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ABSTRACT 

The world's foremost arboviral vector, Aedes aegypti, has recently been established in 

California, with detections in 28 of 58 counties as of 2023(Aedes Aegypti and Aedes Albopictus 

Mosquitoes, n.d.). This dissertation explores population dynamics within the state, and the 

biology of insecticide resistance mechanisms using populations derived from Greater Los 

Angeles, Fresno, and Tulare counties. 

In Chapter 1, we utilize genomic data to investigate the population dynamics of Ae. 

aegypti in California. We report evidence of multiple introductions into the state, with distinct 

genetic clusters identified. We investigate a specific hypothesis: that a population of Ae. aegypti 

detected in Exeter, CA, in 2014 was successfully eradicated, and the region was then reinvaded 

in 2017. We find evidence to support this hypothesis and posit that the region was reinvaded by 

a population from Southern California. This chapter also explores varying levels of resistance to 

pyrethroid insecticides, facilitated by mutations in the Voltage-Gated Sodium Channel (VGSC), 

a primary mechanism of resistance. 

Chapter 2 delves into a phenotypic comparison between the Rockefeller laboratory 

strain and wild California Ae. aegypti populations. By integrating lifespan, transcriptomic, and 

metabolomic data, we uncovered significant differences in metabolic pathways, particularly 

those related to oxidoreductase activity. Notably, we observed baseline differences in oxidative 

stress response, energy metabolism, and lipid profiles between the populations. Our findings 

suggest that larval nutrition and metabolic resistance to pyrethroids significantly impact 

mosquito physiology and longevity. 

Finally, Chapter 3 investigates metabolic shifts in response to pyrethroid (Deltamethrin) 

exposure in two Ae. aegypti populations with distinct genetic backgrounds collected from Los 

Angeles and the Central Valley. By examining metabolic changes in two near-wild populations, 

we identified significant alterations in amino acid, lipid, and nucleotide metabolism following 



 vi 

exposure. This study highlights the rapidity and variability of metabolic responses to 

insecticides, underlining potential targets for novel synergists in mosquito control. 

Overall, this dissertation uses a diversity of tools to investigate the spread, genetic diversity, and 

insecticide resistance mechanisms in Ae. aegypti, with a focus on California's evolving situation. 

The findings advance our understanding of Ae. aegypti resistance biology, vector management, 

and suggest avenues for more targeted and effective mosquito control measures 
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INTRODUCTION 1 

The mosquito Aedes aegypti is the major vector of chikungunya, Zika, yellow fever, and 2 

dengue, viral illnesses of which nearly half of the world’s population is at risk (Soni et al., 2023). 3 

The past decade has seen the rapid expansion in the range of Ae. aegypti and more cases of 4 

the viruses they carry (Kraemer et al., 2019). Despite earlier documented introductions, Ae. 5 

aegypti had failed to establish in California until its detection in the Central Valley region in 2013 6 

(Gloria-Soria et al., 2014; Jewell & Grodhaus, 1984). As of 2023, it has been detected in twenty-7 

eight of California’s fifty-eight counties, as far north as Shasta County (Aedes Aegypti and 8 

Aedes Albopictus Mosquitoes, n.d.).  9 

Aedes aegypti’s recent successful establishment in California, and globally, has been 10 

facilitated by the expansion of suitable urban and suburban microclimates, climate change, and 11 

widespread resistance to pyrethroid insecticides used for adult control (Catherine L. Moyes et 12 

al., 2017; Kasai et al., 2014; Kraemer et al., 2019; Smith et al., 2016; William C. Black et al., 13 

2021). Pyrethroid insecticides are organic compounds that share structural similarity to 14 

pyrethrins naturally produced by Chrysanthemums (Soderlund, 2010). These compounds act as 15 

neurotoxins by prolonging the opening of insects’ Voltage Gated Sodium Channel (VGSC) and 16 

have been favored for indoor and outdoor spraying because of their effectiveness and safety 17 

(Vais et al., 2001). In California, vector control for public health purposes has relied heavily on 18 

pyrethrins and pyrethroids, though usage of organophosphate insecticides (acetylcholinesterase 19 

inhibitors) is on the rise due to widespread pyrethroid resistance in vectors (Liebman et al., 20 

2019; Matthews, 2011; Overview of Mosquito Control Practices in California, 2008; Yang et al., 21 

2020; Yoshimizu et al., 2020).  22 

The primary mechanism by which insects have evolved to resist pyrethroids involves 23 

mutations in the insects’ VGSC, which prevents pyrethroids from effectively binding their target 24 

site. The specific sites of mutations can vary regionally, and many populations have multiple 25 

complementary VGSC mutations (Catherine L. Moyes et al., 2017; Chen et al., 2020). Multiple 26 
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target side modifications have been reported in California populations of Aedes aegypti 27 

(Liebman et al., 2019; Mack et al., 2021). They include V410L, which was first detected in Brazil 28 

(Haddi et al., 2017) and is present in the transmembrane segment 6 of domain I (IS6). This 29 

mutation has been demonstrated to confer resistance to a broad swath of pyrethroids, and 30 

frequently co-occurs with the mutation F1534C, which is present in the transmembrane segment 31 

6 of domain III (IIIS6) and has be found to have evolved independently in Ae. aegypti multiple 32 

times (Cosme et al., 2020). Additionally V1016I, present in IIS6, is present and further protects 33 

against pyrethroids (Linss et al., 2014). Additional mutations have been identified in the state, 34 

and are described in Chapter 1 and a companion paper, though their impact on pyrethroid 35 

resistance has not been thoroughly investigated (Lee et al., 2019; Mack et al., 2021).  36 

In addition to target site mutations, a variety of other mechanisms of resistance have 37 

been reported in mosquitoes. These include behavioral resistance, including avoidance (Amelia-38 

Yap et al., 2018), penetration resistance mediated by modifications of the insect cuticle to 39 

decrease insecticide uptake (Balabanidou et al., 2018; Jacobs et al., 2023), and a striking 40 

diversity of metabolic mechanisms of detoxification (William C. Black et al., 2021). In Aedes 41 

aegypti, Cytochrome P450 monooxygenases play important roles in pyrethroid resistance (John 42 

Vontas et al., 2020; Nauen et al., 2022; Smith et al., 2016). Cytochrome p450s are a heme-43 

containing enzyme superfamily found in all kingdoms of life (Nelson, 2018) and act on both 44 

endogenous and exogenous substrates with notable roles in xenobiotic detoxification, lipid 45 

metabolism, and hormone metabolism, among other roles (Balabanidou et al., 2016; 46 

Domanitskaya et al., 2014; Gong et al., 2017; Sieglaff et al., 2005).  47 

Cytochrome p450 mediated pyrethroid resistance has been identified in California 48 

Central Valley mosquito populations using bottle bioassays with piperonyl butoxide (PBO), a 49 

mixed function oxidase inhibiting insecticide synergist (Cornel et al., 2016). The exact 50 

cytochrome P450 genes associated with pyrethroid resistance vary by population and can be 51 

difficult to assay. Cytochrome p450s can be controlled at the level of transcription with groups 52 
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reporting modifications in regulatory regions, coding regions, and gene duplication events in 53 

mosquitoes (Cattel et al., 2020; Itokawa et al., 2013; Liu et al., 2011; Smith et al., 2018). While 54 

biochemical methods of assaying monooxygenase activity exist and are utilized, they assay 55 

levels of all monooxygenases without targeting specific dynamics with resistance conferring 56 

P450s (McAllister et al., 2012; Yang et al., 2020). Bioassays with synergists are valuable in this 57 

regard, however they are relatively time intensive and require large numbers of insects, which 58 

makes them impractical for routine surveillance.  59 

Given the regional variability of pyrethroid resistance mechanisms (Chen et al., 2020; 60 

John Vontas et al., 2020), understanding invasive population origin can provide important 61 

insights into resistance status. Following the detection of Ae. aegypti in the Central Valley, 62 

microsatellite data was utilized to investigate population origin (Gloria-Soria et al., 2014), which 63 

suggested relationships to populations in the southeastern USA and Mexico. This study was 64 

followed by additional projects that identified multiple distinct populations in CA, with a southern 65 

Mexico, as well as multiple distinct Central Valley clusters related to southeastern US 66 

populations (Lee et al., 2019; Pless et al., 2017). The clear finding that the spread of Ae. aegypti 67 

in California was attributable to multiple distinct introductions rather than simple in-state 68 

expansion provided the opportunity to further investigate population dynamics and variability in 69 

resistance status and mechanisms.  70 

In chapter one, we utilize genomic data to create a 37 SNP multiplex assay to study 71 

population dynamics of invasive CA Ae. aegypti. We investigate a specific hypothesis; that Ae. 72 

aegypti was introduced, eradicated, then reintroduced to the Central Valley city of Exeter, CA 73 

(Kelly et al., 2021). We report the population genomic analysis of 243 Ae. aegypti from 74 

California, Arizona, Florida, and Mexico, and evaluate the ability of our multiplex assay to 75 

discern population clustering compared to whole-genome sequencing and report frequencies of 76 

pyrethroid resistance associated voltage-gated sodium channel mutations. We find evidence 77 

that the city of Exeter, California, had Ae. aegypti introduced in 2014 from Florida. After 78 
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aggressive eradication efforts, the city then had no detection events until 2017. Samples 79 

collected following that period show no relationship to the 2014 samples, but do cluster 80 

alongside samples from southern California, suggesting a separate introduction event. We 81 

report increases in the allele frequencies of two well-known VGSC mutations (V410L and 82 

V1016I) and two novel mutations (S723T and I915K) reported in a companion paper (Mack et 83 

al., 2021), and the detection (but not increase) of a novel mutation, Q1853R (Kelly et al., 2021).  84 

In chapter two, we perform a thorough comparison of an F2 Central Valley derived 85 

pyrethroid-resistant population of Ae. aegypti against our insecticide susceptible lab reference 86 

strain, Rockefeller. We integrate transcriptomic and metabolomic data along with lifespan data 87 

to investigate whether metabolites could be used as markers of pyrethroid resistance status. We 88 

also investigate hypotheses about how metabolic resistance to pyrethroids may impact various 89 

aspects of mosquito physiology and metabolism. We find evidence of constitutive upregulation 90 

of oxidoreductase activity and glutathione metabolism in Clovis, our Central Valley population. 91 

We find significant differences in lipid profiles, and evidence of increased flux through the 92 

pentose phosphate pathway in Central Valley mosquitoes, which is likely required to support 93 

oxidoreductase activity. We also describe signs of metabolic inefficiency in our laboratory 94 

reference strain.  95 

In chapter three, we analyze metabolic shifts in two near-wild populations of Ae. aegypti 96 

with different genetic backgrounds in response to pyrethroid (Deltamethrin) exposure. We 97 

collect samples as they show symptoms of pyrethroid intoxication, and at the seventy-minute 98 

survival mark, after which mortality becomes less likely, and survivors are designated as 99 

resistant. We find for resistant insects that lysolipids, fatty acids, and carnitines are elevated 100 

following sublethal deltamethrin exposure, and variable flux through ammonia metabolic 101 

pathways between the two populations. Lastly, we demonstrate the essential role B-vitamins 102 

play in recovery from pyrethroid exposure and discuss potential targets for pyrethroid 103 

synergism.      104 
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Supplementary Figure 1. Log likelihood values of Admixture runs 

 

Supplementary Figure 2 | Admixture plots for higher K values. 
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ABSTRACT 

Comparisons between field derived insect colonies and insecticide susceptible 

laboratory strains can provide valuable insight in insect research, tempered by the 

awareness that colonization and other life-history differences can make phenotypic 

differences difficult to attribute. Laboratory strains are essential benchmarks in 

monitoring insecticide resistance status, and can play important roles in attempts to 

understand aspects of field population physiology. This is especially true when 

researching pyrethroid resistance in the yellow fever mosquito Ae.aegypti, as wild 

meaningfully pyrethroid susceptible populations are exceedingly rare. As such, we 

endeavor to conduct a thorough phenotypic comparison of a wild derived F2 Central 

