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THICK SHELL AND SOLID FINITE ELEMENTS

WITH INDEPENDENT ROTATION FIELDS

Adnan Ibrahimbegovic” and Edward L. Wilson®
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ABSTRACT

Thick shell and solid elements presented in this work are derived from variational
principles employing independent rotation fields. Both elements are buill on a special
hierarchical interpolation and both possess six degrees of freedom per node. Performance
of the elements is evaluated on a set of problems in elasiostatics. However, the formuiation

presented herein is also suilable for transient and nonlinear problems.
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THICK SHELL AND SOLID FINITE ELEMENTS
WITH INDEPENDENT ROTATION FIELDS

Adnan Ibrahimbegovic” and Edward L. Wilson’

Department of Civil Engineering, University of California, Berkeley, CA 94720, U.S A,

iI. INTRODUCTION

The early approach 1o finite element analysis of plates and shells utilized Kirchhoff
thin plate theory. However. this approach is appropriate only if the transverse shear defor-
mations are disregraded. More important deficiency of the Kirchhoff thin plate theory, in
the finite element coniext, is the need to impose C' shape function continuity, ie. con-
tinuity across the element boundaries is required for both the shape functions and their
dervatives. More recent works (e.g.. see Bathe & Dvorkin [1985]. Hughes & Tezduvar
[1981], Tessler & Hughes [1983], Zienkiewicz et al. [1989]) have turned to Reissner [1945]
- Mindlin [1951] plate theory as a starling point of finite element discretization. In this
case only CY shape function continuity is required, hence an interpolation field is more
easily constructed.

In Reissner-Mindlin plate theory, an independent rotation field is introduced to
describe plate flexural motion. Similarly, a three-dimensional continuum mechanics prob-
lem can be formulated with the variational principle which employs an independent rotation
field. In this formulation, first given by Reissner [1965], the symmeiry of the stress tensor
is mot a priori enforced. The skew-symmelric part of the stress tensor appears as a
Lagrange multiplier for enforcing the equality of the independent rotation field 1o the skew-
symmetric part of displacement gradient.
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The Reissner’s variational principle can be used as a basis for a new formulation for
the plane problems with drilling rotation fields, as shown by Hughes & Brezzi [1989] and
Hughes et al. {1989]. Hughes & Brezzi [1989] have also shown that Reissner's variational
principle needs (o be regularized in order to preserve stability of the discreie finite elemen:
approximation, These developmentis are in a sharp contrast with the previous works on
membrane elements with drilling degrees of freedom (e.g.. see Allman [1984.87.88], Bergan
& Fellipa [1985], Carpenter et al. [19835], MacNeal & Harder [1988]. Taylor & Simo
[1985]).

The guadritateral membrane finite element based on regularized Reissner’s formulation
is presented in our recent work (see Ibrahimbegovic, Taylor & Wilson [1989]). The e¢le-
ment 15 built on a special hierarchical displacement field. In this paper we demonstrate that
the same nierpolation field can be extended to generate solid elements with rotational
degrees of freedom. Similar hierarchical interpolation field can alsc be successfully used
for discretication of the Reissner-Mindlin plate, as well as the adequate thick shell obtained
after superposing our membrane elements with drilling degrees of freedom. Solid elements
with rotational degrees of freedom presented herein represent an alternative approach to
solving thick shell problems. However, their primary value is in serving as a transition from
classical structural analysis kinds of models (o continuum mechanics models,

By degenerating a quadrilateral thick shell element of this kind, the triangular thick
shell element 1s recovered. The degenerating process is analogous (0 the one we prescnted
previously (see Ibrahimbegovic & Wilson [1989]). Similarly, it is possible 10 degeneraic
the brick solid element presented herein to recover the adequate wedge and tetrahedron

solid elements.

The outline of the paper is as follows. In Section 2, we discuss the variational formu-
lation for both the solid and the thick shell elements presented herein. The strong form of
both boundary value problems are also stated. The fipite element interpolation field is dis-
cussed in Section 3. Numerical evaluation for both elements is presented in Section 4. In

Section 5, we give some closing remarks.
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2. VARTATIONAL FORMULATION

Variational formulations for both the thick shell and the solid problems are given in
this section. For the sake of brevity, the discussion of boundary conditions is omitied. t.e.
we consider Dirichlet boundary value problem with the zero fieid variable values over the
boundary. Exiension io diiterent boundary conditions presenis no difficulties for the con-
siderations 1o follow, and it can be handled in a standard manner {e.g., see Bathe [19%82] or
Hughes [1987]). We also limit ourselves to linear elastostatic problems.

2.1 Variational Formulation for Three-Dimensional Solids

in this section we follow closely the work of Reissner [1965] and Hughes & Brezzi
f1989]. The standard indicial notation is uiilized with indices varying over set {123},
Summation convention on repeated indices is implied. Let £ be a region occupied by a

bady. The boundary value problem under consideration is: For afl x €

c,,+/, =0 (2.1}
skew o, = 0 (2.2
y,, = skewu; (2.3
symm o, = iy S¥mmuy (2.4

where (2.1) 10 (2.4) are, respectively, the equilibrium equations, the symmetry conditions
for stress tensor ¢ = {o,, 1, the definition of the skew-symmetric rotation tensor v =y}
in terms of displacement gradient V u = {4 ;}. and the constitutive equations. 1In the usual

manner, comma denotes the partial differentiation, i.e. 1, ; = di,/dx,.

In (2.1) to (2.4) the Euclidian decomposition of second-rank tensors is employed, e.g.

O, = symm o, + skew o, (1.5)
where
symm g, = *5 (o, +0,) (2.6)
_ . — } ]
skewn GU = E‘" (U‘j - O'ﬂ) (...7)

For the isotropic elasticity, the constitutive modulus tensor C = {Cijz;} has the form



C{jk! = A 6:_;5k! +u (6tk51! + 5:15]:':) {2.8)

where A and p are Lame’s paramelters and §;; is Kronecker delta.

