiltration capacity (VIC)
hydrologic model in two sub-basins over the Tibetan Plateau
and concluded that the TRMM-3B42-V7 and CMORPH
datasets have relatively better performance than the others.
One of the limitations is that the data length of many satel-
lite precipitation products, such as TRMM-3B42RT-V7 and
CMORPH, start from 2000 to the present, which is rather
short. In this study, there is no such limitation because the
PERSIANN-CDR daily rainfall product includes more than
33 years of data and the length of data grows every year. In
Tong et al. (2014), the rain gauge is set to be the reference
to compare different satellite-based rainfall products. How-
ever, given the fact that (1) density of rain gauges on the
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Tibetan Plateau is rather low as compared to other regions
in China, (2) distribution of gauges are uneven according to
Miao et al. (2015), and (3) rain gauges are located in low-
elevation river channels (Fig. 1), the authors have the sim-
ilar concern as Miao et al. (2015) that the use of a sparse
rain gauge as reference to compare satellite products is ques-
tionable. Therefore, in this study, precipitation from a limited
gauge network, GLDAS precipitation, and PERSIANN-CDR
precipitation are used as the inputs of a hydrologic model for
streamflow simulation on two major river basins, the upper
Yangtze River basin and the upper Yellow River basin, on
the Tibetan Plateau. Then, the simulation results are com-
pared with observed streamflow, which is believed to be a
more reliable reference than the limited rainfall observation
to judge the qualities of satellite rainfall products on the Ti-
betan Plateau. Potential sources of uncertainties are also dis-
cussed with regard to the parameterization of the hydrologi-
cal model and the length of data used for calibration.

2 Study region, data, and hydrological modeling

2.1 Study region and data

Two river basins on the northern Tibetan Plateau, namely,
the upper Yangtze River (UYZR) and upper Yellow River
(UYLR) basins are selected, which have a long daily stream-
flow record from 1983 to 2012. As shown with red squares in
Fig. 1, two hydrological stations, Tangnaihai and Zhimenda,
are the outlet stations of the UYZR and UYLR, which have
total drainage areas of 121 972 and 137 704 km2, respec-
tively. Elevation in the region varies from 3450 to 6621 m.
According to Yao et al. (2012), the climate system of the two
regions has distinct summer Indian monsoon and East Asian
monsoon characteristics during summer. Figure 1 shows the
distribution of meteorological and hydrological stations in
the two basins. The green triangles show the location of rain
gauges, which are rather unevenly distributed and sparse as
compared to the gauge distribution of China available from
Miao et al. (2015).

The observed daily streamflow data from 1983 to 2012 at
the outlets of the two basins are provided by the Ministry of
Water Resources of China. The runoff is calculated by di-
viding streamflow by corresponding basin area. The daily
gauge meteorological data in the two basins from 1983 to
2012 are obtained from the China Meteorological Adminis-
tration (http://data.cma.cn/en). There are 4 and 11 meteoro-
logical stations in the UYZR and UYLR, respectively, which
means that on average there is only 0.3 and 1 station per
grid of 1◦× 1◦ in the two basins, respectively. The precip-
itation data in GLDAS come from three different sources:
the Climate Prediction Center Merged Analysis of Precipi-
tation, Global Data Assimilation System, and the European
Centre for Medium-Range Weather Forecasts (Rodell et al.,
2004). The precipitation data used in GLDAS are a combi-

nation of reanalysis and observations, which is believed to
have the advantages of different data sources (Gottschalck et
al., 2005). In this study, the 1.0◦ resolution GLDAS precipi-
tation dataset is re-sampled into 0.25◦× 0.25◦ grids and used
as the input of streamflow simulations (http://ldas.gsfc.nasa.
gov/gldas/). The PERSIANN-CDR rainfall dataset is avail-
able at the NOAA NCDC website (ftp://data.ncdc.noaa.gov/
cdr/persiann/files/), as well as the Center for Hydromete-
orology and Remote Sensing at the University of Califor-
nia, Irvine. In order to compare the PERSIANN-CDR with
gauge observations, the gauge precipitation is interpolated
into 0.25◦× 0.25◦ grids with the inverse distance-weighting
interpolation method, which has been demonstrated as be-
ing efficient in precipitation interpolation applications (e.g.,
Nalder and Wein, 1998; Garcia et al., 2008; Ly et al., 2011).
The daily gauge-based precipitation, GLDAS precipitation,
and PERSIANN-CDR precipitation for basin average are
compared by the cumulative distribution functions (CDFs) of
daily precipitation values (e.g., Sheffield et al., 2014; Zhang
and Tang, 2015), whereby the two-parameter Gamma distri-
bution function (Thom, 1958) is used to fit the data.

