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Abstract. A system of linear equations in Fn
p is common if every two-colouring of Fn

p

yields at least as many monochromatic solutions as a random two-colouring, asymptotically
as n → ∞. By analogy to the graph-theoretic setting, Alon has asked whether any (non-
Sidorenko) system of linear equations can be made uncommon by adding sufficiently many
free variables. Fox, Pham and Zhao answered this question in the affirmative among systems
which consist of a single equation. We answer Alon’s question in the negative.

We also observe that the property of remaining common despite that addition of arbitrar-
ily many free variables is closely related to a notion of commonness in which one replaces
the arithmetic mean of the number of monochromatic solutions with the geometric mean,
and furthermore resolve questions of Kamčev–Liebenau–Morrison.
Keywords. Sidorenko’s conjecture, Sidorenko and common linear patterns
Mathematics Subject Classifications. 05D10, 11B30

1. Introduction

In graph theory, a graph H is called common if every two-colouring of Kn contains at least at
many monochromatic copies ofH as a random two-colouring does (in the limit n→ ∞). Good-
man [Goo59] proved that K3 is common. Erdős conjectured that K4 is common [Erd62] and
subsequently Burr and Rosta conjectured [BR80] that every graph is common. These conjec-
tures were disproved by Sidorenko [Sid89] and Thomason [Tho89] who demonstrated respec-
tively that a triangle with a pendant edge and K4 are in fact not common. The classification of
common graphs remains very much open to this day.

One observes that if H satisfies the stronger property that amongst all graphs on n vertices
of fixed edge density, a random graph contains the fewest copies of H (in the limit n → ∞),
thenH is certainly common. Graphs satisfying this stronger property are called Sidorenko. Con-
jecturally [Sim84, Sid93], all bipartite graphs are Sidorenko; this conjecture remains wide open
(despite the resolution of various special cases). Certainly, since Sidorenko’s conjecture (also
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due to Erdős–Simonovits [Sim84]) is not known to be false, all known instances of uncommon
graphs are not bipartite. In fact, every non-bipartite graph can be made uncommon by the addi-
tion of sufficiently many pendant edges (an edge e is pendant to a graph H if |e ∩ V (H)| = 1).

Theorem 1.1 ([JST96]). If H is a non-bipartite graph with m ⩾ 3 vertices, then there is a
positive integer l0(m) such that any graph obtained by successively adding at least l0 pendant
edges to H is uncommon.

Alon has asked whether the analogous result is true in the arithmetic setting. A system of
linear equations in Fn

p is common if every two-colouring of Fn
p yields at least as many monochro-

matic solutions as a random two-colouring, asymptotically as n→ ∞. A system of linear equa-
tions inFn

p is Sidorenko if among all subsetsS ofFn
p of fixed density, the number of solutions inS

is minimised when S is a random set, asymptotically as n→ ∞. It is clear that if a linear system
is Sidorenko, then it is common. Saad and Wolf initiated the study of these properties in the arith-
metic setting [SW17]. For both the Sidorenko and common properties, necessary [FPZ21] and
sufficient [SW17] conditions for systems containing a single equation are known (in fact, a single
equation in an even number of variables is Sidorenko if and only if it is common, and an equa-
tion in an odd number of variables is necessarily common but not Sidorenko). The classification
problems for systems containing more than one equation remain wide open, despite recent inter-
est and the resolution of special cases; see [Alt22, FPZ21, KLM21, KLM23, Ver23a, Ver23b].

It transpires that adding a free variable to a system of linear equations (equivalently, a free
dimension to the solution space) corresponds to the addition of a pendant edge in the graph-
theoretic setting. In those cases when one can transfer between the graph-theoretic and arith-
metic settings via Cayley graph constructions, these operations are equivalent. See [SW17, Ex-
ample 4.2] for an instance of this correspondence and elsewhere in that paper for a brief dis-
cussion of the correspondence in general. For l ⩾ 0, let Ψ(l) be the linear system attained by
adding l free variables to Ψ.

Question 1.2 (Alon, [SW17, Question 4.1]). Is it true that for all non-SidorenkoΨ, there exists l0
such that for all l ⩾ l0 we have Ψ(l) is uncommon?