Reissner {19653] presented a variational formulation for the boundary value problem
(2.1} 10 (2.4). This principie leads to a formulation which is inappropriate for numerical
applications, Essentially, 100 many parameters for the skew-symmetric part of o exist and
the numerical problem fails the LBS8 conditions as well as the counts for the mixed patch
test (e.g., see Zienkiewicz & Taylor {1989]). Hughes & Brezzi modified variational prob-

lem of Reissner by adding the term
-—% y'l j skew o, skew o, dQ (2.5
Q

in order to preserve the siability of the discrete problem. In (2.9), y is a problem dependeni
regularization parameter (see Hughes & Brezzi {1989}). For isotropic elasticity and Diri-
chlet boundary value problem Hughes et al. [1989] suggest y be taken as shear modulus
value, i.e. ¥y = g. The modification of Reissner’s variational formulation preserves (2.1},

(2.2) and (2.4} as the Euler-Lagrange equations. In addition. we now have
v skew O, = Skew o=y, (2.10)

If the symmetrical components of stress are eliminated using the constitutive equations

{2.4), then the modified variational formulation is given as Problem (M)

- 1 _ - _
Mu.y . skew @) = By J symmu; ; Coyp symm iy ; 480+ j skew Gy, (shew U, ,—y )} a8l

B Y ]

l
"% y~! £J;slcew G, skew G, df) — gJ; u, f, di2 (2.1

where n e V, w € W, skewo ¢ T are spaces of wial displacements, rotations and siresses
({7} denotes the trial variables). This variational formulation requires that the rotations ¥
and stresses skewd together with the displacement generalized derivatives V u, belong to
the space of square-integrable functions over the region Q, ie. C° continuity is imposed
only on displacement field i,

The variational equation which results from taking the variations en (2.11) 1

0= DIl fu.g.skew o) - (B.y.skew &) = | symmui, | Cyyy symm uy ; d§2
L3



+ [ skew G, (skew w; -y, ) dQ2 + j (skew u; ;~y,,) skew o, dQ
O Q

-y J skew g skew o, d§2 - f u, f, dQ (2.1
0 Q

In the next section, the variational eguation (2.12) is used to construci a mixed-type discrele
formulation.

It is possible 10 eliminate the skew-symmetric part of the stress tensor by substituting

(2.10) into Problem (M) 10 obtain Problem (D)

ﬁy(f;,ip?) = 7)1~ f symm iy o gy symm iy ; d§2
e
] _ _ _ . . :
+ ;vj (skew u; —y,;) (skew U, j—~y,) dQ - J u, f, dQ (2.13)
25 Q

The corresponding variational equation now is

0= Dﬁ.},(u,w) -{u.y) = J symm U, Copg symm g, dQ2
£2

+ ¥ f (skew u, =~y ) (shew u, —y,)) d§3 ~ j u, f, dQ (2.14)
[¥] £
The variational equation (2.14) is taken as the basis for constructing a displacemeni-1ype

discrete formulation which is presented in the next section.
2.2, Variational Formulation for Thick Shell

The thick shell element presented herein is obtained by superposing the membrane ele-
ments with drilling degrees of freedom and thick plate elements based on Reissner-Mindlin
plate theory. The element reference configuration is flat, so that the total potential energy
can be spht into the membrane and the plate part. A simple nodal computations transforms
from flat to warped element configuration. The membrane part is essentially just a subset of
the considerations for three-dimensional solids given in Section 2.1. I1 is discussed in our
earlier work (see Ibrahimbegovic, Taylor & Wilson [1989]). The Reissner-Mindlin plate
theory, the adequate boundary value problem and its variational formulation is discussed
further. The formulation is again given in a standard indicial notation, but the indices now

vary over set {1,2}. For the region £ occupied by the thick plate under consideration. it

hold: For all xe



K, =B, (2.15)
Y, = ﬁi + ”ti (2]6}
mij = CI?H K (217)
g, = C,i Y, (2.1%)
My, — g =0 (2.19)
9.+ f=0 (2.20,

where (2.15) 10 (2.20) are, respectively, the strain-displacement relationship. the constitulive
equation and the equilibrium equations. In the equations above, w is the transverse dis-
placement. f3, is a rotation vector of the fiber (director) initially normatl to the plate midsur-
face. x,, is the curvature tensor, y, is the shear sirain vector, mi, 1S @ MOMEDL lensor, g, is
the shear force vector, while f is applied transverse force per unit area. The director rota-

tion B is related 10 the right-hand-rule rotation vector @ via an allernaling tensor. i.c.

0 1 _
B.=e¢,8 . ¢ = -1 OJ (2.21)

The variational formulation for the boundary value problem (2.15) to (2.20) is given

as Problem (Pj

-~ 1 . 1 B - B &
B.7) = [ B, CluBisd+ S [ % C)y, a2~ [ 7 f 40 (2.22)
-0 {Q L2

Variational formulation (2.22) requires that the C O-cominuity be imposed on both rotation

B (6) and the displacement i fields. The corresponding variational equation is given as

0=DHPB.w)-Bw=[8,Cl fed+ [% 0]y a0~ [ fan 223
2 {2 Q

The equation (2.23) is chosen as a starting point in discrete approximation for

Reissner-Mindlin plate, presented in the nexi section.



3 FINITE ELEMENT INTERPOLATION

The particular choice for finite dimensional spaces and the resulting discrete variu-
tional formulations for both thick shell and solid elements are presented in this section.
The superscript 4 is a mesh parameter which is also used to denote and distinguish the
discrele guaniities.

3.1, Selid Element

The symmeiric tensors in (2.12), in the context of the discrete approximation, are

mapped into the corresponding vectors in a standard manner, e.g.

Symm IJ,‘ - Symm Vuh = <u;_;: U:‘zz RS I(;‘3+M2‘]: Il:j'}'lllz; u]‘3+11}.§>7 {3 1}

i

and the skew-symmeltric tensors are mapped into their axial vectors, Le.
Eo_ - T 19,
Y, o W= <y Wl e {3.2;
and

t
I skew Vu® = 5 <H3.:“U:.3¥H13-“3,1l“;ru1,2>T (3.3)

skew u
The variational equation which corresponds o the discrete version of Probiem (A1),

Problem (M") is

0= f symm V" T C symm Vu dQ + J. skew 6" 7 (skew Vu'-y"y dQ
Qo fo%

+ [ (skew V" -@")T skew o" dQ
o :

-y I skew &" T skew o" d§2 - I i’ f4Q (3.4)
fel Q-

We consider an 8-node solid element shown in Figure 1. The reference configuration

of the element is defined by the §-node mapping, i.e.

