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Abstract

Bayesian Source Reconstruction and Non-Parametric Statistical Thresholding for

Electromagnetic Data

by

Julia Parsons Owen

In the last few decades there have been major advances in the technology of func-

tion brain imaging, allowing for insight into the functions of the human brain

previously elusive to neuroscientists. These advances have been primarily on the

hardware end and developing effective software to interpret the data collected by

neuroimaging machines is a current challenge to the use of the technology. Mag-

netoencephalography (MEG), in particular, requires solving an ill-posed inverse

problem in order to uncover the brain areas active during a task. While the solu-

tion to this inverse problem is not unique, there are many methods to estimate its

solution and this is a field of active research. In Chapter Two of this thesis, we de-

rive an algorithm that solves the inverse problem for MEG, and the related imag-

ing method, electroencephalography (EEG). Our method improves upon existing

algorithms in that it incorporates noise suppression into the estimation proce-

dure and is theoretically and empirically robust to correlated sources. In Chapter

Three, we show the results from extensive testing of our algorithm using simu-
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lated and real M/EEG data and we show our algorithm’s results in comparison

to the benchmark algorithms. Chapter Four explores variants of the algorithm,

including its application to data sets without pre-stimulus data. In Chapter Five,

we present methods to statistically threshold the inverse solution results using

nonparametric statistics. Finally, in Chapter Six, we provide some concluding re-

marks and ideas for future research directions. As a whole, the work presented in

this thesis improves the interpretation and analysis of M/EEG data.
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Chapter 1

Introduction

1.1 Overview

The human brain is a relatively undiscovered scientific territory. This is due,

in part, to its sheer complexity. There are approximately 100 billion neurons (Kan-

del et al., 2000) in the human brain; these neurons govern our physiological pro-

cesses, our perceptions of the world, our emotions, our memories, some might

say, our selves. How, exactly, these neurons perform all these functions is a mys-

tery that neuroscientists (and philosophers) have been chipping away at for cen-

turies. The other part of the story is that until recently, we could not observe

neuronal activity within a live, functioning human brain. Modern technological

advances in functional brain imaging have given researchers their first view into

the inner workings of the brain and opened up possibilities to understand how

individual neurons act in concert to produce the human experience.
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There are several functional brain imaging technologies available to neuro-

scientists, of which, functional magnetic resonance imaging (fMRI), electroen-

cephalography (EEG), and magnetoencephalography (MEG) are the most widely

used in human neuroscience. fMRI measures the local ratio of oxyhemoglobin to

deoxyhemoglobin; an increase in this ratio, i.e. an increase in oxyhemoglobin, is

an indication of neuronal activity. fMRI does not directly measure brain activity,

rather it measures a secondary, metabolic effect. As such it is limited by perfu-

sion of the blood and can be dictated by the blood supply to a particular region.

The time resolution of fMRI is on the order of a second, as the perfusion of the

blood to the firing neurons is not instantaneous and the images are acquired in a

systematic, and somewhat time-intensive fashion. While a powerful and widely-

available imagining technique, fMRI is not always the best imaging method to

use. The temporal resolution of fMRI is long compared to the time for axonal

conductance, which occurs in the range of tens of milliseconds. If examining the

precise timing of neuronal activity, MEG or EEG are powerful imaging tools as

they directly and noninvasively measure the magnetic fields or electric potentials

generated by neuronal currents with a fine temporal resolution (sub-millisecond

timescale).
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1.2 Magnetoencephalography

Magnetoencephalography measures the magnetic fields generated by neu-

ronal activity with superconducting quantum interference devices (SQUIDs).

There are typically 275 SQUIDs sensors positioned in a hemisphere around the

head. These sensors detect changes in the magnetic field (with either magnetome-

ters or gradiometers) on the order of 10 femto Tesla; these fields are 1 billionth the

strength of the Earth’s magnetic field.(Lu and Kaufman, 2003). Magnetic fields

arise from the pyramidal cells in the cortex, which are arranged in a parallel fash-

ion along the cortical sheath. When there is brain activity in a certain region,

tens of thousands of neurons fire synchronously, producing the changes in the

magnetic field detectable by the sensors. As such, in order to be detected by the

SQUIDs, neuronal activity in a small patch of cortex (roughly 1-8mm3) must be

active, producing magnetic fields approximately 10-100fT outside the head.

MEG is a relatively expensive technology; commercial systems typically cost

more than a million USD. Also, MEG can only be used on the brain and in some

rare instances, on the fetal heart, whereas a MRI can be used on any part of human

body. While the sampling rate is high, around 1200Hz, many trials (around 50-

100) must be collected in order to have an appreciable signal to noise ratio. While

in the MEG, the patient cannot move as muscle artifacts can greatly distort the

measurements. Additional sources of noise include eye blinks, metal fillings in

the teeth, and any medical devices implanted in the subject. MEG is a powerful
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imaging technique under ideal circumstances, but its effectiveness is fleeting in

the face of noise.

1.3 Electroencephalography

Electroencephalography is a related imaging method; it measures voltage po-

tentials (also originating from neuronal activity) with electrodes placed on the

scalp, as opposed to measuring magnetic fields, as in MEG. The magnetic fields

pass undisturbed through the biological tissue (brain, scalp, and skin), but the

electrical fields must conduct through these materials. The effect of this physical

property of electric fields is that the potentials are smeared as they emanate from

their point of origin to the sensors on the scalp. This smearing of voltage potential

across the different conductivity layers makes EEG data harder to interpret (as it

is difficult to know exactly where a signal originates). As such, MEG has been re-

ported to have a higher spatial precision in its ability to estimate source location

(Leahy et al., 1998). EEG must have a reference electrode since the electric poten-

tial can only be measured relative to a reference, whereas MEG does not need to

be referenced (it is internally referenced). The placement of the reference electrode

is not obvious and can greatly affect the measurements. While the spread of the

electric field and the need to reference makes EEG less favorable to use, EEG has

some advantages over MEG. The technology for EEG is much simpler, the cost

of a commercial MEG system is roughly 50 times that of an EEG system, EEG is
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portable, and the subject can move his/her head as needed once the electrodes are

placed. EEG is used widely for clinical diagnosis and treatment of neurological

diseases and conditions, but its sensitivity falls short of MEG’s ability to localize

brain function.

1.4 Sensor-Space Analysis

Sensor-space analysis describes data analysis that only considers the sensor

time courses and does not go as far as localizing neuronal activity within the brain

volume, referred to as source localization. A surprising amount can be learned

from only looking at the sensor time sources. When trials of data are aligned

to the stimulus and averaged over many trials (50 to 100), characteristic peaks

can be observed for certain paradigms. For instance, with an auditory evoked

field stimulus (single frequency tones are presented binaurally), one can expect

to see a peak in the averaged sensor data at around 100ms after the presentation

of a single tone. The peak, called the M100 in MEG and the N100 in EEG, can

then be used as a dependent variable in an experimental design. For instance, the

amplitude and latency of the M100/N100 can be compared between conditions or

between a control and patient population. While a viable data analysis technique,

sensor-space analyses do not provide (strong) conclusions about the parts of the

brain involved in processing information or controlling a behavior. In the case of

the M100/N100, one can only say that the greatest peak is seen in sensors over
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or near auditory cortex. As such, performing source localization has become a

cornerstone of data analysis with M/EEG data and an active field of research.

1.5 Forward Problem: Lead Field

The sensor measurements are taken near the surface of the head in both MEG

and EEG and a model is used to determine the mapping between activity at brain

locations and measurements at the sensors, called the lead field. Typically the lead

field is calculated using an equivalent current dipole (ECD) model. As discussed

above, the pyramidal cells in the cortex are arranged in a parallel fashion and

when a group of pyramidal neurons fire synchronously, the sum of their activity

can be approximated as a single current dipolar source. Assuming the head is

roughly spherical, the magnetic field expected at each sensor can be calculated

given a current dipole at every location in the brain from Maxwell’s equations

(Sarvas, 1987). The candidate locations throughout the brain are called voxels and

the resolution of the voxel grid is at the discretion of the user, but typically ranges

from 3-10mm.

The magnetic fields pass through the brain and skull unperturbed, mean-

ing that the conductances of the biological materials are not parameters in the

calculation of the lead field for MEG. The electric field, however, does not pass

freely through the biological tissues and therefore, the lead field calculation for

EEG is more complicated than the calculation for MEG. The EEG lead field de-
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pends greatly on the estimation of tissue conductivities to account for the current

distortion across tissue boundary layers (from brain to skull to scalp). The con-

ductivities are not consistent across subjects and there can be anisotropies in the

conductances, further muddying the problem. Forward modeling is a field in

and of itself and there are more sophisticated methods than the ECD model, such

as boundary element models and finite element models available (Mosher et al.,

1999). These methods, while potentially more precise, are more computationally

expensive and require more accurate knowledge of the brain geometry and seg-

mentation of the structural MRI. The ECD model, while theoretically simple, is a

powerful method of relating underlying brain activity to sensor readings.

1.6 Inverse Problem: Source Localization

Solving the inverse problem in M/EEG involves transforming the recorded

sensor data to brain activations at specific locations. This inverse problem is in-

herently ill-posed as the number of voxels (typically 3,000 to 10,000) is greater

than the number of sensors (typically 275 sensors for MEG systems and 64, 128,

or 256 electrodes for EEG systems). Finding a solution to the inverse problem is

complicated by the presence of correlated sources, sensor noise, and interference

(both from within and outside the brain). Obtaining accurate source locations and

time course estimates is central to the validity of M/EEG as a functional brain

imaging method. Currently, a wide variety of source localization algorithms exist
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for estimating source activity. These algorithms can be grouped into three types:

parametric dipole fitting, spatial scanning, and tomographic.

1.6.1 Parametric Dipole Fitting

Parametric dipole fitting, or the equivalent current dipole (ECD) method, is a

common technique, where a small number of point dipole sources are assumed to

generate the M/EEG data. The problem reduces to determining the parameters

of the dipoles, such as the location, orientation, and amplitude, usually by non-

linear optimization or search. This method was first introduced in 1983 (Tuomisto

et al., 1983) for use with localizing auditory dipoles. Dipole fitting is robust when

there is one underlying dipole, but searching methods scale exponentially with

the number of dipoles. For two or more sources, the results can be highly depen-

dent on initialization of the locations of the dipoles and on the total number of

dipoles being fit and often, trying to fit three or more dipoles will fit noise rather

than true source locations. Non-linear optimization methods have major issues

with local minima and can be sensitive to the initialization of the number and lo-

cation of dipoles (Mosher et al., 1992; Uutela et al., 1998). Dipole fitting also has

trouble resolving dipoles that have anti-parallel orientations, are close together,

or are deep within the brain (Lutkenhoner, 1998). In addition, the traditional ECD

model does not account for extended sources, i.e. sources that are larger than one

voxel; variants on the dipole fitting technique have been developed to account
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for the extended sources, both extended in 1-D, as in a line sources (Yetik et al.,

2005) or extended in 2-D, as in a patch (Schmidt et al., 1999; Jerbi et al., 2002). It is

also possible to estimate the noise and/or signal covariances from data (Mosher

and Leahy, 1998; Jun et al., 2005, 2006b,a; Huizenga et al., 2002; de Munck et al.,

2004; Bijma et al., 2005), which enables the ECD approach to better localize brain

activity.

1.6.2 Spatial Scanning Algorithms

Spatial scanning techniques estimate the time course at every candidate loca-

tion while suppressing the interference from activity at the other candidate source

locations. Some examples of scanning techniques are minimum-variance adap-

tive beamforming (MVAB) and other variants of beamformers (Sekihara and Na-

garajan, 2008), multiple signal classification (MUSIC)(Mosher and Leahy, 1998),

synthetic aperture morphometry (SAM) (Vrba and Robinson, 2001), dynamic

imaging of coherent sources (DICS) (Gross et al., 2001), and source activity using

knowledge of event timing for independence from noise and interference (SAKE-

TINI) (Zumer et al., 2007). Beamforming methods, such as MVAB, are widely

used in the field of MEG. Although computationally easy to implement, MVAB is

confounded by correlated sources and has the tendency to produce diffuse activ-

ity even when the underlying activity is focal.
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1.6.3 Tomographic Algorithms

The third class of algorithms is the tomographic techniques, which model

the activity at all candidate source locations simultaneously. There is a variety of

tomographic methods, such as minimum-norm estimation (MNE)(Hämäläinen

and Ilmoniemi, 1994), dynamic statistical parametric mapping (dSPM)(Dale

et al., 2000), and standardized low resolution brain electromagnetic tomography

(sLORETA) (Pascual-Marqui, 2002). Among these, MNE is the most widely-used

class of inverse algorithms; the sLORETA algorithm is a variant of MNE. Em-

pirically, SLORETA and dSPM, although differing in their theoretical properties,

perform similarly with simulated and experimental data. Like MVAB, the inverse

solution with sLORETA and dSPM are easy to compute. But, also like MVAB,

their solutions are often overly diffuse and their ability to reconstruct multiple

dipolar or regional source clusters has not been rigorously tested.

1.6.4 Bayesian Algorithms

Most of the source reconstruction algorithms from the three classes can be

framed in a Bayesian schema. This perspective is useful as, at a high level, the

prior distribution implicitly or explicitly imposed for each method can be used to

differentiate and compare the various source localization methods. Algorithms

such as MNE, minimum current estimate (MCE), sLORETA, dSPM, and MVAB

(and other beamformers) assume a known, fixed prior. Alternatively, the param-
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eters of the prior distribution (hyperparameters) can be learned from the data,

referred to as empirical Bayes. These ideas are extensively discussed in (Wipf et al.,

2009). Often empirical Bayesian algorithms are more robust in that they include

a full statistical model; some examples include (Friston et al., 2008; Kiebel et al.,

2008; Mattout et al., 2006; Nummenmaa et al., 2007; Phillips et al., 2005; Sahani

and Nagarajan, 2004; Zumer et al., 2007; Schmidt et al., 1999; Jun et al., 2005).

Noise estimation is an important part of the source localization procedure.

Electromagnetic sensor data are susceptible to many sources of noise, both inter-

nal and external. There is internal electronic noise at the individual sensor-level,

which is independent across sensors. Many methods for estimating this noise

have been proposed, ranging in the sophistication of their approaches (Sekihara

et al., 1997; Waldorp et al., 2001; Sekihara et al., 1994, 2008); formulating the gen-

erative model in a Bayesian framework is often a convenient and effective means

to estimate this noise (Jun et al., 2005; Zumer et al., 2007; De Munck et al., 2002;

Jun et al., 2006b). There is also noise that arises from external source and is seen

across some or all of the sensors. This type of noise is more difficult to model as

it can be difficult to separate from the true brain signals measured by the sensors,

which can be quite similar. Some methods tailored to remove the external noise

sources are discussed in the Denoising section below.
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1.6.5 Sparse Algorithms

Some tomographic methods promote sparseness in the solution, i.e. the ma-

jority of the candidate locations do not have significant activity. Empirical ev-

idence shows that a sparse source model can improve the accuracy of the lo-

calization in a noisy environment. Examples of sparse methods include the fo-

cal underdetermined system solver (FOCUSS) (Gorodnitsky and Rao, 1997) and

minimum-current estimate (MCE) (Uutela et al., 1999; Wipf et al., 2009). Sparsity

can be obtained in different ways. One way to achieve a sparse solution to the

inverse problem is to assume a sparse prior for the sources. A sparse distribution

used is the Laplace probability distribution and can be used to gain sparsity in

the inverse solution (Gerven et al., 2009). Another way to promote sparsity in the

source activity is to use a `1-norm instead of a `2-norm in the minimized cost func-

tion (Uutela et al., 1999; Wipf et al., 2009; Haufe et al., 2008); one such algorithm is

MCE. MCE solves the inverse problem by finding the solution that minimizes the

`1-norm of the sources at every time point. While the solution obtained by MCE is

inherently sparse, it is not empirically robust to correlated sources or able to local-

ize a large number of sources in a noisy environment. The common shortcomings

of MCE and many other sparse tomographic algorithms is that they are not explic-

itly designed to handle complex, correlated source configurations in the presence

of background interference (e.g., spontaneous brain activity, sensor noise, etc.).
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1.6.6 Denoising

The sensor data collected in M/EEG is noisy, meaning that they do not only

arise from stimulus-evoked activity (the activity of interest in the experiment),

but also from other sources termed interference sources and from noise and vari-

ability in the sensors. As discussed above, the internal or sensor noise is fairly

easy to model as it is independent across sensors. The external noise or interfer-

ence sources are more difficult to suppress as they have varied origin including:

spontaneous brain activity (not evoked by the stimulus), biological sources, such

as eye blinks, muscle artifacts from the head and neck, and heartbeats, and non-

biological sources, such as powerlines, elevators, metal dental fillings, and im-

planted medical devices in the subject. These interference sources often overlap

with the stimulus-evoked activity and make localizing the source of this activity

more difficult. As such, being able to limit the effect of interference and sensor

noise on source localization is an essential step to improving source localization.

The most basic approach to removing interference from the data is to collect

a large number of trials and then average the data across the trials (after aligning

to the stimulus). The underlying assumption is that the interference sources do

not have a set phase to the stimulus and will be averaged out if sufficient trials

are averaged. This approach requires longer data acquisition times and does not

allow for analysis of high frequency activity (high frequency oscillations can be

averaged out as they are not necessarily phase-locked to the stimulus). In addi-
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tion, some sources of noise are phase-locked to the stimulus such as, movement

artifacts, so the averaging approach does not produce clean sensor data in these

cases.

Data-driven approaches, such as principal component analysis (PCA), in-

dependent component analysis (ICA), maximum-likelihood estimation (MLE),

and Wiener filtering, have also been applied to data to suppress the interference

sources (Ossadtchi et al., 2004; Ungan P, 1976; Nagarajan et al., 2006; Baryshnikov

et al., 2004). These approaches require some subjective choices; in the case of

PCA a truncation threshold must be chosen and with ICA, the relevant number

of components must be selected. There are principled ways to this for both PCA

and ICA. In addition, they do not exploit the experimental design. The majority

of M/EEG experiments have a stimulus, which prompts a sensation, perception,

or behavior. Between each trial, or stimulus, there is some wait-time to allow the

brain activity to return to the baseline. This design affords a pre-stimulus and a

post-stimulus period. In the pre-stimulus period, some or all of the interference

source are expected to be present and in the post-stimulus period, statistically

similar interference activity is expected along with the activity of interest. This

assumption that the activity of interest, in the post-stimulus period, is additive

opens up the possibility of interference suppression that improves upon previ-

ously developed methods.

One way to remove noise is to use variational Bayesian factor analysis model
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(VBFA), which decomposes sensor data into factors and independent noise (rep-

resenting the sensor/electronic noise). (Attias, 1999) Once the independent sensor

noise is removed, source localization can be performed on the cleaned data. VBFA

provides a regularized estimator of the post-stimulus correlation matrix. (Many

source localization algorithms use the sensor correlation and not the raw data to

perform localization.) An extension of VBFA, is stimulus-evoked factor analy-

sis (SEFA); this method removes the interference present in the pre-stimulus pe-

riod from the post-stimulus period, in addition to the independent sensor noise.

First, VBFA is run on the pre-stimulus period, then factors can be learned in the

post-stimulus period after the pre-stimulus activity is removed from the post-

stimulus sensor data. Neither VBFA nor SEFA localizes activity, rather it pro-

vides a cleaned signal for the post-stimulus period on which source localization

can be performed. There are also source localization algorithms that incorpo-

rate this idea of noise suppression when estimating the location and time courses

of brain activity. One that combines ideas from SEFA and source localization is

the Neurodynamic Stimulus-Evoked Factor Analysis Localization (NSEFALoc)

algorithm.(Zumer et al., 2008). NSEFALoc uses SEFA in conjunction with tem-

poral basis functions learned from the data to localize brain activity. The algo-

rithm in (Zumer et al., 2007), presents a probabilistic modeling framework for

MEG/EEG source localization that estimates Source Activity using Knowledge of

Event Timing and Independence from Noise and Interference and is called SAKE-
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TINI. SAKETINI is a scanning technique that estimates the brain activity at every

candidate, after removing the activity present in the pre-stimulus period using

VBFA. While the paper demonstrates that the algorithm is able to localize activ-

ity at low SNR levels and in the presence of interference, it is a computationally

intensive algorithm as it scans through each candidate location and is untenable

for researchers without access to parallel computing centers.

In Chapter Two of this thesis, we derive a novel source reconstruction al-

gorithm, called Champagne, that is derived in an empirical Bayesian schema and

incorporates deep theoretical ideas about sparse-source recovery from noisy, con-

strained measurements. Champagne improves upon existing methods of source

reconstruction in terms of reconstruction accuracy, robustness, and computational

efficiency. It is designed to estimate the locations and time courses of a small

(sparse) set of flexible, dipolar sources that adequately explain the observed sen-

sor data. Champagne is a tomographic algorithm and it achieves its sparsity

through a sparse penalty function, as described in Chapter Two. Noise and in-

terference suppression is integrated in the Champagne algorithm, which makes

it particularly robust when the signal-to-noise ratio is low. Champagne achieves

robustness by fitting a structured covariance model to the sensor data covariance.
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1.7 Difficult M/EEG Data Sets

There are some source configurations that are harder to localize than others.

This section will outline the features of the data sets for which it is notoriously

hard to accurately localize brain activity.

Localizing brain activity in the face of source correlations is one of the greatest

challenges for source localization algorithms. Correlated sources refer to regions

of brain activity that have almost precisely the same time course. Auditory re-

sponses are an example of where the correlated source problem arises with real

M/EEG data. Correlated sources are a problem for multiple reasons. First, if

sources are highly correlated and are located bilaterally, as is the case with audi-

tory sources, then the projection to the sensors will be similar to having one strong

source at the center of the head. Second, some source localization algorithms,

such as beamformers, assume orthogonality in the source activities, making it

difficult for them to localize activity that is far from orthogonal (or uncorrelated).

These correlations make the problem of source localization more challenging, but

are also meaningful for understanding the way that the brain transfers informa-

tion from one region to another, known as functional connectivity. There has been

much attention paid to this issue in the development of new source localization

algorithms and the modification of existing algorithms (Dalal et al., 2006; Gross

et al., 2001; Mosher and Leahy, 1998; Sekihara et al., 2001).

Deep sources present a similar challenge to source localization. It is accepted
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that sources deeper than the cortex are difficult to uncover with M/EEG imaging

(Pascual-Marqui, 2002; Lin et al., 2006a). Deep sources have low signal-to-noise

ratios (SNR) as they are farther away from the sensors. Likewise, their projection

to the sensors is less unique than shallow sources because they are (more-or-less)

equally close to all the sensors. These two characteristics make localizing deep

sources challenging. The stronger SNR of the shallow sources can cause localiza-

tion algorithms to be biased towards these sources (and ignore the deep ones).

To address this, column normalizing the lead field is a standard practice in the

source localization procedure (Pascual-Marqui, 2002), but this normalization does

not always succeed in localizing the deep sources. Sensitivity to deep sources is

important since there are medial brain structures, such as the basal ganglia, the

amydgala, and hippocampus, which are equally important to understand as more

lateral cortical regions.

Sources that are extended over many voxels are also hard to localize with

M/EEG imaging. When the lead field is calculated, a resolution is chosen for the

voxel grid. This resolution is somewhat arbitrary and does not always reflect the

true resolution of activity. In the case of cortical activations, the extent of the patch

of cortex with activity can be different from one region to another, or one subject to

another. It is difficult to recover the true extent of the activation, especially when

the lead field resolution (or voxel size) is smaller than the activations. There are

modifications to source localization algorithms to account for the varying extent
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of cortical sources, including incorporating basis functions that allow for different

resolutions of the lead field (Limpiti et al., 2006; Jerbi et al., 2002; Lin et al., 2006a;

Yetik et al., 2005).

Other challenging source configurations are sources that are close together,

especially true for correlated sources, and conditions where there are many

sources in different regions of the brain. These conditions have not been exten-

sively tested or addressed in the literature. When developing source localiza-

tion algorithms, it is important to keep these challenging source configurations in

mind.

In Chapter Three, we present results from both simulated and real MEG data

that more rigorously characterize Champagne’s performance and better delineate

both its strengths and limits. For the simulated data, we have selected a number

of challenging source configurations: a large number of distinct sources, deep

sources, correlated sources and clusters of sources. We also present the results

on simulated data using benchmark algorithms, MVAB, sLORETA/dSPM, and

MCE. In addition to investigating these challenging source configurations with

simulated data, we also present an analysis of the effect of lead field modeling

errors and we present results from simulated EEG and we investigate the effect

of subsampling the number of EEG sensors.

We also use real data sets to test Champagne’s performance as compared to

the benchmark algorithms: somatosensory-evoked field (SEF), auditory-evoked
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field (AEF), audio-visual integration task, and face-processing data, both MEG

and EEG recordings. Taken together, the results on simulated and real data give

a rather complete picture of Champagne’s source localization capabilities. Ul-

timately an exhaustive performance analysis of a source localization algorithm

serves two distinct purposes. The first being to motivate the use of a new algo-

rithm by showing head-to-head performance with commonly-used methods. The

second is to fully describe when an algorithm works and of equal importance,

when it does not work. The conditions under which an algorithm fails motivates

further development of source localization algorithms to advance beyond these

shortcomings.

