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Two-User Multicast Networks with

Variable-Length Limited Feedback

Xiaoyi (Leo) Liu, Erdem Koyuncu, and Hamid Jafarkhakéllow, IEEE

Abstract

We investigate the channel quantization problem for twerusulticast networks where the trans-
mitter is equipped with multiple antennas and either rezr@iv equipped with only a single antenna. Our
goal is to design a global quantizer to minimize the outagbaoility. It is known that any fixed-length
quantizer with a finite-cardinality codebook cannot achi¢ite same minimum outage probability as
the case where all nodes in the network know perfect chanatd sxformation (CSI). To achieve the
minimum outage probability, we propose a variable-lendttibgl quantizer that knows perfect CSI and
sends quantized CSI to the transmitter and receivers. Wiindom infinite-cardinality codebook, we
prove that the proposed quantizer is able to achieve thenmimi outage probability with a low average

feedback rate. Numerical simulations also validate ouorttgcal analysis.

Keywords

multicast, variable-length quantizer, outage probahilimited feedback

. INTRODUCTION

It is known that using more than one antenna at the trangmiitten greatly improve the
performance of communication systems. However, the padoce depends on the availability
of channel state information (CSI) at the transmitters awcdivers [1], [2]. Receivers can obtain
CSI through training sequences; however, the transmittersgt rely on the feedback information

from receivers to do so. Additionally, perfect CSI at the sraitters requires an “infinite” number
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of feedback bits, which is unrealistic due to the limitasoof feedback links. Therefore, it is
more practical to employ quantized CSI to design efficiemignaission schemes for wireless
networks.

There has been a lot of work on channel quantization in gougeint multiple antenna
systems. An overview of research on limited feedback canobe@d in [3]. In multiple-input
single-output (MISO) systems, a fixed-length quantizer@lrlis proposed in [1] to maximize
the capacity by applying the beamforming vector at the tratter. In FLQs, the number of
feedback bits per channel state is a fixed positive integemp@oed to the case that all the
nodes know CSI perfectly, fixed-length quantization alwayféess from some performance loss.
On the other hand, [4] proposes a variable-length quanfiZle®) to achieve the full-CSI outage
probability with a low average feedback rate. VLQs borrow ithea from variable-length coding
to allow binary codewords of different lengths to repregdifferent channel states. It has shown
in [4] that variable-length quantization does not suffemirperformance loss in MISO systems.

In this paper, we study the channel quantization problem uitioast networks with two
receivers. We use transmit beamforming and consider thageuprobability gap between the
proposed quantizer and the full-CSI case. For a FLQ, the atdneihcoding rule is to choose
the codeword “closest” to the channel state. For any fingteloality codebook, the outage
probability of a FLQ is strictly worse than that of the full-C&se [4]. To achieve the full-CSI
outage probability with a finite average feedback rate, wappse a VLQ with a codebook of
infinite cardinality. We expect that in such a VLQ, the codeivoovering a larger partition of
channel space can be represented by a fewer number of bifsislway, the average feedback
rate can be made finite.

Based on the above analysis, we propose a VLQ in multicastonk$wthat has access to
full CSI and sends quantized CSI to the transmitter and rexeiia error-free and delay-free
feedback links. We consider a random codebook with infinaedimality that is tractable for
analysis [5]. We prove that the outage probability for theQ/ls the same as the full-CSI case.
Afterwards, through a derived upper bound on the averagab#ek rate, we will show that:
(i) the average feedback rate is finite and small in the eméirge of transmit power; (ii) the
average feedback rate will converge to zero when the transmier approaches infinity or zero.
In addition to theoretical analysis, numerical simulati@ne presented to verify the effectiveness
of the proposed VLQ.



The remainder of this paper is organized as follows. In $acli, we describe the system
model. In Section Ill, we depict the proposed VLQ, includitgyencoding rule and the infinite-
cardinality random codebook. In Section IV, we prove tha firoposed VLQ achieves the
minimum outage probability. An upper bound on the averagellfeck rate is given in Section
V. Numerical simulations are shown in Section VI to validate theoretical analysis. We draw
the conclusions and introduce future work in Section VlInm@otechnical proofs are provided
in the appendices.

Notations: T represents transpose apdepresents conjugate transpoSalenotes the set of
complex numbers and™*" denotes the set of complex vectors or matric@®s.a, b) represents
a circulary-symmetric complex Gaussian random variabie) (with meana and covariance.
E[-] denotes the expectation and Pfep denotes the probabilityN is the set consisting of all
natural numbers. For any real number| x| is the largest integer that is less than or equat.to
1sr = 1 when the logical statemeSfT is true, and) otherwise. Finally,fx(-) is the probability
density function (PDF) for r.v.X.

Il. SYSTEM MODEL

Consider a multicast network where a transmitter witmtennast(> 2) is sending common
information to two singe-antenna receivers. The channetiovdrom the transmitter to receiver
m is denoted byh,, = [ - - hou] - € C%1, whereh,,,, ~ CN(0,1) for m =1,2, n=1,...,t.

