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Two-User Multicast Networks with

Variable-Length Limited Feedback

Xiaoyi (Leo) Liu, Erdem Koyuncu, and Hamid Jafarkhani,Fellow, IEEE

Abstract

We investigate the channel quantization problem for two-user multicast networks where the trans-

mitter is equipped with multiple antennas and either receiver is equipped with only a single antenna. Our

goal is to design a global quantizer to minimize the outage probability. It is known that any fixed-length

quantizer with a finite-cardinality codebook cannot achieve the same minimum outage probability as

the case where all nodes in the network know perfect channel state information (CSI). To achieve the

minimum outage probability, we propose a variable-length global quantizer that knows perfect CSI and

sends quantized CSI to the transmitter and receivers. With arandom infinite-cardinality codebook, we

prove that the proposed quantizer is able to achieve the minimum outage probability with a low average

feedback rate. Numerical simulations also validate our theoretical analysis.

Keywords

multicast, variable-length quantizer, outage probability, limited feedback

I. I NTRODUCTION

It is known that using more than one antenna at the transmitters can greatly improve the

performance of communication systems. However, the performance depends on the availability

of channel state information (CSI) at the transmitters and receivers [1], [2]. Receivers can obtain

CSI through training sequences; however, the transmitters must rely on the feedback information

from receivers to do so. Additionally, perfect CSI at the transmitters requires an “infinite” number
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of feedback bits, which is unrealistic due to the limitations of feedback links. Therefore, it is

more practical to employ quantized CSI to design efficient transmission schemes for wireless

networks.

There has been a lot of work on channel quantization in point-to-point multiple antenna

systems. An overview of research on limited feedback can be found in [3]. In multiple-input

single-output (MISO) systems, a fixed-length quantizer (FLQ) is proposed in [1] to maximize

the capacity by applying the beamforming vector at the transmitter. In FLQs, the number of

feedback bits per channel state is a fixed positive integer. Compared to the case that all the

nodes know CSI perfectly, fixed-length quantization always suffers from some performance loss.

On the other hand, [4] proposes a variable-length quantizer(VLQ) to achieve the full-CSI outage

probability with a low average feedback rate. VLQs borrow the idea from variable-length coding

to allow binary codewords of different lengths to representdifferent channel states. It has shown

in [4] that variable-length quantization does not suffer from performance loss in MISO systems.

In this paper, we study the channel quantization problem in multicast networks with two

receivers. We use transmit beamforming and consider the outage probability gap between the

proposed quantizer and the full-CSI case. For a FLQ, the standard encoding rule is to choose

the codeword “closest” to the channel state. For any finite-cardinality codebook, the outage

probability of a FLQ is strictly worse than that of the full-CSI case [4]. To achieve the full-CSI

outage probability with a finite average feedback rate, we propose a VLQ with a codebook of

infinite cardinality. We expect that in such a VLQ, the codeword covering a larger partition of

channel space can be represented by a fewer number of bits. Inthis way, the average feedback

rate can be made finite.

Based on the above analysis, we propose a VLQ in multicast networks that has access to

full CSI and sends quantized CSI to the transmitter and receivers via error-free and delay-free

feedback links. We consider a random codebook with infinite cardinality that is tractable for

analysis [5]. We prove that the outage probability for the VLQ is the same as the full-CSI case.

Afterwards, through a derived upper bound on the average feedback rate, we will show that:

(i) the average feedback rate is finite and small in the entirerange of transmit power; (ii) the

average feedback rate will converge to zero when the transmit power approaches infinity or zero.

In addition to theoretical analysis, numerical simulations are presented to verify the effectiveness

of the proposed VLQ.
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The remainder of this paper is organized as follows. In Section II, we describe the system

model. In Section III, we depict the proposed VLQ, includingits encoding rule and the infinite-

cardinality random codebook. In Section IV, we prove that the proposed VLQ achieves the

minimum outage probability. An upper bound on the average feedback rate is given in Section

V. Numerical simulations are shown in Section VI to validateour theoretical analysis. We draw

the conclusions and introduce future work in Section VII. Some technical proofs are provided

in the appendices.

Notations: ⊤ represents transpose and† represents conjugate transpose.C denotes the set of

complex numbers andCm×n denotes the set of complex vectors or matrices.CN (a, b) represents

a circulary-symmetric complex Gaussian random variable (r.v.) with meana and covarianceb.

E [·] denotes the expectation and Prob{·} denotes the probability.N is the set consisting of all

natural numbers. For any real numberx, ⌊x⌋ is the largest integer that is less than or equal tox.

1ST = 1 when the logical statementST is true, and0 otherwise. Finally,fX(·) is the probability

density function (PDF) for r.v.X.

II. SYSTEM MODEL

Consider a multicast network where a transmitter witht antennas (t ≥ 2) is sending common

information to two singe-antenna receivers. The channel vector from the transmitter to receiver

m is denoted byhm = [hm1 · · ·hmt]
⊤ ∈ Ct×1, wherehmn ≃ CN(0, 1) for m = 1, 2, n = 1, . . . , t.

Let χm = ||hm||2 for m = 1, 2, andH = [h1 h2] ∈ Ct×2 represents the entire channel state. At

the transmitter,x ∈ X , {x : x ∈ Ct×1, ||x||2 = 1} is employed as the beamforming vector and

a scalar symbols ∈ C is sent throught antennas. The received signal at receiverm is

ym =
√
Px†hms+ gm,

whereP denotes the transmit power andgm ≃ CN(0, 1) is the additive white Gaussian noise

term. We assume E[|s|2] = 1.

For the multicast network, the maximum achievable rate islog2

(

1 + P minm=1,2

∣
∣x†hm

∣
∣
2
)

[6].1 Let γ (x,H) = minm=1,2

∣
∣x†hm

∣
∣
2
, then, for the target data transmission rateρ, an outage

1In this paper, we only consider the channel quantization problem for transmit beamforming. Although the precoding matrix

can have higher rank than the beamforming vector, it can be deduced from [6, Theorem 1] and [6, Theorem 2] that optimal

beamforming vector actually achieves the same maximum achievable rate as the optimal precoding matrix in multicast networks

with two users. This also holds in the three-user case [7].
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event will occur if log2 (1 + Pγ (x,H)) < ρ, or equivalently, ifγ (x,H) < 2ρ−1
P

. Without loss

of generality, we assumeρ = 1 throughout this paper. Thus,2
ρ−1
P

= 1
P

. Results for other values

of ρ can be obtained similarly.

In the full-CSI case where all nodes in the multicast network know perfect CSI, the optimal

beamforming vector is computed as2

Full (H) = argmax
x∈X

γ (x,H) .

Therefore, the full-CSI outage probability is

OUT(Full) = Prob

{

γ (Full (H) ,H) <
1

P

}

= EH1γ(Full(H),H)< 1
P
. (1)

III. C HANNEL QUANTIZATION AND ENCODING RULE

For an arbitrary quantizerQ, the distortion with respect to the outage probability is defined

as

Dist = OUT (Q)− OUT (Full) .

SinceOUT (Full) is invariant for fixedP , minimizingDist is equivalent to designing a quantizer

to minimize OUT (Q). In the multicast network, we consider a global VLQ associated with

a random codebook{xi}N where xi ∈ X is independent and identically distributed with a

uniform distribution onX for i ∈ N [8]. We omit the subscriptN for notational convenience.