1.8 Statistical Thresholding

The statistical analyses of the source images from M/EEG imaging typically

proceed with voxel-level statistics. At each voxel, a statistical test is used to de-

termine if an effect of interest is present. These statistics then go into forming a

statistic image, which provides a visualization of the statistic values. Unless there is

a hypothesis for regions of the brain that will contain the experimental effect, ev-

ery voxel has to be tested. Traditionally, a parametric statistical test is used, some

common methods include t-tests, F-tests, paired t-tests, ANOVA, correlation, lin-

ear regression, multiple regression, and ANCOVA. All of these tests assume that

the data are normally distributed with a mean parameterized by a general lin-
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ear model. The estimated parameters for the specific test are then contrasted to

produce a t-statistic, which then can be assessed for statistical significance (i.e.

evidence against the null hypothesis) given an assumed distribution. This pro-

cess yields p-values, which is the probability that the value would exceed that

observed under the null hypothesis. The test level, usually denoted by α, is the

accepted risk of the test or the probability of committing a Type I error. A Type I

error reflects falsely rejecting the null hypothesis, i.e. errantly finding significance.

Any p-values less than α lead to a rejection of the null hypothesis.

1.8.1 Correcting for Multiple Comparisons

In the case of M/EEG brain imaging, there are typically 5,000 to 15,000 voxels,

which results in that many statistical tests. Therefore, the risk for committing Type

I error is high. If the level is α = 5% and there are 10,000 voxels, there could be

500 voxels that have Type I errors, which could greatly impact the interpretability

of the results. As such, there are methods to correct for Type I errors when there

are multiple comparisons. The Bonferroni correction (Bonferoni, 1935) and false

discovery rate (FDR) (Benjamini and Hochberg, 1995) are two commonly-used

methods to correct for Type I errors. There corrections are overly-conservative

and they can remove a result or trend that is present in the uncorrected statistical

values.
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1.8.2 Nonparametric Statistics

While conventional, the statistical testing described has two main issues. The

first is the assumption of normally distributed random variables. Under the cen-

tral limit theorem, this assumption would hold, but in brain imaging the number

of samples does not approach those needed to assure Gaussianity. Secondly, cor-

recting for multiple comparisons with a method such as, the Bonferroni correction

or FDR, is often overly stringent. Nonparametric statistics provide a solution to

at least the first of these issues and can be formalized in a way to address the

second. Nonparametric statistics do not assume a distribution for the variable.

Rather, they use the data to obtain a null distribution over the data, from which,

significance can be tested. Permutation tests are one type of nonparametric test;

they have been increasingly used as computational power increases. The princi-

ple behind permutation testing is not complicated. Essentially the data are per-

muted, for instance across conditions, in a pseudo-random fashion and the test

statistics are computed for each permutation of the data. If there is no difference

between conditions, the test statistics should not be greatly altered by the per-

mutations. Permutation testing methods use the data to generate a permutation

distribution for every voxel. From this distribution, p-values can be calculated for

the t-statistics from the original (or unpermuted) data.

These p-values, however, are not corrected for multiple comparisons as there

are still many statistical tests being performed in parallel. The same methods that
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correct for multiple comparisons with parametric statistics can be applied to the

p-values obtained from nonparametric statistics, but applying these correction

techniques to nonparametric statistics also can be overly stringent. The maximal

statistic approach to nonparametric statistics automatically corrects for the mul-

tiple comparisons problem. For each permutation, only the maximum t-statistic

from every permutation is saved and a distribution of the maximal statistic is

formed. Then a threshold for the statistic image can be obtained given a level

α. Nonparametric statistics have been applied to neuroimaging data in a variety

of studies and variants of the method have been used to improve the sensitivity

of the tests (Nichols and Holmes, 2001; Singh et al., 2003; Sekihara et al., 2005;

Pantazis et al., 2005; Chau et al., 2004; Dalal et al., 2008). These various imple-

mentations of nonparametric statistics differ in the way they generate the permu-

tations, i.e. by exchanging conditions, exchanging subject groups, or exchanging

time windows of the data, the formulation of the test statistic, and how the per-

mutation distribution is determined, by the maximal statistic or otherwise.

A challenge of statistical thresholding is an appropriate means of arriving at

a threshold for a single subject. Often statistics use an average across subjects, but

in functional brain imaging, this means the MRIs of the individual subjects must

be spatially normalized. Spatial normalization, while a widely-used technique,

is not always ideal because it relies on the automatic segmentation of the MRI. If

there is an error in the segmentation, the averaged results can be corrupted. As
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such, it is often preferable to look at the results on an individual subject level, but

arriving at a principled threshold for a single subject’s data is not a prescribed

science.

In Chapter Four, we explore permutation testing methods for statistically

thresholding real MEG data. Our method is valid for thresholding the results

of only one subject, or could be applied to a condition contrast or average across

subjects. First, we demonstrate Champagne’s localization capabilities on data that

is not trial-averaged and then three methods for performing the nonparametric

statistics are formalized and applied to AEF, AV, SEF, and face-processing data

sets. We have tailored the statistical thresholding procedure to be applicable to

sparse algorithms, a issue not addressed in the literature.
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Chapter 2

A Novel Bayesian Algorithm for

Neural Source Reconstruction:

Mathematical formulation 1

2.1 Overview

In this chapter, a novel source localization algorithm, called Champagne, is

derived and its theoretical properties are exposed. Champagne is an empiri-

cal Bayesian method that incorporates noise suppression with the localization of

source locations and the estimation of the source time courses applicable to either

MEG and EEG data. Champagne is essentially a structured maximum likelihood

covariance estimate, the empirical sensor covariance is decomposed into a noise

1Portions of this chapter originally appeared as an article in (Wipf et al., 2010)



SECTION 2.2. THE CHAMPAGNE ALGORITHM 26

and signal component. The noise component is estimated from the sensor data

recorded before the stimulus, referred to as the pre-stimulus period, and then the

noise is subtracted from the empirical sensor covariance, leaving the signal-of-

interest component. This cleaned sensor covariance is used to estimate the source

locations and time courses from the data collected after the stimulus, referred to as

the post-stimulus period. Champagne is a sparse algorithm; only a small fraction

of the voxels have nonzero activity. The sparsity arises from a sparse penalty func-

tion, as opposed to imposing a sparse prior distribution on the sources. Cham-

pagne is robust to highly correlated sources, a feature that allows Champagne to

outperform many commonly-used source localization algorithms.

2.2 The Champagne Algorithm

The Champagne algorithm relies on segmenting the data into pre- and post-

stimulus periods, learning the statistics of the background activity from the pre-

stimulus period, and then applying the statistics of the background activity to

the post-stimulus data to uncover the stimulus-evoked activity. The underlying

assumption is that noise and non-stimulus-locked brain activity present in the

pre-stimulus period continues into the post-stimulus period, where the stimulus-

evoked activity is linearly superimposed on top of the pre-stimulus activity.



SECTION 2.2. THE CHAMPAGNE ALGORITHM 27

We model post-stimulus sensor data (Bpost) as:

Bpost =
ds∑

r=1

LrSr + E , (2.1)

where Bpost ∈ Rdb×dt , where db equals the number of sensors and dt is the num-

ber of time points at which measurements are made in the post-stimulus period.

Lr ∈ Rdb×dc is the lead field matrix in dc orientations for the r-th voxel. Each

unknown source Sr ∈ Rdc×dt is a dc-dimensional neural current-dipole source at

dt time points, projecting from the i-th voxel. There are ds voxels under consid-

eration. E ∈ Rdb×db is a noise-plus-interference factor that is learned from the pre-

stimulus period using Stimulus-Evoked Factor Analysis (SEFA)Nagarajan et al.

(2007). Learning E is the first step of the Champagne algorithm. as discussed

in Section 2.2.2. The second step to the source localization process is to estimate

hyperparameters Γ that govern a statistical model of the post-stimulus data.

We can fully define the probability distribution of the data conditioned on

the sources:

p(Bpost|S) ∝ exp

−1

2

∥∥∥∥∥Bpost −
ds∑

r=1

LrSr

∥∥∥∥∥
2

Σ−1
ε

 , (2.2)

where Σ−1
ε is learned using SEFA from the pre-stimulus data (described in the

Learning the Noise-plus-Interference Factor section below) and ‖X‖W denotes the

weighted matrix norm
√

trace[XT WX].
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We assume the following for the source prior on S:

p (S|Γ) ∝ exp

(
−1

2
trace

[
ds∑

r=1

ST
r Γ−1

r Sr

])
. (2.3)

This is equivalent to applying independently, at each time point, a zero-mean

Gaussian distribution with covariance Γr to each source Sr. We define Γ to be the

dsdc × dsdc block-diagonal matrix formed by ordering each Γr along the diagonal

of an otherwise zero-valued matrix. If the lead field has only one orientation

(scalar/ orientation-constrained lead field), Γ reduces to a diagonal matrix.

Since Γ is unknown, we can find a suitable approximation Γ̂ ≈ Γ by integrat-

ing out the sources S of the joint distribution p(S, B|Γ) ∝ p(B|S)p(S|Γ) and then

minimizing the cost function:

L(Γ) , −2 log p(B|Γ) ≡ trace
[
CbΣ

−1
b

]
+ log |Σb| , (2.4)

where Cb , d−1
t BBT is the empirical covariance and Σb is the data model covari-

ance, Σb = Σε + LΓLT .

The first term of (2.4) is a measure of the dissimilarity between the empiri-

cal data covariance Cb and the model data covariance Σb; in general, this factor

encourages Γ to be large because it is convex and nonincreasing in Γ (in a simpli-

fied scalar case, this is akin to minimizing 1/x with respect to x, which of course

naturally favors x being large). The second term provides a regularizing or sparsi-
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fying effect, penalizing a measure of the volume formed by the model covariance

Σb. The determinant of a matrix is equal to the product of its eigenvalues, a well-

known volumetric measure. Since the volume of any high dimensional space

is more effectively reduced by collapsing individual dimensions as close to zero

as possible (as opposed to incrementally reducing all dimensions isometrically),

this penalty term promotes a model covariance that is maximally degenerate (or

non-spherical), which pushes elements of Γ to exactly zero (resulting in hyperpa-

rameter sparsity).

2.2.1 Estimating the Hyperparameters (Γ)

We can minimize this cost function (2.4) with respect to Γ by employing the

expectation-maximization (EM) algorithm. The E-step of the EM algorithm corre-

sponds to computing the posterior probability p(S|Bpost), which is Gaussian and

be expressed as follows, given Bayes Rule, as a function of time:

p(S(t)|Bpost(t)) =
p(Bpost(t)|S(t))p(S(t))

p(Bpost(t))

Considering the log of the posterior probability, we obtain:

log p(S(t)|Bpost(t)) = log p(Bpost(t)|S(t)) + log p(S(t))− log p(Bpost(t))
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Since the posterior probability p(S(t)|Bpost(t)) is Gaussian, we can find an expres-

sion for its mean, S̄(t), by taking the first gradient with respect to S(t), setting it

equal to zero and solving for S(t):

∂

∂S(t)
log p(S(t)|Bpost(t)) =

∂

∂S(t)
log p(Bpost(t)|S(t)) +

∂

∂S(t)
log p(S) = 0

∂

∂S(t)
(−1

2
(Bpost(t)− LS(t))T Σε(Bpost(t)− LS(t))− 1

2
S(t)T ΓS(t) = 0

(LT ΣεL)S(t)− LT ΣεBpost(t) + ΓS(t) = 0

where solving for S(t) results S̄(t), the mean of the posterior:

S̄(t) = LT Σε(L
T ΣεL + Γ)−1Bpost(t)

The M-step corresponds to updating the parameters that maximize the aver-

aged complete data likelihood ¯̀defined as:

¯̀=

∫
dS p(S|Bpost(t)) `(Bpost(t), S(t))

Maximizing the log-likelihood is the same as maximizing the likelihood, thus

the parameter update rules for the M-step are derived as:

log ¯̀ = Ep(S(t)|Bpost(t))

{
dt∑

t=1

[log p(Bpost(t)|S(t)) + log p(S(t))]

}
∂

∂Γ
log ¯̀ =

∂

∂Γ
Ep(S(t)|Bpost(t))

{
dt∑

t=1

1

2
| Γ | +1

2
S(t)T ΓS(t)

}
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Setting the gradient equal to zero:

Ep(S(t)|Bpost(t))

{
N∑

n=1

1

Γ
+ S(t)S(t)T

}
= 0

dt

| Γ |
+ dtΓ

−1 +
dt∑

t=1

S̄(t)S̄(t)T = 0

results in the following update rule for the source precision (Γ):

Γ =
dt

RSS

where

RSS = dtΓ
−1 +

dt∑
t=1

S̄(t)S̄(t)T

The EM iterations consist of first computing the mean of the posterior

distribution, S̄(t) and then maximizing the log-likelihood by computing the new

parameter values Γ.

The EM implementation (and other generic methods) are exceedingly slow

when ds is large. Instead, as described in Wipf et al. (2009, 2010), we utilize

an alternative optimization procedure that expands upon ideas from Sato et al.

(2004); Wipf et al. (2007), handles arbitrary/unknown dipole-source orientations,

and converges quickly. In Figure 2.1, we demonstrate the convergence rates of
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the EM implementation versus the proposed method described below. Figure 2.1

displays the reduction in the Champagne cost functionL(Γ) as a function of the it-

eration number. The convergence rates are quite disparate, the proposed method

converges after 20 iterations while the EM implementation is still decreasing the

cost function after 100 iterations. Consistent with previous observations, the EM

updates are considerably slower in reducing the cost. While the detailed rationale

for this performance discrepancy is beyond the scope of this chapter, ultimately

it is a consequence of the different underlying bounds being used to form aux-

iliary functions. EM leads to slower convergence because it is effectively using

a much looser bound around zero than the bound described in Section 2.2.1 and

therefore fails to fully penalize redundant or superfluous components. This pre-

vents the associated hyperparameters from going to zero very quickly, drastically

slowing the convergence rate. More details on this topic can be found in Wipf and

Nagarajan (2010).

To begin, we note that L(Γ) only depends on the data B through the db × db

sample correlation matrix Cb. Therefore, to reduce the computational burden, we

replace B with a matrix B̃ ∈ Rdb×rank(B) such that B̃B̃T = Cb. This removes any

per-iteration dependency on dt, which can potentially be large, without altering

that actual cost function. It also implies that, for purposes of computing Γ, the

number of columns of S is reduced to match rank(B). We now re-express the cost

function L(Γ) in an alternative form leading to convenient update rules and, by
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Figure 2.1 Convergence rate: EM implementation compared to upper-bounding
hyperplane implementation (proposed method).

construction, a proof that L
(
Γ(k+1)

)
≤ L

(
Γ(k)

)
at each iteration.

The procedure we will use involves constructing auxiliary functions using

sets of hyperplanes. First, the log-determinant term of L(Γ) is a concave function

of Γ and so it can be expressed as a minimum over upper-bounding hyperplanes

via :

log |Σb| = min
Z

[
ds∑

i=1

trace
(
ZT

i Γi

)
− h∗(Z)

]
, (2.5)

where Z ,
[
ZT

1 , . . . , ZT
ds

]T is a matrix of auxiliary variables that differentiates

each hyperplane and h∗(Z) is the concave conjugate of log |Σb|. While h∗(Z) is

unavailable in closed form, for our purposes below, we will never actually have

to compute this function. Next, the data fit term is a concave function of Γ−1 and
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so it can be also be expressed using similar methodology as:

trace
[
CbΣ

−1
b

]
= min

X

∥∥∥∥∥B̃ −
ds∑

i=1

LiXi

∥∥∥∥∥
2

Σ−1
ε

+
ds∑

i=1

‖Xi‖2
Γ−1

i

 , (2.6)

where X ,
[
XT

1 , . . . , XT
ds

]T is a matrix of auxiliary variables as before. Note that

in this case, the implicit concave conjugate function exists in closed form.

Dropping the minimizations and combining terms from (2.5) and (2.6) leads

to the modified cost function:

L(Γ, X, Z) =

∥∥∥∥∥B̃ −
ds∑

i=1

LiXi

∥∥∥∥∥
2

Σ−1
ε

+
ds∑

i=1

[
‖Xi‖2

Γ−1
i

+ trace
(
ZT

i Γi

)]
− h∗(Z), (2.7)

where by constructionL(Γ) = minX minZ L(Γ, X, Z). It is straightforward to show

that if {Γ̂, X̂, Ẑ} is a local (global) minimum to L(Γ, X, Z), then Γ̂ is a local (global)

minimum to L(Γ).

Since direct optimization of L(Γ) may be difficult, we can instead iteratively

optimize L(Γ, X, Z) via coordinate descent over Γ, X , and Z. In each case, when

two are held fixed, the third can be globally minimized in closed form. This en-

sures that each cycle will reduce L(Γ, X, Z), but more importantly, will reduce

L(Γ) (or leave it unchanged if a fixed-point or limit cycle is reached). The associ-

ated update rules from this process are as follows:

Xnew
r → ΓrL

T
r Σ−1

b B̃ (2.8)
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Znew
r → OΓr log |Σb| = LT

r Σ−1
b Lr (2.9)

Γnew
r → Z−1/2

r

(
Z1/2

r XrX
T
r Z1/2

r

)1/2
Z−1/2

r , (2.10)

where Γr comprise the blocks of the block-diagonal matrix of hyperparameters Γ.

Each Γr is initialized with an identity matrix plus/minus a small random

number, O(1e − 5). We found that this was the most robust initialization, as op-

posed to initializing with the source power of another algorithm, such as MVAB.

When using a vector lead field, as opposed to a scalar/orientation-constrained

lead field, a dc× dc covariance matrix is learned for each source. This covariance

can be thought of as describing a noisy or unfixed source orientation.

In summary, the Champagne algorithm estimates Γ by iterating between

(2.8), (2.9), and (2.10), and with each pass we are theoretically guaranteed to re-

duce (or leave unchanged) L(Γ).

The source time courses can be calculated using the posterior source distri-

bution p(S|Bpost, Γ) ∝ p(Bpost|S)p(S|Γ), which is Gaussian. To estimate the source

time courses, we choose the source posterior mean, i.e. the mean of p(S|Bpost, Γ)),
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given by:

ŝr(t) = ΓrL
T
r

(
Σε + LΓLT

)−1
Bpost(t), (2.11)

where ŝr(t) ∈ Rdc×1 (a short vector across lead field components).

The sparsity in the hyperparameters, as discussed above, results in sparsity

in the source time courses. As seen in Equation (2.11), we can see that if Γr = 0

then the source time course ŝr(t) will also be zero.

The Champagne algorithm typically converges in 75 to 100 iterations. The

lead field we used for the majority of the simulations had approximately 5500

voxels, which results in the estimation of approximately 16,500 hyperparameters,

and takes approximately 10 minutes to run on a lead field of that size (and trial-

averaged data) on an Intel(R) Core(TM)2 Quad CPU @ 3.00GHz, with 8GB of

memory. The number of hyperparameters Champagne estimates is dependent

of the number of lead field orientations. For a scalar (or fixed orientation) lead

field, ds hyperparameters are estimated. For a 2 or 3 component lead field, 3× ds

or 6 × ds unknown hyperparameters are estimated, respectively. (Each precision

matrix Γr is a symmetric matrix.) We have plotted the magnitude of the hyperpa-

rameters over 1, 5, 10, 20, 50, and 100 iterations to show the pruning in Figure 2.2.

For this example, after only 20 iterations the hyperparamters have been vastly

pruned and do not change significantly over the next 80 iterations. If the value

of a hyperparameter falls below a certain threshold (a parameter that is set in the
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algorithm and is usually 1e − 8), that voxel is pruned from the lead field. This

pruning speeds up the time per iteration, as over time there are fewer and fewer

voxels to consider.
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Figure 2.2 Demonstration of the pruning of the hyperparameters over iterations
by Champagne. This figures shows the initialization (Iteration 1) and the subse-
quent pruning after 5, 10. 20, 50, and 100 iterations.

2.2.2 Learning the Noise-plus-Interference Factor (Σε)

The learning procedure described in the previous section boils down to fitting

a structured maximum likelihood covariance estimate Σb = Σε +LΓLT to the data

covariance Cb. The idea here is that LΓLT will reflect the brain signals of interest

while Σε will capture all interfering factors, e.g., spontaneous brain activity, sensor

noise, muscle artifacts, etc. Since Σε is unknown, it must somehow be estimated
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or otherwise accounted for. Given access to pre-stimulus data (i.e., data assumed

to have no signal/sources of interest), a factor analysis model provides a powerful

means of decomposing a data covariance matrix Cb into signal and interference

components.

There are many possible ways to learn Σε; we have found that the Stimulus-

Evoked Factor Analysis (SEFA) model is the most robust Zumer et al. (2007). Es-

sentially SEFA decomposes the empirical sensor covariance as follows:

Cb ≈ Λ + AAT + DDT , (2.12)

where A ∈ Rdb×de represents a matrix of learned interference factors, Λ is a diag-

onal noise matrix, and D ∈ Rdb×df represents signal factors. Both the number of

interference factors de and the number of signal factors df are learned from the

data via a variational Bayesian factor analysis procedure. Using a generalized

form of the expectation maximization algorithm, the method attempts to find a

small number of factors that adequately explains the observed sensor data covari-

ance during both the pre- and post-stimulus periods. The pre-stimulus is mod-

eled with a covariance restricted to the terms Λ + AAT , while the post-stimulus

covariance, which contains the signal information DDT we wish to localize, is ex-

pressed additively as in (4.3). Then, we can set Σε → Λ + AAT . Λ is learned first

from the pre-stimulus period and then is updated using the post-stimulus period

data; learning Λ accounts for nonstationarity in the sensor noise between the pre-
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and post-stimulus periods. Note that SEFA does not use the lead field L to model

the activity, rather A and D are mixing matrices that do not have any physical (or

physiological) interpretation and are simply statistical models used to suppress

pre-stimulus activity from the post-stimulus sensor covariance.

2.3 Discussion

This chapter derives a novel empirical Bayesian algorithm, Champagne, for

M/EEG source reconstruction that readily handles multiple correlated sources

with unknown orientations, a situation that commonly arises even with simple

imaging tasks. Based on a principled cost function and fast, convergent update

rules, this procedure displays significant theoretical and empirical advantages

over many existing methods. In the following chapters of this thesis, we will

demonstrate Champagne’s performance on simulated and real data sets. We also

investigate alternative methods to estimate the noise-plus-interference factor (Σε),

including when there is not pre-stimulus sensor data.
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Chapter 3

Performance Evaluation of the

Champagne Algorithm on Simulated

and Real M/EEG Data 1

3.1 Overview

In this chapter, we present results from both simulated and real MEG data

that more rigorously characterize Champagne’s performance and better delineate

both its strengths and limits. For the simulated data, we have selected a num-

ber of challenging source configurations: a large number of distinct sources, deep

sources, and clusters of sources. We also present the results on simulated data us-

1Portions of this chapter originally appeared as an ISBI conference paper (Owen et al., 2009)
and as an article in (Wipf et al., 2010)
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ing benchmark algorithms, minimum-variance adaptive beamforming (MVAB),

dynamic statistical parametric mapping and standardized low resolution brain

electromagnetic tomography (sLORETA/dSPM), and minimum current estimate

(MCE). In addition to investigating these challenging source configurations with

simulated data, we also present an analysis of the effect of lead field model-

ing errors. In addition, we present results from simulated EEG and we investi-

gate the effect of subsampling the number of EEG sensors. We use six real data

sets to test Champagne’s performance as compared to the benchmark algorithms:

somatosensory-evoked field (SEF), auditory-evoked field (AEF), audio-visual in-

tegration task, a face-processing data, with both MEG and EEG recordings, and

resting-state data form an epilepsy patient. Taken together, the results on simu-

lated and real data give a rather complete picture of Champagne’s source localiza-

tion capabilities as we have explored the full parameter space for the simulations

and have applied the algorithm to several real data sets. Ultimately an exhaus-

tive performance analysis of a source localization algorithm serves two distinct

purposes. The first being to motivate the use of a new algorithm by showing

head-to-head performance with commonly-used methods. The second is to fully

describe when an algorithm works and of equal importance, when it does not

work. The conditions under which an algorithm fails motivates further develop-

ment of source localization algorithms to advance beyond these shortcomings.



SECTION 3.2. BENCHMARK SOURCE LOCALIZATION ALGORITHMS 42

3.2 Benchmark Source Localization Algorithms

We chose to test the Champagne algorithm against four representative source

localization algorithms from the literature: an adaptive spatial filtering method,

minimum-variance adaptive beamforming (MVAB) , two non-adaptive spatial fil-

tering methods, standardized low resolution brain electromagnetic tomography

(sLORETA), and dynamic statistical parametric mapping (dSPM), and a version

of minimum current estimation (MCE). For all the algorithms, we localize sources

only in the post-stimulus period.