Let x., = ||h,||? for m = 1,2, andH = [h; hy] € C'*2 represents the entire channel state. At
the transmitterx € X = {x : x € ¢! ||x||?> = 1} is employed as the beamforming vector and

a scalar symbo$ € C is sent through antennas. The received signal at receivers
Ym = \/FXTth + 9m,

where P denotes the transmit power amgd, ~ CN(0,1) is the additive white Gaussian noise
term. We assume [s|?] = 1.
For the multicast network, the maximum achievable ratégg (1 + Pmin,,— o ]xThmf)

[6].1 Let v (x, H) = min,,—; 5 [x'h,, ? then, for the target data transmission ratean outage

1In this paper, we only consider the channel quantization problem fosriiarbeamforming. Although the precoding matrix
can have higher rank than the beamforming vector, it can be deduwed[6, Theorem 1] and [6, Theorem 2] that optimal
beamforming vector actually achieves the same maximum achievablesrtie aptimal precoding matrix in multicast networks

with two users. This also holds in the three-user case [7].



event will occur iflog, (1 + Py (x,H)) < p, or equivalently, ify (x, H) < 2>*. Without loss
of generality, we assume= 1 throughout this paper. Thué% = %. Results for other values
of p can be obtained similarly.

In the full-CSI case where all nodes in the multicast netwarkvk perfect CSl, the optimal

beamforming vector is computed?as

Full (H) = argmaxy (x,H) .

xeX

Therefore, the full-CSI outage probability is

1

[1l. CHANNEL QUANTIZATION AND ENCODING RULE

For an arbitrary quantize®, the distortion with respect to the outage probability isirckl

as
Dist = OUT (Q) — OUT (Full) .

Since0uT (Full) is invariant for fixedP, minimizing Dist is equivalent to designing a quantizer
to minimize OUT (Q). In the multicast network, we consider a global VLQ assedatvith

a random codebooKx;}n wherex; € X is independent and identically distributed with a
uniform distribution onX’ for i € IN [8]. We omit the subscripiN for notational convenience.
The random codebook is generated each time the channethtaiges and revealed to all nodes
in the network. It provides a performance benchmark sin@e rdndom codebook can achieve
certain performance, one deterministic codebook can bedféa surpass this performance. For

any realization of{x;}, the proposed VLQ is represented by
Qvrq = {xi, Ri,bi}, (2)

whereR; denotes the partition channel regionxffor ¢ € IN andx; is used as the transmit

beamforming vector wheH € R;. Different from FLQs in which each partition channel region

2For anyH, Full (H) exists because (x, H) is a continuous function or and X’ is a bounded and closed set. There might

exist more than one unit-normal vector that can achieve maximum vélgd>a H) and Full (H) can be any one of them.



consists of channel states that achieves the optimal pesfuce with the “centroid” codeword,

Ro in Qurq Is set as

Ro= {8 00,0 = 5 fUN {10008 < 5}, ©

i€IN

el

andR; for i € N — {0} is set as

Ri= HZ’V(XiaH)Zl ﬂﬁl HIV(Xk7H)<l : (4)
{ PN 7)

We can see thafR;} is a collection of disjoint sets and the union Bf for : € IN makes up
the entire channel spac®, is a union set of channel states for which using all vectorth@
codebook cannot prevent outage and ones for which usingill not result in outag€. R; for
i € N — {0} consists of channel states for which usingcan prevent outage while using the
preceding vectorgg, . ..,x;_; cannot.
Moreover, we letb; denote the binary string that represents the index;offo be specific,
we setby = ¢, which is an empty codewotdb, = {0}, by = {1}, by = {00}, by = {01} and
so on for all codewords in the s¢t, 0,1,00,01,10,11,...}. The length ofb; is |log,(i + 1)].
With perfect CSl and any realization ¢%; }, Qvyq first determines the partition channel region
R; in which the current channel stak# falls according to (3) and (4). Then, the corresponding
codewordx; is chosen andlog,(: + 1)| bits are fed back to notify the index of;. After
decoding the feedback informatiax, is employed by the transmitter as the beamforming vector.

Therefore, the average feedback rateef.q is

The outage probability is given by

[
OUT(QVLQ) = E{xi}Prob{y (x;, H) < F’VZ € ]N} = EHE{Xi}]"y(xi,H)<%,Vi€]N' (6)

81t will be shown in Section IV that the channel region where using all amdds cannot prevent outage coincides with the
region where even the optimal beamforming vector fails to avoid outagepsithability one. ThereforeQvrq can determine
whetherH belongs to this region or not based on the expression of the optimal beain§ vector given by [6, Theorem 2],
rather than checking all codewords {x; }.

4An empty codeword is used here for illustration. Addihgit to each codeword to avoid an empty codeword only increases
the average feedback rate Ibybit per channel realization, thereby not impacting the result of the gedieedback rate being

low.



IV. OUTAGE OPTIMALITY

In this section, we show that the proposed VLQ in (2) will a&sfei the full-CSI outage
probability.

Theorem 1. For any P > 0, we have

OUT(QVLQ> = OUT(FUH). (7)

Proof: Define
1
S = {H :H e ¢ v (Full (H),H) < F} .

For any realization ofx;}, define

P
For brevity, we omit the dependency 8f ({x;}) on {x;} and simply useS,. From (1) and (6),

S ({xi}) = {H ‘H e ¢ v (x;,H) < l,Vi € ]N} )

0UT (Full) andOUT(QvLg) can be rewritten as
0uT (Full) = EH 1H€817 (8)
0UT(Qvrq) = Ex)Enlucs,- 9

For convenience, we define

Sy = {H:HeS,,y(Full(H),H) <5},
S» = {H:HeS,,y(Ful(H),H) =35},
Syy = {H:H€ES,, v (Ful(H),H) > 1

Since Sy = Sy U Sy U Sa3 and Sy, Sy, Sa3 are mutually exclusiveQUT (Qyrq) in (9) is

rewritten as

3
0UT (Qvirg) = Z E(x,)Exlues,, - (10)
-1

In order to prove0UT(Qyrq) = OUT(Full), from (8) and (10), we will show K Euxlucs,, =
Enlues,, Ex)Enlues,, = 0 and By, Exlues,, = 0.

