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Influence of Kinematic SSI on Foundation Input Motions for Pile-

Supported Bridges 
 
 

B. J. Turner1, S. J. Brandenberg2, J. P. Stewart3 
 
 

ABSTRACT 
 
 The seismic analysis of bridge structures is often performed using the substructure method in 

which the foundation is replaced by an equivalent "spring" representing foundation impedance. 
Ground motions from seismic hazard analyses correspond to a free-field condition, and therefore 
should be modified to account for kinematic soil-structure interaction effects before being used as 
input to the springs. This paper presents closed-form analytical solutions for the response of an 
elastic pile subjected to harmonic seismic excitation in uniform elastic soil. We use these solutions 
to compute transfer functions relating foundation input motion to free-field ground motion and use 
the results to verify predictions from a beam-on-Winkler-foundation numerical model. The two 
approaches show good agreement, indicating that the numerical modeling method is appropriate 
for investigating more complex effects such as soil and pile nonlinearity. Ground motion 
deamplification due to kinematic SSI is demonstrated to be significant for stiff foundations in soft 
ground conditions. Numerical simulations using recorded ground motions demonstrates that 
transfer functions can be computed only from frequency bands for which the motions contain 
adequate energy. 

 
Introduction 

 
Seismic design of bridges and other structures supported on bored or driven piles often utilize a 
substructure method in which the foundation elements are not explicitly modeled, but rather are 
replaced by "springs" representing the foundation impedance. The ground motion appropriate for 
input to the free-end of the springs (i.e., the foundation input motion, FIM) differs from the free-
field motion (FFM) due to kinematic soil-structure interaction (SSI). Ground motions from a 
seismic hazard analysis represent shaking in the free field. For example, pseudo-spectral 
accelerations (PSa) on seismic hazard maps and site amplification factors used in building codes 
and seismic design guidelines (e.g., ASCE-7, 2010) do not include the influence of SSI. 
Similarly, the PEER ground motions database (Ancheta et al., 2014), a commonly used source 
for accelerograms used in response history analyses, excludes records influenced by SSI.  
 
Past studies of kinematic SSI for pile foundations used analytical and numerical solutions. 
Flores-Berrones and Whitman (1982), Fan et al. (1991), and Nikolaou et al. (2001) quantify the 
kinematic response of vertical piles and pile groups for vertically propagating shear waves in 
elastic soil. Similar solutions for inclined waves have been presented by Barghouthi (1984), 
Mamoon and Banerjee (1990), and Kaynia and Novak (1992). Taking the FIM as the pile head 
motion, the ratio FIM/FFM can be expressed as a frequency-dependent transfer function. These 
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studies have found that at low frequencies, the transfer function ordinate (Hu) is approximately 
unity, indicating that the soil and pile move in unison. At higher frequencies, a relatively stiff 
pile will not conform to the short-wavelength ground motion, so Hu decreases. Whether or not 
Hu descends below unity within the frequency range of engineering interest for a bridge depends 
on factors such as the relative stiffness contrast between the pile and soil, the length of the pile, 
and whether or not restraint against rotation is provided at the pile head. Examinations of data 
from pile-supported buildings, where base-slab averaging (and in some cases, embedment) 
effects act in combination with the kinematics of soil-pile interaction to produce observations of 
Hu have suggested both an apparently negligible effect of piles (Kim and Stewart 2003) and 
potentially significant effects (Givens et al. 2012). These discrepancies have yet to be 
satisfactorily resolved.  
 
A comprehensive study of kinematic SSI effects including nonlinear site response, soil and pile 
nonlinearity, frequency content, group interaction, and ground motion incoherence is currently 
underway by the authors. The analyses utilize a beam-on-nonlinear-Winkler-foundation (BNWF) 
model attached through p-y springs to soil nodes. The soil nodes are excited by displacement 
records which represent the free-field ground response at each depth along the length of the pile, 
and the model is analyzed using the finite element program OpenSees (Mazzoni et al. 2007). No 
mass is assigned in the model; the absence of inertial forces allows kinematic soil-structure 
interaction (KSSI) effects to be isolated. 
 