2.2 Hydrological modeling

The hydrologic model used in this study is the Hydroinfor-
matic Modeling System (HIMS) rainfall–runoff model (Liu
et al., 2006, 2008, 2010a, b), which is one of the operational
hydrological models by the Tibet Government in China. The
HIMS model is a grid-based hydrologic model, which is
able to simulate the dominant hydrological processes such
as actual evapotranspiration, infiltration, runoff, groundwater
recharge, and channel routing. In the HIMS model, a catch-
ment is divided into grids, and grids are linked throughout the
stream network based on topological relationships of channel
network and properties of soil, vegetation, and land use. In
each grid, actual evaporation is calculated by a formulation
between soil water content and potential evapotranspiration.
Potential evapotranspiration ET0 (Hargreaves and Samani,
1985) and actual evaporation ETa are described as follows:

ET0 = 0.00023 ·RA · (T + 17.8) · (Tmax− Tmin)
0.50, (1)

ETa(t)= ET0(t) ·

(
1−

(
1−

SMSt

SMSC

)C
)

, (2)

where RA is extraterrestrial radiation (MJ m−2 day−1); T ,
Tmax, and Tmin are daily average, maximum, and minimum
temperatures (◦C), respectively; L is latent heat of vaporiza-
tion (MJ kg−1); SMS and SMSC are soil moisture storage
and the maximum soil storage capacity (mm), respectively;
and C is the evapotranspiration coefficient to be calibrated.

The infiltration process is modeled using an empirical rela-
tionship, which has been confirmed through analysis of data
measured in a number of experimental watersheds and vari-
ous physical geographic factors in China (Liu et al., 2006):

ft = R ·P r
t , (3)
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where ft is infiltration (mm) and Pt is precipitation (mm),
and R and r are parameters. Surface runoff (RSt ; mm) is
calculated by

RSt = Pt − ft = Pt −R ·P r
t . (4)

According to the saturation excess mechanism and spa-
tial variability of watershed characteristics, interflow and
groundwater recharge are estimated as linear functions of soil
wetness (soil moisture amount divided by soil moisture ca-
pacity). Baseflow is simulated based on the linear reservoir
assumption, in which the relationship between groundwater
storage and outflow is linear. Interflow (RI; mm), ground-
water recharge (REC; mm), baseflow (RG; mm), and total
runoff (TR; mm) are determined by

RIt = La×

(
SMSt

SMSC

)
× ft , (5)

RECt = Rc×

(
SMSt

SMSC

)
× (ft −RIt ), (6)

RGt =Kb× (GWt +RECt ) , (7)
TRt = RSt +RIt +RGt , (8)

where La, Rc, and Kb are coefficients for interflow, ground-
water recharge, and baseflow, respectively; SMSC is the
maximum value of soil moisture storage capacity (mm);
SMS is the actual soil moisture storage (mm); and GW is
groundwater storage(mm). La, Rc, Kb, and SMSC are the
parameters in need of calibration. The degree-day snowmelt
algorithm (Hock, 2003), assuming an empirical relation-
ship between air temperature and snowmelt rate, is used to
simulate snowmelt runoff. The air temperature within each
grid is adjusted by a commonly used temperature lapse rate
(0.65 ◦C/100 m). The degree-day factor of snowmelt is set to
4.1 mm ◦C−1 day−1 in the two basins based on the investi-
gation of Zhang et al. (2006). Surface runoff and baseflow
for each grid are routed to the basin outlet through a channel
network. The Muskingum method (Franchini and Lamberti,
1994) is used for flow channel routing. The detail descrip-
tions and the conceptual diagram showing the configuration
of HIMS model are available in Liu et al. (2008) and Jiang et
al. (2015).

