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Excitation Function for the 74Se(18O,p3n) Reaction 
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Production of 88gNb/74Se(18O,p3n)/Excitation function/Berkeley Gas-filled Separator 

(BGS) 

Summary 

 The 74Se(18O,p3n)88gNb excitation function was measured and a maximum cross 

section of 495±5 mb was observed at and 18O energy of 74.0 MeV.  Experimental cross 

sections were compared to theoretical calculations using the computer code ALICE-91 

and the values were found to be in good agreement.  The half-life of 88gNb was 

determined to be around 14.56±0.11 min. 

 

1. Introduction 

The study of the chemistry of transactinide elements (Z ≥ 104) is a topic of great 

interest in current nuclear chemistry research.  Experiments focus on comparing the 

chemical properties of transactinide elements to those of theirs lighter homologues  [1].  

However, transactinides can only be produced one atom-at-a-time through nuclear 

reactions and will exist at the microscopic scale in any chemistry technique.  To best 

replicate the chemical conditions under which the transactinide elements are studied, it is 

necessary to study the lighter homologues at concentrations low enough that there are no 
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interactions between homologue ions.  In this work, we report on the measurement of the 

74Se(18O,p3n) excitation function to produce short-lived 88gNb for use in group five 

homologue chemistry experiments. 

2. Experimental 

Short-lived niobium, 88gNb was produced at the Lawrence Berkeley National 

Laboratory’s 88-Inch Cyclotron using the 74Se(18O,p3n) reaction.  At the entrance to the 

Berkeley Gas-filled Separator (BGS), the 18O beam passed through a (40-45) µg/cm2 

carbon vacuum window and a negligible amount of helium gas before entering the target.  

The target consisted of 384-µg/cm2 74Se, deposited on 40-µg/cm2 C and covered with 

5-µg/cm2 Au.  The typical beam intensity of the 18O4+ projectiles was 75 particle·nA. 

Energy losses of the 18O beam in C and Au were calculated using SRIM2006.02 

[2].  Two PIN diode detectors located at ±27° from the beam axis continuously monitored 

the product of target thickness and beam intensity by the on-line detection of 

Rutherford-scattered particles.  Systematic uncertainty in the absolute energy from the 

88-Inch Cyclotron is estimated to be ~1% [3].  However, relative energies were 

determined to within 0.1% by analysis of the pulse heights of the Rutherford-scattered 

projectiles from the various 18O energies.  The resulting center-of-target beam energies 

were 64.0, 68.6, 74.0, 78.9 and 83.9 MeV in the laboratory frame.  Compound nucleus 

excitation energies were calculated using the relative beam energies with the 

experimental mass defects for 18O, 74Se and 88gNb [4].  The resulting ranges of compound 

nucleus excitation energies within the targets were 57.5±0.5, 61.1±0.5, 65.5±0.5, 

69.4±0.5 and 73.4±0.5 MeV. 
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The niobium evaporation residues (EVRs) recoiling out of the target were 

separated in the BGS from the beam and most unwanted reaction products based upon 

their differing magnetic rigidities in the 67-Pa He of the BGS [5, 6].  The magnetic 

rigidity for the niobium EVRs were estimated as previously described [3] and 

experimentally determined to be 0.95 T·m.  The efficiency for collecting 88Nb EVRs at 

the BGS focal plane was modeled using a Monte Carlo simulation of the EVR trajectories 

in the BGS, as described earlier [3, 7], and resulted in efficiencies (εBGS) of 36-44%, 

depending on the beam energy. 

The recoiling atoms were slowed down by passing through a 3.3-µm Mylar 

window, after traveling through the BGS, at the entrance to the 40 mm-deep Recoil 

Transfer Chamber (RTC) [8, 9].  In the RTC, the EVRs were then thermalized in 

approximately 1.3 bar of helium gas.  Helium gas at flow rates of 1.6 - 1.8 L/min was 

seeded with potassium chloride aerosols, produced in an oven at a temperature of 650°C, 

before entering the RTC.  The EVRs were captured on the aerosols and transported 

through a 2-mm i.d. and ~20 meter long stainless steel capillary to the chemistry setup 

where they were deposited on small platinum foils at the exit of the gas-jet capillary.  

