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Stresses Beneath Dynamically Applied Vertical Point Loads 
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ABSTRACT 

Engineering assessments of ground failure potential commonly express seismic demands in 
the form of shear stresses or normalizations thereof. In soil materials underlying foundations, 
referred to as ‘foundation soils’, dynamic stresses result from wave propagation associated 
with site response in combination with demands associated with soil-structure interaction 
(SSI). Engineers presently lack a simplified procedure for analysis of SSI-related stress 
demands. To provide insight into the physics of the SSI-induced stresses, and to lay the 
ground work for an eventual simplified procedure, this paper presents preliminary solutions 
for the problem of a dynamic vertical point load on the surface of an elastic half-space 
(Lamb’s problem) and the resulting stresses within foundation soils. Results are presented in 
dimensionless graphical form and indicate the amplitude and phase of dynamic stresses.  

Introduction 

Earthquake ground shaking induces strains and stresses in soil materials as a result of wave 
propagation from site response. In the absence of a structure, these seismic demands on the 
soil materials are considered free-field. Such demands on soil materials can cause, among 
other effects, pore pressure generation and associated losses in shear strength and stiffness. 
The presence of a structure modifies the characteristics of wave propagation in the vicinity of 
the foundation due to soil-structure interaction (SSI); therefore, in ‘foundation soils’ dynamic 
stress demands result from both site response and SSI. In conventional engineering practice, 
stress demands from SSI are ignored based on the perception that demands from wave 
propagation are dominant. However, numerous post-earthquake field investigations [e.g., 
1999 Kocaeli, Turkey (Bray and Stewart, 2000); 1999 Chi-Chi, Taiwan (Chu et al., 2004), 
2011 Tohoku, Japan (Ashford et al., 2011)] provide evidence for local ground failure beneath 
foundations, apparently influenced by SSI-related demands. Similar phenomena have been 
observed and documented in centrifuge modeling (e.g., Dashti et al., 2009).  

The stress solutions for static vertical and horizontal loads applied on the surface of an elastic 
half-space are given by exact formulae by Boussinesq (1885) and Cerruti (1882), which are 
available in engineering textbooks and manuals. Moreover, a few analytical and some 
numerical solutions exist for more general types of static loading such as circular or square 
vertical and horizontal loads applied on the surface of an elastic half-space or a finite soil 
layer over rigid rock, obtained by integration of the above solutions (Poulos & Davis 1974). 
In the case of dynamic loading, the body of knowledge is much more limited, primarily due 
to the difficulty in solving the governing differential equations in closed form. The first to 
successfully perform such an analysis was Lamb (1904), who extended Boussinesq’s solution 
by considering a suddenly applied vertical load of constant amplitude. Despite several 
subsequent studies (summarized by Kausel 2012), little progress has occurred over the last 
century for two main reasons: (1) the difficulty in evaluating certain integrals (i.e., inverting 
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the integral transforms) employed in the analysis; and (2) the focus in practice on determining 
surface motions, not soil stresses. An exception is a recent study by Schepers et al. (2010) on 
the problem of harmonic vertical and horizontal point loads on the surface of a visco-elastic 
half-space. However, the pressure bulbs presented are hard to use due to necessary scaling 
adjustments to get the corresponding stress outputs. Inspired by the aforementioned analyses, 
the goals of this study are to: (1) extend the Boussinesq (1885) problem to the dynamic 
regime, by considering a harmonic load applied on the surface of a visco-elastic half-space, 
(2) develop general normalization schemes to facilitate ease of application, and (3) provide 
insight into the physics of SSI-induced stresses and thereby take initial steps towards a 
simplified procedure for evaluating seismic stress demands in foundation soil. 

Dimensional Analysis 
 
The differential equations describing the response of the soil mass are not solvable 
analytically, so dimensional analysis is employed to capture the specific parameters that 
characterize the system. The Buckingham π theorem (Buckingham, 1914) is applied for static 
and dynamic vertical point loads applied on the surface of an elastic half-space, to determine 
the number of dimensionless parameters required in the solution. According to this theorem, 
a physical problem involving N parameters with M fundamental dimensions can be described 
by a set of P = N - M dimensionless parameters (π groups). In other words, identifying the 
variables involved in a physical problem would suffice for computing the number of 
dimensionless parameters, even when the form of the governing equation describing the 
problem or the solution is unknown. It should be noted that the choice of dimensionless 
parameters is not specified in this theorem; therefore the process of selecting the π groups 
should be bounded with knowledge of physical characteristics of the corresponding problem 
and requires judgement. 
 