The random codebook is generated each time the channel statechanges and revealed to all nodes

in the network. It provides a performance benchmark since ifa random codebook can achieve

certain performance, one deterministic codebook can be found to surpass this performance. For

any realization of{xi}, the proposed VLQ is represented by

QVLQ = {xi,Ri, bi} , (2)

whereRi denotes the partition channel region ofxi for i ∈ N andxi is used as the transmit

beamforming vector whenH ∈ Ri. Different from FLQs in which each partition channel region

2For anyH, Full (H) exists becauseγ (x,H) is a continuous function onx andX is a bounded and closed set. There might

exist more than one unit-normal vector that can achieve maximum value of γ (x,H) andFull (H) can be any one of them.
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consists of channel states that achieves the optimal performance with the “centroid” codeword,

R0 in QVLQ is set as

R0 =

{

H : γ (x0,H) ≥ 1

P

}
⋃⋂

i∈N

{

H : γ (xi,H) <
1

P

}

, (3)

andRi for i ∈ N− {0} is set as

Ri =

{

H : γ (xi,H) ≥ 1

P

}
⋂ i−1⋂

k=0

{

H : γ (xk,H) <
1

P

}

. (4)

We can see that{Ri} is a collection of disjoint sets and the union ofRi for i ∈ N makes up

the entire channel space.R0 is a union set of channel states for which using all vectors inthe

codebook cannot prevent outage and ones for which usingx0 will not result in outage.3 Ri for

i ∈ N − {0} consists of channel states for which usingxi can prevent outage while using the

preceding vectorsx0, . . . ,xi−1 cannot.

Moreover, we letbi denote the binary string that represents the index ofxi. To be specific,

we setb0 = ǫ, which is an empty codeword4, b1 = {0}, b2 = {1}, b3 = {00}, b4 = {01} and

so on for all codewords in the set{ǫ, 0, 1, 00, 01, 10, 11, . . .}. The length ofbi is ⌊log2(i+ 1)⌋.
With perfect CSI and any realization of{xi}, QVLQ first determines the partition channel region

Ri in which the current channel stateH falls according to (3) and (4). Then, the corresponding

codewordxi is chosen and⌊log2(i + 1)⌋ bits are fed back to notify the index ofxi. After

decoding the feedback information,xi is employed by the transmitter as the beamforming vector.

Therefore, the average feedback rate ofQVLQ is

R (QVLQ) =
∞∑

i=1

⌊log2(i+ 1)⌋Prob{H ∈ Ri} =
∞∑

i=1

⌊log2(i+ 1)⌋EHE{xi}1H∈Ri
. (5)

The outage probability is given by

OUT(QVLQ) = E{xi}Prob

{

γ (xi,H) <
1

P
, ∀i ∈ N

}

= EHE{xi}1γ(xi,H)< 1
P
,∀i∈N. (6)

3It will be shown in Section IV that the channel region where using all codewords cannot prevent outage coincides with the

region where even the optimal beamforming vector fails to avoid outage withprobability one. Therefore,QVLQ can determine

whetherH belongs to this region or not based on the expression of the optimal beamforming vector given by [6, Theorem 2],

rather than checking all codewords in{xi}.

4An empty codeword is used here for illustration. Adding1 bit to each codeword to avoid an empty codeword only increases

the average feedback rate by1 bit per channel realization, thereby not impacting the result of the average feedback rate being

low.
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IV. OUTAGE OPTIMALITY

In this section, we show that the proposed VLQ in (2) will achieve the full-CSI outage

probability.

Theorem 1. For any P > 0, we have

OUT(QVLQ) = OUT(Full). (7)

Proof: Define

S1 =

{

H : H ∈ Ct×2, γ (Full (H) ,H) <
1

P

}

.

For any realization of{xi}, define

S2 ({xi}) =
{

H : H ∈ Ct×2, γ (xi,H) <
1

P
, ∀i ∈ N

}

.

For brevity, we omit the dependency ofS2 ({xi}) on {xi} and simply useS2. From (1) and (6),

OUT (Full) andOUT(QVLQ) can be rewritten as

OUT (Full) = EH1H∈S1 , (8)

OUT(QVLQ) = E{xi}EH1H∈S2 . (9)

For convenience, we define

S21 =
{
H : H ∈ S2, γ (Full (H) ,H) < 1

P

}
,

S22 =
{
H : H ∈ S2, γ (Full (H) ,H) = 1

P

}
,

S23 =
{
H : H ∈ S2, γ (Full (H) ,H) > 1

P

}
.

SinceS2 = S21 ∪ S22 ∪ S23 and S21, S22, S23 are mutually exclusive,OUT (QVLQ) in (9) is

rewritten as

OUT (QVLQ) =
3∑

l=1

E{xi}EH1H∈S2l
. (10)

In order to proveOUT(QVLQ) = OUT(Full), from (8) and (10), we will show E{xi}EH1H∈S21 =

EH1H∈S1, E{xi}EH1H∈S22 = 0 and E{xi}EH1H∈S23 = 0.

First, to prove E{xi}EH1H∈S21 = EH1H∈S1, it is sufficient to prove1H∈S1 = 1H∈S21 for any

realizations ofH and{xi}. When1H∈S1 = 0, it meansH /∈ S1 andγ (Full (H) ,H) ≥ 1
P

. Then,

H 6∈ S21 and1H∈S21 = 0. When1H∈S1 = 1, H ∈ S1. By the optimality ofFull (H), H ∈ S2.
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SinceS21 = S1 ∩ S2, H ∈ S21 and1H∈S21 = 1. Since1H∈S21 and1H∈S1 only take values at0

and1, 1H∈S21 = 1H∈S1 . Therefore, E{xi}EH1H∈S21 = EH1H∈S1.

Second, we will prove E{xi}EH1H∈S22 = 0. Define

S3 =

{

H : H ∈ Ct×2, γ (Full (H) ,H) =
1

P

}

.

By definition,S22 = S2∩S3. Then, E{xi}EH1H∈S22 ≤ EH1H∈S3 = Prob
{
γ (Full (H) ,H) = 1

P

}
.

Definemmin = argminm=1,2 χm, mmax = argmaxm=1,2 χm and θ =
|h†

1h2|2
χ1χ2

. According to [6,

Theorem 2],

γ (Full (H) ,H) =







χmmin
, θ ≥ χmmin

χmmax
,

χmmin

1+β2 , θ <
χmmin

χmmax
,

(11)

whereβ =
√
χmmin−

√
χmmaxθ√

χmmax−χmmaxθ
. Sinceθ, χ1, andχ2 are mutually independent,θ andχmmin

and

χmmax are also mutually independent [9]. Therefore, we obtain

Prob

{

γ (Full (H) ,H) =
1

P

}

= Prob

(

θ ≥ χmmin

χmmax

, χmmin
=

1

P

)

+ Prob

(

θ <
χmmin

χmmax

,
χmmin

1 + β2
=

1

P

)

≤ Prob

(

χmmin
=

1

P

)

+ Prob

(
χmmin

1 + β2
=

1

P

)

.

Since the probability that a continuous r.v. assumes a specific value is zero, Prob
(
χmmin

= 1
P

)
=

0. Moreover, Prob
(

χmmin

1+β2 = 1
P

)

can be rewritten as

Prob

(
χmmin

1 + β2
=

1

P

)

= Eχmmin ,χmmax
Prob{θ = g1 or θ = g2} ,

where5

g1 =

[

1

P
√
χmmin

χmmax

+

√
(

1− 1

Pχmmin

)(

1− 1

Pχmmax

)]2

,

g2 =

[

1

P
√
χmmin

χmmax

−
√
(

1− 1

Pχmmin

)(

1− 1

Pχmmax

)]2

.