For example, it is known that three term arithmetic progressions, whose solution space is
parameterised Ψ = (x, x + d, x + 2d), are common. Is it true that the system given
by Ψ(l) = (x, x + d, x + 2d, y1, . . . , yl) is uncommon for all l sufficiently large? The answer is
yes by the following theorem of Fox–Pham–Zhao.

Theorem 1.3 ([FPZ21, Theorem 1.5]). The answer to Question 1.2 is yes among all Ψ whose
image has codimension one.

For convenience in this document, we will refer to systems Ψ with the property that Ψ(l)

is common for all sufficiently large l as common-extendable. We have mentioned already that
Sidorenko implies common; in fact it is not difficult to see that Sidorenko implies common-
extendable. In this language, the above question essentially (i.e. under the assumption that linear
systems cannot oscillate infinitely often between common and uncommon under the addition of
free variables) asks whether Sidorenko is equivalent to common-extendable. This is true in
the graph-theoretic setting under Sidorenko’s conjecture. It turns out that it is not true in the
arithmetic setting.
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Theorem 1.4. There is a system of linear equations which is common-extendable but not Sido-
renko, so the answer to Question 1.2 is no.

The example which demonstrates the negative answer to Question 1.2 is the following rank 2
system of equations in 9 variables:

x1 − x2 + x3 − x4 = 0

x5 − x6 + x7 − x8 + x9 = 0.

Theorem 1.4 is proven in Section 3. As an intermediate lemma in the proof, we provide a
lower bound on the geometric mean of the number of monochromatic solutions toΦ. We show in
Section 4 that a lower bound of this type is in fact also necessary, and indeed that a slightly weaker
version of the common-extendable property is equivalent to a geometric notion of commonness
in which one asks that the geometric mean of the number of monochromatic solutions is at least
that of a random two-colouring. This is proven in Proposition 4.4. The intended utility is that
geometric commonness is oftentimes more easily studied than the common-extendable property.

It transpires that Φ also exhibits a negative answer to a question of Kamčev–Liebenau–
Morrison. Recall that a system is said to be translation-invariant if it is solved by setting
x1 = x2 = x3 = · · · . If a system is not translation invariant, then the set of elements of Fn

p

whose first entry is equal to one has positive density but no solutions, so any system which is
not translation-invariant cannot be Sidorenko. The only known examples of systems which are
not translation invariant and are common are systems of rank one (i.e. systems comprising a
single equation), whereupon commonness follows trivially from a cancellation which does not
occur for systems of two or more equations. This inspired the following question of Kamčev–
Liebenau–Morrison.

Question 1.5. [KLM23, Question 5.6] Does there exist a system of rank at least two which is
common, but not translation-invariant?

Theorem 1.6. The answer to Question 1.5 is yes.

The system Φ has rank two and is not translation invariant. The proof of Theorem 1.6 is
completed in Lemma 3.1, which shows that Φ is common. Since uploading this document to the
arXiv, the author has been made aware that Question 1.5 has been independently resolved in Fn

2

by Král’–Lamaison–Pach in forthcoming work. See [KLP22].
Finally, we also take this opportunity to address the following question of Kamčev–Liebe-

nau–Morrison.

Question 1.7. [KLM21, Question 6.3] Suppose that Ψ is a linear system such that there is a
setA ⊂ Fn

p such that the density of monochromatic solutions in (A,Ac) is less than αt+(1−α)t,
where α = |A|/pn. Is Ψ necessarily uncommon if one restricts one’s attention to sets of density
roughly 1/2?

For a suitable interpretation of ‘roughly’, the answer to [KLM21, Question 6.3] is no, even
with the stronger demand that the density of monochromatic solutions in (A,Ac) is less than 21−t.
To see why, we will need to introduce some notation.
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2. Notation, preliminaries, and an answer to Question 1.7

Throughout this document we assume that p is an odd prime.
If Ψ is a system of m linear equations in t variables, described by a m × t matrix MΨ with

entries in Fp, and f : Fn
p → C, then we define

TΨ(f) := Ex∈(Fn
p )

t:MΨx=0f(x1)f(x2) · · · f(xt).