The HIMS model is set up at 0.25◦× 0.25◦ spatial resolu-
tion grids in the two river basins. There are nine parameters
requiring calibration in the HIMS model (Table 1). The Shuf-
fle Complex Evolution method (SCE-UA) is used for cali-
brating the model parameters (Duan et al., 1992). The op-
timization objective is to maximize the Nash–Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe, 1970) between the simu-
lated and measured daily streamflow. There are two stopping
criteria for calibrating the parameters. The first one is the
evolution of all simplexes have converged to a limited pa-
rameter space, which is the default convergence criterion of
SCE-UA. Another stopping criterion is the maximum num-
ber of function evaluation set by users is met. In our study,

the settings for SCE-UA are the maximum numbers of func-
tion evaluation equal to 5×108, numbers of complexes equal
to 2, which give a total population of 38, and the percentage
change allowed to define convergence is set to 1×10−6. The
calibration period is from 1983 to 1997 and the verification
period is from 1998 to 2012. The performance of the stream-
flow simulation is evaluated by comparing simulated and ob-
served streamflow through two statistics: NSE and relative
bias (Rb) between simulated and observed streamflow:

NSE= 1−

N∑
i=1

(
Qobs,i −Qsim,i

)2
N∑

i=1

(
Qobs,i −Qobs

)2 , (9)

Rb=

N∑
i=1

(
Qsim,i −Qobs,i

)
N∑

i=1
Qobs,i

, (10)

where Qsim and Qobs are the simulated and observed stream-
flow, respectively; Qobs is the mean of the observed stream-
flow; and N is the total number of days in the calibration
period.

3 Results

3.1 Hydrometeorological characteristics of the two
basins

Figure 2 and Table 2 show the average monthly amounts
of precipitation and runoff in the UYZR and UYLR from
1983 to 2012. These two river basins have distinct dry and
wet seasons, which are from September to February, and
March to October, respectively. According to Table 2, pre-
cipitation between May and October (wet season) accounts
for 92.5 and 90.1 % of the annual total precipitation for the
UYZR and UYLR, respectively. Similar to the temporal dis-
tribution of precipitation, runoff during May to October ac-
counts for 87.6 and 78.4 % of annual runoff in the UYZR and
UYLR, respectively. Given the seasonal concurrence of pre-
cipitation and runoff, precipitation in the wet season plays a
dominant role in annual runoff generation in these two river
basins. The runoff coefficients are 0.22, 0.27, and 0.26 in the
UYZR based on gauge-based precipitation, GLDAS precip-
itation, and PERSIANN-CDR precipitation, respectively. In
the UYLR, the runoff coefficients are 0.29, 0.31, and 0.29
based on the three precipitation datasets, respectively.
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Table 1. Description of HIMS model parameters and allowable ranges.

Parameter Description Allowable range

SMSC The maximum soil storage capacity (mm) 50–1000
R The infiltration coefficient 0.1–2
r The infiltration coefficient 0.1–1
La The interflow coefficient 0.1–2
Rc The groundwater recharge coefficient 0.01–2
C The evapotranspiration coefficient 0.001–10
Kb The baseflow coefficient 0.001–1
C1 The Muskingum coefficient 0.001–1
C2 The Muskingum coefficient 0.001–1

Table 2. Average monthly precipitation and runoff in the upper Yangtze and Yellow River basins.

Upper Yangtze River Upper Yellow River

Period Rain_ Rain_ Rain_ Runoff_ Rain_ Rain_ Rain_ Runoff_
Gauge GLDAS CDR OBS Gauge GLDAS CDR OBS

Jan 3.3 4.0 1.4 1.3 4.4 5.3 3.2 3.7
Feb 3.4 4.8 2.5 1.2 6.5 7.5 5.2 3.7
Mar 5.0 8.1 7.5 1.5 12.9 16.2 13.1 4.8
Apr 10.2 16.2 14.6 3.0 23.7 28.0 25.0 7.7
May 37.9 34.6 38.2 5.6 62.9 62.3 65.3 11.9
Jun 90.4 66.3 72.0 12.9 107.6 96.2 104.6 20.4
Jul 105.8 87.6 87.8 21.6 113.5 110.3 111.8 29.6
Aug 88.6 69.0 74.5 20.6 92.0 93.3 94.0 23.3
Sep 66.9 49.8 53.2 16.0 83.4 83.7 84.4 22.2
Oct 20.2 18.0 20.5 9.1 35.3 36.0 41.4 19.4
Nov 2.5 3.9 1.7 3.5 5.0 5.8 7.3 10.0
Dec 2.3 2.0 0.5 1.6 3.0 3.3 1.5 5.0

May to Oct 409.7 325.3 346.1 85.8 494.6 481.8 501.4 126.8
Annual 436.4 364.3 374.3 98.0 550.2 547.9 556.6 161.8
Ratio 93.9 89.3 92.5 87.6 89.9 87.9 90.1 78.4

Note: Rain_gauge, Rain_GLDAS and Rain_CDR indicate gauge-based precipitation GLDAS precipitation and
PERSIANN-CDR precipitation (mm), respectively. Runoff_OBS indicates observed runoff (mm). Ratio means the percentage
of precipitation and streamflow during May to November to annual values.