Figure 1 contains a schematic of the experimental setup. 

To measure the half-life of 88Nb, the aerosols were collected for 30 – 45 minutes 

and then dissolved in 3 mL dilute hydrochloric acid (HCl).  The 3 mL aliquots where 

then assayed using a HPGe γ−detector and counting intervals of 3 min.  Four parallel 

experiments were performed and the spectra from each counting interval were summed. 

For measurement of the 74Se(18O,p3n)88Nb excitation function, the aerosols were 

collected for ten minutes and subsequently dissolved in 3 mL dilute HCl.  The 3 mL 
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aliquot was then assayed for four minutes on a HPGe γ-ray detector.  Corrections were 

made for decay during collection, decay during counting, γ-ray intensities and 

efficiencies of the gas-jet, BGS and HPGe γ-ray detector. 

3. Results and Discussion 

3.1 88gNb half-life 

The half-life of 88gNb has been measured several times in other works, leading to 

values of 14.4±0.2 min [10] 14.3±0.3 min [11] and 13.3±1.0 min [12].  Figure 2 contains 

a sample spectrum obtained from the collected reaction products.  Lines that are 

significantly above background are labeled.  In addition to the ground state, 88Nb is 

known to have a metastable state with a 7.7 min half-life and several prominent γ-ray 

energies (271.80, 671.20, 1057.01 and 1082.53 keV) can be from the decay of both 88gNb 

and 88mNb [10].  However, 88mNb also contains lines at 262.04, 450.52 and 760.76 keV 

that are not present in the decay of 88gNb [10].  As these lines were not observed in any of 

the spectra from the reaction products, it was determined that contamination in the 

271.80, 671.20, 1057.01 and 1082.53 keV lines due to the decay of 88mNb is negligible. 

The 88gNb half-life was determined from the decay curves fitted to the 271.80, 

671.20, 1057.01 and 1082.53 keV lines using first order exponentials, as shown in 

Figure 3.  These fits resulted in a weighted-average half-life of 14.56±0.11 min, which is 

consistent with and more precise than previous measurements from [10, 11]. 

3.2 Excitation Function for the 74Se(18O,p3n)88gNb Reaction 

The excitation function for the 74Se(18O,p3n)88gNb reaction is shown in Figure 4 

and the resulting cross sections and errors are listed in Table 1.  Cross sections for the 

reaction were calculated using a weighted average of the 271.80, 671.20, 1057.01 and 
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1082.53 keV γ-ray lines.  A maximum cross section of 495±(stat = 5, syst = 205) mb was 

observed at an 18O energy of 74.0 MeV. 

3.3 Systematic Uncertainty of Cross Sections 

Systematic uncertainties in the measured cross sections are the result of seven 

main contributions: i) calculations of the cross sections were performed using the half-life 

measured in this work (14.56±0.11 min).  This value has a 0.8% error, leading to a 1.2% 

error in the cross section measurement.  ii) the uncertainty in the efficiency for transport 

of EVRs through the BGS and the mylar window and into the RTC.  An uncertainty of 

10% has been estimated for the transport of EVRs to the focal plane detector for the 48Ca 

+ 206-208Pb reactions by a comparison of the size and shape of the modeled and 

experimental focal plane position distributions [3].  However, since the (Z, A) of 88gNb is 

outside the range of the normal operation of the BGS, a more conservative uncertainty of 

20% was used.  iii) the angle of the Rutherford scattering monitor detectors is known 

within 0.2° with respect to the beam direction.  This results in a 3% uncertainty in the 

Rutherford scattering cross section, corresponding to a 3% error in the EVR cross 

sections.  iv) the uncertainty in the solid angle subtended by the collimators placed in 

front of the monitor detectors is dominated by uncertainty in the size of the 4.78 mm 

opening and is estimated to contribute 4% to the systematic error in cross sections.  

