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NONLINEAR ANALYSIS OF REINFORCED CONCRETE PANELS,

SLABS AND SHELLS FOR TIME-DEPENDENT EFFECTS
Doctor of Philosophy Ahmad Fazlul Kabir Civil Engineering
ABSTRACT

A numerical method of analysis is developed to trace the quasi-
static responses of various types of reinforced concrete structures,
of practical interest, under sustained lcad conditions. Time-dependent
environmental phenomena, such as creep and shrinkage effects, are con-
sidered to obtain the evolution of the field variables of such struc-
tures in elastic and inelastic regimes. Ultimate collapses of shear
panels, slabs of arbitrary geometry and free-form shell-type structures
are then predicted considering local failures in steel and concrete
along with the deterioration of structural stiffness due to progressive
cracking.

The material behavior of concrete is characterized by a non-
Tinear constitutive relationship for the biaxial state of stress. This
includes tensile cracking at a limiting stress level, tensile unloading
after cracking and the strain-softening phenomenon beyond the maximum
compressive strength. For the deformations in the concrete zones, the
effects of stress history, partial creep recovery, aging and temperature
variations are considered. These characterize concrete to be an aging,
viscoelastic thermorheclogically simple material. Creep under the
biaxial state of stress is represented by the introduction of the
Poisson's ratio which is observed in a uniaxial, sustained Toad test.

The reinforcing steei, on the other nand, is represented by a bilinear,



strain-hardening model exhibiting the Bauschinger effect. The unloading

path due to stress reversal is also prescribed in the constitutive laws

EN

A finite element tangent

i

tiffness formuiation, coupled with a

(%]

time step integration scheme, is develcped to analyze the reinforced
concrete systems. Within a time step, an incremental load procedure,
with an iterative approach to solve the equilibrium equations for each
load increment, is adopted. The composite section of two different
materials is modeled as a layer system consisting of concrete and
‘equivalent smeared' steel layers. Stiffness properties of an element
are then obtained by integrating the contributions from all the layers
across the section.

Finally, computations for the effects of instantanecus and sus-
tained load history are carried out for some typical examples, which
include beams, panels, slabs and shells, employing membrane, plate
bending, and shell elements. These numerical results demonstrate close

correspondence with the available experimental data.
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1. INTRODUCTION

1.1 General Remarks

The usage of reinforced concrete as a building material for
complex structural systems has increased tremendousiy over the years.
Many of the structures, such as the structural units for nuclear con-
tainment systems, require sophisticated analysis and design procedures
to guarantee adequate provisions for public safety. The current design
methods are usually based on a linear-elastic analysis with the sim-
plifying assumptions that the materials are uncracked, homogeneous,
isotropic and linearly elastic. However, experimental and field
studies of such reinforced concrete structures as shells, folded plates,
etc., have indicated that many of these structures are Toaded beyond
the range of linear-elastic behavior. Furthermore, the behavior is
influenced by long-term effects such as creep, shrinkage, temperature
variation and load history. For many structures, these may prove to
pe more critical to the serviceability requirements than short time
loading effects. Since structures are designed to serve for a period
of time, it is essential that they perform satisfactorily within the
design period. In order to quarantee the serviceability of any struc-
ture throughout the operating period, it may be important to perform
an analysis to obtain the response history during that period incor-
porating inelastic and time-dependent effects. Moreover, for the
correct estimation of safety against failure, an ultimate analysis
becomes mandatory.

The development of an anaiytical model for reinforced concrete

structures is complicated because of the following factors:



1. Reinforced concrete is not homogeneous, being composed of
two different materials, concrete and steel. Concrete, itself, is
nonhomogeneous, having aggregates and cement paste as the main com-
ponents. The structural properties of concrete, such as strength and
deformation, can only be determine¢ at the macroscopic level and thus
represent averaged values. The variations due to the microscopic
structure are generally ignored because of the complexities involved
and because satisfactory prediction of structural response can be
made using properties at the macroscopic level.

2. The structural elements have a continuously changing geo-
metry due to the progressive cracking under increasing or sustained
loads and environmental changes.

3. The constitutive relationship for concrete is noniinear and
is a function of many variables. The failure criteria under multiaxial
stress states are very complex and dependent on many factors.

4. Concrete deformations are dependent on the load and envi-
ronmental history. Time-dependent factors such as creep, shrinkage,
temperature and humidity variations are often the major contributors
to the total deformations. Concrete, moreover, is an aging material
and its properties change with passage of time.

5. Cracking in concrete shows randomness in the sense that
although it is possible to predict the area where cracking will occur,
the actual location and direction will depend on the local variations
in the microstructure of concrete.

6. FEffects of dowel action in the steel reinforcement, aggre-
gate interiocking and bond-slip between the reinforcement and concrete

are very difficult to model analytically.



Experiments on microconcrete models can furnish valuable insight
into the behavior of prototypes but such tests are very expensive and
time-consuming, particularly when time-dependent effects are to be con-
sidered. Moreover, a large number of models need to be tested to
consider the possible variations of the important parameters. Therefore,
it is essential to develop general methods of analysis to complement, and
eventually, to replace the physical experiments. The accuracy and reli-
ability of such methods, however, have to be confirmed by selected well-

controlled experiments.

1.2 Literature Survey

The earliest published application of the finite element method to
reinforced concrete structures was by Ngo and Scordelis [1.1]. Simply
supported beams were studied using constant strain triangular (CST)
elements for both concrete and steel. Special bond link elements were
used to simulate bond between steel and concrete. Linear-elastic analyses
were performed on beams with predefined crack patterns to determine prin-
cipal stresses in the concrete, stresses in the steel reinforcement and
bond stresses. Ngo, Scordelis and Franklin [1.2], using the same approach,
studied shear in beams with diagonal tension cracks, considering the
effects of stirrups, dowel shear, aggregate interiock and horizontal
splitting along reinforcement near the supports.

Nilson [1.3,1.4] introduced nonlinear material and bond-slip rela-
tionships to study tensile members. Cracking was accounted for by stop-
ping the solution, when tensile failure in any element was indicated, and
redefining a new structure.

Bresler, et al. [1.6] carried out experimental and analytical studies

to determine the influence of load cycling on bond between concrete and



steel reinforcement. A finite element model was also developed assuming
a "boundary layer" adjacent to the steel-concrete interface whose elastic
constants were reduced to account for the effects of cracks and inelastic
deformations.

Franklin [1.5] developed an incremental, iterative procedurs to trace
the response history in one continuous computer analysis. Cracking was
accounted for by modifying the material properties and redistributing the
unbalanced forces. Reinforced concrete frames, with or without infilled
shear panels, were studied using frame-type elements, quadrilateral plane
stress elements, one-dimensicnal truss elements, two-dimensional bond
Tinks and tie 1inks.

Numerous investigatcors have studied reinforced concrete structures
with plane stress elements. Most of these solutions are similar to each
other and incorporate cracking and nonlinear material properties using
different finite elements or different constitutive relationships and
failure criteria for the concrete. Cracks are either considered to exist
between the element boundaries or in the majority of the cases within an
element.

Zienkiewicz, et al. [1.7] made two-dimensional stress studies which
include tensile cracking and elasto-plastic behavior in compression and
used an "initial stress" approach. Cervenka and Gerstle [1.8,1.9]
derived a constitutive relationship for a composite concrete-steel
material and studied reinforced concrete shear walls and spandrel beams
under monotonically increasing or cyclic loads.

McCutcheon, Mirza, Mufti, et al. [1.10, 1.11] have studied plane
stress problems incorporating automatic cracking and bond failures.

Yuzugullu and Schnobrich [1.12] analyzed shear wall frame systems

£y



with composite plane stress quadrilateral elements for walls, special
flexural elements for frames and link elements to connect wall elements
to frame elements. Darwin and Pecknold [1.13] proposed a solution for
wall-frames which incorporated load reversals. A number of additional
papers [1.14,1.15,1.16,1.17] have been published on plane stress systems,
which differ slightly from those mentioned above.

Jofriet and McNiece [1.18] studied progressive cracking of reinforced
concrete slabs with a semi-empirical bilinear moment-curvature relation-
ship. Bell and Elms [1.19,1.20] used a similar approach to study slabs.

A Tayer-type solution, where the siab elements are assumed to be
divided into layers and the layers are cracked progressively, is used by
several investigators including Dotroppe, et al. [1.12]; Berg, et al.
[1.22,1.23]; Backlund [1.24]; Schafer, et al. [1.25]; and Wegner, et al.
[1.26]. Berg included nonlinear geometry effects in his solution.

The analysis of reinforced concrete thin shells including cracking
by the finite element method is complicated by the fact that the in-plane
membrane (plane stress) action and the plate bending action are coupled.

Lin [1.27,1.28] used a triangular shell element composed of a
constant strain triangular (CST) membrane element and a linearly con-
strained curvature triangular (LCCT) plate bending element. A layered
system was adopted for tracing progressive cracking. Elasto-plastic
material behavior in compression and the Von Mises yield criteria were
assumed.

Bell and Elms [1.29] made a shell analysis by accounting for progres-
sive cracking in an approximate manner by using reduced flexural and
membrane stiffnesses for the elements. The stiffnesses were dependent

on the stress level at a particular load.
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Hand, et al. [1.30] used layered shallow shell rectangular elements
to analyze reinforced concrete shells.

Very little work has been done in treating reinforced concrete
systems as general three-dimensional solids, because of the computational
effort involved and the lack of knowledge of the concrete material behavior
under three-dimensional stress states. Suidan and Schnobrich [1.31] used
a 20-node three-dimensional isoparametric element for the analyses of
beams. Elasto-plastic behavior of concrete and steel and the Von Mises
yield criteria were assumed.

Ngo [1.32] used a netwcrk-topological approach to generate automa-
tically crack lines in the finite elements. The elements used were a bar
element, a two-dimensional isoparametric element, a bond element and a
link element.

£ large number of papers dealing with finite element analysis of
axisymmetric solids under axisymmetric loading have been published.
Rashid [1.33,1.34] and Wahl and Kasiba [1.35] made early finite element
studies of prestressed concrete reactor vessels treated as axisymmetric
structures. Comprehensive papers on the analysis of concrete reactor
vessels have been presented by Zienkiewicz, et al. [1.36] and by Argyris,
et al. [1.37].

The finite element method has also been applied to investigate the
behavior of reinforced concrete structures for time-dependent effects
such as creep, shrinkage, temperature changes and load history.

Bresler [1.38] described in detail the important factors that affect
the long-term behavior of reinforced concrete structures. Deformation in
concrete due to loading and unloading under variable environmental condi-

tions, such as temperature and moisture changes, and variable stress



history was examined. A stress-strain law, which took into account time,
temperature and moisture effects, was proposed. Two methods of analysis,
considering time and environment-dependent processes, were cutlined for
tracing the deformation and stress histories of reinforced concrete struc-
tures. The reinforced concrete composite section was modeled as a layered
system, having steel and concrete layers, in order to incorporate varia-
tions of material properties across the depth of the section.

Selna [1.39,1.40] formulated a concrete constitutive model to account
for creep, shrinkage and cracking. Concrete was assumed to be lTinear
visco-elastic material. He analyzed concrete columns, beams and frames
by a step-by-step integration in the temporal domain.

Aas-Jacobson [1.41] analyzed reinforced concrete frames for creep
and geometric nonlinearities. An effective modulus method, rate of
creep method and strain-hardening method were used to calculate creep
strain. Aldstedt [1!42] analyzed plane reinforced concrete frames con-
sidering a nonlinear stress-strain relationship for concrete, geometric
nonlinearity, creep and bond-slip effects.

Scanlon and Murray [1.43,1.44] extended Selna's creep model to the
biaxial stress case and anaiyzed slabs for time-dependent effects and
cracking. The concrete instantaneous stress-strain relationship was
assumed to be linear elastic.

Rashid [1.45] presented analyses of two-dimensional concrete struc-
tures incorporating nonisothermal creep and reversed loadings. Sarne
[1.46] analyzed three-dimensional concrete solids incorporating both
nonlinear material and time-dependent effects.

A comprehensive state-of-the-art review of the finite element method

for analyzing reinforced concrete structures was presented by Scordeliis



[1.47]. He dealt with several types of systems such as beams, plane
stress, plate bending, combinad plane stress and plate bending, axi-
symmetric solids and general thres-dimensional solids. Both short- and
long-time Toads were considered.

More recently, Schnobrich [1.48,7.49] and Wegner [1.50] have also
surveyed the various applications of the finite element method to predict
the behavior of reinforced concrete structures and the advantages and
shortcomings of some of the models being used.

Since 1967 an increasing number of papers have been publiched on
the finite element analysis of reinforced concrete. Many of these have
not been mentioned here as they essentially duplicate the works mentioned

above.

1.3 0Objective and Scope

A numerical method of analysis is developed to trace the quasistatic
responses of various types of reinforced concrete structures, for example,
shear panels, beams, slabs and shells, under short-term or sustained lcad
conditions. Time-dependent environmental phenomena, such as creep and
shrinkage effects, are considered to obtain the evolution of the field
variables--deflections, strains and stresses--of these structures in
elastic and inelastic regimes. Ultimate collapses of these structures
are then predicted considering local failures in steel and concrete along
with the deterioration of structural stiffness due to progressive cracking.

A finite element tangent stiffness formulation, coupled with a time
step integration scheme, is developed to analyze reinforced concrete
structuras. Within a time step, an incremental load procedure, with an
jterative approach to solve the egquilibrium equations for each load

increment, is adopted to trace the nonlinear behavior of such structures.

oo



The reinforced concrete ccmposite section is modeled as a layered
system of concrete and "equivalent smeared" steel layers. Perfect bond
is assumed to exist between concrete and steel layers. Stiffness pro-
perties of an element are then obtained by integrating the contributions
from all the layers across the section.

Concrete behavior under the biaxial state of stress is represented
by a nonlinear constitutive relationship which incorporates tensile
cracking at a Timiting stress, tensile stiffening between cracks and
strain-softening phenomenon beyond the maximum compressive strength.
Effects of stress history, partial creep recovery, aging, temperature
variations and shrinkage are included in the estimation of long-time
deformations in the concrete zones. Creep under biaxial state of stress
and at high stress levels is considered. The steel reinforcement is
represented by a bilinear, strain-hardening model exhibiting the Bauschinger
effect. The constitutive relations are based on small displacement theory.
Unloading paths are prescribed in the constitutive relations for stress
reversals.

Finally, several examples including beams, panels, slabs and shells,
are analyzed using the present method of analysis, employing triangular
membrane, plate bending and shell elements. The applicability of the
method to analyze various types of reinforced concrete structures is
demonstrated and the responses of these strucutres to sustained load
conditions are studied. Numerical results obtained from the analyses
are compared to available experimental data to check the validity of the

method of analysis presented herein.
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2. CONSTITUTIVE RELATIONS OF REINFORCED CONCRETE

2.1 General Remarks

Reinforced concrete is a composite material consisting of con-
crete and steel reinforcement. Most of the properties of steel rein-
forcement can be specified consistently because of the homogeneity of
the material in the macroscopic sense. Concrete, on the other hand,
is heterogenecus--its chief constituents being cement paste and aggre-
gates. Concrete is unique among structural materials in that it inter-
acts with its environment, undergoing complex physical and chemical
changes with the passage of time. It is, therefore, quite a difficult
task to determine accurately the changing properties of concrete with
time and under changing environmental conditions.

The material properties of concrete and steel will depend on
the stress or strain state of the material. It is assumed that perfect
bond exists between steel and concrete, and hence, the bond-slip
phenomenon will not be considered. In the case of the plate bending
element and the shell element, the strain state will vary across the
deptn of the element causing such material states as cracking, yielding,
etc., which will spread progressively through the depth. Such elements
will be divided into concrete and steel layers through their depths to
take into account the variation in the material properties through the
depth.

2.2 Constitutive Relations of Concrete

2.2.17 Deformation of Concrate

Defcrmation of concrete is very important in the analysis and



design of reinforced concrete structures as one of the important

criteria for serviceability 1s based on the extent of deformation.

T P IR SR La B T T g o I T T o = I
Tne complexity of the Tactors affecting the de

{D

has prevented, as vet, the formulation of a general theory of defor-

[¥2)

mation encompassing all experimental observations. However, the
following general facts have been observed in the behavior of concrete.

Figure 2.1 shows the deformations of a concrete specimen (a
cylinder or a cube) under different loading and environmental conditions
to illustrate the different factors that generally influence the defor-
mations. Figure 2.1a records the deformation of the specimen with the
passage of time under no external loads. Such a deformation, which
mainly occurs because of hygral inequilibrium between the specimen and
environment, is defined as shrinkage.

Figure 2.1b shows the deformation history of the specimen under
hygral equilibrium and a constant axial compressive load. At time to
when the load is applied, there is deformation which may be defined as
instantaneous elastic deformation. With passage of time from tO to t],
and increase in deformation is observed though there is no shrinkage
deformation as hygral equilibrium is maintained between the specimen
and the environment. Also, since the load is kept constant there
cannot be any increment in the instantaneous deformation. The incre-
ment in deformation with time under a sustained load is defined as
creep.

Creep is usually defined in the Tifterature as that part of defor-
mation which is in excess of nominal instantaneous elastic deformation.
In reality, concrete is an aging material which means that its strength

increases with the passage of time. So, the true instantaneous elastic
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deformation at time ty will be less than that obtained at time to' The
creep should, then, be defined as the deformation in excess of the true
instantaneous elastic deformation.

Figure 2.1c shows the creep, shrinkage and elastic parts of the
deformation of a loaded specimen. This is a simplified approach which
js not fully accurate since creep and shrinkage are shown to be addi-
tive while, in reality, they are not independent phenomena. In fact,
the presence of shrinkage increases creep. In the present study, the
simplified approach will be adopted. In this chapter the constitutive
relations of concrete for instantaneous elastic deformation will be
considered while the the next chapter will deal with creep and shrinkage

effects.

2.2.2 Biaxial State of Stress

Concrete under a biaxial state of stress, as assumed to occur
in such structural elements as slabs, shells, folded plates, etc.,
shows a different behavior than that under a uniaxial state of stress.
Figure 2.2 shows typical experimental stress-strain curves for concrete
under biaxaial compression highlighting the differences between the
uniaxial and biaxial states.

First , it is seen that the maximum compressive strength
increases for the biaxial stress state. Kupfer, Hilsdorf and Rusch
[2.1] obtained experimental values of biaxial compressive strengths
which are as much as 27% higher than the uniaxial ones.

Second, concrete “ductility" at maximum compressive strength
increases for the biaxial stress state.

Third, the stiffness of concrete in one of the principal direc-

tions increases in the presence of compressive stress in the
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perpendicular direction. According to microcracking theory, the

increase in stiffness is mainly due to the confinement of potential
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Recognizing the fact that the constitutive relationship in the
biaxial state of stress will be different from that in the uniaxial
case, several investigators [2.1,2.2,2.3,2.4,2.5,2.6] presented experi-
mental data on specimens under biaxial states of stress.

Much of the early information is suspect because of the recent
recognition of the technical difficulties involved in obtaining the
Stress state desired and measuring accurately the extremely small multi-
axial strains. Kupfer, et al. [2.1], provide some of the most complete
experimental information on the biaxial behavior and ultimate strength
of concrete. Stress-strain curves obtained from biaxially loaded spe-
cimens tested at different ratios of principal stresses were presented
(Figs. 2.3, 2.4, 2.5). The ratio of the stresses was held constant
throughout loading, thus providing the proportional loading condition.
Nine ratios were examined covering the entire range of compression-
compression, compression-tension and tension-tension. Biaxial strength
envelope (Fig. 2.6) and failure modes for various stress ratios were
also presented.

Liu, et al. [2.7], modeled concrete as an orthotropic material

under biaxial loading. For biaxial compression, they proposed a con-

stitutive relationship of the form:
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i3 Ops € = maximum biaxial compressive stress and corresponding strain;
v = Poisson's ratio; EO = initial tangent modulus under uniaxial load-
ings s Es = secant modulus at maximum stress, Up/gp;and o, = stress ratio,
s}/ag, Gy > Op- It should be noted heve that compressive stresses and
strains are assumed to be negative whereas tensile stresses are assumed
to be positive. This is the sign convention followed in this study
uniess otherwise indicated.

For a uniaxial stress state, i.e., o = 0, Eq. {2.1) reduces to
the stress-strain relationship proposed by Saenz [2.8]. Equation (2.1)
is valid for biaxial compression only, and does not take into account
toad reversal. The value of Ep in the major compressive direction,

i.e. direction 2, is fixed at 0.0025, while Ep in minor direction 1
varies. Maximum compressive strength, Op, has a constant value of 1.2
fé for values of o between 0.2 to 1.0. Here, fé refers to maximum
compressive strength under uniaxial loading.

Romstad, et al.[2.9], proposed an elaborate muitilinear biaxial
constitutive model for concrete. In this model, the principal stress
or strain space is divided into regions of equal damage, each of
which possesses particular values of modulus of elasticity and Poisson's
ratio.

Kupfer and Gerstle [2.10] have proposed an isotropic material
model. They presented a series of expressicns for the secant shear
modulus and the secant bulk modulus. The expressions were derived by
curve fitting the data obtained by testing three sets of concrete spe-
cimens under various combinations of monctonic biaxial stress. Octa-
hedral shear stress is the controlling parameter of the model behavior.

This model does not account for unloading and the correspondence with

o
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experimental data is not good at high stress levels. Concrete is

also assumed to be isotropic in this model, whereas stress-strain
curves under biaxial stresses strongly s
tropic material behavior as illustrated in Fig. 2.7.

Chen, et al. [2.11], assumed concrete to be an isotrepic, homc-
geneous and linearly elastic, plastic, strain-hardening and fracture
material. The initial discontinuous surface, locading surfaces, and
failure surface of concrete are developed, and the elasto-plastic
stress-strain incremental relationships of concrete are derived for
plane stress case in matrix form. The loading surfaces in principal
stress space and octrahedral stress space are illustrated in Figs.

2.8 and 2.9.

Darwin and Pecknold [2.12,1.13] have extended Liu's [2.7] model
to incorporate cyclic loading and strain-softening in compression.
This model is illustrated in Fig. 2.10. For biaxial compression, they

suggested a family of curves, depending on the biaxial stress ratio, to

express the constitutive relationship:

aniu
o = - 5 (2.2)
[ .
1 + EQ., E‘U +f Y
Cs ic “ic
where €5y © 'equivalent uniaxial strain' in the principal stress direc-
tion 1 Tics B3¢0 = maximum compressive stress and corresponding strain

in the principal direction i to be obtained from the biaxial failure
envelopa of Kupfer and Gerstle [2.10]; EO = initial unjaxial tangent
modulus;and ES = secant modulus, Qic/gic'

For tension,
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= [ 2_
9 0 iu (2.3)
. <O
for O‘l«dﬂl
where Tip = tensile strength of concrete in principal stress direction

i.