3.2 Comparison between gauge-based precipitation,
GLDAS precipitation, and PERSIANN-CDR
precipitation

Figure 3 shows the spatial distribution of average annual
values of 1.0◦ resolution GLDAS precipitation and 0.25◦

resolution PERSIANN-CDR precipitation. The spatial pat-
terns of the two dataset are generally consistent with each
other. Figure 4 shows the comparison of CDFs for basin-
averaged daily gauge-based precipitation, GLDAS precipi-
tation, and PERSIANN-CDR precipitation in the UYZR and
UYLR from 1983 to 2012. At a given probability, GLDAS
precipitation generally has the smallest values, followed by
PERSIANN-CDR precipitation and gauge-based precipita-
tion in the UYZR. In the UYLR, the CDFs of PERSIANN-
CDR precipitation, GLDAS precipitation, and gauge-based
precipitation show overall better agreement than that in

the UYZR. Table 2 shows the average amounts of gauge-
based precipitation, GLDAS precipitation, and PERSIANN-
CDR precipitation. In the UYZR, the average annual pre-
cipitation is 436.4 mm from gauge-based data, 365.1 mm
from GLDAS dataset, and 374.3 mm from PERSIANN-
CDR product. Gauge-based annual precipitation is 16.6 %
larger than PERSIANN-CDR annual precipitation. In the
UYLR, average annual amounts of gauge-based precipita-
tion, GLDAS precipitation, and PERSIANN-CDR precipi-
tation are similar, which are 550.2, 547.9, and 556.6 mm, re-
spectively (Table 2).

3.3 Streamflow simulation in the two basins

Due to the previously mentioned concern that a sparse gauge
network and its interpolation cannot perfectly describe the
spatial and temporal rainfall characteristics at river basin
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Figure 2. The monthly average runoff observed at the river outlet of the upper Yangtze River and Yellow River basin, and the precipitation
data retrieved from ground-based observation, GLDAS, and PERSIANN-CDR product.

Table 3. Calibrated parameter values in the HIMS model for the upper Yangtze and Yellow River basins.

Basin Input SMSC R r La Rc C Kb C1 C2

Yangtze Gauge_based 302.5 1.47 0.78 0.74 0.05 0.67 0.15 0.18 0.81
GLDAS 339.2 1.72 0.87 0.82 0.07 0.58 0.18 0.17 0.81
PERSIANN-CDR 343.8 1.71 0.89 0.87 0.07 0.56 0.18 0.17 0.82

Yellow Gauge_based 334.8 2.08 0.77 1.00 0.03 0.44 0.14 0.14 0.86
GLDAS 332.5 2.10 0.76 1.02 0.03 0.39 0.14 0.15 0.85
PERSIANN-CDR 342.1 2.01 0.73 0.98 0.05 0.45 0.14 0.12 0.88

Figure 3. The spatial distribution of average annual values of
1.0◦ resolution GLDAS precipitation (a) and 0.25◦ resolution
PERSIANN-CDR precipitation (b).

scale, the alternative is to evaluate the streamflow simulated
instead of treating the sparse gauge network as reference. In
this section, the streamflow simulated by gauge-based pre-
cipitation, GLDAS precipitation, and PERSIANN-CDR pre-
cipitation is derived from HIMS, and compared with ob-
served streamflows at the outlet in the UYZR and UYLR.
The HIMS model is separately calibrated by maximizing the

NSE between observed streamflow and simulated streamflow
driven by gauge-based precipitation, GLDAS precipitation,
and PERSIANN-CDR precipitation from 1983 to 1997. Ta-
ble 3 shows the calibrated parameter values of the HIMS
model for the two basins. Figure 5 shows daily observed
streamflow and simulated streamflow driven by gauge-based
precipitation, GLDAS precipitation, and PERSIANN-CDR
precipitation for the two basins from 1983 to 2012. In the
UYZR (Fig. 5a, b and c), the NSE values are 0.63, 0.78,
and 0.77 in the calibration period driven by gauge-based
precipitation, GLDAS precipitation, and PERSIANN-CDR
precipitation, respectively, whereas they are 0.60, 0.71, and
0.73 in the verification period. In both the calibration and
verification period, the NSE values from GLDAS precipi-
tation and PERSIANN-CDR precipitation are greater than
that from gauge-based precipitation, which indicates that us-
ing GLDAS precipitation and PERSIANN-CDR precipita-
tion as input to the HIMS model is able to generate more
accurate streamflow than using gauge-based precipitation
in the UYZR. In the UYLR (Fig. 5d, e and f), the NSE
values between daily observed streamflow and simulated
streamflow are 0.82, 0.78, and 0.80 in the calibration pe-
riod driven by gauge-based precipitation, GLDAS precipi-
tation, and PERSIANN-CDR precipitation, respectively. In
the verification period, the NSE values are 0.81, 0.77, and
0.78 for the three types of data. The high NSE values in both
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X. Liu et al.: Streamflow simulation capability of PERSIANN-CDR daily rainfall products 175

Figure 4. The calculated CDF of daily gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation in the upper
Yangtze River basin and upper Yellow River basin.