Valley mosquitoes compared to the susceptible lab reference colony, Rockefeller 

(Rock), using metabolomic data, gene expression data and lifespan data in order to 

better understand resistance physiology in this invasive mosquito population and 

investigate whether metabolites could be developed as diagnostic biomarkers of 

metabolic resistance status. We compare Rockefeller and Central Valley mosquitoes 

using gene expression and metabolomic data. We additionally compare the impacts of 

larval diet on lifespan for multiple Central Valley mosquito populations with variable 

levels of metabolic resistance to pyrethroids to Rockefeller mosquitoes. From lifespan 

analysis we find more metabolically resistant wild derived mosquitoes lifespan is 

sensitive to restricted larval nutrition. From metabolomic and gene expression analysis 

we find Central Valley mosquitoes have constitutive upregulation of oxidoreductase 

activity, glutathione metabolism and increased flux through the pentose phosphate 

pathway, likely to support these processes. We find Rock, on the other hand, 
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demonstrates evidence of metabolic inefficiency and mitochondrial dysregulation, which 

may be tolerated in a laboratory environment. We review how Central Valley Ae. aegypti 

P450 and GSTE profiles compared to other insecticide resistant groups, and conclude 

that while metabolomic data can classify our study groups, few detected markers meet 

high fold change thresholds that would make them good candidates for biomarker 

development.  
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INTRODUCTION 

Insect reference strains play essential roles in insect research. Reference strains 

enable reproducible experimentation, and can serve as important baselines for 

comparative analyses. These reference strains differ from colonies in that strains are 

bred continuously in the lab for many generations without “replenishment” with field 

collected mosquitoes (Kuno 2010). These strains become genetically homogenous and 

may change significantly as they proliferate without the selective pressures of the field. 

The Rockefeller (Rock) strain of Aedes aegypti (Ae. aegypti) has a history nearly 140 

years long, and is frequently used as a reference strain in insecticide resistance 

evaluations of Ae. aegypti due to its susceptibility to the insecticides typically applied for 

adult mosquito control, mainly pyrethroids and organophosphates.  

Rock is frequently utilized in insect physiology and resistance studies, where 

comprehensive physiological research comparing Rock to wild Ae. aegypti populations 

provides important context. Baseline differences in stress response physiology, energy 

metabolism, and chemoreception have important implications for mosquito research in 

areas like viral competence, metabolism, and insecticide resistance. In this study we 

provide a comprehensive phenotypic comparison of Rock and a near wild colony 

derived from the Central Valley of California by integrating metabolomic and 

transcriptomic analyses with phenotypic assays. 

Several studies have used transcriptomic data in attempts to identify shared 

pyrethroid detoxification pathways that could be candidates for surveillance of metabolic 

resistance (Jean-Philippe David et al. 2014; Frédéric Faucon et al. 2017; Muhammad 

https://paperpile.com/c/Xuk4nd/j6z8
https://paperpile.com/c/Xuk4nd/UA2w+stiS+Pph1+J1Yv+LqqB+Fbdb
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Riaz et al. 2013; Strode et al. 2008; Poupardin et al. 2012; Saavedra-Rodriguez et al. 

2019). However, no previous research has integrated metabolomic data.  

California was free of Ae. aegypti until 2013, when the mosquito was detected in 

the city of Clovis within Fresno County in the heart of the San Joaquin Valley (Metzger 

et al. 2017). Its initial persistence through the Valley’s winter months was a surprise, 

and it has since been detected throughout the state. There are multiple population 

groups of Ae. aegypti in California. The Ae. aegypti in the southern part of the state 

appear to resemble surrounding populations in the southwestern US, while the origins 

of Ae. aegypti in the San Joaquin Valley are less clear and appear derived from multiple 

introductions, though one group bears genetic similarities to those found in the 

Southeastern US (Pless et al. 2017). Deployment of pesticides for control of these 

populations in Clovis, CA and surrounding cities revealed that they demonstrate a 

strong resistance to pyrethroids (Cornel et al. 2016; Mack et al. 2021). Early eradication 

efforts failed, and these mosquitoes have remained a persistent problem. This area was 

even selected as a candidate for the evaluation of Wolbachia-infected mosquito release 

program(Crawford et al. 2020). 

This study endeavors to investigate how wild, insecticide resistant populations of 

Aedes aegypti in California compare physiologically to a susceptible lab reference strain 

(Rockefeller) by integrating transcriptomic and metabolomics analyses. In addition, we 

use near wild (F2) populations with similar background genetics and variable resistance 

profiles to explore hypotheses related to the trade offs between resistance and fitness 

parameters such as lifespan and fecundity. These studies elucidate the importance of 

the pentose phosphate pathway in metabolic resistance and highlight important 

https://paperpile.com/c/Xuk4nd/UA2w+stiS+Pph1+J1Yv+LqqB+Fbdb
https://paperpile.com/c/Xuk4nd/UA2w+stiS+Pph1+J1Yv+LqqB+Fbdb
https://paperpile.com/c/Xuk4nd/DJ3o
https://paperpile.com/c/Xuk4nd/DJ3o
https://paperpile.com/c/Xuk4nd/TDn6
https://paperpile.com/c/Xuk4nd/msCj+TcUB
https://paperpile.com/c/Xuk4nd/om3h
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alterations in cellular metabolism between a wild and colonized mosquito line. We also 

explore the potential for use of metabolites as markers of the insecticide resistance 

phenotype.  

METHODS  

Insect Colonies 

Lifespan, fecundity, metabolomic and transcriptomic studies were conducted 

using near wild (F2) colonies of Aedes aegypti collected from cities in Fresno and 

Tulare county and maintained in our insectary. The Rockefeller (Rock) mosquitoes are 

an inbred laboratory strain (Kuno 2010). The wild derived colonies are F2 colonies 

generated from field collections conducted by the Cornel lab at the Kearney Research 

and Extension center in three cities in the San Joaquin valley of California; Clovis, 

Dinuba, and Sanger. This region has a high prevalence of Aedes aegypti, and was the 

site of first detection in 2013 when Aedes aegypti were introduced into the state (Gloria-

Soria et al. 2014).  

Mosquito Rearing 

Metabolomic and Transcriptomic Analyses: Samples were reared on a standard 

diet composed of Tetramin fish food. Samples were age-matched by pupation date and 

collected by aspiration 5 days post eclosion. The 10% sucrose solution used to feed 

adult mosquitoes was withdrawn 36 hours prior to sample collection, and replaced with 

water. Samples were flash frozen on liquid nitrogen, and then stored at -80 until they 

were submitted to the West Coast Metabolomics core for analysis. The collection period 

for all samples was restricted to a 1.5 hour window from 1 to 2:30pm on a single day.  

https://paperpile.com/c/Xuk4nd/j6z8
https://paperpile.com/c/Xuk4nd/cQrt
https://paperpile.com/c/Xuk4nd/cQrt
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Lifespan and Fecundity Assays: Study mosquitoes were reared at a density of 

200 larvae per tray with 1000mls of tap water. Larvae were fed two diet treatments 

consisting of FLUVAL Cichlid pellets: our standard Ae. aegypti culture diet (full diet) and 

a restricted diet (half) (Table 2.1). Pupation was tracked daily from 5-9 days post 

eclosion. All treatments were blood-fed at 25 days post-eclosion. Adults were placed 

into cages by tray and dead individuals were counted and removed daily.  

 

 

 

 

 

 

Table 2.1. Larval Diet Treatments for Lifespan and Fecundity Assays. A pinch is a 

measurement equal to 1/16 teaspoons, while a drop is equivalent to 1/64th teaspoons.  

Day Full Diet (ground fish flakes) Half Diet 

0 (Hatch Day) 2 pinches  1 pinch  

1 1 drops  No food 

2 2 drops 1 drops  

3 4 drops 2 drops 
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4 4 drops 2 drops 

5 8 drops 4 drops 

6 6 drops 3 drops 

7 4 drops 2 drops 

 

Metabolomic Profiling 

Frozen samples were submitted to the University of California, Davis West Coast 

Metabolomics Center for analysis using a set of 3 complementary metabolomic mass 

spectrometry (MS) based assays, designed to measure primary metabolites, lipids, and 

biogenic amines. Primary metabolites, including carbohydrates, amino acids, fatty acids, 

nucleotides and aromatics, were detected using a gas chromatography-time-of-flight 

(GC-TOF) mass spectrometer. Lipids were analyzed on a Quadrupole Time of Flight 

Mass Spectrometer (QTOF-MS) and with MS-Dial 3.98, after filtering for a minimum 

peak intensity of 1000. Biogenic amines, including acylcarnitines, TMAO, nucleotides 

and nucleosides, methylated and acetylated amines, di- and oligopeptides, were 

measured using a Hydrophilic Interaction Liquid Chromatography Quadrupole Time-of-

Flight Mass Spectrometry with Tandem Mass Spectrometry(HILIC QTOF MS/MS). Data 

was analyzed using Metaboanalyst 5.0 and ChemRich (Pang et al. 2021; Barupal and 

Fiehn 2017). Samples were normalized by the sum of internal standards, log 

transformed and mean centered prior to performing principal component analysis. For 

each assay panel t-tests were performed followed by false-discovery rate. Throughout 

the chapter p values refer to FDR adjusted p values. Accurate peak annotation is a 

https://paperpile.com/c/Xuk4nd/0RgA+oQMc
https://paperpile.com/c/Xuk4nd/0RgA+oQMc
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significant hurdle to interpretation of untargeted metabolomics data, so we used the 

Mummichog algorithm within Metaboanalyst to investigate pathway activity, and 

generate insight from both annotated and unannotated peaks in our dataset (Pang et al. 

2021). Mummichog maps peaks to predefined metabolic networks or pathways using 

retention time and mass to charge ratio. 

Library Prep and Transcriptome Sequencing  

RNA was extracted using a Zymo RNA Cell and Tissue Kit, and submitted to the 

UC Davis Genome Center for library prep and 3’ Taq-seq analysis. Barcoded 

sequencing libraries were prepared using the QuantSeq FWD kit (Lexogen, Vienna, 

Austria) for multiplexed sequencing according to the recommendations of the 

manufacturer using both the UDI-adapter and UMI Second-Strand Synthesis modules 

(Lexogen). The fragment size distribution of the libraries was verified via micro-capillary 

gel electrophoresis on a LabChip GX system (PerkinElmer, Waltham, MA). The libraries 

were quantified by fluorometry on a Qubit fluorometer (LifeTechnologies, Carlsbad, CA), 

and pooled in equimolar ratios. The library pool was quantified via qPCR with a Kapa 

Library Quant kit (Kapa Biosystems / Roche, Basel, Switzerland) on a QuantStudio 5 

system (Applied Biosystems, Foster City, CA). The libraries were sequenced on a 

HiSeq 4000 sequencer (Illumina, San Diego, CA) with single-end 100 bp reads.Reads 

were checked for quality using FastQC v0.11.9, then trimmed using bbduk, a function 

within bbmap (v37-50). Resulting reads were aligned to the Aedes aegypti LVP_AGWG-

50 genome, indexed with an –sjdbOverhang 99 76 using STAR v2.7.2a. Read files were 

then indexed using samtools v1.3.1.  

https://paperpile.com/c/Xuk4nd/0RgA
https://paperpile.com/c/Xuk4nd/0RgA
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Differential Gene Expression and Enrichment Analyses 

Differential gene expression analysis was performed using edgeR(Robinson, 

McCarthy, and Smyth 2010). Additionally iDEP (integrated differential expression and 

pathway analysis) was used for exploratory data analysis(Ge, Son, and Yao 2018). 

Samples were filtered to only include genes with a minimum of 2 Counts per million 

(CPM) in 12 of 19 libraries. Of the 19804 genes in 19 samples, 9195 genes passed 

filtering. Principal Component analysis was employed to evaluate sample clustering. 