The concept of 'eguivalent uniaxial strain' provides a means of
separting the Poisson effect from the cumulative strain and permits a
convenient representation of concrete under plane stress as an incre-
mentally linear orthotropic material.

In the absence of any experimental data on biaxial cylic lcading,
Darwin, et al. adopt the envelope curve, obtained from experiments
conducted by Karsan and Jirsa [2.16] on concrete specimens under uni-
axjal cyclic loading, as the basis for their model of the strain-
softening phenomenon beyond the maximum compressive strength for biaxial
cyclic Toading. The strain-softening envelope is assumed to drop

., to a stress level of

Tienarly from maximum compressive strength, Tic

, Where fé and £_ . are

cu

0.2 fé at an ultimate crushing strain of 4 €eu

the maximum compressive strength and corresponding strain from a uni-
axial load test. The stress and strain at uitimate crushing are
assumed to be independent of the biaxial stress ratio. Unloading due
to cyclic loading is assumed to occur with a slope equal to the initial
uniaxial tangent modulus, EO, before the maximum compressive strength,
i is reached. Beyond Tscs the unloading and reloading paths are
modeled in a more complex fashion and will not be described here.

In the present study, the concrete material model suggested by

Darwin, et al., will be adopted with some modifications. This model

is easy to incorporate in an incrementaliy linear, orthotropic plane



stress constitutive relationship as often used in the finite element

analysis of structures with material nonlinearity.

2.2.3 Constitutive Model for Present Study

—d

A displacement formulation of the finite element method is used

in the present investigation for analyzing structures with material
nonlinearities. To trace the nonlinear load-deformation behavior of

such structures, the finite element method, which is a linear method of

analysis, is used in an incremental load step solution procedure with
| an iterative approach at each load step. The material is assumed to
be linear for each iteration. A linear solution is then obtained, the
material properties are updated, and the iterative procedure is con-
tinued until the correct solution is approached within some allowable
tolerances. The material matrix used for each element is to be in an
incremental form to accommodate the changes after each iteration. For
an isotropic material under plane stress, the incremental constitutive

relationship is given as:

{dO}\ E vE 0 Jdaf

- 1 e -
daz = — \)2 vE E 0 dc,z (2.4)
dT}Z 0 0 (1 -2)G dy]Z

where E = uniaxial tangent modulus, G = E/2(1+v) = uniaxial shear modu-
Jus, v = Poisson's ratio, and 1 and 2 are principal stress directions.

Equation (2.4) may be extended for orthotropic material as:

do, By vk, 0 de,
- i —
dop o B B 0 4y (2.5)




where 1 and 2 are the orthotropic material directions; E1, E2 =

tangent moduli in directions 1 and 2 under uniaxial loading; v,, v, =
- = 1 2

Poi ! atio in directions 1 and 2, and G' = shear modulus for the

-
>

1%

son
orthotropic material under plane stress.

Concrete under a biaxial state of stress behaves as an ortho-
tropic material in the two principal stress directions as illustrated
by the experimental results in Fig. 2.7. In the present study, con-
crete is assumed to be orthotropic in the principal stress directions.
Moreover, as an approximation for simplicity, it is assumed that
vz = ViVps where v is the effective Poisson's ratio under biaxial
stress; and for symmetric material behavior, v]E] = vZEZ is assumed.
No experimental data are available regarding the value of the shear
modulus under the biaxial state of stress, G'. It has been demon-
strated [2.12] that a value of

G' = Zz;j:f;§)[51 +Ey - ZvJE;EE ]
does not show bias to any particular direction with respect to shear

stiffness. The above value is also adopted in the current study.

Hence:
dc] E} v#EiEZ 0 de}
- 1 r
dOZ = T‘:‘—\-)-Z‘ N "]EZ E2 0 4 d€2 (2.6)
- e s =

is the incrementally linear, orthotropic constitutive relationship
adopted for concrete under a biaxial state of stress.
The above equation, Eq. (2.6), gives the constitutive rela-

tionship in the principal stress directions. If the element coordinate

25



™
¥y

system x-y is such that the principal directions 1-2 make an angle, 8,

with respect to x-y, then the constitutive relationship in the element

;

coordinate system, after proper coordinate transformations, is given

by:
2 2 == 1,- )
do, . E}c E,S wELE, 2(t?-52)cs de .
_ ] 2 2 1,
dcyy, = ;—j—;§ E]s +E2c sz]—EZ)CS deyy
1 -
dey (Symm. ) 4(E]+E2 Zv/E]EZ dny‘
(2.7)
where ¢ = cos 8, s = sin &, c2 = cosze, and 52 = s%nge.

Thus, the concrete material propertiés needed at any iteration
of the solution procedure are the orthotropic moduli, E] and EZ; and
the effective Poisson's ratio, v.

The value of Poisson's ratio is obtained from experiments.
Below the elastic 1imit, the value of Poisson's ratio varies from 0.18
to 0.20 [2.1]. At a stress level higher than 80% of the ultimate
stress, an increase in its value is observed. However, a constant
value of Poisson's ratio is taken for all stress levels in the present

felt that for the cases studied here the constant

(%)

investigation. It i
value of Poisson's ratio is a gocd approximation.

The terms E] and Ez , .as used in Eq. (2.6), are the tangent
modulj from uniaxial load tests in the orthotropic directions 1 and
2. Equation (2.6) is derived on the basis that for biaxial compression,
an increase in effective stiffness in either direction, in the presence
of normal compression stress, is due to the Poisson effect alone.
However, experimental results [2.3] indicate that a considerably

greater increase in stiffness is obtained in the presence of biaxial



stress than can be explained by the Poisson effect alone. The main

cause of this increased stiffness seems to be the confinement of

4
]
iy
i
]

ion Therp.-
il a LIRS

2n

«t

compre

po ial microcracking in the presence of biaxia
fore, the use of Eq. (2.6) is only appropriate at low stress levels
when microcrack confinement is not prominent.

To account for microcracking confinement, it is obvious that
values of E] and EZ from uniaxial stress-strain curves cannot be used.
If, on the other hand, Poisson's effect is removed from experimental
biaxial stress-strain curves in compression, then a family of stress-
strain curves can be constructed whose slopes would provide values for
E] and EZ incorporating the microcrack confinement effect and can be
used in Eq. (2.6). These curves are called the 'equivalent uniaxial’
stress-strain curves by Darwin, et al. [2.12]. The construction

procedure for the equivalent uniaxial stress-strain curves is des-

cribed in the next subsection.

2.2.4 Equivalent Unijaxial Stress-Strain Curves

A typical equivalent uniaxial stress-strain curve used in this
study is shown in Fig. 2.11. The compressive loading part is described

by Darwin, et al. [2.12] as:

E e
- 07 iu
o, = - .} = — (2.8)
£ . .
s J “ic €ic
and for tension:

o, = F g, g. < 0, .8

i 0 iu i =it (2.9)

o
—t

where oy = stress (positive for tension, negative for compression) in



()
o0

the principal direction 1i; Oic © maximum compressive stress in the
principal direction i to be obtained from the biaxial failure envelope
of Kupfer and Gerstle [2.10]; €0 = equivalent uniaxial strain cor-
responding to peak compressive stress, Tsce It is cbtained by remov-
ing the Poisson effect from experimental strain values corresponding to

peak compressive stresses under biaxial stresses as observed by Kupfer,

<

st

et al. [2.1]. EO = initial uniaxial tangent modulus; E_ = secant

modulus, Gic/gi and Osp = tensile strength of concrete in principal
i

C;
stress direction 1.

The equivalent uniaxial strain is the strain obtained by remcving
Poisson's effect from the biaxial strain but retaining the effects of
microcrack confinement. The following illustration will indicate how
this value of strain may be obtained from experimental data.

For concrete under biaxial compression, at a stress of 9750,
where o = o]/oz, we may write:

dcz do
de, = #=— = Y &= (2.10)

2 E
where de, = increment in strain in principal direction 23 dGl’ doz =

(4
increment in stresses in principal directions 1 and 2, assuming propor-

tional loading; 51, E, = tangent moduli in directions 1 and 2, assuming

~
[
the material to be piecewise linear during the increment. Equation

(2.10) may be rearranged as:

dsz

dOZ = E

2 l-van

or, dcz = Ezdszu (2.11)

where o = biaxial stress ratio, 0]/02; n = modular ratio, Ez/E ;

ik
-
£
o3
[



de, , = increment in equivalent uniaxial strain in direction 2, de,/

(1-van). It is obvious that the siope E, of the stress-strain curve

3

. o , A s
t contain the Poisson effect which

O

0EsS no

is removed by the introduction of dazu and hence can be used in Eq.
(2.6). However, since microcrack confinement effects influence the
experimentally observed values of dEZ and hence, dEZU, the value of
E2 will include the microcrack confinement effect.

The total equivalent uniaxial strain is given by:

™
i

d&:i do‘i
iu'.Engiu :E:(I—vqni ”j{lg;" (2.12)

H

sumnation for all increments.

where 3

The slope Ei of the equivalent uniaxial stress-strain curve at

a point (Ui’ e, ) for loading in compression is given by differentiat-

iu
ing Eq. (2.8):

30, E, (1-¢%)
Ei T = 5 (2.13)
“iu EO 2
1+ T 21a+g
s
where q = (Eiu/gic)' For tension, the slope may be obtained by dif-

ferentiating Eq. (2.9):

90,

£, = —1. =¢ (2.14)
1 3 giu ¢]

The equivalent uniaxial stress-strain curve, obtained from bi-
axial loading and illustrated in Fig. 2.11, has an initial slope Ec’
and passes through the point of maximum stress under biaxial Toading
and corresponding equivalent uniaxial strain--(o. ,e._ ) in case of

compression and (o4,.c,,) in case of tension. The point of maximum

29
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stress under biaxial Toading is a function of the principal stress
ratio, a; the uniaxial compressive and tensile strengths, fé and f%;
and strain at peak uniaxial stress, eu” The values of the maximum
stresses, e and Toes in the two principal directions are obtained
from the modified biaxial strength envelope of Kupfer and Gerstie
[2.10] which is illustrated in Fig. 2.12. The biaxial strength
envelope can be divided into several regions depending on the stress
ratio and stress state. Compressive stresses are assumed to be
negative while tensile stresses are taken to be positive. The prin-
cipal stress directions 1 and 2 are so chosen that, algebraically,
0y 2 0,. The different regions and the maximum biaxial stresses,

Gy and P and corresponding equivalent uniaxial strain, €1c and

C c?

€ in these regions are summarized below.

1. For op = compression, o, = compression. 0 < o < |
_ 1+ 3.65a _,
UZC “‘(T:—ch (2:]53)
a)

1o = @ Tpg (2.15b)
o = ecu[352~2] (2.16a)

- 3, 5 52 o
€1¢c = gcuL~1.6p7 + a.pr] + 0,35@]] (2.16b)

where Py = U]C/f& and Py = Gzc/fé,

Equation (2.15) is based on the Kupfer and Gerstle [2.107 biaxial
strength envelope while Darwin, et al. [2.12] proposed Eq. (2.15) based
on experimental observations of strains corresponding to peak stresses
under biaxial compression. Concrete is assumed to vield beyond the
maximum compressive stress when a further increase in strain causes

a decrease in stress and failure due to crushing occurs at a specified
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ultimate strain. Concrete behavior beyond yielding will be discussed

in more detail in subsection 2.2.6.

2. For oy = tension, o, = compression. -0.1
-
.1+ 3.28u
“Zc¢ Z ¢
(1 + )
Oyyp = 0 O
1t 2c

H

L2
acu[4.42-8.38p2+,.54p2-2,58p§]

where p, = Ozc/fé

(2.17a)

—
[
e
.4
o

S

(2.18a)

(2.18b)

Darwin, et al. [2.12] suggested Eq. (2.17) while Eg. (2.18) is

given by Rajagopal [2.14]. Failure in this zone is assumed to occur

due to the yieiding and crushing of concrete in the compression

direction.

3. For oy = tension, g, = compression. o <g < =0.17
- 1 3
Tne 0.65 fc (2.79a)
Oyy = ft (2.19b)
e = [4.42-8.38p,+7.54p2-2.58p5] (2.20a)

“2c cu- "’ I L S '

where Py = GZc/fé = (.65

e = G!t/go (2.20b)

Failure in this zone is assumed to occur due to cracking in

the tension direction.

4, For oy = tension, g, = tension. 1 <qg <o

33
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g‘;t - Ozt - f:t (ﬁ-*zl)
£ = g = f'/F (2.22

For biaxial tension, tne uniaxial tensiie strenagth, f_, 1s cho-
sen as the tension cut-off point beyond which cracking is assumed to
occur,

Five material properties of concrete are needed for the con-
struction of the eguivalent uniaxial stress-strain curves. These are

(1) uniaxial initial tangent modulus, E_; (2) uniaxial compressive

]

': (3) strain correspending to uniaxial compressive strength,

strength, fc

€y’ (4) uniaxial tensile strength, f%; and (5) Poisson's ratio, v.
A1l five parameters may be obtained from uniaxial Toad tests
on concrete and used. Another option, based on recommendaticons by

different ACI committees, is also used in the present study in cases

where experimental data are not available.

ACI Committee 209 [3.5] suggests that:
oy
E(t) = 33.0 w' "> /FL(E) (2.23)

o~

where t = time in days after casting, go(ﬁ) = ipitial uniaxial tangent
modulus in psi at time t, w = unit weight of concrete in pcf and fé{t)

= uniaxial compressive strength in psi at time t.

)
(&R ]
S

ACI Committee 209 [ also recommends that:

48]

B

(t) = 55 osst To(28) (2.24)

whers fé(ZB} = uyniaxial compressive strength in psi, 28 days after

casting.



ACI Committee 209 [3.5] also suggests that:

fi(t) = & A F(E) (2.25)
where f (t) = tensile strength in psi, t days after casting.

Hognestad [2.15] suggested the following relationship for the

strain corresponding to peak uniaxial compressive stress:

Ecu(t) =2 fé(t)/EO(t) (2.26)

where ecu(t) = strain corresponding to peak stress fé(t) at t days
after casting.

The value of Poisson's ratio is assumed to be independent of
age and stress level in the present study although at a stress level
higher than 0.8 fé, significant increase in this value has been

observed [2.1]. Generally, Poisson's ratio for concrete is taken to

be 0.15 1in this study.

2.2.5 Cracking and Tensijon Stiffening

One of the most significant properties of concrete is its Tow
tensile strength which results in tensile cracking at very low stress
compared to compressive stresses. The tensile cracking reduces the
stiffness of the concrete and is a major contributor to the nonlinear
behavior of reinforced concrete structures.

For the proposed model, a maximum stress criterion is used to
determine concrete failure in tension. Whenever one of the principal
stresses exceeds the uniaxial tensile strength of concrete, a crack
is assumed to form perpendicular to the direction of that stress. The

constitutive relationship for concrete after a crack is formed, say



in direction 1, is given by assuming tangent modulus E] to be equal to

zero in Eq. (2.6); thus:

r~ 0 e
du} ] { 0 3 0 'E du}
S (

d02 = {’u EZ 0 _i daz L 2.
dT]Z 0 0 5G dY]O

where 8 = cracked shear constant.

™3
™
“d
e

The cracked shear constant is introduced to estimate the
effective shear modulus along the tensile cracks due to the effect of
dowel action and aggregate interlock. Lin [1.27] found that the
solution was insensitive to the numerical value of the constant B8
where a range of 0.0 to 1.0 was used. However, numerical instability
may arise if a value of 0.0 is used.

Once the concrete is cracked in one direction, the formation of
a new tensile crack is restricted to a direction orthogenal to the
first crack. The constitutive relaticonship, in case cracks in both

principal directions occur, is given by:

do 0 0 0 d

™

1 ]
dcz =10 0 0 dey ¢ (2.28)

d712} { g 0 8G dylZ

When the concrete reaches the ultimate tensile strength, cracks
are formed at finite intervals as shown in Fig. 2.13 for a reinforced
concrete element under uniaxial stress. The total load is carried
across the cracks by the reinforcement, but the concrete between the
cracks carry stresses because of bond between the reinforcement and

concrete. The concrete stress is zero at the cracks but it is not if
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averaged over the length. This is known as the tension stiffening
effect. With increasing load, the number of cracks over the finite
Jength increases and the average stress taken by concrete decreases.
This has been represented as an unloadina curve by Lin [1.27]. The
tensile modulus of the concrete is assumed to be zerc once the tensile
crack forms, but the unbalanced stresses are released in a step-wise

fashion depending on the strain level as shown in Fig. 2.14. The

same model will be adopted for the present investigation.

2.2.6 Strain-Softening Beyond Maximum Compressive Strength

Experimental results [2.1] indicate that concrete is a strain-
softening material under a biaxial stress state. This implies that
concrete deteriorates under further loading beyond ths maximum com-
pressive stress level. The deterioration of concrete causes unloading
and further increase in strain will result in a decrease in stresses.
This will cause instability and the stress-strain curve will slope
downwards.

Experimental results [2.1] indicate that the ultimate strain
is generally 1.2 to 1.3 times the strainvcorresponding to peak com-

nressive strength in the major compression direction. The stress cor-
resoonding to ultimate strain varies between 0.8 to 0.9 times the

peak compressive strength. In the present study, unless specified
otherwise, the ultimate strain in compression is taken as 1.25 ¢ €ic
and the corresponding stress as 0.85 SF The strain-socftening curve
is assumed linear between the peak compressive stress and the stress
corresponding to the ultimate strain (Fig. 2.15).

The strain-softening model adopted here is different from
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Darwin's [2.127 model. Darwin's strain-softening curve is based on the

3
¥

oad tests of

w

envelope curves (Fig. 2.16) obtained from uniaxial cyclic

3

Karsan and Jirsa [2.16]. In the present study, stress reversals occur

L

o]

mainly due to unicading in the concrete fibers due to creep effects.
A model based on numerous cycies of loadings and unloadings is thus
not chosen to reflect these stress reversals. The strain-softening
values observed in biaxial monotonic tests performed by Kupfer, et al.
[2.1] are therefore chosen for the strain-softaning model as a first
approximation.

The tangent modulus of the unloading part is negative, which may
cause computational problems if used in the constitutive eqguation,
Eq. (2.6). To circumvent this, the following technique is adopted.
When the major compressive principal siress, cé in Fig. 2.15, has

l, 'yielding' is assumed to have

h

rezched a value such that loj| > §62
occurred. Moduli are assumed to be zero for the next load iteration.
At the stress level Ué, an un?oading of Ggp occurs, which 15 the un-
balanced stress. The unbalanced stress is redistributed in the next
lcad iteration. The term Tno becomes the new unbalanced stress and so
on until crushing'occurs at €y

The reason for using a zero modulus instead of a negative one is
mainly to facilitate the numerical solution of the finite element
equilibrium equations. The constitutive relationship for the finite

element formulation, after yielding has taken place, is:
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that after the first yielding, subsequent uniocading will take place
along the path determined by the current unloaded stresses corresponding
to the current total strains. Lin [1.27] used both the unconstrained

flow rule and the normality flow rule with a Von Mises yield criterion.

A RARSEA-

23

He found Tittle difference in the behavicr of reinforced concrete siabs
and shells due to the type of flow rule used. In view of the little
difference observed and the fact that the unconstrained flow rule is
much simpler to formulate, this approach will be used in the present

investigation.

2.2.7 Stress Reversal

A stress reversal option is incorporated in the equivalent uni-
axial constitutive model to account for any unloading that may occur
due to creep and shrinkage effects and applied load history. The
unloading and reloading model chosen for this study is illustrated in
Fig. 2.17. This simple model is adopted as a first approximation to
avoid additional computational efforts and also due to the lack of
available experimentai data on concrete subjected to biaxial stress
reversal.

In the equivalent uniaxial stress-strain curve, Fig. 2.17, there
are four distinct zones--{1) AB - compressive Toading up to yield, (2)
BCD - compressive unloading after yield, (3) AF - tensile loading up to
the initiation of cracking, and (4) FG - tensile unloading after initial
cracking.

Tensile loading at A will occur along AF with a slope of EOG
Any unloading before F is reached takes place along FA. Tensile unload-

ing beyond F will follow FG and tensile stress reduces to zero at and



43

JL3YINOD ¥0d4 13004 TYSUIATY AVl LL°2 "9HId

s N E
"3 - '3 571 2 / M NV/P
it w N nw\ z/f
a ” b Y 5
] /
i
{
|
|
|
|
|
!
{
|
|
i
71
0SS0 —— D
!!!!!!!!!!!!!!! 7
R D
[ a




beyond 4. Concrete at this point is assumed to be in a completely
cracked state. Any reloading toward the compression side will follow
GA and will produce no compressive stress until point A is reached,
i.e., the crack is assumed to be closed. Further compressive loading
will take place along the RH Tine.

At a point T between F and G, unloading may occur in two direc-
tions. Further increase in tensile strain will cause unioading along
TG. Reduction of tensile strain at T will cause movement along line TU
until the tensile crack is closed. Further reduction in tensile strain
will result in unloading along UA.

Any unloading in zone AB is assumed to have a slope of initial
tangent modulus, Eo‘ This means that unloading from H will occur along
HP. Further unloadina from P occurs along POR, which is similar to
tensile loading and unloading path AFG. Any reloading in the compres-
sive direction from 8 will result in no compressive stress until P is
reached. Further compression will result in reloading along PH. Beyond
H, the loading occurs along HB.

Once yield point B is passed, unloading can occur in two direc-
tions. For example, at M, unioading may follow either MC or MN. The
strain state, in this case, will determine wheterh MC or MN will be
followed. If compressive strain increases from that at M, then com-
pressive unloading will occur along MC until crushing occurs at C.

Otherwise, MN which has the same slope as EO will be followed. Further

unloading from N will occur along NSV which is similar to PQR.

2.3 Constitutive Relations of Steel Reinforcement

A simple bilinear constitutive model is used for steel reinforce-

ment in this study. The model may either be elasto-perfectly plastic,
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or strain-hardening with a Bauschinger-type effect as illustrated in
Fig. 2.18.
Three parameters are needed to determine the stress-strain curve--

-

the initial modulus, E the strain-hardening modulus, th; and the

53
yield stress, fy, The portion AB (Fig. 2.18) of the stress-strain curve
has a slope of ES. At B, steel stress reached the yield stress value of
fy and initial yielding occurs. Beyond B, loading takes place with
decreased slope Esh'

Stress reversal along AB has the same slope ES and continues

after which Toading continues with reduced slope Esh' Stress reversal
at P, beyond initial yield point B, occurs with the initial slope ES.

This continues up to Q such that:

p = 2 fy (2.30)

after which loading continues with reduced slope Esh‘
If 1 and 2 are the two axes parallel and orthogonal to the
steel Tongitudinal axis, then the incremental stress-strain relationship

is given by:

do7 Eq 0 0 da} l
d02 =10 0 0 dez (2.31)
in the strain-hardening rancge, E. in Eq. (2.31) is replaced by
Ech. For elasto-perfectly plastic steel, Etb is assumed to be zero.



