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A B S T R A C T   

Senescence is a condition of cell cycle arrest that increases inflammation and contributes to the development of 
chronic diseases in the aging human body. While several compounds described as senolytics and senomorphics 
produce health benefits by reducing the burden of senescence, less attention has been devoted to lifestyle in-
terventions that produce similar effects. We describe here the effects of exercise, nutrition, caloric restriction, 
intermittent fasting, phytochemicals from natural products, prebiotics and probiotics, and adequate sleep on 
senescence in model organisms and humans. These interventions can be integrated within a healthy lifestyle to 
reduce senescence and inflammation and delay the consequences of aging.   

1. Introduction 

Cellular senescence is a condition of cell cycle arrest in which cells 
cease to proliferate despite favorable growth conditions [1] (Fig. 1A). 
Various endogenous and exogenous forms of stress can induce the 
development of senescent cells, including telomere dysfunction [1], 
persistent DNA damage [2], hyperglycemia [3], obesity [4], and 
smoking [5], among others (Fig. 1B). Cellular senescence is involved in 
embryogenesis, wound healing, and cancer prevention [1,2,6] (Fig. 1A). 
During embryogenesis, senescent cells play a role in embryonic growth 
and tissue patterning [7]. When the body sustains a wound, senescent 
cells release growth factors that contribute to cell growth and tissue 
healing [8]. Pro-inflammatory cytokines released by senescent cells also 
serve as signals for activation of stem cells and recruitment of immune 
cells into the wound [6,9]. Upon persistent DNA damage, cells may also 
enter senescence, which can decrease organ dysfunction and the risk of 
cancer [2] (Fig. 1A). 

The beneficial role of senescent cells early in life can become detri-
mental in later years. The accumulation of senescent cells with time 
reduces the capacity of the body to regenerate and induces chronic 
inflammation via the senescence-associated secretory phenotype 
(SASP), which contributes to the condition of inflammaging during the 
aging process and especially in older adults [10,11] (Fig. 1A). The SASP 
consists of a complex mixture of cytokines, chemokines, growth factors, 

proteases and reactive oxygen species (ROS) that may induce senescence 
in surrounding cells [12]. Evidence that the accumulation of senescent 
cells contributes to the development of chronic diseases during aging 
(Fig. 1A) comes from depletion studies in model organisms. Accordingly, 
treatment with compounds termed “senolytics” that can kill senescent 
cells have been shown to produce many health benefits. For instance, 
intermittent treatment of mice with the senolytic compounds dasatinib 
and quercetin decreased physical dysfunction and extended lifespan by 
36 % in aged mice [13]. Similarly, dasatinib and quercetin improved 
cardiac function and physical performance in old mice by reducing the 
senescent cell burden [14]. The same cocktail also reduced intestinal 
senescence, inflammation and dysbiosis in mice [15]. In addition, 
senomorphic compounds such as apigenin, 4,4′-dimethoxychalcone, 
glucosamine, and metformin—which can inhibit senescent cell pheno-
type and the SASP—have shown promising effects in model organisms 
[6]. 

Preliminary clinical studies suggest that treatment with senolytics 
may also produce beneficial effects in pulmonary fibrosis [16] and 
kidney disease [17]. While senotherapies have emerged as potential 
treatments for chronic diseases, less attention has been devoted to the 
effects of lifestyle interventions that are widely available, easy to 
implement, and safe when used as recommended. 
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1.1. Effects of exercise on senescence 

Exercise is widely recognized to produce beneficial effects on health 
of animals and humans. Several preclinical studies indicate that exercise 
can reduce the number of senescent cells in various organs including the 
heart, liver, muscles, kidneys, and adipose tissues [18,19] (Fig. 2). For 
instance, wheel running for three weeks reduced the senescence marker 
and cyclin-dependent kinase inhibitor p16 in the heart of mice [20]. 
Aerobic treadmill exercise for 15–60 min daily, five times per week for 
six weeks reduced levels of senescence-associated beta-galactosidase in 
the kidneys of aged mice [21]. Similarly, a three-month swimming 
program reduced senescence markers and the pro-inflammatory cyto-
kine interleukin-6 (IL-6) in the liver of rodents treated with D-galactose 
to induce aging [22]. However, the high heterogeneity of exercise reg-
imens used in these animal models and the sole reliance on senescence 
markers limit our understanding of the mechanisms underlying the ef-
fects of exercise on senescence. 