MVAB

Minimum variance adaptive beamformer (MVAB) spatial filters (Sekihara

and Nagarajan, 2008) rely on the assumption that sources are temporally uncorre-

lated with each other and that the number of active sources is less than the number

of sensors (regardless of how many voxels are included in the source reconstruc-

tion volume). The minimum-variance methods find the weight that minimizes

the output power ŝT
r ŝr, where ŝr = wT

r Bpost and therefore, minimizing the output

power is equivalent to minimizing wT
r Rwr, where R = BpostB

T
post is the covariance

of the sensor data. This minimization can be done subject to various constraints;

using a unit-gain constraint is a widely-used form. The output power should be

minimized since it usually has large contributions from noise and source activity

at voxels other than r.
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However, the weight should also strive to maximize the pass-through of the

source power at the current voxel. Using a Lagrange multiplier with the unit-gain

constraint wT
r Lr = 1 yields the unit-gain-constraint minimum-variance adaptive

beamformer. The source-time course (ŝr(t)) at a particular voxel (r) and time point

(t) for MVAB is:

ŝr(t) =
(
LT

r R−1Lr

)−1
LT

r R−1Bpost(t), (3.1)

sLORETA/dSPM

The source localization algorithms sLORETA and dSPM belong to the gen-

eral family of minimum norm estimates (MNE). They are non-adaptive, meaning

that they do not consider the sensor data in obtaining the spatial filter that will

be applied to the data in order to obtain the source estimates. The non-adaptive

property gives sLORETA and dSPM robustness to correlated sources that often

impeded algorithms, like MVAB. If the sensor noise is ignored, the simplest initial

guess for the weight would be the inverse of the forward field matrix. However,

non-square matrices cannot be inverted; instead a pseudo-inverse can approxi-

mate a left- or right-sided inverse. The source estimate ŝr(t) that minimizes the

linear least-squares error is the one that uses the Moore-Penrose pseudo-inverse
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as the weight:

ŝr(t) = L+
r Bpost(t) = LT

r G−1Bpost(t) (3.2)

where Lr indicates the lead field for voxel r and the + indicates the pseudo-

inverse. G is called the Gram matrix, G = LLT ; it gives an indication of the

spatial correlation or overlap between the sensitivity profile of the sensors. Since

neighboring sensors have similar sensitivities, this Gram matrix is too close to

singular to invert stably. Tikhonov regularization is needed to invert G, which

involves adding a small amount of noise to the diagonal of the Gram matrix prior

to inversion: G−1 = (LLT + σλI)−1. σλ regularizes the inverse; σ is a scalar that is

chosen empirically, ranging from [1e− 2 : 1e2], and λ is the maximum eigenvalue

of the data covariance matrix (R), which helps get the regularization factor in the

right range. The Gram matrix is dependent on all the voxels that could contain

source activity, thus, the source activity at a particular voxel is dependent on the

forward field for the whole volume. The weights used in the adaptive methods,

such as MVAB, only rely on the forward field for the voxel of interest.

dSPM, proposed in Dale et al. (2000), modifies this weight by normalizing it

to ensure a uniform noise spatial distribution. This solution can also be obtained

by finding the weight that minimizes wT Gw subject to the unit-noise constraint

wT w = 1. Hence, the weight-normalized minimum-norm solution for dSPM is:
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ŝr(t) =
(
tr
{
LT

r G−2Lr

})− 1
2 LT

r G−1Bpost(t). (3.3)

sLORETA, proposed in (Pascual-Marqui, 2002), modifies the above weight-

normalized form, where the source time course estimate is:

ŝr(t) =
(
LT

r G−1Lr

)− 1
2 LT

r G−1Bpost(t), (3.4)

The sLORETA weight is equivalent to normalizing the min-norm solution by the

square root of the resolution kernel and, alternatively, can be derived by find-

ing the weight that minimizes wT Gw subject to the unit-total-leakage constraint

wT Gw = 1.

We find that SL and dSPM yield almost identical results, thus we present

their results together in this paper.

MCE

The MCE algorithm was first proposed in (Uutela et al., 1999) and can be

formulated by the following. Recall that the MEG signals can be modeled by the

linear model

Bpost =
ds∑

r=1

LrSr + E (3.5)
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The MCE algorithm consists of minimizing the norm of the sources ‖S‖ with

constraint that Bpost =
∑ds

r=1 LrSr. The variants of the MCE algorithm differ in

the selection of the norm, the constraints placed upon the minimization, and the

errors allowed in the constraint.

We used a version of MCE that is specially tailored to handle multiple time-

points and unconstrained source orientations (Wipf et al., 2009). This method

extends standard MCE by applying a `2 penalty across time. In this version there

is an `1-norm over space and an `2-norm over time, sometimes called an `1,2-norm

in signal processing. The source orientation components are also included within

the `2 penalty. Similar to Champagne, MCE favors sparse/compact source recon-

structions.

The MCE cost function is expressed as:

ŝ(t) = arg min
ŝ

∥∥∥∥∥B −
ds∑

r=1

Lrŝr

∥∥∥∥∥
2

Σ−1
ε

+
ds∑

r=1

‖ŝr‖F

 , (3.6)

where ‖ŝr‖F =
√

tr(ŝT
r ŝr) and Σ−1

ε is either set to be the inverse noise covariance

learned with SEFA from the pre-stimulus period (as in Champagne) or it is set to

be Σ−1
ε = σI , where σ is a scalar that is empirically selected and I is an identity

matrix of size ds × ds.

And the estimate for the source time course (ŝr(t)) at a particular voxel (r)
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and time point (t) is obtained by iterating the following equations:

ŝ(k+1)
r (t) → α(k)

r LT
r

(
Σε +

ds∑
r=1

α(k)
r LrL

T
r

)−1

Bpost(t), (3.7)

where α
(k)
r =

√
1

dcdt

∑dt

t=1 ‖ŝ(r, t)(k)‖2
2 and k is the iteration number.

3.3 Assessing Localization Accuracy

In order to evaluate performance, we used two features: localization accuracy

and time course estimation accuracy. To assess localization accuracy, we used the

A′ metric (Snodgrass and Corwin, 1988; Darvas et al., 2004). When assessing the

localization accuracy, it is important to take into account both the number of hits

(sources that were correctly localized) and the presence of false positives, or spu-

rious localizations. A principled way to take these two features into account is

the ROC (receiver-operator characteristic) method, which is a technique that bal-

ances hit rate (HR) versus false-positive rate (FR). Specifically, we used the A′

metric, which is a way to approximate the area under the ROC using one HR/FR

pair. The A’ values range from 0 to 1, with 0 indicating all false positives and 1

indicating all hits. We determined HR and FR at each SNIR level and each algo-

rithm in the following way. For each simulation, we calculated all the local peaks

in the power map; the power map is a three-dimensional image of the power of

the source time course at each voxel location, A local peak was defined as a voxel
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that is greater than its 20 three-dimensional nearest neighbors and was at least 10

percent of the maximum activation of the image. (This thresholding at 10 percent

is designed to filter out any spurious peaks or ripples in the image that are much

weaker than the maximum peak.)

After scanning through the voxel grid and locating all the local peak loca-

tions, we tested whether each local peak was within ten millimeters of a true

source location. If a particular peak was within 10mm of a seeded source, that

peak gets labeled as a hit and if there was not a seeded source within 10mm, that

peak gets labeled as a false positive. HR is then calculated by dividing the number

of hits by the true number of seeded sources. (A 8mm voxel grid was used for the

simulations, so a source would have to be in the true seeded location or in an ad-

jacent voxel in order to be labeled a hit.) Determining FR is more tenuous. There

is not a clear maximum number of possible false positives, as there is with hits.

We empirically determined the maximum number of false positives for each al-

gorithm, for each given experiment. Since the spatial filtering techniques (MVAB,

sLORETA, and dSPM) are inherently more smooth than the sparse solutions ob-

tained from Champagne and MCE, the maximum number of false positives was

determined empirically across all SNIR (signal to noise plus interference ratio)

levels and 50 simulations for each algorithm. Then, the number of false positives

was divided by this maximum false positive number in order to calculate FR for

each simulation and SNIR level. Lastly, the A’ metric was calculated for each
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HR/FR pair with the following equations:

A′ =



1
2

+ (HR−FR)(1+HR−FR)
4HR(1−FR)

for HR ≥ FR

1
2

+ (FR−HR)(1+FR−HR)
4FR(1−HR)

for FR > HR

(3.8)

To assess the accuracy of the time course estimates, we used the correlation

coefficient between the true and estimated time courses. Note that we only com-

puted the time course correlation if a local peak is deemed a hit. For a particular

simulation, we average the correlation coefficients to obtain one number that re-

flects the time course reconstruction. The correlation coefficient also ranges from

0 to 1, with 1 implying perfect time course estimation. The equation used to ob-

tain the average correlation coefficient (R̄) between the true source time course

Strue
i (t) and the estimated source time course Sest

i (t) for the ith correctly localized

source is as follows:

R̄ =
1

N

n∑
i=1

C(Strue
i (t), Sest

i (t))√
C(Strue

i (t), Strue
i (t))C(Sest

i (t), Sest
i (t))

(3.9)

where C(xi, xj) is the covariance of xi and xj and N is the total number of correctly

localized sources.

From this procedure, we obtain three useful metrics: hit rate (HR), A’ metric,

and average correlation coefficient (R̄). We have developed a metric that captures



SECTION 3.4. GENERATING SIMULATED DATA 50

both the accuracy of the location and the time courses of the algorithms, which

we call the Aggregate Performance, (AP). It combines the A′, R̄, and HR, in the

following equation is:

AP =
1

2
(A′ + HRR̄) (3.10)

We use the HR as a weight for R̄ since we only compute the correlation coeffi-

cient of the sources that are correctly localized. AP also ranges from 0 to 1. For

this paper, we decided to use an AP value of 0.75 as the cutoff for a successful

localization.

3.4 Generating Simulated Data

The simulated data in this chapter were generated by simulating dipole

sources, either fixed in orientation or with some variation in orientation. We

seeded the voxel locations with damped sinusoidal time courses (except where

noted) and then projecting the voxel activity to the sensors with the lead field.

The brain volume was segmented into 8mm voxels and a two-orientation (dc = 2)

forward lead field was calculated using a single spherical-shell model (Sarvas,

1987) implemented in NUTMEG (Dalal et al., 2004) unless where otherwise noted.

The volume of interest (VOI) is volumetric, as opposed to cortically constrained,

and results in lead field with approximately 4,500 voxels. The data time course

was partitioned into pre- and post-stimulus periods. The pre-stimulus period
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(270 samples) contained only sensor noise and interfering brain activity and in

the post-stimulus period (450 samples), the activity of interest, or the stimulus-

evoked activity, was superimposed on the noise and interference present in the

pre-stimulus period. The noise plus interference activity consisted of the resting-

state sensor recordings (except where noted) collected from a human subject pre-

sumed to have only spontaneous activity (i.e., non-stimulus evoked sources) and

sensor noise. Each source location was seeded with a distinct time course of ac-

tivity, described in more detail below, and the sources were only present for half

of the post-stimulus period (225 samples). The voxel activity was projected to

the sensors through the lead field and the noise was added to achieve as desired

signal to noise ratio, also described below.

The locations for the sources were chosen with a variety of constraints, as

detailed in the experimental sections below, to test Champagne’s performance on

challenging source configurations. We could adjust both the signal-to-noise-plus-

interference ratio (SNIR), the correlations between the different voxel time courses

(inter-dipole), and the correlation between the orientations of the dipolar sources

(intra-dipole). For our purposes, SNIR is defined as:

SNIR , 20 log
‖LS‖F
‖E‖F

, (3.11)

where L is the lead field matrix, S are the source time courses, E is the noise

or non-stimulus evoked activity, see () and F denotes the Froebenius norm or the
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`2-norm.

We simulated data to replicate the signal-to-noise ratios of real stimulus-

evoked data (trial-averaged data). We chose 10dB and 0dB as the upper and lower

bound for typical trial-averaged, real MEG data.
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Figure 3.1 Example of a simulated data at 10dB and 0dB. The red line indicates
the start of the post-stimulus period (or the stimulus onset) at 0ms. There are 5
sources seeded in this example and the noise is real resting-state data.

When simulating data, we can set the inter-dipole correlations (the amount

of correlation between the dipoles seeded throughout the brain) and the intra-

dipole correlations (the correlation between the orientations of the lead field for

each individual dipole). The inter-dipole correlations allow us to test the algo-

rithms’ performance when disparate areas of the brain have correlated activity.

The intra-dipole correlations allow us to model deviations in the dipole’s orien-

tation as a correlation of 1 would imply a fixed orientation and a correlation of 0

would model a dipole that is fully rotating and not stable in orientation. Another

interpretation of the intra-dipole correlation is that the brain volume within a sin-

gle voxel might contain two or more current sources, and these sources might be
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aligned in different directions. This would be true of voxels that fall on a 90 de-

gree fold of the cortical surface. We impose intra- and inter-dipolar correlations

(for a two-orientation lead field) for n dipoles in the following manner.

First we generate the time courses for the two orientations of each dipole:

S1
n(t), the time course of the nth dipole and the first orientation and S2

n(t), the time

course of the nth dipole and the second orientation. Then we correlate the two

orientations of each individual dipole. If the intra-dipolar correlation coefficient

is αintra, then S2
n(t) is defined to be:

S2
n(t) → αintraS

1
n(t) +

√
1− α2

intraS
2
n(t) (3.12)

After we set the intra-dipolar correlation, we correlate all the dipoles (n in

number) to the first dipole, S1(t). Sn(t) is a vector formed by concatenating the

time courses for each orientation for the nth dipole: Sn(t) =

 S1
n(t)

S2
n(t)

, for a two-

component lead field. If the inter-dipolar correlation coefficient is αinter, then Sn(t)

(for n 6= 1) is defined to be:

Sn(t) →

 αinter 0

0 αinter

S1(t) +


√

1− α2
inter 0

0
√

1− α2
inter

Sn(t) (3.13)

Two examples of the simulated sensor data at 0dB and 10dB are shown in
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Figure 3.1. The red line indicates the start of the post-stimulus period (effectively

the stimulus onset) at 0ms. In this example, there are 5 sources seeded throughout

the brain.

3.5 Performance on Difficult Source Configurations

In two previous publications (Wipf et al., 2009, 2010), Champagne was

demonstrated to be robust to correlated sources and capable of localizing a large

number (up to ten) of dipoles. Here its performance has been further tested to

explore the limits of its ability to reconstruct complex simulated brain activity.

We also compare Champagne’s performance to existing, commonly-used source

localization algorithms (as described above). The results we obtained using sim-

ulated data are presented in two forms. First, we show the plots of mean A′, R̄,

HR, and/or our aggregate performance metric, AP . For each configuration, the

results are averaged over 50 simulations and we have plotted these averaged re-

sults with standard error bars. These plots give a feel for overall performance as

the sources are randomly seeded (with some constraints). For some of the experi-

ments, we also show examples of the localization results from single simulations,

which complement our aggregate results. We compute the source power at every

voxel and project the activity to the surface of a rendered MNI-template brain.

These plots contain a projection of the true source power, called ground truth.
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3.5.1 Discriminating Two Sources

We examined the minimum distance at which two sources are able to be re-

solved. The spacing between voxels on our grid was 8mm, thus we tested the

localization accuracy when the distance between the two sources (inter-dipole

distance) was 16, 24, 32, or 40mm. The locations of the two sources were chosen

randomly with the constraint that the minimum distance from the center of the

head was 35mm (since deeper sources are harder to localize). (The maximum dis-

tance from the center of the head in the volume of interest (VOI) is 65mm.) We

aggregated 50 simulations at SNIR levels of 0 and 10dB. We averaged the results

for each inter-dipolar distance and SNIR level and computed the standard error.

The sources in these simulations had an inter-dipole correlation coefficient of 0.5

and an intra-dipole correlation coefficient of 0.25.

The results from this experiment are presented in Figure 3.2. These results

serve two purposes; the first being to demonstrate Champagne’s ability to resolve

two correlated sources as we move them farther apart. The second is to give some

intuition about our novel performance metric, AP and described above in Section

3.3. The majority of the results in the subsequent experiments with simulated

data will show only plots of AP, which we believe captures the two aspects of

performance, localization and time course reconstruction, in one number.

The first column of Figure 3.2 shows the hit rate (HR) plotted against inter-

dipolar distance at 10dB and 0dB. The HR results show that at 10dB Champagne
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is able to localize two sources at any inter-dipole distance and at 0dB Champagne

is able to distinguish two sources if there is 32mm (or 3 voxels width) between

the sources. MVAB does well at 10dB as long as there is at least 24mm between

the sources and at 0dB, however, MVAB is unable to resolve the two sources at

any inter-dipole distances. MCE does fairly well at both noise levels, although

the hit rate at best is approximately 0.7 at 10dB and 0.6 at 0dB (at 40mm sep-

aration). SL/dSPM has difficulty localizing the two sources at all inter-dipole

distances at both noise levels. A′ is computed from the HR and FR, so naturally,

the A′ plots shown in the second row are similar to the HR plots. In general, if

the FR is low, the A′ value will be higher than the HR value (this is true even

if the HR is poor). The average correlation coefficient (R̄) between the seeded

and reconstructed time courses are shown in the third column. We only com-

pute the correlation coefficient for sources that are counted as hits, so our results

reflect how accurately the algorithms reconstruct the seeded time courses when

the localization is successful. Champagne is able to reconstruct the time courses

at all inter-dipole distances at 10dB and at 0dB, Champagne is successful when

there is at least 32mm between the sources (similar to the HR/A′ plots). MCE

is able to reconstruct the time courses at both noise levels with 32mm or 40mm

distance between the sources, but the R̄ values drop off for 16mm and 24mm

inter-dipole spacing. Both SL/dSPM and MVAB have difficulty reconstructing

the time courses at both SNIR levels and all inter-dipole distances.
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The three values presented in the first three columns of Figure 3.2, HR, A′, and

R̄, are combined to compute Aggregate Performance (AP) shown in the fourth

column. For Champagne, the AP results look very similar to the plots in the pre-

vious three columns since Champagne tended to perform well across metrics (or

perform poorly as is the case at 0dB and the smaller inter-dipole distances). Like-

wise, MCE shows similar performance across the first three metrics (or columns)

and yields similar trends in the AP metric. MCE performs most similarly to

Champagne at large inter-dipole distances and performs like MVAB at smaller

inter-dipole distances at 10dB. At 0db, however, Champagne and MCE have sim-

ilar trends across the inter-dipole distances, but Champagne performs better than

MCE at the lower SNIR level. The AP results for MVAB at 10dB demonstrate that

MVAB was penalized for having poor time course reconstruction in spite of hav-

ing good localization results. SL/dSPM does poorly across all of the first three

metrics at both noise levels and thus, does poorly in terms of the AP metric.

3.5.2 Detecting Multiple Sources: Vector Lead Field

In order to examine Champagne’s ability to localize many individual sources,

we performed extensive simulations with randomly seeded sources.

We used a volumetric (two-component) lead field computed in NUTMEG

(as described above). We randomly seeded 3 to 30 sources throughout the brain.

The locations for the sources were chosen so that there was some minimum
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Figure 3.2 Simulations with two dipoles seeded with inter-dipole distances of:
16mm, 24mm, 32mm, or 40mm. The inter-dipole correlation is 0.5 and the intra-
dipole correlation is 0.25. Components: (a) A′ metric, (b) Hit Rate (HR) and (c)
Average Time-Course Correlation Coefficient (R̄) used to compute (d) Aggregate
Performance Metric (AP). The following equation is used: AP = 1

2
(A′ + HRR̄).

The results are averaged over 50 simulations at each data point and the error bars
show the standard error.

distance between sources (at least 10mm) and a minimum distance from the

center of the head (at least 35mm). We ran 50 simulations of randomly (located)

seeded sources at SNIR levels of 0dB and 10dB. The sources in these simulations

had an inter-dipole correlation coefficient of 0.5 and an intra-dipole correlation

coefficient of 0.25.
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The results from the experiment with the vector lead field are shown in Fig-

ure 3.3. In this figure, we plot number of sources versus AP at SNIR levels of

10dB and 0dB (inset plot). At both SNIR levels, Champagne outperforms the

other source localization algorithms. Champagne is able to accurately reconstruct

up to 10 sources at 10dB and up to 5 sources at 0dB. For both SNIR levels and

across number of sources, the three other source localization algorithms perform

at almost the same level. MCE performs better than MVAB and SL/dSPM at 3

and 5 sources at both SNIR levels, but at more than 5 sources performance is

fairly similar for the benchmark algorithms. We also show single simulation ex-

amples at 10dB and 0dB for both 5 (Figure 3.4) and 10 sources (Figure 3.5). The

5 sources examples demonstrate that Champagne is able to recover 5 sources at

both SNIR levels. Both MCE and MVAB are able to recover most of the 5 sources,

but also have some false positives and blur around the sources. At 0dB, MVAB

and MCE do not successfully localize the sources, there is a peak at the center

of the head (which gets projected to the surface) and one successful source for

MVAB. SL/dSPM did not localize any of the 5 sources at either SNIR level. These

results show a peak at the center of the head and while this peak does extend out

to where the sources were seeded, there are no distinct peaks at the seeded loca-

tions. The 10 sources examples demonstrate that Champagne is able to recover 9

out of 10 sources at a SNIR of 10dB. At 0dB, Champagne is able to recover over

half the sources, but also has some false positives, including a peak at the center
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of the head. Both MVAB and MCE are able to localize some of the 10 sources at

10dB, but at 0dB these algorithms are unable to resolve more than one source. As

in the 5 source example, SL/dSPM is not able to recover any of the 10 sources at

10dB or 0dB; there is only a peak at the center of the head.
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Figure 3.3 Results from simulations testing localization on multiple dipoles (3 to
30) with a volumetric lead field (2 components). AP is plotted against number of
dipoles for SNIR=10dB and SNIR=0dB (inset plot). The inter-dipole correlation
is 0.5 and the intra-dipole correlation is 0.25. The results are averaged over 50
simulations at each data point and the error bars show the standard error.
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Figure 3.4 A single example of the localization results with the vector lead field
for 5 dipoles at SNIR=10dB (right columns) and SNIR = 0dB (left columns). The
ground truth (GT) location of sources are shown for comparison, first row. The
results with Champagne (CHAMP) are shown in the second row and the compar-
ison algorithms, BF, SL/dSPM, and MCE are shown in the subsequent rows. We
project the source power to the surface of a template brain.
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Figure 3.5 A single example of the localization results with the vector lead field
for 10 dipoles at SNIR=10dB (right columns) and SNIR = 0dB (left columns). The
ground truth (GT) location of sources are shown for comparison, first row. The
results with Champagne (CHAMP) are shown in the second row and the compar-
ison algorithms, BF, SL/dSPM, and MCE are shown in the subsequent rows. We
project the source power to the surface of a template brain.
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3.5.3 Detecting Multiple Sources: High SNIR

The above experiment, in Section 3.5.2, was repeated at a SNIR of 20dB for

Champagne; the results of this experiment compared to the results for 0dB and

10dB are shown in Figure 3.6. As expected, Champagne is able to localize more

sources at 20dB than at 10dB. At 20dB, Champagne is able to localize 15 to 20

dipoles. Also, at 20dB, it can almost perfectly localize up to 10 dipoles and the

drop off in performance does not begin until 15 dipoles.
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Figure 3.6 Comparison of localization results at SNIR levels: 0dB, 10dB, and 20dB.
The inter-dipole correlation is 0.5 and the intra-dipole correlation is 0.25. The
results are averaged over 50 simulations at each data point and the error bars
show the standard error.

3.5.4 Detecting Multiple Sources: No Noise

The experiment in Section 3.5.2 was repeated again with high SNIR, 100 dB,

and with Gaussian time courses in lieu of the damped sinusoids. The generative
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model for the Champagne algorithm assumes Gaussian source time course and

localization is easier with this modification to the way the simulated data were

generated. The results from this experiment can be found in Figure 3.7. In this

figure, we can observe the improved performance when there is virtually no noise

and the time courses more closely fit the model. Champagne is able to localize up

to 70 sources under these conditions.
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Figure 3.7 Simulation at SNIR=100dB with Gaussian time courses and Gaussian
noise model. The inter-dipole correlation is 0.5 and the intra-dipole correlation is
0.25. The results are averaged over 50 simulations at each data point and the error
bars show the standard error.

3.5.5 Detecting Multiple Sources: Inter-dipole Correlations and

Source Time Courses

We tested Champagne on four conditions to assess the effect of the inter-

dipole correlation and the type of source time course. We used inter-dipole corre-
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lations, αinter, of 0 and 0.5 and Gaussian and damped sinusoidal time courses. The

damped sinusoidal time courses and αinter = 0.5 mirror the conditions used in

Section 3.5.2 and is the lower bound on performance for this experiment. The re-

sults from the two conditions, sinusoidal time courses and αinter = 0.5 and Gaus-

sian time courses and αinter = 0, are similar to each other and perform better than

the damped sinusoidal time courses and αinter = 0.5 condition. The Gaussian

time courses and αinter = 0 condition performs the best of the four conditions and

Champagne is able to localize up to 15 dipoles under these conditions, which is

in contrast to 10 dipoles for the other conditions.

3.5.6 Detecting Multiple Sources: Scalar Lead Field

Many research groups prefer to use a cortically- and orientation-constrained

leadfield for M/EEG source reconstructions. The reasoning behind this prefer-

ence is that the pyramidal cells in the cortex that give rise to the majority of the

M/EEG signal are mostly oriented perpendicular to the cortical surface. When

the current dipoles are all assumed to be oriented normal to the cortical surface,

the lead field simplified to have only one orientation. For the simulations with

the scalar lead field, we randomly seeded 2 to 100 dipoles throughout cortex; the

minimum distance between any two sources is 10mm. We selected the coarse grid

spacing in SPM, which results in approximately 5,000 voxels. The voxels are not

placed in a regular grid, but in general the voxels are spaced approximately 5mm
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Figure 3.8 Simulations at 10dB with different inter-dipole correlations, αinter = 0
and αinter = 0.5, and types of source time courses, Gaussian and damped sinu-
soidal. The intra-dipole correlation is 0.25. The results are averaged over 50 sim-
ulations at each data point and the error bars show the standard error.

apart. The sources in these simulations had an inter-dipole correlation coefficient

of 0.5.