Table 4. The performances of streamflow simulations driven by gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR
precipitation in the two basins.

Upper Yangtze River Upper Yellow River

Period Q_ Qs_ Qs_ Qs_ Rb_ Rb_ Rb_ Q_ Qs_ Qs_ Qs_ Rb_ Rb_ Rb_
obs gauge GLDAS CDR gauge GLDAS CDR obs gauge GLDAS CDR gauge GLDAS CDR

Jan 68.1 48.4 40.4 32.8 −28.9 −40.7 −51.8 168.9 65.7 71.4 68.0 −61.1 −57.7 −59.8
Feb 68.3 32.7 30.2 24.9 −52.1 −55.8 −63.5 168.3 61.6 67.6 60.5 −63.4 −59.8 −64.1
Mar 76.9 70.2 75.3 72.4 −8.7 −2.1 −5.8 219.7 110.5 145.1 138.0 −49.7 −34.0 −37.2
Apr 158.6 153.2 158.3 147.5 −3.4 −0.2 −7.0 352.0 299.0 311.5 302.5 −15.1 −11.5 −14.0
May 289.2 253.5 262.1 273.4 −12.3 −9.4 −5.5 543.6 512.9 514.9 524.9 −5.7 −5.3 −3.4
Jun 683.9 750.5 679.1 698.4 9.7 −0.7 2.1 928.5 968.6 921.3 946.6 4.3 −0.8 1.9
Jul 1108.9 1306.9 1102.5 1111.4 17.9 −0.6 0.2 1350.1 1386.6 1420.2 1431.3 2.7 5.2 6.0
Aug 1059.7 1204.0 1042.8 1063.2 13.6 −1.6 0.3 1061.1 1141.4 1102.7 1088.5 7.6 3.9 2.6
Sep 850.7 977.4 897.2 918.9 14.9 5.5 8.0 1009.6 1059.7 1062.6 1075.7 5.0 5.2 6.5
Oct 469.4 428.1 407.2 420.1 −8.8 −13.3 −10.5 883.7 859.1 861.3 876.5 −2.8 −2.5 −0.8
Nov 187.6 169.0 182.3 161.1 −9.9 −2.8 −14.1 457.3 429.1 437.8 456.6 −6.2 −4.3 −0.2
Dec 84.5 28.2 27.5 24.5 −66.7 −67.5 −71.0 227.0 100.7 132.8 127.5 −55.7 −41.5 −43.9

May–Oct 743.4 819.6 731.9 746.9 10.3 −1.5 0.5 962.7 987.7 980.5 990.4 2.6 1.8 2.9
Nov–Apr 107.2 83.6 85.6 77.2 −22.1 −20.1 −28.0 265.6 177.6 194.2 192.3 −33.1 −26.9 −27.6
Annual 427.9 454.6 408.7 414.8 6.2 −4.5 −3.1 617.0 586.0 587.8 594.6 −5.0 −4.7 −3.6

Note: Q_obs indicates observed runoff (m3 s−1). Qs_gauge, Qs_GLDAS, and Qs_CDR indicate streamflow simulations (m3 s−1) driven by the gauge-based precipitation,
GLDAS precipitation, and PERSIANN-CDR precipitation, respectively. Rb_gauge, Rb_GLDAS, and Rb_CDR indicate relative bias between observed streamflow and simulated
streamflow driven by the gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation, respectively.

the calibration and verification periods suggest that gauge-
based precipitation, GLDAS precipitation, and PERSIANN-
CDR precipitation have similar performances as the drivers
of streamflow simulation in the UYLR.