The differential gene expression threshold was set at 1.5 minimum fold change, with a 

false-discovery rate cutoff of 0.05. The differentially expressed genes (DEG) were used 

to perform gene set enrichment analysis (Table 2). PGSEA (parametric gene set 

enrichment analysis) was performed using the PGSEA package with all samples (Figure 

2.5)(Furge and Dykema, n.d.). Gene annotations were downloaded from Vectorbase 65. 

For genes with unspecified products Computed GO Functions and Components were 

used to infer function, alongside cross referencing of mosquito and drosophilid 

orthologs.  

RESULTS  

More resistant field lines live longest, except for females under nutritional stress.  

Median time-to-knockdown and voltage gated sodium channel mutation 

frequency for all populations are reported in Mack et al (Mack et al. 2021). The V410L, 

F1534C and V1016I mutations are nearly fixed in these populations (Liebman et al. 

2019; Mack et al. 2021). The median knock-down time  in response to pyrethrum for 

Clovis mosquitoes was 82 minutes, 11 times greater than that of the susceptible 

https://paperpile.com/c/Xuk4nd/IOk0
https://paperpile.com/c/Xuk4nd/IOk0
https://paperpile.com/c/Xuk4nd/r3XB
https://paperpile.com/c/Xuk4nd/Wuqw
https://paperpile.com/c/Xuk4nd/TcUB
https://paperpile.com/c/Xuk4nd/Z6kv+TcUB
https://paperpile.com/c/Xuk4nd/Z6kv+TcUB
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reference colony, Rockefeller (5 minutes). The median knock-down time of Dinuba 

mosquitoes was 53 minutes, just 1.35x greater than that of Sanger at 39 minutes, and 

7.5x greater than that of Rockefeller. The median knock-down time of Sanger was 5.5x 

greater than Rockefeller. The diagnostic time for pyrethrum is 15 minutes, the time by 

which 100% mortality would be observed for a susceptible population. On a standard 

larval diet female body size did not differ significantly between groups and survivorship 

was only significantly different by survival analysis for Sanger vs. Rockefeller 

mosquitoes, with Sanger mosquitoes exhibiting a shorter median survival time but a 

larger portion of long lived mosquitoes (>60 days) (Figure 2.2). Females of each 

population outlived their male counterparts in both treatments. When mosquitoes were 

subjected to a restricted larval diet, both Sanger and Rockefeller females outlived their 

standard diet counterparts. This was not the case for the more metabolically resistant 

Dinuba, which experienced a decrease in life expectancy. For males, the restricted 

larval diet was only life-extending for Sanger males, and non-significant for Rockefeller 

and Dinuba. On the full larval diet we measured first clutch size and observed a slight 

general trend of decreased fecundity with increasing resistance to pyrethrum, but 

sample sizes were small and the results were not statistically significant (Supplementary 

Figure 2.1).  

Metabolomics Panels and Transcriptome Profiles Classify Populations in Principal 

Component Analysis 

Of the 133 annotated primary metabolite features just 29 were differentially 

enriched with a fold change over 1.5 and p<0.05 (9 up, 20 down in Clovis relative to 

Rock). Of the annotated metabolites only sucrose levels differed by greater than 10 fold 
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change (up 16x Rock, p =0.001) From the biogenic amine panel 15 compounds were 

up, 29 down out of 161 annotated features. The dipeptide Gly-Pro was up 10x in Clovis  

(p < 0.005). From the lipid panel of 590 annotated features 77 were up, 32 were down in 

Clovis relative to Rock with a 1.5 fold change cutoff and FDR adjusted p<0.05, and no 

annotated compounds met our 10x, sub 0.005 FDR adjusted p threshold. Principal 

component analysis was performed to investigate sample clustering for both 

transcriptome data and the three metabolomics panels (lipids, biogenic amines and 

primary metabolites). All four datasets separated samples by population, with the 

greatest overlap in the biogenic amine panel (Figure 2.3). Gene expression data 

resulted in the clearest separation by population, but PC1 and PC2 explained just 35% 

of the variance in the data. Lipid metabolite data, on the other hand, still grouped 

samples well by population, and PC1 and PC2 explained 62% of the variance in the 

dataset. Notably Rock samples appeared to cluster more tightly, likely reflecting the 

lower diversity in this laboratory strain. We utilized Random Forest analysis to select 

features that differentiate between our population groups, the ten top features arranged 

by feature importance are included in Figure 2.3. From the gene expression data 

CYP9J26, a cytochrome P450 repeatedly associated with insecticide resistant groups 

was a top distinguishing feature(Frédéric Faucon et al. 2017; Strode et al. 2008). 

Notably across two assays (primary metabolites and biogenic amines) Guanosine and 

Threonine were top features, elevated in Clovis. Phosphatidyl-inositols were 

distinguishing features abundant in Clovis, while ceramides were enriched in 

Rockefeller. 

https://paperpile.com/c/Xuk4nd/stiS+J1Yv
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Metabolomic Profiles Reveal Enrichment in Pentose Phosphate Pathway Metabolites, 

Glutathione Metabolism and Lysolipids in Wild Ae. aegypti relative to Rockefeller 

In order to gain insight from unannotated metabolites LC-MS peaks were 

analyzed using the Metaboanalyst functional analysis module within Metaboanalyst. 

From the biogenic amine data 2694 features were analyzed, and 31% were significant 

with a p value threshold of 0.005. The lipid dataset included 16,841 peaks, 10556 peaks 

were detected in positive ESI mode, and 6285 were detected in negative ESI mode of 

which 18% and 45% of peaks were significant respectively. Pathway enrichments are 

represented in Figure 2.5. Metabolic networks are relatively less-well annotated with 

regards to metabolites, and pooling metabolomics panels resulted in fewer significant 

pathway hits compared to gene set enrichment analysis.  

We had predicted maintenance of enzymes conferring pyrethroid resistance like 

CYPs and GSTs may result in decreased energy stores for Clovis mosquitoes 

(Hardstone et al. 2010), yet we instead observed that Clovis mosquitoes had relative 

enrichment of saturated and unsaturated triacylglycerols. We observed Clovis 

mosquitoes had enrichment of unsaturated fatty acids (arachidonic acid being the key 

compound, Supplemental Table 2.1), but lower amounts of ceramides and 

phosphatidylethanolamines, which play essential roles in the modulation of membrane 

fluidity in insect cells (Dawaliby et al. 2016). Ceramides, enriched in Rock, also play 

important roles in mediating fecundity in insects, and are associated with mitochondrial 

dysfunction in mammals (Shi et al. 2021; Roszczyc-Owsiejczuk and Zabielski 2021). 

Fatty acids and lysolipids, common stress biomarkers, were enriched in Clovis, which 

aligned with our hypothesis that Clovis may have elevated markers of oxidative stress 

https://paperpile.com/c/Xuk4nd/1Yj3
https://paperpile.com/c/Xuk4nd/udZL
https://paperpile.com/c/Xuk4nd/jPFP+5ac8
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(Tan et al. 2020; Stanley and Kim 2020), as were levels of oxidized Glutathione (Figure 

2.6). Histidine was enriched in Clovis, and plays an important role in normal mosquito 

egg development (Hansen et al. 2011). We observe significant under-enrichment of 

amino acids in Clovis, with Threonine, Histidine, Proline and Lysine as exceptions. 

Differential enrichment of certain b vitamins and their derivatives was also observed, 

with biotin and folinic acid enriched in Rock, while nicotinamide and 4-pyridoxic acid 

were enriched in Clovis. We observed subtle alterations in sugar profiles; sucrose and 

ribose were elevated in Rock (1.6 FC and 1.4 FC), while glucose was very slightly 

elevated in Clovis (1.3 FC) and glucose-6-phsophate, fructose-6-phosphate, ribose-5-

phosphate, phosphogluconic acid and fructose-1-phoshphate, metabolites in glycolysis 

and the PPP, were all elevated in Clovis(Figure 2.6).  

We observed differential enrichment of several neuro-active metabolites and 

urea cycle metabolites(Figure 2.6). Histamine levels were moderately elevated in Clovis 

(1.6FC, p <0.0005), and histamine acts as a neurotransmitter in insects, with histamine 

receptors active in mosquito brains and peripheral tissues(Matthews et al. 2016). We 

found 3-Hydroxykynurenine was elevated in Rock (2.5 FC, p<0.005), as was Kynurenic 

acid (1.6FC, p<0.005), both important metabolites of tryptophan metabolism to 

xanthurenic acid(1.2FC up in Rock, p =0.006) in mosquitoes, a processes essential for 

normal eye development and mediating oxidative stress from blood-feeding in 

mosquitoes(Han, Beerntsen, and Li 2007; Lima et al. 2012). Gamma-Aminobutyric 

acid(GABA) plays an important role in mediating immunity to dengue infection, and was 

enriched in Rock (GABA, 1.6 FC, p<0.005)(Zhu et al. 2017). Components of the urea 

https://paperpile.com/c/Xuk4nd/XtpQ+b3td
https://paperpile.com/c/Xuk4nd/OWCk
https://paperpile.com/c/Xuk4nd/76vv
https://paperpile.com/c/Xuk4nd/M4pI+YuPE
https://paperpile.com/c/Xuk4nd/D4Pt
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cycle including ornithine(1.5 FC, p<0.005) and urea (2.2 FC, p<0.005) were moderately 

elevated in Rock.  

Genes Associated with Detoxification are Overexpressed in Clovis, while Immune and 

Catabolic Processes are up In Rock  

Sequencing generated 3’ Taq-Seq single end reads, with an average library size 

of 1498609(min:826843, max:1928446) across samples an average of 87% of reads 

mapped to the reference genome. Gene annotations were derived from Vectorbase 

(Release 65). Over 900 genes (493 up in Clovis, 419 down) were differentially 

expressed between the two groups with a FDR cutoff of 0.05, and a minimum fold 

change of 1.5, and 383 (204up, 179 down) were differentially expressed with a 2x fold 

change threshold. Detoxification genes, particularly Cytochrome P450s were, 

unsurprisingly, among the most differentially expressed genes (DEGs). The most 

overexpressed in Clovis was CYP6AG4 (p <0.005, 29 FC), which was associated with a 

pyrethroid susceptible strain in (Strode et al. 2008), while CYP9J26( p <0.005, 17 FC) 

was second. Others included CYP6AG7(p <0.005, 7 FC) associated with Deltamethrin 

resistance (Saavedra-Rodriguez et al. 2019), CYP6BB2 (p <0.005, 5 FC) 

overexpressed in permethrin, imidacloprid and propoxur selected resistant larvae (Jean-

Philippe David et al. 2014) and insecticide resistant mosquitoes in Puerto Rico relative 

to Rock (Derilus et al. 2023). Additionally CYP6Z8 (5 FC, p <0.005) and GSTE6,4,3 (p 

<0.005) were overexpressed in Clovis and trend towards enrichment in resistant groups 

in (Frédéric Faucon et al. 2017). GSTE6 was also enriched in Puerto Rican mosquitoes 

that survived lambda-cyhalothrin exposure(Derilus et al. 2023). Enrichment analyses 

(Table 2.2, Figure 2.5) reveal that genes related to monooxygenase activity, antioxidant 

https://paperpile.com/c/Xuk4nd/J1Yv
https://paperpile.com/c/Xuk4nd/Fbdb
https://paperpile.com/c/Xuk4nd/UA2w
https://paperpile.com/c/Xuk4nd/UA2w
https://paperpile.com/c/Xuk4nd/wC9V
https://paperpile.com/c/Xuk4nd/stiS
https://paperpile.com/c/Xuk4nd/wC9V
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activity and response to oxidative stress are upregulated in Clovis. Additionally, 

enrichment analyses, complimented by metabolomic data, support enrichment of the 

pentose phosphate pathway and NADP metabolic processes. While Central Valley Ae. 

aegypti were the subject of a thorough pyrethroid exposure response study, we find little 

overlap in the detoxifying genes identified in the study, with the exception of 

AAEL006829, a microsomal glutathione-s-transferase, and significant overlap in 

pathway enrichment (Figure 2 within, (Mack and Attardo 2023). This may reflect that the 

detoxifying genes upregulated in our study are involved in more immediate insecticide 

response (<6 hours post exposure), or play other roles such as mediating cytotoxic 

stress induced by xenobiotic challenge and maintenance of the metabolic resistance 

phenotype.  