First, to prove k., Enlucs,, = Enlucs,, it is sufficient to provelyes, = lues,, for any
realizations ofl and{x;}. Whenlycs, = 0, it meansH ¢ S, and~ (Full (H) ,H) > +. Then,
H & S5 and1ges,, = 0. Whenlges, = 1, H € §;. By the optimality ofFull (H), H € S,.



SinceSy; = SN Sy, H € S and 1yes,, = 1. Sincelyes,, and 1ges, only take values ab
andl, 1H6$21 = 1H€S1- Therefore, EXZ-}EHIHESgl = EHlHESl-

Second, we will prove E ;Exlues,, = 0. Define

S = {H :H € ¢ 4 (Full(H), H) = i}

P

By definition, Sy, = S>NS;. Then, By, Exlucs,, < Exlues, = Prob{~ (Full(H) , H) = 5 }.

t 2
Define mpy, = argming,—1.2 Xm, Mmax = argMmMax,,—12 Xm andf = % According to [6,
Theorem 2],

Xmmin7 6 Z Mn_mm’

v (Full (H) , H) = { "™ (11)
0 <o

where 5 = V\’;’”m“‘_v X’”ma*:. Sinced, x;, andy, are mutually independent, and x,, ., and
Xmmax ~Xmmax

Xmma, are also mutually independent [9]. Therefore, we obtain

1

Prob{w (Full (H) , H) = F}

= Prob( 0 > === ,, .. = = | + Prob( § < === ——n — —
( — 7X min P) + < Xmmax 1+52 P)

Mmax

1 . 1
< F:‘I’Ob(xmmin = F) + Prob(lx_’t—rfg2 = F) )

Since the probability that a continuous r.v. assumes a fipeeiue is zero, Proby,, .. =

=
~—
I

0. Moreover, Prok(xljr;gn = I%) can be rewritten as

Xmi 1
Prob| /—= — — | = E Prob{f = g, orf =
<1 + B2 P) Xmin :Xmmax { g1 92}7

where®
_ - 2

Fme V) O )
g1 = - - )
_P Xmmin Xmmax PXmmin PXmmax ]

— -2

Fee ) (o)
g = — (1= -
L P Xmmin Xmmax PXmmin memax ]

For fixed x,,,_.. and x,,,..., we obtain

Prob{0 = g, orf = g} < Prob{f = g, } + Prob{0 = g2} .

®¢g1 and g, are obtained by substituting = V\;’"“‘i“_ v XT"’“‘”: into Xfi‘Biz" = % and solving it as a quadratic equation with
respect toy/6.

Xmmax ~ Xmmax



Since Prod# = ¢;} = 0forl = 1,2, Prob{f = g, ord = g,} = 0. It follows that Prob("l’irgg“ = I%) =
0, Prob{~ (Full(H) ,H) = £} < 0 and E;x}Exlues,, < 0. Since the probability is non-
negative Ex1Exlues,, = 0.

Finally, we will prove B4, Exlues,, = 0. Define
1
Sy = {H :H e ¢? y (Full (H) ,H) > ]—3} )
SinceSy; = S, N Sy, it can be seen that

E{Xi}EH1H6823 — / fH(H)E{Xl}]-HGSde

HeS,
Then, to prove E,Eglucs,, = 0, it is sufficicent to show K, 1ues, = 0 for any H € S,.

By contradiction, assumeH € S, s.t. Exi}1lacs, = € > 0. In contrast,
. 1
E{Xi}lﬁGSQ = Prob{v (Xi,H> < F,VZ S ]N}

1
< Prob{y <XH> < Ve {01, K- 1}}

_ [Prob{y (.. 1) %H " (12)

where K > 1 can be any finite natural number. We shall use the followimgnha, the proof of
which is provided in Appendix A.

Lemma 1. If ~(Full(H),H

) > +, there exists IT € (0,1) such that for any x € X with
|xTFull (H)|* > 11, ~ (x, H) >

holds.

1
P
From lemma 1, for a givedI, we have
. 1 NE
: > L > f ’ >Ty =(1-ID"t>0.
Prob{y <XH> > P} > Prob{’xlFull (H) > H} (1-I)"1 >0

Therefore, Prol{y (xi,f{> < %} < 1-(1-1ID"' < 1. By (12), it can be derived that
Etetlies, < [1— (1 —I)*']". SinceK can be chosen to be arbitrarily largeuFl.s, < 0
must hold. Then, E 15,5, = 0 and B, Exluecs,; = 0, which completes the proof. |
Remark 1: From the proof above, it can be seen that for any gideif the optimal beamform-
ing vectorFull (H) is able to make the channel strictly non-outage (h&Full (H),H) > 1),
there must exist a certain region in the unit sphere for beamihg vectors with non-zero

probability where all the unit-normal vectors will also uésin non-outage. On the other hand,



the infinite vectors in the random codebook ensure that at taze efficient vector in that region
will eventually be chosen, thus making the channel statecutage. This also explains why a

FLQ with a finite-cardinality codebook cannot achieve thik @S| outage probability.

V. AVERAGE FEEDBACK RATE

In this section, we present an upper bound on the averagbdekdate ofQyiq based on

the random codebookx; }.

Theorem 2. For any P > 0, we have

1 1 1 10g(1+P)
R(QvLg) < Coe™ P Prpm T T p | (13)

where C,, > 0 is a constant that is independent of P.