Figure 6 and Table 4 compare the simulated and ob-
served average monthly streamflow for the two basins. In
the UYZR, the relative bias between observed streamflow
and simulated streamflow driven by gauge-based precipita-
tion is 10.3 % in the wet season, which suggests a consid-
erable overestimate of streamflow. Comparably, the relative
bias between observed streamflow and simulated streamflow
driven by GLDAS precipitation and PERSIANN-CDR pre-
cipitation is −1.5 and 0.5 % the in wet season, respectively.
As compared with the wet season streamflow simulation re-

sults with gauge-based precipitation, the simulated stream-
flows driven by GLDAS precipitation and PERSIANN-CDR
precipitation are closer to the observed streamflow. In the
dry season, streamflow simulations driven by gauge-based
precipitation, GLDAS precipitation, and PERSIANN-CDR
precipitation all underestimate streamflow with relative bias
of −22.1, −20.1, and −28.0 % in the UYZR, respectively.
In the UYLR, all the three precipitation products slightly
overestimate the streamflow in the wet season with rela-
tive bias of 2.6, 1.8, and 2.9 %. Similar to the results in the
UYZR, streamflow simulations driven by gauge-based pre-
cipitation, GLDAS precipitation, and PERSIANN-CDR pre-
cipitation have similar good performances in the wet season
in the UYLR. However, all the three precipitation products
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Figure 5. The comparison between the simulated daily streamflow (red) with ground-based, GLDAS, and PERSIANN-CDR precipitation
and the observed data (black) at the outlets of the upper Yangtze River basin (a, b, c) and upper Yellow River basin (d, e, f).

Figure 6. The comparison between the observed streamflow (black) and the simulated streamflow using ground-based precipitation (red),
GLDAS precipitation (green), and PERSIANN-CDR precipitation (blue) in the upper Yangtze River basin and upper Yellow River basin.

tend to produce a smaller streamflow in the dry season with
a relative bias of −33.1, −26.9, and −27.6 %, respectively.
One of the reasons that gauge-based precipitation, GLDAS
precipitation, and PERSIANN-CDR precipitation generate
smaller streamflow in the dry season is the lack of complex
method or proper algorithm in the HIMS model to handle
frozen soil. In dry season, when the amounts of precipitation
and streamflow are small, streamflow melted from frozen soil
can account for a significant proportion of total streamflow.

In other words, the frozen soil melt could significantly in-
fluence the streamflow simulation results. The relative high
bias of observed streamflow and simulated streamflow from
all the three precipitation products could be due to the lack of
a proper modeling component in the HIMS hydrologic model
that quantifies the frozen soil melting effects in dry season.
However, the bias between simulated and observed stream-
flow is much smaller in the wet season, when precipitation
and streamflow are relatively large and streamflow melted
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from frozen soil accounts for a limited proportion in total
streamflow.

In summary, the streamflow simulated by GLDAS pre-
cipitation and PERSIANN-CDR precipitation has a good
agreement with the observed streamflow in the UYZR and
UYLR. The good agreement between observed streamflow
and PERSIANN-CDR simulated streamflow reveals a strong
streamflow simulation capability of PERSIAN-CDR prod-
uct, which also gives community certain confidence in using
PERSIANN-CDR product to study hydrological cycle and
climate change on the Tibetan Plateau.

4 Discussions

4.1 Parameter uncertainties of hydrological modeling

In this study, model parameters are separately calibrated
in terms of the highest NSE between observed streamflow
and simulated streamflow driven by gauge-based precipita-
tion, GLDAS precipitation and PERSIANN-CDR precipi-
tation. Therefore, these parameter values are highly depen-
dent on the precipitation inputs. When the precipitation in-
put changes, the parameter values may change accordingly
in order to match the streamflow. Table 3 shows the values
of calibrated parameters separately driven by gauge-based
precipitation, GLDAS precipitation, and PERSIANN-CDR
precipitation in the two basins. Parameter sensitivity study
of the HIMS model indicates that the HIMS model is most
sensitive to parameters of the maximum soil storage capac-
ity (SMSC) and the infiltration coefficients (R and r) (Jiang
et al., 2015). In the UYLR, the parameters calibrated by
the inputs of gauge-based precipitation, GLDAS precipita-
tion, and PERSIANN-CDR precipitation generally have sim-
ilar values. However, in the UYZR, SMSC, R, and r val-
ues calibrated from gauge-based precipitation are 302.46,
1.47, and 0.78, respectively, whereas SMSC, R and r values
calibrated from PERSIANN-CDR precipitation are 343.80,
1.71, and 0.89. By separately calibrating the HIMS param-
eters, the gauge-based precipitation, GLDAS precipitation,
and PERSIANN-CDR produce different optimal parameter
values. Thus, the streamflow simulation bias using gauge-
based precipitation, GLDAS precipitation, and PERSIANN-
CDR are the joint results of parameter differences and model
input bias. Correspondingly, soil moisture and evapotranspi-
ration estimation could be different using various precipita-
tion forcings and calibrated parameters. However, the main
purpose of this study is evaluating the streamflow simulation
capability of satellite-based precipitation and gauge-based
precipitation as inputs to a hydrologic model over the Ti-
betan Plateau. Therefore, in spite of the influence of cancella-
tion between parameter differences and precipitation bias on
streamflow simulation, it does not harm the conclusion that
both PERSIANN-CDR and GLDAS precipitation is able to

produce a reasonably good streamflow in the two river basins
on the Tibetan Plateau.