FIG.2.18 CONSTITUTIVE MODEL FOR STEEL
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3. CREEP AND SHRINKAGE OF CONCRETE

3.1 General Remarks

Concrete is unique among structural materials in that it inter-
acts with its environment, undergoing complex physical and chemical
changes with the passage of time. The time-dependent changes in the

concrete behavior may significantly affect the serviceability of

[72]

ome
concrete structures. This is especially true of those structures sub-
jected to a wide range of variations in humidity, temperature and
loading conditions. For such structures, it is essential to investi-
gate the long term deformation behavior in order to achieve adequate
serviceability criteria during the design Tife of the structure.

Two of the most important phenomena, observed in the time-
dependent deformation of concrete structures, are creep and shrinkage.
These were defined in the previous chapter. It has also been assumed
there that the three components of deformation--instantaneous elastic,
creep and shrinkage--are independent of each other and hence additive.
In this chapter, creep and shrinkage phenomena will be examined in

greater detail.
3.2 Creep
3.2.1 Mechanism

The mechanism of creep is of utmost importance in arriving at
an understanding of the creep phenomena. Several theories have been
proposed over the years to explain the creep mechanism, but none of
the theoriés has adequately explained all the observed information

regarding creep of concrete. Several broad mechanisms of creep may,
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however, be distinguished. These are mechanical deformation theory,

viscous flow, plastic flow, seepage of gel water, etc.

5
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1 deformation theory [3.1] attributes the behavior of
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equilibrium between the cement paste and ambient medium results in
creep.

Plastic theories [3.2] suggest that the creep of concrete may
bas in the nature of crystalline flow, i.e., a result of slippage along
planes within the crystal lattice.

Viscous flow theories [3.3] postulate that creep is due to
the hydrated cement paste which is highly viscous in nature. Under
sustained load, the cement paste undergoes viscous flow causing creep.

Seepage of gel water theory [3.4] posulates that hydrated cement
paste is a rigid gel. In such gels, application of load causes expul-
sion of the viscous components from the voids in the elastic skeleton.

Thus, creep occurs due to seepage of gel water under pressure.

3.2.2 Influencinag Factors

Creep in concrete is influenced by a large number of factors.
The quantitative determination of these factors is a statistical prob-
Tem as the experimental results are inherently random variables with
coefficient of variation on the order of 15 to 20 percent at best [3.5].
However, up until now, the solutions found in the creep Titerature are
ail deterministic in nature. Moreover, they only try to establish
correlations between the analytical models and laboratory specimens.

The correspondence between laboratory and fieid conditions are not yet



well established. These would put Timitations on the accuracy of the
gquantitative measures of the factors affecting creep of concrete; and
this should be kept in mind whenever some values are given to creep
coefficients. The following remarks may be made on the main factors
affecting creep:

1. Compressive strength: Creep deformation is inversely pro-
portional to the strength of concrete [3.6], i.e., the greater the com-
pressive strength at the time of application of the load, the less the
ultimate creep deformation.

2. MAge at loading: Creep deformation is inversely proportional
to the age of concrete at the time of application of loading.

3. Type of aggregate: Creep deformation is inversely propor-
tional to both the volume of aggregate in a given concrete mix and the
modulus of elasticity of the aggregates [3.7,3.8].

4. Ambient relative humidity: Creep deformation is inversely
proportional to the ambient relative humidity [3.9].

5. Temperature: Creep deformation is directly proportional to
the temperature for a temperature range between 0°F to 180°F [3.10,3.71].

6. Size of the specimen: Creep deformation is inversely propor-
tional to the thickness of the specimen [3.12].

7. Stress: Creep deformation is directly proportional to the
imposed stress--proportionality is generally linear for a stress level
of approximately 0.4 fé. above which it is nonlinear (increases more)
[3.13].

8. Duration of applied stress: Creep deformation is directly
oroportional to the duration of applied stress. Proportionality is

asymptotic--deformation increases rapidly initially, but gradually
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tends to an asymptotic value [3.12,3.14].

3.2.3 Review of Analytical Models

Creep deformations in concrete under a constant hygrothermai
condition is assumed to be predicted with reasonable accuracy by the
1inear viscoelastic theory, as long as the stress/strength ratio in
concrete is less than 35-45%. The two general approaches in linear
viscoelasticity are: (1) integral formulation and (2) differential
formulation.

1. Integral Fermulation. - The integral representation of

1inear viscoelastic stress-strain relations was given by Volterra
[3.157 using Boltzmann's superposition principle. The constitutive
relationship is expressed in terms of a superposition integral. The
so-called weighting or memery functions, which happen to be Kernels in
the integral formulations, are the creep or relaxation functions repre-
senting the response of the material to unit step function inputs. For
a uniaxial state of stress and an aging material the constitutive rela-
tionship can be written according to Volterra as:
t ol
e(t) = [ Clr,t-1)=2

- OO

1) e (3.1)

Q2

T

where e(t) = strain at time t, C(t.t-1) = specific compliance observed
at time t for initial application of load at age 7.

2. Differential Formulation. - In this approach, the creep

behavior is represented by rheological models composed of discrete
elastic (spring) and viscous {dash-pot) elements placed together in
series and parallel. For aging materials, the general form cf the

differential equation is [3.16]:



where p_(t), q (t) are time variable properties of concrete,

n n
While both the integral and differential formulations are inter-

related as shown by Gross [3.17]

it appears that for concrete under
age and temperature effects, an integral approach is better suited for
computation than the differential approach as the latter may result in
integro-differential equations which are extremely complicated to
solve [3.18].

The solution of the integral Eq. (3.1) depends on the form of
the Kernel function C(t,t-t). The term C(z,t-t) is generally known as
the specific compliance function. Several expressions are given in the
Titerature for the specific compliance function. In the expressions for
the specific compliance function, a distinction is generally made
between the instantaneocus compliance function and the creep compliance
function. Creep compliance function is assumed to contribute to the

creep response of the material. Mathematically, we may write:

T(t,t-17) = 717 + Clr,t-1) (3.3)

o\ T

1 . . ,

where HON instantaneous compliance function and C(t,t-t) = creep
L

compliance function.

This means that we may write:

dr (3.4)

where =°(t) = creep strain.

The solution of £q. (3.4) depends on the criteria chosen to



express the creep compliance function C(t,t-t). The criteria generally
applied in choosing the creep compiiance function C(t,t-1) are:

1. The function should accurately fit the experimental compli-
ance surface, taking into account such parameters as (a) age at loading,
(b) temperature variations, (c) size of members, {d) curing, (e) reila-
tive humidity, etc.

2 The undetermined coefficients of the function should be easy
to evaluate from experimentail data.

3. The function should be such that the numerical evaluation of
Eg. (3.4) becomes straightforward and does not require an excessive
amount of storage space in the computer.

McHenry [3.19] suggested a creep compliance function in the

form:
C{r,t-1) = a ["1 - e'\’)(t'T)]ﬁ- ge“m[] - e'm(t“‘}] (3.5)

where «, 8, v, p, and m are constants to be determined from experimental

data. Arutyunyan [3.20] suggested:

ke"vk(t'r) (3.6)

he D
o(t,t-7) = (a + :;) 5.5
k=0
where a, b, Vi and m are constants to be determined from experimental
data.
Bresler and Selna [3.21] outlined some simplificaticns in deter-
mining the creep compiiance function. Seina [1.39] proposed:
3 4 .- .
‘o _ _=0.1(3-1) -k (t-7)
C\L9t~T> - Z Z C.{_,‘a\_j L -‘ - e 1 (3.7)
'::'i J:—_} B

pov’}

where o, aj, and ky are 10 constants to be determined from experiments.

(8]



Mukaddam and Bresler [3.2271 proposed a creep compliance function
which took into consideration both agina and temperature effects as
shift functions:

i - (t-1) 9(T) 9(7)

m
Clr,t-7,T) = Lai e (3.8)
i=1

where a., and A, = constants, ¢(T) = temperature shift function,
¢(1) = age shift function and T = temperature at loading. This creep
compliance function is the most advanced as both the aging and thermal
effects are considered. The application of this model to complicated
structural systems is, however, restricted at present as stress histor-
jes at all previous time steps are required in creep strain increment
calculations at the present time step.

Mukaddam [3.23] recently provosed a temperature-dependent

creep compliance function in the form of:

~>\1-<1>(T)(t—v)]

C(t-t,T) = ﬁ:Ji[1 - e (3.9)
i=

where Jé, and Ai = constants, ¢(T) = temperature shift function. By
assuming that all time steps are equal, a recursive relationship for
creep strain calculation is established. This requires the stress
history for a previous single time step for the creep strain calculation
at the current time step. The resultant reduction, in both computer
storage and computational effort needed, makes possible the application
of this model to the solution of large structural problems. However,
aging effects, important in structures under load history over a long
period, are not considered. This and the requirement of equal time

steps, place some vestrictions on the vse of this model to certain
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classes of problems.
Recently, Zienkiewicz and Cormeau [3.241 developed a visco-
plastic model of material behavior to investigate a wide range of

materiall including, at one extreme, plasticity

Lb p Lt ¥

noniinear problems,
solutions under stationarv conditions and at the other extreme, standard
creep phenomena. Conceptually, their method is consistent with the
principles of thermodynamics as it takes plasticity and viscoelasticity
as limiting cases of a general formulation and not as separate pheno-
mena as has been aenerally assumed in numerical formulations. However,

not much data has been provided and its application to reinforced con-

crete is still to be done,

3.2.4 Creep under Biaxial Stress

It has been observed experimentally [3.25] that under uniaxial
stress state, creep strains occur not only in the direction of the
applied stress, but also normal to it. The normal creep strains that
are induced are called lateral creep strains. The ratio of the lateral
creep strain to the creep strain along the direction of the applied
stress 1s called creep Poisson's ratio following the concept used in
the case of elastic strains.

Farlier experimental studies on creep Poisson's ratio [3.25,3.26,
3.27,3.28] show a range of values from 0.05 to 0.4. Many of the dis-
crepancies between these results were due to the methods used to measure
the lateral strains. Later experimental studies [3.29,3.30] show the
creep Poisson's ratio to be very close to the elastic Poisson's ratio
having a range of values between 0.16 to 0.25.

In the case of biaxial stress, creep strain in any direction



would consist of creep strain in that direction due to the stress in
that direction plus the lateral creep strains due to the creep strains
occurring in the normal direction.

The primary question that may be posed is whether the creep

strain in one direction, occurrina due to the corresponding siress only,

-~ T
[ ROT % 1

.

i~ I U R
Pasrect

Telgnt: i

is independent of the stress in the it is, then
the principle of superposition will hold and the net creep in any
direction may be calculated as an algebraic sum of the creep strain
occurring in that direction and the lateral creep strains induced by '

the stress in the normal direction. This may be expressed as:

(=g
m
O
——
ot
R
)

[40,(8) - veao ()] ez, t-,T)

(3.10)
AeS(t) = [Aﬁy(t) - vCAgx(t)}c(r,t-T,T)

where Aai(t) and Ae?(t) = increment in creep strain in x, y directions

at time t, Aqx(t) and Acy(t) = increment in stress at time t, Ve

creep Poisson's ratio under uniaxial stress state and C{t,t-7,T) = spe-

it

cific creep compliance from uniaxial stress state at time t, for age
at loading 1t and temperature T.

Gopalakrishnan, et al. [3.29], however, found that the creep
Poisson's ratio under a multiaxial stress state is a function of the
relative magnitude of the principal stresses. It is also less than
the uniaxial creep Poisson's ratio as shown in Fig. 3.7.

Neville [3.317 used the following relationship for creep under

biaxial stress state:

As? = [AUT - vC1Ao?} Clt,t-7,T)
(3.11)
Aag = [/,\0“2 - \)szg} Clr,t-7,T)
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where Vei = effective creep Poisson's ratio

U_i T . ‘32
1
At 8(6.4'(7‘.\5 * C(g.+g (3,]2)
</

ALY J

i

where Oss O4s and g, are the princ
J >

stants to be determined from experiments.

wed

pal stresses, and A, B, C = con-

In Eq. (3.11), the effect of the stress state on the creep
strains is being incorporated by the empirical relationship for the
effective creep Poisson's ratio. The term ep is dependent on the stress
state and hence by proper evaluation of A, B and C, the experimental
behavior may be modeled analytically. This is shown in Fig. 3.2.

In the present study, however, for simplicity and considering
the uncertainties involved, it is assumed that the creep Poisson's ratio
in the biaxial stress state does not change, but remains the same as

the elastic Poisson's ratio. We may rewrite Fq. (3.10) as:

Aei(t) i -V Agx(t)

Nothing conclusive is available about creep compliance in shear.
However, following Arutyunyan [3.20], it is assumed here that creep
compliance in shear is equal to 2(1 + vc) C(t,t-7,T). Equation (3.13)

may now be extended as:

Asi(t) 1 Ve 0 A ox(t)
AC(t) b= el T 0 Clr,t-t.T) {40, (t)
w5, () 00 2(1 +v) ATt



The total creep strain vector, from initial age at loading ty to

final cbhservation time tn’ vill be given by:

{cc(tn) ) A Gx(ti)
. N
}ag(tn) g = Q;' gc(ti,tn-ti,?’i) ;A Gy(t.g) ; (3.15)
C AT .
1 Ve 0
where Do = f-vo 0

0 0 2(1 + VC)

3.2.5 Creep under High Stress Levels

It has been shown by several investigators [3.7,3.13,3.32] that

creep of concrete is Tinearly proportional to stress only up to a stress

level of 0.35 fé. Beyond this stress level, nonlinearity of creep is
observed as shown in Fig. 3.3. To take into account this nonlinear
effect, Becker and Bresler [3.33] suggested an 'effective stress’ con-
cept. The stress used in calculating creep is multiplied by a scale
factor to account for the nonlinearity of creep strains at high stress

levels. The expressions for effective stress are given by:

I Q

for

Q
i

i

X
by

Jeff ' < 0.35

C

1 G

- > 0.35 (3.16)

2.330 - 0.465 fé for 1>
C

)

Equation (3.16) implies that creep strain and stress are linearly
related up to a stress level of 0.35 fé. After that, creep increases
more rapidly than stress increment, reaching a multiplication factor

of 1.865 at a stress level of f_. This equation is a purely empirical
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one, based on experimental data, particularly those of Roll [3.32].

It has also been found out experimentally [3.32] that the total

Toading is

time-dependent creep recovery after removal of linearly
proportional to the stress level as shown in Fig. 3.4. This means that
while calculating creep recovery, actual stresses, rather than effec-

tive stresses, need be considered.

3.2.6 Requirements of the Creep Model

The finite element analysis for reinforced concrete structures
such as box airder bridges, sheil roofs, flat slabs, etc., taking into
account tensile cracking of concrete, yielding of reinforcing steel,
etc., and incorporating time-dependent effects such as creep, is always
constrained by the storage capacity of the computer and the cost of
solution. Thus, in this study the search has been to formulate an
efficient algorithm, while retaining the most significant physical
effects.

The physical effects significant in creep studies of reinforced
concrete structures such as box girder bridaes, folded plate and shel’l
roofs, etc., are the effacts of aginag, temperature variation, field
conditions such as slump, relative humidity, size of members, etc., on
creep. Since cracking, yielding, etc., are to be considered, the
solution procedure must be an incremental, step-by-step approach. For
this reason, the creep algorithm should be such that only a few stress
histories and not the whole stress history need be stored as the storage
for all the stress histories would surely tax the capacities of the
presently available computers and the computational costs for realistic

structures would bacome prohibitive.
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3,2.7 Formulation of

Analytical Model

An incremental

method is chosen for the creep strain calculation

which will facilitate a step-by-step solution in the time domain. A

ja}}

ma n order to develop the creep

number of assumptions have to be made i
model. These assumptions are:

1. Each component of strain is composed of strains producecd by
different effects. These effects are broadly classified into two
groups--stress criginated and nonstress originated. The stress origi-
nated strain is known as compliance; instantaneous and creep strains
are examples of compliance. Thermal and shrinkage strains are examples
of nonstress originated strains. The consequence of this assumption is
that the different strain components can be calculated separately and
added together. Tnis makes the whole computational process easier.

2. The principle of superposition is assumed to be valid for
creep strains. This principle asserts that the strain at a given time
is the sum of the strains caused by the Toads applied immediately for
their respective durations of time. The assumption implicit in this
principle is that there is no coupling between the single response
behavior from individual load input.

3. The time-dependent vesponse 1is the same in tensiocn as in
compression for uncracked concrete.

The above assumptions are impnlicit in Eq. (3.15) which may now

be rewritten as:

c
7 = .7 v Clt T ) 4
QO“'Q AE-; C(t]at u-’a{}) + i L(Lz,tﬂ tg,lz) P
b r - T
P gy Gl et ot e Ty (3.17)
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where e = <:é;(tn) cy(tn) ny(tnii:>
_ T

pgy = <o, (t;) do(ty) EINCARN

and
t1 = age at initial loading
tn = final observation time
T. =

temperature at age ti

Similarly for time tn+1’ we may write:

DoZne1 = 897 ClEpatry=tTy) + Agy [t t, 4ot T)) +

+ag Ot .t -t T ) (3.18)

So, the increment in the creep strain for the time interval

Atn = tn+1°tn can be expressed as

c _ ¢ c
Ay T Eae1 T 5y (3.19)

Equation (3.19) is graphically represented in Fig. 3.5. It is
clear from Fig. 3.5 that one assumption inherent in the summation
expression is that stress changes occur in steps and no stress change
occurs during a time interval, say from t] to t2 = Ati' This is ob-
viously not true, but in most cases of load, if the time step sizes are
chosen properly, the constant-step stresses will represent the load
history quite accurately.

It is also evident from Egs. (3.17) and (3.18) that the calcula-

e

tion of creep increment during time step n in goina from t to tn+1

necessitates knowledge of all previous stress increments ATy, uoz,

Agg....00, 4 as well as the most current stress increment, Ag,.  This
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requires a large storage capacity for even a moderately complex struc-
tural system and in fact the storage requirement, apart from being
extremely large, may also become very unwieldy.

It has been found [3.33,3.34,3.35] that certain types of mathe-
matical approximations for the creep compliance function, C{(7,t-7,T),
while representing the experimental data accurately, overcome the.
necessity of storing all the stress increments of the previous time
steps. A similar function is proposed in the present study for the

creep compliance function:

C{r,t-1,T) = %ai(r) [1 - e“?‘i@””t"’f)] (3.20)
i=1

where ai(r) = scale factor dependent on age at loading T, Ay = expo-

nential constants determining the shape of the logarithmically decaying

creep curve and ¢(T) = shift function dependent on temperature T.
Substituting the value of C{ ) from Eq. (3.20) into Eq. (3.17),

we may write:

m Ll
c Al -1
Dotn = A9 52%51(t1) [T e ri¢(T1) (g L1)]
3 =2i9(T2) (ty-t0)
t 49, 1_,ﬁ'f_._:]ch(’cz) [1 - e M n"t2 ]
+.
m
+ (+ [ e Me(Tpa) (Ey-tnoy) (3.21)
Ag -] i‘?;;a-g\tn__}f Lg e "1 n-1 n~tn-1 }

-5

Equation (3.21) may be rearranged as:




D
~0-n i=1
m
£ AT 2

where aj, = aj(ty)
m} = fb(Ti)
Aty = tipy - Y

Similarly, Eq.

m
c =
Dosner = A9y iy

.............

(3.18) may be written as:

=1
il “Aibohts - AidaAt
+ 0o, poas, |1 - e 119252 T ATR3RRge e
Oy £y
i=1
+

+
-
(o]
=
P
It MB
20
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Substituting values from Egs.

(3.22) and (3.23)

we have:
c c c
Doten = Bofnit ~ Botn
a “A:b7AL “Aidn. 1AL
- hoy Dhagy e MSIEET . ThOn-18E0 [7
~T
m
+ oao. Stas “AidoAto. .. =Aidy 10%5 1 i-l
2 & %io
"2 e

.....

(3.22)

into Eq. (3.19),

. e-x1¢nAtn]
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or,
c. 2 Aidnht
= “A1Pnstn
QoA’fn Z;ﬁln{! € ]
i=]
where
-A 1At
Aip = Aipy @ Pn-1%n-1 Andiy,
Ay = boyaq,

So the relationships necessary for calculating increment

creep strain at any time step n, in coing from tn to tn+1’ are:

m -
D ael = 3 A [1 e Hifntn |
_O /\n > A n
i=1
= Ajdp-10tp-
éin = Ai 3 i®n-18tn-1 AGpa s

Aiy = Ag1aiy

(3.26)

(3.27)

(3

(3

.28a)

.28b)

.28¢)

The above Eq. (3.28) does not require the storage of all pre-

vious stress histories in order to calculate the creep strain increment

as is necessary in the case of Eg. (3.19).

Rather, the stress history

is stored in the vector Ai, which can be calculated as a progressive

sum by the use of Eg. (3.28) knowing the stress change Ao, at the

current time t,. This formulation reduces the computation and storage

time considerably, makinag time-dependent analysis of reasonably large

structural problems possible.
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3.2.8 Determination of Creep Compliance Coefficients

The key to the formulation of creep strain computation algorithm
in the previous sub-section is the assumption of a creep compliance

function by Eq. (3.20) as follows:
3 so(T) (t-1)
et T) = a1 - et ]
i=]

Before proceeding with the creep analysis of any particular
concrete structure, four sets of quantities have to be evaluated--(1)
m, (2) ai(r), (3) Mg and (4) o{(T). Two methods mav be followed in
order to evaluate the above quantities.

1. First method - experimental creep data analysis:

In this method creep data are obtained for some particular con-
crete. C(t,t-t,T) values are given for different v and T for a range
of t-t. Then, the following procedure is followed:

(i) m and xi,i=1,m are chosen on a trial basis.

A particular age T, and temperature TO are chosen.
Various times t.,j-1,2,...,n are chosen such that tj.i Ty

J
(iv) Values of C(To,t«-TO,T ) are found at j=1,2,...,n points.

J
(v) Then, the simultaneous equations are set up:

0

.l_e-K](trro) ]_e-kz(t]-fo)'”‘]_e%m(trfo) ay(tg) Clrgsaty-TgsTg)
ap (7o) B Cltost2-T0sTo)
-}ue“;\'!(tn”Toj l—e*/\z(tn'lo) .]-e“)‘n}(in"To) &m("0> C{to,tn“To,To)
nxm mx 1 nx1
(3.29)
o A = { 3
Ors Roxm Zmx1 gnx? n>m (3.30)




The least square method is applied to solve the overdeterminate

systems of Eq. (3.30) to give the values of a:

T T

A A a = A B (3.31)
mxn  nxm Cmx i mxn “nx]
T T
/ = |,
or, (A é)mxm AxT (A g)mx1
Ty~ ! T 5
ors 4 (5 B)mxm (é §)mx1 (3.32)
(vi) Choose a different m and/or Ay and go through steps (ii) -
(v).
(vii) Optimum m's and A's are chosen based on the following
criteria:

a. least square errors are minimized.
b. ai(T) which is the ultimate creep strain is about
4/3 of the 1-year creep strain.
Ai(t—r))

c. the contributions of all a1(1 - e terms are

nearly equal.