Dimensional Analysis for the Classical Boussinesq Problem 
 
With reference to the coordinate system of Figure 1(a), the classical Boussinesq problem is 
presented in Figure 1(b). In this figure the position of an arbitrary element within the elastic 
soil medium (with Young’s modulus E and Poisson’s ratio ν) is defined by radial distance R 
from the point of application of load P, and the vertical aperture angle, φ. Hence, in this 
problem, three parameters, E, R, and P have two fundamental units, i.e. length [L] and force 
[F]. Two intrinsically dimensionless parameters, φ and ν, complete the definition of the 
physical system. Accordingly, the number of dimensionless groups required to define this 
problem is given as (where Q refers to the number of intrinsically dimensionless parameters): 

                                                                                                     (1) 

Therefore, the solution to the classical Boussinesq problem must be represented by an 
equation involving three dimensionless parameters, two of which are known (φ and ν). 
Additional steps are required to identify the third parameter. Equation 2 shows the stress 
response, σij, of a soil element, with the associated units appearing in Equation 3. 

                                                                                                                (2) 

                                                                                                                 (3) 

Parameters α, β, and γ are determined through dimensional analysis per Equation 3. 
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Figure 1. (a) Cartesian versus cylindrical coordinates - Adapted from Schepers et al. (2010), 
(b) Classical Boussinesq problem (ω = 0), Dynamic Boussinesq problem (ω > 0) 

 
Equation 3 provides two equations and three unknowns. The linearity of the problem requires 
α = 1. Values of β and γ are then obtained as 0 and -2, respectively, resulting in: 

 
2( , ) /ij P g Rσ j ν=                                                                                                                   (4) 

 
Equation 4 reveals the independence of stresses to the Young's modulus of the half-space. 
Equation 4 is rewritten in a dimensionless form in Equation 5 where the third dimensionless 
parameter is (σijR2/P). In other words, for an element located at distance R from the vertical 
static point load applied at the ground surface, the dimensionless stress depends only on 
aperture angle and ν. This is confirmed by the exact stress solution to the Boussinesq’s 
problem as shown in Equations 6−9 in dimensionless forms. 

 
2 / ( , )ij R P gσ j ν=                                                                                                                      (5) 

 
2 2/ [3cos sin (1 2 ) / (1 cos )] / 2r R Pσ j j ν j π= − − +                                                                   (6) 

 
2 / (1 2 )[1/ (1 cos ) cos ] / 2R Pθσ ν j j π= − + −                                                                              (7) 

 
2 2/ 3sin cos / 2rz R Pτ j j π=                                                                                                        (8) 

 
2 3/ 3cos / 2z R Pσ j π=                                                                                                                (9) 

 
The independence of the right-hand side of the above solutions to R indicates self-similarity 
of the problem, as it reduces the number of independent variables from two (i.e., φ, R) to one 
(φ), which simplifies the governing equations. This remarkable property is discussed in detail 
by Barenblatt (1996). 

 
 



Dimensional Analysis for the Dynamic Vertical Point Load Problem 
 
In the dynamic counterpart to the Boussinesq problem, shown in Figure 1(b), the point load is 
periodic with amplitude P and angular frequency ω. Radial Distance (R), shear wave velocity 
(Vs), shear modulus (G), and mass density of the soil medium (ρ) are other essential 
parameters. Since G, Vs, and ρ are correlated; only two of them should be considered as 
fundamental parameters resulting in a total of five (N = 5), three fundamental dimensions, 
length [L], force [F], and time [T], (M = 3), and intrinsically dimensionless parameters ν, ξ, 
and φ (Q = 3). Accordingly, the number of dimensionless parameters is: 

 
                                                                                                    (10) 

 
Hence, in addition to the three intrinsically dimensionless parameters and (σijR2/P), another 
dimensionless parameter is required to fully describe the dynamic solution. This parameter is 
selected to be (ωR/Vs), which is recognized in most studies involving dynamic analysis as 
dimensionless frequency. A difference in the present case is that R is a coordinate, not a 
characteristic length (e.g. a footing dimension). Alternatively, (ωR/Vs) can be interpreted as 
proportional to the ratio of R to wavelength. As shown in Equation 11, in the dynamic 
problem (σijR2/P) is a function of soil ν and ξ, aperture angle, and dimensionless frequency: 

 
2 / ( , , , / )ij sR P g R Vσ j ν ξ ω=                                                                                                 (11) 

 
The function g in Equation 11 is not unique and changes depending on the stress component 
of interest. Instead of solving the governing differential equation of the system analytically, 
which is a formidable task, function g is investigated numerically using a Boundary Element 
Method implemented in the software platform ISoBEM (2012). The accuracy of ISoBEM 
analyses are verified for the static vertical loading problem in Figure 2, which compares 
vertical and shear stress results from ISoBEM analysis and the Boussinesq solution.  