Another important concept that is poorly recognized is that the 
relationship between exercise and senescence is not straightforward. For 
instance, exercise-induced senescence of fibro-adipogenic progenitor 
cells is beneficial for inducing regeneration of muscle cells following 
exercise [23]. Furthermore, exercise at extremely-high intensity can be 
detrimental for the body. For instance, swimming at extreme intensity 
that induces exhaustion can produce senescence in the hippocampus and 
impair memory in rats [24]. This observation is a tell-tale sign of a 
hormesis response to stress, showing that exercise induces health ben-
efits at low or moderate intensity, whereas excessive intensity and 
overtraining can produce detrimental effects [25]. These results indicate 
that exercise can reduce the number of senescent cells, but several fac-
tors including exercise intensity and the health condition of the host can 
affect the outcome. 

In humans, regular physical activity is associated with reduced levels 
of p16INK4 in T lymphocytes [26]. A five-month training program 
reduced the number of p16INK4-positive senescent cells in thigh adipose 
tissues of older overweight women [27]. Expression of p16 and IL-6 was 
elevated in the colonic mucosa of middle-aged and older overweight 
men compared to young sedentary men, whereas this elevation was 
blunted in age-matched endurance runners with several years of expe-
rience [28]. Similarly, the increase of senescent endothelial cells and 
impaired vascular endothelial function observed in brachial arteries of 
older sedentary individuals was absent in older exercising subjects [29]. 
In another study, leukocyte infiltration of skeletal muscles increased 
during resistance training in healthy and active young men, which may 
have induced the clearance of senescent cells [30]. Furthermore, a 
high-protein diet produced greater muscle gain and better senescent cell 
clearance [30], indicating that diet influences these processes. 

1.2. Effects of diet on senescence 

Various components found in the human diet including proteins, 
carbohydrates, fatty acids, vitamins and polyphenols have been shown 
to modulate the development of cellular senescence [31]. As noted 
above, hyperglycemia is a factor that can induce senescence [3] 
(Fig. 1B). High glycemic diets can promote production of advanced 
glycation end products (AGEs) that result from cooking foods that are 
high in carbohydrates, fats and proteins. Glycated collagen, a form of 
AGEs, can induce vascular senescence in rats [32]. While a high glyce-
mic diet, overeating and disrupted glucose metabolism may increase the 
senescence burden, caloric restriction (CR) and intermittent fasting may 
reduce the number of senescent cells (Fig. 2). CR consists of reducing 
energy intake from food without resulting in malnutrition. CR has been 
shown to reduce the signs of aging and extend lifespan in animal models 
by activating autophagy, damage repair and expression of antioxidant 
enzymes and by reducing the production of growth factors and 
pro-inflammatory cytokines [33,34]. Fontana et al. showed that CR can 
reduce the number of senescent cells in the large intestine of both mice 
and humans [35]. Intermittent fasting for 30 days (17–19 h daily) had a 
tendency to reduce expression of the senescence markers p16INK4A and 
p21 in the blood of healthy men, although the results did not reach 
statistical significance [36]. Supplementation with ß-hydrox-
ybutyrate—a ketone body that increases in the blood of people who 
consumed a ketogenic diet—reduced vascular senescence in aged mice 
[37]. A fasting-mimicking diet for four days followed bi-monthly reju-
venated the immune system in mice [38], which may reduce accumu-
lation of senescent cells by improving immunosurveillance. The 
possibility of improving immunosurveillance using a fasting-mimicking 
diet may be especially beneficial as disruption of the immune system 
during aging leads to reduced immunosurveillance and accumulation of 
senescent cells in the aging body [39]. 