(viii) Now choose a different age T and go through steps (iii) -
(v) to determine a new set of ai(T?)' This is continued to give sets
of ai(T) for different ages. The in-between ages can be determined
from linear interpolation.

T

(ix) The temperature shift function ¢(T) may be calculated from

the experimental data following the procedure outlined by Mukaddam [3.18].

2. Second method - ACI Committee 209 [3.5] Table:
ACI Committee 209 [3.5] has proposed the following expression

for the prediction of creep deformation:

(t-T

)
(t

0.60
Co = KKuKpKy 0.50 Cy (3.33)

10

+

T
L
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where,
creep strain at any time, t

C. = creep coefficient = +——=% s :
t ' = initial instantaneous strain
Cu = yitimate creep coefficient to be determined from experimental
data

creep strain at infinite time after loading
initial strain at time of loading

= 2.35 for standard conditicns

Ks = slump correction factor
= 0.81 + 0.07s
K§j = humidity correction factor

= 1.27 - 0.0067 H, H > 40

Y

H = relative humidity

Kh = sjze correction factor
= 1.0 - 0.0167 (sz - 6.0), sz > 6.0
= 1.0, sz < 6.0

g
1!

age at loading correction factor
= 1.26 t-0.118 for moist cured concrete for 7 days

s = slump in inches
sz = minimum size of member in inches
t = observation time in days
T = age at loading in days

Standard Conditions for Creep:

(1) slump = 2.7 inches

(
(

™~

) ambient relative humidity = 40% or less

minimum thickness = 6 inches or less

(W8]
~—

(4) loading age = 7 days for moist cured concrete
For the standard conditions, all the correction factors are 1.0.
Using Eg. (3.33) for standard conditions, creep data are gen-

erated for 15 loading ages--7, 10, 14, 21, 28, 40, 60, 80, 91, 100G,

120, 180, 270, 365, 400 days. Using Kl = 0.1, Ao = 0.01 and A, = 0.001



the coefficients a, of the Eg. (3.20):

3
- - = Iy - -}\‘(t‘T)
C{t,t-1) 1_E::;Qta].(b) [1 e M ‘}

e

are determined by least square method as described for the previous
method. These ai's are stored as data in the computer subroutine.
Values of aj for any age at loading in between these loading ages are
taken as linear interpolations.

For any other state of conditions except the standard, the a;
vajues are multiplied by the correction factors KS, KH’ Kh’ KT as the
case may be to give corrected a; values. These a; values are then

used in Eq. (3.20) to calculate creep compliance.

3.2.9 Comparison with Experimental Data

To check the validity of the creep compliance expression chosen,
the theoretical curve generated by Eq. (3.20) is compared to experi-
mental values as illustrated in Fig. 3.6. The theoretical curves,
when generated with a; values obtained by least square method as des-
cribed for the first method, show almost an exact fit--the maximum dis-
crepancy being less than 2%. The curves generated by the second method
from ACI tables seem satisfactory, considerina the numer of uncertain
factors involved, with the range of discrepancy being 0-5%.

To check the validity of the Tinear interpolation of ay values

for ages which are in between the 15 standard ages at loading--7, 10,
14, 21, 28, 40, 60, 80, 91, 100, 120, 180, 270, 365 and 400 days--
graphs of a; Vs, different ages at loading are plotted in Fig. 3.7.
The graphs show that the variation of 3 values with age at loading is

quite smooth and hence linear interpolation will not give rise to
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significant errors.

To check out the validity of the creep strain increment calcula-
tion procedure as outlined in subsection 3.2.7, comparisens are made
with experimental and thecretical curves of Ross [3.36] and theoretical
curves of Selna [1.39] for a concrete prism subjected to different
stress histories. These are plotted in Figs. 3.8, 3.9, and 3.10.

These show satisfactory correspondence with the experimental values.
Figures 3.8 and 3.9 show that the proposed algorithm compares favor-
ably with Selna's [1.39] method. At the same time, it requires the
stress history from only a single previous time step. Selna's method
requires stress histories from the previous two time steps and thus
requires more computational effort.

Figure 3.10 shows the proposed algorithm and gives results which
compare favorably with Ross' [3.36] method of superposition. Ross'
method is very cumbersome as it reguires knowledge of the stress his-

tories at all previous time steps.

3.2.10 Advantages of the Creep Model

There are a number of advantages in adopting the proposed creep
model.

First, it takes into account the three important factors which
influence creep of concrete--age at application of loading, duration of

. s . . .
i variations during the period under considera-

[13)

AP I - od Ay diows
cading, and temperatu

tion.
Second, the computational procedure is very efficient as only the
stress history of the last time step is needed for the calculation of

the new creep strain increment. Selna's [1.39] method requires stress

72



o
£y

2.18 KSi
I 3
2.0
&
g
= 1
(¥
Ly
1ud
o
-
o
0.0 | | ! | —
o] zo 40 60 80 loo
TIME IN DAYS
| A EXPERIMENT, RoSs [3.36]
Y
ANALYSIS PRESENT STUDY
-=--  ANALYSIS ) SELNA
.,6 oo
—~
.,d,
VO
&-ar
<
<
8%
‘._..
A% 1
o S N N S 3
<5: [T —
i...
G
[...
o i ! ! ! ! e
o) 20 40 60 8o 160
TIME (N DAYS
FIG. 3.8 PARISON OF PROPOSED ALGORITHM WITH EXPERIMENTAL VALUES

FOR CONSTANT STRESS APPLICATION




""?—to
2.0+
-1.6
v -
] 1.2
=-lo -0.8
W
m N
oy -0. a
w 0.4 |
- é
(’A 4
! ! J | | .
o 20 40 60 80 100 |
|
N % cxPERIMENT, R0SS [3.36) |
 ANALYSIS, PRESENT STUDY |
i ceeo ANALYS1S, sELNa [1.39) |
~ R |
+ e |
e § =
o,
~t
g ""4" -
< %
4 §
Lot |
w ‘
2
N |
o |
2
i
T |
s
0 | ! ! ! ; | - |
0 20 40 60 80 jeg
TIME IN DAYS ;
%
!
FIG. 3.9  COMPARISON OPOSED ALGORITHI WITH ENPERIMENTAL VALUES
FOR STEPPED- TRESS APPLICATIOH



77

YLYO TYLNIWIYIAXI HLIM WHLILODTY Q3S0d0¥d 44 NOSIMYWOD OL°€ "9Id

SAVA NI Wil 097 002 091 ozl 08 ot o
| i ! 1 1 1 O
o .Ilnvnl.!..lulatt,vﬁlll.!l
wH
— 7~
‘ 1o
[95¢) $50Y ‘TOMLIW NOILISOdYIINS  —- -
[p5'¢) 5508 "doniaw d33a) 50 ILvY —— 1077
AGNLS LN3SAPd SISAIYNY {
[pe] sso0u CINIWIYAdYT X
—0'Z~
217 -
g

aVLIOoL

(7]

?JN

-y

O £ ) NIV

1S NI SS32LS



histories for the last two time steps. Mukaddam's [3.18] method
requires stress histories for all the previous time steps. Aldstedt
[1.427 uses a linear superposition method, where all previous instan-
taneous strain increments must be stored. For a realistic structural
problem, the computer storage requirement would quickly become a Timit-
ing factor.

Third, the creep parameters can very easily be determined from
experimental data for any concrete if available. Little effort is
required in preparing input data for this method.

Fourth, the second option of using ACI tables to genzrate creep
curves makes it possible to take into account various variables like
slump, relative humidity, size of members, etc. While ACI Committee
209 [3.5] method would require storage of stress histories for all
previous time steps, the proposed algorithm reduces this to the storage
of the Tast time step while retaining the advantages of the field con-
dition variables--siump, relative humidity, and size of members. This

option can be used in cases where it is not possible to get experimental

creep data to generate the creep curves.
3.3 Shrinkage

3.3.1 General Remarks

Concrete is distinguished from many other structural materials
by the fact that it undergoes volume changes which take place inde-
pendently of externally imposed stresses and of temperature changes.
These volume changes are generally defined as shrinkage of concrete.

Structural interest in shrinkage arises from the fact that it

is one of the most frequent causes of cracking of concrete and is also

7e
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one of the most difficult ones to prevent. It is difficult to predict
whether or not cracking will occur due to shrinkage and what are the
best methods of preventing the formation of wide cracks. It is thus
very important to understand the mechanism of shrinkage, the factors

influencing shrinkage and how best to model it.
3.3.2 Mechanism

Shrinkage occurs primarily from two causes--loss of water on
drying and volume changes on carbonation.

When curing is stopped and concrete starts drying, loss of water
from the concrete to the ambient medium--in this case unsaturated air--
takes place. The water, lost first, is the free water held in the
capillaries; this causes practically no shrinkage. As drying continues,
absored water is'removed and the shrinkage starts. The process of
moisture diffusion from the interior of the concrete toward the sur-
face is exceedingly slow and complex. The surface dries more rapidly
than the interior and therefore there is a nonuniform distribution of
shrinkage known as differential shrinkage. However, at present, uniform
shrinkage is usually considered for analysis and design nurposes.

Carbonation shrinkage occurs because of the chemical reaction
of hydrated cement mineral, calcium hydroxide, Ca(OH)Z, with atmospheric
carbon dioxide, COZ, in the presence of moisture, HZO’ to produce par-
ticles of calcium carbonatey CaCOB. Carbonation shrinkage is generally
not separated from drying shrinkage. In fact, most of the experimental

data on drying shrinkage includes carbonation shrinkage.

3.3.3 Influencing Factors

The following factors affect the shrinkage of concrete:




1. Aggregate: Shrinkage is inversely proportional to the aggre-
gate content in & given concrete mix. The aagregate has a restraining
effect on the tendency of neat cement paste toward shrinkage.

Water-cement ratio: Shrinkage is directly proportional to

%]

the water content of a concrete mix because increased water content
causes an increase in shrinkage.

3. Size effect: Size effect is a significant factor in shrink-
age as drying takes place at a faster rate nearer the surface than
near the core of the member. This nonuniform drying causes differen-
tial shrinkage to take place with the inner, more moistened core acting
as a restraint against shrinkage. Thus, shrinkage is inversely propor-
tional to the size of the member.

4. Relative humidity: Shrinkage is inversely proportional to

the relative humidity of the ambient medium.

3.3.4 Analytical Model

The method of analysis developed in the present study is the
displacement formulation of the finite element method. An incremental
Toad, iterative solution procedure with a step-by-step integration in

the time domain is adopted. The shrinkage strains are taken as initial

-

strains and are assumed to occur at the end of each time step. For
simplicity, it is also assumed that uniform shrinkage occurs in each

element. Thus, the reguirement for the solution procedure pursued in

this investigation is to have a model of shrinkage which enables the

shrinkage strain increments to be calculated for each time step. Two

iy ‘ . . - _ S
tions are provided for the calculation of shrinkage strain increments

jol)
wr
fad

“

&

3

at each time step.
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In the first option, shrinkage strain increments for each time
step are reaa directly from the experimental curves available. In the
absence of available experimental data on the particular concrete to
be analyzed, the second option is used.

In the second option, ACI Committee 299 [3.5] recommended for-
mulas are used for predicting the shrinkage increments at each time

step. The ACI Committee recommends using:

(t-10)¢
(ash)t = KSKhKH ;~:~z;j;;§5'(es;)u (3.34)
where
(esh)t = shrinkage strain at observation time, t
(ssh)u = ultimate shrinkage strain, to be determined from experi-
ments
t = time at observation
T, = age of curing
f.e = constanis, to be determined from experiments
Ks = correction factor for slump of concrete mix
Kh = correction factor for size of concrate member
KH = correction factor %Or retative humidity

Normal ranges of constants e,f and (esh)u, using normal- or
light-weight concrete /for either moist curing or steam curing, are found

to be as follows:

0.90 to 1.10

o
[

—h
I
o
o
g
o
wmenend
o
<o

(esh), = 415 x 107° to 1070 x 107 in./in.

By conveniently using Eq. (3.34) for nredicting shrinkage strain,




standard equaticns can be selected [3.5] as follows:

For concrete moist cured for 7 days:

— (t“7) e "6 -5
(ggh)t = KK Ky g5y * 800 x 10 (3.35)
For concrete steam cured for 3 days:
- - : (t-3) . -6 -
(esh)y = KKKy o103y 730 x 10 (3.36)

The correction factors are provided to take into account dif-
ferent field conditions that may exist for different cases under con-
sideration.

1. Slump correction factor, KS: Slump of concrete mix is
directly proporticnal to the water content of the mix. Hence, the
less siump, the Tower will be the amount of shrinkage. Figure 3.11a
shows the variation of the slump correction factor with the slump.

2. Humidity correction factor, KH: Shrinkage decreases with

increases in ambient humidity. Tnhe humidity correction factor is given
by:
KF = 1.40 - 0.0710 H 40 <H < &0
’ {2.37)
= 3.00 - 0.030 H 80 <H <100

i

where H = relative ambient humidity.

3. Size correction factor: Shrinkage decreases for increasing

11 hows the size correction

thickness of concrete members. Figure 3.

(7]
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4. METHOD OF AMALYSIS

4.1 fGeneral Remarks

The method chosen for the numerical analysis of boundary value
oroblems in this study is the well-known finite element method. It is
a discretization procedure through which a continuum with an infinite
number of unknowns is approximated as an assemblage of elements having
a finite number of unknowns. Several texts [4.1,4.2] have been written
on the finite element method. Thus, only a brief description will be
given here for the finite element displacement formulation, which is the

approach used in this study.

4.2 Finite Element Displacement Formulation

The following steps are taken in the displacement formulation
of the finite element method:
1. The elastic continua are discretized into a number of elements.
2. Tnhe displacement vector, u, at any point within the element, is
approximated by interpolation functions, N, also known as the shape
functions. The interpolation functions relate u to the generalized

coordinates, r, which, in the displacement formuiation, are the nodal

displacements.

u=Nr (4.1)

3. From compatibility relationships, the strain vector, e, at any
point within the element, may be found in terms of displacement vector,

u, as:

~
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where L = a linear differential operator

102
i

N = strain-displacement matrix

4. The constitutive relationships may be expressed as:

) 4+ o, (4.3)

o =D

> (M

€
~0

where D = elasticity matrix containing appropriate material properties

€ © initial strain vector
Oy = initial stress vector

~

5. The equilibrium equation is obtained from the principle of

virtual work as:

srR+ Y [ sulbdv + 3 f su'fds = 3 f selodv (4.4)
~n e S~°° e S~ ° e Vv~ °©

where R = external load vector
b = body force vector
f = surface traction vector
>, = summation over all elements
e
V. = volume of one element
S = surface of one element
8r, 8u, & = virtual nodal displacement vector and correspond-

ing element displacement and strain vectors.

Equation (4.4) may be rewritten, substituting values from Egs.

(4.1), (4.2) and (4.3) as follows:

A
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seTY [ WTbdv ¢ ert 3 f NI
or'SS [ BT{D(e - e ) + o, b av (4.5)

Since d&r 1is arbitrary:

R+ 30/ n'bay + > fSr_\ands

or,

R+ F

where

or,

e

:gf

b

> T

P

th

v

T T . T
108V v - 5 /810 et ¢ T S 8T ol

> M

v

R eyt o KT (4.6)

o
L=

S NTbdv (4.7a)
e vV 7
equivalent nodal force vector due to body forces
> nTfds (4.7b)
e S 7
equivalent nodal force vector due to surface tension
> 8D egav (2.7¢)
e v :
equivalent nodal forces due to initial strain
T
PR g Vv (4.7d)
e V. 7
equivalent nodal forces due to initial stress

S | 8'pBdv (4.7¢)
e vV

stiffness matrix

Kop (4.3)

(o]
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here B THF S F v E f Ty

i

equivalent nodal force vector

6. Solution of Eq. (4.8) gives the unknown nodal displacement
vector, r. Strains and stresses in the elements can be obtained from
Eqs. (4.2) ard (4.3). This completes the solution of the structural

analysis problem

4.3 Sources of Nonlinearity in Reinforced Concrete Structural Response

In the displacement formulation given in the previous section,
two assumptions are made:

1. The strain-displacement relationship is linear, i.e. B is
independent of r in Eq. (4.2).

2. The constitutive relationship is Tinear, i.e. D is inde-
pendent of = in Eq. (4.3).

The violation of the first assumption causes nonlinear behavior
termed as geometric nonlinearity. Material nonlinearity occurs due
to the violation of the second assumption. In this study, the first
assumption is accepted to be valid. This impliies the usage of the
small displacement theory.

The nonlinear behavior of structures will be due to material
nonlinearity. Several factors contribute toward the material non-
Tinearity of reinforced concrete structures. These include: (1)
cracking of concrete; (2) nonlinear stress-strain relations for concrete
and steel, bond and aggregate interlock; and (3) time-dependent effects
such as creep, shrinkage, temperature and load history. In the present
study all the above factors, except bond and aagregate interlock,

will be considered.




4.4 Techniques for Nonlinear Analysis

Three basic techniques are empioyed for the soilution of the non-
Tinear problems by the finite element method--(1) incremental or step-
wise procedures, (2) iterative or Newton methods, and (3) step-iterative
or mixed procedures.

1. Incremental Method: In this method the total load vector,

R, in Eq. {(4.8) is subdivided into a number of increments.

o

R = D AR,

A Lt ST
i=1

—
ey
.
Lo

——?

The load increments are applied one at a time and a fixed value
of stiffness matrix, K, is assumed during the application of each incre-
ment. However, K may take different values during different incre-

ments. Thus, for ith increment, Eq. (4.8) may be rewritten as:

]

BR. K; . (4.10)

SSARE

=
>
]
3
D
PR
—d y
1

Ri_1)

The total displacement vector, r, is a summation of displacement

increments ars found from the solution of Eq. (4.10).

m
f o= Sar. (4.11)

The method is illustrated in Fig. 4.1.
2. Iterative Method: In this procedure, the structure is fully
Toaded and then a series of iterations is executed to ohtain an approximate

solution close to the correct solution. Since at each iteration a linear

soluticn is obtained for the Toad vector, the eguilibrium condition is not

88 |




89

COMPUTED RESPONSE

_ACTUAL RESPONSE

IHCREMENTAL METHOD

FIG. 4.1

IVE METHGD

T
i

ITERA

FIG. 4.2

0D

provid

e
4

TIVE METH

El



satisfied. After each iteration, the portion of the JToad that is not
balanced is calculated and used in the next iteration to compute
additional displacement.

At the ith iteration:

. = - R! 4.12
51 5 E1m1 (4.12)
where R, = Tload vector to be used in the ith cycle
R%_1 = equilibrium load vector at the end of (i-1)th cycle
Now, Ei = Ki Lry (4.13)

i

where Ar. = displacement increments at ith iteration

= 4 t
K Krioqs Rip)

Now, total displacement is given by:
ry = E:Ari (4.14)
~ _i ~

This procedure is repeated until either 81 or Afi falls within
some tolerance 1imit when the solution is stopped. Figure 4.2 illus-
trates this method.

3. Step-iterative Method: This method utilizes a combination
of the above two methods. The load vector is divided into several
increments and for each increment, an iterative method is followed.
Figure 4.3 illustrates this method.

The above three methods have their advantages and disadvantages.

Selection of any one method will depend on the type of problem to be

solved, the computational effort needed for the solution and the



degree of accuracy required. The third method will yield results much
more accurate than those given by the first two methods, but at the
cost of greater computational effort. A1l the methods are, obviously,
a series of Tinear solutions attempting to approximate the nonlinear
problem in a piecewise linear fashion. Ultimately, the degree of
accuracy and the computational efforts required to achieve that accu-
racy are the two vital factors that will determine the choice of
method to be used.

One of the significant steps in the iterative methods is the
determination of the stiffness matrix, K, which is to be used in the
solution of Eqg. (4.8) for each load step or each iteration as the
case may be. The three commonly used methods are known as the initial
stiffness method, secant stiffness method, and tangent stiffness
method; these are illustrated in Fig. 4.4. The convergence is fastest

with the tangent stiffness method, but at each iteration, a new stiff-

ness matrix must be formed, reguirinag considerable computational effort.

The initial stiffness method, on the other hand, uses the same stiff-
ness matrix for all iterations. Thus, the triangularized stiffness
matrix for the first iteration may be stored and used for solving the
later iterations at a very fast rate. The convergence, however, is
very slow and for highly nonlinear materials may take an excessive
number of iterations. It is obvious that the choice of any one of
the methods or a combination of the three will depend on the type

of problem to be solved, the degree of accuracy to be achieved, and

the amount of computational effort required.

4.5 Types of Finite Element Used

Five types of finite elements are used to model different

9]
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structural elements in the present study. The elements are chosen on
the basis of efficiency with regard to the computational effort needed
in forming the element stiffness matrix, the accuracy of the element

displacement interpolation functions to represent the actual displace-
ment distribution and the ability of the element geometry to represent
accurately the shapes of various structures considered in the present

study. Brief descriptions of the elements are presented below.

4.5.1 One-dimensional Truss Element

This element may be used to mcdel either a steel reinforcing bar
in a reinforced concrete structural component, or a concrete cylinder
under concentric axial load or a reinforced concrete column under con-
centric axial load as shown in Fig. 4.5. In the first two cases, a truss
element having the appropriate section and material properties is used.
For the third case, two truss elements--having material and section pro-
perties of either steel or concrete-- are used in combination. Perfect
bond is assumed to exist between both steel and concrete elements. The
stiffness of the composite section is obtained by adding the stiffness
contributions from each component element.

Displacement distribution is assumed to be Tinear along the
length of the element. The axial distribution, u, at any point in the

element is given by (Fig. 4.5):

u = N r (4.16)
where N = shape functions
= [1-s 5]
s = x/L
1r1
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The strain at any point is given by:

M
i
it
yom
>y
Pt
N
paw—
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V

H

where B E~[—1 17

The element stiffness matrix is given by:

1 -1

« = Jelesav=F (4.17)
S ]

i

where E = modulus of elasticity, A = axial area of the element, and

L = Tength of the element.

4.5.2 Triangular Shell Element

The trianqular shell element, developed by Lin [1.27] for rein-
forced concrete shells of general form, is used to study shell-type
structures in the present investication. The usually curved shell sur-
face is approximated as an assemblage of flat surfaces by the use of
this element. The size and shape of the flat triangular elements are
defined by the coordinates of the nodal points Tying on the reference
surface of the shell.