In this document we only consider the case of homogeneous linear systems: each equation
is of the form

∑t
i=1 aixi = 0. Furthermore, we always assume that t > m and that the system

is of full rank. In particular, Ψ has nontrivial solutions. As is standard and as we shall use
throughout the document, E is a normalised sum, so here is shorthand for 1

#{x∈(Fn
p )

t:MΨx=0}
∑

.
One observes that if A ⊂ Fn

p and 1A is the characteristic function for the set A, then TΨ(1A) is a
normalised count for the number of solutions to Ψ in A. Sometimes, when the underlying linear
system is clear from context, we may just use the notation T (f) for brevity.

We use the Fourier transform on Fn
p . Let ep(·) be shorthand for e

2πi·
p . For h ∈ Fn

p , we define

f̂(h) := Ex∈Fn
p
f(x)ep(−h · x),

whereupon one obtains the Fourier inversion formula:

f(x) =
∑
h∈Fn

p

f̂(h)ep(x · h),

and Parseval’s identity:
Ex∈Fn

p
|f(x)|2 =

∑
h∈Fn

p

|f̂(h)|2.

As is also standard, we will deal with a functional version of the notion of commonness in
which one studies the set of functions f : Fn

p → [0, 1] rather than focusing only on the subset of
these which are characteristic functions of sets.

Definition 2.1. A system of t linear forms Ψ is common if, for all n ⩾ 1 and all f : Fn
p → [0, 1],

we have
TΨ(f) + TΨ(1− f) ⩾ 21−t.

Clearly if a system is common by the above definition then it is common when one restricts
only to characteristic functions of sets. The other direction is recovered by a standard argument
in which one constructs a random set A from f by choosing x ∈ A with probability f(x); we
won’t dwell on this further but remark that details are worked out for example in [FPZ21].

Sometimes it is more convenient to describe a linear system by parameterising its solution
space. In this case we have equivalently:

TΨ(f) = Ey1,...,yD∈Fn
p
f(ψ1(y1, . . . , yD)) · · · f(ψt(y1, . . . , yD)),

where each ψi is a linear form mapping (Fn
p )

D to Fn
p , xi = ψi(y1, . . . , yD) for each i

and D = t−m.
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Returning to Question 1.7, we demonstrate a Ψ, f : Fn
p → [0, 1] such that we have

TΨ(f) + TΨ(1−f) < 21−t, but TΨ(g)+TΨ(1−g) ⩾ 21−t for all g with Eg = 1/2. By randomly
sampling as discussed above, this yields a negative answer to Question 1.7.

Let Ψ be the system whose solution space is parameterised by (x, x + d, x + 2d), so t = 3,
m = 1, D = 2 and ψi(x, d) = x+ (i− 1)d. Let Ψ(1) be parameterised by (x, x+ d, x+ 2d, y).
It is shown in [SW17, Example 4.1] that Ψ(1) is uncommon (with a sequence of sets An for
which

∣∣|An|/pn − 1
2

∣∣ > ε for all n and some explicit ε > 0). On the other hand, it is well
known that Ψ is common (this goes back to Cameron, Cilleruelo and Serra [CCS07]). For a
function f : Fn

p → [0, 1] with α := Ex∈Fn
p
f(x), one sees that

TΨ(1)(f) + TΨ(1)(1− f) = αTΨ(f) + (1− α)TΨ(1− f), (2.1)

since we average over the free variable y. In fact, in general, we see that

TΨ(l)(f) + TΨ(l)(1− f) = αlTΨ(f) + (1− α)lTΨ(1− f); (2.2)

this formula will be useful later.
Following on from (2.1), if α = 1/2 then

inf
f :Ef= 1

2

TΨ(1)(f) + TΨ(1)(1− f) = inf
f :Ef= 1

2

1

2
(TΨ(f) + TΨ(1− f)) ⩾ 2−3,

since Ψ is common. Thus Ψ(1) is common among average 1/2 functions, but is not common in
general, answering a suitable interpretation of Question 1.7 in the negative.

This argument works more generally for adding free variables to any single equation in a odd
number of variables: use [FPZ21, Theorems 1.4, 1.5]. Furthermore, any system of equations
which is common among average 1/2 functions but not common-extendable yields counterex-
amples to Question 1.7 in this way.