A high-protein diet can be beneficial for inducing muscle gain and 
reduce inflammation following exercise [30]. Conversely, a low-protein 
diet can improve the health span and longevity in animals that are fed ad 
libitum [40]. These observations suggest that individuals hoping to 
improve exercise performance may make choices that affect health and 
lifespan. Adults aged 50–65 who consume a high-protein diet (>20 % of 
calories from proteins) had a 78 % higher overall mortality and a 
four-time higher risk of cancer mortality, while this trend was reversed 
in people over 65 years of age who showed reduced overall mortality 
and cancer mortality on a high-protein diet [41]. The phenomenon of 
higher mortality in adults who consumed a high-protein diet was 
attenuated to some extent if the proteins were from plants instead of 
animals [41]. In mice, consumption of a high-protein diet for three 
months increased expression of pro-inflammatory genes and the 

Fig. 1. Characteristics of senescent cells and examples of stresses that increase senescence in the human body. (A) Characteristics and roles of senescent 
cells. (B) Stresses and lifestyle habits that increase the senescence burden. 
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senescence markers p16 and p21 in the liver, with an increase of fat 
further enhancing the levels of pro-inflammatory markers [42]. 

A high-fat diet induced accumulation of senescent cells in the 
pancreas and adipose tissues of mice, contributing to inflammation and 
insulin resistance [43,44]. A high-fat diet also resulted in oxidative 
stress and senescent cell accumulation in the murine brain, which could 
be partially abrogated by treatment with the ginseng-derived compound 
ginsenoside [45]. While high-fat diets have been used to induce obesity 
and are widely believed to be detrimental to health, it appears that these 
effects are at least partly due to a lack of dietary fibers and intake of a 
large excess of calories [46]. 

Various phytochemicals such as quercetin, piperlongumine and 
fisetin also possess senolytic properties [6] (Fig. 2). The tea-derived 
polyphenol epigallogatechin gallate (EGCG) reduces inflammation, gut 
dysbiosis, and the accumulation of senescent cells in the adipose and 
intestinal tissues of mice [47]. A polyphenol-rich herbal extract of milk 
thistle produced senolytic effects in human skin cells in vitro [48]. 
Berberine also reduced senescence by inhibiting the mTOR signalling 
pathway [49]. Diets that are rich in phytochemicals such as the Medi-
terranean diet, which emphasizes plant-based foods and healthy fats, are 
likely to reduce the accumulation of senescent cells. Accordingly, 
cultivating endothelial cells with the serum of elderly subjects who had 
consumed a Mediterranean diet for four weeks led to reduced intracel-
lular reactive oxygen species and apoptosis and a lower number of cells 
with short telomeres [50]. 

1.3. A cautionary note on the anti-diabetic compound metformin 

Metformin is a synthetic derivative of French lilac, a herbal plant that 
has been traditionally used in Europe for diabetes treatment. Metformin 
has been shown to produce senomorphic effects in mice [51–53]. This 
compound is currently being studied as part of the TAME (Targeting 
Aging with MEtformin) study as an anti-aging nutraceutical compound 
to reduce symptoms of aging-related chronic diseases in healthy humans 

[54]. 
Metformin is also used to treat polycystic ovary syndrome (PCOS), a 

condition associated with elevated levels of testosterone in women. 
Similarly, metformin reduces testosterone levels in men with type 2 
diabetes [55,56]. This reduction of testosterone in diabetic men taking 
metformin is associated with erectile dysfunction [55], which is an 
adverse side effect that has not been adequately considered so far in 
aging-related studies. Furthermore, metformin abrogated the beneficial 
effects of exercise on insulin sensitivity and mitochondrial respiration in 
older subjects [57], suggesting that a combination of hormetic stresses 
such as metformin and exercise may produce detrimental additive ef-
fects in older individuals. Given the possibility that a large number of 
healthy aged people may soon start using metformin to delay aging, 
these potential adverse effects require further attention in clinical trials 
and post-approval drug safety surveillance. 

1.4. The gut microbiota: effect of prebiotics and probiotics on senescence 

Expanding research shows that the gut microbiome plays an 
important role in maintaining health and preventing chronic diseases, 
with diet playing a major role in modulating the gut microbiota 
composition [58,59]. The gut microbiota varies considerably during 
aging and is associated with a reduced diversity and lower level of 
beneficial commensals [60]. We showed earlier that polysaccharides 
derived from the medicinal mushrooms Ganoderma lucidum and Hirsu-
tella sinensis, acting as prebiotics, can reduce inflammation, insulin 
resistance and obesity in high-fat diet-fed mice by modulating the 
composition of the gut microbiota [61,62]. It is now recognized that the 
gut microbiota mediates several of the beneficial effects of dietary 
components and pharmaceutical compounds, including dietary fibers 
[63] and metformin [64]. 