The shell is a three-dimensional body (Fig. 4.6) and some assump-
tions are needed to reduce the problem to a two-dimensional case.
Kirchoff's classical hypotheses are adopted for this purpose. These
hypotheses are:

1. A plane section normal to the reference surface remains
plane after deformation.

2. Stresses normal to the reference surface are neglected.

Based on the above assumptions, the displacements at any point

[te)
5




(Lol
N

FIG. £4.¢  COCRDINATE SYSTEM IN A TRIANGULAR

SHELL ELEMENT

A / T
Oy, £ -
§
Ij’ f(p
IO R e s o
y (U 0, exx




in the element may be expressed in terms of the displacements and their

derivatives on the reference surface (Fig. 4.6).

W= (x,y)

= oo - é:'y |94
u uo(x,y) z T (4.18)
V= (x,y) -z W
8] 5y

where u,v,w are the displacements in the x,y,z directions at any point
on the element, while uo,vo,wo are those on the reference surface.
The reference surface displacements may be written in terms of

the nodal dearees of freedom (Fig. 4.7) as:

Wy = Mlxy) fw
~X
8
Y
(4.19)
u, = Nix,y) u
vo = NOGY) v

where M(x,y) and N(x,y) are the shape functions,

u=<up U, g >T
vECvpvp v >
W= oWy Wy >T
éw =< @xi e'><2 6x3:>T
6,2 (o By 850 T

The strain vector at any point in the element is given by:
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Now, 6 and y are the strain and curvature vectors at

~

reference surface and may be expressed as:

N, x 0
u u
o Nay ~ Zm
v !v
Ny o thx o U0 )
and
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VO IPVATH IR -0 SR P -
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h-,.. ot l/\ AyJ

™
i
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H
N
e
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| — 1
~s
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[Ree)
>

where r=<{u v w & 8 7 T

The element stiffness is given by:

[Kmn Ko
- (BB av =

yo oo tgbm Kpb

P

(4.20)

the

(4.22)

(4.23)
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where Kgym = membrane stiffness matrix

i

J 8L D By AV

[18) [0 dz] By dxdy

i

T -
/1B Omm B dxdy (4.25)

It

= bending stiffness matrix

/B

v

[ [f2° D dz] By dxdy

P

o

or
H

D Bp dV

it
et |

i

1}

ff@g Dpp Bp dxdy (4.26)

Kpm = coupling stiffness matrix

2%£D§mw

1]

ff85 [f-2 D dz] By dxdy

]

185 Do B dxdy (4.27)

it

D

material matrix

It is to be noted here that By and By are functions of x and y
only, and their values depend on the type of shape functions chosen
to describe the displacement distribution in the elements. Thus,

computations for element stiffness matrix hinge primarily on the eval-

u

tion of the material matrices Dy, Dpp» and Dpy. To evaluate these

[ Ko

ua
material matrices, the reinforced concrete composite section is assumed
to be a layered system consisting of concrete and 'equivalent smeared'

stee] layers as shown in Fig. 4.8. The steel reinforcement 1s con-

verted into uniform layers with equivalent thicknesses given by:
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10

A
to= = (4.28)
s b ’
where A_ = area of one reinforcing bar, and b = spacing of reinforcing
s _
bar.

Compatibility between the different steel and concrete lavers
is maintained by the Kirchhoff assumption of plane section normal to
the reference surface remaining plane. The conseauence of this assump-
tion is that no bond slip occurs between steel and concrete layers and
every layer 1is in a state of plane stress. The material matrix for
each layer will be dependent on the deformation state of that layer.
The material matrices, Dy, Dpp and Dpp. for the whole element may be
obtained by adding up the contributions from each Taver. Assuming
material properties to be constant for each layer, one may write (Fig.

4.8):

&

¢ s
Drom jodz = E%(Zi+] - zj) Dei + 2% Dsi ¢4 (4.29)
]: 1:

where D.; = material matrix for ith concrete layer, similar to Eq.

(2.7), and Dgy = material matrix for ith steel layer, similar to Eg.

(2.31). Similarly:

=1 2 2 >
Dpp = -fzDdz = - ff.% 5 (25417 - 2§) D¢y - E]Zi Dsi ty
1= 1=
(4.30)
2 & 3 3 > 2
Dpp = [z" Ddz = 2ﬁ 3 (24477 = 297) Deq ¥ 2%21 Dsi T
1= 1=
(4.31)

The nodal degrees of freedom (DOF) required to describe the
displacement field within the triangular shell element is shown in

Fig. 4.7. At each node five DOF are prescribed--two in-plane or membrane

i
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displacements u and v, and three cut-of-plane or plate bending displace~

ments w, 8 and Qy. A constant strain trianguiar (CST) membrane element

is combined with a lineariyv constrained, curvature triangular (LCCT9)

rm the trianqular shell element.

§l>

C)

ate bending element to T
The CST element has been derived by Turner, et al. [4.3]. and
the derivation is available in any standard text on finite eiement
methods [4.1]. The LCCTY element has been formulated by Felippa [4.4]
using a triangular coordinate system. Figures 4.9 and 4.10 show the
nodal degrees of freedom associated with CST and LCCTY element, res-
pectively. Bending deformations are represented very well by the LCCTS
element. Membrane actions, on the other hand, are not modeled very accu-
rately by the CST element. However, the above shell element is used to
keep the computational effort, needed for nonlinear analyses of rein-
forced concrate structures of practical interest, within reascnable Timits.
It should be noted that in the above formulation, the in-plane
rotation, i.e. I is not considered as a degree of freadom at any node.
For a number of nearly co-planar elements meeting at a node, the global
stiffness in the 92 direction will be very close to zero. This may
oresent savere numerical difficulties in the soiution of the equilibrium
equations. To avoid such difficulties, a fictitious rotational stiff-
ness, about normal to the shell surface at a node, is provided by a
boundary spring element. The value of the fictitious rotational stiffness
is taken to be about 10% of the bending stiffness of the shell to avoid
the above numerical difficulties and also any ill-conditicning due to
large off-diagonal fterms in the structural stiffness matrix which may
occur if a very large value s used and the rotational stiffness con-

tributes to more than one global degres of freedom.




FIG. 4.9  CONSTANT STRAIN TRIANGULAR ELEMENT

FIG. 4.10 LINEARLY CONSTRAINED CURVATURE
TRIANGULAR ELEMENT
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4,5.3 Triangular Membrane Element

This element is used for analyzing shear panel type struc-
tures where the load-carrying action is taken by in-plane or membrane
forces. The constant strain triangular element, CST, having a total
of six degrees of freedom at the three corner nodes (Fig. 4.9) is

chosen for this purpose.

Detailed formulation of this element is given in several standard
texts on the finite element method and will not be repeated here. The
expression for the stiffness matrix of such an element is given by Eq.
(4.25) and the expression for the material matrix for a composite
material such as reinforced concrete is given by Eq. (4.29).

Since only in-plane forces are assumed to exist in such an
element, the material properties about the reference surface must be
symmetric. This is a restriction on the type of layer system that can
be used for such an element. Usually, concrete properties do not vary
across the thickness of any element and as such, generally one layer

of concrete is used.

4.5.4 Triangular Plate Bending Element

This element may be used for the analysis of slab-type struc-
tures where transverse bending of the slabs is the predominant load-
carrying mechanism and the membrane action is not significant. A
linearly constrained curvature triangular element, LCCT9 (Fig. 4.10),
is chosen to represent the plate bending action. This element was
reformulated by Felippa [4.4] using a triangular coordinate system.

Since a plate is a three-dimensional rather than a two-

dimensional body, Kirchhoff'sclassical hypotheses are used, as in the



case of the shell element, to reduce the probiem to a two-dimensional

one. The expression for the stiffness matrix is given by Eq. (4.26)

rial

[

while the expression for the material matrix for a composite mat
such as reinforced concrete is given by Ea. (4.31).
The composite section is modeled as a layered system (Fig. 4.8).

stat

¢t

0

[a¥]
D
88}

Kirchhoff's hypotheses reduce each laver of plane stress,
Jp oF p k4

tate of deformation due to

[ %31

but each layer will be under a different

the plate bending action. This will result in local failures in some

105

layers where the stress state or the strainstate has violatedany specified

failure criteria. Thus, the lavered system can trace the progressive
cracking in reinforced concrete and the resulting detericration in
stiffness. The beginning of other failures and their progression is
also possible. It should, however, be emphasized that for each layer
the field variables considered are at the centroid of the triangular
layer and thus tensile cracks or steel yielding, etc., can only be
indicated over an area. This implies that only averaged values are
being considered. Stress concentrations can be captured with better
accuracy only if mesh sizes are made finer, therebhy reducing the area

of each triangular element.

4.5.5 Boundary Spring Element

This element is used for three purposes in this study--to limit
nodal displacements or rotations to specified values, to compute sup-
port reactions, and to provide linear-elastic supports to nodes. This

element has been daveloped by Wilson [4.57.

The boundary element is defined by a single directed axis through

a specified nodal point, by a Tinear extensional stiffness along the



axis or by a linear rotational stiffness about the axis. The element
stiffnesses are added directly to the total structural stiffness matrix

and hence have no effect on the size of the stiffness matrix.

e
o
%]

A finite element tangent stiffness formulation, coupled with a
step-by-step integration scheme in the time domain, is developed to
analyze reinforced concrete systems. Within each time step, an incre-
mental load procedure, with an iterative approach to the solution of
the equilibrium equations for each load increment, is used.

The entire time period, for which the response history of the

structure s to be traced, is divided into a number of time steps,

At], Lts, At3 ..... Atn, as shown in Fig. 4.11. It is assumed that changes

in the external nodal Toads, if any, occur only at the beginning or at
the end of a time step, e.g., at t], tS’ iB’ and so on. During a time
step, the external loads are assumed to remain constant. The increment
in the external nodal loads at any particular time, may be subdivided
into a number of Toad steps to follow the nonlinear responses of the
structures in more detail. For example, R{t]}, the increment in the
external nodal load vector at time t3 (Fig. 4.11), is divided into three
load steps, AR}, ARZ, and AR3. An iterative approach is then used to
solve for each load step and the increments in the field variables--
deformations, strains, and stresses--are added to the previous totals
to give the current state of the structure. The basic steps of this

~

nunerical method of analysis are presented below
1. Read in the control parameters such as the number of nodal

points, element types, time steps, convergence and divergence norms,
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P

and indicators specifying type of analysis to be performed, for example,

external load only, creep only, shrinkage only, or a combination thereof.

2. FRead in coordinates for each node. [Input data for consti-
tutive ralations and time-dependent properties of the materials, types
of layer systems, and jayout and properties of elements.

3. Start solution at t,, which is the beginning of the first

1
time step, At,. Form material matrix for each concrete layer of an

element, calculate the Tayer stiffnesses, and integrate to form elemen

(‘%

tiffness matrices. Assemble element stiffnesses into structural
stiffness matrix.

4., The external nodal Toad increment vector, for example, R(ti)

o

t. is assembled into the structural load increment vector. If there

atT

et

is no external load increment, then co tc step 17.

g

o IN

e

tart solution for the load steps. Divide thz structural
load increment vector to obtain the load vector for each load step of
the increment.

6. Start iterative solution procedure for this load step.

7. Solve the equilibrium equations to obtain the nodal displace-
ment increment vector. Add this to the previous total displacement
vector to ohtain the current total nodal displacement vector in the
global coordinate system. From the second iteration onwards, check the
displacement increment vector against divergence and convergence norms.

8. For each element, steps 9 through 13 are executed fo obtain

1

H

the current state of stress and strain.
9. HModal displacement increment vector in global coordinate

g

system is transformed to the element coordinate system and strain incre-

ment vector at the reference suyrface s calculated.



10. Strain increment vector for each layer is calculated and the
total strain vector is obtained by adding the strain increment vector
to the total strain vector from the previous iteration.

11. Stress increment vector for each layer is estimated by
multiplying the current layer material matrix by the layer strain incre-

ment vector. The piecewise linear constitutive relationship, used in

(o]

the stress computation, causes some approximations in these stress
values. The total approximate stress vector is obtained by adding the
approximate stress increment vector to the stress vector in the layer
at the end of the previocus iteration. The total approximate stress
vector is transformed to obtain approximate principal stresses.

12. Equivalent uniaxial stress-stain curves are constructed
assuming the layer to be under the biaxial principal stress ratio exist-

ing at the end of the previous iteration. Equivalent uniaxial strain

109

increments are calculated from the current approximate principal stresses,

the principal stresses from the previous iteration, and the tangent
moduli in the principal directions at the end of the previous iteration.
The equivalent uniaxial strain increments are added to the total equiva-
lent uniaxial strains from the previous iteration to obtain current
total equivalent uniaxial strains. From the equivalent uniaxial stress-
strain curves, the stresses corresponding to the current total equiva-
lent uniaxial strains are obtained. These are the actual principal
stresses for this iteration. These are transformed to the element
coordinate system to obtain the total stress vector.

13. Calculate the unbalanced stresses in each layer by subtract-
ing the total stress vector of step 12 from the total approximate stress

vector from step 11. Integrate the unbalanced layer stresses to obtain



the unbalanced element nodal forces. Update the element stiffness
matrix incorporating the changes that occur in the layer material
matrix.

14. Assemble unbalanced element nodal loads into the struc-
tural load increment vector. Check the assembled structural load
increment vector against convergence and divergence norms. If diver-
gence norms are not satisfied, stop the solution. If convergence norms
are not satisfied, go to step 15. Otherwise go to step 16.

15. Assemhle the new structural stiffness matrix with updated
element stiffnesses. Go to step 7 for next iteration. When the maxi-
mum number of iterations is exceeded, go to step 16.

16. Go to step 6 until solution is obtained for ali the load
stens specified in step 5.

17. If solution cycle just completed is not for external loads,
go to step 4. Otherwise go to step 18.

18. Solution is started at the time corresponding to the end
of the time step. For example, in Fig. 4.11, for the first time
step, At}, this will be time t,. If the number of time steps specified
in step 1 is exceeded, stop the solution. If not, calculate the
material properties at the current time. For each element, steps 19
through 21 are then executed.

19. Update layer material matrices with the material properties
calculated in step 1E&.

20. Caicula

s

e creep and shrinkage strain increment vectors for
cach laver for the time step under consideration. The stresses in each
Tayer are assumed constant curing the time step.

21. Treating creep and shrinkage strain increments as initial
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strains, equivalent nodal loads due to these initial strains may be
obtained by using an expression similar to Eq. (4.7c).

22. The eguivalent nodal loads for each element is assembied
into the structural load increment vector. Go to step 5.

Two of the complex parts in the above solution algorithm are
(1) steps 18 through 21 which deal with the solution procedure for
creep and shrinkage strains and (2) steps 9 through 13 which determine
the states of stress and strain in the concrete layers. These will

be described in more detail in Sections 4.7 and 4.8, respectively.

4.7 Solutiocn Procedure for Creep and Shrinkage Effects

A step-by-step integration scheme in the time domain is adopted
to consider the effects of such time-dependent phenomena as creep and
shrinkage strains on the behavior of reinforced concrete structures.
The total time period for which a structure is under study is divided
into several smaller time steps to trace the nonlinear response history
of the structure over the entire period. An 'initial strain' approach,
as described by Zienkiewicz[4.1], is then adopted to determine the
responses of the structure due to creep and shrinkage strain increments
occurring during a time step. This procedure is presented below for
a time step tzat] where t] and t2 are the times at the start and end
of the time step (Fig. 4.11).

T. Assume all load changes to occur at the beginning of the
time step t]. By solving the equilibrium equations for these load
changes, all the field variables--nodal displacement vector ro strain
£ and stress g--are known for all elements. A creep law and a shrink-

age law (similar to those discussed in Chapter 3) are also specified.



2. Calculate the strain increments due to creep and shrinkage

that occur in each concrete laver in the elapsed time period t,-t

po—

by assuming the stress state to be constant at the value calculated in

step 1. Details of the computations for the creep and shrinkage strain
increments are given in Chapter 3.
4. Treat creep and shrinkage strain increments as initial

strains e as introduced in Eg. (4.3) wherein:

~

(4.32)

Ae . = Af
pCo} =z

e

+ Ae

—te D

C
where Agi and Ae?

are creep and shrinkage strain increment vectors in
lTayer i, and Afai is the initial strain increment vector similar to
the initial strain vector of Eg. (4.3).

5. Calculate the equivalent nodal forces produced by the initial

strain increments:

C
My = T 2o ] By Dy e dv (4.33)
F L s

where AFEO is the equivalent nodal Toad vector due to the initial strain

. . % N N

increment, Y. is the sum of all elements, 2, is the sum over thes con-
e i=1

crete layers, @1 is the strain-displacement relationship for layer i,

ot

Qf is the material matrix for concrete layer i at time to, and Vi is
the volume of layer i. Equation (4.33) is similar to Eg. (4.7c).

6. The structurai stiffness matrix K is assembied at time £,
and the ecuilibrium equations are solved for the equivalent nodal Toad

vector produced by initial strain increments:
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where Ar is the nodal displacement increment vector.

7. The strain increment vector Agi in any layer is obtained by:
Ae. = . Ar (4.35)

8. The stress increment vector Aoi in concrete layer i is

obtained by:

A(Aei - Ae. ) (4.36)

. = D
A/O\/T "1 /\1 /\‘]O

Equation (4.36) is simlar to Eq. (4.3) where (Afi - Afio) is the
increment in the elastic strain in the time period ty - ty.

9. Increments in the field variables--displacements, strains
and stresses--are added to the total values at step 1 for time t] to

obtain the values for the current time tZ'

10. Steps 1 through 9 are repeated for the next time step.

4.8 State Determination in Concrete Lavyers

In the present study, the material behavior of concrete is
characterized by a nonlinear constitutive relationship for the biaxial
state of stress. This includes tensile cracking at a Timiting stress
level, tensile unloading after cracking, influence of the biaxial stress
ratio, and strain-softening phenomenon beyond the maximum compressive
strength. These are described in full detail in Chapter 2.

Since the finite element method is a linear solution procedure,

a step-iterative method (as discussed in Section 4.4) is used to trace
the nonlinear response of the structure due to material nonlinearity.
The following steps are used to estimate, at a particular Toad Tlevel,

the actual state of stress and strain in a concrete Tayer within



specified tolerance limits.

1. For any load increment sR (Fig. 4.12), the following iterative

scheme is used to determine the stress and strain states in the concrete

2. For the nth iteration, the equilibrium equations may be

s = Kply oR" (4.37)

i

where for the first iteration, n =1, K stiffness matrix at the end

i

of the jast load increment soiution, AR’

o~

ARy and Ar' = nodal displace-

ment increment vector.

3. The strain increment in a layer is given by:
n n
pe, = B AY (4.38)
where B is the appropriate strain-displacement vector.
The current total strain vector is then obtained by:
n n-1 n
£ = € + As 4,39
X ~X <X ( )
4. Stress increments in the layer are obtained by:
— N n-1 n
Ao = D Ae 4.40
~X - ~K ( )

n-1 . . . . . . .
where D is the linearized, plane stress orthotropic material matrix
[Eq. (2.7)], whose values are obtained at the end of the previous

ear relationship, the valuss of
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the stress increments are only approximate estimates.

The total approximate stresses in the layer are then computed as:
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— N n-1 — 1
S T 9, + AGX (4.41)
5. The principal stresses are computed from the total approximate

N

- . . =N _n , , .
These are designated T and G, and are shown in

stress vector Iy
Fig. 4,12. Because of the linearized constitutive relations of step 4,
n are approximate estimates of the actual principal stresses;
and 1 and 2 are approximate principal directions.

6. Calculate the increment in the equivalent uniaxial strains

n — 1 r-1 n-1
,i\, - - - ‘\ i H
=N (o oy )/E, |
(4.42)
n  _ ,—n n-1 n-1
begy = oy -0y /B
n-1 n-1 . n-1 n-
where oy y Ta are the principal stresses and E} R EZ ! are the
tangent moduli at the start of this iteration.
The total equivalent uniaxial strains are given by:
n n-i n
e; " = ¢ + Ae
Tu Tu Tu
(4.43)
n-i n
€ = g + Ag
2u 2u =2y

7. Determine the biaxial stress ratic at the start of this

iteration:

HES

2. From o and concrete properties f!, f., ¢ and E

¢’ t’ Tcu 0’
. . . n R -
equivalent uniaxial curve C'' can be drawn (Subsection 2.2.4) as shown

in Fig. 4.12.

i

. n . N . .
9. Principal stresses o, and Is corresponding to £l

n
and o)
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are calculated from Egs. (2.8) and (2.9). The material matrix D is
also updated.

10. The principal stresses are transformed to the element
coordinates to obtain the total stress vector 92* The unbalanced

stresses in the layers are now obtained by:

n _ n n-1 -
T T (4.45)

n+l

11. The unbalanced nodal load vector AR , Fig. 4.12, 1is now

calculated by:
LARNEED DY - LU (4.16)
8 e 2V ~
where D, and ) are summation over elements and layers respectively

e 2
and V is the volume of a layer.

12. Compare AR”+1

or Arn against convergence and divergence cri-
teria. If these are satisfied, then go to step 13. Stop solution if
divergence criteria are violated. If convergence criteria are not
satisfied, go back to step 2 for next solution.

13. End of iterations for this load increment.

4.9 Convergence Criteria

A step-iterative approach is adopted in the present numerical
method to trace the nonlinear behavior with a series of piecewise linear
solutions. Since considerable computational effort is needed for each
iteration, convergence criteria are set to minimize the computer costs
when successive iterations give solutions hardly differing from one
another.

In the solution process, a large system of equilibrium equations



are used to obtain nodal displacements. Two criteria can be set to

study the convergence of such a system of equations in the nth itera-

tion--{1) the extent of the violation

f the equilibrium state as given

D
(@]
C

{

by the unbalanced nodal load vector, ARn} in Fig. 4.13; and (2) the
accuracy of the total displacements as indicated by the nodal displace-

s 2 s - i .Aq I : =~ A
ment increment vectcor, Ar ', as shown in Fig. 4.1

(¥4}
(%)

In the computer program developed in this study, both options
are provided. In the input data, the following regquirements may be
specified.

1. Control code indicating whether a displacement or force con-
vergence criterion is to be used.

2. Control code indicating whether absolute values or per-
centages of already obtained solutions are to be set as convergence
Timits.

3. Values, either in absolute or percentiie form, of the con-
vergence tolerances are specified.

4, A maximum number of iterations is also specified to limit
computational costs in case tolerance Timits, which are too stringent,
are set.

5. Due to deteriorating structural stiffress with high load
levels, the displacements may diverge under a particular increment of
load, indicating structural collapse. It is unnecessary at this stage
to carry the solution process further. Values, either in ahsolute or
percentile form, are previded to check the solution for divergence.
Solution is stopped in case of divergence.