In a previous study, Tong et al. (2014) evaluated the
streamflow simulation capabilities of four satellite-based
precipitation products (TRMM-3B42-V7, TRMM-3B42RT-
V7, PERSIANN, and CMORPH) using the VIC hydrologic
model in the UYZR and UYLR from 2006 to 2012. Dif-
ferent from the PERSIANN product that Tong et al. (2014)
used, PERSIANN-CDR is a different product that provides
over 33 years of daily and high-resolution precipitation with
GPCP monthly information incorporated. In addition, the
parameters in the VIC hydrologic model are calibrated by
the input of interpolated gauge-based precipitation. The cal-
ibrated parameter values are then kept fixed when the VIC
model are rerun by inputs of satellite-based precipitation
datasets to evaluate the streamflow simulation capabilities of
satellite-based precipitation datasets. Rerunning the hydro-
logic model with the fixed parameters calibrated by gauge-
based precipitation partly indicates that Tong et al. (2014) as-
sumed that the sparse gauge observations are a more reliable
dataset than satellite-based precipitation datasets. However,
this is a questionable assumption. As we mentioned in the in-
troduction, not only the location of rain gauges is conditioned
(relatively low elevations) but also the sparse distribution of
rainfall stations over the Tibetan Plateau could bring large er-
rors and uncertainties in regional rainfall measurement. Sim-
ilar arguments are also raised by Miao et al. (2015). In this
study, we rather cautiously believe that gauge-based precip-
itation could not be reliable, especially in the UYZR where
there is only one station per 34 426 km2 (nearly 1◦× 3◦ spa-
tial resolution). Therefore, separately calibrating hydrologic
model by the inputs of different precipitation datasets instead
of using identical parameters will contribute to fairer com-
parisons when evaluating streamflow simulation capabilities
of different precipitation datasets, although other hydrolog-
ical variables such as soil moisture and evapotranspiration
could be incorrectly estimated by different precipitation in-
puts and calibrated parameters.

4.2 The influences of precipitation record length on
streamflow simulation capability

Besides of the uncertainties due to hydrological model cali-
bration, another factor that influences the accuracy of stream-
flow simulation is the length of precipitation records used
for calibration. As mentioned before, one of the advantages
of PERSIANN-CDR product is the provision of more than
33 years of continuous sequences of precipitation data, which
can allow for more extensive streamflow simulation in the Ti-
betan Plateau. In this study, comparison experiments (Fig. 7)
were designed to test the influences of precipitation record
length on the accuracy of streamflow simulation. In the de-
signed experiments, we investigate the accuracy of stream-
flow simulation during 2008 to 2012 with two different cal-
ibration scenarios. In the first scenario, the calibration pe-
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Figure 7. The simulated daily streamflow (red) forced by PERSIANN-CDR rainfall product in different scenarios and the observed daily
streamflow (black) at the outlets of the upper Yangtze River basin and upper Yellow River basin. Panels (a) and (b) are the scenarios where
the period 2003 to 2007 is used for calibration and 2008 to 2012 for verification. Panels (c) and (d) are the scenarios where the period 1983
to 1997 is used for calibration and 2008 to 2012 for verification.

riod is from 2003 to 2007 for both the UYZR (Fig. 7a) and
the UYLR (Fig. 7b). In the second scenario (Fig. 7c and d),
15 years of data from 1983 to 1997 are used for calibra-
tion, which are longer than that in the first scenario. As it
is shown in Fig. 7a and b, in the first scenario the NSE values
between daily observed and simulated streamflow are 0.75
and 0.66 during the verification period (from 2008 to 2012)
for the UYZR and UYLR, respectively. Comparatively, in
the second scenario the NSE values during the verification
period (from 2008 to 2012) are 0.81 and 0.82 for the two