For fixedχmmin
andχmmax , we obtain

Prob{θ = g1 or θ = g2} ≤ Prob{θ = g1}+ Prob{θ = g2} .

5g1 andg2 are obtained by substitutingβ =
√
χmmin

−
√

χmmax
θ√

χmmax
−χmmax

θ
into

χmmin

1+β2 = 1
P

and solving it as a quadratic equation with

respect to
√
θ.
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Since Prob{θ = gl} = 0 for l = 1, 2, Prob{θ = g1 or θ = g2} = 0. It follows that Prob
(

χmmin

1+β2 = 1
P

)

=

0, Prob
{
γ (Full (H) ,H) = 1

P

}
≤ 0 and E{xi}EH1H∈S22 ≤ 0. Since the probability is non-

negative,E{xi}EH1H∈S22 = 0.

Finally, we will prove E{xi}EH1H∈S23 = 0. Define

S4 =

{

H : H ∈ Ct×2, γ (Full (H) ,H) >
1

P

}

.

SinceS23 = S2 ∩ S4, it can be seen that

E{xi}EH1H∈S23 =

∫

H∈S4

fH(H)E{xi}1H∈S2
dH.

Then, to prove E{xi}EH1H∈S23 = 0, it is sufficicent to show E{xi}1H∈S2 = 0 for any H ∈ S4.

By contradiction, assume∃H̃ ∈ S4, s.t. E{xi}1H̃∈S2
= ε > 0. In contrast,

E{xi}1H̃∈S2
= Prob

{

γ
(

xi, H̃
)

<
1

P
, ∀i ∈ N

}

≤ Prob

{

γ
(

xi, H̃
)

<
1

P
, ∀i ∈ {0, 1, . . . , K − 1}

}

=

[

Prob

{

γ
(

xi, H̃
)

<
1

P

}]K

, (12)

whereK ≥ 1 can be any finite natural number. We shall use the following lemma, the proof of

which is provided in Appendix A.

Lemma 1. If γ (Full (H) ,H) > 1
P

, there exists Π ∈ (0, 1) such that for any x ∈ X with
∣
∣x†Full (H)

∣
∣
2 ≥ Π, γ (x,H) ≥ 1

P
holds.

From lemma 1, for a giveñH, we have

Prob

{

γ
(

xi, H̃
)

≥ 1

P

}

≥ Prob

{∣
∣
∣x

†
iFull

(

H̃
)∣
∣
∣

2

≥ Π

}

= (1− Π)t−1 > 0.

Therefore, Prob
{

γ
(

xi, H̃
)

< 1
P

}

≤ 1 − (1 − Π)t−1 < 1. By (12), it can be derived that

E{xi}1H̃∈S2
≤ [1− (1− Π)t−1]

K . SinceK can be chosen to be arbitrarily large, E{xi}1H̃∈S2
≤ 0

must hold. Then, E{xi}1H̃∈S2
= 0 and E{xi}EH1H∈S23 = 0, which completes the proof.

Remark 1: From the proof above, it can be seen that for any givenH, if the optimal beamform-

ing vectorFull (H) is able to make the channel strictly non-outage (i.e.,γ (Full (H) ,H) > 1
P

),

there must exist a certain region in the unit sphere for beamforming vectors with non-zero

probability where all the unit-normal vectors will also result in non-outage. On the other hand,
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the infinite vectors in the random codebook ensure that at least one efficient vector in that region

will eventually be chosen, thus making the channel state non-outage. This also explains why a

FLQ with a finite-cardinality codebook cannot achieve the full-CSI outage probability.

V. AVERAGE FEEDBACK RATE

In this section, we present an upper bound on the average feedback rate ofQVLQ based on

the random codebook{xi}.

Theorem 2. For any P > 0, we have

R (QVLQ) ≤ C0e
− 1

P

[
1

P
+

1

P 2t
+

log (1 + P )

P

]

, (13)

where C0 > 0 is a constant that is independent of P .

Proof: Define

H0 =
{
H : H ∈ Ct×2, χ1 ≥ 1

P
, χ2 ≥ 1

P

}
,

H1 =
{
H : H ∈ H0, γ (Full (H) ,H) < 1

P

}
,

H2 =
{
H : H ∈ H0, γ (Full (H) ,H) = 1

P

}
,

H3 =
{
H : H ∈ H0, γ (Full (H) ,H) > 1

P

}
.

Based on the encoding rule ofQVLQ and the random codebook{xi}, the feedback rate in (5)

can be rewritten as

R (QVLQ) =
3∑

l=1

∫

H∈Hl

ΦfH(H)dH,

where

Φ =
∞∑

i=1

pi(1− p)⌊log2(i+ 1)⌋, p = Prob

{

γ(xi,H) <
1

P

}

.

For anyH ∈ H1, p = 1 andΦ = 0; for anyH ∈ H2, from the proof in Theorem 1,p = 1 and

Φ = 0. Then,
∫

H∈H1
ΦfH(H)dH =

∫

H∈H2
ΦfH(H)dH = 0, andR (QVLQ) is equivalent to

R (QVLQ) =

∫

H∈H3

ΦfH(H)dH. (14)

The following lemma exhibits an upper bound onΦ, the proof of which is presented in

Appendix B.
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Lemma 2. For any 0 ≤ p < 1, we have

Φ ≤ p(1− p) +

(
6

log 2
+ 2

)

p2 +
2

log 2
p2 log

1

1− p
. (15)

Applying (15) to (14), it follows that

R (QVLQ) ≤ I1 + I2 + I3, (16)

where

I1 = C1

∫

H∈H3

p(1− p)fH(H)dH,

I2 = C2

∫

H∈H3

p2fH(H)dH,

I3 = C3

∫

H∈H3

p2
(

log
1

1− p

)

fH(H)dH,

andC1 = 1, C2 =
6

log 2
+ 2, C3 =

2
log 2

.

To proceed, we first present useful upper and lower bounds onp. For an upper bound onp,

using [10, Lemma 2] and [9], we derive that

p ≤
2∑

m=1

Prob

{∣
∣
∣x

†
ihm

∣
∣
∣

2

<
1

P

}

=
2∑

m=1

[

1−
(

1− 1

Pχm

)t−1
]

,

where the last equality arises from the fact that Prob

{∣
∣
∣x

†
ihm

∣
∣
∣

2

< x

}

= 1 −
(

1− x
χm

)t−1

[9].

Since(1 − a)b ≥ 1 − ab for 0 < a < 1 and b ≥ 1,
(

1− 1
Pχm

)t−1

≥ 1 − t−1
Pχm

. Therefore,p is

upper-bounded by

p ≤ t− 1

P

2∑

m=1

1

χm

. (17)

Another upper bound onp obtained from Lemma 1 and its proof in Appendix A is given as

p ≤ 1− (1− Π)t−1, (18)

where

Π = 1− min
m=1,2






∣
∣
∣[Full (H)]† hm

∣
∣
∣

2

− 1
P

χm






2

.