The following steps ave executed i7 a displacement convergence

3]

criterion is used.

ool



119

NOILNT0S JATLVHILT ¥O4 SINIWIYONT INIWIOVTASIO OGNV SIU04 GIONYIVENN €L7% °DId

o
A

qu.fm,n.,,w BT AN

4

~
!
!
|
|
!
!
“
!
i
|
!
!
|
_
“
|
|

t
§
!
!
!

f
!
!
|
i
m
|
I

|
I
!
[
t
{

i
i
|
|
I
!
|
!
|
I
i
|
{

. -

<



, . . n . .
The nodal displacement increment vector, Ar, at the nth itera-

d to find the maximum ahsolute values in the direction

=N
aand 3
O
o
ind
1]
@]
e
D
[
_~
{%

H i o

of the six global dearees of freedom, u, v, w, 8, ©_, and o (Fig.

v z

"
Ty

p
o htnd 3 o n
4.6). The ccmponents of the error vector, re

> D
[e3]
[8V]

i
wada
«
D
=
)
<

where 7 = 1, 6; and k = number of nodes.
If the tolerances are given in absolute terms, &, then conver-

gence at the nth iteration is assumed by:

(4.48)

> (D
| A
> On

T¥ the tolerances are given in percentile terms, p, then con-

~

vergence 15 assured by:
e’ < p e (4.49)

where o' is the maximum vector obtained by Eq. (4.47) for the displace-

~

ment increment solution for the first iteration, Ar’ (Fig. 4.12).

-~

The force convergence criteria and the divergence criteria are

also checked in a simi

4,10 Computer Progranm

A computer program NOTACS {NOnlinear Time-dependent Analysis
of Concrete Structures) has been developed to analyze reinforced con-
crete panels, siabs and shells under short term or sustained Toad
ected to time-dependent phencmena such as creep and

shrinkage effects. The program can he used to trace the Toad-deformation
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ultimate ranges. Stress and strain states in concrete and steel rein-
forcement can also be determined for any stage of the response history.
The program is coded in FORTRAN IV language and has been tested
on CDC 6400 and 7600 computers at the University of California, Berkeley.
The blank common is dynamically dimensioned so that the blank common
length can be either expanded or shortened to fit exactly the require-
ments of the problem under consideration. By this option, efficient use
is made of the central memory capacity of the computer and thus cost of
execution in the computer is greatly reduced. A flow chart describing
the logical structure of the program is presented in Fig. 4.14. A
description of the input and the output and detailed input instructions

are presented in Appendix A.
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5. NUMERICAL EXAMPLES AND INTERPRETATION OF RESULTS

5.1 General Remarks

Four numerical examples, in a sequence of increasing complexity,
are chosen for study. The purpose of these numerical examples are as
follows.

(1) Check the validity of the material models and the structural
idealizations. The numerical results obtained from the analyses are
compared with the available experimental data for this purpose.

(2) Demonstrate the applicability of the proposed models to
different types of structural components and load histories.

(3) Study the influence of creep and shrinkage on the perfor-
mance of various structures.

The first example is a beam tested by Washa and Fluck [5.1]
under sustained uniform Toad. This example is chosen to check the
validity of the creep model adopted in this study. Although this study
is primarily concerned with panels, slabs and shells where a biaxial
state of stress is generally prevalent, a beam exampie where the uni-
axial state of stress is usually dominant is chosen due to the lack of
experimental data on the response of panels, slabs and shells under
time-dependent effects.

The second example is a panel tested by Cervenka [1.8] for
instantaneous loading to ultimate. This specimen, in the present study,
is considered both under an instantaneous and an assumed sustained high
load Tevel and shrinkage effects. The purpose of the instantaneocus
ultimate analysis was to._check the ability of the biaxial consti-

tutive model and the triangular membrane elements to predict correctly



the experimental behavior. The time-dependent anaiysis under the
assumed load nhistory, for which no experimental data are available, is
carried out to examine the differences, if any, in the panel behavior
due to creep and shrinkage.

The third example is a rectangular sauare siab tested by McNiece
[1.18]. This slab is analyzed for instantaneous ultimate lcading and
an assumed stepped-up load history including creep and shrinkage effects.
The purpose of the instantaneous ultimate analysis was to check how well
the plate bending triangular element and the biaxial constitutive model
predict the experimental behavior. Again, the time-dependent analysis,
for which no experimental data are available, was undertaken to study
the differences in the slab behavior due to creep and shrinkage effects.

In the fourth example, a comprehensive study is made of the
behavior of gablie hyperbolic paraboloid roof shells. This study may
be divided inte three phases.

In the first phase, linear-elastic analyses for dead Toad were
executed for two gable HP shells. These two shells were also analyzed
by Schnobrich [5.4,5.5] for a linear-elastic material using higher order
shell and beam elaments. The elastic solutions from the present study
are compared with Schnobrich's results to check the accuracy of the
triangular shell element to model the gable HP shell. The relative
significance and interaction of the shell, the crown beams and the
edge beams in carrying the load are also studied and discussed.

In the second phase, one of the gable HP shells was designed
for its requirad steel reinforcement and then loaded to ultimate incor-
porating nonlinear biaxial concrete behavior. The purpose of this analysis
is to determine the overload capacity of such shells as well as the failure

mechanism and the interaction between the different elements of the



shell, namely, the crown beam, the edge beam, and the shell proper.

In the third phase, the gable shell is analyzed for creep and

shrinkage effects under a sustained dead load. The stress redistributions
occurring among the different structural components are examined and the
stiffness degradation in the form of progressive crack patterns are traced.

Finally, after carrying this sustained load for a long period of time, the

gable shell is loaded to failure to see whether there are significant

125

changes in the ultimate behavior because of the creep and shrinkage effects.

5.2 Example 7 - Washa-Fiuck Beams C3-C5H

A series of beams were tested by Washa and Fluck [5.1] to deter-
mine the effects of creep on their behavior. Two such beams, C3 and C6
are chosen for analysis in this study. The purpose of the analysis is
to check the validity of the creep model chosen and to test its ability
to reflect reality with reasonable accuracy.

Beams C3 and C6 are two geometrically identical beams having
some variations in their material properties. The overall dimensions
and the material properties are shown in Fig. 5.1. These beams were
loaded at 14 days after casting with uniform load 82 Tbs./ft. The
Joads were kept in place until 913 days after casting. The important
experimental data obtained were the deflection history at midspan and
the strain histories at tensile and compressive steel levels.

Figure 5.2 shows the finite element idealization of the beam
for analysis and the material properties chosen. The layered triangu-
lar shell element has been chosen to represent the beam behavior which
may be taken to be the same as one-way slabs. Since transverse shear

deformations are neglected in the basic kinematic assumptions, each
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layer is always in a state of plane stress. The diagonal tension phe-
nomena, due to the combination of flexural and shear stresses, thus,
cannot be taken into account. However, for the beams under considera-
tion, the dominant effect is that due to flexure. The beams had

very long spans and shallow depths. The shear span-to-depth ratio
(M/Vd) of these beams is 15.6. Generally, flexural types of cracks and
failure occur for beams with shear span-to-depth ratio of 6 to 7 or
greater.

The material properties chosen are the average of the two beams
€3 and C6 and are also shown in Fig. 5.2. The analysis is carried out
for a total of 300 days after casting. The analysis is not carried
further to minimize the computer cost and also because about 98% of
the 913-day deflection has taken place by 300 days.

The load is applied at 14 days in three equail load steps. Then
analyses for time-dependent effects are done with the following 28
time steps--9-2-days, 10-4-days, 1-8-days, 2-10-days, 1-20-days, 4-30-
days, and 1-60-days.

The creep coefficients ¥ and Ai are chosen by least square
curve Titting of the experimental creep curve. Both the experimental
and the theoretically generated creep curves are shown in Fig. 5.3.
Since the experimental curve is given for loading age at 14 days, the
creep coefficient o corresponds to 14 days. To obtain the oy cor-
respending to other loading ages, for example 20 days, 28 days, etc.,
a correction factor for age, as reccmmended by ACI Committee 205 [3.5]

-

has been chosen. The age correction factor is given by the formula:

™ 5 O.i(o
(:,l B - l,c.:? T
agw ’
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where 1 = age at Toading.

The correction factors at 14 and 20 days are:

C.Fq, = 1.25(14)77 17 = 0.92
-0.
C.F.pg = 1.25(20)77 1% = 0,88

(@)

The a, at 14 days must be scaled by a factor C.F.pg/C.F.qq = 0.9

to get the s corresponding to loading age 20 days. A similar procedure

is followed to obtain the creep coefficients at other ages.

N

Figure 5.4
from the experiment and the theory. The theoreticaily generated values
compare satisfactorily with the experimental observations. The dis-
crepancies, near the period immediately following application of load,
are mainly due to the discrepancies in the curve fitting of the experi-
mental creep curve as illustrated in Fig. 5.3.

Figure 5.5 shows the theoretical strain profiles at midspan for
0, 86, and 286 days after application of load. The experimental values
at the compressive and tensile steel Tevels, i.e. 1 in. from the top
surface and 1 in. from the bottom surface, are also plotted. The
agreement between theorstical and experimental values is satisfactory.
One of the factors contributing to the discrepancies between theoretical
and experimental strain values in the period immediately following
load application is the difference between the experimental creep curve

BN

and the theoretically generated creep curve as illustrated in Fig. 5.3.

urthermore, the experimental creen curve corresponds to an age of

T

loading of 14 days. The ACI recommended age scaling factor has been
used to determine the creep coefficients for other ages. This also

contributes to the discrepancies

hows the deflection histories at midspan, as obtained

30
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Figure 5.6 shows the concrete stress profile at midspan at dif-
ferent times. The redistribution of compressive stress with passage
of time is significant. The compressive stresses at the top fibers re-
lax and the incursion of the compressive zone into the cracked tensile
zone of the section takes place to balance the applied constant exter-
nal moment. Starting from an almost Tinear distribution of stresses
at instantaneous loading, the redistributed stress profile becomes
increasingly nonlinear. The causes of nonlinearity of stress distri-
bution are twofold. First, in the extreme fibers the compressive stress
exceeds 0.35 fé and thus the nonlinear effects due to high stress level
is introduced. Second, in the cracked tensile zone, the nonlinear
effect is inherent in the problem formulation as discussed by Sackman
and Nickell [5.2]. In the cracked tensile zone, creep strains do not
occur with initial loading but only after the tensile zone comes under
the compression regime. This causes the stress in the cracked tensile
zone to be nonlinearly dependent on the depth from the neutral axis.

Fiqure 5.7 shows the relaxation of compressive stress in the
topmost layer at midspan due to creep effects. The stress relaxation
is very rapid from 14 to 40 days and then gradually becomes asymptotic.

Figure 5.8 shows the variation in tensile stress in the steel
reinforcement at midspan with time. The tensile stress increases
gradually with time due to the shifting of the compressive zone
towards the tensile reinforcement and the resultant decrease in the
Tever arm between compression and tension forces. This requires an
increase in steel tensile stress to carry the moment which remains
constant. The decrease in the lever arm, however, is very small,

necessitating oniy a small increase in the tensile stress.
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A phenomenon chserved in Fig. 5.5 is the increase in the depth
of the neutral axis from the top surface with time. This is plotted
in Fig. 5.2 which shows a rapid increase from 14 to 40 days and then
the increment rate slows down. The depth of neutral axis increases to
accommodate the stress redistribution which takes place due to creep
of concrete.

Figure 5.10 demonstrates the crack patterns at different stages
of load history. The beam is extensively cracked at the time of the
application of load. With passage of time, cracks in the layers at
mid-depth are closed and compressive stresses occur in those layers.

It may be said in conclusion that the creep model chosen pre-
dicted the experimental behavior very accurately. The beam specimen
was under high stresses and was cracked extensively. The close
correspondence of the theoretical analysis with the experimental
values for this case under very severe conditions suggest that under
Tower levels of stresses, as would generally occur in most structures,

the correspondence will be even better.

5.3 Example 2 - Cervenka Wall Panel W2

Cervenka [1.8] conducted experiments on a series of reinforced
concrete wall panels to investigate their behavior in the inelastic
range. Proper understanding of the behavior of reinforced concrete
wall panels is extremely important in the study of multistory buildings
under wind and earthquake excitations as the lateral stability of such
structures are mainly provided by the shear walls. In the present
study, wall panel specimen W2 of Cervenka has been analyzed under both

instantaneous load and sustained load. The purpose of the study has

139



been to compare the instantaneous response to the time-dependent
response to determine whether significant changes in the structural
behavior are introduced by the creep and shrinkage effects.

Figure 5.11 presents the dimensions and reinforcing scheme of
specimen WZ2. Because of symmetry, each half of the deep beam can be
considered similar to a wall panel subjected to a single transverse
Toad.

Figure 5.12a presents the finite element discretization of one-
half of the test specimen. A mesh size of 7 x 5 is used. This pro-
vides for the wall panel proper a 5 x 5 mesh with 50 plane stress CST
elements. This is a rather coarse mesh compared to that used by
Cervenka, a 10 x 10 mesh with 200 CST elements. The coarse mesh has
been used here to keep computer costs down without sacrificing too
much accuracy. The load history for the creep and shrinkage analysis is
shown in Fig. 5.12b. A Joad of P = 20 kips is applied at 28 days after
casting which is sustained for another 92 days, i.e. 120 days after
casting. Analyses for creep and shrinkage are carried out at 2, 6, 12,
22, 32, €2, and 92 days after loading. After that, the specimen is
locaded further to reach the ultimate load. The instantaneous analysis
is done at 28 days after casting.

Figure 5.13 presents the material properties chosen for the
analysis. The theoretical properties correspond very closely to the
experimental values. For creep and shrinkage, the ACI Committee 209
[3.5] recommended values are adonted.

Figure 5.14 compares the theoretical locad-defiection curve at
point A with experimental values for instantansous loading. Consider-

ing the coarseness of the mesh used, the correspondence of theoretical

140
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and experimental values are good.

Figure 5.15 illustrates the crack patterns obtained from the
present analysis at load levels of 14, 24 and 25.5 kips. The cracked
regions as well as the crack directions correspond very well with the
experimental values. Considerabie cracking occurs in the specimen at
higher load Tleveis causing nonlinearity in the load-deflection curve
of Fig. 5.14. The steel reinforcement in the tensile zone yields
causing the cracks to widen. The failure ultimately occurs due to the
yielding and crushing of concrete in compression {designated by "YL"
in Fig. 5.15).

Figure 5.16 illustrates the deflection at point A due to a sus-
tained load of P = 20 kips applied from 28 to 120 days after casting.
The deflection increases by about 50% at the end of the sustained
period of 3 months.

Figure 5.17 compares the load-deflection curves for instanta-
neous and time-dependent Toadings. It may be noted from the two load-
deflection curves that the ultimate behavior is not much altered by
this particular load history from the instantaneous behavior.

Figures 5.18 and 5.19 show the distribution of net compressive
forces in concrete and tensile forces in steel across section BB at 0
and 92 days after load application. The concrete compressive force
reduces at the outer layer and some tensile area changes to the com-
pressive zone causing the neutral axis to shift towards the tensile
steel. This is similar, qualitatively, to the behavior of the beam
in Example 1. The stress redistribution, however, is not as severe.
The tensile force increases in the tensile steel reinforcement, but,

here again, the increase is not much. This is because the lever arnm
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between the tensile and compressive forces do not change much as
observed in Example 1.

Figure 5.20 presents the crack patterns at 0, 32, 62, and 92
days after the application of load. The crack propagation is extensive.
The crack pattern, after 92 days under 20 kips of Toad, is as severe
as that under 25.5 kips of instantaneous load. Further increment of
loading causes yielding of tensile and compressive reinforcement and
£ailure occurs at P = 26.0 kips due to crushing of concrete in the

compressive zone.

5.4 Example 3 - McNiece Slab

An isotropically reinforced sguare slab, tested by McNiece
[1.18], is analyzed for both instantaneous loading and assumed load
history considering creep and shrinkage effects. In the Titerature
available to the author, no well-documented experimental data on the
behavior of reinforced concrete slabs subjected to creep and shrinkage
was found. Hence, the purpose of this example is to see how a slab
performs under a time-dependent loading including creep and shrinkage
effects and in which way this slab behavior differs from that due to
instantaneous loading.

The slab is simply supported at the four corners and is subjected
to a concentrated load at the center as shown in Fig. 5.21. The over-
all dimensions, finite element mesh system, and layer system used for
znalysis are also shown. Due to symmetry, only one quarter of the
slab is needed for analysis.

The material properties given and those assumed for the analysis

are presented in Fig. 5.22. The ACI Committes 209 [3.5] recommended

2
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formulas are used to calculate the creep and shrinkage strains.

Fiqure 5.22d shows the load history applied to the slab. A
load of 1.0 kip is applied at 14 days after casting. This is kept
constant for 26 days when the load is increased to 2.0 kips. The load
is sustained for 20 more days and then another 1.0 kip of load is
added. The total 3.0 kip load is kept on the slab for another 20
days.

For the instantaneous lcad analysis, the following load steps
are used: first, 1.0 kip load is applied in 1 increment; second, 1.0
kip load in 3 increments; third, 1.0 kip lcad in 6 increments; and
fourth, 1.0 kip load in 8 increments. This scheme of load steps is
followed to take into account the increasing nonlinearity of the slab
behavior with higher loads.

Figure 5.23 presents the load-deflection curve at node 12
obtained from the present analysis. Also presented are the experimental
Joad-deflection curve and the theoretical curve obtained by Lin [1.26]
using a 3 x 3 mesh and similar concrete properties in tension. The
concrete properties in compression, however, are different as Lin used
an elasto-perfectly plastic model with no biaxial effects while in the
present study, a series of parabolic curves dependent on biaxial stress
ratio are used.

It is found that the deflections are underestimated at the
earlier post-cracking stage but match well with the experimental
curve at the later stage. Unfortunately, the experimental curve 1is
available only up to a load of P = 3.0 kips and so the behavior near
the ultimate stage cannot be compared. The difference in the initial

post-cracking behavior, as examined by Lin in detail, is due mainly
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to the magnitude of the concrete tensile strength assumed in the
analysis and the tension stiffening effect. The two theoretical curves
converge at the ultimate range which impiies that the ultimate response
is not very sensitive to the concrete model chosen in compression.

This is because the slab is rather under-reinforced and the yielding

of steel is responsible for the large displacements near 4.0 kips load.

Figure 5.24 shows the crack patterns in the bottom Tayer due
to instantaneous Toading. The dotted Tines are the yield line pat-
terns formed by the cracking in each element. At P = 3.875 kips, the
load-deflection curve becomes almost horizontal. Extensive cracking
occurs and steel yields as shown in Fig. 5.24b.

Figure 5.25 shows the deflection history at node 12 due to the
assumed load history. In the 26 days following the application of
1.0 kip load at 14 days after casting, the deflection at node 12
increases by 100% due to creep and shrinkage effects. In the 20 days
following the application of 2.0 kips load at 40 days after casting,
the deflection increases by 64% while another 11% increment is observed
at the end of 20 days following the application of 3.0 kips load. This
illustrates the decreasing rate of creep and shrinkage deflecticns due
to passage of time after loading and aging effects.

Figure 5.26 compares the instantaneous and time-dependent load-
deflection curves at node 12. It is interesting to note that the
stiffness of the slab deteriorates due to creep and shrinkage effects.
However, the detericration is not very significant for this particular
load history.

Figure 5.27 presents the crack patterns at the bottom layer of

the slab due to sustained loading. The patterns are similar to theose
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due to instantanecus loading, Fig. 5.24. Figure 5.28 shows the crack-
ing across the depth at midspan and the cracking increases cue to

sustained loading as the di

~h
(-]

ferences between Figs. 5.28a and 5.28b
and those between Figs. 5.28c and 5.28d illustrate.

Figure 5.29 presents the concrete stress profile across depth at
point B of the midspan section AA at various times. Under 1.0 kip load,
the stress profile is linear. When this load is sustained from 14 days
to 40 days after casting, i.e. for 26 days, the only change is a shift
of the stress profile to the tension side. This shift occurs mainly
due to shrinkage effects which are predominant in the initial pericd
after loading. Due to shrinkage, concrete tends to shrink and the
steel reinforcement tries to prevent concrete from shrinking. This
produces compressive forces in the steel and tensile forces in the
concrete. The concrete stress profile, as a result, shifts to the
tension side. This is more apparent from Figs. 5.30 and 5.31 which
present the net compressive and tensile force distribution at midspan in
the concrete and steel reinforcement, respectively. In Fig. 5.30,
the net concrete forces are on the compression side under the instan-
taneous load of 1.0 kip. At 40 days after casting, the net concrete
farces, however, have become tensile due to shrinkage effects as dis-
cussed above. The steel reinforcement forces, Fig. 5.31, on the other
hand, have changed from tension to the compression side.

Creep effects begin to dominate under higher stresses. Under
a Toad of 3.0 kips, considerable redistribution of concrete stresses
take place as shown in Fig. 5.29. The concrete compressive siresses
at the top layers unload and the neutral axis shifts towards the ten-

sile steel reinforcement, bringing tension zones under compression.
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This is gualitatively similar to the behavior of the beam specimen under
high stresses as observed in Example 1. The tensile forces in the steel
reinforcement, Fig. 5.31, do not increase much as the moment-arm between

the tensile and compressive forces do not change significantly.

5.5 Examople 4 - Gable Hyperbolic Paraboloid Shell

The use of hyperbolic paraboloid (HP) shell roofs is common
due to their elegant appearance, inherent high strength, and capability
of spanning over large spans without intermediate supports. The last
requirement is very important for such civic facilities as sports
arenas, gymnasiums, convention halls, opera houses, theatre halls, etc.
It is to be noted that these facilities are used by large gatherings
of people and as such, particular emphasis has to be p]aced’on their
structural safety and serviceability.

One of the most common types of HP shell roofs in use is the
gable HP shell roof as shown in Fig. 5.32.

According to the membrane theory, which is generally used for
designing the gable HP roofs, under a uniformly distributed load, the
shell proper is in a state of pure shear parallel to the straight line
generators. This causes equal principal tensile and compressive
stresses in the diagonal directions. Steel reinforcement is provided
to carry the principal tension. Generally, the reinforcement is
placed in two mutually perpendicular directions along the straight Tine
generators for constructional simplicity. The shell thickness is
determined from the minimum thickness required to safely withstand the
compressive force. The elements of the supporting structure of the
shell, namely, the crown and edge beams, are designed for the combined

effects of the bending produced by self-weight and the accumulated
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compression transferred from the shell. Time-dependent environmental
effects such as creep, shrinkage, temperature fluctuations, etc., are
usually not considered, or if so, only in an approximate manner. However,
the failure of an HP gable shell roof in Virainia, seven years after its
construction [5.37, and the large vertical deflections at the crown (approx-
imately 18 inches) observed in two similar roofs in the same area, under-
1ine the importance of the application of realistic and rational modeis,
load conditions and methods for the analysis and design of such structures.