X = Z Nf(r.,s,1) x; (3.5)
=1

where x represents global coordinates (x,,x5,x4)7 and Ny(r,s,1) are the isoparametric shape

functions (se¢ Zienkiewicz & Taylor [1989])

Nfilr,s,r)y = é, (147 r) (A4s5ps) {145ty =128 (3.6}



1)
Natural c¢oordinates (r,s,7) are defined on the interval {-1.1}. The interpoiation for dis-

placements, u” = (u,.u>.u3)7 . is derived from a 20-node parent element (see Figure 1)

20

L

( ]] i &

P s = P E Z !(?‘ £, f:} 111‘1' E Z \f 5 ?i,_li.!': 117'
e [=] &

i

where Au; are hierarchical displacements (relative 1o the §-node interpolation values) and

Ni(rsty = %— (1= (1+s;5) (1450 1 1=17.18.19.20 (3.8
Nftr.s.) = j (rr) (1=sDy (4503 1=9.11.13,15 (3.9)
Nftrs.)y= — (34 (T+sys) (1-17) 7 1=10.12,14,16 (3.10)

are Serendipity shape functions (see Zienkiewicz & Taylor [1989]) for the mid-edge nodes
of the 20-node element.

The tangential hicrarchical mid-edge displacements along each edge are set 10 an aver-
age of the corresponding displacement values at the corner nodes, which is consistent with
the constraint on linear displacement variation along the element edges. The guadratic vari-
ation of the displacement components perpendicular 10 the element edges is retained. The
mid-edge hierarchical displacement components perpendicular to element edges are elim-
inated by introducing corner node drilling rotations ;. The independen! rotation field is

iterpolated in isoparametric fashion as

Uy ¥ g
us| = lya| =" =% 3 Nirs.n) g (311
e I=i

Ug W3

The resulting element possesses totally 48 degrees of freedom, three displacement com-
ponents and three rotations at each of the 8 corner nodes. The displacement interpolation is
constructed by systematically using the same kind of transformation over each element
edge. The introduced consirainis can be given directly in global coordinate system

(x;.x2.13), to yield the non-conventional interpolation for the displacement ficld (sce Figure

1)



i1

;)

8 20 g ,
uy|=uf= Y > Nirs.u+d Y N,’(r,s,r)wwéw (nyemiy —myenle !l (we—wi3.12)
e I=1 . 129
UqJ

where [p is the length of the element edge between the corner nodes J and K, 1.¢.

rf A
" - 1
Xgr—Xiyl

| o . IR . NI -
A = X2m Az L = Qg =X Y+ (Xg 2 X2 +(Xga—x73)7) {3.13)
. o
X —X i
K373

in (3.12) above, the veciors nyx and myg are orthogonal o the elemeni edge JK and mutu-

ally orthogonal, i.e.
3 =0 Ven,e=0: ml, =0 [Lrmyengl=iy (3,14
Jk My v bg Rk s Mgy By vl Mg B IK (3.14)

Note that the independent rotation field w is continuous across the element boundaries
{se¢ (3.111, which is enforced not by the governing variational equation (3.4) bul by the

chosen displacement interpolation (3.12).

The skew-symmelric stress field is interpolated independently over each element, ie.
skew ¢ = 2 57 o (3.15)
&

The interpolation of the skew-symmetric stress (3.15) is a linear polynomial given in global

coordinates (xi..\‘z,_r;_)r, Namely, if g are six skew-symmetric stress inlerpolation parame-

ters defined at the element level then

1 Ay 0 ¢ 00
=10 01 x, 00 (3.16)
0 0 0 0 1 x3J

A constant interpolation for the skew-symmetric stress in the membrane problems (see
Ibrahimbegovic, Taylor & Wilson [1989]) is consistent with the chosen linear polynomial
interpolation for the skew-symmetric stress (3.16); namely, it is recovered as a projection of

{3.16) onto the membrane plane.

We further define matrix notation for the infinitesimal strains computation as

symm ¥ u® = Bf u; + G} wy (3.17)



where u, and w; are nodal values of the displacement and the rotation fields, respectively.
The Bj matrix in (3.17) has the standard form

N ie,:. 0 0 Nf,x; 0 N fe.x;
B:' = 0 N, 0 N, Nf, 0 : i=12..8 (315
0 0 N, 0 Ny N

and the part of the dispiacement interpolation associated with the rotation w; defines Gj. If

Iy
Ty =-

we define the transformation matrix for the element edge between corner nodes 7/ and J
T T
” {ay; my — my; nyl

(3.19)

3= Z B; T,

then the matrix G} is obtained by summing over element edges which meet al node 7
edge

(3.20)
The discrete operator G needs 1o be modified 10 avoid element locking tendencies. The

modification is discussed in the Appendix I, along with the similar modification performed
to avoid shear locking in the thick shell elements,

Furthermore, we denole infinitesimal rotation

skew V u® = A7 u; + Ff y,

and

{3.2h
skew Vu* - w'= A up + [F;-“Nfl] ¥ o= AT Uy + f?; Wy (3.22
where
- : ) ’ .
0 5 Ni . 5 Nf .,
A= | Ly R NE 1=1.2,.8 (3.23)
i 2 {.xs 2 I ey v L] B
1 ¢ 1 ¢
...,"i{ [-X’z 2 N[rxl O




and F; can be obtained by systematic ransformations performed over each element edge

which meet at node !/

Fi=3 Al Ty, (3.24,

fdgf

The first term in the discrete formulation (3.4) of Problem (M "y gives rise 1o the ele-

meni siifiness matrix

17
K= | [B" G| C {B" Gf} aQ (3.25)
v
The second term In (3.4) is denoted as
He! = j §¢7 {A“ i‘*} aQ (3.26)
O
and the last term in (3.4) defines
M=y [ 87840 (3.27)

0o

With this notation at hand, the discrete mixed-type vartational formulauon (3.4) for

one element can be rewritien as

a\- f
RUER
o

Since the skew-symmetric part of the stress is interpolated independenily in each ele-

K e
! HfT —MF*

L

ment, the comresponding part of the stiffness matrix in (3.28) may be eliminated at the cle-

ment ievel using static condensation (see Wilson {1974]) to vield
K'a=f, K=K +HM HT (2.29)

where inversion of M® can be given in a closed form by inverting 2x2 submatrices on the

diagonal (follows from (3.16) and (3.27)).