The results from this experiment with a scalar lead field are shown in Figure

3.9. Aggregate performance is plotted against number of dipoles at SNIR levels of

10dB and 0dB (inset plot). At both SNIR levels, Champagne outperforms the three

other algorithms at both SNIR levels. The only exception is that MCE does better

than Champagne for 2 dipoles at 10dB. At 10dB, Champagne is able to localize up

to 25 dipoles, while the other three algorithms have a performance drop off at 5
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dipoles. At 0dB, Champagne is able to localize up to 10 dipoles, while the other

algorithms are not able to accurately localize 2 dipoles (MVAB performs better

than SL/dSPM and MCE at 0dB). The single simulation example at 10dB, Figure

3.10, demonstrates that Champagne is able to localize 19 of the 20 dipoles seeded,

while the other algorithms are only able to localize at most 6 (MVAB) and at least

2 (SL/dSPM).
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Figure 3.9 Results from simulations to test localization on multiple dipoles (2 to
100) with a scalar leadfield (1 component). Aggregate Performance (AP) is plotted
against number of dipoles for SNIR=10dB and SNIR=0dB (inset plot) The inter-
dipole correlation is 0.5. The results are averaged over 50 simulations at each data
point and the error bars show the standard error.
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Figure 3.10 A single example of the localization results with the scalar lead field
for 20 dipoles at SNIR=10dB. The ground truth (GT) location of sources are shown
for comparison, first row. The results with Champagne (CHAMP) are shown
in the second row and the comparison algorithms, BF, SL/dSPM, and MCE are
shown in the subsequent rows. We project the source power to the surface of a
template brain.
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3.5.7 Rotating versus Fixed Dipole Model

Altering the correlation between the lead field components, called the intra-

dipole correlation, changes the degree that a source’s orientation rotates. A cor-

relation of one indicates a fixed orientation and a correlation of zero indicates a

freely rotating dipole. While there isn’t much evidence for how much the approx-

imate current dipoles in the brain rotate over the time course of activity, it is most

likely somewhere between 0 and 1 (and not exactly equal to zero or one). We

wanted to investigate the effect of the intra-dipole correlation (αintra) on Cham-

pagne’s ability to localize 10, 15, and 20 sources. We chose intra-dipole correla-

tions of 0.25, 0.75, and 1. If the orientation was truly fixed, then the most probable

orientation for the sources would be normal to the cortical surface (the pyramidal

cells in the cortex that give rise to the majority of the M/EEG signal are mostly ori-

entated perpendicular to the surface of the cortex). Many research groups choose

to use a cortically- and orientation-constrained lead field for M/EEG source re-

constructions, called a scalar lead field. Scalar lead fields have only one orienta-

tion per voxel and the orientation is set to be normal to the surface. In addition to

testing the vector lead field with varying intra-dipole correlations (as described

above), we also tested the scalar lead field when the intra-dipole correlation was

0.25 and 1. The inter-dipole correlation is 0.5 for all conditions. In all these cases a

vector lead field was used for the forward model and we varied the lead field used

for solving the inverse problem. The lead field used for the inverse is referred to
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as the inverse model.

AP is plotted against five conditions: 1) αintra = 1 & vector inverse model ,

2) αintra = 0.75 & vector inverse model, 3) αintra = 0.25 & vector inverse model ,

4) αintra = 1 & scalar inverse model, and 5) αintra = 0.25 & scalar inverse model.

Instead of using a scalar lead field from another software package, which would

have a different grid than the vector lead field from NUTMEG, we transformed

the vector lead field into a scalar lead field by assuming an optimal orientation

for every voxel. With this assumed orientation, we can transform the vector lead

field into a scalar lead field with the same voxel grid.

The optimal orientation for a particular voxel, r, is obtained with the follow-

ing equation:

ηopt(r) = vmin

{
LT (r)R−1L(r)

}
(3.14)

where vmin {} is the eigenvector corresponding to the minimum value of the ma-

trix in the curly braces, L(r) is the forward lead field from voxel r and R−1 is the

inverse covariance of the sensor data.(Sekihara and Nagarajan, 2008). With this

optimal orientation for every voxel, we can transform the vector lead field into a

scalar lead field with the same voxel grid. (Theoretically, we could use any arbi-

trary orientation matrix to transform the vector lead field into a scalar lead field

since we were working with simulated data.)

The results from this experiment are shown in Figure 3.7. AP for Champagne
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is plotted for the five conditions described above for 10, 15, and 20 sources. The

performance using a vector inverse model (the first three conditions) demonstrate

that the presence of intra-dipole correlations makes the localization problem more

difficult and that the weaker the correlation, the easier it is to localize multiple

sources. The results using a scalar inverse model show that if the sources’ orien-

tations are truly fixed, it is advantageous to use a scalar lead field for the inverse

problem. The performance on 15 and 20 sources is better with the scalar lead

field than the performance obtained using the vector lead field if the orientation

is fixed. On the other hand, if the orientation is rotating and a scalar inverse model

is used for the reconstruction the performance is drastically reduced as compared

to the experiments where a vector inverse model is used.

3.5.8 Effect of Lead Field Errors

We wanted to investigate the effect of orientation errors on the results ob-

tained with the scalar lead field from the previous experiment. When using a

scalar lead field, an assumption is being made about the orientation of the current

sources in the brain. To test the effect of errors between the true and estimated ori-

entation, we randomly rotated the orientation of each voxel after simulating the

data and before performing source localization with Champagne. The maximum

perturbation to the orientation ranged from 0 to π
4
. Not every voxel’s orientation

was rotated by the same amount, rather every voxel was rotated by a randomly
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Figure 3.11 Exploration of lead field errors with 10, 15, and 20 dipoles (depicted
by color) by using one forward model and a different inverse model. AP is plotted
against five conditions: 1) αintra = 1 & vector inverse model , 2) αintra = 0.75 &
vector inverse model, 3) αintra = 0.25 & vector inverse model , 4) αintra = 1 &
scalar inverse model, and 5) αintra = 0.25 & scalar inverse model. The inter-dipole
correlation is 0.5 for all conditions. The results are averaged over 50 simulations
at each data point and the error bars show the standard error.

generated angle between zero and the maximum perturbation angle. We chose to

run these simulations on 10, 15 and 20 sources since this is the regime for which

there is a discrepancy in performance for the scalar and vector lead field.

The results from this experiment are shown in Figure 3.12. AP is plotted

against maximum orientation error for 10, 15, and 20 sources. The trend in per-

formance across the perturbations is consistent for 10, 15 and 20 sources. The

performance drops approximately 10% immediately with the smallest maximum
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perturbation, π
64

. The performance stays the same for maximum perturbations of

π
32

and π
16

, and then starts falling off more rapidly for maximum perturbations of

π
8

and π
4
.
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Figure 3.12 Localization results for 10, 15, and 20 dipoles (depicted by color)
with orientation errors introduced to the scalar lead field. AP is plotted against
maximum perturbation angle. Each voxel’s orientation vector is perturbed by a
random angle from 0 to the maximum angle (shown on the x-axis). The inter-
dipole correlation is 0.5 (and the intra-dipole correlation is 0.25 for the vector lead
field). The results are averaged over 50 simulations at each data point and the
error bars show the standard error.

We conducted an additional experiment to assess the effect of lead field errors

on localization accuracy with Champagne. We used a vector lead field to simulate

data at a SNIR of 10dB. Then we shifted the lead field grid diagonally the distance

of about half the diagonal of a voxel ( 5mm) and recomputed the lead field for this
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grid of source locations. We solved the inverse problem with Champagne using

the lead field from the shifted grid. We tested Champagne with 3 to 30 sources at

10dB and found that the AP metric was reduced, at worst, 10% for each number

of sources. The results are shown in Figure 3.13. This result supports the evidence

from the previous experiment that Champagne is robust to errors in the lead field

modeling.
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Figure 3.13 Simulations with un-shifted and shifted voxel grid at SNIR of 10dB.
The inter-dipole correlation is 0.5 and the intra-dipole correlation is 0.25. The
results are averaged over 50 simulations at each data point and the error bars
show the standard error.
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Figure 3.14 Localization results in the presence of deep sources at SNIR=10dB
(left column) and SNIR=0dB (right column). AP is plotted against total number
of sources in each panel. There were three conditions (corresponding to the rows
of the figure): 1) no deep sources (or all shallow sources), 2) half deep sources and
half shallow sources, 3) all deep sources. The inter-dipole correlation is 0.5 and
the intra-dipole correlation is 0.25. The results are averaged over 50 simulations
at each data point and the error bars show the standard error.
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3.5.9 Deep Sources

To assess Champagne’s ability to localize deep sources, which are typically

hard to localize with MEG, we constructed three conditions to compare perfor-

mance with: 1) no deep sources (or all shallow sources), 2) half deep sources and

half shallow sources, 3) all deep sources. A deep source was defined as less than

35mm from the center of the head and a shallow source was defined as above, at

least 35mm from the center of the head. These conditions were designed to test

sensitivity to deep sources, when there are only deep sources and when there is

a combination of deep and shallow sources. The configurations with only shal-

low sources were included to give a basis for comparison. The placement of the

sources was random (within the distance constraints) and we aggregated 50 sim-

ulations for SNIR levels of 0 and 10dB. The sources in these simulations had an

inter-dipole correlation coefficient of 0.5 and an intra-dipole correlation coefficient

of 0.25. The total number of sources was 2, 4, 6 and 10, where each total number of

sources had three conditions associated with it. For example, for 4 total sources,

there was one condition where there were 4 shallow sources, one condition where

there were 2 shallow and 2 deep sources, and one condition where there were 4

deep sources. We chose the maximum number of sources to be 10 because that is

the largest number of sources that Champagne was able to localize in the Detecting

Multiple Dipoles experiment.

The results for this experiment are shown in Figure 3.14. We have plotted
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AP against total number of sources (2, 4, 6, or 10) for the three source configu-

rations described above (rows of Figure 3.14), at 0 and 10dB (columns of Figure

3.14). Across all the source configurations and noise levels, Champagne outper-

forms the other source localization algorithms across all numbers of sources. As

we saw in the Detecting Multiple Dipoles experiment, Champagne is able to recon-

struct 10 sources at 10dB and 4 to 6 sources at 0dB. MCE consistently does better

than MVAB and SL/dSPM for the conditions where there are all shallow sources

or half shallow (and half deep) sources. The presence of deep sources (whether

they constitute half or all the sources) degrades performance for all the source lo-

calization methods. This decrease in performance is especially marked for MCE

at both noise levels and SL/dSPM at 0dB.

3.5.10 Clusters

Given Champagne’s sparsity, we tested its ability to localize distributed ac-

tivity by simulating clusters of sources. We seeded 5, 10, or 15 clusters each with

10 sources in each cluster. These cluster sizes correspond to 50, 100, and 150 vox-

els having non-zero activity. The placement of the cluster center was random and

the clusters consisted of sources seeded in 9 nearest neighboring voxels. We ag-

gregated 50 simulations for SNIR levels of 0 and 10dB. The source time courses

within each cluster had an inter-dipole correlation coefficient of 0.8 and an intra-

dipole correlation coefficient of 0.25. The multiple clusters were correlated with a
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Figure 3.15 Performance on 5, 10 and 15 clusters of dipoles (each cluster has 10
contiguous active voxels) using a vector lead field. Cluster A′ is plotted against
number of clusters in the top row, showing the localization accuracy and Cluster
Extent Score (CES) is plotted against number of clusters in the bottom row, show-
ing the algorithms’ ability to correctly model the extent of the clusters. The inter-
dipole correlation within the cluster is 0.8, the inter-dipole correlation between
clusters is 0.5, and the intra-dipole correlation is 0.25. The results are averaged
over 50 simulations at each data point and the error bars show the standard error.

correlation coefficient of 0.5. We made the correlations within the clusters higher

than between clusters because nearby voxels are more plausibly correlated than

voxels at a distance. For the clusters, we are both interested in whether the cluster

is localized and whether the extent of the cluster is accurately reconstructed. To

assess the localization of the clusters, we use the A′ metric. The A′ metric is cal-
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Figure 3.16 A single example of the localization results for 10 clusters (each with
10 dipoles) at SNIR = 10dB with the vector lead field. The ground truth (GT) loca-
tion of the clusters are shown for comparison, first row. The results with Cham-
pagne (CHAMP) are shown in the second row and the comparison algorithms,
BF, SL/dSPM, and MCE are shown in the subsequent rows. We project the source
power to the surface of a template brain.
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culated for the clusters by testing if there is a local peak within the known extent

of the cluster. A local peak that is not within the extent of any cluster is deemed

a false positive. To assess the accuracy of the extent of the clusters, we use our

knowledge of where the 10 sources that constitute each cluster were seeded to

calculate the fraction of the seeded voxels with activity in the 80th percentile of

all the voxels. We call this fraction the Cluster Extent Score (CES).

The results from this experiment are shown in Figure 3.15. In the first row,

we show A′ metric results for 10dB and 0dB. In the second row, we show the CES

results for 10dB and 0dB. For 5 clusters, Champagne and MVAB perform equally

for both metrics at both SNIR levels, but at 10 and 15 clusters Champagne per-

forms better than MVAB and the other algorithms both in terms of localizing the

clusters and reconstructing their extent. MCE does a fairly good job at localizing

the clusters at 10dB as seen in the A′ plot, but is not able to reconstruct the ex-

tent of the clusters as seen in the CES plot. At 0dB, MCE and SL/dSPM perform

similarly in terms of A′ and CES and in general, SL/dSPM is not successful in

localizing or reconstructing the extent of the clusters. A single-simulation exper-

iment with 10 clusters is presented in Figure 3.16. Champagne is able to localize

all 10 clusters in this example. MVAB and MCE are able to localize a fair number

of clusters (7 and 5 respectively). SL/dSPM is only able to localize one cluster (the

cluster in the occipital lobe).
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3.5.11 EEG Simulations: Vector Lead Field

The forward model for EEG accounts for the conductivity of the biological

tissue(s) through which the electric fields travel. It is generally thought that the

forward model for EEG is harder to correctly calculate and thus, source localiza-

tion with EEG data is more difficult that with MEG data. EEG is more prevalent

because it is less expensive and portable. The vector EEG lead field is on a 5mm

grid and has approximately 6,000 voxels. The vector lead field has three com-

ponents for every voxel (as compared to two components for the vector MEG

lead field) and was calculated using the BESA software (www.besa.de). We used

re-montaged lead fields for 257, 129, 81, 33, and 19 sensors at 0 and 10dB. The

sources in these simulations had an inter-dipole correlation coefficient of 0.5 and

the sources had an intra-dipole correlation coefficient of 0.25. We did not have

any resting-state data from these subjects, so Gaussian random noise was used

for the noise-plus-interference.

The results from this experiment with simulated EEG data are shown in Fig-

ure 3.17. These data imply that localization with EEG is significantly harder than

with MEG. Even at 257 sensors and at 10dB, Champagne is only barely able to lo-

calize 3 sources. At all numbers of sensors and SNIR levels, all the algorithms do

not meet the AP = 0.75 criterion for a successful performance. Although, these

results do demonstrate that Champagne is better able to localize sources with EEG

at the higher number of sensors (257, 129, and 81 sensors). MVAB does almost as
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well as Champagne for most conditions, but SL/dSPM and MCE are not able to

localize 3 source with any number of sources or at any SNIR level.

3.5.12 EEG Simulations: Scalar Lead Field

In addition to the experiment with the vector lead field, we tested Cham-

pagne on simulated EEG data using a scalar, cortically-constrained lead field com-

puted in SPM (http://www.fil.ion.ucl.ac.uk/spm) by selecting the coarse resolu-

tion. This results in approximately 5,000 voxels at 10mm spacing. We repeated

the Detecting Multiple Sources experiment with this lead field. In addition to run-

ning on the maximum number of sensors (128), we also investigated the effect of

subsampling the number of sensors on the ability to localize sources. We subsam-

pled the 128 sensor lead field to 64, 32, and 16 sensors. Some EEG researchers

use as few as 10 electrodes for a standard 10-20 montage or 16 sensors for clinical

EEG systems. As such, we wanted to test Champagne’s localization performance

when the number of sensors is greatly reduced. In order to decrease the number

of sensors, the EEG channels are grouped in 4 groups depending on their loca-

tion. For each of the subsampled lead fields, we individually subsample each

of the four subsections in order to preserve coverage. We tested the lead fields

at both 10dB and 0dB. We aggregated 50 simulations at each number of sensors

and sources and SNIR level. The sources in these simulations had an inter-dipole

correlation coefficient of 0.5.
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The results from this experiment are shown in Figure 3.18. The left column

shows the results at 10dB and the results at 0dB are shown in the right column.

The results obtained with the full 128-sensor lead field are shown in the top row,

and the number of sensors in the lead field decrease in the subsequent rows. At al-

most every SNIR level, number of sources and sensors, Champagne outperforms

the other algorithms. In the one source case, only MCE is able to localize that

source better than Champagne with 128 and 64 sensors at both 10dB and 0dB.

MCE’s performance after one source drops off quickly in these plots. In general,

Champagne’s performance is the same for 128 and 64 sensors, we do not see a

degradation in performance until 32 sensors. This is true for the other localiza-

tion algorithms as well. At 10dB and 32 sensors, Champagne is able to localize 8

sources and at 0dB and 32 sensors, Champagne is able to localize 3 sources. At

only 16 sensors, Champagne is able to localize up to 5 sources at 10dB and 3 at

0dB. Overall, MVAB performs better than MCE and SL/dSPM and while MCE

does well on one source, SL/dSPM and MCE perform similarly across all number

of sources.
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Figure 3.17 Simulations with a vector EEG leadfield with 257, 129, 81, 33, and 19
sensors at 0dB and 10dB.
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Figure 3.18 Results for EEG simulations with a scalar EEG lead field, AP is plotted
against number of dipoles (1 to 50). Also shown is the effect of downsampling the
number sensors on performance (shown in each row). The inter-dipole correlation
between clusters is 0.5. The results are averaged over 50 simulations at each data
point and the error bars show the standard error.
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3.5.13 Functional Connectivity

The brain integrates information across multiple brain regions during the

performance of a task. Traditionally in the literature, functional connectivity de-

scribes the correlations between brain areas and effective connectivity describes the

direction of information flow. (Here, for simplicity, we will only use the term

functional connectivity, even when direction is being assessed.) Functional con-

nectivity analyses with MEG depend largely on reliably estimating the voxel time

courses. Without good estimates of brain activity, functional connectivity analy-

ses cannot shed light on the interactions and transfer of information in the brain.

Methods of Assessing Functional Connectivity

There are two classes of functional connectivity metrics: bivariate and mul-

tivariate metrics. Bivariate methods are metrics that produce a scalar measure of

the interdependency between two time series. In the case of neuroimaging data,

these values are calculated between every voxel or electrode voltage time series

in a pair-wise fashion. These methods can either be symmetric (non-directional)

or they can be asymmetric, providing information about the directionality of the

interaction, i.e. region A drives activity in region B or vice verse. Multivariate

methods incorporate multiple areas (more than two) and multiple time points or

lags into the connectivity measures. They are both asymmetric measures and pro-

vide information about directionality. In general, multivariate metrics are more
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involved to compute, especially as the number of areas and lags increase, but they

give a more comprehensive picture of the brain interactions.

We have assessed two bivariate metrics, coherence and imaginary coherence and

one multivariate metric, multivariate autoregression (MVAR).

The coherence function, Sx,y, gives the correlation between two time series,

Sx(t) and Sy(t) as a function of frequency:

Fx,y(f) = F {Cx,y(t)} = Sx(f)S∗
y(f) (3.15)

Conventionally, the normalized cross spectrum is calculated, where Fxx(f) and

Fyy(f) are the auto-cross spectrums of x(t) and y(t) respectively:

Cxy(f) =
| Fx,y(f) |

| (Fxx(f) || Fyy(f) |) 1
2

(3.16)

There are volume conduction artifacts in MEG recordings; these artifacts arise

from sources blurring across neighboring sensors, as such spurious interactions

can be inferred from the sensor data. This blurring occurs at a zero-time lag as

the electromagnetic signals travel nearly at the speed of light. There are methods

that attempt to isolate the zero-time lag interactions form the non-zero time lag

interactions, one of which is imaginary coherence (IC). IC is defined as:
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IC = imag {Cx,y(f)} (3.17)

The MVAR model assumes that current values of a time series, S1(t), is de-

pendent on both previous values of itself, S1(t − k) and previous values of other

time series, S2(t− k), S3(t− k) up to Sn(t− k). In brain imaging this is described

as a particular brain area’s activity being dependent on previous activity in that

area and also dependent on previous activity in other regions. The MVAR model

is formalized in the following equation:



S1(t)

S2(t)

.

.

Sn(t)


=

K∑
k=1

Ak



S1(t− k)

S2(t− k)

.

.

Sn(t− k)


+ ε(t) (3.18)

where n is the number of nodes in the network, K is the number of delays in the

MVAR model, Ak is the mixing matrix at a given delay k, and ε(t) is the additive

noise in the model.
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Functional Connectivity

As previously stated, without reliable estimates of brain activity, functional

connectivity analyses cannot provide insights into the brain. In the following

experiments, we wanted to show that Champagne is a robust source localization

algorithm to use when networks of brain activity are expected through simulated

data. In the first experiment, we used damped sinusoid time series for the voxel

activity and Gaussian noise, instead of the real-brain noise described above. We

used a SNIR of 5dB and an intra-dipole correlation of 0.5. We simulated a network

of 7 nodes (or voxels), where there were two networks, one left and one right, and

two deep ”common source nodes”. The general network structure is depicted

in Figure 3.19. We first localized the sources using Champagne, MVAB, MCE,

and sLORETA and then assessed the connectivity from the estimated sources.

The inter-dipole correlations, αintra, are depicted in the diagram found in Figure

3.24(a) where the color of the lines between the sources denotes the strength of

correlation, with red being high and blue being weak (see colorbar in Figure 3.24).

The line type indicates whether the mixing was instantaneous (dashed) or non-

instantaneous (solid). The ”common source” nodes were added to simulate the

effect of instantaneous correlations on the metrics. The voxels in the left and right

networks were all instantaneously coupled with the common source voxels, but

the coupling was a different strength for each of the five nodes. We used the pair-

wise coherence measure to reconstruct the correlations (shown by the color of the
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lines) and pair-wise imaginary coherence to determine whether the correlations

are instantaneous or non-instantaneous (shown by dashed versus solid lines).

In a second experiment, we increased the coupling between the common-

sources and all the voxels relative to the strength of coupling within the networks

in order to test the robustness to the common-source interference. In addition to

applying the pair-wise metrics, we also tested the performance of the Multivari-

ate Autoregressive (MVAR) model on the 5 node network. Resolving the func-

tional connectivity is complicated by the correlations introduced by the common

sources, When we compute the mixing matrix, A, we did not include the common

sources; in real experiments we do not have access to the artifacts and sources of

noise that introduce instantaneous correlations in the data. In other words, we

simulated the data with all seven nodes, but then used only the five nodes of the

two networks of interest to perform the MVAR analysis. Champagne was the only

source localization algorithm tested for this analysis.

Figure 3.19 General connectivity schema for simulations: This figure shows the
general schema for the networks used in the functional connectivity experiments.
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Figure 3.20 show the source reconstruction results from Champagne (a), MCE

(b), MVAB (c), and sLORETA (d) respectively. The white and black circles mark

the true locations of the sources and the surface plot shows the maximum inten-

sity projection of the power of the source estimate at every voxel, illustrating the

inferred location of the sources. While MCE came close to uncovering all 5 nodes

of the two networks, Champagne was the only algorithm able to resolve the loca-

tion and time-courses of the two networks entirely. (Both common source nodes

were uncovered with Champagne, but one was below the threshold of the image

in Figure 3.20 (a).)

The functional connectivity results of the first experiment are depicted in Fig-

ure 3.24 and the second experiment are depicted in Figure 3.22. As described

above, in the first experiment we used the coherence measure to reconstruct the

correlations (shown by the color of the lines) and imaginary coherence to de-

termine which correlations are instantaneous or non-instantaneous (shown by

dashed versus solid lines). The similarity of the ground-truth (a) and Champagne

(b) plots demonstrates that these two quantities can be used in conjunction to un-

cover the strength and lags (instantaneous vs. non-instantaneous) of interactions

in a network of brain areas. The common sources are not shown to confound the

connectivity results with Champagne. MCE (c), MVAB (d) and sLORETA (not

shown) showed an over-estimation of the connectivity and fail to reconstruct the

ground-truth connectivity. We decided to proceed with the connectivity analysis
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with all the algorithms, regardless of success, because it is common practice to do

region-of-interest analyses.

In the second experiment, we increased the coupling of the common-sources

to investigate the resilience of the functional connectivity methods to strong com-

mon source component. We found that the pair-wise metrics were not able to

uncover the two networks (with any algorithm) due to this increased common-

source coupling (not shown). MVAR, on the other hand, is able to uncover the

networks of interest by providing accurate information on the direction of the

interactions (causality) and the time lag of these interactions, Figure 3.22.
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Figure 3.20 Source Localization: Source localization results for (a)Champagne, (b)
MCE, (c) MVAB, and (d) sLORETA. The white circles show the seeded location of
the sources and the surface plot shows the estimated location of the sources.
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Figure 3.21 Functional Connectivity: (a) Ground-truth functional connectivity be-
tween sources and ”common sources”. Reconstructed networks using (b) Cham-
pagne, (c) MCE and (d) MVAB. The color (see (e)) shows the strength of coupling
and the line type shows the lag of integration.(solid for instantaneous, dashed for
non-instantaneous).