When broadly comparing disparate mosquito populations the reasons for 

observed differences are often impossible to know conclusively. That said, we 

hypothesized that some of the differences we may observe in Clovis and Rock may be 

related to environmental adaptation. Rockefeller, as a reference strain, is typically 

maintained in high-temp, high-humidity insectaries. Our Clovis mosquitoes, on the other 

hand, are near-wild mosquitoes collected from the Central Valley, USDA zone 9b and 

parent generations experienced hot, dry summers and winter lows reaching 20-25 

degrees celsius. Recent work investigating genomic signatures of local adaptation in CA 

Ae. aegypti resulted in a list of 112 candidate genes as putative candidates of local 

adaptation (Soudi et al. 2023). Of these, 18 were differentially expressed as transcripts 

in our study, 11 up in Clovis (p <0.05) and 7 were up in Rock. Up in Clovis were 

Synotropin-like 1, involved in adapting cellular homeostasis (Carney et al. 2023) 

https://paperpile.com/c/Xuk4nd/FLwO
https://paperpile.com/c/Xuk4nd/aQtw
https://paperpile.com/c/Xuk4nd/suIa
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(AAEL019820, 2.2 FC), and fringe, which is involved in modulating Notch signaling 

(Grammont and Irvine 2001)(AAEL002253), lipophorin receptor 2 (AAEL019755), 

unpaired 3, involved in tissue repair and development (Wang et al. 2014) 

(AAEL024562), SoxNeuro, a transcription factor involved in central nervous system 

development, (AAEL000584) were all 1.6 fold up. Bloated tubules (AAEL010883) was 

up just 1.2 fold, but notably encodes a member of the sodium and chloride dependent 

neurotransmitter family. In Rock javen-like(AAEL004209), Rab23 (AAEL001532) and 

Tenascin major (AAEL000405) were up (FC of 1.4, 1.3 and 1.3) and notably all involved 

in embryonic development. We identify additional genes involved in ion balance not 

identified in the local adaptation study, including differential expression of inward-

rectifying potassium channel genes, with Kir2B up in Clovis (1.8 FC, p= 0.001) and 

Kir2A up in Rock(1.4 FC, 0.01), and AAEL005575, a putative transient receptor 

potential channel 4, (3.1 FC, p<0.005).  

In Rock, peptidases, cholesterol transport and genes involved in nucleotide and 

lipid catabolic processes were up-regulated. Many of the top up-regulated genes in 

Rockefeller were unspecified products, with computed GO functions as structural 

components of the cuticle (AAEL020471, 11FC p= 0.005), chitin binding (AAEL023490, 

3.7 FC, p= 0.007) and multiple predicted serine endopeptidases and protein kinases. 

Antimicrobial genes cecropin (AAEL029047, 3.7 FC, p= 0.02) and defensin antimicrobial 

peptide (AAEL003832, 3.7 FC, p= 0.007) were also up-regulated, along with the 

leucine-rich immune proteins (LRIM) 8, 10A, 10B, 13, 17 and 24, though LRIM18 was 

up in Clovis. Mitochondrial genes were highly differentially expressed(ND6 11 FC, 

mRpL37 7 FC). While differentially expressed genes were generally dispersed 

https://paperpile.com/c/Xuk4nd/Qkoh
https://paperpile.com/c/Xuk4nd/zJr4
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throughout the genome, using iDEPs Genome tool we find a significant cluster of DEGs 

on the mitochondria genome. We also observed mild upregulation of genes associated 

with differentially enriched metabolites such as AAEL012955, a 

phosphatidylethanolamine binding protein (2 FC, p < 0.005), and a sucrose transport 

protein (AAEL011519, 2 FC, p < 0.005). Additionally we find a protein phosphatase-2a 

(AAEL004288, 1.5 FC, p <0.005) perhaps related to the elevated ceramide levels 

observed in Rock.   
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Table 2.2. Pathway Enrichment Results.  

GO Molecular Function 

Direction adj.Pval Genes 

(n) 

Pathways 

Up in 

Rock 

3.8E-04 21 Peptidase activity 

2.6E-03 25 Transition metal ion binding 

6.6E-03 34 Hydrolase activity 

Up in 

Clovis 

6.5E-05 13 Tetrapyrrole binding/Iron 

Binding/Monooxygenase activity 

2.4E-03 2 Farnesol dehydrogenase activity  

3.1E-03 28 Transition metal ion binding/Oxidoreductase 

activity 

GO Biological Processes 

Direction adj.Pval Genes 

(n) 

Pathways 

Up in 

Rock 

2.3E-03 21 Proteolysis  

2.3E-03 3 Sterol transport, Intracellular lipid transport 

2.6E-03 3 Defense response to bacterium  
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Metabolites Clarify Pathway Level Gene Expression Differences in Essential Metabolic 

Processes and Nervous System Organization  

Pathway analysis and metabolite enrichment overlap in hits on the pentose 

phosphate pathway, with transaldolase and transketolase up in Clovis, and enrichment 

of metabolites throughout the pathway(Figure 2.6). Clovis mosquitoes may be using the 

non-oxidative branch to increase flux through glycolysis to the TCA cycle, though these 

pathways are not as ubiquitously altered as the PPP. Within glycolysis the 

phosphopyruvate hydratase complex (AAEL024228, 3.5 FC, p<0.005) and an NAD+ 

dependant aldehyde dehydrogenase (AAEL01480, 2.8 FC, p <0.005) are up in Clovis, 

while in the TCA cycle we only see mild alteration of malate dehydrogenase which 

catalyzes the malate to oxaloacetate step (AAEL008166, 1.4 FC, p= 0.04), and the 

isocitrate to oxalosuccinate conversion which precedes amino acid metabolic pathways 

(AAEL000746, 1.4 FC, p=0.002) though this enzyme also acts in glutathione 

metabolism.  

In Clovis we observe hormone changes relative to Rock, particularly Farnesol 

dehydrogenase activity, potentially indicating relatively higher levels of JH 

synthesis(Mayoral et al. 2009), while in Rock we see evidence of elevated levels of 20E 

based on elevated expression of AAEL027264 (2.4 FC, p<0.005), a putative Phantom 

(CYP306a1) ortholog. The balance of these hormones can mediate fecundity and 

metabolic flux (Ekoka et al. 2021; Gruntenko and Rauschenbach 2008). In Rock 

translation initiation complexes (eIF3h, 2 FC, p < 0.005), are active along with lipid 

transport and localization processes (Figure 2.5A). AAEL007899, found up in non-blood 

fed ovaries, is up slightly in Rock(1.4 FC, p = 0.04) (Matthews et al. 2016). Lysosomal 

https://paperpile.com/c/Xuk4nd/Ybsm
https://paperpile.com/c/Xuk4nd/0FYe+lCGr
https://paperpile.com/c/Xuk4nd/76vv
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activity, mannosidase activity and mitochondrial activity are all enriched in Rock relative 

to Clovis, potentially representing the breakdown of materials to liberate cellular 

resources, potentially for reproduction(Figure 2.5A). 

DISCUSSION 

Reference mosquito strains play essential roles in insect research, serving as 

essential benchmarks in bioassays. Here, we combine lifespan data, transcriptomic, 

and metabolomic assays to provide a thorough phenotypic comparison of Rockefeller 

and California populations of wild Aedes aegypti. We observe differences in levels of 

metabolic enzymes associated with pyrethroid resistance, and fundamental alterations 

in metabolic pathways mediating lifespan and response to oxidative stress (Figure 

2.5,2.6). In lifespan assays, when comparing our wild populations with conserved 

V410L, 1016, and 1534 genotypes, we observe wild pyrethroid tolerant groups to have 

modestly longer lifespans, and for females lifespan is extended by larval diet restriction, 

with the exception of our more metabolically resistant group. These results shed light on 

how nutrition may modulate the impact of pyrethroid resistance on longevity, as 

previous reviews have reported variable relationships between pyrethroid resistance 

and adult longevity (Freeman et al. 2021). Notably previous work that isolated the 

Val1016Ile and Phe1534Cys KDR mutations found little impact on adult longevity (Brito 

et al. 2013), while studies incorporating comparisons of KDR mutations and CYP 

mediated resistance phenotypes found significant impacts on longevity (Freeman et al. 

2021; Smith et al. 2021). We speculate that the pathways that mediate the oxidative 

https://paperpile.com/c/Xuk4nd/LmsO
https://paperpile.com/c/Xuk4nd/vGlp
https://paperpile.com/c/Xuk4nd/vGlp
https://paperpile.com/c/Xuk4nd/LmsO+wYOI
https://paperpile.com/c/Xuk4nd/LmsO+wYOI
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effects of constitutive maintenance of CYPs and GSTs involved in metabolic pyrethroid 

resistance can be life-extending when nutritional conditions are favorable.  

While restricted diets have life extending impacts for a wide variety of 

organisms(Partridge, Gems, and Withers 2005), in drosophila amino acid balance is 

found to modulate this dietary effect, with methionine supplementation alone supporting 

prolonged lifespan and undiminished fecundity(Grandison, Piper, and Partridge 2009). 

We find amino acids generally enriched in Rockefeller mosquitoes, particularly 

Methionine, and speculate the balance of these amino acids may be under unique 

selective pressure in lab environments, and groups naturally select for high fecundity in 

lab mosquito strains.  

We hypothesized that we would observe baseline differences in expression of 

transcripts of enzymes associated with pyrethroid resistance, such as cytochrome 

P450s, GSTs and esterases based on substantial prior research associating these with 

insecticide resistance(Derilus et al. 2023; Frédéric Faucon et al. 2017). Additionally, we 

predicted these enzymes may raise the oxidative state of the insect, which may be 

compensated with alteration in antioxidant pathways to combat oxidative stress. We 

found evidence for these hypotheses at the metabolite, transcript and phenotype level. 

We see elevated glutathione metabolism and antioxidant activity (Figure 2.5, 

Supplemental Table 2.2 and 2.3) as well as greater activity in the pentose phosphate 

pathways, an essential source of NADPH required to “recharge” oxidized CYPs and 

glutathione. 

https://paperpile.com/c/Xuk4nd/SOBz
https://paperpile.com/c/Xuk4nd/QkYc
https://paperpile.com/c/Xuk4nd/wC9V+stiS
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In Rockefeller mosquitoes, pathways involved in protein turnover and cellular 

transport and communication are significantly upregulated. Colonization in laboratories 

removes pressure from adult mosquitoes to be resilient to significant alterations in 

environmental conditions such as temperature and humidity. Laboratory colonization 

may remove pressure to maintain efficient cellular processes, as calorically rich diets 

are continuously available, and mates and laying substrates located conveniently 

nearby. Possible evidence of metabolic dysregulation in our study include high rates of 

catabolism and mitochondrial activity(Figure 2.5A). In humans ceramides play diverse 

regulatory roles, stimulating uptake of free fatty acids, triggering autophagy, and can 

trigger mitochondrial fragmentation and reduced efficiency (Hammerschmidt and 

Brüning 2022; Roszczyc-Owsiejczuk and Zabielski 2021) and may also have impacts on 

our observed differential mitochondrial gene expression.  

Relative to Clovis, Rock appears to have lower levels of JH synthesis at the point 

of collection. In adult insects JH supports energy storage, perhaps contributing to the 

TAG enrichment observed in Clovis (Baumann et al. 2013). Our detection of differential 

lipid profiles and flux through JH and 20E synthetic pathways may reflect modest 

alterations in early adulthood, pre-blood meal development. It is interesting to note that 

both tryptophan metabolism and phosphatidylethanolamine homeostasis play essential 

roles in insect eye health and development, and metabolites within these pathways are 

differentially regulated between our two populations, perhaps suggesting differences in 

eye health (Zhao and Wang 2020; Han, Beerntsen, and Li 2007).   

