Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

SPATIALLY RESOLVED GAS KINEMATICS WITHIN A Lyα NEBULA: EVIDENCE FOR LARGE-SCALE ROTATION

Published Web Location

https://arxiv.org/abs/1411.2589
No data is associated with this publication.
Abstract

We use spatially extended measurements of Lyα as well as less optically thick emission lines from an 80 kpc Lyα nebula at z 1.67 to assess the role of resonant scattering and to disentangle kinematic signatures from Lyα radiative transfer effects. We find that the Lyα, C IV, He II, and C III] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Lyα photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Lyα and the less optically thick He II line (100-200 km s-1), providing further support for the argument that the Lyα and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: 500 km s-1 over the central 50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Lyα nebula represents accreting material that is illuminated by an offset, hidden active galactic nucleus or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item