3. Proof of Theorem 1.4 and Theorem 1.6

Recall we let Φ be the following rank 2 system of equations in 9 variables

x1 − x2 + x3 − x4 = 0

x5 − x6 + x7 − x8 + x9 = 0.

Let A4 be shorthand for (the system containing) the first equation in Φ, an additive 4-tuple.
Let A5 be shorthand for the second equation.

Since Φ is not translation-invariant and has rank two, to prove Theorem 1.6 we just need to
show that Φ is common.

Lemma 3.1 (Proof of Theorem 1.6). Φ is common.

Proof. Let f :Fn
p → [0, 1] haveEf=α and let g=f−α. We observe that TΦ(f)=TA4(f)TA5(f).

Furthermore, since A4 has rank one, one sees that TA4(α + g) = α4 + TA4(g), and similarly
for A5. Thus,

TΦ(f) = TΦ(α + g) = α9 + α5TA4(g) + α4TA5(g) + TΦ(g),



6 Daniel Altman

so one computes

TΦ(f)+TΦ(1−f) = α9+(1−α)9+
(
α5 + (1− α)5

)
TA4(g)+

(
α4 − (1− α)4

)
TA5(g). (3.1)

Recall that TA4(g) is the (4th power of the) ℓ4-norm of g on the Fourier side so in particu-
lar TA4(g) ⩾ 0. Thus ifα = 1/2 then we trivially have TΦ(f)+TΦ(1−f) ⩾ 1/28. Assume with-
out loss of generality α < 1/2. We have TA4(g) =

∑
h |ĝ(h)|4 and TA5(g) =

∑
h |ĝ(h)|4ĝ(h),

and so |TA5(g)| ⩽ TA4(g)||ĝ||∞ ⩽ TA4(g)(1− α). Thus continuing from (3.1),

TΦ(f) + TΦ(1− f) ⩾ α9 + (1− α)9 + TA4(g)
(
α5 + α4(1− α)

)
⩾ α9 + (1− α)9 ⩾ 2−8,

where the final inequality follows from convexity.

Now we proceed to the proof of Theorem 1.4. Since Φ is not translation-invariant, it is
not Sidorenko. To prove Theorem 1.4 we will show that Φ is common-extendable, i.e. Φ(l) is
common for all l sufficiently large. First we compile some properties of Φ.

Recall that we have assumed that p is odd.

Lemma 3.2. There is a constant c0 > 0 such that if f : Fn
p → [0, 1] has Ef ⩾ 0.45

then TΦ(f) ⩾ c0.

Proof. Let α ∈ (0, 1/2) and let f : Fn
p → [0, 1] have Ef = α. Let g = f − α. We have

that ĝ(0) = 0 and furthermore, since g is real-valued, ĝ(h) = ĝ(−h) for all h. Since p is odd,
there are thus at least two values of h which attain suph |ĝ(h)|. By Parseval’s identity, we hence
obtain

2 sup
h

|ĝ(h)|2 ⩽
∑
h

|ĝ(h)|2 = E|g(x)|2 ⩽ (1− α)2. (3.2)

Thus ||ĝ||∞ ⩽ (1−α)/
√
2. By Fourier-inversion as above, it follows that |TA5(g)| ⩽ 1−α√

2
TA4(g),

and by Parseval’s identity again TA4(g) ⩽ (1− α)4/2. Thus

TΦ(f) = TΦ(α + g) = α9 + α5TA4(g) + α4TA5(g) + TA4(g)TA5(g)

⩾ α9 + TA4(g)

(
α5 − (1− α)α4

√
2

− (1− α)5

2
√
2

)
.

One checks that the polynomial q(x) = x5− (1−x)x4
√
2

− (1−x)5

2
√
2

is negative for x ∈ (0, 1/2) and so

TΦ(f) ⩾ α9 +
(1− α)4

2

(
α5 − (1− α)α4

√
2

− (1− α)5

2
√
2

)
.

Defining q̃(x) = x9 + 1
2
(1 − x)4

(
x5 − (1−x)x4

√
2

− (1−x)5

2
√
2

)
, one checks that q̃(0.45) > 0, which

proves the result when Ef = 0.45. To conclude we observe that inff :Ef=α TΦ(f) is monotonic
in α.