We report novel differences in transcripts related to synapse organization and ion 

balance, which may be compensatory mechanisms of resistance to pyrethroid and other 

https://paperpile.com/c/Xuk4nd/S00Q+5ac8
https://paperpile.com/c/Xuk4nd/S00Q+5ac8
https://paperpile.com/c/Xuk4nd/WtgF
https://paperpile.com/c/Xuk4nd/Y84d+M4pI
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nerve-targeted xenobiotics. We also observe elevated Histamine levels in Clovis, and 

histamine receptors have been found to operate in mosquito brains and peripheral 

tissues, though histamine receptors were not differentially expressed in our 

study(Matthews et al. 2016), nor was the voltage gated sodium channel transcript in our 

populations. 

Taken together, we see that Rockefeller and our wild Clovis mosquitos 

demonstrate robust alterations in fundamental metabolic pathways. While our study 

cannot conclusively attribute differences to specific aspects of life history, it does 

represents the first inclusion of metabolomic data in a baseline comparison of mosquito 

populations, and we sought to pilot an exploration of whether metabolites may present 

viable biomarkers of phenotypes like metabolic pyrethroid resistance, by identifying 

features that may be altered broadly across a phenotype despite unique gene set 

alterations (such as unique resistance conferring cytochrome 450 profiles). We find few 

markers with the high (>10fold) changes that would best support this aim, but describe 

interesting metabolic signatures of each population and demonstrate clearly that 

metabolomic information can powerfully clarify the downstream impacts of differential 

gene expression data.  

CONCLUSION  

In this work we found Central Valley mosquitoes relative to the lab reference 

strain Rock have elevated expression of enzymes associated with pyrethroid resistance 

including CYPs, GSTs ETC and enrichment of triacylglycerides, fatty acids, lysolipids 

and nucleotides. In Central valley mosquitoes antioxidant pathways appear to be 

https://paperpile.com/c/Xuk4nd/76vv
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constitutively upregulated, which may play important roles in mediating context 

dependent pyrethroid related fitness costs. Rock shows evidence of increases in 

proteolytic pathways and significant alterations in mitochondrial metabolism relative to 

our wild population, which may support fertility and/or reflect inefficiencies in cellular 

metabolism that may have arisen from laboratory colonization. Rockefeller and Clovis 

populations have significant differences in nervous system gene expression and 

metabolites.  
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FIGURES 

 

Figure 2.1. Mosquito Regional Collection Map. Mosquitoes were collected at sites throughout 

the annotated cities in the summer (July-September) of 2018.  
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Figure 2.2. Dietary Impacts on Lifespan and Body Size For Near Wild Aedes aegypti with 

variable resistance phenotypes. Statistical analysis for life span was done using log-rank 

survival analysis, with Hochberg correction for multiple tests. Wing lengths were tested using a 

two-way anova followed by Tukey HSD. P values on graphs represent differences within graph 

quadrants only. Males lived significantly shorter than their female counterparts for all 

populations, and restricted diet reduced female body size significantly for all groups (p<0.0005). 

Further results are described in the text.  
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Figure 2.3. A. Principal component analysis of metabolomic assays and transcriptome 

data B. Scree plots and C. Top 10 classifying features by random forest analysis  

 



 50 

 

 

Figure 2.4. Chemrich Chemical Set Enrichment Analysis Plot 
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Figure 

2.5. Gene and Metabolite Enrichment Plot. A. represents enrichment from PGSEA with a 

FDR cutoff of 0.05. B. represents metabolite enrichment with a FDR adjusted cutoff of 0.05.  
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Figure 2.6. Differential expression of pentose-phosphate pathway genes and metabolites, 

and downstream metabolite features. * Indicated a FDR adjusted p between 0.05 and 0.005, 

** indicates FDR adjusted p below 0.005.  

 

 

SUPPLEMENT 

A. 

 

B.  

P Value Table Clovis Dinuba Rockefeller 
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Dinuba 0.57   

Rockefeller 0.21 0.88  

Sanger 0.057 0.47 0.89 

Supplemental Figure 2.1. A. Box plot of egg clutch size by population. B. Table of p-values for 

pairwise comparisons for one-way ANOVA followed by Tukey's post-hoc test. 

Supplemental File 2.1. Measured Metabolite Data 

 

Supplemental File 2.2. ChemRich Results  

 

Supplemental File 2.3. Annotated Gene Expression Data 
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ABSTRACT 

Resistance to pyrethroid insecticides has facilitated the rapid spread of Aedes aegypti 

mosquitoes throughout California. Aedes aegypti demonstrate both metabolic and target site 

resistance mechanisms to insecticides, but precise mechanisms of pyrethroid detoxification are 

not yet well described and appear to vary between and within populations. For our study, we 

produced F2 generation colonies representing two genetically distinct populations of Aedes 

aegypti from the San Joaquin Valley and from Southern California. These two populations were 

then subjected to a modified CDC bottle-assay with Deltamethrin, a pyrethroid insecticide. 

Following Deltamethrin exposure, we observed knock-down times and collected samples from 

the upper and lower knock-down quartiles, representing susceptible and resistant insects. We 

apportioned 10 pools of 5 adult female Aedes aegypti organized by population and resistance 

status, and submitted them to the West Coast Metabolomics center for high-throughput 

metabolomic analysis. This technique offers a snapshot of the insects’ metabolomes, revealing 

different levels of activity and demands on metabolic pathways. We analyzed the data in 

Metaboanalyst to observe how the mosquitoes metabolomes changed following insecticide 

exposure. We looked for differences between the susceptible and resistant insects and shared 

features between the two study populations. These analyses revealed that remodeling of the 

mosquito metabolome following insecticide challenge is rapid, significant increases in lyso-

lipids, free fatty acid, and carnitines are observed just 90 minutes after exposure. The 

metabolomes of unexposed mosquitoes did not vary significantly by population, but the 

populations did have different metabolomic profiles following insecticide challenge. This analysis 

highlights the essential role B-vitamins play in stress response, physiology, and reveals 

potential targets for insecticide synergists. 
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INTRODUCTION 

Aedes aegypti, the primary vector of dengue, Zika, yellow fever and chikungunya 

viruses, successfully established in California in 2013 in Fresno and Madera county in the San 

Joaquin Valley (Gloria-Soria et al., 2014). It has since been detected in 25 of 58 counties 

throughout the State. Genomic analyses by multiple research groups have revealed evidence of 

multiple distinct introductions of the vector into the state(Kelly et al., 2021; Pless et al., 2017, 

2020). At present two population groups seem to predominate. One genetic group is dominant 

in the southern part of the state, while the other dominates in the Central part of the state 

around the San Joaquin Valley(Kelly et al., 2021; Lee et al., 2019; Pless et al., 2017). The 

successful establishment and spread of this vector is due, in part, to widespread resistance to 

pyrethroids, the primary insecticide class used for adult control (Liebman et al., 2019; Mack et 

al., 2021; J. Singh & Yadav, 2020; F. Yang et al., 2020).  

Resistance to pyrethroids in Aedes aegypti involves multiple mutations in the voltage 

gated sodium channel, the pyrethroid target site, and metabolic mechanisms of resistance(Chen 

et al., 2020; Smith et al., 2016; Strode et al., 2008; William C. Black et al., 2021). Resistance in 

California populations is relatively well characterized, due to the combination of monitoring 

programs run by local vector control districts, state level initiatives conducted by the California 

Department of Public Health (CDPH) and partnerships with research institutions.Target site 

mutations are widespread in California Ae. aegypti(Liebman et al., 2019), but previous research 

has demonstrated significant variability in resistance phenotype among individuals with shared 

target site phenotypes (Mack et al., 2021).  

Metabolic mechanisms of insecticide resistance, including detoxification, inactivation, 

and sequestration, also play an important role in resistance, reviewed in (William C. Black et al., 

2021). California Aedes aegypti metabolic mechanisms have been assessed for the Central 
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Valley using synergists such as PBO (Cornel et al., 2016) and across the state by CDPH using 

metabolic assays(F. Yang et al., 2020), which found CA populations to have elevated esterase, 

mixed function oxidase and acetylcholinesterase relative to susceptible Rockefeller mosquitoes. 

Additional physical and behavioral resistance mechanisms such as cuticular thickening(David 

G. Lilly et al., 2016; O. R. Wood et al., 2010; Yahouédo et al., 2017) and pyrethroid avoidance 

(Meyers et al., 2016; Reddy et al., 2011; Russell et al., 2011) have also been reported in 

insects, but are not well characterized in California populations. Mechanisms of metabolic 

detoxification appear to be incredibly diverse and difficult to monitor (Saavedra‐Rodriguez et al., 

2019; Smith et al., 2016). The diversity and redundancy of metabolic detoxification genes and 

pathways has hampered the development of molecular assays for surveillance of metabolic 

resistance mechanisms.  

Recent advances in mass-spectroscopy instrumentation and compound annotation tools 

have ushered in a resurgence of biochemical research in entomology, following an era 

denominated by genomic and gene expression studies(Dettmer et al., 2007; Johnson et al., 

2016). High throughput metabolomics has significant promise in elucidating important biological 

processes underlying phenotypes of interest, like pyrethroid resistance. Metabolites shift rapidly 

in response to physiological changes and stress challenges, and investigating these processes 

can assist in the discovery of response mechanisms, important biological dynamics, and novel 

targets for insecticides or synergists, which may have been obscured in analyses by other 

methods. 

This study uses a complementary panel of three metabolomic assays to 

comprehensively compare the metabolomes of two genetically distinct, near-wild populations of 

Aedes aegypti pre and post insecticide exposure. Samples were additionally grouped by 

resistance status, in order to facilitate investigations into unique metabolic features associated 

with the resistance phenotype. These results provide a new layer of information about 
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resistance phenotypes, and highlight important metabolic processes initiated rapidly after 

insecticide exposure. To our knowledge this is the only study that looks at time points early 

following exposure (30 to 70 minutes), and highlights a variety of potential targets for pyrethroid 

synergists.  

METHODS 

Insect Colonies 

The Aedes (Stegomyia) aegypti (Linnaeus, 1762) mosquitoes used in this study were 

taken from wild-derived colonies from the San Joaquin Valley( referred to as Central Valley 

hereafter) and Greater Los Angeles County in the summer of 2020. Greater LA Vector Control 

District personnel collected container breeding sources in backyards. Eggs were then hatched 

and sorted as adults. For the San Joaquin Valley population, members of the Kearney 

Agricultural Research and Extension Center in Parlier, CA collected adult mosquitoes from 

Reedley and Clovis, CA. Larvae were raised on a diet of tetramin fish food, and adult females 

were bloodfed using bovine blood on hemotek feeders. Mosquitoes were maintained in our 

Darwin insectary on a 12:12 day/night light cycle at 28 ℃ and 80% RH. Rockefeller mosquitoes 

were used as a susceptible reference colony in resistance evaluation assays.  

Resistance Evaluation  

Mosquitoes from the F2 populations had their resistance status evaluated using the CDC 

Bioassay protocol with permethrin and deltamethrin(CONUS Manual for Evaluating Insecticide 

Resistance in Mosquitoes Using the CDC Bottle Bioassay KitCS330338-A, n.d.). Bottles were 

treated with 1 ml acetone alone (controls), 43ug/ml Permethrin, or 0.75 ug/ml deltamethrin. 