In a completely analogous manner we can construct an approximation for the

displacement-type variational formulation. The discrete version of Problem (D) follows

from (2.14} as Problem (D")



0= f symm Va' ! ¢ symm Vu' 4Q

(¥
+y | (skew V @"—§" (skew V ui—y’) 40 - jatlfan (2.30)
28 £2°

The rotation and displacement fields are again interpolated by (3,11} and (3.12).
respectively, The first term in the displacement-type formulation (3.30) produces the same
element stiffness matrix K° defined by (3.25). The second term in (3.30). however. is
different, Note that using the interpolations for displacement (3.12) and rotation (3.11), this
term can be directly obtained via (3.22)

- 7
Pi=y | [Af P | [Af | g0 (231
Q- J :

Hence the matrix counterpart of (3,30 for one clement in a displacement-type formulation

is

u
W

(3.3

{K"+§"}a=f; a=

The paris of the element stiffness matrix K° and H¢ in (3.27) and {3.32) are computed
using a 14-point quadrature, given by Irons [1971]. The matrix P° in (3,32} is mtegrated by
2x2x2 Gaussian quadrature. By fully integrating K° and combining with P’ or
H'M* 'HT the spurious zero energy modes are prevented. The ‘equivalence theorem’ of
Malkus & Hughes [1978] indicates that this approach of selective reduced integration (3.32)
is not equivalent to the mixed formulation (3.29). Namely. six parameters for skewg are
used in the mixed-type formulation versus $-point integration rule on the penalty term in
displacement-type formulation. However, for the regular meshes the performances of the
solid elements based on two formulations are quite similar.

3.2. Thick Shell Elemen:

The underlying interpolation field for thick shell element is very similar io the one
used for the solid element. However, the motivation and the starting variational formulation

is different.
The discretized version of the variational formulation for thick plate Problem P is

given as Problem (P")



et
L

0= j symm Vﬁw C8 symmVB" dQ + J ?f":r C ¥ 40 - J wh fd0 (333
s vy o

In (3.23) above, we mapped the tensors in (2.23) intoe the corresponding mairix quantities.

c.g.

. B . ,
vy > symm VBT = <B o Bas Bio+tfn> (3.34)

Lad

et

ta
e

7 oY =<y v (3.

We next consider the finite element interpolation field for the discretization of the
thick plate variational formulation (3.33). For motivation, we first consider a Timoshenko
beam in which shear deformations are included (see Taylor [1987]). The strain displace-

ment relations are given by

. = f (3.36)
and
y = Z}: + 0 (3.37)

which can be recovered as a subset of adequate thick plate formulation (2.15) and (2.16).

We use isoparametric interpolation to define the geometry and the rotation fields
o= NPy xp + N3(r) a, (3.38)
6 = N{(r) 8, + Ni(r) 8 (3.39)
and hierarchical quadratic interpolation to define the transverse displacements
w = N{(r)w, + N3(r) wa + N{(r) Awy (3.40)
with the shape functions given as

(1-r%) (3.41)

(IS

i
N{(r) = -25 (=r);: N(r) = 3 (141)5 Ni(r) =

Within the context of discrete approximation, the strains are defined by substituting {3.39)

and (3.40) into the (3.36) and (3.37) 10 get

E = "3]"‘ (93_6[) . { = XX (342}
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and

1 1 1 4
vE o Oramwn 5 (8146 ] (8:m6,) — - Aws) (3.43)

/

If the relative nodal displacement Aw, is set 10 zero then all fields are approximated
by hincar interpolation. In that case, the linear varying term in shear is directly related (o
the change of curvature, i.e. it is not possible to have a constant shear strain in the presence
of bending behavior. When thin beams with negligible ‘'constant’ shear strains are
analyzed, this inconsistency is reflected by ‘shear locking™ phenomena. The Jocking
phenomena of this kind may be avoided by consiraining to zero the term in brackels in

(3.43). This yields mlerpolation for the displacement in the form
wo= NE(ry vy + NS(r) wo + é, NPy (B8,-8)) (2.44)

An allernative mterpretation of the similar interpolation field for thick shell elements is that
"Kirchhoff modes’ must be attainable in underlying interpolation (see Tessler & Hughes
[1983]). The plate elements which explicitly enforce discrete Kirchhoff constraints are able
10 obtain the higher order interpolation (see Batoz et al. [1980] or Batoz & Tahar [1982]).
For the same order of interpolation, the plate elements based on Reissner-Mindlin theory

need cxtra degrees of freedom (e.g.. see Brezzi et al. [1989) or Zienkiewicz el al. [19¥9]).

In the context of thick plates and shells, the interpolation field equivalent to (3.44)
needs 10 be corrected 1o avoid the shear locking. This is discussed in the Appendix 1. The
resuiting element performs much beiter than the similar one considered earlier by Tessler &
Hughes [1983] without the need of introducing numerically adjusted parameters or residual

bending flexibility {see MacNeal [1978]).