Proof: Define

Vi
A
w|~ [

—— N N\~

Ho = {H:HeC™ x> 4% x2
Hy = {H:He Hy,~(Ful(H),H
H, = {H:He Hyv(Full(H),H
Hs; = {H:H e Ho, v (Full(H) H) >

Based on the encoding rule @fy1q and the random codebodk;}, the feedback rate in (5)

\_/\_/

can be rewritten as
3

= $ fg(H)dH
R (Qvrq) lzl/H:EHl Ju(H)dH,

where

® = Y 5L pliogyli-+ 1) = Prob{ s (x. H) < 1}

=1
For anyH € H,, p =1 and® = 0; for any H € H,, from the proof in Theorem Ip = 1 and
® = 0. Then, [, ®fu(H)dH = [, & fu(H)dH = 0, andR (Qviq) is equivalent to

R(Quig) — /H (R (14)

The following lemma exhibits an upper bound dn the proof of which is presented in

Appendix B.
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Lemma 2. For any 0 < p < 1, we have
1

6 2
O < p(l-— — 42 p? 2] 1
< p( p)+<log2+ )p Foga? 81, (15)
Applying (15) to (14), it follows that
R(QuLq) < I + Ir + I3, (16)
where
B=Cr [ p(1- p)faE)H
HeHs
L=Co [ pfa(E)iH
HeHs
I3 = 03/ (108; ) fu(H)dH
H€7-l3
andC’l =1, CQ 10g2 + 2, Cg 10g2

To proceed, we first present useful upper and lower bounds &or an upper bound op,

using [10, Lemma 2] and [9], we derive that
2 9 1 2 1 t—1
sy penlinf <} =2 |- (o) |

2 t—1
where the last equality arises from the fact that Fﬂ)bjhm‘ < a:} =1- (1 — i) [9].

Xm
t—1
Since(l1 —a)® > 1—abfor0 <a<1andb> 1, (1 — PXLM) > 1— 4. Therefore,p is
upper-bounded by

p<iTt e Z (17)

Another upper bound op obtained from Lemma 1 and its proof in Appendix A is given as
p<1—(1-1I), (18)

where
T 2 1 ?
‘[Full(H)] hm‘ ~1

m=1,2 Xm

In addition, a lower bound op (or equivalently, the upper bound dn— p) is obtained as

bd xit | > 2 Ly
—p< | > b= (1- .
1—p<Pro {‘xz 1) > P} (1 PXl) (29)
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To derive an upper bound oR, sinceH; C H,, we get

HcHo
Substituting the upper bounds in (17) and (19) ihrtpit can be deduced that

) & 1 1\
<= / —(1——) fer(H)dH,
1 P Z Het, Xom le H( )

m=1

whereCy = (t—1)C}. Sincey,, is chi-squared distributed, the PDFf, is f,,. (xm) = X Le—Xm

-1
for m = 1,2 [11]. Then, we obtain
o) 00 1 1 t—1 thle—xl Xt*le—xg
L <— —(1-—— : : dx:d
: Z/ [ (m) L) ] e
Cs < 1 )t_l t—2 — XXy e
P Jy Py, ! 1 (=)

Cs LN XX Cee
- 1— —— —teTX1d AL —
+ P % ( le) X1 € Xl/}lj (t—l)' X2,

oy Noting that [«

where (5 = "le=®dr = (n —1)! forn > 1 andn € IN [11], [; is
bounded by

C ]_ _ oo Xt_1€7X2
Il < —5 1 <]. — P—) t 6 deXl\/O' ﬁdXQ
05 t —X1 /OO Xg_Qe_X2
— d =—d
e ( x> g e

e 1 L
<7 ( ) e G (1 50) e,

Lettlng X1 — 5 = A1, the bound is derived as

w\

1
e P

>\
I, < C /\t 2emMdN + C —/ NlemMd),
1206 /0 Nt + Cp

1 1
< C5€PP / A2 M AN + Cy(t — 1)!%
0

_1 1 _ 1

e P e pP e r

whereC; = (t — 2)!1C5 + (t — 1)!Cs.
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To derivel,, applying the upper bound in (17) and based on the factihiat #,, we obtain

Cy [1 1]2
L <= —_ 4 — H)dH
’ P2 HeH, LX1 X2 fH( )

20 ol RS )
TP et dy:d
P2l Jo X X3 xaxe] L (E—1)! (t—1)! X1aX2
208 o0 3y /OO Xléfle—XQ 208 /OO o /OO X§72€_X2
e — ld —d 48 de —d
(t_l)'P2/ Xl e Xl % (t—1>' X2+ (t—l)'PQ Xl e Xl ) (t_1)| X2

L1 L L
P P P

Co [ i Teexy o G /°° T Xy e
<= e —22dxe + — m2ex1d / 22— (g

ES
P

Cy [ , o _ C <,
=5 [, XCe Mt oy [ xR M,
P P
whereCys = (t — 1)2C,, Cy = é—ﬂ%, andC = 2. Whent > 3, I, is upper-bounded by
Cy 1 Cho 1
L < =IT(t—-2 — —TI(t—-1, — 21
2_P2 ( 7P)+P2 ( 7P)7 ( )

whereT'(n,a) = [ 2" e "dz for n > 0,a > 0, is the incomplete gamma function. The
following lemma shows an upper bound on the incomplete gafumetion, the proof of which

is in Appendix C.