Next we show that Φ possesses a ‘local Sidorenko’ property with respect to the ||̂·||∞ norm.
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Lemma 3.3. There is a constant c1 > 0 such that, upon letting f : Fn
p → [0, 1], α := Ef

and g := f − α, if 1
3
⩽ α ⩽ 2

3
and ||ĝ||∞ ⩽ c1 then TΦ(f) ⩾ α9.

Proof. Let α ∈ [1
3
, 2
3
]. For g : Fn

p → [−α, 1 − α] with Exg(x) = 0 we have, as we saw in
Lemma 3.1, that TA5(g) ⩽ ||ĝ||∞TA4(g) ⩽ ||ĝ||3∞, where we have used Parseval’s identity and
the bound ||g||∞ < 1. Thus

TΦ(α + g) = α9 + α5TA4(g) + α4TA5(g) + TA4(g)TA5(g)

⩾ α9 + TA4(g)(α
5 − α4||ĝ||∞ − ||ĝ||3∞).

We have that TA4(g) ⩾ 0 so it remains to argue that there is a constant c1 such that for
all 0 ⩽ x ⩽ c1 and all 1

3
⩽ α ⩽ 2

3
, we have α5 − α4x − x3 ⩾ 0. This is easily seen to be

true.

In our final lemma before the proof of Theorem 1.4, we establish the following inequality.

Lemma 3.4. There are constants c2, c3, C4 > 0 such that upon letting f : Fn
p → [0, 1], α := Ef

and g := f − α we have that if |α− 1
2
| ⩽ c2 then

TΦ(f)TΦ(1− f) ⩾ 2−18 + c3||ĝ||4∞ − C4|α− 1

2
|.

Proof. Letting T4 := TA4(g) and T5 := TA5(g) for brevity we have

TΦ(f)TΦ(1− f) = T (α + g)T (1− α− g)

= (α9 + α5T4 + α4T5 + T4T5)×
((1− α)9 + (1− α)5T4 − (1− α)4T5 − T4T5)

=
(
2−9 + 2−5T4 + 2−4T5 + T4T5

)
×(

2−9 + 2−5T4 − 2−4T5 − T4T5
)
+O(|α− 1

2
|)

=
(
2−4 + T4

)2 (
2−10 − T 2

5

)
+O(|α− 1

2
|).

We showed in (3.2) that ||ĝ||∞ ⩽ ||g||∞/
√
2 and so ||ĝ||∞ ⩽ 1

2
√
2
+ O(|α − 1

2
|). Thus here we

have
T5 ⩽ ||ĝ||∞T4 ⩽

1

2
√
2
T4 +O(|α− 1

2
|) ⩽ 2−6.5 +O(|α− 1

2
|).

Continuing from above,

TΦ(f)TΦ(1− f) =
(
2−4 + T4

)2 (
2−10 − T 2

5

)
+O(|α− 1

2
|)

⩾
(
2−4 + T4

)2 (
2−10 − 2−3T 2

4

)
+O(|α− 1

2
|)

= 2−18 + 2−3T4
(
2−10 + 2−8T4 − 2−3T 2

4 − T 3
4

)
+O(|α− 1

2
|).

One checks that the polynomial q(x) = 2−10 + 2−8x− 2−3x2 − x3 is positive for x ∈ [0, 0.07].
But 0 ⩽ T4 ⩽ 2−5 +O(|α− 1

2
|), and so for c2 chosen small enough we have that T4 ∈ [0, 0.07].

Finally note that T4 ⩾ ||ĝ||4∞. This completes the proof.
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We note that explicit values for the constants c0, c1, c2, c3 and C4 could be computed if one
so wished. As a consequence, one could extract from the following proof an explicit l0 such
that for all l ⩾ l0, Φ(l) is common. For a more qualitative reading of the proof below, in which
we will introduce constants c5, c6, the reader may find it helpful to bear in mind the following
hierarchy of scales: c1, c2, c3 ≫ c6 ≫ c5 ≫ 1/l.