We further consider a 4-node quadrilateral element shown in Figure 2. The reference

surface of the element is defined by

X =
{

Nf(r.s) x; (3.45)

4
=1

where x now represents the local coordinates (x;.x,) and N,(r,s) are the 1soparametric

shape functions (Zienkiewicz & Taylor [1989})

Ni(rsy= i (I+rr) (1455, 1=1234 (3.46)
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Matural coordinates {r,s) are defined on the interval {-1,1}. The interpolation for in-plane
rolations is

9{}

4
ejJ =" = z z Ni(r.s) 8 {347
- I=i

£

and transverse displacement interpolation is obtained by generalizing the simple beam inter-

polation
A : v e § £ 1K T \
wh= 3 N Nitrsyw, = 3 Y Nirs) ~ Mk (8x=6)) (3.4%)
e I=l e I=5
where
Nitr.s) = % (l—rj) {T+s;5), =57 {3.49)
f(r.sy= ;; (I+r7) (1=5%) 1 1=68 (3.50)

are Serendipity shape functions (see Zienkiewicz & Taylor [1989]) for the mid-sides of the
g-node element. In (3.48), l;x and n;y are the length and the ocutward unit normal vecior

on the element side associated with the corner nodes § and K, 1.e.

n cos oy
ny = e : ! L = ((xg =X | F4Hxpa=xp200 7 (3.51)
& s sin ayy K K1 X P~ X 3.51)

and FORTRAN-like definition of adjacent corner nodes
J=1-4; K = mod(i4d)+] (3.51)

Note that the finite element displacement interpolation for thick shell element (3.48)

may be directly recovered from the solid element interpolation (3.12).

We further define matrix notation for curvature vecior
symm V B°=B; B, = Bie 8 (3.53)

where 8, are nodal vajues of the rotation fields and e is the alternating matrix defined in

(2.21). The Bf matrix in {3.53) has the standard form

Ni,, O Ni.
BT = : 1=1234 (3.54)
0 N‘fv'-'z NIEJ:



13

Furthermore. we denote shear strain interpolation as

Y =bi w + G g (3.55)
where
bf=<Nf, (Nf.> 6 I=1234 (3.56)
and
1 £ £ 1 X € M r (3 -E
““é‘([ﬂ COS Qg5 NSLJ] b ]”( CO8 ap NSM.)(;) N]" ‘8_”” S 2y NSLJ! - il’K 0 Oy A’SMJ!\)e
Gi=| | ] (3.57)
[“ﬁ\"f“" é_([ﬂ COS Xy NS;_‘I‘ - 1{[{ COS oy IVS)E}J:} - 'é’(]‘rj sin oy NSEX. - 1"”\’ Sin 2 4T A!Sf(/fi_) i
4

where, 1o {3.57) above

{=1234 M=1+4 . L=M-1+daint{(1/1) ;K =modiM 3)+1:J=L -4 (358

The discrete formulation (3.33) of Problem (P") gives rise to the thick plate element
stiffness matrix

=T
K¢ = j BT CE B A+ j [bff ij C3 [b” G{I dQ (3.59)
0 o

4. NUMERICAL EVALUATION

The performance of both finite elements presented herein, the thick shell and the solid,
is evaluated on a set of examples presenied in this section. Both elements can be used in
analysis of thick shells and plates. The solid element, in addition, can be used in a general
three-dimensional problems. The most important value of it, most probably, is in providing
a consistent combination with beam and shell elements with rotational degrees of freedom.
Al the numerical results reported in foregoing are obtained with the computer program
SAP (see Wilson [1980]).

4.1. Solid Element
4.1.1. The Patch Test

The solid element paich test (see Taylor et al. {1986]) is performed on both a single
element with a minimum number of constraints (see Figure 3) and a paich of solid elements

given in a standard problem set of MacNeal & Harder [1985]. Both mixed-type and
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displacement-type elements pass the patch tests. In the resulis 10 follow, these elements are

denoted M-type and D-type. respectively,
4.1.2. A Simple Beam: The Higher Order Patch Test

A simple beam with a length to height aspect ratio of 10 is subjected (o a pure bend-
ing state. The beam is modeled by one row of six solid elements with rotational degrees of
freedom as shown in Figure 4. Only a minimum number of restraints is imposed, leaving
all the rotational degrees of freedom free. Two load cases are considered. The first load
case 15 a unit couple applied at both ends and represents a higher-order patch test (see Tay-
lor et al. [1986]). When a regular mesh is used, the sclution is exact. For a distorted mesh
{see Figure 4) the accuracy is still good. The second load case 15, 10 our knowledge, a
novel test. The loading is again a unil moment, but this time applied as a concentrated
moment al the drilling degrees of freedom at both ends. The difference from the exact
solution, for reguiar mesh, is due to the fact that a single concentrated moment at a drilling
degree of freedom is not a consistent loading (which follows from displacement interpola-
tion (3.12)). The resulis of the analysis (see Table 1) can be compared with the beam

theory exact solution of 1.5 for vertical displacement and 0.6 for end rotation.

The value of parameter y 15 set of the order of shear modulus. The results are more

sensitive to the choice of ¥ than in the membrane case (see Ibrahimbegovic, Taylor & Wil-

son | 1989]).
| Table 1. A Simple Beam (Fig. 4) |
Formulation | Mesh | Load Case | Vert. Displ. | End Rot. .
M-type reg. i 1.5 0.6 ;
M-type dist. 1 1.3227 0.56759 .
M-type reg. 2 1.5 0.62983
M-type dist. 2 1.3276 0.65514
D-type reg. 1 1.5 0.6
D-type dist. i 1.2719 0.52819 |
D-type | reg. | 2 1.5 0.64450
D-type | dist. 2 1.2800 0.62464
l beam theory - 1or2 1.5 0.6

4.1.3. A Cantilever Beam

A shear-loaded cantilever beam is selected as a test problem by many authors (e.g..

see Bergan & Fellipa [1985], Allman{1988]. MacNeal & Harder [1988], Hughes et al.
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{1989, Pian & Sumihara [1984]). The elasticity solution (e.g., see Timoshenko & Goodier
§1951] and Hughes [1987]) for the tip displacement is

PIT (4+45v)PI

2 P = 102.625
Uz 2Ehb

for b = h and the properties selected (see Figure 5 for details).

The fimite element solution is obtained for two coarse regular meshes of two and four
elements, The equivalent results are also obtained by using the thick shell elements

presented herein, denoted as Th. Shell. All are presented in Table 2.