Lemma 3. For n > 0,n € IN and a > 0, we have

[(n,a) <nle™® (1+a""). (22)
Applying (22) to (21) yields
I < %(t —2)le"F (1 + P3_3> - %(t —1)le 7 (1 + Pf_Q)
_ cnepf + 012; 11 + 013%13, (23)

WhereC'll = Cg(t — 2)‘ -+ Clo(t — 1)', 012 = Cg(t — 2)' andclg = 010<t — 1)‘ Whent = 2, the
upper bound omn; is

Co [ e C <
P P
Cy 1 e P
= P (F) 0

-
-

e P e P
< Cgﬁlog(1+P)+CmF, (24)
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whereE, (z) = [ “<~dzis the exponential integral with an upper boundas) < e~=log (1 + 1)

[11]. From (23) and (24), the upper bound énfor anyt > 2 can be obtained as

1

e~ F e P e P e F e P
L < |Cn 2 + Cl2Pt_1 + 013? X 1i>3 + C9E10g (1+P)+ ClOE X 1o
1 1 1 log(l +P)
< Cuye™ P {ﬁ‘i‘ﬁ‘i‘T]a (25)

whereC'y = [C11 + Cia + Ci3] X 155+ [Co + Chp] x 1,5. The last inequality is because when
1

1 1 1 1 1 1 log(14-P) 1 1 . 1
0<P§11ﬁ§ﬁapt—1§ﬁ1ﬁ§ﬁ1 gPQ Sﬁ§ﬁ1WhenP>11ﬁ§F1
1 11 1 log(1+P) log(1+P)
m_ﬁiﬁéﬁaog]:a S gP .
To derive I35, we need to find an upper bound hmﬁ first. By applying (18), we obtain
1
log <2(t—1)log .
- ( ) in |[Full ()] 'y |~ &
m=1,2 Xm
u th |1 1 1
From (11), it can be found that whén> X™min | min [F H(H)i bl =P > T V(Mi(H)’H) b
o2 lL(ED) H) L all(H) Thy, | — L
when § < XZmin - pip LI — YRlE) B -5 Therefore, min [(Fall(ED) b | >
Mmax m:172 Xm Xmmax m:172 Xm
~(Full(H),H)— + and
Xmmax !
1 Lo X7
log <2(t —1)log — - (26)
1—p v (Full(H) , H) — 5

DefineH, = {H: H e C™% x; > x»2} andH; = {H: H € C"*% x| < x»}. Substituting (26)

and (17) into/; yields

Cis
Iy < —

1 1]° X1

— + —| log fu(H)dH
HceH 1NHy |:X1 X2:| ,-}/ (Fuu <H> 7H> - %

1

Cis 1 ? X2
bt T I H) dH
’ " ] 8 S Fan(m), 1) — 57

P2 HeH1NHs [Xl X2

= —+ | log ;
P2 Jaeroms LX1 X2 v (Full(H) , H) — 5

2 2
whereCi5 = 2(t — 1)*Cs. For anyH € H, N Ha, [Xl—l + é] < [é + X_ﬂ — Xi% Therefore, it
follows that

Cie 1 X1
b= 2108 fu (H)dH, (27)
PP Henyrms X5 (Full(H) , H) — & (H)



14

WhereCm = 8015.
Definets — {H H € Hy N Hay X2 < ‘h{m‘} andH; — {H CH € Hy (Ha, xo >
With such notationsy (Full (H) ,H) in [6, Theorem 2] can be rewritten as

h{hg‘}.

, H e Hs,
¥ (Full (H), H) = { ’
112}27 H € H77

t 2
where § = VeVl gnq g — % Then, the upper bound ofy in (27) can be further

Vx1—x10
deduced as
Cis 1 X1 Cie 1 X1
L<2l [ Zog fua(H)dH + 219 / Loy — X (H)aH
P2 HeHg X% X2 - % P2 HeH, X% 11/32 - %
Cis 1 Cis 1 1
— 5 (og ) fu(E)AH+ 52 [ o fu(H)dH
\PQ HeHeUH7 X3 B P2 Juens X5 X2 — %3 )
:};1 :};,2
Che 1 , Che 1 1
+— —log (1+ 0 fH(H)dH+—/ — log ————— fa(H)dH..
\PQ Hew, X3 ( ) J P? Juew, X3 X2 — IJ;BQ
:};3 =};,4

Since{Hs U H7} = {H1NHs} C Hi € Ho andlog(x) < z for « > 0, the upper bound o#; ;

Cle /OO /OO X1 [xi e [xg e
I3, < — = dy,d
M=pr ) 1 X2 | (t—1)! (t—1)! Xadxa

_ Clﬁ = t ,—Xx1 - t—3 —x2
—m/l X1€ Xm/1 X "€ dxe

is derived as

o

P

016 /Oo t — /oo t—3 —
< — e Xid e X2d
=Pt — 1)!]2 ; X1 X1 . X2 X2

o0
_ Oy -3

~l

=7 [, X e *dxa,
P
whereC,; = (’flf)!. Whent > 3, using (22), the bound of; ; becomes
C 1 1|1 1

I3, < P—127F (t -2, F) < Cie P [ﬁ + Ptl} ) (28)
whereC's = (t — 2)!Cy7. Whent = 2, we obtain

C 0 eTX2 C 1 e P

I3 < % o dxe = P—127E1 (1—3> < Cl?ElOg(l + P). (29)

P
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Then, from (28) and (29), for any> 2, the upper bound fof;; can be

l
1 1
Is; < 01867% {— + ﬁ} X 1i>3 + 017— log(1+4 P) X 1,9

= P2
1 1 1 log(l + P)
< Cge™ P [ﬁ‘f‘ﬁ‘i‘T]’ (30)

whereCiy = 2C15 x 1,53 + C17 X 1;,—5. The last inequality can be verified by comparing both
cases wheh) < P <1 andP > 1.