In the present study, a gable HP shell was analyzed to achieve
primarily two objectives. First, the behavior of the gable HP shell
under higher loads including the ultimate is investigated. Second, the
response of the structure to creep and shrinkage effects is obtained in
order to determine the long-term serviceability of such a structure.
The study of the gable HP shell undertaken in this example can be
divided into three main phases.

In the first phase, elastic analyses are performed, assuming un-
cracked concrete sections without reinforcement, to check the validity
and reliablity of the model used to represent reality. To this end, two
gable HP shells, from a series of such shells analyzed by Schnobrich
[5.4,5.5], are picked for analyses.

The shells are 80' x 80', i.e., L1 = 80' and L2 = 80'. The
shell thickness is 3 inches, i.e., t = 3". The edge beams are concen-
tric with the shell mid-surface and are 12" x 16", i.e., B = 12" and
D = 16". The crown beams are concentric with the shell mid-surface.
The crown beam sizes of one specimen, hencefcrth referred to as gable
A, are 8% x 24", i.e., b = 24" and d = 8". The crown beam sizes of
the other specimen, henceforth referred to as gabie B, are 12" X 48",

j.e., b = 48" and d = 12",



Since only symmetric Toads are considered, the analysis can be
performed on 1/8th of the gable shell by taking advantage of symmetry.
The mesh size chosen is 8 x 8. Figure 5.33 iilustrates the mesh and
nodes. Trianguiar shell elements are chosen to represent both the
shell and the beams. This means that the beams, both edge and crown,
are concentric with shell mid-surface. This is a departure from
Schnobrich's anaiyses where the crown beams are assumed above the shell
surface. Concrete properties are chosen to be the same as used by
Schnobrich. Concrete modulus of elasticity is taken as 3 x 106 psi
while Poisson's ratio is chosen as 0.15. Schnobrich used a 8 x 8 mesh
but his finite elements were muchmore refined. For example, he uses
a 27 DOF (degrees-of-freedom) triangular shell element and a 16 DCF
rectangular beam element. In the present analyses a 15 DOF triangular
shell element has been used for both the shell and the beams. The less
refined shell element is chosen to 1imit the computer cost which may
become prohibitive for a time-dependent step-by-step analysis where a
large number of solutions are needed to trace the response history
over a reasonable period of time. The elastic analyses are, therefore,
performed to compare the results with those obtained by Schnobrich to
see how accurately the current model is predicting the shell behavior.

Figures 5.34 to 5.39 compare some of the results obtained by
the present analysis for gable A under dead load. The correspondence
with Schnobrich's data is excellent considering the fact that higher
order elements are used in Schnobrich's analyses. The discrepancy of
the moments near the support, Fig., 5.38, is due to the inability of
the present model to consider torsional rigidity. An interesting

point to note is the large overestimation of the axial force in the
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crown beam by the membrane analysis, Fig. 5.37. This would Tead to
larger crown beam sizes from design considerations than are actually
needed. As will be shown later and as has been concluded by Schnobrich,
larger crown beams may have deleterious effects on the overali perfor-
mance of the gable shell roof.

Figure 5.40 illustrates the sensitivity of the crown beam verticai
deflections to the dead load of the different components of the gable
shell structure. The vertical deflections are very severe for the crown
beam dead load alone. The dead loads in the shell and edge beams tend to
reduce the vertical deflections. In fact, for gable A, the vertical
deflections at the crown point for the dead load of the crown beam acting
alone, is 2.4 times larger than the deflection due to dead load of the
whole structure. It may be concluded from this that the vertical deflec-
tion of the crown beam is very much dependent on the size of the crﬁwn

beam and the load placed on it. The vertical deflections of the edge beam

are far less sensitive to the load placed on the edge beam alone (Fig. 5.41).

A static check is made for the dead load elastic analysis of
gable A at section CC in Fig. 5.33. The results as summarized below
show excellent correspondence. The force listed as tensile is actually
the horizontal reaction at the support, while the compressive force is

the integral of the stresses across section CC.

Force: Tensile 203 kips
Compressive 203 kips should be equal
Error 0%

Moment: Internal 1622 k-7t.
External 1610 k-ft. should be equal
Error 1%

To further illustrate the influence of the crown beam size on

its deflection, the crown beam deflection profile for gable B (same as
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that for gable A, except a 12" x 48" crown beam instead of an 8" x 24"
one is used) is plotted in Fig. 5.42. The vertical deflection at the
crown is 2.5 times that for gable A.

In the second phase of the study, gable B has been analyzed to

determine its ultimate load-carrying capacity. To this end, the gable has

+

and the steel reinforcement is put

-l
[€5)

been designed by the membrane analysi

&
s

in as shown in Fig. 5.43. The layer systems, adopted for the edge and
crown beams and for the shell proper, are also shown in Fig. 5.43. The en-
tire gable is first analyzed for dead load and then multiples of 20 psf of
uniformly distributed Tive load on the horizontal projection are added in
the following way: 4, 1, 1, 0.5. At 6.5 times the Tive load, i.e., at a
uniform live load of 130 psf over the entire gable shell, failure occurred.

Figure 5.44 presents the load-deflection curve at the crown point.
The initial discontinuity of slope at the application of live load occurs
because dead load is not uniformly distributed over the entire surface
1ike the Tive load, but has different intensities at the crown beam, edge
beam, and shell surfaces. The structure shows quite a bit of non-
linearity before faijlure.

Figure 5.45 presents the progressive crack pattern with load
increments. The crack patterns correspond to those observed by VYarghese
and Mathai [5.6] in their experimental studies on micro-concrete gable
shell models. The diagonal cracks progress through the depth with load
increments. The diagonal crack which starts near the support and
progresses upwards to the crown finally causes the steel reinforcement
to vield. At this stage, the crack goes through the whole cross-
section and the structure starts to deflect more and more, causing

concrete to crush at several places, inciuding the edge beam near the

3
)
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At this stage the structure is assumed tc have failed as the
displacement solution diverges.

Figure 5.46 iliustrates this.
lToad level of DL + 6LL, the

At a
displacement

sojution conv

ses in five
iterations, while at a load level of DL + 6.5LL, the solution diverges,
causing failure.

Figure 5.47 presents the load-defliection curve at the crown
point for gable A which has

also been analyzed for the ultimate Toad.
The load-deflection pattern

is similar to that of gable B, Fig. 5.44,
but the ultimate load is found to be DL + 7.5LL, i.e., 150 psf of uni-

formly distributed Tive load is needed for failure. The larger crown
beam of gable B, thus, lowers its ultimate capacity. Hence, care must
be exercised in choosing the crown beam size for any gable HP shell.

It is felt that some parametric studies are needed to bring to focus

the sensitivity of the ultimate response of these types of shells to
the crown beam sizes.

The failure modes and crack patterns of gable
A are very similar to those of gable B as shown in Fig. 5.48.

o

In the third phase of the analysis, gable B has been subjected
0 a time-dependent load history. The gable has been analyzed for dead
Toad sustained from 28 to 18

0 days after casting, 1.e
over

. & pericd of
five months. Then, it is loaded with multiples of uniformly

distributed load of 20 psf on the horizontal projection of the whole

shell surface area until ultimate load is reached.

ACI Committee 208
[3.5] recommended values have been chosen for creep and shrinkage
effects.

Figure 5.49 presents the variation of the vertical

devt

Tection
at the crown point due to the sustained dead load.

It is

interesting
to know that the vertical deflection increased to a value

3.4 times
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Y8 TH GARLE SHELL

ALl LAYERS (RACKED
— — CRACKED AT TOP
emw- CRACKED AT B30T7T0OM
407 YIELDED STEEL

FIG. 5.48 EXAMPLE 4 - CRACK PATTERHS FOR GABLE A AT
ULTIMATE LOAD
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the value at the application of load. Figures 5.50 and 5.51 present
the deflection profiles of the crown and edge beams with time. The
increase in the vertical deflections is quite significant.

Figure 5.52 presents the variation in the bending moment and the
axial force at midspan of the crown beam. The axial force increases
from 50 kips to 140 kips whiie the bending moment coes from 140 k-Tt.
to 200 k-ft. Most of the axial force increment is taken by steel which
goes from a stress of -2.5 ksi to -15.0 ksi. Concrete, at the same
time, relaxes from -370 psi to -210 psi.

The increment in axial force of the crown beam with time sug-
gests quite a significant amount of stress redistribution among the
three structural components of the gable HP shell, namely, the crown
beam, the edge beam and the shell proper. To investigate further, the
axial forces in the edge beam, crown beam and the shell at the midspan
section C-C, Fig. 5.53, have been calculated at different times after
the application of the dead load. The results are summarized below.

Axial force at section C-C:

At application of dead load:

i

Crown beam = -57 kips  247%
-17 kips % of total

-163 kips 69%

it

Edge beam
Shell

After 152 days of sustained dead Tload:

it

-138 kips 607
-50 kips 22% of total
-42 kips 18%

Crown beam

i

Edge beam
Shell

it

The above illustrates the significant redistribution of the
stresses occurring in the structure due to creep and shrinkage effecis .

Due to shrinkage, the structure wants to shrink. The stiffer members
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of the structure, namely, the edge and crown beams, restrain the less
stiff shell from shrinking. This produces tensile forces in the shell
and compressive forces in the edge and crown beams, causing some force
redistribution. Due to creep, the shell concrete fibers, which are
under compressive stress, relax. Part of this relaxed stress is picked
up by the steel reinforcement in the shell; however, the main part is
transferred to the stiffer edge and crown beams.

Figure 5.53 presents the transverse distribution of the net
Tongitudinal membrane force in the shell at midspan section CC under
sustained dead load. The portion of the longitudinal membrane force
carried by the concrete alone is presented in Fig. 5.54. The longi-
tudinal stresses carried by the reinforcing steel alone is shown in
Fig. 5.55. The redistribution of the concrete stresses due to the
creep and shrinkage effects is rather dramatic as illustrated in Fig.
5.54. In fact, most of the concrete in the shell passes from the
compressive to the tensile state. This implies that a considerable
amount of cracking may be expected in the shell concrete due to the
creep and shrinkage effects depending on the magnitude of the sustained
load and the concrete tensiie strength. Steel compressive stresses,
on the other hand, increases (Fig.5.55) as the steel reinforcement tries
to restrain the concrete from shrinking. The transverse moment in the
shell also indicates some redistribution (Fig.5.56).

Figure 5.57 presents the crack growth with elapsed time. The
crack patterns occur generally in the same direction as seen in the
case of instantaneous loading with an additional 100 psf of uniformly
distributed ioading.

Figure 5.58 compares the load-deflection curves at the crown
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point due to both instantaneous loading and time-dependent load

history. The structure shows more dearadation of stiffness because

of the creep and shrinkage effects and fails at a uniformly distributed
1ive load of 100 psf while it takes 130 psf, in the case of instantaneous
loading, to cause failure.

Figure 5.59 presents the progressive crack patterns with increas-
ing loads. The crack patterns and failure modes are very similar to
those due to instantaneous loading, Fig. 5.45.

In conclusion, it may be stated that Tong time responses due to
creep and shrinkage effects are important for gable HP shell roofs.
Significant stress redistribution takes place between the different
structural components, such as edge beams, crown beams, and the shell
proper, of gable shells due to creep and shrihkage effects. The size
of the crown beam and any concentrated Tive Toad over it exert a very

notable influence on the behavior of such shells.

5.6 Computer Time

In the nonlinear method of analysis proposed in the present
study, a series of piecewise linear solutions are performed to trace
the nonlinear responses of structures. The total lToad is divided into
a number of load increments and the total period of time under considera-
tion is also divided into a number of time steps. An iterative approach
is chosen for the solution of each Toad increment. This implies that
the solution procedure is repeated for a large number of times. The
computation time required is thus directly proportional to the total
number of iterations performed in the solution procedure. The number

of iterations is controlied by the total number of Tcad increments and
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time steps for which solutions are desired. The number of iterations
for each load increment will again depend on the magnitude of the incre-
ment, convergence criteria and allowable maximum number of iterations
for each increment.

The computation effort required for each iteration may generally
be divided into two major parts: (1) solution of the equilibrium
equations, and (2) calculation of the internal stresses and reformula-
tion of the current element stiffness. The computer time required for
the first part is directly proportional to NMz where N is the number
of equilibrium equations and M is the half band width of the structural
stiffness matrix. The number of elements and the number of layers in
each element determine the computational effort required for the
second part.

Implementation of the output requests also contributes a
sizeable portion to the total computer cost. The output cost is a
function of the number of elements, the number of layers in each
element, and whether output is requested for each iteration. A large
amount of bookkeeping using tapes is required in the program, which
adds to the computer cost.

The computer time required for the numerical examples on a
CDC 7600 computer is shown in Table 5.1 for reference. The total cost
is represented by the computing units (CU) as given in column (12).

The central processor (CP) time and the peripheral processor (PP)
units are given in columns (10) and (11), respectively. The conversion
rate to computing units is given by CU = 3CP + 0.5PP.

The central processor time is generally used up in the numerical

solution of the problem, whereas most of the peripheral processor time

is used up in input/output and tape manipulations.
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6. CONCLUSTIONS

(&)}
o

Summary

A numerical method of analysis has been developed to frace the
quasi-static behavior of various types of reinforced concrete struc-
tures under instantaneous and sustained loads. Time-dependent environ-
mental phenomena, such as creep and shrinkage effects, were considered
to obtain the evolution cf the field variables--deflections, strains
and stresses--of these structures in elastic and inelastic regimes.
Ultimate collapses of shear panels, slabs of arbitrary geometry and
free-form shells were then predicted considering local failures in
steel and concrete along with the deterjoration of structural stiffness
due to progressive cracking.

A finite element tangent stiffness formulation, coupled with a
time step integration scheme, was developed to analyze reinforced con-
crete systems. Within a time step, an incremental load procedure, with
an iterative approach to solve the equilibrium equations for each load
increment, was adopted to trace the nonlinear behavior of such struc-
tures. Since all load changes are considersd to occur at the beginning
of a time step and the resultant state of stress is assumed to prevail
throughout the time step, suitably small time steps should be taken in
the analytical procedure.

The reinforced concrete composite section was represented as a
layered systems consisting of concrete and ‘equivalent smeared' steel
lavers. Perfect bond was assumed to exist between the concrete and
steel layers. The layered system is capable of accounting for the

effects of normal as well as flexural forces on a structural member.
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Variations of properties through the depth of the member were then accom-
modated by allowing each layer to have different properties due to dif-
ferent materials or levels of deformation. Kirchhoff's assumption of
plane sections remaining plane was then adopted to interrelate the
displacements at various Tevels through the section depth and thus
reduce each layer to a two-dimensional problem. Each layer is then in

a state of piane stress. Stiffness properties of an element were
obtained by 1ntegrating the contributions from all the layers across the
section. The nonlinear behavior was taken into account by altering

the material property matrix used to describe the behavior of each con-
crete or steel layer during the development of the element stiffness
matrix.

Since each concrete layer was assumed to be under a state of
plane stress, a nonlinear constitutive relationship, based on the
available data from biaxial load tests, was chosen. Tensile cracking
at a limiting stress level, tensile unloading after cracking and strain-
softening phencmenon beyond the maximum compressive strength were all
included in the material model. For long-time deformations in concrete
zones, effects of stress history, partial creep recovery, aging, and
temperature variations were considered.

The effects of stress history were accounted for by the applica-
tion of the linear superposition method in the calculation of creep
strains. The influence of temperature variations on creep strains
were incorporated by the time-shift principle. These characterize con-
crete to be an aging viscoelastic thermorheologically simple material.
Creep under biaxial state of stress was represented by the introduction

of the creep Poisson's ratic observed in a uniaxial, sustained load



test. Variations of creep compliance due to slump of concrete mix, size
of members, relative environmental humidity and high stress levels were
considered on the basis of the available experimental data. A cresp
compliance function was chosen on the basis of three considerations--

it included all the important factors influencing creep, its parameters
could very easily be determined from the experimental data, and it could
be used in a very efficient computation procedure involving the stress
state of the last time step only. A shrinkage model, based on experi-
mental observations and sensitive to temperature and humidity changes,
slump of concrete mix and sizes of members, was also adopted. The steel
reinforcement was represented by a bilinear, strain-hardening model
exhibiting the Bauschinger effect. The constitutive relations were
based on the small displacement theory. Unloading paths were prescribed
for stress reversal.

Finally, computations for the effects of instantaneous and sus-
tained load were carried out for some typical examples, which include
beams, panels, slabs and shells, employing triangular finite elements
of membrane, plate bending and shell types. Numerical resuits were
compared to available experimental data to check the applicability and

validity of the method of analysis presented in this study.
6.2 Conclysions

1. The numerical method of analysis developed in the present
study is capable of providing useful information about the responses
of reinforced concrete shear panels, slabs of arbitrary geometry and
free-form shells under instantaneous and sustained load conditions.

2. The creep model adopted in the present study includes the
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important factors that influence creep of concrete. It is used in a
very efficient computational procedure and its parameters can very easily
be determined from the experimental data.

3. Long-time responses due to creep and shrinkage effects are
important for shell-type structures as illustrated in the case of gable
HP shell roofs. Design procedures for such structures should incor-
porate the effects of long-time behavior of concrete to determine both
the serviceability and the ultimate safety criteria during the design
Tife of such structures.

4, Significant stress redistribution takes place between the
different structural components, such as edge beams, crown beams and
shell proper, of a gable HP shell roof due to creep and shrinkage
effects. These structural systems, composed of various types of mem-
bers, should be analyzed to determine the redistribution of load-
resisting forces in each component member. The participating members
should be designed to resist both the short term as well as long term

loads.

6.3 Recommendations for Future Studies

1. Further studies may be carried out for structural systems
composed of various types of structural members, such as beams, panels,
siabs, shells, etc., to assess the participation of each component in
resisting the short term as well as long term loads. Insight into the
interactive behavior of the component members will lead to safe and
economic design of structural systems.

2. Constitutive models should account for the available experi-

mental observations on the material behavior. However, it must be
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remembered that considerable expense is incurred in the numerical non-
Tinear analysis of any moderately complex structural system. Parametric
studies are needed to construct simple but realistic constitutive models
to contain the computational efforts within reasonable limits.

3. Experimental work is needed to compile data on the long-time
behavior of reinforced concrete walil panels, siabs and shells. At
present, test data is sadly lacking in these areas.

4. To represent the shell-edge beams in the finite element
analysis of reinforced concrete, a beam element is needed which can
respond to torsion and shear forces also. A filament beam element may
be developed for this purpose.

5. Geometric nonlinearity can be an important factor in deter-
mining the true nonlinear response of some shell-type structures and

should be incorporated into the present method of analysis.
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UNIVERSITY OF CALIFORNIA Department of Civil Engineering
November 1976 Faculty Investigator: A. C. Scordelis

Computer Proaram for Nonlinear Analysis of Reinforced
Concrete Panels, Slabs and Shells for Time-Dependent Effects

IDENTIFICATION

NOTACS - NOniinear Time-dependent Analysis of Concrete Structures

Programmed by: A. F. Kabir, University of California, November 1976.

PURPOSE

The program is developed to trace the quasi-static responses of
reinforced concrete shear panels, slabs of arbitrary gecmetry and free-
form shell-type structures under sustained load conditions. Time-
dependent environmental phenomena such as creep and shrinkage effects
are considered to obtain the evolution of the field varjables of such
structures in elastic and inelastic regimes. Ultimate collapse loads
are then predicted considering local failure in steel and concrete
along with the deterioration of structural stiffness due to progressive
cracking.

DESCRIPTION

A finite element tangent stiffness formulation, coupled with a
time step integration scheme, is developed tc analyze the reinforced
concrete systems. Within a time step, an incremental Toad procedure,
with an iterative approach to solve the equilibrium equations for each
load increment, is adopted. The composite section of two different
materials 1s modeled as a layer system consisting of concrete and
"equivalent smeared" steel layers. Stiffness properties of an element
are then obtained by integrating the contributions from all the layers
across the section.

The material behavior of concrete is characterized by a nonlinear
constitutive relationship for the biaxial state of stress. This includes
tensile cracking at a 1imiting stress level, tensile unloading after
cracking and the strain-softening phenomenon beyond the maximum compres-
sive strength. For the deformations in the concrete zones, the effects
of stress history, partial creep recovery, aging and temperature varia-
tions are considered. These characterize concrete to be an aging,
viscoelastic thermorheclogically simple material. Creep under the
biaxial state of stress is represented by the introduction of Poisson's
ratio which is observed in a uniaxial, sustained load test. The rein-
forcing steel, on the other hand, is represented by a bilinear, strain-
hardening model exnibiting the Bauschinger effect. The unloading path



due to stress reversal is also prescribed in the constitutive laws
assumed for both steel and concrete.

The program is coded in the FORTRAN IV language. The blank
common is dynamically dimensioned fo either expand or shorten the bliank
common length to exactly match the reguirements of the problem under
consideration. This option makes it possible to use the central memory
capacity of the computer in a very efficient manner greatly reducing the
computer costs.

RESTRICTIONS

The numbers of nodal points, elements, Toad and time steps are
restricted only by the available capacity of the computer. Gther
restrictions as to the maximum number of types of material properties
and layer systems are given under input instructions.

FORM OF INPUT DATA

It is very important that the sequential order in the input of
data is strictly adhered to and consistent units are used throughout
a problem.

1.  TITLE CARD (12A6)

Col. 1 to 72 - HED(I) = Title of problem to be printed with output for
identification.

(%]

CONTROL CARD (8I5)

Col. 1 to 5 - NUMNP = number of nodal points

Col. 6 to 10 - NELTYP = number of element types

Col. 11 to 15 - NTIME = number of times at which analyses is requested

Col. 16 to 20 - ICREEP = creep analysis indicator
0 no analysis
1 analysis desired

Col. 21 to 25 - ISHRINK = shrinkage analysis indicator
0 no analysis
1 analysis desired

Col. 26 to 30 - NORM = convergence norm indicator
0 force norm

1 displacement norm

Col. 37 to 35 - KNORM = norm data indicator
0 norm values taken as percentages of previous force
or displacement increment
1 input norm values



Col. 36 to 40 - KULT = ultimate analysis indicator
0 oniy ultimate analysis not regquired
1 only ultimate analysis required

{ad

OUTPUT CONTROL CARD (515)

Col. 1 to 5 - KOUT = output indicator
0 output at the end of all iterations
1 output at each iteration

Col. 6 to 10 - KDIS = output indicator for displacements in the
element coordinates
0 no output
1 output desired

Col. 11 to 15 - KCUR = output indicator for curvature
0 no output
1 output desired

Col. 16 to 20 - KSTN = output indicator for strain
0 no output
1 output desired

Col. 21 to 25 - KITER = output indicator for unbalanced nodal lcads

0 output for last iteration only
1 output for each iteration

4.  CONVERGENCE NORM CARDS

a. FIRST CARD - FORCE OR DISPLACEMENT TOLERANCES (6F10.0)

Col. 1 to 10 - TOLER(1) = tolerance for force or displacement in
global X-direction

= tolerance for force or displacement in

Col. 11 to 20 - TOLER(2)
1 Y-direction

globa

Col. 21 to 30 - TOLER(3 tolerance for force or dispiacement in

) =
global Z-direction

Col. 31 to 40 - TOLER(4) = tolerance for moment or rotation about
global X-direction

tolerance for moment or rotation about

Col. 41 to BO ) =
Y-direction

TOLER(5
global

Col. 51 to 60 - TOLER(6) = tolerance for moment or rotation about

global Z-direction

b. SECOND CARD - MAXIMUM ALLOWABLE VALUES (6F10.0)

Col. 1 to 10 - VMAX(1) = maximum force or displacement in global
X-direction
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. 21 to 30 - VMAX(3
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.11 to 20 - VMAX(2) = maximum

Y-direction
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n

force or displacement in global

force or displacement in giobal

31 to 40 - YMAX{4) = maximum moment or rotation about gloobal
X-diraction

41 to 50 - VMAX(5) = maximum moment or rotation about global
Y-direction

51 to 60 - VMAX{6) = maximum moment or rotation about global

Z~-direction

(1) Global coordinate system XYZ follows a right hand rule
and is shown in Fig. 1.