In addition, a lower bound onp (or equivalently, the upper bound on1− p) is obtained as

1− p ≤ Prob

{∣
∣
∣x

†
ih1

∣
∣
∣

2

≥ 1

P

}

=

(

1− 1

Pχ1

)t−1

. (19)
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To derive an upper bound onI1, sinceH3 ⊆ H0, we get

I1 ≤ C1

∫

H∈H0

p(1− p)fH(H)dH.

Substituting the upper bounds in (17) and (19) intoI1, it can be deduced that

I1 ≤
C4

P

2∑

m=1

∫

H∈H0

1

χm

(

1− 1

Pχ1

)t−1

fH(H)dH,

whereC4 = (t−1)C1. Sinceχm is chi-squared distributed, the PDF ofχm is fχm
(χm) =

χt−1
m e−χm

(t−1)!

for m = 1, 2 [11]. Then, we obtain

I1 ≤
C4

P

2∑

m=1

∫ ∞

1
P

∫ ∞

1
P

1

χm

(

1− 1

Pχ1

)t−1 [
χt−1
1 e−χ1

(t− 1)!

] [
χt−1
2 e−χ2

(t− 1)!

]

dχ1dχ2

=
C5

P

∫ ∞

1
P

(

1− 1

Pχ1

)t−1

χt−2
1 e−χ1dχ1

∫ ∞

1
P

χt−1
2 e−χ2

(t− 1)!
dχ2

+
C5

P

∫ ∞

1
P

(

1− 1

Pχ1

)t−1

χt−1
1 e−χ1dχ1

∫ ∞

1
P

χt−2
2 e−χ2

(t− 1)!
dχ2,

whereC5 = C4

(t−1)!
. Noting that

∫∞
0

xn−1e−xdx = (n − 1)! for n ≥ 1 and n ∈ N [11], I1 is

bounded by

I1 ≤
C5

P

∫ ∞

1
P

(

1− 1

Pχ1

)t−1

χt−2
1 e−χ1dχ1

∫ ∞

0

χt−1
2 e−χ2

(t− 1)!
dχ2

+
C5

P

∫ ∞

1
P

(

1− 1

Pχ1

)t−1

χt−1
1 e−χ1dχ1

∫ ∞

0

χt−2
2 e−χ2

(t− 1)!
dχ2

≤ C5

P

∫ ∞

1
P

(

1− 1

Pχ1

)t−1

χt−2
1 e−χ1dχ1 +

C6

P

∫ ∞

1
P

(

1− 1

Pχ1

)t−1

χt−1
1 e−χ1dχ1,

whereC6 =
C5

t−1
. Letting χ1 − 1

P
= λ1, the bound is derived as

I1 ≤ C5
e−

1
P

P

∫ ∞

0

λ1

λ1 +
1
P

λt−2
1 e−λ1dλ1 + C6

e−
1
P

P

∫ ∞

0

λt−1
1 e−λ1dλ1

≤ C5
e−

1
P

P

∫ ∞

0

λt−2
1 e−λ1dλ1 + C6(t− 1)!

e−
1
P

P

= C5(t− 2)!
e−

1
P

P
+ C6(t− 1)!

e−
1
P

P
= C7

e−
1
P

P
, (20)

whereC7 = (t− 2)!C5 + (t− 1)!C6.
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To deriveI2, applying the upper bound in (17) and based on the fact thatH1 ⊆ H0, we obtain

I2 ≤
C8

P 2

∫

H∈H0

[
1

χ1

+
1

χ2

]2

fH(H)dH

=
C8

P 2

∫ ∞

1
P

∫ ∞

1
P

[
1

χ2
1

+
1

χ2
2

+
2

χ1χ2

] [
χt−1
1 e−χ1

(t− 1)!

] [
χt−1
2 e−χ2

(t− 1)!

]

dχ1dχ2

=
2C8

(t− 1)!P 2

∫ ∞

1
P

χt−3
1 e−χ1dχ1

∫ ∞

1
P

χt−1
2 e−χ2

(t− 1)!
dχ2 +

2C8

(t− 1)!P 2

∫ ∞

1
P

χt−2
1 e−χ1dχ1

∫ ∞

1
P

χt−2
2 e−χ2

(t− 1)!
dχ2

≤ C9

P 2

∫ ∞

1
P

χt−3
1 e−χ1dχ1

∫ ∞

0

e−χ2χt−1
2

(t− 1)!
dχ2 +

C9

P 2

∫ ∞

1
P

χt−2
1 e−χ1dχ1

∫ ∞

0

χt−2
2 e−χ2

(t− 1)!
dχ2

=
C9

P 2

∫ ∞

1
P

χt−3
1 e−χ1dχ1 +

C10

P 2

∫ ∞

1
P

χt−2
1 e−χ1dχ1,

whereC8 = (t− 1)2C2, C9 =
2C8

(t−1)!
andC10 =

C9

t−1
. Whent ≥ 3, I2 is upper-bounded by

I2 ≤
C9

P 2
Γ

(

t− 2,
1

P

)

+
C10

P 2
Γ

(

t− 1,
1

P

)

, (21)

whereΓ(n, a) =
∫∞
a

xn−1e−xdx for n > 0, a > 0, is the incomplete gamma function. The

following lemma shows an upper bound on the incomplete gammafunction, the proof of which

is in Appendix C.

Lemma 3. For n > 0, n ∈ N and a > 0, we have

Γ(n, a) ≤ n!e−a
(
1 + αn−1

)
. (22)

Applying (22) to (21) yields

I2 ≤
C9

P 2
(t− 2)!e−

1
P

(

1 +
1

P t−3

)

+
C10

P 2
(t− 1)!e−

1
P

(

1 +
1

P t−2

)

= C11
e−

1
P

P 2
+ C12

e−
1
P

P t−1
+ C13

e−
1
P

P t
, (23)

whereC11 = C9(t− 2)! +C10(t− 1)!, C12 = C9(t− 2)! andC13 = C10(t− 1)!. Whent = 2, the

upper bound onI2 is

I2 ≤
C9

P 2

∫ ∞

1
P

e−χ1

χ1

dχ1 +
C10

P 2

∫ ∞

1
P

e−χ1dχ1

=
C9

P 2
E1

(
1

P

)

+ C10
e−

1
P

P 2

≤ C9
e−

1
P

P 2
log (1 + P ) + C10

e−
1
P

P 2
, (24)
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whereE1(z) =
∫∞
z

e−z

z
dz is the exponential integral with an upper bound asE1(z) ≤ e−z log

(
1 + 1

z

)

[11]. From (23) and (24), the upper bound onI2 for any t ≥ 2 can be obtained as

I2 ≤
[

C11
e−

1
P

P 2
+ C12

e−
1
P

P t−1
+ C13

e−
1
P

P t

]

× 1t≥3 +

[

C9
e−

1
P

P 2
log (1 + P ) + C10

e−
1
P

P 2

]

× 1t=2

≤ C14e
− 1

P

[
1

P
+

1

P 2t
+

log (1 + P )

P

]

, (25)

whereC14 = [C11 + C12 + C13]× 1t≥3 + [C9 + C10]× 1t=2. The last inequality is because when

0 < P ≤ 1, 1
P 2 ≤ 1

P 2t , 1
P t−1 ≤ 1

P 2t , 1
P t ≤ 1

P 2t ,
log(1+P )

P 2 ≤ 1
P 2 ≤ 1

P 2t ; whenP > 1, 1
P 2 ≤ 1

P
,

1
P t−1 ≤ 1

P
, 1

P t ≤ 1
P

, log(1+P )
P 2 ≤ log(1+P )

P
.