This paper focuses on validation of the BNWF modeling approach for a vertical elastic pile in 
uniform, undamped elastic soil using closed-form solutions. We derive a closed-form analytical 
solution for the transfer function and subsequently compare it to the results of a linear-elastic 
Winkler foundation model analyzed in OpenSees. Input ground motions include harmonic sweep 
functions that are rich in frequency content across a wide bandwidth and recorded ground 
motions having variable mean periods. Depth-dependent ground motions are computed from the 
surface motions based on linear elastic wave propagation theory. Comparisons between the 
analytical and numerical solutions are presented in this paper. Nonlinear soil and pile effects, 
ground motion incoherence, and comparison to field data are reserved for future studies. 
 

Analytical Solution 
 
Derivation of the closed-form solution for a vertical elastic pile in elastic soil begins with the 
following fourth-order differential equation for a laterally-loaded pile in the absence of free-field 
ground motion (after Hetenyi 1946): 
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in which up is horizontal pile displacement, z is depth measured downwards from the pile head, 
EI is the pile flexural rigidity, P is axial load, and ky is the soil-pile interaction stiffness intensity, 
all defined in a consistent set of units. For our purposes, axial load is taken as zero and the 
displacement term is replaced with the relative displacement between the pile and free field soil 
undergoing horizontal displacement consistent with harmonic seismic excitation by vertically 
propagating shear waves: 
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where ug0 is the ground displacement at the surface due to the harmonic seismic excitation and k 
is the wave number defined as the ratio of excitation angular frequency (ω) to soil shear wave 
velocity (Vs). The solution to Equation 2 in terms of pile horizontal displacement at depth z as a 
function of the previously defined variables is: 
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where χ1 through χ4 are constants and R is a dimensionless variable combining terms as follows: 
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Successive derivatives of Equation 3 provide expressions for slope, curvature, moment, shear, 
and soil reaction. The expressions for slope (S), moment (M), and shear (V) are: 
 

( ) ( )1 2 3 4( ) sin( )c c c c− = = + − + − ⋅ 
p Rz Rzdu

S z R e A B e B A k C kz
dz

  (5) 

[ ] [ ]{ }( )
2

2 2
1 2 3 42( ) 2 sin( ) cos( ) sin( ) cos( ) cos( )c c c c−= = − + + + −p Rz Rzd u

M z EI EI R e Rz Rz e Rz Rz k C kz
dz

   (6) 

( ) ( )( )
3

3 3
1 2 3 43( ) 2 sin( )p Rz Rzd u

V z EI EI R e B A e A B k C kz
dz

c c c c− = = − + + − +    (7) 

 
The following substitutions were used to abbreviate Equations 5, 6 and 7: 
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To solve for the constants χ1 through χ4, a set of four permissible boundary conditions must be 
imposed. Typically the boundary conditions are prescribed at the pile head and tip since these 
can be determined on the basis of details such as embedment into a pile cap or a stiff bearing 
stratum. For example, in the absence of superstructure force or moment demands (required for a 
KSSI analysis) the boundary conditions for a fixed-head, free-tip pile of length L are:  
 

(z 0) 0 ;     ( 0) 0 ;     ( ) 0 ;     ( ) 0V S z V z L M z L= = = == = = =   (9) 
 



The appropriate expressions for displacement, slope, shear, and moment provided by Equations 
3, 5, 6, and 7 can be equated to the specified boundary conditions at the pile head and tip to form 
a system of four equations which can be solved to evaluate χ1 through χ4. 
 
Pile head displacement is evaluated using Equation 3 at depth z = 0. To produce an analytical 
transfer function, the pile head displacement normalized by the amplitude of the harmonic 
ground motion, ug0, is evaluated as a function of frequency.  
 

Numerical Solution 
 
The numerical modeling approach consists of an elastic pile discretized into 0.1-m segments and 
attached to linear-elastic soil springs at each node. We modeled the pile and soil using elastic 
beam-column and elastic zero-length uniaxial materials, respectively, in OpenSees.  
 