Tip Displ. of Short Cantilever Beam (Fig. 5} :

' Table 2.
Mesh M-1ype D-type Th. Shell
2x1 89.129 88.990 96.429
C4Ax] 102.301 101.292 101.328
Celast. sol. | 102.625 102.625 102.625

4.1.4. Simply Supported Square Plare

We also consider the performance of the solid element of this kind in the analysis of
simply supported square plate under uniform loading g (see¢ Figure 6). Due to the sym-
meiry, only one quarter of the plate is modeled imposing the appropriate boundary condi-
tions. So called hard boundary conditions are imposed on the simple supports. The resuits
of the analysis are given in Table 3. They can be compared with the series solutions also
presented in Table 3. For thick plate (t=1), the performance of the elements is quite satisfy-
ing. In the thin plate case (1=0.1), both solid elements exhibit a moderate shear locking.

with M-type element being slightly superior.

Table 3. Center Displ. of Simply Supp. Square Plate (Fig. 6)
Thick plate (1=1) Thin plate (1=0.1)

Mesh M-type D-type M-type D-type
2x2 40.980 40.232 23713 23123
4x4 42.149 42.138 32768 31782
series sol. | 42.728 42.728 40644 40644

4.2. Thick Skell Element



421 The Parch Test

The patch test (see Taylor et al. {1986]) is performed on a single element g8t for a
uniform bending, as well as on the patch of plate elements given in a problem set of Mac-
Neal & Harder [1985]. All tests are successfully passed.
422 5imply Supporied Square Piure

We again consider the simply supporied square plate under uniform loading g (sec
Figure 6). The analysis is performed on the model which uses only one quarter of the
plate, but for the more refined regular meshes (see Figure 7). The results of the analysis are
given in Table 4. For comparison, the resulis oblained with T1 four-node plate element of
Hughes & Tezduyar [1981] are also presented. The T'1 plate element i1s 1dentical to M/TC4
plate element of Bathe & Dvorkin [1985] and of very simifar performance as incompatible
modes based plate element of Simo & Rifai [1989]. The performance of our element
(denoted as Th. Shell in Table 4) is quite satisfying for both thick and thin plates, ie. no
shear locking occurs in the thin plate case. Moreover, our element performance is fully

equivalent to 71 class of plate elements, and the formulation is somewhat simpler.

Table 4. Cemnter Displ. of Simply Supp. Square Piate (Fig. 6) }

Thick plate (1=1) Thin plate (1=0.1)
Mesh Th. Shell | Ti . Th. Shell T1
2x2 41.869 41,902 39463 39712
4x4 42.545 42.545 40421 40436 é
ExB 42.684 42,684 40592 40593
16x16  42.717 42,717 40632 40632
series sol. 42728 42.728 40664 40664

4.2.3. Simplv Supported Circular Plate

The circular plate example is selected to demonstrate the performance of the thick
shell element presented herein in distorted configuration. The mechanical properiies of the
plate are the same like for the square plate in Figure 6 and the radius R=5. Due to sym-
metry, only one quadrant of the circular plate has been discretized with four finite element
meshes. A typical finite element model for 8x8 mesh is presented in Figure 8. The analyt-
ical solution is given as

q a S+v 8 I
4 + (t—r
64 F (1-v-)12 {I+v  3c(l=v) "a

w0} =
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where ¢ 1s a shear correction factor (taken 5/6 when computing ali the results presented
herein). The performance of the element is quite satisfying in both the thin and thick plate

analysis (see Table 5).

| Table 5. Center Displ. of Simply Supp. Circ. Plate (Fig. 8) |

Mesh HTh'i.ck plate (=1} Thin plate (1=0.1)
2x2 37.38190 33856
4x4 40.58131 38696
8xg 41.346613 39574
16x16 41.53630 39768

- senes sol. 41.59942 35831

4.2.4. Hemispherical Shell with 18 Hole

The performance of the shell element is also evaluated on a standard test problem of a
hemispherical shell with a hole (see MacNeal & Harder [1985]), presenied in Figure 9. It is
important 10 establish that the proposed formulation causes no membrane locking when
applicd to shell analysis. The results for the maximum displacement obtained with refined
finite element meshes (Figure 10) are given in Table 6. The results of this analysis should
be compared with the solution of 0.094 given by MacNeal & Harder [1985] and the new
value 0.093 suggested recently by Simo et al. [1989]. When the mesh is refined. the con-

vergence to the exact solution can be observed.

Table 6.  Hemispherical Shell (Fig. 9) |
Mesh Maximum Displacement
8x8 0.088768
12x12 0.092487
16x16 0.092982

! series sol, G.093

5. CLOSURE

We have presented the solid elements with rotational degrees of freedom, i.e. for an
8-node brick element 48 degrees of freedom are present. Elements are derived from the
variational principles employing independent rotational fields, which is in contrast with the

free-formulation based elements. Mixed variational formulation which employs skew-
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symmetric stress and penalty variational formulation where skew-symmelric stress is elim-
inated are both used to derive the corresponding discrete approximations. Special hierarchi-
cal interpolation is empioyed in the process. The mixed and penalty formulations are not
equivalent (in the sense of Malkus & Hughes [1978]), but exhibit similar performances.
with the mixed formulation being slightly advantageous. In terms of accuracy and the com-
putational efforis involved, the solid elements of this kind are in-between the classical 8-
node brick and 27-node Lagrangian elements. However, their most importamt value is in
providing a unified approach to modeling of complex structures where other kinds of ele-
ments with rotational degrees of freedom appear as well,

In addition. a novel 4-node thick shell element with six degrees of freedom per node,
is formed by superposing previously discussed membrane elements with drilling degrees of
freedom (see lbramimbegovic, Taylor & Wilson [1989]) and the thick plate elements based
on Reissner-Mindlin plate theory, In the plate analysis problems, the element performance
is fully equivalent 10 other 4-node elements (e.g. T1 of Hughes & Tezduyar [1981] or
MITC4 of Bathe & Dvorkin [1985}), but its formulation is simpler. The cruecial step in pro-
viding a good element performance in thin plate analysis is in shear locking correction
which is discussed in the Appendix I along with the similar correction performed on solid

elements. In the shell analysis problems, the element is free of membrane locking.
We have evalualed performance of the elements only in the context of linear guasi-

static problems. However, since the interpolation is provided for all the variables in the

formulation. the extension 1o transient as well as nonlinear problems is straightforward.
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6. APPENDIX I: SHEAR/MEMBRANE LOCKING CORRECTION