The results from the second functional connectivity experiment prompted a

more extensive investigation of Champagne ability to resolve functional networks

of differing sizes, i.e. number of nodes. We simulated networks with 2, 3, and 5

nodes, shown in Figure 3.23. These networks each have a specific causal flow;

some nodes drive the activity in other nodes. The time courses were generated

by randomly seeding each node with a random, Gaussian time course, xi(t) and

then correlating the nodes though a mixing matrix (A) as defined in 3.5.13.
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Figure 3.22 Functional Connectivity: Plot of mixing matrix obtained from voxel
time-course reconstructions using Champagne, shown in (b). The reconstructed
connectivity found with Champagne is nearly identical to the true connectivity
shown in (a). This plot shows that voxel 1 cause voxels 2 and 3, and that voxels 4
causes voxels 5. The values here are normalized to the maximum.
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Connectivity Models

2 node network 3 node network 5 node network

Figure 3.23 Networks with 2, 3, or 5 nodes.

The mixing matrix, A reflects the structure shown in Figure 3.23. For exam-

ple, for a two node network, the following is an example of a mixing matrix used

to simulate the structure:

A =

 0.3 0.1

0.5 0.3


The diagonal of this matrix has the couplings between a particular node and itself,

whereas the off diagonal terms are the couplings between nodes. This A matrix

demonstrates that the second node (second row of A) is driven by the first node

(first row of A), but the first node is only weakly caused by the first.

For each number of nodes, we simulated a total of 50 runs by randomly seed-

ing the location of the nodes and perturbing the MVAR mixing matrix used to

generate the source time courses at SNIR levels of 10dB and 0dB. Since not all
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possible mixing matrices are stable, we chose a stable mixing matrix for each of

the three structures shown in 3.23 and then perturbed the values to test the robust-

ness of the MVAR model to uncover the structure of the network. After seeding

the voxel time courses, we project to the sensors and the reconstruct the voxel time

courses with Champagne. Once the voxel time courses are obtained, we use the

arfit package for MATLAB (http://www.gps.caltech.edu/ tapio/arfit) to obtain

an estimation of the mixing matrix, Ã.

In order to test the success of both the source localization and the estimation

of the network, we used three metrics. We used the A′ metric to test the localiza-

tion accuracy and the correlation coefficient R to assess the estimation of the time

courses. We added a third metric, the multidimensional correlation coefficient

between the true mixing matrix, A and the estimated mixing matrix, Ã. This is

similar to the time course correlation coefficient, R, but it measures the similarity

between two matrices as opposed to two vectors.

In Figure 3.24, we present the results from this experiment. The A′ and R

results, seen in Figure 3.24 (a) and (b) respectively, demonstrate the Champagne

is able to localize activity and reconstruct the time courses at both SNIR levels.

The A matrix correlation coefficient results show that even though the localization

and time course reconstruction are near perfect, the A matrices estimated from the

time courses are only reliable to 2 and 3 node networks at 0dB and even at 10dB,

the A matrices are not correctly estimated for the 5 node network (the correlation
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coefficient was less than 0.75).
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Figure 3.24 Results from simulations with 2, 3 and 5 nodes at 10dB (red) and
0dB (green). We show the A′ metric in (a) and R in (b) to show the localization
and time course reconstruction results. In (c), we show the mixing matrix corre-
lation coefficient, which demonstrates the ability to reconstruct the connectivity
of the network from the estimated time courses. The results are averaged over 50
simulations with standard error bars.
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3.6 Performance on Real Data

We used a number of real data sets to examine Champagne’s performance on

real MEG and EEG data. All MEG data was acquired in the Biomagnetic Imaging

Laboratory at UCSF with a 275-channel CTF Omega 2000 whole-head MEG sys-

tem from VSM MedTech (Coquitlam, BC, Canada) with a 1200 Hz sampling rate.

The lead field for each subject was calculated in NUTMEG (Dalal et al., 2004)

using a single-sphere head model (two-orientation lead field) and a 8mm voxel

grid. The data was digitally filtered from 1 to 160Hz to remove artifacts and the

DC offset was removed. The EEG data was downloaded from the SPM website

(http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and the lead field was calcu-

lated in SPM8 using the coarse resolution. Note that all MRI images are shown in

the neurological convention, i.e. right is on the right.

3.6.1 Auditory Evoked Field

We analyzed the neural responses of seven subjects to Auditory Evoked Field

(AEF) stimulus, which was elicited with single 600ms duration tones (1 kHz)

presented binaurally. The data was averaged across 120 trials (after the trials

were time-aligned to the stimulus). The pre-stimulus window was selected to

be -100ms to 5ms and the post-stimulus time window was selected to be 5ms

to 250ms, where 0ms is the onset of the tone. We applied Champagne, MVAB,

SL/dSPM, and MCE to these data sets to give a comparison for performance



SECTION 3.6. PERFORMANCE ON REAL DATA 99

across algorithms.

The results from analyzing the AEF data from seven subjects are shown in

Figure 3.25. In each subplot, we show the power at each voxel in a 50ms to 75ms

window around the M100 peak. Champagne is able to localize bilateral audi-

tory activity for all seven subjects (shown in the first column of Figure 3.25). The

activity is in Heschel’s gyrus, which is the location of primary auditory cortex.

SL/dSPM is able to localize bilateral auditory activity in five of the seven sub-

jects. In these five subjects, the activations are diffuse and in most cases biased to

one side. MVAB is only able to localize bilateral activity in one subject (Subject 5)

and in the other six cases it localizes the activity to the center of the head. MCE is

only able to localize the auditory activity on one side in most subjects. In Subjects

4 and 6, MCE is able to localize bilateral activity, but the activity is more lateral

than Heschel’s gyrus. The MCE algorithm favors voxels on the edge of the voxel

grid, and often does not accurately localize cortical areas.

3.6.2 Audio-Visual Task

We analyzed a data set designed to examine the integration of auditory and

visual information. We presented single 35ms duration tones (1 kHz) simultane-

ous with a visual stimulus. The visual stimulus consisted of a white cross at the

center of a black monitor screen. The data was averaged across 100 trials (after

the trials were time-aligned to the stimulus). The pre-stimulus window was se-
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Figure 3.25 Auditory evoked field (AEF) results for 7 subjects. The results from
using Champagne are shown in the right-most column and the results from using
the benchmark algorithms are shown the other three columns.
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lected to be -100ms to 5ms and the post-stimulus time window was selected to

be 5ms to 450ms, where 0ms is the onset of the simultaneous auditory and visual

stimulation.

Champagne’s results from the audio-visual task are presented in Figure 3.26.

In the first and second rows, we show the brain activations associated with the

auditory stimulus. Champagne is able to localize bilateral auditory activity in

Heschel’s gyrus in the window around the M100 peak, shown in Figure 3.26(a)

and (c). The time courses for the left and right auditory sources are shown in

Figure 3.26(b) and (d), along with the window used around the M100 peak. For

all the plots presented in the following sections, the crosshairs in the plot to the left

show the location of the voxel whose time course is plotted to the right. The two

auditory sources had the maximum power in the window around the M100 peak.

Second, we present the early visual response in Figure 3.26(e) and (f). Champagne

is able to localize a source in medial, occipital gyrus with a peak around 150ms.

We plot the power in the window around this peak in Figure 3.26(e) and the time

course of the source marked with the crosshairs in Figure 3.26(f). The voxels with

the maximum power in this window are still found in the auditory areas (seen

in Figure 3.26(a) and (c)) as the M100 peak bleeds into the time window used to

localize the visual activation (around 150ms). Using a later time window shown

in Figure 3.26(g) we can localize a later visual response with a time course (Figure

3.26(h)) that has power extending past 200ms.
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We also ran the benchmark algorithms on this data set. The results from

SL/dSPM in Figure 3.27, demonstrate that SL/dSPM was able to localize a source

in the left auditory cortex (3.27 (a)) and a visual activation (3.27 (e)). The peaks

for the auditory and visual sources, see Figure 3.27 (b) and (f), have peaks around

100ms and 150ms respectively. SL/dSPM also localizes a large source along the

midline in the precuneous (Figure 3.27 (c)), but this source has the same time

course at the auditory source, see Figure 3.27 (d). We can see that the localizations

provided by MVAB and SL/dSPM are diffuse and do not capture the auditory

and visual activity that Champagne is able to localize. The results from MCE are

presented in Figure 3.28; these results show that MCE is able to localize bilateral

auditory activations (Figure 3.28 (a), (c)) and some visual activity (Figure 3.28 (e)).

The time courses for the auditory and visual sources are shown in Figure 3.28 (b),

(d), and (f). These time courses look most similar to those estimated with Cham-

pagne and are able to provide a clear distinction between the auditory activity

at 100ms and the visual activity around 150ms. As seen in the AEF results, the

MCE algorithm favors voxels on the edge of the voxel grid and often, does not

accurately localize cortical areas, but the activations seem to be over reasonable

locations for activity given the task. The results from MVAB, in Figure 3.29, show

that MVAB can localize auditory activity Figure (3.29 (a) left) and a visual activa-

tion (Figure 3.29 (c)). The time courses, Figure 3.29 (b) and (d), for these sources

(shown by the crosshairs) do not contain useful information. When the power
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was taken around the M100 and around 150ms, the localization results were in

the same locations, but with less power.
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Figure 3.26 Champagne localizes a bilateral auditory response at 100ms after the
simultaneous presentation of tones and a visual stimulus. Champagne localized
bilateral auditory activity, (a) and (c), with time courses shown in (b) and (d).
Champagne localizes an early visual response at 150ms after the simultaneous
presentation of tones and a visual stimulus. The time course in (f) corresponds
to the location indicated by the crosshairs in the coronal sections (e). Champagne
localizes a later visual response later than 150ms after simultaneous presentation
of tones and a visual stimulus. The time course in (h) corresponds to the location
indicated by the crosshairs in the coronal sections (g).
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Figure 3.27 SL localizes a source in left auditory cortex (a) and a source in visual
cortex (e). SL also localizes a source in the center of head that does not have
functional significance (c). The time courses in (b), (d), and (f) correspond to the
crosshair locations in (a), (c). and (e), respectively.



SECTION 3.6. PERFORMANCE ON REAL DATA 106

100 200 300 400
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

(a) (b)

100 200 300 400
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

(c) (d)

100 200 300 400
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

(e) (f)

Figure 3.28 MCE localizes bilateral activity over auditory cortex (a) and a source
over visual cortex (b,c). MCE favors the voxels on the edge of the voxel grid
and does not successfully localize cortical areas, but does show activity above
functionally significant areas.
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Figure 3.29 MVAB localizes auditory activity on the left (a) and one source in a vi-
sual area (c) for the audio-visual data. The time courses in (b) and (d) correspond
to the crosshair locations in (a) and (c), respectively.

3.6.3 Face-Processing Task

MEG

We analyzed a MEG data set from a subject in which faces and scrambled

faces were presented in a random order with an interstimulus interval of 1 sec-

ond. We applied Champagne to this dataset. For the face stimulus, the pre-

stimulus window was selected to be -200ms to 5ms and the post-stimulus time

window was selected to be from 5ms to 450ms, where 0ms is the appearance of

the visual stimulus. In addition to running Champagne on the face processing

data, we also constructed a contrast dataset to localize the brain areas more active

when the faces were presented than when scrambled faces were presented. The

pre-stimulus period of this data set consisted of the trial-averaged post-stimulus
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period (5ms to 450ms) of the scrambled-face data and the post-stimulus period

consisted of the trial-averaged post-stimulus period (5ms to 450ms) of the face

data.

The face processing results are shown in Figures 3.30 and 3.32. First we ex-

amine the brain areas involved in the processing of the faces. Figure 3.30(a) shows

an early visual response to the presentation of the face visual stimulus in medial

occipital activation with time course in Figure 3.30(b). Figure 3.30(c) shows a later

visual response more lateral to the early response in occipital cortex with the time

course in Figure 3.30(d). In Figure 3.30 (e) and (g) we show a bilateral activation

in the fusiform gyrus with time courses shown in 3.30 (f) and (h) that show peaks

around 170ms. In the contrast condition, results in Figure 3.32, we can see a bi-

lateral activation in the fusiform gyrus Figure 3.32 (a) and (c) with a peak around

170ms (time courses shown in Figure(b) and (d)). The activations in the fusiform

gyrus are the maximum in the window shown in Figure(b) and (d), around 170ms.

The results concur with those from the literature (Kanwisher et al., 1997). An area

in fusiform gyrus (on the ventral surface of the occipital lobe), called fusiform face

area (FFA), has been shown to be an area preferentially activated by the presenta-

tion of faces versus other visual stimuli, such as scrambled faces. In Figure 3.31

the ventral surface of the brain is shown; Champagne is able to localize sources

on the ventral surface with peaks around 170ms.

The benchmark algorithms were also applied to the face processing data set.
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The results from MVAB are shown in Figure 3.33. MVAB fails to localize any

activity of interest, rather it localizes one source close to the center of the head

Figure 3.33(a) and does not estimate a meaningful time course for this activity

(Figure 3.33 (b)). SL/dSPM is more successful on this data set, results shown in

Figure 3.34. A visual source is localized (Figure 3.34 (a)), in addition to bilateral

sources near to fusiform gyrus Figure 3.34 (c) and (e). The time course for the

visual source (Figure 3.34 (b)) shows a peak at 100ms. The time courses for the

sources in fusiform gyrus (Figure 3.34 (d),(f)) show peaks at 170ms, but the source

on the left has a larger peak at 100ms. These time courses do not help to separate

activity in the visual sources and fusiform gyrus as clearly as the time courses

obtained from Champagne. SL/dSPM also localizes activity near the center of

the head, which is not functionally relevant, as seen in Figure 3.34 (c) and (e).

MCE is able to localize a visual source (Figure 3.35 (a)) with a time course (Figure

3.35 (b)) that has a peak around 100ms. It is also able to localize bilateral sources

near fusiform gyrus, as seen in Figure 3.35 (c) and (e). The time courses for these

sources, shown in Figure 3.35 (d) and (f), have peaks around 170ms, but the left

fusiform source does not have its maximum at 170ms. Since these benchmark

algorithms do not account for the pre-stimulus period in their generative models,

we did not run the face versus scrambled contrast.
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Figure 3.30 Champagne localizes an early visual response 100ms after the presen-
tation of a face stimulus, shown in (a). The time course for this source is shown
in (b) and corresponds to the location indicated by the crosshairs in the coronal
section (a). Champagne localizes a later visual response around 200ms after the
presentation of a face stimulus, seen in (c), with the time course shown in (d).
Champagne localizes a bilateral activation in fusiform gyrus that is thought to be
in FFA, shown in (e) and (g). The peak for these sources is around 170ms after the
presentation of a face stimulus, time courses shown in (f) and (h).
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Figure 3.31 A view of the ventral surface of the brain. Champagne localizes many
sources on the ventral surface of the occipital and temporal lobes with peaks
around 170ms.
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Figure 3.32 Champagne localizes a bilateral activation in fusiform face area (FFA)
with the face versus scrambled data set, seen in (a) and (b). The peak is around
170ms after the presentation of a face stimulus, as seen in the time courses for
these sources in (b) and (d).
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Figure 3.33 MVAB localizes only one source near the center of the head, localiza-
tion seen (a) and time course seen in (b).
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Figure 3.34 SL is able to localize one source in a lateral visual area in middle
occipital cortex (a), with the time course shown in (b). It is also able to localize
bilateral activation in (or near) the fusiform gyrus (c,e), with time courses in (d,f).
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Figure 3.35 MCE is able to localize a visual source (a) and bilateral activity in the
fusiform gyrus, (c) and (e). The time courses for these sources are shown in (b),
(d) and (f).
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EEG

The EEG data were downloaded from the SPM website

(http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/), which were acquired

on a 128-channel ActiveTwo system at 2048 Hz. The paradigm involves ran-

domized presentation of at least 86 faces and 86 scrambled faces, although we

did not use the scrambled face data. We averaged the time-aligned the trials to

the presentation of the face and created an averaged data set. The pre-stimulus

window was selected to be -200ms to 5ms and the post-stimulus time window

was selected to be 5ms to 250ms. For this real data set we found that using the

three-component (vector) lead field in SPM was more robust than the orientation

constrained lead field. The lead field was cortically constrained and we selected

the coarse tessellation for our grid resolution, which resulted in approximately

5000 voxels.

The results from using Champagne on this EEG data set are shown in Figure

3.36. The time courses for the peak voxels are plotted; the arrows point from

a particular voxel to its time course. In Figure 3.36(a), we see that Champagne

is able to localize early visual areas that have a peak around 100ms. In Figure

3.36(b), the ventral surface of the brain is shown. There are a few activations in

and around fusiform gyrus. These activations are larger in extent and have peaks

around 170ms corresponding to the N170 seen in the sensor data. These results

are consistent with those obtained in (Henson et al., 2010) using the same EEG
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data set.

The benchmark algorithms were applied to the EEG data set as well. The

results are shown in Figure 3.37. The time courses for the peak voxels are plot-

ted; the arrows point from a particular voxel to its time course. MVAB (Figure

3.37 (a),(b)) and SL/dSPM (Figure 3.37 (c),(d)) are able to localize sources at the

occipital pole, an early visual processing area. They are not able to localize dis-

tinct sources on the ventral surface, as was Champagne. They also find sources in

other areas of the brain that are not functionally relevant. MCE is able to localize a

visual source and a source on the left ventral surface of the occipital lobe, seen in

Figure 3.37 (e) and (f). With the exception of these two sources, all the remaining

voxels are pruned to zero with MCE.

3.6.4 Localizing Spiking Activity in an Epileptic Patient

We used the resting-state MEG data from a patient with recurrent seizures to

assess Champagne’s ability to localize spiking, epileptic activity. This patient had

previously underwent surgery to resect a large portion of her frontal lobe, but she

still had seizures after recovering from the surgery. It was unclear whether the

seizures were originating from the region around the lesion (perilesional) or from

another part of the brain. We performed source localization on a single spike with

Champagne and the benchmark algorithms to assess the source of her spiking

activity. We used -200ms to -5ms for the pre-stimulus period and 0ms to 200ms
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Figure 3.36 EEG Face Processing Data: (a) Shows two early visual responses in
occipital cortex with the time courses. (b) Shows four ventral activations in (or
near) fusiform face area (FFA) with time courses showing peaks around 170ms.
(Ventral side of brain shown in (b), with right on the right.)
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Figure 3.37 EEG Face Processing Data: Benchmark algorithms: BF, SL/dSPM,
and MCE were applied to the data. BF, (a,b) is able to localize visual areas in the
occipital pole. SL/dSPM, (c,d) is also able to localize occipital (visual) sources,
particularly on the occipital pole. MCE, (e,f) is able to localize two sources, one in
left occipital cortex and one on the ventral surface of the brain. (The occipital lobe
is shown in (a), (c), and (e) and the ventral surface of brain shown in (b), (d), and
(f) with right hemisphere on the right.

for the post-stimulus period, the spike occurred just after the 0ms point.

The results from running Champagne on the single spike are found in Figure

3.38. Champagne was able to localize the epileptic activity to a region around

the lesion from the previous surgery. The MEG data was collected prior to a sec-
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ond surgery and we learned that removing perilesional brain matter in a second

surgery has relieved the patient’s symptoms. This anecdotal post-operative infor-

mation indicates that Champagne is effective in localizing spiking activity with

the data from one spike. The results from running MCE are presented in Figure

3.39. MCE localizes a similar region on the border of the lesion. The results from

MVAB and SL are shown in Figure 3.40 and 3.41, respectively. The maximum

voxel for MVAB is in the center of the head, Figure 3.40(a), but it is able to localize

a weak perilesional peak, Figure 3.40(b). SL shows a maximum peak in the most

anterior part of the frontal cortex, Figure 3.41(a), but is able to localize weaker,

perilesional activity, Figure 3.41(b).

Figure 3.38 Localization results for Champagne on a single spike in a epileptic
patient who had seizures even after a area of her frontal cortex was removed.
Champagne is able to localize the spike to a region around the lesion, which is
confirmed to be the source of the epileptic activity as reported by surgeons who
performed a second surgery on this patient. The location of the crosshairs indi-
cates the maximum voxel in the VOI.
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Figure 3.39 Localization results for MCE on a single spike in a epileptic patient.
MCE is able to localize the spiking activity to a region on the border of the lesion.

(a) (b)

Figure 3.40 Localization results for MVAB on a single spike in a epileptic patient.
MVAB localizes the maximum for the spike to the center of the head (a), but also
finds a peak perilesional (b).

(a) (b)

Figure 3.41 Localization results for SL on a single spike in a epileptic patient.
SL localizes the maximum for the spike to the an anterior region of the frontal
cortex(a), but also finds a peak perilesional (b).
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3.6.5 Somatosensory Evoked Field

We used two somatosensory evoked field (SEF) data. This paradigm should

elicit an activation in the contralateral (left) somatosensory cortex when the right

index finger (RD2) is stimulated. The stimulation is administered by air puffs with

a pseudorandom interstimulus interval of 450 to 500ms. The data was averaged

over 252 trials and the pre-stimulus period was selected to be -90ms to -5ms and

the post-stimulus period was selected to be 5ms to 250ms.

SEF data is typically one of the easiest on which to perform source localiza-

tion. The results from applying Champagne to this data set can be seen in Figure

4.2.2. Champagne is not able to localize the contralateral somatosensory cortex in

this subject, despite the simplicity of the data; the other source localization algo-

rithms are able to localize the contralateral somatosensory cortex. In order to fully

explore why Champagne was unsuccessful on this data set, we expanded on this

investigation by using unaveraged data from both the stimulation of RD2 and of

the upper right lip. We concatenated the pre- and post-stimulus periods of each

trial to form one long epoch for both the pre-stimulus and post-stimulus periods.

For the pre-stimulus period, we took the window of data between -100 to -5ms

from each trial and for the post-stimulus period, we took the window between

5ms to 200ms, where 0ms is the onset of the stimulus. We used both the full num-

ber of trials (252) and only the first five trials for the two data sets to examine the

effect of drastically reducing the amount of data (and the signal-to-noise ratio) on
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somatosensory localization.
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Figure 3.42 Localization results for Champagne, MVAB, SL/dSPM, and MCE for
the SEF data. All the algorithms yield good localization and time course recovery
except Champagne. Champagne mis-localize the activity to the ipsilateral hemi-
sphere, as opposed to the contralateral hemisphere, as the other algorithms show.

The results from the unaveraged data experiment with SEF experiments are

shown in Figure 3.43. For each plot, the power at each voxel was computed and

the power map was projected to the surface of a MNI template brain. We present
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the results from 5 and 252 trials for both stimulation of RD2 and the upper right

lip. The first and second rows show the results from stimulating RD2 using 252

trials and 5 trials, respectively, and the third and fourth rows show the results

from stimulating the upper right lip using 252 trials and 5 trials, respectively. (We

projected to the surface of a MNI template brain to show the location along the

somatosensory strip.) Stimulation of RD2 elicits a left-lateralized activation in

the left (contralateral) somatosensory cortex. Champagne is able to localize this

source using both 252 trials and 5 trials. Stimulation of the right upper lip elicits a

bilateral response in somatosensory cortex for both 252 and 5 trials. These results

correspond to a vast literature on somatosensory localization.
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Figure 3.43 Somatosensory processing for stimulation of the right index finger
(RD2) shown in (a) and the right upper lip shown in (b) as localized by Cham-
pagne. Results from using all the trials of data (252 trials) shown in upper rows
of (a) and (b) and results from using 5 trials shown in lower rows of (a) and (b).
The data was not trial-averaged for this data set.
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3.7 Discussion

In this chapter, we present the results from a rigorous battery of performance

tests of Champagne, our novel source-localization algorithm. For the most part,

we have compared Champagne’s performance to commonly-used source local-

ization algorithms (MVAB, SL/dSPM, and MCE). The tests use simulated and

real data; the simulated data explores performance with difficult source config-

urations and the real data demonstrates Champagne’s ability localize real brain

activity in the face of source correlations and real noise, interference, and signal-

to-noise ratios.

The experiments with simulated data exemplify that Champagne provides

robust localization and time course estimation with complex source configura-

tions and noisy, correlated sensor data. At high SNIR (10dB), Champagne almost

perfectly resolves two distinct, correlated sources even when there is only one

voxel’s width between the sources. The other algorithms need at least 32mm

(or 3 voxels’ width) between the sources in order to accurately distinguish two

sources. Champagne is able to distinguish two neighboring, correlated sources,

which could have real implications when analyzing real MEG data with brain ar-

eas activated in close proximity to one another. This is true of speech motor data

as auditory sources are close to the mouth motor area. Auditory/tactile experi-

ments also activate regions in close proximity; sources in auditory cortex and sec-

ondary somatosensory cortex are on either side of the lateral sulcus. In addition,
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visual areas, such as V1/V2/V3/V4 are close to one another and are typically

hard to resolve.

At the SNIR level, 10dB, we found that Champagne is able to localize 10

sources when using a vector (two orientation) lead field when the intra-dipole

correlation (αintra) was 0.25 and more than 30 dipoles when using a scalar lead

field. These numbers are well above the number of sources that the benchmark

algorithms are able to localize. At 20dB and a vector lead field, Champagne is able

to localize up to 15 sources, and is able to perfectly localize 10 sources. The type of

source time course and inter-dipole correlation has a large effect on the number of

sources Champagne can localize with simulations of over 10 dipoles. The majority

of our simulations were done with αinter = 0.5 and damped sinusoidal sources,

which is the most difficult configuration of correlations and source time courses

to localize.