To deriveI3, we need to find an upper bound onlog 1
1−p

first. By applying (18), we obtain

log
1

1− p
≤ 2(t− 1) log

1

min
m=1,2

|[Full(H)]†hm|2− 1
P

χm

.

From (11), it can be found that whenθ ≥ χmmin

χmmax
, min
m=1,2

|[Full(H)]†hm|2− 1
P

χm
≥ χmmin−

1
P

χmmax
=

γ(Full(H),H)− 1
P

χmmax
;

when θ <
χmmin

χmmax
, min

m=1,2

|[Full(H)]†hm|2− 1
P

χm
=

γ(Full(H),H)− 1
P

χmmax
. Therefore, min

m=1,2

|[Full(H)]†hm|2− 1
P

χm
≥

γ(Full(H),H)− 1
P

χmmax
, and

log
1

1− p
≤ 2(t− 1) log

max
m=1,2

χm

γ (Full (H) ,H)− 1
P

. (26)

DefineH4 = {H : H ∈ Ct×2, χ1 ≥ χ2} andH5 = {H : H ∈ Ct×2, χ1 < χ2}. Substituting (26)

and (17) intoI3 yields

I3 ≤
C15

P 2

∫

H∈H1∩H4

[
1

χ1

+
1

χ2

]2

log
χ1

γ (Full (H) ,H)− 1
P

fH (H) dH

+
C15

P 2

∫

H∈H1∩H5

[
1

χ1

+
1

χ2

]2

log
χ2

γ (Full (H) ,H)− 1
P

fH (H) dH

=
2C15

P 2

∫

H∈H1∩H4

[
1

χ1

+
1

χ2

]2

log
χ1

γ (Full (H) ,H)− 1
P

fH (H) dH,

whereC15 = 2(t− 1)3C3. For anyH ∈ H1 ∩H4,
[

1
χ1

+ 1
χ2

]2

≤
[

1
χ2

+ 1
χ2

]2

= 4
χ2
2
. Therefore, it

follows that

I3 ≤
C16

P 2

∫

H∈H1∩H4

1

χ2
2

log
χ1

γ (Full (H) ,H)− 1
P

fH (H) dH, (27)
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whereC16 = 8C15.

DefineH6 =
{

H : H ∈ H1

⋂H4, χ2 ≤
∣
∣
∣h

†
1h2

∣
∣
∣

}

andH7 =
{

H : H ∈ H1

⋂H4, χ2 >
∣
∣
∣h

†
1h2

∣
∣
∣

}

.

With such notations,γ (Full (H) ,H) in [6, Theorem 2] can be rewritten as

γ (Full (H) ,H) =







χ2, H ∈ H6,

χ2

1+β2 , H ∈ H7,

where β =
√
χ2−

√
χ1θ√

χ1−χ1θ
and θ =

|h†
1h2|2
χ1χ2

. Then, the upper bound onI3 in (27) can be further

deduced as

I3 ≤
C16

P 2

∫

H∈H6

1

χ2
2

log
χ1

χ2 − 1
P

fH(H)dH+
C16

P 2

∫

H∈H7

1

χ2
2

log
χ1

χ2

1+β2 − 1
P

fH(H)dH

=
C16

P 2

∫

H∈H6∪H7

1

χ2
2

(logχ1) fH(H)dH

︸ ︷︷ ︸

=I3,1

+
C16

P 2

∫

H∈H6

1

χ2
2

log
1

χ2 − 1
P

fH(H)dH

︸ ︷︷ ︸

=I3,2

+
C16

P 2

∫

H∈H7

1

χ2
2

log
(
1 + β2

)
fH(H)dH

︸ ︷︷ ︸

=I3,3

+
C16

P 2

∫

H∈H7

1

χ2
2

log
1

χ2 − 1+β2

P

fH(H)dH

︸ ︷︷ ︸

=I3,4

.

Since{H6 ∪H7} = {H1 ∩H4} ⊆ H1 ⊆ H0 and log(x) ≤ x for x > 0, the upper bound onI3,1

is derived as

I3,1 ≤
C16

P 2

∫ ∞

1
P

∫ ∞

1
P

χ1

χ2
2

[
χt−1
1 e−χ1

(t− 1)!

] [
χt−1
2 e−χ2

(t− 1)!

]

dχ1dχ2

=
C16

P 2 [(t− 1)!]2

∫ ∞

1
P

χt
1e

−χ1dχ1

∫ ∞

1
P

χt−3
2 e−χ2dχ2

≤ C16

P 2 [(t− 1)!]2

∫ ∞

0

χt
1e

−χ1dχ1

∫ ∞

1
P

χt−3
2 e−χ2dχ2

=
C17

P 2

∫ ∞

1
P

χt−3
2 e−χ2dχ2,

whereC17 =
tC16

(t−1)!
. Whent ≥ 3, using (22), the bound onI3,1 becomes

I3,1 ≤
C17

P 2
Γ

(

t− 2,
1

P

)

≤ C18e
− 1

P

[
1

P 2
+

1

P t−1

]

, (28)

whereC18 = (t− 2)!C17. Whent = 2, we obtain

I3,1 ≤
C17

P 2

∫ ∞

1
P

e−χ2

χ2

dχ2 =
C17

P 2
E1

(
1

P

)

≤ C17
e−

1
P

P 2
log(1 + P ). (29)
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Then, from (28) and (29), for anyt ≥ 2, the upper bound forI3,1 can be

I3,1 ≤ C18e
− 1

P

[
1

P 2
+

1

P t−1

]

× 1t≥3 + C17
e−

1
P

P 2
log(1 + P )× 1t=2

≤ C19e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (30)

whereC19 = 2C18 × 1t≥3 + C17 × 1t=2. The last inequality can be verified by comparing both

cases when0 < P ≤ 1 andP > 1.

For I3,2, sinceH6 ⊆ H0, its upper bound can be

I3,2 ≤
C16

P 2

∫ ∞

1
P

[
χt−1
1 e−χ1

(t− 1)!

]

dχ1

∫ ∞

1
P

1

χ2
2

log
1

χ2 − 1
P

[
χt−1
2 e−χ2

(t− 1)!

]

dχ2

≤ C16

(t− 1)!P 2

∫ ∞

0

χt−1
1 e−χ1

(t− 1)!
dχ1

∫ ∞

1
P

χt−3
2 e−χ2 log

1

χ2 − 1
P

dχ2

= C20
e−

1
P

P 2

∫ ∞

0

(

log
1

λ2

)(

λ2 +
1

P

)t−3

e−λ2dλ2, (31)

whereC20 =
C16

(t−1)!
and the last equality arises from replacingχ2 − 1

P
by λ2. Whent ≥ 4, with

the help of (22), we get

I3,2 ≤ C20
e−

1
P

P 2

∫ 1
P

0

(

log
1

λ2

)(

λ2 +
1

P

)t−3

e−λ2dλ2 + C20
e−

1
P

P 2

∫ ∞

1
P

(

log
1

λ2

)(

λ2 +
1

P

)t−3

e−λ2dλ2

≤ C20
e−

1
P

P 2

∫ 1
P

0

(

log
1

λ2

)(
1

P
+

1

P

)t−3

dλ2 + C20
e−

1
P

P 2

∫ ∞

1
P

1

λ2

(λ2 + λ2)
t−3 e−λ2dλ2

≤ 2t−3C20e
− 1

P

P t−1

∫ 1
P

0

log
1

λ2

dλ2 +
2t−3C20

P 2

∫ ∞

1
P

λt−4
2 e−λ2dλ2

=
C21e

− 1
P

P t−1

[
1

P
+

logP

P

]