For I5,, sinceHs C H,, its upper bound can be

_ Cuo /°° Xite /°° 1 L [xy e
I — —d —1 d
32 — PQ (t—l)' Xl % X% Og X2_% (t_]_) X2

Cie * X e /OO -3 — 1
< d X2 ] d
~ (t—1)|P2/0 (t—l)' X1 % X2 € OgXQ_% X2
JE -3
— Oy St / (log i) (Ag v l) e=2d)y, (31)
P2 Ao P

whereCy = flf), and the last equality arises from replacing— % by A\s. Whent > 4, with
the help of (22), we get
_1 1 t—3 _L t—3
e r [P 1 1 I 1 1

[372 < C20ﬁ /0 <log /\2> ()\2 + P) */\2(31)\2 + 020 J22 / <10g )\—2> ()\2 + F) e*/\2d>\2
1 1 t—3 _ 1
e r [P 1 1 1 e r [*1 63 A
< J— — — I 2
~ 020 P2 /0 (10g /\2> (P + P) d)\g + 020 P2 11) /\2 ()\2 + )\2) d)\

- - 1
< t—4 _—MXo
S —pi1 /0 log — N —dX, —i— P2 /1 Ay e 2d g

P

< 0226_% {l + L} ’ (32)
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whereCy; = 2173Cy and Cyy = 2 x (t — 3)!Cy; + 2Cy;. Whent = 3, (31) becomes

P[P 1 P [ 1
Y —A
132 < CQO?/ (lOg )\—2) e 2d)\2 + 02(]?/}13 (log >\—2> e 2d)\2
e F Cyy [ e
< R
CQO P2 / lOg )\2d>\2 + — p2 /}) )\2 d)\g

e 7 [1 logP] C 1
< Co—05 [ﬁ + %} + %El (F)

1
< o'y {1 +1} + et 105 (14 P)

- P2 | P P2
1 1 1 log(l + P)
< 0236 P |:F + ﬁ T:| s (33)

_1
Whel’eC'23 = 3020. , S 020% fooo lOg %E_AQC-[)\Q. FO"OW|ng

the same steps in (33);, can be bounded by

1 1 log(l+ P)]
P T pu P2 * P ’
where (s, = 3Cy. Based on (32), (33) and (34), the upper bound[;ppfor anyt > 2 is

1 [1 1 log(l—l—P)
I3 < Cyse™? Pt |

Wherngg) = (9 X 1t24 + O3 X 14—3 + Cyy X 1;-5.
In I3 3, since0 < 5 < 1, log (1 + 8?) < log2 < 1. Similar to the derivation for; ;, the bound

I, < 02467% (34)

(35)

on I3 5 is obtained as

1
I35 < Cye™ P

{1 1 log(1+P)] @)

PTPET T P
where Cys = 298 x 1155 + ;245
For I5 4, sinceyx;, x» and#d are mutually independent, its upper bound can be derived as

016 1 1
13 4 <~ P_ 10g —62
{x1,Xx2, 9}€H7 X2 X2 P

X 1t=2-

) Fra (X1) fra (X2) fo(0)dx1dx2dd

= Cor log
p? {x1.x2.0 €M,

where Cy; =

1
—) X1 e MG e (1 - 0) P dyadedo),

m and . is a transformed version of the pre-defingd with respect

to x1, x2 and d. The PDF off is given by f, (6) = (t — 1)(1 — 0)"2 for 0 < 6§ < 1 [9]. By

changing the integration variables frafg,, x2, ¢) into (5, x2, #), we obtain the Jacobian of the
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(x1,x2,9) I VXz—vxi0 _ X2
transformation as* 6 d) 55 |- For anyH € Ho, B = oo X1 = Varviso) and
Ix1 _ 2y/1—0x2 ]
9 | = (arav’ Therefore,/5 4, can be bounded by
028 1 X2 =1 X2
IS 4 > 5 log |: :| 6_(\/§+5m)2 Xt73efxg
P2 Jigx01eny ( ) (VO + pV1—0)? ’
V1—196
x (1— )2 X2 4y,dBde
<\/§ BV 8)
2t—3 e—X o t—3
= 0_228 <log ) X2 2(1 9) thl e_(\/g+;jm)2 dXQd/BdH
P2 Jpeorens \ X2 = <\/' Ny )
C 1 23— ___xa
< % <1og ) X2 e (VIraVImOZ dyad Bde),
{B.x2.0 €M, <\/_+ V1 — )

where Cys = 2Cy; and 7—[7 is a transformed version 0H7 with respect tog, yo and ¢. By

replacingy, — =2 by y “9(%—’%9))‘ = |%2| = 1, then, I, is further bounded by
e 2t-3
C 1 RN = 1 2 2
-&Aﬁ'ﬁg (bg—) ‘ 2H1[X+'_;ﬁ} 6*‘%gdxm%w
Box)er (Vo+8vT=0)
et 2t—3
C 1 T (VorAvVI=0)2 1 27 2t—
<% log = ‘ x4+ 0 e~ FdydBde, (37)
P2 " 2t+1 P
{Bx0)ers (Vo+6vT=0)

whereH. is a transformed version df, with respect ta3, y andé. Letting ¢ = (WTH'

_3 1482
3()(,{379) — _ — (b 2\ x+ P "
)a(x,ﬁ«ﬁ)‘ = ‘ . Since = 1 5| = pE—— For anyH € .,