The non-conventional interpolations for both the thick shell and solid elements
presented herein need to be corrected 10 avoid the tendencies of locking behavior. The pro-
cedure used for that purpose fits into the framework of well-known B —bar methods (sec
Hughes [1980,87], Simo et al. [1985] or Simo & Hughes [1986]), which arise in formula-
tion for enforcing incompressibility constraint. In our case, the constant strain constraint

must be enforced for the contribution of rotational degrees of freedom in hierarchical
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displacement interpolation. For solid elements, the constant strain stales also ensures the
satisfaction of the paich test (see Taylor et al. [1986]). In the membrane part of thick shell
elements, similar correction preciudes membrane locking when the modeling of shell
geomelry by the flat elements produces the kinks in the fintte element model (see Jetteur &
Frey [1986] or Taylor {1987]). For the thick plaie, the correction of this kind s crucial in

avording shear locking phenomena.

1.l Solid Elements

We want to enforce the possibility of the constant strain slate £/ in the expression for

intinitesimal strain. Accordingly, we rewrite (3.17) as

svmm V u® = Bf u; + Gf y; + £/ (L.

Since conventional interpolation is used to approximate nodal displacements contribuuon (o
infinitesimal strains, this part can assume arbitrary value, including zero. For that case, we

impose the constraini that the remaining part be zero as well, i.e.

Gy, +e =20 (1.2)

In the variational formulation this constraint 1s imposed in the weak sense, by aug-

meniing the variational formulation with

Y ] &Gy + &) dQ (1.3)
o

&

where each term is defined independenily over each element. In (1.3), @ is energy-

conjugate to £,. The corresponding variational equation is than obiained as

[GidQ w +Q gl=0 (1.4)
ﬁ'
from which
ef=-— [GidQ (1.5)
Qe

&

After substituting (1.5) into the (1.1), we recover

symm V u® = B u; + G} w, (1.6)



where

;=Gi- | GjadQ (.7

1.2 Thick Shell Element

For the membrane part of thick shell element, the same kind of correction as given in
(1.7) is performed. For the thick plate part, the shear locking correction is performed by
utilizing the same kinds of arguments as for the solid eiement given in the Section 11, In
this case, however, we wani to obtain constant (zero) shear strain, which refiects the tenden-
cies in the thin plate limit and alleviates the shear locking. For that reason, the shear strain

computation (3.55) is rewritten as
y¥=b{'w, +G{ 8, + 7 (1.8)

where ¥ is interpolated as constant over each element. The shear sirains computed from
the conventional displacement interpolation can assume arbitrary constan! value. including

zero. The constraint that the remaining part of (1.8) be zero is

Gie +y =6 {1.9;

The variational formulation of thick plate problem is now augmented with

Y[ G840 an (110
e L

which has the corresponding variational equation given as

[Giane +Q y=0 (L11)
&

and the solution for ¥/

T;x._hl: j Gsaa e (1.12)

o

The modified expression for the shear strain computation is then given as

Y =bj w; + G| 6 (1.132)



J
(=28

where

Ql
i

£
|

— | Gj a0 (1.14;
o
Note that the shear locking correction {1.14) leaves the interpolation (3.44) for the
simple Timeshenko beam unaffected. In the thick plate case, however, the shear correclion
(L.14) plays the crucial role in alleviating shear locking. Both G corrections, (1.7) and
(1.14), are performed by utilizing the corrected Serendipity shape functions in the expres-

sions (3.17) and (3.55), respectively, which minimizes the compuiational efforts involved.

7. REFERENCES

Allman D.J. [1984]. A Compatible Triangular Element Including Veriex Rolations for Plane
Elasticity Problems, Comput. Struct., 19, 1-§

Allman D.J. [1987], The Constant Strain Triangle with Drilling Rotations: A Simple Pros-
pect for Shell Analysis, Proceedings The Mathematics of Finite Elements and Applica-
tions, {ed. J.R. Whiteman), Academic Press, 230-236

Allman D.J. [1988], A Quadrilateral Finite Element Including Vertex Rotations for Plane
Elasucity Problems. Int. J. Numer. Methods Eng.. 26. 717-739

Bathe K.I. [1982]. The Finite Element Procedures in Engineering Analvsis, Prentice-Hall

Bathe K.J. and E.N. Dvorkin [1985], A Four-Node Plate Bending Elemeni Based on
Mindlin-Reissner Plate Theory and a Mixed Interpolation, Ini. J. Numer. Methods
Eng., 21, 367-3%3

Batoz J.L., K.J. Bathe and L.W. Ho [1980], A Study of Three-Node Triangular Plate Bend-
ing Elements, Int. J. Numer. Methods Eng., 15, 1771-1812

Batoz J.L. and M.B. Tahar [1982], Evaluation of a New Quadrilateral Thin Piate Bending
Element, Int. J. Numer. Methods Eng., 18, 1655-1677

Bergan P.G. and C.A. Fellipa [1985], A Triangular Membrane Element with Rotational
Degrees of Freedom, Comput. Methods Appl. Mech., 50, 25-60

Brezzi F., K.J. Bathe and M. Fortin [1989], Mixed-Interpolated Elemenis for Reissner-
Mindlin Plates, Int. J. Numer. Methods Eng., 28, 1787-1801



27

Carpenter N., H. Stolarski and T. Belytschko [1985], A Flat Triangular Shell Element with
Improved Membrane Interpolation, Commun. Appl. Numer. Methods. 1. 161-168
Hughes T.J.R. {1980], Generalization of Selective Integration Procedures to Anisouropic and
Nonlinear Media, Int. J. Numer. Methods Eng., 22, 1413-1418