+
C21

P 2
Γ

(

t− 3,
1

P

)

≤ C21e
− 1

P

P t−1

[
1

P
+ 1

]

+
(t− 3)!C21e

− 1
P

P 2

[

1 +
1

P t−4

]

≤ C22e
− 1

P

[
1

P
+

1

P 2t

]

, (32)
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whereC21 = 2t−3C20 andC22 = 2× (t− 3)!C21 + 2C21. Whent = 3, (31) becomes

I3,2 ≤ C20
e−

1
P

P 2

∫ 1
P

0

(

log
1

λ2

)

e−λ2dλ2 + C20
e−

1
P

P 2

∫ ∞

1
P

(

log
1

λ2

)

e−λ2dλ2

≤ C20
e−

1
P

P 2

∫ 1
P

0

log
1

λ2

dλ2 +
C20

P 2

∫ ∞

1
P

e−λ2

λ2

dλ2

≤ C20
e−

1
P

P 2

[
1

P
+

logP

P

]

+
C20

P 2
E1

(
1

P

)

≤ C20
e−

1
P

P 2

[
1

P
+ 1

]

+
C20

P 2
e−

1
P log (1 + P )

≤ C23e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (33)

whereC23 = 3C20. When t = 2, since 1
λ2+

1
P

≤ P , I3,2 ≤ C20
e
− 1

P

P

∫∞
0

log 1
λ2
e−λ2dλ2. Following

the same steps in (33),I3,2 can be bounded by

I3,2 ≤ C24e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (34)

whereC24 = 3C20. Based on (32), (33) and (34), the upper bound onI3,2 for any t ≥ 2 is

I3,2 ≤ C25e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (35)

whereC25 = C22 × 1t≥4 + C23 × 1t=3 + C24 × 1t=2.

In I3,3, since0 ≤ β ≤ 1, log (1 + β2) ≤ log 2 < 1. Similar to the derivation forI3,1, the bound

on I3,3 is obtained as

I3,3 ≤ C26e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (36)

whereC26 =
2C16

t−1
× 1t≥3 +

C16

(t−1)!
× 1t=2.

For I3,4, sinceχ1, χ2 andθ are mutually independent, its upper bound can be derived as

I3,4 ≤
C16

P 2

∫

{χ1,χ2,θ}∈H′
7

1

χ2
2

(

log
1

χ2 − 1+β2

P

)

fχ1(χ1)fχ2(χ2)fθ(θ)dχ1dχ2dθ

=
C27

P 2

∫

{χ1,χ2,θ}∈H′
7

(

log
1

χ2 − 1+β2

P

)

χt−1
1 e−χ1χt−3

2 e−χ2(1− θ)t−2dχ1dχ2dθ,

whereC27 = C16

(t−1)!(t−2)!
and H′

7 is a transformed version of the pre-definedH7 with respect

to χ1, χ2 and θ. The PDF ofθ is given byfθ (θ) = (t − 1)(1 − θ)t−2 for 0 ≤ θ ≤ 1 [9]. By

changing the integration variables from(χ1, χ2, θ) into (β, χ2, θ), we obtain the Jacobian of the
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transformation as
∣
∣
∣
∂(χ1,χ2,θ)
∂(β,χ2,θ)

∣
∣
∣ =

∣
∣
∣
∂χ1

∂β

∣
∣
∣. For anyH ∈ H′

7, β =
√
χ2−

√
χ1θ√

χ1−χ1θ
, χ1 = χ2

(
√
θ+β

√
1−θ)

2 and
∣
∣
∣
∂χ1

∂β

∣
∣
∣ = 2

√
1−θχ2

(
√
θ+β

√
1−θ)

3 . Therefore,I3,4 can be bounded by

I3,4 ≤
C28

P 2

∫

{β,χ2,θ}∈H′′
7

(

log
1

χ2 − 1+β2

P

)[
χ2

(
√
θ + β

√
1− θ)2

]t−1

e
− χ2

(
√
θ+β

√
1−θ)2χt−3

2 e−χ2

× (1− θ)t−2

√
1− θχ2

(√
θ + β

√
1− θ

)3dχ2dβdθ

=
C28

P 2

∫

{β,χ2,θ}∈H′′
7

(

log
1

χ2 − 1+β2

P

)

χ2t−3
2 e−χ2(1− θ)t−

3
2

(√
θ + β

√
1− θ

)2t+1 e
− χ2

(
√
θ+β

√
1−θ)2 dχ2dβdθ

≤ C28

P 2

∫

{β,χ2,θ}∈H′′
7

(

log
1

χ2 − 1+β2

P

)

χ2t−3
2 e−χ2

(√
θ + β

√
1− θ

)2t+1 e
− χ2

(
√
θ+β

√
1−θ)2 dχ2dβdθ,

whereC28 = 2C27 and H′′
7 is a transformed version ofH′

7 with respect toβ, χ2 and θ. By

replacingχ2 − 1+β2

P
by χ,

∣
∣
∣
∂(β,χ2,θ)
∂(β,χ,θ)

∣
∣
∣ =

∣
∣
∣
∂χ2

∂χ

∣
∣
∣ = 1, then,I3,4 is further bounded by

I3,4 ≤
C28

P 2

∫

{β,χ,θ}∈H′′′
7

(

log
1

χ

)
e
− χ+

1+β2

P
(
√
θ+β

√
1−θ)2

(√
θ + β

√
1− θ

)2t+1

[

χ+
1 + β2

P

]2t−3

e−χ− 1+β2

P dχdβdθ

≤ C28

P 2

∫

{β,χ,θ}∈H′′′
7

(

log
1

χ

)
e
− χ+

1+β2

P
(
√
θ+β

√
1−θ)2

(√
θ + β

√
1− θ

)2t+1

[

χ+
1 + β2

P

]2t−3

e−χ− 1
P dχdβdθ, (37)

whereH′′′
7 is a transformed version ofH

′′
7 with respect toβ, χ andθ. Letting φ =

χ+ 1+β2

P

(
√
θ+β

√
1−θ)

2 ,
∣
∣
∣
∂(χ,β,θ)
∂(χ,β,φ)

∣
∣
∣ =

∣
∣
∣
∂θ
∂φ

∣
∣
∣. Since

√

χ+ 1+β2

P√
φ

=
√
θ + β

√
1− θ,

∣
∣
∣
∂θ
∂φ

∣
∣
∣ =

φ− 3
2

√

χ+ 1+β2

P
∣

∣

∣

1√
θ
− β√

1−θ

∣

∣

∣

. For anyH ∈ H′′′
7 ,

χ1 ≥ χ2, thus, φ = χ1

χ2
≥ 1 and 0 ≤

√
θ + β

√
1− θ ≤ 1. Then, 0 ≤ β ≤ 1−

√
θ√

1−θ
. Hence,

1√
θ
− β√

1−θ
≥ 1√

θ
− 1√

1−θ
× 1−

√
θ√

1−θ
= 1

(1+
√
θ)
√
θ
> 0. Therefore,

∣
∣
∣
∂θ
∂φ

∣
∣
∣ ≤ φ− 3

2

√

χ+ 1+β2

P
(1+

√
θ)
√
θ ≤

2φ− 3
2

√

χ+ 1+β2

P
due to0 ≤ θ ≤ 1. Moreover, sinceH′′′

7 ⊆ {(β, χ, φ) : 0 ≤ β ≤ 1, χ > 0, φ > 0},
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the upper bound in (37) becomes