X1 > xa, thus,¢ = X > 1 and0 < \/_+5\/1— < 1. Then,0 < 8 < 11\[ Hence,
1B 11 17f_
> X (1+f)f > (. Therefore, 2

S

-3 1452
Lo > —gx = ‘<¢ 2y/x + HE(1+VO)VE <
2072/ x + 22 due to0 < 6 < 1. Moreover, sincé{; C {(8,x,¢):0< 8 <1,x > 0,¢ > 0},
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the upper bound in (37) becomes

1 t—3

— 1 1 2

I314 < 2028% (log —> e ? [x I b } ' teXdxdpde
P2 Jxoreny \ X P

—% oo 1 o) 27t—3
< 2028%/0 / <log l) e’ {X + 1—;ﬁ ] ' te XdydBde
-5 219t—3
g [ [ [ () o5
2qt—3
029— / / (log ) { “}f } e Xdydp, (38)

whereCyy = 2(t — 1)!Css. Whent > 4, since% < 1% due to0 < 5 < 1, we obtain

I3, < C. e ? / 1 ! + 21" —Xd
— og — — e
34 = L2955 . g N X P X

1 -

_c e P %1 1 +2t3_Xd+/ool 1 +2t73—xd
29P2 . OgX X P € X ) OgX X P € X

L P

1.2 t—3
e P P 1 2 2 *1 s
<Onr | [ (oey) [543 ave [T Lo
0 2

L P

1

e P 1 2t 3029
1 d =lexd

Pt—l/o 08~ + /X€X
031 2
o ( )

2 t—4
1 —
+(3)

2 t—4
1
| +(p)
1|1 1

< Csze™ P {f + ﬁ] ; (39)

Wher9030 = 4t73029, 031 = 2t73029, 032 = (t — 4)!031, and 033 = 2030 + 2032. Whent = 3,
(38) is simplified to bels 4 < Caysr )7 (log %) e Xdy. Similar to (33), the upper bound can

be derived as

2_{_ 210g§
Pt P P

e 7 [2
—+ 1| +Cxn(t—4)

T
L
g

1

CSO P

2
—+1} +C32

(40)

1 1 log(l+P)
P P2 P 7

1374 S 03467% |:— + = +
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1
H 1 P e P [©0 1 _— P
Where034 = 3029. Whent = 2, Slncew < o2 <P, ]374 < CQQTP fO log ;6 XdX Still
applying the same derivation in (40), we obtain

1 1 1 log(l—l—P)
13’4 < 0356 P |:F + ﬁ + T] ) (41)

whereCs; = 3Cy. Combining bounds derived in (39), (40) and (41), the boundsanfor any
t>21is

11 log(1+ P)
< e et =2 S )
13’4 < 0366 P |:P + pa + P :| s (42)

WhereC’36 = 033 X 1,524 -+ 034 X 1i—3 + 035 X 1i—s. Based on (30), (35), (36) and (421)3. is
upper-bounded by

Is < Csre7 P

P TPET T P
whereCs; = Chg + Cos + Cog + Cs6. Finally, from (20), (25) and (43), we get the upper bound
in (13), Wherec() =Cr;+ Cy + Csy. |

Remark 2: We mainly focus on showing how the number of average feedbaskor Qyr.q

i [1 1 1og(1+p)] “3)

changes withP. Therefore, it is beyond the scope of this paper to find thietéist bound, i.e.,
the smallest value fof’,.

Remark 3: From (13), it can be seen that in the medium and high regiongfdhe derived
upper bound on average feedback rate is dominated‘tﬁy[% + w}; in the low region
for P, it is dominated b)f;—f. Moreover, the upper bound will approach zero whenr> co and
P — 0. The average feedback rate also behaves like this. This eantlatively interpreted as
follows: whenP — oo, any vector in the codebook will not cause an outage eventewihen
P — 0, any vector will result in outage. According to the encodmite of Qyq, only empty

codewords will be fed back in both situations. Thus, the ayerfeedback rate approaches zero.

VI. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations to vetifg theoretical results for the outage
probability and the average feedback rate.

For each value ofP, a sufficiently large number of channel realizations will gpenerated
in order to observel000 outage events. In the pseudo-code presented beéldv,stands for
the simulated outage probability aRdrefers to the simulated average feedback rate. For each

channel realization, whether the full-CSI case could pregetage will be checked firstly. If not,
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Simulation Procedure;
1: Initialization: given P, Loop = 0, OUT = 0, R = 0;
2: while OUT < 1000

3: Index = 0;

4 Loop = Loop + 1;

5: generate a realization d;

6: if v (Full(H),H) < &

7: 0OUT = QUT + 1;

8: else

o: randomly generata € X’;
10: while v (x, H) < &

11: randomly generatg € X’;
12: X=Y,

13 Index — Index + 1;
14: end

15: end

16: R =R+ |logy(1 + Index)|;

17: end

18: return OUT = 2L R = 2.
oop Loop

an outage event is declared; otherwise, a random unit-iaator will be generated repeatedly
until one that allows the channel realization to avoid oatsgound. Finally, the simulated outage
probability is computed as 1000 divided by the number of hlhrmel realizations, while the
simulated feedback rate is the average number of feedbaésklbiour simulations, no endless
iteration is detected, which is equivalent to say that ag las the channel state is able to avoid
outage in the full-CSl case, a codeword that can also resulibmoutage will be eventually
found in the randomly-generated codebook.

In Figs. 1 and 2, we plot the simulated outage probabilitied average feedback rates for
t = 2 and 3. The horizontal axis represeni3 in decibels. It can be observed that the average

feedback rates in both cases will decrease towards zero \Whielcreases towards infinity or
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Fig. 2. Simulated average feedback rates when2, 3.