basins, respectively. The NSE values in the second scenario
are consistently higher than that in the first scenario in the
two basins. For the UYLR in the second scenario (Fig. 7d),
the NSE value during the verification period is significantly
greater than that in the first scenario. Figure 7b also shows
that the HIMS hydrological model significantly underesti-
mates the flow peaks during the summer of 2010 and 2012
when calibrated by 5 years of data from 2003 to 2007. The
disagreement between the observed and simulated flow peaks
is partly because the magnitudes of flood events during the
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calibration period are all smaller than that during the verifi-
cation period and the HIMS hydrological model cannot be
well trained during the calibration period. Therefore, when
using a short-length precipitation data as input for a hydro-
logical model, the accuracy of streamflow simulation could
be limited, especially when precipitation data used for cal-
ibration cannot cover the flood and drought conditions of a
basin. However, when the HIMS hydrological model is cali-
brated by the longer dataset from 1983 to 1997, as it is shown
in Fig. 7c and d, there is a greater potential that the char-
acteristics of extreme events can be captured by the hydro-
logical model than using only 5 years of data from 2003
to 2007. Given the availability of long-term precipitation
records (over 33 years) provided by PERSIANN-CDR prod-
uct, the extreme events in the historical period could be well
captured by a hydrological model. Therefore, using such a
product with long-term records, the confidence of simulating
streamflow over the Tibetan Plateau will correspondingly in-
crease.

5 Summary

As it is compared to radar-based precipitation measurement
and gauge networks, the main advantage of satellite-based
precipitation estimate is the broader coverage at global scale.
This allows for a comprehensive understanding of the driv-
ing force of hydrologic cycle, especially for the gauge-sparse
area. To verify the accuracy of satellite-based precipitation
estimate products, the comparison with ground observation
is necessary. However, in a gauge-sparse area, a direct com-
parison on precipitation temporal and spatial variation will
be questionable due to the limited gauge information. This
study provides an alternative way to evaluate satellite-based
precipitation products by forcing both rainfall estimates from
satellite and limited gauge network into hydrological model.
Given the confidence in streamflow measurements, which are
more reliable and well monitored than the limited ground-
based rainfall measurements, the comparison of simulated
streamflow enables an indirect way to evaluate satellite-based
precipitation products.

In this study, PERSIANN-CDR precipitation, GLDAS
precipitation, and gauge-based precipitation have good
agreements in the UYLR, whereas the three datasets have
different values in the UYZR. Streamflow simulation capa-
bilities of PERSIANN-CDR precipitation, GLDAS precipi-
tation, and gauge-based precipitation are evaluated as the in-
puts of the HIMS hydrologic model in the two basins. All the
three datasets have similar good performances in the UYLR,
whereas PERSIANN-CDR precipitation and GLDAS pre-
cipitation have slightly better performance than gauge-based
precipitation in the UYZR. Gauge-based precipitation tends
to produce larger streamflow in the wet season in the UYZR.
This indicates that in the UYZR, a sparse gauge network
could not be fully reliable when used as the reference for

streamflow simulation due to the fact that the locations of the
limited gauge stations cannot be representative for measur-
ing the precipitation patterns at the river basin scale. In ad-
dition, gauge-based precipitation, GLDAS precipitation, and
PERSIANN-CDR precipitation all generate smaller stream-
flow in the dry season probably because of the lack of a
frozen soil algorithm in HIMS model. This may bring certain
uncertainties in the discharge comparisons by different pre-
cipitation inputs (Xue et al., 2013b). Further studies should
be conducted to improve the frozen soil simulation of HIMS
model.

Lack of rainfall gauge stations has brought a great chal-
lenge to hydrological and climate studies over the Tibetan
Plateau (e.g., Yao et al., 2012; Zhang et al., 2013). Based on
the demonstration in this study that PERSIANN-CDR is able
to produce reasonably good streamflow in the UYZR and
UYLR as compared to observed streamflow, we can spec-
ulate that the PERSIANN-CDR rainfall product has the po-
tential to be a useful dataset and an alternative for the sparse
gauge network in climate change and hydrological studies
on the Tibetan Plateau considering the needs for long-term
(more than 33 years) and high-resolution records.

6 Data availability

The GLDAS precipitation dataset is available at the web-
site http://ldas.gsfc.nasa.gov/gldas/ (NASA, 2016). The
PERSIANN-CDR rainfall dataset is available at the NOAA
NCDC website (ftp://data.ncdc.noaa.gov/cdr/persiann/files/;
NCDC, 2016). The streamflow data used for this paper are
not publicly available due to the constraints of governmental
policy in China. The data were obtained through a purchas-
ing agreement for this study.
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