v) between the target and the Rutherford scattering monitor detectors are a series of 

screens that attenuate the scattered particles.  In the 207Pb(48Ca,2n)253No reaction, the 

ratio of 253No EVRs in the focal plane detector to the Rutherford scattered 48Ca ions was 

measured with and without the attenuation screens.  The uncertainty in the attenuation 

factor was determined to be 5%.  vi) the systematic uncertainty in the absolute energy 
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from the 88-Inch Cyclotron is ~1%, resulting in energy uncertainties of 0.6 - 0.8 MeV 

and Rutherford scattering cross section uncertainties of 2%.  vii) the gas-jet efficiencies 

have been measured to 30-70% in the previous experiments [9, 13], although the 

variation during an experiment has been measured at <5% [14].  We conservatively 

estimate the gas-jet efficiency to be 50±20%.  Standard error propagation of the seven 

systematic contributions results in a systematic error of ~40%.  Statistical uncertainties 

due to the number of counts observed are 1 - 2%. 

3.4 Theoretical Predictions with ALICE-91, EVAPOR and HIVAP 

 We have compared the experimental cross sections to theoretical predictions from 

ALICE-91 [15], EVAPOR [16] and HIVAP  [17].  The ALICE-91 code calculates 

equilibrium (EQ) cross sections using the Weisskopf-Ewing model [18].  ALICE-91 was 

previously found to accurately reproduce the results of reactions between 18O and 65,63Cu 

when COST = 1.5, a = A/9 and n0 = 16 [19].  Due to the similarity between the 

16O + 65,63Cu and 18O + 74Se reactions, we have chosen to use COST = 1.5 and a = A/9.  

In this work, n0 was 18.  A comparison of the experimental and theoretical values is 

shown in Fig. 4.  Theoretical values from HIVAP underestimate the experimental cross 

sections by a factor of 10.  HIVAP also predicts that the centroid of the excitation 

function occurs 10 MeV below the energy obtained experimentally.  EVAPOR 

underestimates the experimental cross sections by a factor of 3 and predicts that the 

centroid of the excitation function occurs at excitation energies that are 10 MeV higher 

than those observed experimentally.  EVAPOR also predicts a broader excitation function 

than that observed experimentally.  ALICE-91 accurately reproduces the height and 

width of the experimental excitation function.  Similar agreement between experimental 
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data and theoretical predictions from ALICE-91 were observed in [19] for the pxn 

reactions with 18O and 65,63Cu. 
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Table 1: Energies and cross sections for the 74Se(18O, p3n)88Nb reaction. 

Center-of-

Target Beam  

Energy  

(MeV) 

Excitation  

Energy  

(MeV) 

Cross  

Section  

(mb) 

Statistical 

Error  

(mb) 

Systematic 

Error  

(mb) 

64.0 57.5 325 5 135 

68.6 61.1 395 5 160 

74.0 65.5 495 5 205 

78.9 69.4 375 5 155 

83.9 73.4 325 5 135 
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Figure 1: Schematic of the BGS at LBNL in the configuration required for chemistry 

experiments with preseparation.  Q1 is the quadrupole magnet, M1 is a gradient-field 

dipole magnet and M2 is a flat-field dipole magnet.  These magnets provide separation 

between the EVR’s of interest and the beam and other unwanted reaction products.  

Modified from [13]. 
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Figure 2: Sample γ-ray spectrum of the recoil products obtained from a bombardment of 

74Se with 18O, after separation by the BGS.  Lines significantly above background are 

labeled with their energies in keV. 
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Figure 3: Decay data and exponential fits to the data for the four prominent γ-ray lines.  

Error bars in the vertical direction are smaller than the symbols. 
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Figure 4: Excitation function for the 74Se(18O, p3n)88Nb reaction.  The horizontal width 

of the symbols shows the energy spread of the beam within the target.  In the vertical 

direction, statistical errors are smaller than the size of the symbols.  The bar in the upper 

left-hand corner represents the size of the systematic errors at the 1σ level.  Theoretical 

predictions from ALICE-91, EVAPOR and HIVAP are shown by the solid, dashed and 

dotted lines, respectively. 

 