Flavonoids such as resveratrol and quercetin can modulate the 
composition of the gut microbiota in animal models [65,66]. The 
cocktail of dasatinib and quercetin reduced senescent cells in the 

Fig. 2. Lifestyle interventions to delay senescence. The formation and accumulation of senescent cells can be reduced by various lifestyle interventions that can 
improve health and longevity, mainly by reducing inflammation. 
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intestines and the inflammatory burden in aged mice [15]. In addition, 
the cocktail modulated the gut microbiota, increasing beneficial com-
mensals such as Akkermansia muciniphila, Ruminococcus spp., and 
Butyrivibrio spp. Notably, these changes were observed in aged mice but 
not in young mice [15], indicating that the prebiotics may reverse 
aging-associated dysbiosis. It thus appears plausible that many of the 
effects of this senolytic cocktail may be mediated by the gut microbiota. 
Alternatively, this may apply only to quercetin which is known to act as 
a prebiotic. 

Probiotics can also produce beneficial effects by preventing the for-
mation of senescent cells [67] (Fig. 2). For instance, two-week supple-
mentation with fermented milk containing Lactobacillus and 
Streptococcus probiotics improved macrophage function and natural 
killer cell activity in aged mice [68]. Supplementation with culture su-
pernatants of Lactobacillus fermentum reduced stress-induced senescence 
in murine preadipocytes by decreasing DNA damage, expression of 
p16INK4A and p21, SASP markers, and NF-kB activation [69]. Oral 
administration of Lactobacillus to aged mice reduced pro-inflammatory 
markers, enhanced intestinal tight junctions, and reduced the accumu-
lation of senescent cells in the colon [70]. 

1.5. Effects of sleep deprivation on senescence 

Sleep is also widely recognized to produce health benefits in animal 
models and humans. Sleep fragmentation, sleep loss and insomnia can 
increase inflammation and senescence, possibly contributing to the 
development of aging-related diseases [71]. Chronic sleep deprivation 
during a period of 20 weeks induced vascular endothelial dysfunction 
including mild hypertension, inflammation, and increase of the senes-
cence marker p16INK4A in the arteries of mice [72]. Women partici-
pating in the Women’s Health Initiative study who reported sleep 
disturbance and insomnia had higher levels of late differentiated T cells 
[73], which are thought to represent senescent or near senescent cells. A 
single night of partial sleep deprivation (in which sleep was allowed only 
from 3 a.m. to 7 a.m.) was sufficient to induce gene expression related to 
the DNA damage response, pro-inflammatory SASP factors, and the 
senescence marker p16INK4A in peripheral blood mononuclear cells 
(PBMCs) of older adults (aged 61 to 86) [74]. While these preliminary 
results appear consistent, more research is needed to examine the impact 
of chronic sleep disturbance on human aging and disease development. 

2. Conclusions 

Different lifestyle interventions including exercise, nutrition, inter-
mittent fasting, and consumption of phytochemicals, prebiotics and 
probiotics, and adequate sleep can produce anti-senescence effects in 
model organisms and humans. Given the widespread beneficial effects of 
these lifestyle interventions, the findings described here are perhaps not 
surprising—except that the reduction of senescent cells represents a new 
mechanism of action to explain the effects of these interventions. The 
effects of lifestyle factors on senescence are quite complex and can easily 
be neutralized or become detrimental depending on their intensity and 
frequency. Moreover, an unhealthy lifestyle involving sedentarity, 
consumption of excess alcohol, smoking, lack of sleep and sunlight 
exposure and chronic stress may offset some of the beneficial effects of 
other interventions on senescence. More attention should therefore be 
given to the modalities that produce beneficial effects and their in-
teractions with anti-senescence compounds and other lifestyle habits. 
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