Additionally, a modified CDC Bioassay protocol that incorporated a 24 hour hold was used for 

survivorship assessment. Knockdown curves for all mosquito strains were analyzed using 

Kaplan-Meier survival analysis (Therneau, 2023). 
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Insecticide Exposure  

Insecticide coated bottles were prepared according to methods described in the CDC 

Bioassay Manual(CONUS Manual for Evaluating Insecticide Resistance in Mosquitoes Using 

the CDC Bottle Bioassay KitCS330338-A, n.d.). Pesticide coated bottles were prepared with 

deltamethrin in acetone at a concentration of 0.75 ug/ml. Control bottles were prepared with 

acetone alone. All bottles were allowed to dry in a dark fume hood for two hours. Mosquitoes 

were introduced into bottles at a density of 16-20 mosquitoes per bottle, and left in the bottles 

for 15 minutes. Exposed insects were then transferred into holding cages and monitored every 

10 minutes for signs of pyrethroid intoxication. A mosquito was determined to be intoxicated if it 

was unable to right itself for at least three minutes. Intoxicated mosquitoes were transferred 

directly into tubes on a dry ice ice-block before being transferred into the -80 freezer.  

Sample classification  

Samples were then sorted into tubes according to onset of intoxication symptoms. Only 

adult females were collected. Females were prioritized due to their longer lifespan and ability to 

act as vectors. Mosquitoes treated with acetone coated bottles were classified as Controls. 

Mosquitoes that showed symptoms of intoxication prior to 30 minutes after exposure were 

classified as susceptible to Deltamethrin. This threshold was chosen as 30 minutes is the 

designated diagnostic time for Deltamethrin susceptibility according to the CDC bioassay 

protocol. Samples that did not exhibit any symptoms of intoxication 70 minutes after exposure 

were classified as resistant. Adult females were pooled into sets of 6 individuals per tube. We 

generated 5 control tubes per population, and 10 treatment tubes per population and 

classification (susceptible or resistant).  

Metabolomics Data Acquisition and Data Processing  

Frozen samples were submitted to the University of California West Coast Metabolomics 

center for analysis with three complementary mass spectrometry based untargeted 
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https://paperpile.com/c/F788nV/dAza
https://paperpile.com/c/F788nV/dAza
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metabolomic assay profiling 1)primary metabolites, 2)lipids, and 3)biogenic amines. Samples 

are extracted according to protocols published by Matyesh et al., 2008 (Matyash et al., 2008).  

The primary metabolite assay targets include carbohydrates, amino acids, free fatty 

acids, aromatics and nucleotides. Samples are analyzed by injection with an Gerstel automated 

linear exchange cold-injection system on a gas-chromatography time-of-flight mass 

spectrometer (GCTOF MS). Data acquisition parameters are described in detail in Fiehn et al., 

2008 (Fiehn et al., 2008). Data are processed with ChromaTOF vs. 2.32 and further processed 

by a filtering algorithm implemented in BinBase. Samples are then normalized by the average 

sum of peak heights for identified metabolites. 

The lipid panel detects ceramides, sphingomyelins, cholesteryl esters, lyso- and 

phospholipids, mono-, di- and triacylglycerols, galactosyl- and glucuronyllipids. Lipids are 

analyzed with Liquid-Chromatography Electrospray Ionization Quadrupole Time-of-Flight 

Charged Surface Hybrid Mass Spectrometry (CSH-ESI QTOF MS/MS). Data are processed 

using MS-DIAL using default parameters with adjustments for peak height and width(Tsugawa 

et al., 2015). Blank subtraction is then performed based on maximum peak height relative to 

blank average height, the average of all non-zero peaks and whether or not the feature is found 

in multiple samples. Potential duplicates and isotopes are checked and deleted with MS-

FLO(DeFelice et al., 2017). Next, MS/MS spectra are checked before combining adducts. 

Peaks are annotated manually and compared with the Fiehn laboratories LipidBlast library(Kind 

et al., 2013). MassHunter Quant software is then used to verify peaks. Samples are then 

normalized by the average sum of peak heights for internal standards. 

The biogenic amine panel targets cylcarnitines, TMAO, cholines, betaines, SAM, SAH, 

nucleotides and nucleosides, methylated and acetylated amines, di- and oligopeptides. Biogenic 

amines are analyzed by hydrophilic interaction chromatography on a electrospray quadrupole 

https://paperpile.com/c/F788nV/6UTX
https://paperpile.com/c/F788nV/wiWJ
https://paperpile.com/c/F788nV/Uhyq
https://paperpile.com/c/F788nV/Uhyq
https://paperpile.com/c/F788nV/5vyG
https://paperpile.com/c/F788nV/YV1c
https://paperpile.com/c/F788nV/YV1c
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time-of-flight mass spectrometer tandem mass spectrometer (HILIC-ESI QTOF MS/MS). 

Samples are then analyzed by the metabolomics core in a 4 step process. Raw data are initially 

processed by mzMine 4.0. Selected peaks can be identified with Agilent’s MassHunter 

quantification method on the accurate mass precursor ion level, using the MS/MS information 

and the NIST14 / Metlin / MassBank libraries to identify metabolites with manual confirmation of 

adduct ions and spectral scoring accuracy. MassHunter then allows the quantifications for 

peaks that were missed in the primary peak finding process. Samples are then normalized by 

the average sum of peak heights for internal standards. 

Statistical analysis 

Statistical analyses were performed using a combination of the statistical programming 

language R (version 4.2.2), Metaboanalyst version 5.0 (Pang et al., 2021),and Chemical 

Similarity Enrichment Analysis (ChemRich) from the Fiehn Lab(Barupal & Fiehn, 2017). The 

metabolomic data sets were each normalized and statistically analyzed independently in 

Metaboanalyst. For primary metabolites and biogenic amines samples were median normalized, 

while lipids were normalized by sum. Features were log transformed and median normalized 

prior to statistical analysis. ANOVA results for each population by status (Control, Susceptible, 

Resistant) are reported in Supplemental File 3.1, results from linear modeling are summarized 

in Supplemental File 3.2. Each dataset was analyzed primarily using Metaboanalyst’s metadata 

capabilities, so that metabolites could be analyzed by both population and status. Principal 

component analysis and random forest classification was performed following normalization.  

Chemical Enrichment Analysis for Metabolomics  

Biological interpretations of metabolomics data face significant challenges due to 

constraints with regard to pathway mapping and statistical analysis of pathway impact. Insect 

metabolic pathways are poorly annotated relative to mammalian metabolic pathways, 

https://paperpile.com/c/F788nV/uNWo
https://paperpile.com/c/F788nV/FZYR
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metabolomic assays may fail to detect important intermediates, many metabolites function in 

multiple pathways, and many metabolites play unknown biological roles. Chemical similarity 

enrichment analysis allows for statistical analysis of non-overlapping chemical sets. Chemical 

Enrichment analysis was performed both using ChemRich and the Metaboanalyst Enrichment 

module(Barupal & Fiehn, 2017; Pang et al., 2021). For chemrich the Susceptible and Resistant 

mosquitoes from both populations were pooled and compared to calculate fold change and use 

t-tests and fdr adjustments to obtain p values.  

The Metaboanalyst functional meta-analysis module uses Mummichog and accepts 

unannotated metabolomics data generated from high-resolution mass spectrometry methods 

such as those used to acquire the biogenic amine and lipid data(Lu et al., 2023). Numeric mass 

(m/z) and retention time (rt) were supplied for all peaks in the dataset, including unknowns. Data 

was analyzed against the Drosophila melanogaster KEGG library, as well as chemical class 

sets. The meta-analysis pooled peaks functionality allows for the simultaneous analysis of 

datasets generated from multiple instruments using the same samples. 

RESULTS  

Central Valley and Greater LA Mosquitoes Demonstrate Strong Resistance To Permethrin 

The two populations differ significantly in their response to both permethrin and 

deltamethrin, type I and type II pyrethroids (Table 3.1). The Central Valley population 

demonstrates particularly strong resistance to type I pyrethroids, though both populations 

knock-down fully within one hour of continuous exposure to 0.75ug deltamethrin. Both 

populations however had similar responses to a 15 minute duration exposure.  

https://paperpile.com/c/F788nV/FZYR+uNWo
https://paperpile.com/c/F788nV/jB6C
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Table 3.1. Resistance Phenotyping with CDC bottle bioassay exposures. Diagnostic time 

represents the time at which 100% knock-down is expected.  

Insecticide Population LT50 (minutes) LT90 (minutes) 

 

Permethrin 
(Diagnostic Time: 10 
minutes) 

Central Valley 110 NA 

Greater LA 30 60 

Rock 5 5 

 

Deltamethrin 
(Diagnostic Time: 30 
minutes) 

Central Valley 20 30 

Greater LA 15 25 

Rock 5 5 

 

Pyrethroid Exposure Induces Rapid Metabolome Remodeling 

A total of 618 metabolite features were scored from the primary metabolite assay, of 

which 175 were annotated. Following normalization and linear modeling with Unexposed as the 

reference group with a p value cutoff of 0.005, 100 of the 175 annotated features were found to 

differ significantly by status, while just 15 differed by population when adjusting for status (Table 

3.2). ANOVA results are summarized in Supplemental File 3.1, covariate analysis results are 

reported in Supplemental File 3.2.  

From the primary metabolite assay amino acids were elevated, along with organic acids 

including cysteinylglycine, pyruvic acid, phosphoenolpyruvic acid, urea, malonic acid and 

azelaic acid. Several organic acids were decreased in resistant samples, including cis-aconitic 

acid, citric acid, glutamic acid, oxoglutaric acid, phosphoserine, ureidosuccinic acid and allantoic 

acid. Elevated carbohydrates included glycerol, ribose and gluconic acid, but carbohydrates 
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were generally depleted such as xylose, xyulose, glyceric acid, threonic acid, trehalose-6-

phosphate, pectin, Erythritol, and fructose-1-phosphate.  

Elevated nucleic acids included xanthine, uridine, pseudouridine and uracil, while 

adenine, adenosine monophosphate, and adenosine were reduced in resistant samples post 

exposure. Several benzenoids were elevated including myo-Inositol; ribitol; terephthalic acid; 

and epsilon-Caprolactam.  

Pyrethroid Exposure Increases Levels of Deoxynucleic Acids and Organic Acids 

A total of 4303 peaks were scored from the biogenic amine panel, of which 421 were 

annotated. Following linear analysis with Unexposed as the reference group and a p value 

cutoff of 0.005, 186 of the annotated features were significantly different by status. Of the 421 

annotated features 21 varied by population when adjusting for status. There is redundancy in 

metabolome coverage between the biogenic amine assay and the primary metabolite assay, but 

similar compound class level dynamics were observed. Elevated in the biogenic amine assay 

were additional nucleic acids including deoxyuridine, deoxycytidine, deoxyinosine, FAD, purine, 

citicoline, and 1-methyladenosine. Decreased nucleic acids included cyclic AMP, 

deoxyguanosine, cytidine monophosphate, deoxyadenosine, orotidylic acid, orotic acid, uridine 

5'-monophosphate, uridine diphosphategalactose, pyrophosphate, guanosine monophosphate, 

N6-Methyladenosine, 1,7-dimethyluric acid and NADH.  

Elevated organic acids included betaine, taurine, urea, N8-acetylspermidine, 

ergothioneine and 4-acetamidobutanoic acid. Of organoheterocyclic compounds 4-Pyridoxic 

acid; Riboflavin; Indoxyl sulfate; Nicotinic acid; Folinic acid and the organic oxygen compound 

and niacin synthesis metabolite kynurenine were elevated in resistant samples. Decreased 

levels of organoheterocyclic compounds included biotin, pyroglutamic acid, isoxanthopterin, 

kynurenic acid, pyridoxamine and folinic acid. Over 30 organic acids were elevated including 
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most amino acids, and choline, histamine and ethanolamine were also elevated. About 20 

organic acid compounds were decreased including a diversity of di-peptides and carnosine, cis-

aconitic acid, methylmalonic acid and succinic acid.  