(2) The iteration for a given load step will stop when the
magnitude of every component of the changes in nodal
displacement or the resultant unbalanced nodal forces
become smaller than its prescribed tolerances.

(3) The solution procedure is stopped when the magnitude of
any component of the changes in nodal displacement or
resultant unbalanced nodal forces for the above load step
exceeds its prescribed maximum allowable value.

DAYS CARD (8F10.0)

1 to 80 - DAYS(I) = days after casting at which time each analysis

is required.

NODAL POINT COORDINATE CARD (715, 3F10.0, I5)

T tc 5~-N =
6 to 10 - ID(1,N) =
11 to 15 - ID(2,N) =
16 to 20 - ID(3,N) =
21 to 25 - ID(4,N) =
26 to 30 - IDB{5.,N) =
31 to 35 - ID(6,N) =
0 free to

node number

translation in global
translation in global
translaticon in global
rotation about global
rotation about global

rotation abcut global

K-direction 0
Y-direction
Z-direction
X-direction
Y-direction

Z-divection _

move in the prescribed direction

1 fixed in the prescribed direction

Total number of entries equals NTIME.

boundary
condition
codes

A-4



i

Col. 36 to 45 - X{N) = global X-ordinate

Col. 46 to 55 - Y(N)

il

global Y-ordinate

i

Col. 56 to 65 - Z(N) = global Z-ordinate

Col. 66 to 70 - KN

1

node generation parameter

Note (1) The nodal point cards need not be in node-order sequence, but
the node with the Targest number has to be the last card. If cards are
omitted, then nodal data for a series of nodes are generated. KN, the
generation parameter on the last card of a mesh generation sequence, is
the increment to be added to the previous nodal point number. The inter-
mediate nodes are located at equal intervals along the straight line
connecting the first and the last node specified. The boundary condition
codes for the generated nodes are set equal to those for the first node
in the series.

(2) Severe numerical difficulties may arise in the solution of the
equilibrium equations if the stiffness associated with any global direc-
tion is zero or very close to zero. These difficulties may be avoided
by restraining the degrees of freedom in the appropriate directions by
the application of the boundary condition codes. The restraining of
any degree of freedom causes the elimination of the equilibrium equation
associated with that particular degree of freedom and thus prevent any
instability in the solution of the equilibrium equations. The value of
a global stiffness may become zero due to any one of the following reasons.

In the stiffness formulation for the plane stress element, the
translational degree of freedom normal to the plane of the element and
all the three rotational degrees of freedom are not considered. So, all
the three global rotations must be constrained at a node where only plane
stress elements meet. Furthermore, if these plane stress elements lie
in the same global plane then the global translational degree of freedom
associated with the direction normal to the plane of the elements must
also be constrained.

For the plate bending element the three in-plane degrees of freedom,
two translations and one rotation, are not considered in the element
stiffness formulation. At any node, where only plate bending elements
1ying in the same global plane meet, the three global degrees of freedom
associated with the two in-plane translations and one in-plane rotation
must be constrained.

For the shell element, the in-plane rotation is not considered in
the stiffness formulation. The in-plane rotation, at any node where co-
planar shell element meet, is constrained if its direction coincides with
the global direction. If the direction does not coincide with the global
direction, then a fictitious rotational stiffness, about the normal to
the shell surface at the node, is provided by a boundary spring element.
The value of the fictitious rotational stiffness is taken to be about 10%
of the bending stiffness of the shell to avoid any ill-conditioning due
to large off-diagonal terms in the structural stiffrness matrix which may
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occur if a very large value is used and the rotational stiffness con-
tributes to more than one global degree of freedom.

The form of input data for each type will be described later.

number of load steps for creep and shrinkage

number of iterations allowed for creep and

load in global X-direction
Joad in global Y-direction
load in glebal Z-direction
moment about global X-direction
moment about global Y-direction

moment about global Z-direction

cards 1-8 are repeated for next problem to be solved.

7.  ELEMENT GROUP CARDS
A sequence of cards is required for each type of element in the
structure.
8.  LOAD CARDS
These cards are to be repeated for NTIME steps.
a. FIRST CARD - LOAD PARAMETERS (3I5, 3F10.0, 21I5)
Col. 1 to 5 - NLSTEP = number of load steps
Col. 6 to 10 - NITER = number of iterations allowed
Col. 11 to 15 - NLJ = number of loaded nodes
Col. 16 to 25 - PDL = fraction of dead load
Col. 26 to 35 - PDSL = fraction of distributed surface load
Col. 36 to 45 - PSPL = fraction of spring load
Col. 46 to 50 - NSTIM =
analysis
Col. 51 to 55 - NITERT =
shrinkage analysis
b. SECOND CARD - CONCENTRATED NODAL LOADS (I5, 6F10.0)
Omit this card if NLJ = 0, otherwise input NLJ cards
Col. 1 to 5 -N = node number
Col. 6 to 15 - RB(1) = concentrated
RB(2) = concentrated
RB(3) = concentrated
PR(4) = concentrated
RB(5) = concentrated
RB(6) = concentrated
9. All the above data
10. Two blank cards are added at the end of the complete data deck.



7.  ELEMENT GROUP CARDS

A.  TYPE 1 - TRIANGULAR ELEMENTS

Three options are included in the triangular element formulation
to take into account membrane action only, plate bending action only,
and a combination of membrane and plate bending actions. Shear panels
are usuaily assumed to be under membrane action only. Most of the slabs
carry loads predominantly through plate bending action. Most of the
shell-type structures respond to Toads in a manner which may be described
as a combination of membrane and plate bending actions. So, appropriate
choices of any of the above options may be made to model shear panels,
slabs, and shells for analysis.

A constant strain triangular (CST) element is used to model the
membrane behavior while a Tinearly constrained curvature triangular
(LCCT 9) element models the plate bending behavior. A combination of
the above two elements is used to model the behavior of shell-type
structures. The element cross-section is modeled as a layered system
consisting of concrete and “"eguivalent smeared" steel layers. Varia-
tions of properties through the depth are then accommodated by allowing
each layer to have different properties due to different materials or
levels of deformation. A restriction is placed on the type of layer
system that can be used for an element using the option of membrane
action only. Since only in-plane forces are assumed to exist in such
an element, the material properties about the mid-depth reference sur-
face must be symmetric. Usually, one layer of concrete may be used to
model elements using the option of membrane action only. The degrees
of freedom associated with the above mentioned elements are illustrated
in Fig. 2.

Al. CONTROL CARDS

a. FIRST CARD - ELEMENT TYPE (I5)

Col. 1 to 5 - NTYPE = type of element, input 1 for this case.

b. SECOND CARD - PROPERTY INDICATORS (5I5)

Col. 1 to 5 - NUMSH = number of triangular elements
Col. 6 to 10 - NUMCHN = number of concrete material types, maxm. 4
Col. 11 to 15 - NUMST = number of steel material types, maxm. 6

Col. 16 to 20 - NTCL = number of types of concrete layer systems,
maxm. 10
Col. 21 to 25 - NTSL = number of types of steel layer systems, maxm. 7

AZ. CONCRETE MATERIAL PROPERTY CARDS

These cards are to be repeated for NUMCN times.
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a. FIRST CARD - PROPERTY INDICATORS (415, 3F10.0)

Col. 1 to 5 -1 = material type number

i

elastic material data indicator
1 input data
2 ACI formuiage used

Col. 6 to 10 - JMT(I)

Col. 11 to

e
N
i
Coa
o
a3
—
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b

creep data indicator
1 input data
2 ACI formulae used

Col. 16 to 20 - JSH{I) = shrinkage data indicator
1 input data
2 ACI formulae used

compressive strength at 28 days after casting

i

Col. 21 to 30 - FC28(1I)
Col. 31 to 40 - CNU(I)
Col. 41 to 50 - RHO(I)
b. SECOND CARD - FLASTIC MATERIAL PROPERTIES (6F10.0)

Omit this card if JMT(I) = 2.
Col. 1 to 10 - EC(I)

i

Poisson’s ratio

H

weight per unit volume

H]

modulus of elasticity, EC

it

Col. 11 to 20 - FCC(I) = compressive strength, fé

i

Col. 21 to 30 - FTC(I) = tensile strength, f_

i

Col. 31 to 40 - CSC(I) = cracked shear constant, £

it

Col. 41 to 50 - USC(I ultimate compressive strain, €,

)
)

i

Col. 51 to 60 - UST(I ultimate tensile strain, €yt

c. CREEP DATA CARDS

Omit these cards if JCR(I) = 2. Otherwise, creep coefficients
aj(7) and xj are to be provided from experimental creep curves. A com-
puter program, employing the method outlined in the present study
(pages 68-69, Sub-section 3.2.8) may be used.

c1. FIRST CARD - CONTROL PARAMETERS (215)

Col. 1 to 5 - NAGE(I) = number of ages at loading, t, for which creep
curves are generated, maxm. 15

Col. 6 to 10 - NSER(I) = number of terms in the creep compliance
series, maxm. 4

c2. SECOND CARD - AGES OF CONCRETE, T (8F10.0)

Col. 1 to 80 - SAGE(I,J) = ages for which creep curves are given,
N=1,NAGE(I).  Use second card if necessary.



c3. THIRD CARD - AGE SCALE FACTORS, ai(t)(3E15.8)

Col. 1 to 45 - ACI(I,J) = age scale factors for creep compliance,
J=1,NAGE(I)*NSER(I)
c4. FOURTH CARD - CREEP EXPONENTIAL FACTORS, X3 (4F10.0)
Col. 1 to 40 - WI(I,J) = creep exponential factors, J=1,NSER(I)
c5. FIFTH CARD - TEMPERATURE SHIFT COEFFICIENTS, #(T) (4F10.0)
Col. 1 to 40 - W2(1,Jd) = temperature shift coefficients, maxm. 4
d. SHRINKAGE DATA CARDS (3E15.8)
Omit these cards if JSH(I) = 2
Col. 1 to 45 - TEPSS(I,N) = total shrinkage strains at days when
analysis needed, N=1,NTIME. Use second or
more cards if necessary
e. CONCRETE MIX PARAMETERS (3F10.0)

If ACI formulae are not used for creep and shrinkage data,
then standard mix parameters--SLUMP(I) = 2.7, SIZE(I) = 6.0 and RH(I)
= 40.0~--are to be input.

Col. 1 to 10 - SLUMP(I) = slump of concrete in inches
Col. 11 to 20 - SIZE(I) = maximum size of members in inches
Col. 21 to 30 - RH(I) = relative environmental humidity in percent
A3. STEEL MATERIAL PROPERTY CARD (IS5, 3F10.0)
This card is tc be repeated for NUMST times. No card is needed if
NUMST = 0.
Col. 1 to 5-N = steel material type number
Col. 6 to 15 - ES(N) = Young's modulus
Col. 16 to 25 - FYS(N) = yield stress
Col. 26 to 35 - ESTAR(N) = modulus for the strain-hardening portion
A4. CONCRETE LAYER SYSTEM CARDS
Repeat these cards for NTCL times.
a. FIRST CARD - CONTROL PARAMETERS (215)
Col. 1 to 5 -1 = layer system type number
Col. 6 to 10 - NCLAY(L) = number of concrete layers, maxm. 20
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Col.

Col.
Col.
Cot.

Col.

b. SECOND CARD - LAYER DEPTH COORDINATES (8F10.0)

1 to 80 - ZC(J,L) = z coordinates to the layer boundaries, J=1,
NCLAY(L)+1. Use second or more cards if
necessary. See Fig. 3 for sign convention
of z coordinates.

STEEL LAYER SYSTEM CARDS

.21 to 30 - PS(J,L)
. 31 to 40

Repeat for NTSL times. Omit if NTSL = 0.
a. FIRST CARD - CONTROL PARAMETERS (31I5)

it

1 to 5-1L layer system number

t

6 to 10 - NSLAY(L) = number of layers, maxm. 7

H

11 to 15 - IANG(L) angle index

b. SECOND CARD - LAYER DATA (215, 3F10.0)

Repeat this card for NSLAY(L) times.

i

1 to 5-1J layer number

to 10 - MTN(J,L) = material type number

[o]

.11 to 20 - ZS{J,L} = z coordinate to center of the layer

smeared thickness

i
1]

ALPH(J,L)= angle in degrees defining the direction of

the reinforcement

Mote (1) In Fig. 4 if S be the direction of the reinforcing bars, S’
be the projection of S on the giobal X-Y plane, then

ALPH = ¢ if IANG = O

i

ALPH = 8 if IANG = 1

(2) Smeared thickness PS is given by PS = A_/b, where A_ = area

of one reinforcing bar and b = spacing between thd bars as illustrated
in Fig. 3.

Re.

Col.
Col.
Col.

GRAVITY LOAD CARD (3F10.0)

[H

1 to 10 - GM(1) = gravity load multiplier in A-directicn

gravity load multiplier in Y-direction

it

11 to 20 - GM(2)

1

21 to 30 - GM(3) = gravity Toad multiplier in Z-direction



Note (1) Gravity load distributed in each of the global X,Y,Z directions
15 equal to the multiplier times the dead weight of concrete.

A7. ELEMENT LAYOUT CARDS (815, F5.0, 15, 4F7.0, 12)

Repeat for NUMSH times unless generated.

Col. 1 to 5 - MM = element number

Col. 6 to 10 - NODE(1) = node I

Col. 11 to 15 -~ NODE(2) = node J

Col. 16 to 20 - NODE(3) = node K

Col. 21 to 25 - MC = concrete material property indicator
Col. 26 to 30 - NCL = concreta layer system number

Col. 31 to 35 - NSL = steel layer system number

Col. 36 to 40 - LOCO = Tocal coordinate system control code

0 element coordinate system ties with nodes
I and J

1 element coordinate system is defined by
specifying x

2 element coordinate system is defined by
specifying vy

Col. 41 to 45 - ANLO

]

angle_in degrees from X-axis to projection of
x or y on XY plane

Col. 46 to 50 - KN = element data generator parameter

Col. 51 to 57 - PN = uniformly distributed load normal to surface
per unit surface area

Col. 58 to 64 - PT(1) = uniformly distributed load in X-direction per
unit area on YZ plane

Col. 65 to 71 - PT(2) = uniformly distributed load in Y-direction per
unit area on XZ plane

Col. 72 to 78 - PT(3) = uniformly distributed load in Z-direction per
unit area on XY plane

Col. 79 to 80 - KOPT element option
0 triangular shell element, CST + LCCTO
1 triangular membrane element, CST

2 triangular plate bending element, LCCTY

Note (1) HNodes I, J, and K are in counterclockwise order about +z axis
(Fig. 5).



(2) Element cards must be in element number sequence. If cards
are omitted, element data will be generated. The increment for the

element number is one. The corresponding increment for nodal numbers
is KN, 1.e.

I1+1 = Ii + KN

Jigp = J5 KN

Ki+] = Ki + KN

(3) Concrete properties, layer systems, local coordinate systems,
distributed loads and element option for the generated elements are the
same as the first element in the series.

(4) Only the element number and KN need to be specified on the last
card in a mesh generation sequence on which the variable NODE(1) is used
as a control code for the computation of the element stiffness in the
following way:

NODE(1) = -1: The element stiffness is the same as the first
element in the series in both local and global coordinate sys-
tems. This occurs often in the slabs.

NODE(2) = -2: The element stiffness is the same as the first
element in the series in their own local coordinates, but dif-
ferent in global coordinates, as sometimes happens in curved
shells.

Otherwise, new element stiffness will be formed for each gen-
erated element.

(5) The local element coordinate system xyz is also a right-handed
system similar to the global coordinate system XYZ (Fig. 6). Three

A-1:

options may be used to define the local element coordinate system (Fig. 6}.

0 X coincides with side IJ

i

Case 1: LOCO

1 x is defined by specifying a

i

Case 2: LOCO

i

Case 3: LOCO = 2 y is defined by specifying 8

Xy is in the plane of triangle IJK. Zz is perpendicular to Xy

plane and its direction is given by the right hand rule. X', y' are
the projections of X,y on the global XY plane respectively.

B. TYPE 2 - BOUNDARY ELEMENT

a. FIRST CARD - TYPE PARAMETER (I5)

Col. 1 to 5 - NTYPE = element type number, input 2 for boundary
elements



b. SECOND CARD - NUMBER OF ELEMENTS (I5)

Col. 1 to 5 - NUMBD = number of boundary elements

c. THIRD CARD - ELEMENT DATA (8I5, ZF10.0, E£10.0)

One card per element (in ascending node N order) except where
automatic element generation is used.

Col. 1 to 5 - N = node at which element is placed

Col. 6 to 10 - 1 =node I | nodes defining the direction
Col. 11 to 15 - J = node J of boundary element, Fig. 7
Cotl. 16 to 20 - K = node K . Leave columns 11 to 25 blank

Col. 21 to 25 - L = node L»J if only node I is nesded.

it

Col. 26 to 30 - KD = code for translational displacement

Col. 31 to 35 - KR = code for rotational displacement

#

i

Col. 36 to 40 - KN = data generation parameter

]

Col. 47 to 50 - SD = specified transiation along element axis
Col. 51 to 60 - SR = specified rotation about element axis

Col. 61 to 70 - TRACE = spring stiffness (set to 10%% if left blank)
for translation and/or rotation

Note (1) The direction of the boundary element at node N is to be
specified. This may be done in one of two ways (Fig. 7):

Case 1: A second ncdal point I defines the positive direction
of the element from node I to node N.

Case 2: Four nodal points I, J, K, and L specify the positive
direction of the element as the normai to the piane defined by two
intersecting straight lines (vectors a and b in Fig. 7).

Boundary elements are used in the analyses of thin
shells to model the rotational constraint about the surface normal
as shown in Fig. 7. n is given by the vector cross product n=ax b.

”~

The positive dwrect1on of the boundary element corresponds to the
direction of n.

Node I in Case 1 and nodes I, J, K, and L in Case 2 are
used only to define the direction of the element, and if convenient
may be any nodes used to define other elements. "Artificial nodes"
may also be created to define directions of the boundary elements.
These "artificial nodes" are input in the nodal point coordinate cards
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with all the boundary condition codes specified as 1.

The positive directions of the internal forces in the
boundary element and their corresponding reactions acting on node N
are shown in Fig. 7.

(2) The code for translational displacement, KD, may be either 0
or 1.

KD = 0: The node N is free to translate and the translational stiffness
of the boundary is set to zero.

KD = 1: The translation SD and the spring stiffness TRACE are used by
the program in the following way. The load P = TRACE*SD 1is applied at
node N in the positive direction of the element if SD is positive. If
TRACE is much greater than the stiffness of the structure at node N
without the boundary element, then the net effect is to produce a dis-
placement very nearly equal to SD. This code is used to find reactions
at supports by setting SD = 0 and a high value for TRACE (TRACE = 10'°
is automatically set if so desired).

(3) The code for rotation, KR, may be either O or 1. These two
cases are complietely analogous to the two cases for KD.

(4) Data generation parameter KN is used when a series of nodes
are such that

(a) all have identical boundary element attached,
(b) all boundary elements have same directions,

(c) all specified displacements and rotations are identical,
and

(d) the nodal sequence forms an arithmatic sequence, i.e.,
N, N+KN, N+2KN, and so on. 1In such cases, only the
first and the last nodes in the sequence need to be input.
KN is input in the last card of the sequence.

C. TYPE 3 - ONE-DIMENSIONAL TRUSS ELEMENT

This element was used to aralyze concrete cylinders in Chapter 3
of the present study by employing a separate computer program. The
element, however, will be incorporated into the program NOTACS at a
Tater date.

QUTPUT DESCRIPTION

The output consists of two parts as follows.

A, INPUT CHECK PRINTOUT

The complete input and generated data are properly labelled and
printed and may be used to check up on possible errors in punching,
field specifications, and order of cards.
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B.  RESULTS
The results consist of the following quantities.
1. Time step, load step, and iteration numbers.

otal external nodal forces in the giobal coordinates.

(AN

3. Unbalanced nodal forces in the global coordinates.

4. Total nodal displacements in the global coordinates.

5. The following results for each triangular element.
a. Centroidal curvatures in the local coordinates, if requested.
b. Nodal displacements in local coordinates, if requested.

c. Stresses in the Tocal coordinates and material state and siress
reversal indices for each concrete layer and steel layer.

d. Elastic strains in the local coordinates for each concrete
and steel Tayer, if requested.

e. Creep strains in the local coordinates for each concrete
layer, if creep analysis is performed.

f. Shrinkage strains in the local coordinates for each concrete
layer, if shrinkage analysis is performed.

€. The extensional and rotational stresses in each boundary element.

Note (1) Concrete layer stresses are output in the local coordinate
system with positive directions defined in Fig. 8. The principal
stresses, o1 and o2 {where o] > o2) are also output and the angle o
defining the principal direction and its projecticn a' in the global
plane XY (Fig. 8). Crack directions are generaily perpendicular to
the principal direction 1. Tensile stress is positive and compressive
stress is negative in sign.

(2) Explanation on the material state and stress reversal indices
are printed at the end of all the triancular element output.

(3) Steel layer stress is in the direction of reinforcing bars.
Tensile stiresses are assumed positive while compressive stresses are
taken to be negative.
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FIG. 1 GLOBAL AND LOCAL ELEMENT COOQRDINATE SYSTEMS
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. 4 DIRECTION OF THE REINFORCING BARS IN A TRIANGULAR ELEMENT
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ATITK = AITK PROIJECTED ON CLORAL XY PLANE
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CASE 3B Loco = 2 Y £ DEFINED BY SPECIFYING A
FIG. 6 DEFINITIOM OF LOCAL ELEMENT COQRDIWATE SYSTEHM
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FIG. &  SIGH COMVENTION FOR STRESS OUTPUT