Hughes T.J.R. and T.E. Tezduyar [1981], Finite Elements Based Upon Mindlin Plate
Theory with Particular Reference to the Four-Node Bilinear Isoparametric Element, J.
Appl. Mech,, 46, 587-596

Hughes T.IR. [1987]. The Finite Element Methad: Linear Static and Dynamic Analysis.
Prentice-Hall

Hughes T.JR. and F. Brezzi {19¥9], On Drilling Degrees of Freedom, Compul. Methods
Appl. Mech. Eng., 72, 105-121

Hughes T.JR., F. Brezzi, A, Masud and 1. Harari [1989], Finite Element with Drilling
Degrees of Freedom: Theory and Numericai Evaluation, preprint

Tbrahimbegovic A., R.L. Taylor and E.L. Wilson [1989], A Robust Membrane Quadrilateral
Element With Drilling Degrees of Freedom, Int. J. Numer. Methods Eng.

Ibrahimbegovic A, and E.L. Wilson [1989], A Unified Formulation for Triangular and Qua-
drilateral Flat Shell Finite Elements With Drilling Degrees of Freedom, Commusn,
Appl. Numer. Methods

Irons B.M. [1971}, Quadrature Rules for Brick Based Finite Elements, Int. J. Numer.
Methods Eng., 3, 293-294

Jeteur P. and F. Frey {19861, A Four Node Marguerme Element for Nonlinear Shell
Analysis, Eng. Comput., 3, 276-282

MacNeal R.H. [1978], A Simple Quadrilateral Shell Element, Comput. Struct., 8, 175-183

MacNeal R.H. and R.L. Harder [1985], A Proposed Standard Sei of Problems to Test Finite
Element Accuracy, J. Finite Elem. Anal. Design, 1, 3-20

MacNeal R.H. and R.L. Harder [1988], A Refined Four-Noded Membrane Element with
Rotational Degrees of Freedom, Comput. Struct., 18, 75-84

Malkus D.S. and T.J.R. Hughes {1978]. Mixed Finite Element Methods - Reduced and
Selective Integration Techniques: A Unification of Concepis, Comput. Methods Appl.

Mech. Eng., 15, 68-81



2%

Mindlin R.D. {1951], Influence of Rotatory Inertia and Shear in Flexural Motion of Isotro-
pic Elastic Plates, J. Appl. Mech., 18, 31-3%

Pian T.H.H. and R. Sumihara [1984], Ratonal Approach for Assumed Stress Finile Ele-
ments, Iat. J. Numer. Methods Eng., 20, 1685-1695

Reissner E. [1943], The Effect of Transverse Shear Deformation on the Bending of Elastic
Plates, J. Appl. Mech., 12, 69-7¢

Reissner E. [1965], A Note on Variational Principles in Elasticity, Int. }. Solids Struct,, 1.
93.95

Simo J.C., RL. Taylor and K.S. Pister {1985}, Variational and Projection Methods for the
Volume Constraint in Finite Deformation Elasto-Plasticity, Compul. Methods Appl.
Mech. Eng., 81, 177-208

Simo J.C. and T.J.R. Hughes [1986], On the Variational Foundations of Assumed Sirain
Method, 1. Appl. Mech., 53, 51-54

Simo J.C., D.D. Fox and M.S. Rifai [1989], On a Stress Resultant Geometrically Exaci
Shell Model Part 11: The Linear Theory; Computational Aspects. Comput. Methods
Appl. Mech. Eng.. 73, 53-92

Simo J.C. and M.S. Rifai [1989], A Class of Mixed Assumed Strain Methods and the
Method of Incompatible Modes, preprint

Taylor R.L. and J.C. Simo [1985]. Bending and Membrane Elements for Analysis of Thick
and Thin Shells, Proceedings NUMETA 85 (eds. J.Middelton and G.N. Pande), 387-
561,

Taylor RL., J.C. Simo, O.C. Zienkiewicz and A.C. Chan [1986], The Paich Test: A Condi-
tion for Assessing Finite Element Convergence, Int. J. Numer. Methods Eng., 22, 39-
62

Taylor R.L. {1987], Finite Element Analysis of Linear Shcll Problems, Proceedings The
Mathematics of Finite Elements and Applicarions, (ed. J.R. Whiteman), Academic
Press, 211-223

Tessler A. and T.J.R. Hughes [1983], An Improved Treatment of Transverse Shear in the
Mindlin-Type Four-Node Quadrilateral Element, Comput. Methods Appl. Mech. Eng.,
39, 311-335



Timoshenko S. and J.N. Goodtier {1951], Theory of Elasriciry, McGraw-Hill

Wilson E.L. [1974], The Staiic Condensation Algorithm, Int. J. Numer. Methods Eng.. ¥,
199-203

Wiison E.L. [1980], SAP80 - Struciural Analysis Program for Small or Large Computer
Systems, Proceedings CEPA Fall Conference

Zienkiewicz O.C. and R.L. Taylor {1989}, The Finite Element Method: Basic Formulation
and Linear Probiems, vol I, McGraw-Hili

Zienkiewicz O.C., R.L. Taylor, P. Papadopoulos and E. Onate [1989], Plate Bending Ele-
ments with Discrete Constraints: New Triangular Elements, Report UCB/SEMM

89/07, University of California, Berkeiey



30

8. LIST OF FIGURES

Figure 1.- Solid Element with Rotational Degrees of Freedom

Figure 2.- Thick Flat Shell Element with Drilling Degrees of Freedom
Figure 3.- A Single Element Patch Test for Solid Element

Figure 4.- A Simple Beam

Figure 5.- Short Cantilever Beam

Figure 6.- Simply Supported Square Plate with Uniformn Loading
Figure 7.- Typical Finite Element Mesh for Square Plate

Figure 8.- Typical Fintte Element Mesh for Circular Plate

Figure 9.- Pinched Hemisphere with Hole

Figure 10.- Typical Finite Element Mesh for Hemispherical Shell
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Figure 1.- Solid Element with Rotational Degrees
of Freedom
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for Solid Element
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