I3,1,4 ≤ 2C28
e−

1
P

P 2

∫

{β,χ,φ}∈H′′′
7

(

log
1

χ

)

e−φ

[

χ+
1 + β2

P

]t−3

φt−1e−χdχdβdφ

≤ 2C28
e−

1
P

P 2

∫ ∞

0

∫ 1

0

∫ ∞

0

(

log
1

χ

)

e−φ

[

χ+
1 + β2

P

]t−3

φt−1e−χdχdβdφ

= 2C28
e−

1
P

P 2

[∫ ∞

0

φt−1e−φdφ

] ∫ ∞

0

∫ 1

0

(

log
1

χ

)[

χ+
1 + β2

P

]t−3

e−χdχdβ

≤ C29
e−

1
P

P 2

∫ ∞

0

∫ 1

0

(

log
1

χ

)[

χ+
1 + β2

P

]t−3

e−χdχdβ, (38)

whereC29 = 2(t− 1)!C28. Whent ≥ 4, since 1+β2

P
≤ 2

P
due to0 ≤ β ≤ 1, we obtain

I3,4 ≤ C29
e−

1
P

P 2

∫ ∞

0

(

log
1

χ

)[

χ+
2

P

]t−3

e−χdχ

= C29
e−

1
P

P 2

[
∫ 2

P

0

(

log
1

χ

)[

χ+
2

P

]t−3

e−χdχ+

∫ ∞

2
P

(

log
1

χ

)[

χ+
2

P

]t−3

e−χdχ

]

≤ C29
e−

1
P

P 2

[
∫ 2

P

0

(

log
1

χ

)[
2

P
+

2

P

]t−3

dχ+

∫ ∞

2
P

1

χ
[χ+ χ]t−3 e−χdχ

]

≤ 4t−3C29
e−

1
P

P t−1

∫ 2
P

0

log
1

χ
dχ+

2t−3C29

P 2

∫ ∞

2
P

χt−4e−χdχ

= C30
e−

1
P

P t−1

[

2

P
+

2 log P
2

P

]

+
C31

P 2
Γ

(

t− 3,
2

P

)

≤ C30
e−

1
P

P t−1

[
2

P
+ 1

]

+ C31(t− 4)!
e−

2
P

P 2

[

1 +

(
2

P

)t−4
]

≤ C30
e−

1
P

P t−1

[
2

P
+ 1

]

+ C32
e−

1
P

P 2

[

1 +

(
2

P

)t−4
]

≤ C33e
− 1

P

[
1

P
+

1

P 2t

]

, (39)

whereC30 = 4t−3C29, C31 = 2t−3C29, C32 = (t− 4)!C31, andC33 = 2C30 + 2C32. Whent = 3,

(38) is simplified to beI3,4 ≤ C29
e
− 1

P

P 2

∫∞
0

(

log 1
χ

)

e−χdχ. Similar to (33), the upper bound can

be derived as

I3,4 ≤ C34e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (40)
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whereC34 = 3C29. Whent = 2, since 1

χ+ 1+β2

P

≤ P
1+β2 ≤ P , I3,4 ≤ C29

e
− 1

P

P

∫∞
0

log 1
χ
e−χdχ. Still

applying the same derivation in (40), we obtain

I3,4 ≤ C35e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (41)

whereC35 = 3C29. Combining bounds derived in (39), (40) and (41), the bound onI3,4 for any

t ≥ 2 is

I3,4 ≤ C36e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (42)

whereC36 = C33 × 1t≥4 + C34 × 1t=3 + C35 × 1t=2. Based on (30), (35), (36) and (42),I3 is

upper-bounded by

I3 ≤ C37e
− 1

P

[
1

P
+

1

P 2t
+

log(1 + P )

P

]

, (43)

whereC37 = C19 +C25 +C26 +C36. Finally, from (20), (25) and (43), we get the upper bound

in (13), whereC0 = C7 + C14 + C37.

Remark 2: We mainly focus on showing how the number of average feedbackbits for QVLQ

changes withP . Therefore, it is beyond the scope of this paper to find the tightest bound, i.e.,

the smallest value forC0.

Remark 3: From (13), it can be seen that in the medium and high regions for P , the derived

upper bound on average feedback rate is dominated bye−
1
P

[
1
P
+ log(1+P )

P

]

; in the low region

for P , it is dominated bye
− 1

P

P 2t . Moreover, the upper bound will approach zero whenP → ∞ and

P → 0. The average feedback rate also behaves like this. This can be intuitively interpreted as

follows: whenP → ∞, any vector in the codebook will not cause an outage event, while when

P → 0, any vector will result in outage. According to the encodingrule of QVLQ, only empty

codewords will be fed back in both situations. Thus, the average feedback rate approaches zero.

VI. N UMERICAL SIMULATIONS

In this section, we perform numerical simulations to verifythe theoretical results for the outage

probability and the average feedback rate.

For each value ofP , a sufficiently large number of channel realizations will begenerated

in order to observe1000 outage events. In the pseudo-code presented below,OUT stands for

the simulated outage probability andR refers to the simulated average feedback rate. For each

channel realization, whether the full-CSI case could prevent outage will be checked firstly. If not,
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Simulation Procedure:

1: Initialization: givenP , Loop = 0, OUT = 0, R = 0;

2: while OUT < 1000

3: Index = 0;

4: Loop = Loop+ 1;

5: generate a realization ofH;

6: if γ (Full (H) ,H) < 1
P

7: OUT = OUT+ 1;

8: else

9: randomly generatex ∈ X ;

10: while γ (x,H) < 1
P

11: randomly generatey ∈ X ;

12: x = y;

13: Index = Index+ 1;

14: end

15: end

16: R = R+ ⌊log2(1 + Index)⌋;
17: end

18: return OUT = OUT

Loop
, R = R

Loop
.

an outage event is declared; otherwise, a random unit-normal vector will be generated repeatedly

until one that allows the channel realization to avoid outage is found. Finally, the simulated outage

probability is computed as 1000 divided by the number of all channel realizations, while the

simulated feedback rate is the average number of feedback bits. In our simulations, no endless

iteration is detected, which is equivalent to say that as long as the channel state is able to avoid

outage in the full-CSI case, a codeword that can also result innon-outage will be eventually

found in the randomly-generated codebook.

In Figs. 1 and 2, we plot the simulated outage probabilities and average feedback rates for

t = 2 and 3. The horizontal axis representsP in decibels. It can be observed that the average

feedback rates in both cases will decrease towards zero whenP increases towards infinity or
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Fig. 1. Simulated outage probabilities whent = 2, 3.
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Fig. 2. Simulated average feedback rates whent = 2, 3.
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decreases to zero. Furthermore, the average feedback ratesare small for allP . Whent = 2, the

average feedback rates for allP are no larger than1 bit per channel state; whent = 3, when

P ≤ −5 dB or P ≥ 10 dB, the average feedback rates are as low as0.5 bits per channel state.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have proved that in the two-user multicast network, the proposed VLQ can

achieve the full-CSI outage probability with a low average feedback rate. In the future, we intend

to work on a distributed quantizer for the multicast network. In this scenario, each receiver only

feedbacks its local channel information and no node can acquire the full CSI. We still aim to

approach the full-CSI outage probability at the cost of a finite average feedback rate.