We considered two categories of input excitation, sine-sweep motions consisting of uniform-
displacement amplitude broadband frequency content from 0.1 to 50 Hz, and recorded ground 
motions with variable bandwidth. The free-field input motions were specified at the ground 
surface and motions at the depth of each soil spring were computed by convolving the input 
motion (Equation 10) based on assumptions of uniform, elastic undamped soil and zero shear 
strain at the ground surface (after Kramer 1996): 
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Note that this transfer function is distinct from the transfer functions relating pile head motion to 
ug0 and is only used to compute free-field soil displacement at each depth increment. By 
specifying the input motion at the ground surface rather than the base of the soil profile, the 
problem of infinite amplification at resonant site frequencies is avoided. The amplitude of the 
input excitation does not affect the computed transfer functions since the model is linear-elastic. 
 
Soil and pile properties for the numerical analyses match the properties used in the analytical 
solution so that a direct comparison of the computed transfer functions can be made. We defined 
the soil-pile interaction stiffness (ky) at depth z as (Gazetas and Dobry 1984): 
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where Ep is the pile elastic modulus, taken as 2.7E7 kPa for reinforced concrete, and Es is depth-
dependent elastic soil modulus computed from Vs based on classical elasticity theory with 
assumed soil density ρ=1.6 Mg/m3 and Poisson’s ratio ν=0.3. The uniaxial spring stiffness is 
defined as ky divided by the tributary length of the pile element to which it is attached. The soil 
springs connected to the pile head and tip are assigned a tributary length equal to half of the pile 
segment discretization length. 
 
 
 
 



 
Results 

 
Transfer functions for the analytical solution are compared to the numerical solution results for a 
sine-sweep input motion in Figure 1 and for recorded earthquake ground motions in Figure 2. 
Two sizes of circular concrete piles are considered for the analytical solutions, 0.5-m and 2.0-m 
diameter (d), for a site with Vs=150m/s. Both fixed-head and free-head restraint conditions are 
considered. For the numerical solution, only the 2.0-m diameter fixed-head pile is considered.  

 
 

Figure 1: Analytical and numerical solution transfer functions for sine-sweep input motion. 
 

 
 

Figure 2: Fourier amplitude spectra for free-field and foundation-input motions (top) and 
corresponding transfer functions (bottom). 
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The sine-sweep input motion transfer functions show near-perfect agreement with the analytical 
solution over the entire frequency range considered for both pile sizes. Free-head piles are seen 
to exhibit amplification of the input motion (Hu > 1) of about 20% at a dimensionless frequency 
(a0

p) of about 0.3. This contradicts the frequently held notion that the FIM is always less than the 
FFM and thus can always safely be ignored for a “conservative” design. The right side of Figure 
1 shows that solutions for different pile sizes converge when frequency is normalized to a0

p   
 
For the comparisons using real earthquake ground motions as input, we characterized the 
frequency content of the motions based on mean period, Tm (Rathje et al. 1998). The inverse of 
Tm, which is the mean frequency (although Rathje et al. do not use this terminology), represents 
the motion’s central frequency (approximate centroid of Fourier amplitude spectrum). We use 
ground motions from a set of 40 records with broad frequency content and statistical variability 
compiled by Baker et al. (2011). For the current comparison, we selected from the set of 40 the 
motions with the minimum, median, and maximum Tm as shown in Table 1. 
 

Table 1: Ground motions for numerical analyses; numbering follows Baker et al. (2011) 
 

Motion # Earthquake Recording Station M Tm (s) PGA (s) 
25 1989 Loma Prieta UCSC 6.9 0.19 0.34 
4 1994 Northridge LA – Wonderland Ave. 6.7 0.45 0.13 
24 1989 Loma Prieta Golden Gate Bridge 6.9 0.97 0.16 

 
Figure 2(a) shows acceleration Fourier amplitude spectra (FAS) for the pile head motion (FIM) 
and ground surface motion (FFM) for each of the three input earthquakes we considered. Note 
that each ground motion FAS is only plotted over the useable frequency range of the ground 
motion, which depends on the processing applied to the original recording (Ancheta et al. 2014). 
The ratio of the displacement FAS is the unsmoothed transfer function shown in Figure 2(b). 
 