Lysolipids Can Classify Insecticide Exposure Status 

From the lipid panel 2763 peaks were scored, of which 358 were annotated. Following 

linear analysis with unexposed as the reference group and a p value cutoff of 0.005, 168 

metabolites varied significantly by status, and 43 varied significantly by population when 

adjusting for status. When comparing resistant samples to unexposed samples, resistant 

samples had elevated levels of fatty acids and lysolipids (Figure 3.5, Table 3.2, Supplemental 

File 3.1,3.2). The lipids that most effectively classify status are fatty acids and 

lysophosphatidylcholine 18:0 and lysophosphatidylglycerol 16:1(Figure 3.3.) 

For Chemical Set Enrichment Analysis (ChemRich) The San Joaquin Valley and Greater 

LA populations were grouped together into susceptible and resistant groups in order to calculate 

fold-change between susceptible and resistant status for ChemRich analysis. The most 

consistent dynamics are observed in lipid groups (Figure 3.3, Supplemental File 3.2). Resistant 

insects have consistently elevated levels of saturated and unsaturated lysolipids as well as 

unsaturated and saturated free fatty acids. The “key” compounds of those classes were LPE 

(18:0), LPC (20:5), eicosapentaenoic acid, and myristic acid respectively. Sugar acids, sugar 

alcohols and carnitines were also enriched, and dehydroascorbic acid, glycerol-3-galactoside 

were the key sugars.  
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Table 3.2. Lipid Class Enrichment between Resistant and Unexposed Samples. Results 

are those with a FDR adjusted p < 0.05.  

Lipid Group Increased in Resistant Decreased in Resistant 

Fatty Acids and Conjugates 15 0 

Fatty esters 2 1 

Glycerophosphoethanolamines 9 35 

Glycerophosphocholines 7 35 

Glycerophosphoinositols 4 2 

Glycerophosphoglycerols 4 4 

Glycerophospholipids 0 4 

Glycerophosphoserines 1 3 

Triradylglycerols 0 26 

Ceramides 0 5 

Eicosanoids 1 0 
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Principal Component Analysis Classifies Resistant, but Not Early-knockdown Samples, 

From Controls  

General sample clustering patterns were consistent across the three assays (Figure 3.2, 

Figure 3.1). Samples classified as “susceptible” are generally clustered with control samples. 

Despite the susceptible mosquitoes displaying signs of pyrethroid intoxication, their metabolome 

was insufficiently altered to cluster separately from samples that were not exposed to 

insecticide. Samples classified as resistant clustered separately, and there was noticeable 

separation between the two populations, 7 samples from the San Joaquin Valley reliably 

clustered as a subgroup of resistant samples. Half (5/10) susceptible samples from the San 

Joaquin Valley clustered with the resistant samples. This observation indicates that the 

biochemical changes observed in the resistant group can begin before the resistant collection 

time point (70 minutes). This observation also indicates that these changes alone do not 

represent effectively protective metabolic processes. If susceptible samples are also undergoing 

these processes, yet demonstrate strong symptoms of intoxication, relatively few metabolites 

may reflect likelihood of mortality at early such collection points (<40 minutes).  

Pathway Enrichment Reveals Shared and Unique Impacts on Metabolic Pathways 

The LC-MS derived data from the biogenic amine and lipid panels were analyzed using 

the Metaboanalyst functional meta analysis function. Data was analyzed separately for each 

population comparing resistant samples to unexposed samples. The central valley data had an 

overall 3544 features from the biogenic amine dataset, 2058 from ESI positive mode and 1856 

from ESI negative mode. With a p value cutoff of 0.005 21% of features were considered 

significant. From the lipid dataset 2733 features were submitted, 1633 from ESI positive mode 

and 1100 from ESI negative mode. Of these, 7% and 38% of the features were considered 

significant with a p cutoff of 0.005. Susceptible samples were also compared to unexposed 

controls, but no features met the 0.005 p value cutoff.  
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For the Los Angeles population overall 4303 features were submitted from the biogenic 

amine dataset, 2591 from ESI positive mode and 1712 from ESI negative mode. Of these 

features, 49% and 60% were significant with a p value cutoff of 0.005. From the lipid dataset 

1656 features were detected in ESI positive mode, of which 11% were significant and 1104 

were detected in ESI negative mode, of which 40% were significantly altered. Pathway 

enrichment results are reported in figure 6. When comparisons were made of the susceptible 

and unexposed group, 0% of the biogenic amine features met the 0.005 p value cutoff, and just 

3% of lipid features were significant. Of the enriched pathways (Figure 3.6) 12 were shared 

across populations.   

DISCUSSION  

In this study adult female Aedes aegypti representing two near-wild populations were 

collected following deltamethrin exposure either as they exhibited a knock-down phenotype or 

after showing no symptoms of intoxication for over one hour. Pooled samples were 

characterized using mass spectrometry. The combination of three complimentary untargeted 

metabolomics assays (primary metabolites, lipids, and biogenic amines) reveals the short 

timescale in which insects undergo metabolic changes following topical insecticide exposure, 

and demonstrates variability in insecticide metabolism dynamics between and within different 

populations. Nearly 400 metabolites differed significantly by status, 79 differed by population 

when adjusting for status, and pathways impacted by deltamethrin exposure play crucial roles in 

various cellular processes such as energy production, amino acid metabolism, lipid metabolism, 

and nucleotide metabolism, and nitrogenous waste excretion.  
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This study highlights dynamics that have also been reported in other species, pointing to 

shared metabolic detoxification mechanisms in response to deltamethrin exposure, and 

pyrethroid exposure more broadly. Research in Deltamethrin susceptible and resistant strains 

Anopheles sinensis identified differences in carboxylic acids and glycerophospholipids 

metabolism as dominant differences 24 hours post exposure, while a study investigating the 

impact of temperature and one-hour insecticide exposure in Aedes aegypti found impacts on 

energy metabolism dominate early insecticide response (Li et al., 2022; P. Singh et al., 2022). 

Taken along with the results described in our study, suggests that timing is likely an important 

feature of resistance. The ability to respond more rapidly to pyrethroid damage and oxidative 

stress, to mobilize energy stores and modify damaged lipids, may increase survival. For 

feasibility reasons many studies compare multiple populations at set time-points, like 24 hours, 

and may then miss interesting detoxification ramp-up dynamics. In general, altered metabolites 

followed the patterns that early-knock down (susceptible) samples were trending in the same 

direction as in resistant mosquitoes relative to unexposed controls. Exceptions were particularly 

interesting, cases where a metabolite was up in the susceptible group relative to resistant and 

control mosquitoes were often markers of significant cellular distress, such as 8-Oxo-2'-

deoxyguanosine, 2'-Deoxyadenosine, 2'-Deoxyguanosine, important markers of DNA oxidation 

(Figure 3.3, Supplemental File 3.1)(Cadet et al., 1999). Inversely, metabolites up in resistant 

samples and down in susceptible samples relative to controls were involved in excretion, lipid 

modification and metabolism such as urea, pantothenic acid, LPG16:1. Others are known to 

have cytoprotective properties such as taurine and histidine (Figure 3.3, Supplemental File 

3.1)(Abdel-Rahman Mohamed et al., 2021; Bai et al., 2018; Surai et al., 2021).  

One unique dynamic revealed in this study is the impact of pyrethroid exposure on 

nitrogenous waste metabolism, which appears to be differentially impacted between the two 

populations included in this study (Figure 3.6,3.9.). Previous research has demonstrated that 

https://paperpile.com/c/F788nV/As3N+Yoyl
https://paperpile.com/c/F788nV/MNLj
https://paperpile.com/c/F788nV/NiK9+PDUg+IRRH
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Aedes aegypti utilizes an amphibian-like uricolytic pathway to excrete urea and can excrete 

waste both as uric acid and urea throughout development, as an adaptation to blood-feeding 

(Isoe & Scaraffia, 2013). Functional analysis with mummichog uses the Drosophila 

melanogaster metabolome for reference, so enrichment of this specific pathway is not noted, 

though alanine and arginine metabolism are top pathway hits (Figure 3.6). This detoxification 

pathway could be a particularly useful target for synergism, due to it being a unique adaptation 

of female mosquitoes to their nitrogen rich diet from blood feeding. Metabolites in this pathway 

have other important roles in stress response physiology, such as glutamine, glutamic acid and 

alanine. Research in exercise physiology has identified alanine and glutamine as useful 

supplements following the oxidative damage generated by intense exercise, as alanine can help 

improve glutamine pools, and glutamine can then participate in the glutathione 

homeostasis(Petry et al., 2014; Rogero et al., 2006). Elevated levels of alanine in resistant 

insects following deltamethrin may be facilitating the maintenance of redox homeostasis.  

We find that B vitamin levels are significantly impacted by deltamethrin exposure (Figure 

8). B vitamins are essential cofactors in many of the metabolic pathways that facilitate recovery 

from pyrethroid exposure, and reliably classify status in our study (Figure 3.3,3.8.). Pyridoxic 

acid, the end product of vitamin B-6 metabolism, is frequently reported as an important 

exposome metabolite and biomarker for stress, and was elevated in resistant insects (Cao et 

al., 2016; Zeng et al., 2021). Pantothenic acid (B5) levels are elevated following insecticide 

exposure, and B5 levels can effectively classify status in our study (Figure 3.3, 3.8.) Pantothenic 

acid is an essential cofactor in lipid metabolism and acetylation reactions, and increases in 

levels of B5 may result from increased demands for coenzyme A following pyrethroid exposure, 

as is observed following exposure to various stressors in other animal systems (Miller & Rucker, 

2020) and supplementation with B5 can increase stress tolerance(Hu et al., 2022). Pantothenic 

acid is likely protective against the damaging effects of pyrethroids. Resistant insects, by 

https://paperpile.com/c/F788nV/F1Mf
https://paperpile.com/c/F788nV/SQ9B+G2fY
https://paperpile.com/c/F788nV/BZsw+98PY
https://paperpile.com/c/F788nV/BZsw+98PY
https://paperpile.com/c/F788nV/VJph
https://paperpile.com/c/F788nV/VJph
https://paperpile.com/c/F788nV/EPNw
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upregulating coenzyme A synthesis, could more rapidly and effectively respond to lipid oxidation 

and disruptions in membrane fluidity. Similarly increases in Niacin (B3) may be compensatory 

following deltamethrin exposure as B3 is an essential precursor to NAD+, which participates in 

oxidation reduction reactions. Depletion of NADH in resistant insects is likely the result of 

consumption of NADH in reducing reactions following the state of oxidative stress induced by 

pyrethroid exposure. Biotin levels decrease following exposure in our study. These dynamics 

are particularly interesting in the context of previous literature, which found that a biotin deficient 

diet increased resilience against the DNA damaging agent hydroxyurea, and increased 

resistance to heat stress in insects fed a biotin deficient diet. Biotin is synthesized using alanine, 

which is elevated in resistant samples following deltamethrin exposure, and alanine metabolism 

is enriched in both populations following deltamethrin exposure (Figure 3.6,3.9). It may be that 

prioritizing alanine liberation and delivery to alternate pathways is important to stress resistance, 

which may be important to consider as biotin binding proteins are deployed for insect control, as 

interesting cross resistance dynamics may emerge (Christeller et al., 2010). Biotin restriction 

has repeatedly been shown to negatively impact fecundity in insects, a phenotype repeatedly 

associated with pyrethroid resistance phenotypes(Freeman et al., 2021), so tradeoffs around 

this vitamin may be interesting to explore in the context of insecticide resistant lines.  

Changes in lipid composition were particularly pronounced in our study. Pyrethroid 

exposure is well known to induce lipid oxidation in many species(Brinzer et al., 2015; Kale, 

1999; Sreejai & Jaya, 2010; C. Yang et al., 2020). In resistant insects collected 70 minutes post 

exposure, we see significant increases in fatty acids, lysolipid classes and decreases in 

corresponding phospholipid groups (Figure 3.5.) Interestingly, we also see shifts in lipid 

metabolites in susceptible samples from the central valley. These mosquitoes are collected at 

less than 30 minutes post exposure, indicating lipid composition shifts can be rapid, and that 

Central Valley mosquitoes may have unique physiology that facilitates these shifts. Pyrethroid 

https://paperpile.com/c/F788nV/Crgt
https://paperpile.com/c/F788nV/wYes
https://paperpile.com/c/F788nV/jHCL+k8WV+jyZc+hE3E
https://paperpile.com/c/F788nV/jHCL+k8WV+jyZc+hE3E
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exposure produces lipid peroxides(Terhzaz et al., 2015), which can trigger apoptotic cascades 

(Su et al., 2019). Degradation of these damaged lipids may support survival after insecticide 

challenge, though fatty acids and lysolipids can have membrane destabilizing properties when 

incorporated into membranes, reviewed in Arouri & Mouritsen (Arouri & Mouritsen, 2013). 