We did an additional experiment to investigate the effect of αintra and in gen-

eral, the localization results improved with increasing correlation between the

dipole components. In this experiment, we also compared using a scalar lead

field versus a vector lead field for localizing sources with a fixed orientation. We

found a divergence in the performance at 20 sources; the scalar lead field is able

to recover 20 sources more reliably than the vector lead field (see Figure ). This

discrepancy can be explained by the fact that when using a scalar inverse model

with Champagne, only one hyperparameter is learned per voxel (Γr). When us-
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ing a two-component lead field with Champagne, it learns three hyperparameters

per voxel. (Remember that for a two-component lead field, each block of Γ is a

symmetric matrix (size 2x2) and for a scalar lead field, Γ is a diagonal matrix.)

It should also be noted that if the dipolar sources are jiggling and a scalar lead

field is used for the inverse problem, the localization results are quite poor. From

these results, we can conclude that using a scalar lead field for source localization

is favorable with Champagne if your sources have a fixed orientation, but if your

sources have variation in their orientation, it is better to use a vector lead field

to allow for flexible orientation. For most of the simulations using a vector lead

field, we have imposed an intra-dipole correlation of 0.25 on the dipole compo-

nents. This weak correlation between the lead field components makes the source

localization problem more difficult and our results show good performance on

difficult simulated data.

These results with MEG data do not necessarily imply that EEG recordings

would be as successful. Due to the blurring of the electric fields, resolving two

sources with EEG data is more difficult. Likewise, due to the smearing of the

electrical field, source localization with EEG data might be more sensitive to errors

in the leadfield than the MEG simulations we have shown in this chapter.

The results for localizing 20 sources with a fixed orientation could lead one

to believe that there is a benefit to using a orientation-constrained or a scalar lead

field for solving the inverse problem. To investigate this question, we wanted to
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looked at how the performance with the scalar lead field was affected by errors in

the orientation. When using the vector lead field, there is not an imposed orien-

tation for the sources, rather the algorithm essentially learns the orientation from

the data. For the scalar lead field, an orientation is assumed, so using the same

lead field for the forward and inverse step corresponds to being able to perfectly

calculate the orientation of every source. We know that this would be near im-

possible, so in order to better interpret the results with the scalar lead field, it was

important to test the effect of errors in the orientations. We perturbed the orien-

tation of the lead field that was used to solve the inverse problem by different

angles (maximum perturbations ranged from π
64

to π
4
). We found that even small

errors in orientation decreased performance with the scalar lead field, leading to

the conclusion that the results for 20 sources we obtained with the scalar lead field

are very much dependent on perfectly modeling the orientation of the sources.

We conducted an additional experiment to assess modeling errors in the lead

field that entailed a shift of the voxel grid. A diagonal shift close to the maximum

shift did not significantly affect the localization results. This finding supports

the other evidence that Champagne is robust to errors in the lead field modeling.

This experiment and the orientation-error experiment were designed to address

a confound of using simulated data. When simulating data one must use a for-

ward model to create the data, but it is often argued that using that same forward

model to solve the inverse problem does not accurately replicate actual source
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localization performance. (It is highly unlikely that we could calculate perfectly

the lead field.) This confound is often called ”the inverse crime.” We have tried to

address this confound by testing Champagne in less than ideal circumstances.

Our experiments on deep source and clusters also demonstrate that Cham-

pagne improves upon existing methods of source localization when there are

deep sources and distributed activity. Deep sources are notoriously hard to lo-

calize since they are far away from the MEG/EEG sensors, and have low SNIR.

In our experiments, we can control the SNIR, so with the all deep sources con-

dition, the reduced SNIR is not the driving factor for localization performance.

Another mitigating factor in localizing deep sources is that the contribution to the

sensors is fairly uniform, as deep sources are approximately equidistant from all

the sensors, whereas sources in the cortex (shallow sources) have a more unique

contribution to the sensors (they are close to some sensors and far from others).

Champagne is able to provide better localization of deep sources both when there

is a mix of deep and shallow sources and only deep sources. Champagne pro-

duces the largest improvement when localizing only deep sources at both noise

levels as compared to the other algorithms. The contribution of shallow sources

is much greater to the sensors than that of deeper sources.

The localization results for all algorithms improve with the cluster simula-

tions as compared to the single source simulations. In some ways, the clusters are

easier to localize because there is more signal in a particular location as opposed
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to when the sources are spread around. But, localizing the clusters is not the only

aspect of performance that we investigated, we are also concerned with how well

the extent of the cluster is reconstructed. Localizing the individual clusters and

capturing the cluster extent is done most accurately by Champagne at both SNIR

levels. MVAB does nearly as well as Champagne; the localization of the clusters is

most likely aided by the increase in the signal at the cluster locations (as described

above) and accurately modeling the extent of the sources is likely aided by the in-

herent blur in beamformer solution. MCE does well at localization, but does not

accurately model the extent, due to its sparsity profile. Thus, it is notable that

Champagne is able to both get the location and the extent of the clusters despite

its sparsity profile. Champagne is sparse, but not so sparse that it cannot model a

total of 50 to 150 active voxels at one time. (We also tried clusters of smaller and

larger extent, for which the results were similar.)

This paper is the first evaluation of Champagne’s performance on EEG data.

Using a scalar lead field, we found that Champagne performed similarly on the

EEG data with 128 sensors to the MEG results with 275 sensors. The results were

not drastically affected by reducing the number of sensors by half, i.e. going

down to only 64 sensors. Performance is still decent at 32 and 16 sensors as com-

pared to the benchmark algorithms, leading to the conclusion that Champagne

is an effective source localization algorithm for use with only 16 to 32 sensors of

EEG data when a sufficiently small number of sources are expected. Using a vec-
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tor lead field for EEG source reconstruction proved to be more challenging. The

maximum number of sources at any number of sensor or SNIR that Champagne

was able to localize was 3. However, as compared to the other source localization

algorithms, Champagne does provide an improvement for EEG source localiza-

tion.

The sparse solution to the inverse problem obtained from Champagne is well

suited for functional connectivity analyses as the number of active voxels is sig-

nificantly smaller than with other techniques commonly used, such as MVAB and

sLORETA. We found that Champagne is better able to localize and reconstruct the

time courses with highly correlated brain activity as compared to the benchmark

algorithms. Champagne is able to reconstruct the brain connectivity, even in the

presence of common source coupling. We have demonstrated that in certain situ-

ations, MVAR outperforms coherence and IC in uncovering interactions and lags

in a network of brain areas in simulation. Although the time courses were ac-

curately reconstructed in many case with Champagne, the mixing matrices from

the MVAR model were not reconstructed with a similar fidelity. Uncovering the

networks of brain areas involved in a task is a difficult problem, one that boils

down to more than accurately reconstructing the voxel time courses. But, it can

be concluded that without accurate time courses, it would be impossible to un-

cover networks, so our results with Champagne demonstrate that it is an effective

source localization technique to use for functional connectivity analyses.
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Using simulated data to assess a source localization algorithm’s performance

is necessary as one must know the true locations and time courses of the sources

in order to definitively recognize a successful localization. But, while simulated

data can be generated in a realistic fashion, it is still artificial data. Also, the way

in which data is simulated can be biased towards a particular algorithm. The

experiments in this paper use simulated data that has been generated in a manner

that best replicates key aspects of real MEG data. We have also tried to generate

data that does not favor Champagne by making the following choices. We have

chosen realistic signal-to-noise ratios and number of time points to best model

true experimental data. We use real brain noise instead of Gaussian noise; the

noise models in both SEFA and Champagne assume Gaussian distributions. The

source time courses are damped sinusoids, while the Champagne model assumes

Gaussian time courses. Also, the inter- and intra-dipole correlations make the

source localization problem more difficult, but more closely model the complexity

of brain activity. We found that Champagne is able to localize on the order of 80

sources when the source time courses are Gaussian, the SNIR level is 100dB, and

the inter-dipoles correlation is zero. In general, we have found that αinter, αintra,

SNIR and the type of source time course has an effect on the localization results

at higher number of sources, i.e. over 10 sources.

The experiments with real data highlight Champagne’s source localization

abilities. It is harder to evaluate localization accuracy with real data since the
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ground truth is not known. For this reason, we have chosen real data sets that

have well-established patterns of brain activity; the SEF, AEF, audio-visual, and

face-processing data. We are able to localize SEF activations with only 5 trials,

which has implications for shortening data collection time. SEF is often added to

an experiment as a functional localizer. If the amount of trial collected could be

cut down to 5-10 as opposed to 252 that would have a impact on the time subjects

are in the MEG machine.

For each of the seven AEF data sets presented, Champagne is able to localize

bilateral auditory activity in the physiologically accepted region. The other source

localization algorithms are not able to provide equally focal, bilateral activations.

Historically, AEF is a difficult data set to obtain accurate activations due to the

highly correlated sources. Variants of beamforming have been developed in or-

der to handle the correlated sources, such as coherent suppression beamformers

and dual-core beamformers (Diwakar et al., 2010; Dalal et al., 2006). Champagne

is able to localize correlated activity without any modifications and it provides

a robust solution to this long-standing deficit in source localization. The results

from the more complicated data sets, the face processing and the audio-visual

task, demonstrate that Champagne is able to localize many distinct, functionally-

relevant brain activations. The benchmark algorithms are able to localize some of

the sources that Champagne uncovers, but they cannot localize every source nor

do they provide focal peaks, as is the case with MVAB and SL/dSPM. A major
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point of divergence between Champagne and the benchmark algorithms is the

estimation of the time courses. In general, Champagne is able to produce time

courses that tease apart brain areas, while the other algorithms tend to have very

similar time courses at all locations in the brain. The results from the EEG data set

shows that Champagne is an effective source localization method for EEG data,

localizing activity in both visual areas and in the fusiform gyrus. The bench-

mark algorithms have better success at localizing the visual activity than the face-

specific activations in fusiform gyrus with the EEG data set. Champagne’s ability

to localize epileptic activity from one spike demonstrates that it could be an effec-

tive algorithm to use pre-operatively to determine the focus of seizures.
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Chapter 4

Sensitivity to the Estimation of the

Background Noise for the

Champagne Algorithm

4.1 Overview

The Champagne algorithm improves upon the localization capabilities of

benchmark algorithms due to a few, key features, as demonstrated in Chapter

Three of this thesis. First, it is robust to correlated sources and yields a sparse

solution. Second, it integrates noise suppression in the source localization pro-

cess. In the version of Champagne derived in Chapter Two and applied to real

and simulated data in Chapter Three, the pre-stimulus period is used to learn the
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background activity. The background activity is thought to consist of independent

sensor noise (electronic noise), external sources of noise, such as power lines and

physiological noise, and non-stimulus evoked brain activity. Champagne learns

the statistics of this baseline activity and then suppresses that activity in the post-

stimulus period. An underlying assumption of the Champagne algorithm is that

the stimulus-evoked activity, in the post-stimulus period, is added on top of the

background activity in the pre-stimulus period.

An alternative to suppressing the noise in an integrated fashion is split to

the localization into two steps. First, the stimulus-evoked factor analysis (SEFA),

discussed in Chapter One, can be applied to the pre- and post-stimulus period

to “clean” the post-stimulus period. Then second, the learning procedure used

in Champagne can be used on the cleaned post-stimulus data. We discuss this

variant of the Champagne algorithm and demonstrate its performance on real

and simulated data in this chapter.

Both the Champagne algorithm formulated in Chapter Two and the variant

described above assume that the activity in the post-stimulus period is added on

top of background activity in the pre-stimulus period. If this assumption does

not hold, then the subtraction of the pre-stimulus activity from the post-stimulus

period could have disastrous effects on localizing the activity in the post-stimulus

period. Non-stationarity in the noise between the pre- and post-stimulus periods

would result in a situation where the additive assumption breaks down. Non-
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stationarity could arise from a visual or auditory prompt for a paradigm, or from

artifacts from movement or eye blinks that are stimulus locked. The later is partic-

ularly relevant for tasks that require an verbal response; it is traditionally difficult

to obtain clean pre-stimulus data in this case. If there is non-stationarity in the

noise between the pre- and post-stimulus period, another method for estimating

the noise covariance, without using the pre-stimulus data, would enable Cham-

pagne’s use on these data sets.

In addition to data sets with non-stationarity in the background noise, esti-

mating the post-stimulus activity without using the pre-stimulus period is rele-

vant for data where there was not a pre-stimulus period collected. To save time

in the MEG machine, some data sets do not collect enough samples before the

prompt to accurately estimate the background activity. Another advantage of lo-

calizing activity without using the pre-stimulus data would be Champagne’s ap-

plication to time-frequency analysis. Typically, a ratio of the power, in a particular

frequency band, between an active and control period is used as an indication of

neuronal activity. Using the pre-stimulus period to estimate the noise in the post-

stimulus period can only detect positive chances in power (a result of the additive

assumption). If we can run Champagne on the pre- and post-stimulus periods to

localize activity in both periods, we can calculate the increases and decreases in

spectral power.

It is unclear that Champagne is able to localize activity without using the pre-
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stimulus period for the noise estimation, so before we can apply Champagne to

data analysis techniques like time-frequency analysis, we must establish that it

works without access to a pre-stimulus baseline. We have developed three vari-

ants of Champagne that use the same learning procedure for the source locations

with the post-stimulus data, but differ in the way that the noise covariance is es-

timated (without access to the pre-stimulus data). These variants are described

below and are applied to simulated and real data sets in order to demonstrate

their effectiveness.

4.2 Denoising the Post-Stimulus Data

As discussed in Chapter Two, the noise covariance is estimated by running

SEFA on the pre- and post-stimulus data. SEFA partitions the sensor data covari-

ance into three components:

Cb ≈ Λ + AAT + DDT , (4.1)

where AAT is learned from the pre-stimulus data and Λ + DDT are learned

from the post-stimulus period data. We then set the noise covariance to be

Σε → Λ+AAT . In the version of Champagne derived in Chapter Two, we discard

the DDT . (The computation of D in the post-stimulus period is done to estimate

a more accurate Λ to account for nonstationarity in the noise.) Alternatively, we
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can use the D to clean the post-stimulus sensor data. We then replace, Cb, the em-

pirical post-stimulus sensor covariance, with C̃b → DDT and estimate the source

time courses from this “cleaned” sensor covariance. One advantage of localizing

with the cleaned covariance is that the source time course (sr(t)) are more smooth

than those obtained with the full data covariance.

When we use this cleaned sensor covariance, however, we cannot use our es-

timate for the noise, Λ+AAT , because we have already removed this activity from

the post-stimulus sensor covariance. As such, we need a new way to estimate the

noise covariance, Σε. We have found that setting the noise to be, Σε → σI , where

σ is a scalar that is empirically selected, is effective. We refer to this method as

Cleaned Data. The estimate for the noise covariance, i.e. setting σ, is a crucial step.

If σ is set too high or low, it will interfere with the source localization accuracy.

If we consider the source time course estimate for Champagne, with some

modifications, we can see the relation between the value of sigma and the SNR.

The source time course estimate for Champagne:

S̄(t) = LT Σε(L
T ΣεL + Γ)−1Bpost(t) (4.2)

We can replace Γ and Σε with:

Γ = µI
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Σε = ωI

where µ and ω are constants.

When plugged into the source time course equation and the constants, µ and

ω, rearranged, we obtain the following equation:

S̄(t) ∝ LT (LT ω

µ
IL + I)−1Bpost(t)

The fraction, ω
µ

, scales with the inverse of the SNIR. As such, σ ∝ ω
µ

, gives

a more principled way to select σ. The σ regularizes the inverse in Equation 4.2

and other source localization algorithms, such as MNE, also use the inverse of the

SNIR to set the regularization (Lin et al., 2006b).

If the SNIR is not known, it can be estimated by the eigenspectrum of the

sensor covariance. We plot the eigenspectrum of the sensor covariance for the

10, 0 , -2, and -10dB simulated data sets (the full data) in Figure 4.1. The ratio of

the average of the eigenvalues that explain the top 95% of the variance and the

average of the bottom 5% gives an estimate for the SNIR.

4.2.1 Simulated Data

We generated simulated data as described in , using sinusoidal time courses

and the real brain noise. We seeded three sources in the brain and they had an
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Figure 4.1 Eigenspectrum of simulated data at 10, 0, -2, and -10dB. These plots
demonstrate that the SNIR of the data can be estimated from the eigenspectrum.
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intra-dipole correlation of 0.75 and an inter-dipole correlation of 0.5. We used

SNIR levels of 10, 0, -2, and -10dB. We ran the version of Champagne derived in

Chapter Two and used in Chapter Three, which we refer to as Full Data, and the

Cleaned Data version. For the Cleaned Data, we used σ = 1 for the 10 and 0dB

data sets, but for -2 and -10dB we used σ = 10 and σ = 100, respectively. The

comparison of the results for these two versions of the Champagne algorithm is

found in Figure 4.2. The Full Data and Cleaned Data perform similarly for all the

noise levels, and for 10, 0, and -2dB the activity all three sources are accurately

localized, but for -10dB only the source on the left is localized.
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Figure 4.2 The Full Data and Cleaned Data versions of Champagne perform sim-
ilarly for all the noise levels, and for 10, 0, and -2dB the activity all three sources
are accurately localized, but for -10dB only the source on the left is localized.
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4.2.2 Real Data

We have applied this method to the SEF, AV, and AEF data sets. The re-

sults are presented below in Figures 4.3, 4.4, and 4.5. In general, the Cleaned Data

method provides similar source localization results to running Champagne on

the full data covariance. One point of divergence is that the time courses are more

smooth. The most substantial improvement is seen with the SEF data set. These

data prove challenging for Champagne when the full data covariance is used (for

trial-averaged data), see Figure in Chapter Three. The localization with this data

set is greatly improved with running Champagne on the cleaned data covariance.

This method while effective in localizing the SEF activation, does not estimate

the noise covariance, Σε, in a principled fashion and its effectiveness is somewhat

sensitive to the choice of σ. For the SEF and AEF data we used σ = 1, but the AV

data necessitated setting σ = 0.01.
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Figure 4.3 Champagne’s results on the cleaned signal covariance for the SEF data.
Champagne is able to accurately localize the contralateral somatosensory cortex
when using the denoised signal.



SECTION 4.2. DENOISING THE POST-STIMULUS DATA 143

Cleaned Data

40 60 80 100 120 140 160 180 200
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

40 60 80 100 120 140 160 180 200
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

50 100 150 200 250
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

Figure 4.4 Champagne’s results on the cleaned signal covariance for the AV data.
Champagne is able to accurately localize auditory and visual activity when using
the denoised signal.
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Figure 4.5 Champagne’s results on the cleaned signal covariance for the AEF
data. Champagne is able to accurately localize bilateral auditory activity when
using the denoised signal.
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4.3 Estimating the Noise Covariance without Pre-

Stimulus Data

We have also developed methods to run Champagne on data sets without us-

ing the pre-stimulus period to estimate the noise covariance (or to clean the post-

stimulus data). There are different options for estimating the noise covariance

without pre-stimulus data; we describe three methods below and apply them to

simulated and real data to test their efficacy.

First, we can use the same estimate for the noise covariance as in the pre-

vious section, Σε → σI , where σ is a scalar that is empirically selected. We use

the full sensor covariance, however, not the cleaned covariance. We refer to this

method as Isotropic Noise. This estimate for the noise does not have a true theoret-

ical underpinning, but there is a relation between the setting of σ and the SNIR as

discussed above.

Second, we can run Variational Bayesian Factor Analysis (VBFA) Nagarajan

et al. (2007) on the post-stimulus sensor data. (VBFA is the first step of the SEFA

algorithm, but SEFA runs VBFA on the pre-stimulus data.) VBFA partitions the

sensor covariance into Λ+AAT . We can then set the noise covariance to be Σε → Λ

and then run Champagne on the post-stimulus data covariance. In some cases,

we need to scale the noise covariance by a scalar, thus changing the equation to

Σε → σΛ. This scaling is also dependent on the SNIR of the data, we find that
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with high SNIR it does not need to be scaled, but with low SNIR it needs to be

multiplied by a σ > 1. We refer to this method as Non-Isotropic, Diagonal Noise.

The third method relies on the partitioning of the post-stimulus sensor co-

variance into a signal and a noise subspace with a singular value decomposition.

The covariance can be modeled as:

Cb = ESΛSET
S + ENΛNET

N

where ΛS = [λ1λ2...λQ] and ES = [e1, e2, ..., eQ] and ΛS = [λQ + 1λQ + 2...λM ] and

EN = [eQ + 1, eQ + 2, ..., eM ], λj and ej are the jth eigenvalue and eigenvector,

respectively, of Cb. We choose the Q largest eigenvalues (and the corresponding

eigenvectors) as source components and the remaining Q + 1 through M eigen-

values as noise components. We choose the cutoff, Q, by plotting the eigenvalues

The eigenspectrum) and selecting Q to be the point where the spectrum levels off

near zero. Then, we can set Σε → ENΛNET
N . We refer to this method as Non-

Isotropic, Non-Diagonal Noise. We could also make the noise estimate diagonal for

this method, but we find that it performs similarly to the non-diagonal estimate.

4.3.1 Simulated Data

We used the same simulated data sets and SNIR levels in Section 4.2.1 to test

the three variants of Champagne that do not require a pre-stimulus period, as

described above.
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The results from running the Isotropic Noise variant on the simulated data is

shown in Figure 4.6. These results substantiate the analysis that the setting of σ

should scale with the inverse of the SNIR. We chose σ = 1 for the 10 and 0 dB

case. but σ = 10 yielded the best localization results for -2dB and σ = 100 for the

-10dB data set. This variant of Champagne is able to localize all three sources at

10, 0, -2dB, but is only able to localize the source on the left at -10dB. These results

are similar to those in Figure 4.2, demonstrating that as long as the σ scalar is set

appropriately, localization is still accurate with an overly simplified estimate of

the noise covariance.

10dB 0dB -2dB -10dB

Figure 4.6 The Isotropic Noise variant of Champagne is able to localize all three
sources at 10, 0, -2dB, but is only able to localize the source on the left at -10dB.

The results from running the Non-Isotropic, Diagonal Noise variant on the sim-

ulated data is shown in Figure 4.7. Here we used the independent noise term

obtained from the post-stimulus period from running VBFA on the post-stimulus

data; for the 10dB case we did not have to change the σ value, but for 0, -2, and

-10dB we used σ = 10. This variant of Champagne is able to localize all three

sources at 10, 0, -2dB, but is only able to localize the source on the left at -10dB.

These results are similar to those in Figure 4.2 and Figure 4.6.
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10dB 0dB -2dB -10dB

Figure 4.7 The Non-Isotropic, Diagonal Noise variant of Champagne is able to lo-
calize all three sources at 10, 0, -2dB, but is only able to localize the source on the
left at -10dB.

The results from running the Non-Isotropic, Non-Diagonal Noise variant on the

simulated data is shown in Figure 4.8. Here we used a different number of eigen-

vectors to partition the post-stimulus data into signal and noise subspaces. The

10dB data set was best localized when only one eigenvector was used for the sig-

nal subspace and the remaining components were used for the noise, whereas

with the noisier datasets, more components were needed to partition the signal

from the noise. The 0dB data set had the best localization with 4 components, the

-2dB data set needed 5 components, and the -10dB data set was best with 10 com-

ponents. We tried the localization for -2dB and the -10dB data set with various

numbers of components and 5 and 10, respectively, worked the best. This variant

of Champagne is able to localize all three sources at 10, 0, -2dB, but is not able to

localize any of the three sources at -10dB.
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10dB 0dB -2dB -10dB

Figure 4.8 The Non-Isotropic, Non-Diagonal Noise variant of Champagne is able to
localize all three sources at 10, 0, -2dB, but is not able to localize any of the three
sources at -10dB.

4.3.2 Real Data

We applied these three methods to real data: the SEF, AV, and AEF data sets.

The results from the SEF data set are presented in Figure 4.9. The localization with

the Isotropic Noise method with σ = 1 is successful. Whereas, the Non-Isotropic,

Diagonal Noise method with σ = 1 does not correctly localize the contralateral

somatosensory cortex, while setting σ = 100 yields a successful localization. This

demonstrates the importance of the σ parameter even when the noise is estimate

using VBFA. The Non-Isotropic, Non-Diagonal Noise method using 5 components

for the signal subspace does not accurately localize the somatosensory activity

and looks like the results obtained from running Champagne on the full data

covariance. When we reduced the signal subspace to being composed of only the

first eigenvector, the localization of somatosensory cortex is accurate. The signal

to noise ratio on this averaged data set is high, so only one component is needed.

All three methods work on the AV data set; they all provide similar local-

ization results, but the time courses differ. The results from the two diagonal
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methods, Isotropic Noise and Non-Isotropic Noise, are shown in Figure 4.10 and the

localizations and time courses are similar for these two methods. While the Non-

Isotropic, Non-Diagonal Noise method does localize similar areas shown in Figure

4.11, the time courses are more smooth and cleaner than the previous methods.

Also, the amplitudes of the auditory and visual sources are similar, as opposed to

the other methods where there is disparity between the amplitudes of the activa-

tions.

Figure 4.12 shows the results from the three noise covariance estimation tech-

niques applied to the AEF data set. They all localize bilateral auditory activity and

the time courses are similar, but the time courses from the Non-Isotropic, Diagonal

Noise method are not as smooth as those obtained from the Non-Isotropic Noise and

Non-Isotropic Noise methods.
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Isotropic Noise σ = 1
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Non-Isotropic, Diagonal Noise, σ = 1
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Non-Isotropic, Diagonal Noise, σ = 100
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Non-Isotropic, Non-Diagonal Noise, 5 comp.