Proof of Theorem 1.4. Recalling (2.2), we wish to show that for l sufficiently large

αlTΦ(f) + (1− α)lTΦ(1− f) ⩾ 2−l−8,

where α := Ef . Let g := f − α. We split into three cases: the first is when |α − 1
2
| is suitably

small and ||ĝ||∞ is suitably small; the second is when |α− 1
2
| is suitably small and ||ĝ||∞ is large;

the third is when |α− 1
2
| is large. In this proof, all asymptotic notation is with respect to l.

Firstly, if α ∈ [1
3
, 2
3
] and ||ĝ||∞ ⩽ c1, then from Lemma 3.3 applied to both f and 1− f we

have
αlT (f) + (1− α)lT (1− f) ⩾ αl+9 + (1− α)l+9 ⩾ 2−l−8,

where we use convexity for the second inequality.
For the second case, let c5 be a constant depending on c1, c3 to be determined shortly, and

assume that |α− 1
2
| ⩽ c5√

l
and that ||ĝ||∞ ⩾ c1. By the AM-GM inequality, we have

αlT (f) + (1− α)lT (1− f) ⩾ 2(α(1− α))l/2
√
T (f)T (1− f).

Invoking Lemma 3.4 by taking l suitably large so c5√
l
⩽ c2, we have

T (f)T (1− f) ⩾ 2−18 + c3c
4
1 −

C4c5√
l

⩾ 2−18 +
1

2
c3c

4
1,

where we have again taken l suitably large for the second inequality. Continuing from above,
there is a positive constant c6 > 0 which may be computed explicitly in terms c1, c3 such that

αlT (f) + (1− α)lT (1− f) ⩾ (α(1− α))l/2 (2−8 + c6)

=

(
1

4
− |α− 1

2
|2
)l/2

(2−8 + c6)

⩾

(
1− 4c25

l

)l/2

2−l(2−8 + c6)

=

(
1− 4c25

l

)l/2

(1 + 28c6)2
−l−8.

For c5 fixed,
(
1− 4c25

l

)l/2

converges to e−2c25 as l → ∞. Let c5 be small enough so that

e−2c25(1 + 28c6) > 1 and then let l be large enough so that
(
1− 4c25

l

)l/2

(1 + 28c6) ⩾ 1. This
completes the proof in this case.
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Finally, assume that |α− 1
2
| ⩾ c5√

l
. Assume with out loss of generality that α ⩾ 1

2
. Then we

have by Lemma 3.2 that

αlT (f) + (1− α)lT (1− f) ⩾ αlT (f) ⩾ c0

(
1

2
+
c5√
l

)l

= 2−lc0

(
1 +

2c5√
l

)l

.

Taking l sufficiently large, this is greater than 2−l−8, which completes the proof.

4. Geometric commonness

In the previous section we obtained a lower bound on the geometric mean of T (f) and T (1− f)
in order to conclude thatΦ is common-extendable. In this section we will introduce the notion of
geometric commonness and see in Proposition 4.4 that a bound of this form is in fact necessary.

Definition 4.1. A system of t linear forms Ψ is geometrically common if for all n ⩾ 1 and
all f : Fn

p → [0, 1] with Exf(x) = 1/2,

TΨ(f)TΨ(1− f) ⩾ 2−2t.

We recall that a system of equations in t variables is Sidorenko if TΨ(f) ⩾ (Exf(x))
t for

all f : Fn
p → [0, 1]. It is clear that if Ψ is Sidorenko then it is geometrically common. Fur-

thermore the AM-GM inequality yields that if Ψ is geometrically common then it is common
among functions with density 1/2 (though as we have seen this does not imply commonness in
general).

Definition 4.2. A system of t linear forms Ψ is weakly common-extendable if for all ε > 0, for
all sufficiently large l ⩾ lε, for all n ⩾ 1 and for all f : Fn

p → [0, 1],

TΨ(l)(f) + TΨ(l)(1− f) > 2−l
(
21−t − ε

)
.

Conversely, the condition that a system is not weakly common-extendable asks that the se-
quence of systems Ψ(l) is not common infinitely often by a suitably uniform margin.

Definition 4.3. Let α ∈ (0, 1). A system of linear formsΨ is α-prevalent if there exists c(α) > 0
such that for all n, for every f : Fn

p → [0, 1] with Ef = α, we have TΨ(f) ⩾ c(α).