APPENDIX A - PROOF OFLEMMA 1

Proof: We use the following lemma, the proof of which is given in Appendix D.

Lemma 4. For unit-normal complex vectors u,v,w ∈ Ct×1, we have

∣
∣|u†v|2 − |u†w|2

∣
∣ ≤

√

1− |v†w|2. (44)

For anyH satisfyingγ (Full (H) ,H) > 1
P

, let∆m =
∣
∣
∣[Full (H)]† hm

∣
∣
∣

2

− 1
P

, where0 < ∆m

χm
< 1

for m = 1, 2. If |x†Full (H) |2 ≥ Π = 1 − min
m=1,2

[
∆m

χm

]2

, by applying (44) and lettingu = hm

|hm| ,

v = x, w = Full (H), we derive that
∣
∣
∣
∣
∣

∣
∣
∣
∣

h†
m

|hm|
x

∣
∣
∣
∣

2

−
∣
∣
∣
∣

h†
m

|hm|
Full (H)

∣
∣
∣
∣

2
∣
∣
∣
∣
∣
≤
√

1− |x†Full (H) |2

=⇒
∣
∣
∣
∣

h†
m

|hm|
x

∣
∣
∣
∣

2

≥
∣
∣
∣
∣

h†
m

|hm|
Full (H)

∣
∣
∣
∣

2

−
√

1− |x†Full (H) |2

=⇒
∣
∣
∣
∣

h†
m

|hm|
x

∣
∣
∣
∣

2

≥ 1

Pχm

+
∆m

χm

−
√
1− Π ≥ 1

Pχm

=⇒
∣
∣h†

mx
∣
∣
2 ≥ 1

P
.

Since0 < Π < 1, the proof is complete.
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APPENDIX B - PROOF OFLEMMA 2

Proof: For p = 0, Φ = 0 and the upper bound in (15) holds. Hence, suppose that0 < p < 1.

Then,

Φ =
∞∑

i=1

pi(1− p)⌊log2(i+ 1)⌋

= p(1− p) +
∞∑

i=2

pi(1− p)⌊log2(i+ 1)⌋

≤ p(1− p) +
∞∑

i=2

pi(1− p) log2(i+ 1)

= p(1− p) + p(1− p)
∞∑

i=1

pi log2(i+ 2)

= p(1− p) + p(1− p)

[

p log2 3 +
∞∑

i=2

pi log2(i+ 2)

]

≤ p(1− p) + p(1− p)

[

p log2 3 +
2

log 2

∞∑

i=1

pi log i

]

. (45)

We estimate the sum
∑∞

i=1 p
i log i via the integral of the functionf(x) = e−βx log x, where

0 < β , − log p < ∞. We calculatef ′(x) = e−βx
(
1
x
− β log x

)
, where f ′ represents the

derivative off . For y log y = 1
β
, f ′(x) > 0 for 1 ≤ x < y, f ′(x) = 0 for x = y, andf ′(x) < 0

for x > y. The global maximum off is thus f(y). Since y log y = 1
β

> 0, y ≥ 1 must

hold, which impliesf(y) = e−βy log y ≤ e−β log y ≤ e−βy log y = e−β

β
. Let j = ⌊y⌋. Then,

1 ≤ j ≤ y < j + 1, and

∞∑

i=1

f(i) = 1j≥2

j−1
∑

i=1

f(i) + f(j) + f(j + 1) +
∞∑

i=j+2

f(i)

= 1j≥2

j−1
∑

i=1

∫ i+1

i

f(i)dx+ f(j) + f(j + 1) +
∞∑

i=j+2

∫ i

i−1

f(i)dx

≤ 1j≥2

j−1
∑

i=1

∫ i+1

i

f(x)dx+ f(y) + f(y) +
∞∑

i=j+2

∫ i

i−1

f(x)dx

= 1j≥2

∫ j

1

f(x)dx+ 2f(y) +

∫ ∞

j+1

f(x)dx

< 2f(y) +

∫ ∞

1

f(x)dx ≤ 2e−β

β
+

∫ ∞

1

f(x)dx, (46)
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where the first inequality follows sincef is increasing on(1, j) and decreasing on(j + 1,∞).

We now estimate the integral. With a change of variablesu = log x, dv = e−βxdx, we obtain
∫ ∞

1

f(x)dx =

(

− 1

β
log xe−βx

) ∣
∣
∣
∣

∞

1

+
1

β

∫ ∞

1

1

x
e−βxdx =

1

β
E1(β) <

e−β

β
log

(

1 +
1

β

)

.

Combining with (46) and subsitutingβ = − log p, it follows that
∞∑

i=1

f(i) <
p

− log p

[

2 + log

(

1 +
1

− log p

)]

<
p

1− p

[

2 + log

(

1 +
1

1− p

)]

<
p

1− p

[

2 + log
2

1− p

]

<
p

1− p

[

3 + log
1

1− p

]

, (47)

where the second inequality is because− log p > 1 − p for 0 < p < 1. Substituting (47) into

(45) yields that

Φ ≤ p(1− p) + p2(1− p) log2 3 +
2p2

log 2

(

3 + log
1

1− p

)

≤ p(1− p) + 2p2 +
6p2

log 2
+

2p2

log 2
log

1

1− p

= p(1− p) +

(
6

log 2
+ 2

)

p2 +
2

log 2
p2 log

1

1− p
.

This concludes the proof.

APPENDIX C - PROOF OFLEMMA 3

Proof: Γ(n, a) can be expanded asΓ(n, a) = (n− 1)!e−a
∑n−1

k=0
ak

k!
[11]. When0 < a ≤ 1,

Γ(n, a) ≤ (n − 1)!e−a
∑n−1

k=0
1
k!

≤ n!e−a; when α > 1, Γ(n, a) ≤ (n − 1)!e−a
∑n−1

k=0 α
k ≤

(n− 1)!e−a
∑n−1

k=0 α
n−1 = n!e−aαn−1. Therefore,Γ(n, a) ≤ max {n!e−a, n!e−aαn−1} ≤ n!e−a +

n!e−aαn−1 = n!e−a (1 + αn−1).

APPENDIX D - PROOF OFLEMMA 4

Proof: The left hand side of (44) can be rewritten as
∣
∣u†Gu

∣
∣, whereG = vv† − ww†.

Therefore, it is upper-bounded by the maximum value of
∣
∣|u†v|2 − |u†w|2

∣
∣ with respect to

u, which is the maximum absolute value for the singular value of G. Using Gram-Schmidt
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orthogonalization, we obtainv⊥ = w−vv
†
w

√

1−|v†w|2
, which satisfies|v†

⊥v⊥|2 = 1 and v†v⊥ = 0.

Then,w can be rewritten asw = vv†w+
√

1− |v†w|2v⊥. Therefore,G =
(
1− |v†w|2

)
vv†+

(
|v†w|2 − 1

)
v⊥v

†
⊥ andGG† =

(
1− |v†w|2

)
vv†+

(
1− |v†w|2

)
v⊥v

†
⊥. Since1− |v†w|2 ≥ 0,

the maximum absolute singular value ofG is
√

1− |v†w|2.
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