Transfer functions generated using the earthquake input motions highlight an important issue in 
the proposed numerical modeling approach. Because the motions we considered have near-zero 
Fourier amplitude in the frequency range greater than about 10 Hz (notice for example in Figure 
2(a) that the Fourier amplitude at a frequency of 20 Hz is about 3 to 4 orders of magnitude less 
than at 1 Hz), small errors in the computed pile displacements at these higher frequencies result 
in large amplification, with Hu approaching 2.0 in some cases. Mathematically, this arises 
because the very small pile head motion is being divided by an even smaller ground 
displacement that is essentially zero. The pile head motions are in fact so small that they may be 
attributable to numerical oscillations in the finite element solution. 
 
Kim and Stewart (2003) address this issue by utilizing an alternative transfer function definition: 
 

( ) ( ) / ( )u xx yyH S Sω ω ω=    (12) 

 
where Sxx and Syy are the smoothed auto power spectral density functions of the FIM and FFM, 
respectively. The smoothing operation is accomplished by replacing each ordinate of the 
unsmoothed power spectrum with a weighted average value of the unsmoothed ordinates over a 



frequency band centered on the point of interest. We used an 11-point Hamming window to 
perform the smoothing in the frequency domain. In addition, we considered the coherence 
between the FFM and FIM as a means of discerning which transfer function ordinates represent 
meaningful frequency content in the ground motion. Details of the smoothing operation and 
coherence computation are omitted for brevity and can be found in Kim and Stewart (2003) and 
Mikami et al. (2008). Figure 2(b) shows the smoothed transfer functions plotted only at ordinates 
with coherence greater than or equal to 0.8, which eliminates much of the noise seen in the 
unsmoothed transfer functions and provides a closer match to the analytical transfer functions. 
 
Finally, we computed ratio-of-response-spectra (RRS) for the three ground motions, defined as 
the ratio of pseudo response spectrum ordinates (PSa) for a damped single-degree-of-freedom 
(SDOF) oscillator subjected in turn to the FIM and FFM (Figure 3). Since the high frequency 
portion of a response spectrum is controlled by the amplitude of the largest spike in the ground 
motion rather than the high frequency content of the ground motion, the SDOF oscillator 
effectively acts like a high frequency (low pass) filter (NIST 2012). As a result, the short period 
region of the RRS does not contain the high frequency spikes seen in the unsmoothed numerical 
transfer functions. Figure 3 clearly demonstrates that the RRS depends strongly on the frequency 
content and resulting spectral shape of the free-field motion, since motions with a higher mean 
frequency will be more effectively attenuated by the pile.     
 

  
 

Figure 3: Ratio-of-Response-Spectra for 2.0-m diameter fixed-head pile. 
 

Conclusion 
 
We have presented closed-form analytical solutions for the response of a vertical pile subjected 
to harmonic excitation from vertically propagating shear waves. The results are expressed as 
transfer functions between the pile head motion and free-field motion. We compared the 
analytical results to transfer functions generated using a linear-elastic beam-on-Winkler-
foundation model and demonstrated that foundation input motions computed using the numerical 
approach are in excellent agreement with the analytical solution for a sine-sweep input motion 
that is rich in frequency content. For the recorded motions, we showed that the numerical 
transfer functions are in good agreement with the analytical solutions over frequency bands with 
high coherence between the ground motion and the foundation motion.  
 
We find the free-field ground motion amplitude to be reduced substantially for frequencies above 
about 2 to 20 Hz (a0

p=0.2-0.3). We expect that the introduction of soil nonlinearity to the 
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numerical model will shift the affected frequencies further into the range of engineering interest 
for large bridges (roughly 0.2 to 2 Hz).  
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