 

 
 

Figure 2. Comparison between ISoBEM and analytical solution for classical Boussinesq problem (y = 
0, z = -1 m, P = 1 N, ρ =1.8 Mg/m3, VS = 100 m/s, ν = 0.33) 

 
In the case of a harmonic vertical applied point load, a comparison is performed between 
vertical and shear stress results from ISoBEM analysis and the solution of Schepers et al. 
(2010) for ν = 0.33, ξ = 0.5%, VS =100 m/s, and ρ =1.8 Mg/m3. The outcomes of this 
comparison are presented in Table 1. The stress values corresponding to Schepers et al. 
(2010) were computed using a MATLAB script provided by Schepers (personal 
communication, 2013). While the results are generally compatible, they exhibit differences of 
up to approximately 25%, which is considered high for this relatively well-defined and 
simple problem. Accordingly, we performed additional checks of displacement results 

( ) (5 -3) 3 5N M Q− + = + =



between the MATLAB script, ISoBEM, and numerical finite element analyses performed by 
E. Esmaeilzadeh (personal communication, 2014) using an axisymmetric frequency domain 
wave solver with perfectly matched layers as absorbing boundary conditions (Esmaeilzadeh 
et al., 2014). Although not shown here for brevity, this comparison indicates that the results 
from ISoBEM analyses are generally more consistent with those from finite element 
simulations than with those from Schepers et al. (2010).  
 

Table 1. ISoBEM axisymmetric verification models. SEA 2010=Schepers et al. (2010) 
 

Freq.  
f (Hz) 

Coords. 
(r,z) 
(m) 

ISoBEM 
σz  

(N/m2) 

SEA 
2010 

σz 
(N/m2) 

σz 
Diff.  
(%) 

Coords. 
(r,z) 
(m) 

ISoBEM 
τhv 

(N/m2) 

SEA 
2010 
τhv 

(N/m2) 

τhv 
Diff.  
(%) 

0 (0,-1) 0.484 0.478 1% (0.704,-0.704) 0.170 0.170 0% 
12.5 (0,-0.958) 0.595 0.468 24% (0.758,-0.758) 0.176 0.168 5% 
25 (0,-1.188) 0.530 0.462 14% (1.032,-1.032) 0.162 0.209 25% 

37.5 (0,-1.406) 0.450 0.461 2% (1.11,-1.11) 0.177 0.166 7% 
50 (0,-1.450) 0.453 0.458 1% (1.176,-1.176) 0.144 0.114 23% 

 
Additional verification was conducted for the normalization of the dynamic stress results with 
respect to (σijR2/P) and (ωR/Vs). For this purpose, three models were built in ISoBEM 
representing different values of frequencies, shear wave velocities, and radial distances, yet 
identical sets of dimensionless frequencies, (ωR/Vs). Table 2 summarizes results for the three 
models used for normalization verifications. Corresponding stress amplitudes are presented in 
Figure 3 in non-normalized and normalized forms for vertical normal stresses σz and in-plane 
shear stresses on horizontal and vertical planes τhv. The results support the proposed 
normalization scheme.  

 
Table 2. ISoBEM axisymmetric models used to verify normalization; ν = 0.34, ξ = 1%. 