20 30 40 50 60 70 80 90 100
-1000

-500

0

500

1000

Time (ms)

N
o

rm
al

iz
ed

 In
te

n
si

ty
 (

0-
10

00
)

Non-Isotropic, Non-Diagonal Noise, 1 comp.
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Figure 4.9 Results for Champagne run on the SEF data without access to the pre-
stimulus period to learn the noise covariance. The results from using an isotropic
noise estimate with σ = 1, a non-isotropic, diagonal noise estimate with σ =
1 and σ = 100, and a non-isotropic, non-diagonal noise estimate using 1 or 5
components for the signal subspace.
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Isotropic Noise, σ = 0.01
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Non-Isotropic, Diagonal Noise, σ = 1
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Figure 4.10 Results for Champagne run on the AV without access to the pre-
stimulus period to learn the noise covariance from using the Isotropic Noise esti-
mate with σ = 0.01 and the Non-Isotropic, Diagonal Noise estimate with σ = 1.
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Non-Isotropic, Non-Diagonal Noise
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Figure 4.11 Results for Champagne run on the AV without access to the pre-
stimulus period to learn the noise covariance from using the Non-isotropic, Non-
diagonal Noise estimate with five components.
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Isotropic Noise σ = 1
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Non-Isotropic, Diagonal Noise σ = 1
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Non-Isotropic, Non-Diagonal Noise
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Figure 4.12 Results for Champagne run on the AEF data without access to the
pre-stimulus period to learn the noise covariance. The results from using The
Isotropic Noise estimate with σ = 1, the Non-Isotropic, Diagonal noise esti-
mate with σ = 1, and the Non-Isotropic, Non-Diagonal Noise estimate with one
component.
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4.4 Discussion

The variants of the Champagne algorithm, which differ in the estimation of

the noise covariance and in the case of the Cleaned Data, the post-stimulus data

used, perform well on the simulated and real MEG data.

While we only tested on one simulated data set, we can infer from these re-

sults that the Champagne algorithm is robust beyond its ability to estimate the

pre-stimulus noise covariance. Running Champagne on the “clean data” yielded

similar results at all SNIR levels. Surprisingly, the Isotropic Noise estimate works

as well as the original formulation and the Cleaned Data variant. While its perfor-

mance does depend on the selection of σ, we have developed a principled way to

set this scalar based on the SNIR of the post-stimulus data. Also, an inspection

of Champagne’s estimate from the source time courses yields some intuition for

why this method works so well. The Non-Isotropic Noise, Diagonal variant also per-

forms well on the simulated data, but does not perform better than the Isotropic

Noise method at the low SNIR levels. And it also needs some scaling with a pa-

rameter σ, so there does not seem to be a clear benefit for this method over the

simpler Isotropic Noise method. The Non-Isotropic Noise, Non-Diagonal method is

also effective with the simulated data example, but like the previous two meth-

ods discussed, requires the setting of the number of eigenvectors to use for the

signal versus the noise subspaces. We can see from these experiments that while

all equally effective at localizing the three sources in this simulated data exam-



SECTION 4.4. DISCUSSION 155

ple, only the original Champagne method can localize activity without setting a

parameter value. But, if there is not a baseline or pre-stimulus period, or it is

too noisy, we can rely on these variants to localize activity with the Champagne

algorithm.

The real data sets demonstrate the effectiveness of all the variants and em-

phasize the import of selecting the parameter, σ or the number of components

to include in the signal subspace. In the case of the SEF data set, all the vari-

ants are able to localize the contralateral somatosensory cortex when the original

Champagne algorithm was not able to localize this activity. For instance, when

we reduced the signal subspace to being composed of only the first eigenvector,

instead of the top five, for the Non-Isotropic, Non-Diagonal Noise variant, the

localization of somatosensory cortex is accurate. The signal to noise ratio on this

averaged data set is relatively high and could explain why it does not yield ac-

curate results with the original formulation of Champagne. If the post-stimulus

period is “too clean” then the estimate of the noise from the pre-stimulus period

could throw off the localization in the post-stimulus period. Since the variants on

the Champagne algorithm do not use the noise covariance learned from the pre-

stimulus period directly, they are immune to the misleading effects it has on the

localization. The other data sets, AV and AEF, demonstrate that all the variants

are successful at localizing activity without learning the noise covariance from the

pre-stimulus period.
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In general, these variants open new possibilities for the type of data on which

Champagne can be used, such as when there is not a pre-stimulus period or where

the pre-stimulus period has a large artifact. These experiments also imply that

Champagne could be used to assess power changes in the source time courses

as compared to the pre-stimulus period, so-called time-frequency analysis, which

would expand the types of neuroscience questions Champagne could help to an-

swer.
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Chapter 5

Statistical Thresholding with

Permutation Testing

5.1 Overview

The statistical analyses of the source images from M/EEG imaging typically

proceed with voxel-level statistics. At each voxel, a statistical test is used to deter-

mine if an effect of interest is present. Traditionally, a parametric statistical test is

used, some common methods include t-tests, F-tests, paired t-tests, ANOVA, cor-

relation, linear regression, multiple regression, and ANCOVA. All of these tests

assume that the data are normally distributed with a mean parameterized by a

general linear model. The estimated parameters for the specific test are then con-

trasted to produce a t-statistic, which then can be assessed for statistical signifi-
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cance (i.e. evidence against the null hypothesis) given an assumed distribution.

This process yields p-values, which is the probability that the value would exceed

that observed under the null hypothesis. The test level, usually denoted by α, is

the accepted risk of the test or the probability of committing a Type I error. A

Type I error reflects falsely rejecting the null hypothesis, i.e. incorrectly finding

significance. Any p-values less than α lead to a rejection of the null hypothesis.

In the case of M/EEG brain imaging, there are typically 5,000 to 15,000 voxels,

which results in that many statistical tests. Therefore, the risk for committing Type

I error is high. If the level is α = 5% and there are 10,000 voxels, there could be

500 voxels that have Type I errors, which could greatly impact the interpretability

of the results. As such, there are methods to correct for Type I errors when there

are multiple comparisons. The Bonferroni correction (Bonferoni, 1935) and false

discovery rate (FDR), both implemented in a step-up (Benjamini and Hochberg,

1995) and a step-down procedure (Benjamini and Liu, 1999), are commonly-used

methods to correct for Type I errors. These corrections have different sensitivities,

but tend to be overly conservative and can remove a result or trend that is present

in the uncorrected statistical values.

While conventional, the statistical testing described has two main issues. The

first is the assumption of normally distributed random variables. Under the cen-

tral limit theorem, this assumption would hold, but in brain imaging the number

of samples does not approach those needed to assure Gaussianity. Secondly, cor-
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recting for multiple comparisons with a method such as, the Bonferroni correction

or FDR, is often overly stringent. Nonparametric statistics provide a solution to

at least the first of these issues and can be formalized in a way to address the

second. Nonparametric statistics do not assume a distribution for the variable.

Rather, they use the data to obtain a null distribution over the data, from which,

significance can be tested. Permutation tests are one type of nonparametric test;

they have been increasingly used as computational power betters. However, the

statistical values obtained with permutation testing are not corrected for multiple

comparisons as there are still many statistical tests being performed in parallel.

The same methods that correct for multiple comparisons with parametric statis-

tics can be applied to the p-values obtained from nonparametric statistics, but ap-

plying these correction techniques to nonparametric statistics also can be overly

stringent. The maximal statistic approach to nonparametric statistics automati-

cally corrects for the multiple comparisons problem.

Permutation methods have been applied extensively to neuroimaging data to

find nonparametric statistical thresholds (Nichols and Holmes, 2001; Singh et al.,

2003; Sekihara et al., 2005; Pantazis et al., 2005; Chau et al., 2004; Dalal et al.,

2008). As discussed in Chapter One, the implementation of permutation testing

differs across these references. In (Pantazis et al., 2005), the authors present an

approach that creates surrogate data sets by randomly exchanging the pre- and

post-stimulus periods. This way of generating surrogates differs from the con-
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ventional approach, i.e. exchanging the labels (usually condition or group labels)

to test for a significance difference between two groups or conditions. Exchanging

time windows of an individual data set opens the opportunity to test significance

for a single subject’s results. By collecting multiple trials of data, the mean power

across trials (or time) can be tested for difference from zero using a test statistic,

a pseudo t-value and the maximal statistic method corrects for multiple compar-

isons.

In this chapter, we apply this method described in (Pantazis et al., 2005) to

real MEG data and we develop two variations on this method, which have been

tailored to use on source localization results obtained from sparse algorithms.

Sparse algorithms yield brain images that are already thresholded to a certain de-

gree, but they can still contain some spurious peaks. The distribution of source

power values obtained from a sparse algorithms, such as Champagne or MCE,

is quite different than the distribution obtained from other algorithms, such as

MVAB and SL. Sparse algorithms have only a handful of non-zero voxels, result-

ing in a distribution of power values that has a prominent peak at zero and a tail

that drops off quickly. It follows that permutation methods used for non-sparse

algorithms might not be suitable for thresholding sparse algorithms.

A challenge of statistical thresholding is an appropriate means of arriving at

a threshold for a single subject. Often statistics use an average across subjects, but

in functional brain imaging, this means the MRIs of the individual subjects must
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be spatially normalized. Spatial normalization, while a widely-used technique,

is not always ideal because it relies on the automatic segmentation of the MRI. If

there is an error in the segmentation, the averaged results can be corrupted. As

such, it is often preferable to look at the results on an individual subject level,

but arriving at principled threshold for a single subject’s data is not a prescribed

science.

Source localization techniques, such as SL and MVAB, often yield diffuse ac-

tivations and the distribution of power values is much more continuous than the

distribution obtained from a sparse algorithm. These diffuse activations can be

hard to interpret as they cover many neighboring brain areas. If these results

could be thresholded in a way that only very focal activations survive, the results

obtained from these algorithms would be more interpretable. Typically, this is

achieved by arbitrarily setting the threshold to some percentage of the maximum,

such as 90%, but this threshold is heuristic and must be tuned to every data set.

Alternatively, a statistical threshold could be obtained to stringently threshold the

results. A nonparametric statistical approach to this issue would yield a thresh-

old that is corrected for multiple comparisons (through the maximal statistic) and

could be stringent enough to achieve a sparse-like image.

The work in this chapter seeks to answer three questions. First, can tradi-

tional nonparametric statistical thresholding methods be applied to the inverse

solution obtained from sparse algorithms? Second, can nonparametric statisti-
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cal thresholding reject spurious peaks obtained by sparse algorithms? And third,

can brain images obtained from non-sparse algorithms resemble the sparse maps

through stringent thresholding?

5.2 Source Localization with Unaveraged Data

We performed source localization on the unaveraged sensor data B(t) by

choosing a time window of interest in the pre-stimulus and post-stimulus pe-

riods from N trials. Then, we concatenated the pre-stimulus windows and the

post-stimulus windows to form long pre- and post-stimulus periods. We com-

pared Champagne’s performance on unaveraged data to the performance of three

benchmark algorithms: sLORETA (SL), minimum variance adaptive beamform-

ing (MVAB), and minimum current estimate (MCE) performance. These algo-

rithms are formalized in Section 3.2. The source localization algorithms were run

on these concatenated pre- and post-stimulus periods. (We did not run dSPM for

these experiments as our previous results demonstrate that SL and dSPM yield

the same solution to the inverse problem.) All the source localization methods

generate a spatial filter w such that:

sr(t) = wrB(t). (5.1)
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where r is the voxel index and t are the time points in the post-stimulus period.

The source time courses were averaged across trials to generate a time course

s̄r(t), for every voxel and then, we calculated the power P in a given time window

(t2 ≥ t ≥ t1) across voxels:

Pr =
1

T

t2∑
t=t1

s̄r(t)
2 (5.2)

where T is the number of time points in the window.

5.3 Statistical Thresholding

Based on the method presented in (Pantazis et al., 2005), we can calculated a

pseudo t-value t using the power in the pre- and post-stimulus periods:

tr =
P post

r − P pre
r

σpre
r̃

(5.3)

(5.4)

where P post
r and P pre

r are the pre- and post-stimulus power averaged over trials

and σpre is the standard deviation of the power in the pre-stimulus period, calcu-

lated by applying the weights to the pre-stimulus data and then calculating the

power as with the post-stimulus power. Instead of using only the standard de-

viation from one voxel r, we pooled the standard deviation from 20 neighboring
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voxels r̃ using a Gaussian-weighted average.

The pseudo t-value can be distinguished from the t-value in that it pools the

standard deviation across neighboring voxels. The pseudo t-statistic is used when

there is a low degree of freedom and the estimate of the standard deviation is less

reliable. It pools the standard deviation of neighboring voxels in order to increase

the degrees of freedom; in effect it smoothes the standard deviation. Deviating

from the approach in (Pantazis et al., 2005), an alternative to using the pseudo t-

statistic is to use the post-stimulus power, P post
r , as the statistic. Since Champagne

and MCE are sparse, the estimate for the pre-stimulus standard deviation is zero

or near zero in most voxels. This causes spurious peaks in the pseudo t-statistic

values as the value statistic is large when the standard deviation is almost zero.

In order to obtain a statistical threshold for the true or original pseudo t-

values or the post-stimulus power, generically referred to as ΨO, we used resam-

pling methods and the maximal statistic to obtain the null distribution for the

data. This method yields a threshold that is not subject to the assumptions of

parametric statistics and is corrected for multiple comparisons. We developed

two methods to create M surrogate data sets, Bm, where m is the permutation

number. The first method consisted of exchanging the pre- and post-stimulus

periods of a subset of the N trials (as done in (Pantazis et al., 2005)). There are

2N possible surrogate data sets possible. The second method resampled the pre-

stimulus data by randomly drawing N trials from the total trials available (greater
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than N ). If there are approximately 100 trials total and N = 30, then there will be(
100
30

)
possible surrogate data sets. Both ways to create surrogate data sets yields

millions of possible permutations, as such, we chose to subsample the surrogates

by randomly creating 1000 surrogate data sets. To ensure normalization between

the surrogates and the original data, we normalized the power of each surrogate

to the power of the original sensor data.

We then applied the spatial filter weights obtained from the source local-

ization procedure described in the previous section to each surrogate data set

to obtain source time courses, which were averaged across trials to generate a

trial-averaged time course for every voxel. For each permutation, we can then

calculated either the pseudo t-value tmr or the power, Pm
r in the time window

(t2 ≥ t ≥ t1) across voxels, generically referred to as Ψm
r .

To employ the maximal statistic correction for both methods, we then took

the maximum across voxels Ψm
r from each permutation:

Ψmaxm

= max
r

(Ψm
r ), (5.5)

and use the Ψmaxm to estimate the null distribution of ΨO, referred to as F̂ΨO .

Given a significance level of α, a statistical threshold, θmax
α , can be set as the c + 1

largest member of Ψmaxm , where c = αM and c is rounded down if not an integer.

ΨO can be thresholded by θmax
α .
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Figure 5.1 Cartoon illustrating the thresholding procedure. (a) The test statistic is
calculated for every voxel for the unpermuted (original data), ΨO

r . Then, for each
permutation of the data, Ψm

r , is computed. Finally, the maximum over r is taken
to obtain Ψmaxm . (b) A histogram of the maximal distribution, Ψmaxm , with arrows
pointing to the 1st, 5th, and 10th percentiles, corresponding to α = 1%, α = 5%,
and α = 10% respectively. (c) A histogram of the original statistic, ΨO

r , with the
θmax
1% , θmax

5% , and θmax
10% , corresponding to the values obtained in (b).
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We have developed three methods for performing the permutation testing,

which differ in the way the surrogate data sets are generated and the test statistic

used. Method 1 uses switching of random pre- and post-stimulus period to gener-

ate the surrogates and the pseudo t-value for the test statistic (Ψ). Method 2 uses

switching of random pre- and post-stimulus period to generate the surrogates and

the post-stimulus power for the test statistic (Ψ). Method 3 uses resampling of the

pre-stimulus period to generate the surrogates and the post-stimulus power for

the test statistic (Ψ). See Figure 5.2 for a table describing these methods.

Figure 5.2 Methods for thresholding

Alternatively, p-values can be calculated using the maximal statistics, which

are corrected by multiple comparisons. For each ΨO, we counted the number of

values that are greater in Ψmaxm and divide by M . Then, we can use a threshold α

to determine areas with significant activity.

A less conservative approach than the maximal statistic is to save more than

just the maximum statistical value from every permutation. The maximal statistic

can be driven by outliers; if there is one errant voxel (with high power) in each
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permutation, the threshold obtain for ΨO could be overly conservative. We pro-

pose saving the top nth percentile of the statistic values from each permutation

and using these values to estimate the null distribution of ΨO. Just as with the

maximal statistic, we can then obtain θn%
α by taking the c + 1 largest member of

the distribution, where c = αnM and c is rounded down if not an integer. Then,

ΨO can be thresholded by θn%
α . We compared the threshold derived from the max-

imal statistics to using the top 1st and 5th percentiles.
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5.4 Performance on Simulated Data

We first demonstrate Champagne’s ability to localize sources with unaver-

aged data on simulated MEG data. We also applied the statistical threshold-

ing procedure, Method 3, to the results obtained from the source localization for

Champagne and the comparison algorithms, MCE, MVAB, and SL. We used the

three source configuration from the previous chapter. We simulated 30 trials of

data at two SNIR levels, 0dB and -5dB. The lower SNIR levels reflect that we are

using unaveraged data, so the individual trials would have a lower SNIR than the

“averaged” data used previously. We thresholded the results at α = 1%, α = 5%

and α = 10% using the maximal statistic procedure.

The results from the simulations for all algorithms are presented in Figures

5.3 and 5.4. Champagne is able to localize the three sources at both SNIR levels

with the unaveraged simulated data. The thresholding procedure at all confi-

dence levels,α = 1%, α = 5% and α = 10%, retains the three sources while thresh-

olding out the non-zero activity surrounding the sources. The results from MCE

are similar to those obtained with Champagne and the thresholding results show

that the three sources survive the thresholding at all confidence levels. The source

localization results with MVAB at both SNIR levels show that there are peaks in

the correct locations but the results are quite blurred. The thresholding does not

clean up the localization results with MVAB. At 0dB, SL is able to localize sources

in the correct locations and the statistical thresholding cleans up the results such
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that distinct peaks can be seen. At -5dB, two of the three sources are localized, but

the statistical thresholding does not clean up the image, even at α = 1%.
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Figure 5.3 Simulated data example (0dB) with surrogates generated with resam-
pling pre-stimulus data and computing post-stimulus power, Method 3. The un-
thresholded power is shown in the far left column (coronal slice). The power is
thresholded with the maximal statistic at α = 1%, α = 5% and α = 10%. Cham-
pagne, MCE, and SL benefit from the statistical thresholding, while MVAB does
not.
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Figure 5.4 Simulated data example (-5dB) with surrogates generated with re-
sampling pre-stimulus data and computing post-stimulus power, Method 3. The
unthresholded power is shown in the far left column (coronal slice). The power
is thresholded with the maximal statistic at α = 1%, α = 5% and α = 10%. Cham-
pagne, MCE, and SL benefit from the statistical thresholding, while MVAB does
not.
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5.5 Performance on Real Data

We present the localization results with unaveraged data for four data sets,

audio-visual (AV), somatosensory evoked field (SEF), face processing, and audi-

tory evoked field (AEF) data sets. We ran Champagne on these data sets and

compared its performance to MCE, SL, and MVAB. For all the overlays on the

MRI presented here, we show the coronal (and axial) section that intersects the

maximum voxel for the time window being investigated.

5.5.1 Audio-Visual Task

We analyzed a data set designed to examine the integration of auditory and

visual information (the same audio-visual data set used in 3.6.2). We presented

single 35ms duration tones (1 kHz) simultaneous with a visual stimulus. The vi-

sual stimulus consisted of a white cross at the center of a black monitor screen.

The pre-stimulus period was the window from -100ms to -5ms and the post-

stimulus window was taken to be 5ms to 250ms, where 0ms is the onset of the

simultaneous tone and visual stimulus. We concatenated the pre-stimulus and

post-stimulus periods for 30 trials, as described above. Then we computed the

power in two windows, from 80ms to 140ms to capture the auditory activation

and 100ms to 180ms to capture the visual activation. For this data set, we ap-

plied Method 1, Method 2, and Method 3 to obtain statistical thresholds for the

results obtained from 80ms to 140ms with Champagne. We present the results
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from Method 3 below (the results from Method 1 and 2 can be found in the ap-

pendix to this chapter). Then, we applied only Method 3 to threshold the power

map obtained from 80ms to 140ms with the other algorithms and from 100ms to

180ms with all algorithms.

We applied Method 3 to the 80ms to 140ms window, results shown in Figure

5.5, and compared the thresholding results across algorithms. For Champagne,

the unthresholded post-stimulus power values are shown in the first column. We

found that the thresholds obtained at α = 1%, α = 5%, and α = 10% were suf-

ficient to clean up the post-stimulus power maps, but not overly stringent, as

both auditory cortical sources remained after threholding at all levels. We ap-

plied Method 3 to the benchmark algorithms, SL, and MCE, also shown in Figure

5.5. For MCE, the localization results show bilateral activity (the left source is dor-

sal to auditory cortex) and we found the amount of thresholding to be similar to

Champagne’s results. SL is able to localize bilateral activity that is diffuse. The

thresholding at α = 1% allows for distinguishing the left and right activations,

while thresholding at α = 5% and α = 10% does create separation between the

auditory activations. The localization for MVAB was unsuccessful with the un-

averaged data, as demonstrated in Figure 5.9 and therefore, we did not perform

the thresholding procedure for MVAB. The p-values obtained from the maximal

statistic distribution (as described above in 5.3) are shown in Figure 5.6. We plot

1−p and threshold at 0.95, corresponding to α = 5%. The p-values for Champagne
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and MCE show similar results to those in Figure 5.5 at all levels and provide focal

sources in the two auditory cortices, while the results with SL are diffuse and do

not threshold the power values adequately.

For the window around the visual activation, 100ms to 180ms, we only ap-

plied Method 3 as this method strikes the best balance between stringency and

allowing more than just the maximal voxel to pass the test. The results for the vi-

sual localization with Champagne, MCE, and SL are presented in Figure 5.7, with

the unthresholded post-stimulus power values in the first column. Champagne

is able to localize visual activity in this time window; thresholding at α = 1% and

α = 5% allows activation in one visual area to pass, while thresholding α = 10%

allows a second visual activation (more medial) to pass. The unthresholded re-

sults from MCE show that there are activations in auditory areas (as in the 80ms

to 140ms time window) and there is activation in the visual cortex, but these vox-

els do not have the maximum power in the time window (different from Cham-

pagne). Only the right auditory source passes to significance at all levels and the

visual activations are thresholded out. SL also shows both visual and auditory ac-

tivations in the unthresholded maps. At α = 1% and α = 5%, the visual activation

is distinguished from the auditory activation and at α = 10% the threshold leaves

the image blurred. The p-values computed from the maximal statistic distribu-

tion are shown in Figure 5.8. We plot 1−p and threshold at 0.95, corresponding to

α = 5%. Champagne has significant p-values in one visual area, while MCE has
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significant p-values in the same location as the auditory window results, Figure

5.6, and SL has a diffuse cluster of significant voxels showing that the p-values do

not allow for more stringent thresholding with SL.
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Figure 5.5 AV data with surrogates generated with resampling pre-stimulus
data and computing post-stimulus power, Method 3. The unthresholded post-
stimulus power values in the window from 80ms to 140ms are shown in the first
column (coronal slice). The power is thresholded with the maximal statistic at
α = 1%, α = 5% and α = 10%. For Champagne, both auditory sources survive
the threshold even at the most stringent level, α = 1%. For MCE, bilateral sources
survive the threshold, but the localization is not in auditory cortex. SL localizes
bilateral activity, but the thresholding, even at the most stringent level, does not
create focal sources.
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CHAMP MCE SL

Figure 5.6 P-values computed from the maximal statistic distribution for the win-
dow around the auditory activation for the AV data. We plot (1-p) so that high
p-values denote high significance. The images are thresholded at 1 − p ≥ 0.95.
The p-values for Champagne and MCE threshold the activity similarly to those in
Figure 5.5, whereas, the p-value for SL are equally, if not more, diffuse and not an
effective means of thresholding.

5.5.2 Somatosensory Evoked Field

We used a somatosensory evoked field (SEF) data set (the same SEF data set

used in 3.6.5). The stimulation is administered by air puffs with a pseudoran-

dom interstimulus interval of 450 to 500ms. We concatenated the pre- and post-

stimulus periods of each trial to form one long epoch for both the pre-stimulus

and post-stimulus periods. For the pre-stimulus period, we took the window of

data between -100 to -5ms from each trial and for the post-stimulus period, we

took the window between 5ms to 200ms, where 0ms is the onset of the stimulus.

We used the first ten trials of data. We calculated the source power in the window

between 40ms and 80ms and applied Method 3 of the statistical thresholding pro-

cedures, and compared across algorithms.

In Figure 5.10, we present the unthresholded source power results along with

the thresholded results for α = 1%, α = 5%, and α = 10% using the maximal
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Figure 5.7 AV data with surrogates generated with resampling pre-stimulus
data and computing post-stimulus power, Method 3. The unthresholded post-
stimulus power values in the window from 100ms to 180ms are shown in the first
column (coronal slice). The power is thresholded with the maximal statistic at
α = 1%, α = 5% and α = 10%. See text for description of results.



SECTION 5.5. PERFORMANCE ON REAL DATA 179

CHAMP MCE SL

Figure 5.8 P-values computed from the maximal statistic distribution for the win-
dow around the visual activation for the AV data. We plot (1-p) so that high p-
values denote high significance. The images are thresholded at 1− p ≥ 0.95. The
p-values for Champagne and MCE threshold the activity similarly to those in Fig-
ure 5.7 for α = 1%, whereas, the p-values for SL are equally, if not more, diffuse
and not an effective means of thresholding.