We note that prevalence is monotonic in α: if α < β and Ψ is α-prevalent then it is β-
prevalent.
Remark 4.1. By (a generalised) Szemerédi’s theorem, and Varnavides’ strengthening thereof,
all translation-invariant systems are α-prevalent for all α ∈ (0, 1). It is not difficult to see that
the converse holds too, so α-prevalence for all α ∈ (0, 1) is equivalent to translation-invariance.
Schur triples are (1

3
+ ε)-prevalent but not 1

3
-prevalent if p = 3; (2

5
+ ε)-prevalent but not 2

5
-

prevalent if p = 5; (2
7
+ ε)-prevalent but not 2

7
-prevalent when p = 7. See [GR05], [Gre05]

for the results pertaining to Schur triples. We showed in Lemma 3.2 that Φ is 0.45-prevalent for
odd p. On the other hand, if p = 3, then Φ is not 1

3
-prevalent since it is not translation-invariant.



10 Daniel Altman

We will only prove the reverse implication of the below Proposition. The forward direction
is essentially a union of the arguments in the second and third cases of the proof of Theorem 1.4
and so we omit the details.

Proposition 4.4. A 1
2
-prevalent system of linear forms Ψ is geometrically common if and only if

it is weakly common-extendable.

Proof. SupposeΨ is not geometrically common and letn be such that there exists f : Fn
p → [0, 1]

with Ef = 1/2 and T (f)T (1− f) < 2−2t. If T (f) = T (1− f) then we have immediately that
T (f) + T (1− f) < 2−t+1, and indeed there is ε > 0 such that T (f) + T (1− f) ⩽ 2−t+1 − ε.
Then by (2.2),

TΨ(l)(f) + TΨ(l)(1− f) = 2−l (T (f) + T (1− f)) ⩽ 2−l(21−t − ε),

for all l ⩾ 1. Thus Ψ is not weakly common-extendable in this case.
Assume by symmetry that T (1− f) > T (f). Define c := log

√
T (1− f)/T (f) > 0. By

the 1
2
-prevalence of Ψ, we have that c is bounded above uniformly in n, f . Now let l ⩾ 45c

4
be a

large integer to be determined more precisely later. Let S = {x : f(x) ⩽ 9
10
}; since Ef = 1/2,

we have by Markov’s inequality that |S| ⩾ 4pn

9
. Let g : Fn

p → [0, 1] take value pn

|S| ·
c
2l
⩽ 1

10
on S

and be zero otherwise. Then we have that Exg(x) =
c
2l

and that f + g takes values in [0, 1]. We
claim that f + g exhibits that Ψ is not weakly common-extendable.

Note that for functions fi : Fn
p → [0, 1] and nonzero linear forms (ψi)

t
i=1 we have

that Exf1(ψ1(x)) · · · ft(ψt(x)) ⩽ Exfi(x) for any i, and so by the multilinearity of the T oper-
ator we have that T (f + g) = T (f) +O(1/l). Similarly, T (1− (f + g)) = T (1− f) +O(1/l).
Thus,

TΨ(l)(f + g) + TΨ(l)(1− (f + g)) =

(
1

2
+

c

2l

)l

T (f + g) +

(
1

2
− c

2l

)l

T (1− (f + g))

=
1

2l
(
(1 + c/l)lT (f) + (1− c/l)lT (1− f) +O(1/l)

)
=

1

2l
(
ecT (f) + e−cT (1− f) +O(1/l)

)
=

1

2l

(
2
√
T (f)T (1− f) +O(1/l)

)
.

Now we have that
√
T (f)T (1− f) < 1/22t and so there exists ε > 0 such that for l sufficiently

large we have TΨ(l)(f + g) + TΨ(l)(1 − (f + g)) < 2−l(21−t − ε). Thus we conclude that Ψ is
not weakly common-extendable.

The proof of the reverse implication is omitted.

Remark 4.2. It is clear that if Ψ is not 1
2
-prevalent then it is not geometrically common. We have

not investigated whether the (weak) common-extendable property implies 1
2
-prevalence.

We conclude with a picture showing the relationships between the various notions discussed
in this document.
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Figure 4.1: Implications between various notions. Red arrows, from left to right, correspond to
answers to Questions 1.2, 1.7, 1.5, which show that the corresponding implications do not hold.
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