21



22

decreases to zero. Furthermore, the average feedbaclkaratemall for allP. Whent = 2, the
average feedback rates for dtl are no larger than bit per channel state; when= 3, when

P < -5dB or P > 10 dB, the average feedback rates are as low.adits per channel state.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proved that in the two-user multicasivark, the proposed VLQ can
achieve the full-CSI outage probability with a low averagedieack rate. In the future, we intend
to work on a distributed quantizer for the multicast netwdrkthis scenario, each receiver only
feedbacks its local channel information and no node caniecdoe full CSI. We still aim to

approach the full-CSI outage probability at the cost of adimiverage feedback rate.

APPENDIXA - PROOF OFLEMMA 1

Proof: We use the following lemma, the proof of which is given in Apdex D.
Lemma 4. For unit-normal complex vectors u, v, w € C**!, we have
[[ulv]® — [u'w]’| < /1 - [viw]2. (44)

2
For anyH satisfyingy (Full (H) ,H) > +, letA,, = ‘[Full (H)]Thm‘ —2, where) < 2= < 1

Xm

2
form=12. If xFul(H)|?>1=1— min [iﬂ , by applying (44) and lettings = IEZ

v = x, w = Full (H), we derive that

i, | |n i
Moy — | Full (H)| | < /1 — [xTFull (H) |2
h,,,| 'h,,|
hi, |°_ | ] i
=~ ‘\h_mlF“” (H)| — 1_ XFuall(H) P
ht |2 1 A 1
x| > ST > ——
|h,,| PXm  Xm Pxm

— [hlx* > .

Since0 < II < 1, the proof is complete. [ |
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APPENDIXB - PROOF OFLEMMA 2

Proof: Forp = 0, ® = 0 and the upper bound in (15) holds. Hence, supposeitkap < 1.
Then,

o = Zpl— |logy (i + 1) |

=p(1—p)+ Zp"(l — p)[logy(i + 1)

=2

<p(1—p)+ > _p'(1—p)logy(i+1)

1=2

=p(1—p)+p(1—p) ) p'log,(i+2)
=1
=p(1—p)+p(l—p) |plog,3+> p'logy(i +2)

1=2

2 o= .
<p(l—-p)+pl-p) p10g23+@;p logZ]- (45)

We estimate the sumy .-, p‘logi via the integral of the functiory(z) = e #"logx, where
0 < B2 —logp < co. We calculatef’(z) = e #* (1 — Blogz), where f’ represents the
derivative of f. Forylogy = %, flx) >0for1 <z <y, fllx)=0forz =y, and f'(x) <0
for x > y. The global maximum off is thus f(y). Sinceylogy = % > 0, y > 1 must
hold, which impliesf(y) = e logy < e Plogy < e Pylogy = %. Let j = |y]. Then,
1<j<y<j+1,and

D OFE) =12 @)+ fG) + FG+1) Zf

i=1 i=1 i=j+2
—1j>22/ FO)dz + () + f(G+1) Z
i=j+2

<1j>22/ fl@)dz + f(y) + f(y Z
1]+211

—1J>2/f o + 27 (y) + f()

<2/(y / / I (46)
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where the first inequality follows sincg is increasing or(1, j) and decreasing ofy + 1, co).

We now estimate the integral. With a change of variables log =, dv = e~#*dz, we obtain
1
——logxre™

[ sonee () [ v < +1)

= —E, < —log
Combining with (46) and subsituting = — log p, it follows that

FE0) <
DI <=

)

P {Z—i-log (1—1—
ogp —logp

)

1+ !
I—p

=)
5

where the second inequality is becauségp > 1 — p for 0 < p < 1. Substituting (47) into
(45) yields that

2+10g(

2—i—log1

(47)

341
—p |08

2 2p° 1
¢ <pl—p)+p(1-p)log3+—5 002 3+1lo S
6p> 2p? 1
1— 2p° 1
o p)+p+log2+log2 Ogl—p
6 2 1
=p(1 — —— +2)p*+ ——p*log ——.
p(l—p)+ (1Og2+ >p T loga? 81,
This concludes the proof. [ |
APPENDIXC - PROOF OFLEMMA 3
Proof: T'(n,a) can be expanded d&n,a) = (n — 1)le=* > 7~} ‘}c—k, [11]. When0 < a < 1,

I'(n,a) < (n—1)le >, _ Okll < nle™® whena > 1, [(n,a) < (n— 1)le 310 ok
(n—Dle=® > 770 a1t = nle~@a™ 1. ThereforeI'(n,a) < max {nle% nle~

1).

a1} <nlem® +

nle "t =nle (1 4+ o~ ]

APPENDIXD - PROOF OFLEMMA 4
Proof: The left hand side of (44) can be rewritten @§ Gu|, whereG = vvi — wwf.
Therefore, it is upper-bounded by the maximum value||®|ffv|2 — \uTwP\ with respect to

u, which is the maximum absolute value for the singular valigGo Using Gram-Schmidt
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orthogonalization, we obtairv, = m, which satisfies\vivg2 = 1andviv, = 0.

\/17|VTW‘2

Then,w can be rewritten a& = vviw +1/1 — [viw|*v,. ThereforeG = (1 — [viw[?) vv!+
(Vfw[? = 1) vivl andGGF = (1 — [viw]?) vl + (1 — [vIw|?) v.ivl. Sincel — [viw|? > 0,
the maximum absolute singular value @fis /1 — |viw|2. n
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