Lysolipids play important signaling roles which may mediate responses to stress challenges and 

calcium signaling, though their roles are best characterized in mammals(Frasch & Bratton, 

2012; Mehta, 2005; Wang et al., 2015).  

Overall, our study finds that the major metabolic changes following deltamethrin 

exposure align with changes observed in other populations and other insect species exposed to 

pyrethroids, though there are differences in timing dynamics (Brinzer et al., 2015; Li et al., 2022; 

P. Singh et al., 2022). In our analysis of impacted pathways we uncover interesting dynamics 

with regards to b-vitamins, amino acid metabolism, nitric oxide signaling and oxidative stress 

metabolism. We suggest metabolic pathways that may be interesting targets for further 

investigating with regards to insecticide resistance, and describe impacts on nitrogenous waste 

production pathways, which could be targeted for synergism in mosquito control products.  

CONCLUSION 

In conclusion lysolipids, fatty acids and carnitines are elevated by 70 minutes following 

sublethal deltamethrin exposure, along with sugar acids, amino acids and sugar alcohols. 

Butyrates decrease, and we see mixed dynamics for dipeptides, oligopeptides and 

oligosaccharides. Nucleic acids appear to play important detoxification roles, and unique amino 

acid metabolism pathways in mosquitoes may provide effective targets for novel synergists and 

synergisms that could reduce impacts on non-target species.  

  

https://paperpile.com/c/F788nV/jpiG
https://paperpile.com/c/F788nV/Qr4M
https://paperpile.com/c/F788nV/Wxgv
https://paperpile.com/c/F788nV/KtPn+kDT3+CkWA
https://paperpile.com/c/F788nV/KtPn+kDT3+CkWA
https://paperpile.com/c/F788nV/jHCL+Yoyl+As3N
https://paperpile.com/c/F788nV/jHCL+Yoyl+As3N
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FIGURES 

Figure 3.1. Sample Collection Parameters. 1A. Knock-down curves for both populations 

from pre-collection method evaluation. Mosquitoes were monitored for up to 120 minutes, 

then checked at 24 hours. 1B. Sample collection knock-down curves. 1C.The diagram Illustrates 

sample collection regime following insecticide exposure and pre-collection method evaluation 

data.  
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Figure 3.2. Principal Component Analysis. Principal component analysis (PC1xPC2) for 

the three metabolomic assays.  
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Figure 3.3. Random forest feature of importance ranking for A. Lipids and B. Biogenic 

Amines. Results for primary metabolites were not included due to redundancy in top hits with 

the Biogenic Amine panel. Feature abundance is depicted on the right.  
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Figure 3.4. ChemRICH enrichment result. FDR adjusted t-tests and fold changes were 

calculated comparing the susceptible and resistant groups from both populations together to 

reveal broad patterns in metabolite changes.  
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Figure 3.5. Lipid class level Intensity by status and population. Two way ANOVA 

significance annotation by lipid class indicates difference by status * or interaction between 

status and population ** with a p <0.05. Significance between populations annotated with * over 

boxplots.  

 



 94 

 

Figure 3.6. Mummichog KEGG Pathway Enrichment Plots by Population. Enrichment is the 

ratio of significant hits (p<0.001) over expected hits. Point color and size correspond to gamma 

and 1/gamma respectively. Pathways with a gamma values less than 0.06 are displayed.  
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Figure 3.7. Differential Peak Intensity of Essential Amino Acids. P values derived from 

linear modeling with FDR adjustment. **P < 5e-10, *P<5e-5, P listed if larger than 5e-5. 

Amino acids that don’t vary by Intensity in a significant way are omitted.  
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Figure 3.8. Differential Peak Intensity of B Vitamins. P values derived from linear 

modeling with FDR adjustment. **P < 5e-10, *P<5e-5, P listed if larger than 5e-5. 4-Pyridoxic 

acid is a metabolite of vitamin B6, and B3 is a precursor to the electron carrier NAD+ and its 

reduced form NADH. 
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Figure 3.9. Metabolite dynamics within Ae. aegypti ammonia metabolism following 

deltamethrin exposure. Significance for each metabolite is indicated by * for significant 

difference by status (Resistant-Control) and ** for significant differences by status and 

population. Figure is modeled off of the pathway crosstalk network proposed in Isoe & Scaraffia 

2013. Abbreviations: Glutamine synthetase (GS), glutamate synthase (GltS), glutamate 

dehydrogenase (GDH), alanine aminotransferase (ALAT), pyrrolidine-5-carboxylate synthase 

(P5CS), pyrrolidine-5-carboxylate reductase (P5CR), xanthine dehydrogenase (XDH), urate 
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oxidase (UO), allantoinase (ALLN), allantoicase (ALLC), arginase (AR) and nitric oxide synthase 

(NOS). 

 

Supplementary File S3.1. ANOVA Summary Table. This large summary table compiles 

statistical results and attempts to make information about metabolic features easily viewable. 

The table includes feature name, InchIKey, feature ID, median normalized intensity of peaks by 

group (control, susceptible, resistant) and includes sparklines plots to make data patterns 

viewable. Ratios of median Resistant/Control intensity and median Susceptible/Control Intensity 

are also included. Columns D:I represents the Central Valley/SanJoaquin Valley Population and 

Columns J:O represent the Greater LA population. F.value, P.value,negative log10P, FDR 

adjusted P are included, along with Tukey HSD pairwise comparison results(column T and then 

U:Z.). Metrics of peak abundance are included in columns AA,AC and AD. Median Pool 

Intensity (AA), the ratio of Pool Intensity to Blank intensity (if available)(AC), and percentage of 

known metabolites as a % of total intensity (AD) are included. 

Supplementary File S3.2. Covariate Table. Summary of linear modeling results for all 

three assays.  
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Supplemental Figure 3.1. Sample distribution densities for principal components 1-4 for 

each metabolomic assay. Primary metabolites and biogenic amines were median-normalized, 

log transformed and features were median normalized prior to principal component analysis. 

Lipids were analyzed using nearly the same procedure, but were instead normalized by the sum 

of peak heights.  

 

Data and code availability 

The data files used for this study are available as supplemental attachments. Code available 

upon request to lead author.    
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CONCLUSION 

The global expansion of Aedes aegypti presents a significant threat to public health. In 

2023, there were more than one hundred locally acquired dengue cases in the mainland US, 

including  cases in Pasadena and Long Beach, California. The majority of locally-acquired 

dengue cases occurred in Florida (CDC 2023).   

In chapter one, we investigated population dynamics within the state of California. We 

demonstrated, alongside others, that California has experienced multiple successful invasion 

events (Kelly et al. 2021; Lee et al. 2019; Pless et al. 2020, 2017). We found that the frequency 

of voltage-gated sodium channel mutations appears to increase over time, and that invasive 

populations often arrive resistant to the tools available for adult control. We demonstrated that, 

with favorable conditions and thorough treatments, small invasions can be cleared. However, 

suitable habitats are likely to see Ae. aegypti established eventually.   

In chapters two and three, we viewed pyrethroid resistance physiology through a new 

lens, by capturing a snapshot of metabolite levels in mosquitoes representing different 

phenotypes and following pyrethroid challenge. Monitoring pyrethroid resistance in adult 

mosquito populations is a challenge for vector control entities. Some vector control entities may 

not have the facilities required to rear insects or mix pesticide solutions. For those that do, the 

time required to collect, sort, and rear sufficient numbers of adult mosquitoes for toxicology 

studies is substantial and tends to conflict with the other duties, like conducting inspections and 

treating breeding sources. Mutations in the voltage gated sodium channel can be assayed by a 

variety of sequencing methods, but we demonstrate that even among mosquitoes with a given 

target site genotype, insecticide tolerance can vary considerably (Mack et al. 2021). Teasing out 

metabolic mechanisms of resistance is complex, and we sought to identify markers of 

resistance status downstream of alterations in specific detoxifying enzymes.  

In Chapter two, we compared a wild, pyrethroid-resistant population of Aedes aegypti 

collected from Clovis, CA to our pyrethroid susceptible lab reference strain, Rockefeller, using 
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gene expression data and metabolomic panels for lipids, biogenic amines and primary 

metabolites. We found metabolite differences were generally modest, less than 10 fold, with the 

exception of a dipeptide Gly-Pro. However, we found that metabolite data did help us to identify 

important pathways supporting the constitutive maintenance of elevated activity of cytochrome 

P450s and Epsilon Glutathione S-Transferases. We found evidence of elevated flux through the 

pentose phosphate pathway in Clovis, and increased demand on antioxidant pathways. 

Pathways that support maintenance of detoxifying enzymes are likely important vulnerabilities 

for insecticide synergism, which can be explored further.  

In Chapter three, we studied metabolite alterations in response to deltamethrin exposure 

in two CA populations of Ae. aegypti with genetically distinct backgrounds, collected from the 

Central Valley and LA. We described the essential roles of B-vitamins in surviving insecticide 

challenge, and differential utilization of pathways producing nitrogenous wastes.  

Through this dissertation, we document pyrethroid resistance status, describe new facets of 

resistance physiology, and identify targets for synergism. The discussion of pyrethroid 

resistance status, given the documented fitness costs (particularly of metabolic resistance 

mechanisms) (Freeman et al. 2021; Smith et al. 2021), begs the questions; will resistance 

naturally fade for these invasive populations over time? And, where is the selective pressure for 

resistance coming from?  

In the current landscape, it appears that insecticide resistance may not naturally fade. 

Recent work in California has found widespread pyrethroid contamination in urban catch basins, 

which are important urban vector breeding grounds (Sy et al. 2022, 2024; Surendran et al. 

2019). Other work has found proximity to agriculture can be selective for resistance in 

Anopheles mosquitoes (Hien et al. 2017), and work in Brazil reported persistence of pyrethroid 

resistance for ten years following the cessation of government pyrethroid applications, an 

outcome attributed to elevated private pesticide usage during dengue outbreaks (de Lourdes 

Macoris et al. 2018). California is an agricultural state, and Aedes populations live beside areas 
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that experience intense insecticide pressure, particularly in the San Joaquin Valley. Additionally, 

insecticide treatments are still applied for West Nile risk mitigation for Culex mosquitoes 

(“MVCAC IVM Whitepaper: Integrated Vector Management Is Critical for Protecting Public 

Health” 2020). With these dynamics in mind, it is difficult to imagine that environmental 

pyrethroid pressure can be meaningfully curtailed to restore efficacy of pyrethroids.  

Utilizing integrated vector management strategies, partnering with research entities, and trialing 

innovative control strategies are all necessary as the vector control community grapples with the 

loss in efficacy of the main tool available for adult control and disease outbreaks. A striking 

variety of novel strategies are emerging, alongside vaccine candidates for major arboviruses, 

such as dengue and malaria (Crawford et al. 2020; Schairer et al. 2021; Utarini et al. 2021; Tully 

and Griffiths 2021; RTS,S Clinical Trials Partnership 2015). Following the 2016 Zika outbreaks, 

the CDC awarded funding to create Centers of Excellence to conduct applied research and 

training of professionals to respond to vector-borne disease threats across the United States 

(“Research and Evaluation: Prevent and Control Vector-Borne Diseases” 2023). As a trainee 

myself, I am both cognizant of the challenges and inspired by the exciting opportunities that lie 

ahead in the dynamic field of Vector Control.  
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