MVAB

Figure 5.9 AV results for MVAB, the correlated auditory activity impedes MVAB’s
performance. The post-stimulus power values have the same distribution in both
time windows.
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statistic approach for all algorithms, Champagne, MCE, MVAB, and SL,. The un-

thresholded results from Champagne demonstrate that it is able to localize the

contralateral somatosensory cortex, but there are voxels in functionally irrelevant

areas that were not pruned. Thresholding at all three confidence levels cleans up

the source power image, leaving only the source in the contralateral somatosen-

sory cortex. The results from MCE are similar; the unthresholded power image

shows that there is a source in somatosensory cortex, but there are also non-zero

voxels in other brain areas. Thresholding at α = 1% leaves only the source in

somatosensory cortex and thresholding at α = 5% and α = 10% reveals another

source nearby. The unthresholded results for MVAB and SL show that there is a

peak in the contralateral somatosensory cortex and the thresholding at all levels

cleans up the images to some degree. All threshold levels removes more of vox-

els for MVAB than SL, and the α = 1% level with MVAB has similar sparisty to

Champagne and MCE.

The p-value results for SEF are shown in Figure 5.11. We plot 1 − p, as such,

high values indicate high significance. We thresholded at 5% or 1 − p ≥ 0.95.

For Champagne and MCE the p-values look very similar to the results in Figure

5.10. The p-values for MVAB look like the results for α = 5% and the p-values for

SL look like the results for α = 10%; the p-values do not provide more stringent

thresholding for SL.
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Figure 5.10 Somatosensory (SEF) data with surrogates generated with resampling
pre-stimulus data and computing post-stimulus power, Method 3. The unthresh-
olded post-stimulus power values in the window from 40ms to 80ms are shown
in the first column (coronal slice). The power is thresholded with the maximal
statistic at α = 1%, α = 5% and α = 10%. For Champagne, MCE, and MVAB
all levels of thresholding are able to uncover a focal source in the contralateral so-
matosensory cortex. SL, on the other hand, does not benefit from the thresholding
as the activations are still diffuse even after stringent thresholding.
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CHAMP MCE MVAB SL

Figure 5.11 P-values for the SEF data computed from the maximal statistic distri-
bution. We plot (1-p) so that high p-values denote high significance. The images
are thresholded at 1− p ≥ 0.95. The p-values for Champagne and MCE threshold
the activity similarly to those in Figure 5.10 for α = 1%, whereas, the p-values for
SL are equally, if not more, diffuse and not an effective means of thresholding.

5.5.3 Auditory Evoked Field

We analyzed an auditory evoked field (AEF) data set for which the subject

was presented single 600ms duration tones (1 kHz) presented binaurally (the

same AEF data set used in 3.6.1). We concatenated 35 trials for this data set, choos-

ing the window from -90ms to -5ms as the pre-stimulus period and the window

from 5ms to 200ms as the post-stimulus period from each trial. We then calculated

the power in the window around the M100, the auditory response, from 90ms to

120ms. We applied Method 3 to obtain statistical threshold for these activations.

The results from the AEF data are shown in Figure 5.12. The first column dis-

plays the unthresholded results from the unaveraged data for Champagne, MCE,

and SL. All three algorithms show bilateral activity in the time window around
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the auditory response. For Champagne, the thresholded results for all levels is

the same. The thresholded results leave the bilateral auditory activity (the right

activation can be seen in the axial slice). MCE also localizes bilateral activity (the

left activation can be seen in the axial slice) and the statistical threshold at all lev-

els, like Champagne, yields the same significant voxels at all levels. The statistical

thresholding for SL is still quite liberal even at α = 1% and the thresholding does

not provide focal activations. The localization was not successful with MVAB,

Figure 5.14, so we did not perform the thresholding with these results. The p-

values are displayed in Figure 5.13. The p-values for Champagne differ slightly

from the localization as compared to the post-stimulus power maps in Figure 5.12,

as the two auditory activations are in the same plane with the p-values, but the

results are equally successful. The p-values for MCE demonstrate the same brain

activations as the post-stimulus power values and the thresholding for SL suffers

with the p-values as the activations are more diffuse than the power map.
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Figure 5.12 Auditory evoked field (AEF) data with surrogates generated with re-
sampling pre-stimulus data and computing post-stimulus power, Method 3. The
unthresholded post-stimulus power values in the window from 90ms to 120ms
are shown in the first column (coronal slice). The power is thresholded with the
maximal statistic at α = 1%, α = 5% and α = 10%. See text for description of
results.
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CHAMP MCE SL

Figure 5.13 P-values for the AEF data computed from the maximal statistic distri-
bution. We plot (1-p) so that high p-values denote high significance. The images
are thresholded at 1− p ≥ 0.95. The p-values for Champagne and MCE threshold
the activity similarly to those in Figure 5.12 for α = 1%, whereas, the p-values for
SL are equally, if not more, diffuse and not an effective means of thresholding.

MVAB

Figure 5.14 AEF results for MVAB, the correlated activity impedes MVAB’s
performance.
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5.5.4 Face-Processing Task

We analyzed a data set from a subject in which faces were presented in a

random order with an interstimulus interval of 1 second (the same face processing

data set used in 3.6.3). The pre-stimulus window was selected to be -200ms to

5ms and the post-stimulus time window was selected to be from 5ms to 450ms,

where 0ms is the appearance of the visual stimulus. We concatenated the pre- and

post-stimulus periods from 25 trials for this data set. We used the time window

around the M170, from 150ms to 180ms, to calculate the post-stimulus power and

we applied Method 3 to obtain statistical thresholds.

The results from the face processing data are in Figure 5.15. The unthresh-

olded results are shown in the first column for Champagne, MCE, and SL. The

unthresholded results for Champagne reveal activations in the fusiform gyrus on

both the right and left. Thresholding at all levels removes the activation on the

right and leaves only the fusiform activation on the left. MCE has a similar pat-

tern of activity, but the thresholding does not eliminate the activity on the right.

At the same time, there is anterior activity that is not functionally relevant that

also passes the significance test. SL localizes bilateral fusiform activations, but

only the activity in the left fusiform area survives thresholding at all levels. It

seems that for this data, as evidenced by Champagne and SL, that the left activa-

tion is stronger in the fusiform gyrus. MVAB is unsuccessful on this data set, thus

the thresholding is not performed, see Figure 5.17. The p-values are displayed in
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Figure 5.16. The p-values for Champagne and MCE threshold the activity simi-

larly to those in Figure 5.15 for α = 5%, whereas, the p-values for SL are equally,

if not more, diffuse and not an effective means of thresholding.
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Figure 5.15 Face processing data with surrogates generated with resampling pre-
stimulus data and computing post-stimulus power, Method 3. The unthresholded
post-stimulus power values in the window around the M170, from 150 to 180ms,
are shown in the first column (coronal slice). The power is thresholded with the
maximal statistic at α = 1%, α = 5% and α = 10%. For Champagne, MCE,
and SL are all able to localize a source in the left fusiform gyrus. The statistical
thresholding helps to clean up the Champagne and MCE results, while the SL
results benefit only slightly from thresholding.
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CHAMP MCE SL

Figure 5.16 P-values for the face data computed from the maximal statistic distri-
bution. We plot (1-p) so that high p-values denote high significance. The images
are thresholded at 1− p ≥ 0.95. The p-values for Champagne and MCE threshold
the activity similarly to those in Figure 5.15 for α = 5%, whereas, the p-values for
SL are equally, if not more, diffuse and not an effective means of thresholding.

MVAB

Figure 5.17 MVAB results on face processing data set; it is unable to localize any
functionally relevant activity for the face data set.



SECTION 5.5. PERFORMANCE ON REAL DATA 190

5.5.5 Alternative to Maximal Statistic

In Figure 5.23, we show the audio-visual data with surrogates generated with

pre- and post-stimulus switching and statistical thresholding with the alterna-

tive to the maximal statistic with the t-values. The unthresholded post-stimulus

power values are shown in the first column (coronal slice). The power is thresh-

olded by keeping the top 5th percentile of the surrogate statistic and thresholding

with α = 5%, denoted as θ5th

5% . Both the left and right auditory sources survive the

threshold, but there are spurious peaks introduced from the computation of the

t-values seen at the base of the head. Even with less stringent thresholding than

the maximal statistic, computing t-values for sparse images is problematic due to

the difficulties estimating the variance.

Figure 5.18 Audio-visual data with surrogates generated with pre- and post-
stimulus switching and statistical thresholding with the alternative to the max-
imal statistic with the t-values. The unthresholded post-stimulus power values
are shown in the first column (coronal slice). The power is thresholded by keep-
ing the top 5th percentile of the surrogate statistic and thresholding with α = 5%.
Both the left and right auditory sources survive the threshold, but there are spu-
rious peaks introduced from the computation of the t-values.

We also applied this alternative to the maximal statistic, the nth percentile

threshold, to the SEF and AV results using the post-stimulus power (Method 3).
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This threshold is obtained by keeping the 1st and 5th percentile, denoted as θ1st

α

and θ5th

α respectively. In Figure 5.19, we show the unthresholded results for the

SEF data set along with the thresholded results using maximal statistic at α = 5%

and the 1st and 5th percentile results, also at α = 5%. As compared to the maximal

statistic threshold, the percentile thresholds are less stringent and allow an acti-

vation in the ipsilateral somatosensory cortex to pass the significance threshold.

In Figure 5.20, we show the unthresholded results for the AV data set along with

the thresholded results using maximal statistic at α = 5% and the 1st and 5th per-

centile results, also at α = 5%. As compared to the maximal statistic threshold, the

nth percentile thresholds are less stringent and allow more of the visual activity

present in the unthresholded map to pass the significance threshold.

Unthresh. Max. Stat. Top 1st Top 5th(
θmax
5%

) (
θ1st

5%

) (
θ5th

5%

)

Figure 5.19 SEF results: These results compared the threshold at α = 5% for the
maximal statistic method as well as the method we have developed where we
keep the top 1st or 5th percentile of each surrogate data sets.



SECTION 5.6. DISCUSSION 192

Unthresh. Max. Stat. Top 1st Top 5th(
θmax
5%

) (
θ1st

5%

) (
θ5th

5%

)

Figure 5.20 AV results: These results compared the threshold at α = 5% for the
maximal statistic method as well as the method we have developed where we
keep the top 1st or 5th percentile of each surrogate data sets.

5.6 Discussion

In this chapter we have demonstrated that Champagne and the benchmark

algorithms are able to localize activity with sensor data that has not been aver-

aged across trials. The simulated data demonstrates that the permutation test-

ing method for statistical thresholding developed in this chapter effectively re-

moves activity for voxels not seeded with activity with Champagne and MCE.

The thresholding is able to clean up the results with SL, but does not yield sparsity,

and the results from MVAB do not benefit from the thresholding procedure. The

simulations, while only one case, give evidence that the nonparametric threshold-

ing procedure we have developed is compatible with sparse reconstructions.

In the case of the SEF, AEF, and AV data sets, Champagne is able to local-
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ize similar brain activity as compared to running the algorithm on trial-averaged

data (see Section 3.6). The benchmark algorithms, MCE, SL, and MVAB, are also

able to localize similar activity, although MVAB suffers more than the other al-

gorithms without trial averaging. The face processing data proves to be more

challenging for the algorithms when the data are not trial averaged. Champagne

is able to localize the fusiform activation at 170ms, but does not localize the earlier

visual activity that Champagne, run on trial-averaged data, was able to localize.

When looking at the averaged sensor data for this data set, the peak at 170ms is

the dominant peak, so it is not hard to believe that the visual activity would be

more difficult to localize. Being able to localize brain activity on unaveraged MEG

data has important implications for examining high frequency activity. This ac-

tivity is averaged out of the data when an average is taken across trials as the high

frequency activity is not phase-locked to the stimulus. These results with unaver-

aged data imply that Champagne could be used to localize power increases in the

high frequency range, and if methods from 4.3 are implemented for unaveraged

data, power decreases in the high frequencies could be detected as well.

We investigated methods to statistically threshold the results from non-trial

averaged data. We designed three nonparametric, permutation-testing tech-

niques referred to as Method 1, Method 2 and Method 3. All three methods em-

ploy the maximal statistic approach, but differ in the way they generate the surro-

gate data sets and the test statistic used. Method 1 consisted of creating surrogate
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data sets by exchanging the pre- and post-stimulus periods of random trails. Then

a pseudo t-value was computed for the real data and all of the surrogate data sets

for each voxel. Method 2, also, consisted of creating surrogate data sets with

switching pre- and post-stimulus periods, but it used the post-stimulus power as

opposed to the pseudo t-value as the statistic. These two methods proved to be

overly stringent for Champagne when coupled with the maximal statistic. Typi-

cally only the maximum voxel survived the threshold, which eliminates function-

ally relevant activity seen in the unthresholded images. As such, we devised a

third method of thresholding, called Method 3. In this method, the surrogates are

generated by resampling the pre-stimulus period and the post-stimulus power

is used as the statistic. We found that this method is less stringent and effec-

tively thresholds out some of the non-zero activity from Champagne’s activation

maps, while leaving functionally relevant peaks in the activation. Confidence

intervals of 1%, 5%, and 10% were used; in general all confidence intervals effec-

tively thresholded the results. When this method was applied to MCE, similar

thresholding effects were observed. When MVAB was able to localize activity,

it also benefited from the statistical thresholding with Method 3. However, SL

was overly diffuse, even after thresholding at 1%, leading to the conclusion that

sparse-like solutions cannot always be obtained with stringent statistical thresh-

olding of a non-sparse algorithm, such as SL.

In addition to using the maximal statistic threshold on the post-stimulus
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power values (Method 3), we also computed p-values from the distribution of

the maximal statistic. These p-values, with a cutoff of p = 0.05, closely resem-

bled the thresholded results. The p-values are a standardized approach and like

the maximal statistic threshold, are corrected for multiple comparisons. Lastly,

we designed a variant to the maximal statistic in which we saved the top per-

centile from each permutation or surrogate, as opposed to only the maximum.

This method proved to be less stringent than the maximal statistic and in some

instances, allowed functionally relevant activity, which were thresholded away

by the maximal statistic, to survive; such was the case for the SEF data set and the

visual activations in the AV data set.

The widely-used statistical thresholding techniques, such as Method 1 and

2 in this chapter, were not designed with sparse algorithms in mind. If we look

at the sparsity profile of an algorithm like SL as compared to Champagne, the

histogram of the post-stimulus power values across voxels is drastically different

in shape. SL has a more or less smooth histogram, where Champagne has many

voxels with little to no power and only a small subset with high power. The dif-

ference between the highest power value for Champagne and the second highest

power value is large, see Figure 5.21 for a comparison of the histograms. As such,

even when we resample the pre-stimulus period to create surrogate data sets, this

distribution of power values persists. If only the maximum statistic is saved for

the null distribution, the threshold obtained can be driven by spurious voxels.
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Saving more than just the maximum from each permutation, protects the thresh-

old from the spurious, high-powered voxels, which are more prevalent in sparse

algorithms.

Yet another approach to statistical thresholding with resampling techniques

is to run Champagne on each surrogate, i.e. learning different weights for each

surrogate and then proceeding with the maximal statistic procedure. We found

that relearning the weights for each surrogate data set was too noisy and only the

maximum voxels passed the maximal statistic threshold. Fixing the weights also

guarantees that the scaling of the voxel time courses will be consistent across sur-

rogates, as we fix both the sensor power across trials and the weights. This further

protects against the maximal statistic threshold being driven by spurious voxels,

an effect that Champagne and other sparse algorithms are inherently prone, as

discussed above. In addition, we chose to apply the weights learned from the

unpermuted data to the surrogate data sets, instead of adopting this approach

because running Champagne on unaveraged data is more computationally ex-

pensive than running it on trial averaged data (the time to compute each iteration

scales with the number of time points in the post-stimulus period). If we recom-

puted the weights for each surrogate data set, the process of obtaining the max-

imal statistic threshold would take hours, perhaps days longer. We would like

to try the Top 5th and Top 1st percentile approaches to the value obtained by re-

learning the weights for each permutation. This might protect from the spurious
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voxels we found to drive the maximal statistic approach.

Our approach of creating the surrogate data sets by resampling of the pre-

stimulus period, Method 3, is an unconventional methodology. Exchanging the

pre- and post-stimulus periods, Method 1 and Method 2, is the usual practice, as

presented in (Pantazis et al., 2005). In this paper, the authors use a linear inverse

method to localize the sources, which is an non-adaptive method. Champagne is

an adaptive method, meaning that the weights are dependent on the data, while

non-adaptive methods, such as SL and other minimum-norm algorithms, do not

factor in the data when calculating the weights. The adaptive and sparse nature

of Champagne makes the conventional method of generating surrogates prob-

lematic. Champagne prunes the majority of voxels to be zero, which essentially

remove these voxels from the VOI. When these sparse weights are then applied

to new data, the locations in the brain where there is non-zero activity is highly

constrained, see Figure 5.21. If the surrogates are generated by switching the pre-

and post-stimulus period, the surrogate post-stimulus periods will contain some

of the same signal as the original data. This has more of an effect on Champagne

and other adaptive methods than it does on the non-adaptive methods. Thus, we

think it is a justifiable approach to use only pre-stimulus data for the surrogates.

When we do this, we are assessing the source power obtained on data that we

assume has no signal of interest, which is the assumption under the null hypoth-

esis.
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Method 3 also diverges from conventional methods in that we use the post-

stimulus power as opposed to a pseudo t-value (or other statistic). When we ap-

ply Champagne’s sparse weights to the pre-stimulus period in order to obtain an

estimate for the variance, used in the pseudo t-value calculation, we only obtain

non-zero variance in a small subset of the voxels. Usually the variance is pooled

across neighboring voxels to protect from spurious values driving the t-values,

but in Champagne’s case pooling the variance does not have a smoothing effect.

Thus, we found it was more stable to use the post-stimulus power values as our

measure. It should be noted that Champagne subtracts the baseline from the post-

stimulus source estimates and thereby the power values obtained are effectively

the subtraction of the pre- and post-stimulus power.

We have developed methods for statistically thresholding single-subject

brain-activity maps. These methods are designed for sparse algorithms and are

able to produce statistical thresholds which preserve functionally relevant activ-

ity, while removing spurious voxels that do not get pruned away during source lo-

calization. They effectively address the multiple comparisons problem by obtain-

ing statistical thresholds that are inherently corrected and this method provides

an alternative to spatial normalization and averaging across subjects, a common

approach to assessing statistic significance.
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(a)Champagne (b)MCE

(c) MVAB (d) SL

Figure 5.21 Histograms of the post-stimulus power to illustrate the difference
between sparse algorithms, Champagne and MCE, and non-sparse algorithms,
MVAB and SL.
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5.7 Appendix

We present the results from thresholding the AV data around the auditory ac-

tivation with Method 1 and 2 in this appendix. The results from thresholding with

Method 1 are shown in Figure 5.22. In the first column, the unthresholded pseudo

t-values are shown. We thresholded the pseudo t-values at α = 1%, α = 5%, and

α = 10%. At all levels, only the right auditory cortical source survives. In Fig-

ure 5.23, the results from Method 2 are shown. The unthresholded post-stimulus

power values are displayed in the first column. As with Method 1, all levels of

thresholding with Method 2 only leave the right auditory source. Comparing the

unthresholded t-values in Figure 5.22 and the post-stimulus power values in 5.23,

one can notice that while the location of non-zero values are the same, the am-

plitudes are different in some voxels. The t-values are computed by dividing by

the standard deviation, which when small compared to the numerator (the differ-

ence between pre- and post-stimulus power), causes the t-values to be artificially

large. In Figure 5.24, we show the standard deviation values (smoothed over 20

neighboring voxel as described above in (5.3)) used in the t-value calculation. We

can see that voxels with low post-stimulus power in Figure 5.23 can also have low

standard deviation in Figure 5.24, thus resulting in errantly high t-values.
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Figure 5.22 Audio-visual (AV) data with surrogates generated with pre- and
post-stimulus switching and calculating t-values, Method 1. The unthresholded
t-values are shown in the first column (coronal slice). The t-values are computed
from the post-stimulus power in the window from 80ms to 140ms. These results
are thresholded with the maximal statistic at α = 1%, α = 5% and α = 10%. Only
the left auditory source survives the threshold even at the least stringent level,
α = 10%.

Unthresh. α = 1% α = 5% α = 10%
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Figure 5.23 AV data with surrogates generated with pre- and post-stimulus
switching and calculating post-stimulus power, Method 2. The unthresholded
post-stimulus power values in the window from 80ms to 140ms are shown in the
first column (coronal slice). The power is thresholded with the maximal statistic
at α = 1%, α = 5% and α = 10%. Only the left auditory source survives the
threshold even at the least stringent level, α = 10%.

Figure 5.24 Plot of standard deviation of the pre-stimulus period for the AV data
set, showing that this term in the denominator introduces spurious peaks and
lessens that true peaks in the image.
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Chapter 6

Conclusions

6.1 Overview

In Chapter Two of this thesis, we presented a novel source localization algo-

rithm, called Champagne. Although Champagne is embedded in deep theoret-

ical ideas, the resulting algorithm essentially iterates between four simple steps.

We believe that the results presented in Chapter Three of this thesis demonstrate

that Champagne makes a significant breakthrough in the reconstruction of brain

activity with M/EEG data. Both simulated and real data sets were used to test

Champagne in comparison to commonly-used source localization algorithms. In

Chapter Four, we have investigated variants on the Champagne algorithm, in-

cluding methods for applying the Champagne algorithm to data sets that do not

contain a pre-stimulus period. Champagne is able to provide reliable estimates of

the source locations and time courses with these types of data sets, demonstrating
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the robustness of the algorithm. In addition to developing and testing the Cham-

pagne algorithm, in Chapter Five, we have developed methods for statistically

thresholding the results obtained from Champagne and other source localization

algorithms. These methods provide thresholds that are corrected for multiple

comparisons and are designed to be effective on sparse, adaptive source localiza-

tion techniques. Taken as a whole, the work presented in this thesis improves

upon the analysis of M/EEG data as it provides robust methods for localizing

activity and versatile statistical thresholding techniques.

6.2 Future Directions

6.2.1 Comparisons and Extensions of Champagne Algorithm

Champagne’s generative model is related to the multiple sparse priors model

(MSP) (Friston et al., 2008). Both are covariance component analysis algorithms

with some key differences. First, while MSP assumes a set of hundreds of co-

variance components that represent activity correlated across voxels, Champagne

assumes thousands of covariance components representing uncorrelated activ-

ity in each voxel. Second, Champagne uses flat hyperpriors for variances and

computes MAP estimates for variances with convergent update rules, whereas

MSP assumes a Gamma-distribution for hyperpriors for variances, and computes

a posterior distribution under a Laplace approximation. Finally, the noise is si-
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multaneously estimated in the MSP algorithm, rather than separately estimated

with the pre-stimulus data, as in Champagne. Given both the similarities and

points of divergence, we plan to investigate the comparison of the MSP model to

Champagne in future research.

Additionally, Champagne does not make assumptions about the smoothness

of sources, nor does it consider uncertainties in the lead field. We are currently in-

vestigating the use of spatial- and temporal-smoothness priors, either in the form

of basis functions, as in (Zumer et al., 2008), or in the form of auto-regressive

smoothness priors. Incorporating spatial priors and better noise models that also

model spatiotemporal correlations in the background noise could potentially im-

prove performance. These extensions of the Champagne method hold promise for

improving upon an already robust source localization algorithm. We investigated

the effect of lead field errors in Chapter Three and found that a small amount of

error is permissible. There are source localization algorithms that account for er-

rors or uncertainties in the lead field (Stahlhut et al., 2010). Incorporating these

lead field uncertainties into the Champagne algorithm is an extension we seek to

investigate.

In addition to using Champagne to localize activity, we plan to use Cham-

pagne in the analysis of functional connectivity. Champagne, as discussed in

Chapter Three, is well suited for functional connectivity as it is robust to corre-

lated sources (which is expected when areas are functionally connected) and is a
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sparse algorithm, selection of the nodes is done by the algorithm and not heuris-

tically by the researcher. To date, we have only applied Champagne to the simu-

lated networks of brain regions (see 3.5.13) and some preliminary investigations

with a MEG motor data set (Sekihara et al., 2010). These preliminary investi-

gations imply that Champagne would be an effective means for analyzing the

functional connectivity in complex tasks. Also, we would like to extend Cham-

pagne to time-frequency analysis, the first step of which is to be able to localize

activity without access to a pre-stimulus period. In Section 4.3, we outline the

possible ways to obtain source estimated without estimating the noise from the

pre-stimulus period. This technique will be extended to the analysis of MEG in

the frequency domain, similar to the technique in (Dalal et al., 2008).

6.2.2 Applications to MEG Data Sets

Champagne is being applied to a number of clinical data sets, especially those

data sets where traditional source localization algorithms, such as sLORETA or

beamforming have failed. Some clinical populations that we are currently inves-

tigating with Champagne are auditory processing in patients with schizophrenia

and auditory and somatosensory integration in children with sensory process-

ing disorders, such as autism. The children with sensory processing disorders

present a challenge to source localization because they tend to move while in the

MEG scanner, creating artifacts in the data. Our first attempts to apply Cham-
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pagne has proven to be successful as the auditory and somatosensory activations

are localized with Champagne, while other source localization algorithms fail. In

the future, we plan to continue using Champagne on difficult data sets, and we

plan to incorporate the statistical procedure into the analysis of these data sets.
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