 
 Model 1 Model 2 Model 3 

ωR/Vs 
ω 

(rad/s) 
R (m) Vs 

(m/s) 
ω 

(rad/s) 
R (m) Vs 

(m/s) 
ω 

(rad/s) 
R (m) Vs 

(m/s) 
0.5 98.06 0.51 100 49.75 1.0 100 33.26 1.5 100 
1 196.1 0.51 100 99.50 1.0 100 66.52 1.5 100 
2 392.2 0.51 100 199.0 1.0 100 133.0 1.5 100 
4 784.4 0.51 100 398.0 1.0 100 266.0 1.5 100 
6 1176 0.51 100 597.0 1.0 100 399.1 1.5 100 
8 1568 0.51 100 796.0 1.0 100 532.1 1.5 100 
10 1961 0.51 100 995.0 1.0 100 665.1 1.5 100 

 



 
 

Figure 3. Checks of stress normalization using ISoBEM analyses for the conditions described 
in Table 2; (a) stress components (b) normalized stress components 

 
Axisymmetric models in ISoBEM were set up to develop dimensionless graphical 
representations of stress fields resulting from harmonic vertical point loads on a visco-elastic 
half-space. The models are designed to cover the likely parameter range for practical 
applications. The non-zero components of dynamic stress amplitudes and phase angles are 
generated and plotted as polar graphs. Vertical and shear components of stress are presented 
in Figure 4. Stress amplitudes are found to have upper limits of about 1.0 P/R2 for σz and 
about 1.7 P/R2 for τrz in the examined frequency range. It is also noteworthy that the number 
of lobes in the stress bulbs increases with frequency, from one under static conditions to five 
at (ωR/VS) = 20 for σz, and from two in the static case to four at the highest considered 
dimensionless frequency for τrz. This pattern can be explained on the basis of successive 
zones of destructive and constructive wave interference, which is expected to become more 
pronounced as frequency increases. 

To help interpret the results shown in Figure 4, consider the example of a point within the soil 
media located at r = 2.1 m and z = -2.16 m. This point is located at radial distance R = 2.5 m 
from the point of application of the vertical load at a vertical angle of φ = 30 degrees. If 
𝑉𝑉𝑆𝑆  =  300 m/s and ω = 60 rad/s, the dimensionless frequency is ωR/VS = 0.5. In Figure 4, the 
ray along an aperture angle of 30 degrees intersects the vertical and shear stress bulbs for 
ωR/VS =0.5 (i.e. solid blue curve) at dimensionless values of 0.34 and 0.19, respectively. For 
a unit vertical point load (P = 1 kN), vertical and shear stress amplitudes are obtained by 
dividing the aforementioned values by R2 (i.e., σz = 54 kN/m2 and τrz = 30 kN/m2). The 
corresponding phase angles are 0.01π and 0.003π for vertical and shear components, 
respectively. At zero frequency (static case), the corresponding stresses are 51 and 28 kN/m2 
and the phase angles are zero.  
 

Conclusions 
 

The value of dimensionless stress, (σijR2/P), within foundation soil underlying a harmonic 
vertical point load at the ground surface is a function of dimensionless frequency, damping, 
and Poisson’s ratio. The following conclusions may be drawn (emphasizing the vertical and 
shear components): 

 



  
           (a) 

  
           (b) 

  
           (c) 

 
 

Figure 4. Stress bulbs due to vertical point load, ν = 0.34, ξ = 5%; (a) Stress amplitude bulbs 
for ωR/Vs = 0 (static) to 2, (b) Stress amplitude bulbs for ωR/Vs = 4 to 20, and (c) phase 

angle bulbs for ωR/Vs = 0 to 20.  
 



• For (ωR/Vs) < 1, dynamic effects range from negligible to moderate for both vertical and 
shear stress components and could probably be ignored. 

• For (ωR/Vs) ≈ 2 to 4, the general shapes of the stress distributions are similar to those for 
the static case, but the stress amplitudes are increased by about 60% for the shear 
component and 80% for vertical component.  

• For (ωR/Vs) > 4, stress patterns deviate substantially from the static case and follow a 
more complex pattern, due to constructive and destructive interference of the travelling 
waves,. 

• The dynamic dimensionless stress bulbs depend on Poisson’s ratio. The effects of 
Poisson’s ratio on stress patterns (not shown here in the interest of space) and values are 
more significant for higher dimensionless frequencies. 

• Reduction in stress values is a natural outcome of soil damping ratio. However, this effect 
is more obvious for higher dimensionless frequencies (also not shown in the interest of 
space). In other words, higher damping ratio values alleviate the dramatic sharpness in 
dimensionless stress bulbs with high dimensionless frequencies and cause smoother stress 
patterns. 

When surficial loads occur across a finite area, the resulting stress distributions in the soil 
medium can be obtained through integration of point load solutions as presented here. This 
application of the present work will be presented in subsequent publications.  
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